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R E S U M O

Nesta tese é introduzida uma nova técnica de seguimento de pontos ca-
racterísticos de objectos em sequências de imagens em escala de cinzentos
baseada em lógica difusa. É apresentada uma metodologia versátil e modular
para o seguimento de objectos utilizando conjuntos difusos e motores de
inferência. É também apresentada uma extensão desta metodologia para o
correcto seguimento de múltiplos pontos característicos.

Para se realizar o seguimento são definidas inicialmente três funções de
pertença. Uma função de pertença está relacionada com a propriedade distin-
tiva do objecto que desejamos seguir, outra está relacionada com o facto de se
considerar que o objecto tem uma movimentação suave entre cada imagem
da sequência e outra função de pertença referente à sua previsível localização
futura. Aplicando estas funções de pertença aos píxeis da imagem, obtêm-se
os correspondentes conjuntos difusos, que serão manipulados matematica-
mente e servirão como entrada num motor de inferência. Situações como a
oclusão ou falha na detecção dos pontos característicos são ultrapassadas
utilizando posições estimadas calculadas a partir do modelo de movimento
e a um vector de estados do objecto.

Esta metodologia foi inicialmente aplicada no seguimento de um objecto
assinalado pelo utilizador. Foram realizados vários testes de desempenho
em sequências de imagens sintéticas e também reais. Os resultados expe-
rimentais obtidos são apresentados, analisados e discutidos. Embora esta
metodologia pudesse ser aplicada directamente ao seguimento de múltiplos
pontos característicos, foi desenvolvida uma extensão desta metodologia
para esse fim. Nesta nova metodologia a sequência de processamento de
cada ponto característico é dinâmica e hierárquica. Dinâmica por ser variável
ao longo do tempo e hierárquica por existir uma hierarquia de prioridades
relativamente aos pontos característicos a serem seguidos e que determina
a ordem pela qual esses pontos são processados. Desta forma, o processo
dá preferência a pontos característicos cuja localização é mais fácil de pre-
ver comparativamente a pontos característicos cujo conhecimento do seu
comportamento seja menos previsível. Quando esse valor de prioridade se
torna demasiado baixo, esse ponto característico deixa de ser seguido pelo
algoritmo. Para se observar o desempenho desta nova abordagem foram
utilizadas sequências de imagens onde várias características indicadas pelo
utilizador são seguidas.

Na parte final deste trabalho são apresentadas as conclusões resultantes a
partir do desenvolvimento deste trabalho, bem como a definição de algumas
linhas de investigação futura.
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A B S T R A C T

This thesis introduces a novel technique for feature tracking in sequences of
greyscale images based on fuzzy logic. A versatile and modular methodology
for feature tracking using fuzzy sets and inference engines is presented.
Moreover, an extension of this methodology to perform the correct tracking
of multiple features is also presented.

To perform feature tracking three membership functions are initially
defined. A membership function related to the distinctive property of the fea-
ture to be tracked. A membership function is related to the fact of considering
that the feature has smooth movement between each image sequence and a
membership function concerns its expected future location. Applying these
functions to the image pixels, the corresponding fuzzy sets are obtained and
then mathematically manipulated to serve as input to an inference engine.
Situations such as occlusion or detection failure of features are overcome
using estimated positions calculated using a motion model and a state vector
of the feature.

This methodology was previously applied to track a single feature identi-
fied by the user. Several performance tests were conducted on sequences of
both synthetic and real images. Experimental results are presented, analysed
and discussed. Although this methodology could be applied directly to mul-
tiple feature tracking, an extension of this methodology has been developed
within that purpose. In this new method, the processing sequence of each
feature is dynamic and hierarchical. Dynamic because this sequence can
change over time and hierarchical because features with higher priority will
be processed first. Thus, the process gives preference to features whose loca-
tion are easier to predict compared with features whose knowledge of their
behavior is less predictable. When this priority value becomes too low, the
feature will no longer tracked by the algorithm. To access the performance
of this new approach, sequences of images where several features specified
by the user are to be tracked were used.

In the final part of this work, conclusions drawn from this work as well as
the definition of some guidelines for future research are presented.
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Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear less.

— Marie Curie

1I N T R O D U C T I O N

1.1 motivation

The understanding of the dynamics in the surrounding environment is
a basic necessity for all animals. Environment changes are manifold and
detected through physiological systems placed in the body. The conventional
five sensitive systems are sight, hearing, touch, smell and taste. With these
sensorial stimulus animals can interpret the scene and take the right actions
to reach a goal. In non rational animals the goals are quite primitive and
simple, including hunting, defence and safety. Moreover, with the cognitive
property, humans can achieve higher level of understanding. Humans are
capable to interpret the changes in the environment and, adding knowledge,
think forward to anticipate future behaviours.

Computer vision systems are destitute of all sensitive senses rather than
sight. Equipped only with "eyes" such systems attempt to understand the
surrounding environment looking for scene modifications. In general, illu-
mination changes, noise in the acquisition process and objects movement
are the major causes for scene changes. Objects movement and behaviour
are the most important features to be traced, since illumination changes is
a global property and didn’t give enough information about the dynamics
of the scene, and noise is an extra and undesirable signal added, by the
acquisition device, over the real representation of the scene. Moreover, illu-
mination changes and noise are two causes, among others, that difficult the
task of extraction of objects motion in an image. Other causes that difficult
the extraction and analysis of objects motion are:

• information losses due the representation of a 3D world in a 2D plane;

• complex object motion;

• nonrigid or articulated nature of objects;

• complex object shapes;

• partial and full object occlusions.

In this work, the tracking concept refers to the process of locating a moving
object (or several ones) and estimating its trajectory along time in a sequence
of images. In its simplest approach, tracking involves two steps: detection
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4 introduction

of interesting objects and trace their trajectories. Furthermore, it could also
involve behaviour analysis, object and activity classification, specific person
identification, counting, flux statistics and alarming.

Normally, tracking is seen as a main task involving several subtasks such as
image segmentation for object detection, object matching and position estima-
tion. A myriad of algorithms has been developed to implement these subtasks
but each one have their strengths and weaknesses and, over the last years,
extensive research has been conduct in this field to find an optimal tracking
system for a certain kind of applications. Consequently many approaches
of tracking techniques have been proposed in the literature, however, they
are not completely accurate for all kind of scenarios and just provide good
results when a certain number of assumptions are verified. This reason is the
motivation to study and implement new tracking approaches introducing
new concepts, such as fuzzy logic, to improve the tracking process.

1.2 problem statement

As stated earlier, the process of object tracking is still a difficult task and
remains a challenge.

The presented work aims to study the problem of object tracking in a
sequence of images using fuzzy logic concepts. The object must denote a
distinctive property that can conveniently characterise such object. In this
work, only the value of grey level is used to distinguish the object. With the
introduction of fuzzy logic concepts, robustness against data and accurate
processing of noise and uncertainty are expected.

1.3 major contributions

In this work a novel object tracking approach is presented.
A singular methodology using fuzzy sets is presented here. Fuzzy sets are

used, commonly, for control and, only recently, in image processing. In this
thesis a distinct way of using fuzzy sets is introduced for object tracking.

Object detection and correspondence tasks are not made independently but
they are incorporated in the same framework using fuzzy logic concepts such
as mathematical relationships between fuzzy sets and rule based inference.

An improvement of an existing method for image threshold is also pre-
sented. A new automatic scheme with no requirements on image information
is developed to overcome the initialisation of the original method. This seg-
mentation algorithm was firstly developed as a feature detector in the object
tracking process. The tracking method presented in this work incorporates
a detection scheme that overcame the use of an external feature detection
algorithm. However, it was an initial and innovative work that deserves to
be mentioned.

1.4 thesis outline

During the last years, extensive research has been conducted in this field and
many types and applications of object tracking systems have been proposed
in the literature. As a consequence, in Chapter 2, a review of object tracking
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is presented. After a brief introduction, a general definition of tracking is
presented in Section 2.2 followed by the wide range of applications found in
the literature. Methods and algorithms for object detection and matching are
also presented in this chapter. At the end, a discussion about these topics is
carried out.

In Chapter 3, the fuzzy logic concepts are introduced, as well the fuzzy
logic concepts as a constituting part of the tracking algorithms. After a short
introduction and a brief explanation of the historical genesis of fuzzy logic,
the essential concepts in fuzzy logic theory are introduced in Section 3.3.
These concepts are related with the definition, properties, operations and
fuzziness measures in fuzzy sets and also with the most commonly used
membership functions to construct such fuzzy sets. In Section 3.4 the intro-
duction of fuzzy logic theory in object tracking is described. Fuzzy logic
theory can appear in all steps of a tracking process such as object detection,
position estimation or in the correspondence task.

An automatic histogram thresholding method is presented in Chapter 4.
This automatic approach is an improvement of an existing method using
fuzzy measures to classify each grey level as object or background. The
introductory issues, theory of support and the explanation of the previous
method are introduced, respectively, in Sections 4.2, 4.3 and 4.4. The new
image segmentation approach is presented in Section 4.5. Experimental
results and related discussion appear at the end of this chapter.

In Chapter 5, an object feature tracking approach using fuzzy concepts is
introduced. The aim of this methodology is to solve the problem of feature
tracking using fuzzy sets theory. Several fuzzy sets are defined using both
cinematic and non cinematic properties. Properties such as grey level inten-
sity, smooth motion and motion model of the feature are used to construct
the fuzzy sets. Fuzzy operations are performed on these fuzzy sets and the
resulting fuzzy sets are used as inputs in an inference engine. This way,
problems of object detection and matching are performed exclusively using
inference rules on fuzzy sets. If a feature is occluded during a period of time
and no valid correspondence is performed, an estimated position of this
feature is used. This estimated position is calculated based on the movement
model and the previous movement behaviour of the feature. Experimen-
tal results using synthetic and non synthetic sequences are presented and
discussed, respectively, in Sections 5.6 and 5.7.

A hierarchical matching approach for multiple feature tracking is presented
in Chapter 6. In this chapter, the approach developed previously is extended
to deal with multiple features. When multiple moving features appear in the
scene, a matching scheme not using some kind of priorities could result in
erroneous correspondence. Also, the viewing angle of the camera and the
trajectory of the features in the real world can cause features to merge, divide
or disappear in the image plane and these issues were taken into account. This
hierarchical tracking approach is applied to several sequences to measure
its performance. Synthetic and real sequences were used and experimental
results are presented and discussed, respectively in Sections 6.5 and 6.6. In
Section 6.7, a brief discussion concerning this hierarchical matching approach
for multiple feature tracking is carried out.

Conclusion and future work are discussed in Chapter 7.





Do not talk a little on many subjects,
but much on a few.

— Pythagoras

2O B J E C T T R A C K I N G - S TAT E O F T H E A RT

2.1 introduction

Object tracking plays an important role within the field of computer vi-
sion. Tracking is essential to many applications, however, robust tracking
algorithms are still a challenge. Difficulties can arise due to noise presence
in images, quick changes in lighting conditions, abrupt or complex object
motion, changing appearance patterns of the object and the scene, non-rigid
object structures, object-to-object and object-to-scene occlusions, camera mo-
tion and real time processing requirements. Typically, assumptions are made
to constrain the tracking problem in the context of a particular application.
For example, almost all tracking algorithms assume that object motion is
smooth or impose constrains on the object motion to be constant in velocity
or acceleration. Multiple view image tracking or prior knowledge about
objects, such as size, number or shape, can also be used to simplify this
process.

In this chapter, the state of the art concerning object tracking is introduced.
It begins with the definition of tracking and, in Section 2.3, the wide range
of tracking applications is presented. Issues related with object detection and
matching are discussed, respectively, in Sections 2.4 and 2.5.

2.2 definition

Object tracking can be described as the problem of estimating the trajectory
of an object as it moves around a scene. Although this general concept is
almost consensual, the specific definition of tracking could change in the
literature. In Moeslund et al. [83] the tracking process is defined as consisting
of two tasks: figure-ground segmentation and temporal correspondences. Figure-
ground segmentation is the process of extracting the objects or features
of interest from the video sequence. Segmentation methods are applied
as the first step in many tracking systems and therefore is a crucial task.
Object segmentation could be based on motion, appearance, shape, depth, etc.
Temporal correspondence is concerning with the association of the detected
objects in the current frame with those in the previous frames defining
temporal trajectories. In Trucco and Plakas [125], tracking is described as the
motion problem and the matching problem. In this work, the motion problem

7



8 object tracking - state of the art

is related with the prediction of the object location in the next frame. The
second step is similar to the explained above. However, Hu et al., Yilmaz et al.
[47, 140] present a wider description of tracking with three steps: detection of
interesting objects, tracking such objects and analysis of object tracks to recognise
their behaviour. In Wang and Singh [133] this behaviour analysis is seen as a
further interpretation of tracking results.

As we can see, tracking process can include two or more subtasks de-
pending on the complexity of the final application. In this work, behavioural
analysis is not discussed and it will be considered as future work.

2.3 applications

Most initial tracking algorithms were used in surveillance tasks but nowadays
tracking algorithms are applied in a wide range of applications such as:

• Human Machine Interaction (HMI);

• traffic monitoring;

• medical applications;

• sports video analysis.

In new automated surveillance systems, the movement and location of
people are monitored to uncover suspicious behaviours of people in a place
such as airports or subways. People counting, crow flux and congestion
analysis can also be performed.

A system that can provide extremely accurate location information for
some specific person is proposed in Mazinan [80]. The proposed approach
called Specific Persons Surveillance using Satellite (SPSS) is a person finder
based on positioning information from Global Positioning System (GPS) Satel-
lite. A system to detect and track multiple people using a stereo camera
combining depth information, colour and position prediction is proposed
in Muñoz-Salinas et al. [85]. A person detection and counting system in
real world scenarios is introduced in Liu et al. [69]. The focus of this work
is the segmentation of groups of people into individuals to achieve a cor-
rect counting of people. An outdoor surveillance video system is presented
in Black et al. [15]. Using a set of calibrated cameras, a multi view image
tracking system is implemented to track humans and vehicles. This approach
tends to solve occlusions and can track objects between overlapping and
non-overlapping camera views. An automated video surveillance and alarm
system that can send alerts via email, SMS or MMS, with no human inter-
action, is found in Li et al. [65]. Smart surveillance systems (applications,
architectures, technologies, challenges and implications), the state-of-the-art
in the development of automated visual surveillance systems and a complete
survey on applications involving the surveillance of people or vehicles are
presented in Hampapur et al. [38], Valera and Velastin [128] and Hu et al.
[47], respectively.

HMI or Human Computer Interaction (HCI) is concerned with gesture
recognition or eye gaze tracking for data input in a computer or control
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command. A control system for an exoskeleton orthosis used by people
suffering from tetraplegia is proposed in Baklouti et al. [7]. The aim of this
work is to identify head motion and mouth expressions using a single camera
and translate that information into control commands. In Hiley et al. [45],
a low cost HCI based on eye tracking is presented. Using an infrared light
source provided by Light Emitting Diodes (LED’s) and a modified web cam
to be sensitive to infrared radiation, pupil detection is achieved and the gaze
point is then calculated. A more complex technique that does not rely on
the use of infrared devices for eye tracking is presented in Amarnag et al.
[3]. In Shi et al. [115, 116], is presented the design and implementation of
a smart camera, called GestureCam, which can recognise simple hand and
head gestures. The capture and recognition of user’s head and hand gesture
commands are used to control an internet browser. For further information,
a extended survey on visual interpretation of hand gestures in the context
of its role in HCI is discussed in Pavlovic et al. [93]. Also, Jaimes and Sebe
[51] present a review of the major approaches in HCI, focusing body, gesture,
gaze and facial expression recognition.

Traffic monitoring is related with real time traffic statistics, traffic flow
analysis, velocity control, driver’s violations or collision detections. In Atev
et al. [4], a system capable to monitoring traffic intersections in real time and
predicting possible collisions is proposed. In Kamijo et al. [55], the major
goal is to track individual vehicles robustly against the occlusion and clutter
effects which usually occur at intersections. In Zhang et al. [143], is obtained
information of the traffic flow at intersections to be used in intelligent traffic
management. Stopped vehicles in a highway is a possible sign of danger
and the detection of stopped vehicles and stopped delay can be useful even
to assess the level of service at urban intersections. Another approach to
measure the maximum stopped delay is presented in Bevilacqua and Vaccari
[12]. A vehicle tracking system which can detect and monitor vehicles as
they break traffic lane rules is suggested in Choi et al. [22]. Lim et al. [66]
introduces a system that detects all kinds of violations at a street intersection
such as red light running, speed violation, stop line violation and lane
violation by tracking individual vehicles. A method for accurately counting
the number of vehicles that are involved in multiple-vehicle occlusions is
proposed in Pang et al. [91]. In Tseng and Song [126], traffic parameters such
as vehicle speed and number of vehicles can be calculated with satisfactory
accuracy. A review on traffic visual tracking technology is presented in Liu
et al. [68].

In medical applications, tracking is used to identify human structures be-
haviour, rehabilitation diagnosis and optimisation of athlete’s performances.
A technique to extract and track the tongue surface movements from ultra-
sound image sequences is presented in Akgul et al. [2]. These information is
useful for a number of research areas, including disordered speech, linguis-
tics, speech processing and swallowing. In Mikic et al. and Malassiotis and
Strintzis [82, 76], an automatic identification and tracking of the boundary of
heart structures from echocardiographic images is proposed. A method to
gait analysis to use as a means to deduce the physical conditions of people is
referred in Wang [134]. A review on recent progress in human movement de-
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tection and tracking systems and existing or potential application for stroke
rehabilitation, can be found in Zhou and Hu [144].

Sports video analysis is related with training and gaming assistance and
game statistics. It could include tactics analysis, balls or players tracking
and computer-assisted referee. A real time tracking system applied in ten-
nis matches is described in Pingali et al. [95]. This tennis tracking system
provides spatio-temporal trajectories of the players and the ball in real time.
This information is the basis for obtaining statistic data such as the distance
travelled by the player, the instantaneous, average and peak speed and accel-
eration of the player and the covered areas of the court. The Hawk-Eye Tennis
System is presented in Owens et al. [89]. This system provides a low-cost so-
lution for tracking the tennis ball during a match. Real time requirements are
not the crucial element but it provides the 3D reconstruction of the complete
track of the ball no more than 5 seconds after the end of a point. In Xiong
et al. [138] a system to track body contours of the athletes in diving videos is
presented. This system can provide important information for coaches, such
as the altitude of a jump, the vertical angle of the body and even the whole
trajectory of the body. A soccer ball, players and referee detection, classifi-
cation and tracking, team identification, and a field extraction approach is
proposed in Naidoo and Tapamo [86].

Wang and Parameswaran [132] review current research in sports video
analysis and discuss the research issues within this field and potential appli-
cations.

Numerous approaches for object tracking have been proposed in the
literature. The classification of tracking algorithms is not consensual. This
different types of classification could be explained by the fact there exists a
myriad of tracking methods and authors could group them with respect to
objects representation, relevant descriptive features, object motion or shape
model and initial constrains. In Hu et al. [47], tracking methods are divided
into four categories: region-based tracking, active-contour-based tracking,
feature-based tracking and model-based tracking. In Trucco and Plakas [125],
a concise survey towards to subsea video tracking is presented. In this work
the review is divided into six categories increasing in its complexity: window
tracking, feature tracking, planar rigid shapes, solid rigid objects, deformable
contours and visual learning. More recently, in the survey presented in Yilmaz
et al. [140], tracking methods are distributed into three main categories:
point tracking, kernel tracking and silhouette tracking. Point tracking is
subdivided in deterministic and statistical methods, kernel tracking could
be classified in template and density based appearance models or multi-
view appearance models and silhouette tracking could be seen as contour
evolution or matching shapes.

Despite some different types of classification, all tracking systems are
based in two main steps: feature detection and matching.
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2.4 object detection

Object detection is the first task in a tracking system and represents an
important role in computer vision and image processing applications. Seg-
mentation of nontrivial images is one of the most difficult tasks in image
processing. Segmentation accuracy determines the eventual success or failure
of computerised analysis procedures. Segmentation of an image entails the
division or separation of the image into regions of similar attribute. This
situation can be mathematically described as follows:

Definition If I is the set of all pixels and P() is a homogeneity predicate
defined on groups of connected pixels, then segmentation is a partition of
the set I into connected subsets or image regions (R1,R2, ...,Rn), such that

n⋃
i=1

Ri = I, where Ri ∩ Rj = ∅,∀i 6= j. (2.1)

The uniformity predicate P(Ri) is true for all regions, and P(Ri ∪ Rj) is false,
when i 6= j and Ri,Rj are neighbours.

It’s easy to understand that the complexity of such process depends on the
amount of information present in the input images. Segmenting objects with
high contrast against background (characters detection or assembly opera-
tions) could be made with low processing level. However, in complex images
such as aerial or urban scenes, segmentation task is a more complicated
process.

No single standard method of image segmentation has emerged. Rather,
there are a collection of heuristic methods that have achieved some degree
of popularity. Because the methods are heuristic, it would be useful to have
some means to assess their performance.

Haralick and Shapiro [41] have established the following qualitative guide-
line for a good image segmentation:

"Regions of an image segmentation should be uniform and homogeneous with
respect to some characteristic such as grey tone or texture. Region interiors should
be simple and without many small holes. Adjacent regions of a segmentation should
have significantly different values with respect to the characteristic on which they
are uniform. Boundaries of each segment should be simple, not ragged, and must be
spatially accurate."

Unfortunately, no standard quantitative image segmentation performance
metric has been developed.

Several generic methods of image segmentation will be detailed described
in the following sections.

2.4.1 Motion based

In applications such as moving object detection, surveillance or traffic mon-
itoring, motion is a powerful property of that image sequence, revealing
the dynamics of scene. The task of motion based segmentation remains a
challenging and is a fundamental issue in computer vision systems. The
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difficulties in motion estimation are manifold and are concerned with the
differences between the motion observed in the image plane and the real mo-
tion presented in the scene. As only the apparent motion in the sequence can
be estimated, further assumptions on brightness changes, object properties,
and the relation between relative 3D scene motion and the projection onto
the 2D image plane are necessary for quantitative scene analysis.

Some issues frequently encountered in real-world sequences that difficult
the motion based segmentation include overlay of multiple motions, occlu-
sions, illumination changes, nonrigid motion, low Signal-to-Noise Ratio (SNR)
levels, aperture and correspondence problems. These situations, however, are
not always present and are usually not spread over the entire image area.
Thus, there exist many applications where image segmentation by motion
estimation could be implemented.

Several algorithms to estimate motion in the image plane are found in the
literature. For further information, the interested reader is referred to reviews
of motion understanding approaches (Shah [114]), hand gestures recognition
(Pavlovic et al. [93]) and video analysis of human motion (Gavrila [35]) and
dynamics (Wang and Singh [133]).

Frame differencing
One of the simplest approaches to detect changes and, consequently the

movement, between two consecutive intensity image frames I(x,y, t) and
I(x,y, t− 1) taken at times t and t− 1, respectively, is to make a difference
between the two images pixel by pixel. A difference image between two
images taken at instants t and t− 1 may be defined as

Idiff(x,y, t) =

{
1 if |I(x,y, t) − I(x,y, t− 1)| > T
0 otherwise

, (2.2)

where T is a specified threshold. The resulting image Idiff(x,y, t) denotes a
value 1 in spatial coordinates (x,y) if the difference in the grey level between
the two images is reasonable different at those coordinates, as determined by
the threshold value T , Radke et al. [100]. Frame differencing is very adaptive
to dynamic environments, but generally does a poor job of extracting all the
relevant pixels, e. g., there may be holes left inside slowly moving objects.
These small gaps in the extracted motion regions can be filled by performing
a morphological closing operation, Pingali et al. [95]. This morphological
closing operation can be mathematically represented as

Bdiff(x,y, t) = (Idiff(x,y, t)⊕ g)	 g, (2.3)

where Bdiff(x,y, t) is the binary result image at instant t, Idiff(x,y, t)
is the binary difference image at time t, g is a structuring element (e.g. a
small circular element), and ⊕, 	 indicate morphological dilatation and
erosion operations, respectively. In Lipton et al. [67], the detection of moving
targets in real video streams using frame differencing is performed. If the
illumination is not relatively constant, background pixels might be mistaken
as the object. Suitable threshold calculation is critical in this method. Rosin
[107] describes four different methods for selecting a correct threshold.
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Optical flow
This group of methods performs segmentation based on displacement or

optical flow of image pixels. The displacement or optical flow of a pixel is a
motion vector represented by the translation between a pixel in one frame
and its corresponding pixel in the following frame.

Commonly, it is computed using the brightness constraint, which assumes
brightness constancy of corresponding pixels in consecutive frames, Horn
and Schunck [46]. This constraint can be formally described as

Definition Let I(x,y, t) represents the image intensity then

I(x,y, t) ≈ I(x+ δx,y+ δy, t+ δt), (2.4)

where δx and δy are the displacement of the local region at (x,y, t) after time
δt.

Assuming that image motion is modelled by a continuous variation of
image intensity as a function of position and time, then, expanding the
left-hand side of the Equation 2.4 in a Taylor series yields

I(x,y, t) = I(x,y, t) +
∂I

∂x
δx+

∂I

∂y
δy+

∂I

∂t
δt+O2, (2.5)

where ∂I∂x , ∂I∂y and ∂I
∂t are the first-order partial derivatives of I(x,y, t), and

O2, the second and higher order terms.
Subtracting I(x,y, t) on both sides, ignoring O2 and dividing by δt yields

∂I

∂x

δx

δt
+
∂I

∂y

δy

δt
+
∂I

∂t
= 0. (2.6)

In the limit as δt→ 0, Equation 2.6 becomes

∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0. (2.7)

Now ∂I
∂x , ∂I∂y and ∂I

∂t are all measurable quantities and dx
dt and dy

dt are
estimates of what we are looking for: the velocity in x and y directions.
Writing dx

dt = u, dydt = v, ∂I∂x = Ix, ∂I∂y = Iy and ∂I
∂t = It gives

Ixu+ Iyv+ It = 0, (2.8)

or equivalently,

∇I · v + It = 0, (2.9)

where ∇I = (Ix, Iy) is the spatial gradient of the image, v = (u, v) is the
velocity.

The Equation 2.9 is known as the optical flow constraint equation.
The constraint on the local flow velocity expressed by this equation is

illustrated in Figure 1. The optical flow constraint equation defines a line in
velocity space. This constraint is not sufficient to compute both components
of v because the optical flow constraint equation is one linear equation with
two unknowns v = (u, v). Without further assumptions only the component
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of the velocity in the direction of (Ix, Iy), represented as v⊥, perpendicular
to the constraint line, can be estimated. This phenomenon is known as the
aperture problem and only at image locations where there exists sufficient
intensity structure can the motion be fully estimated with the use of the
optical flow constraint equation (see Figure 2).

Through apertures (a) and (c), due to a lack of local structure, only normal
motions of the edges forming the square can be estimated. Inside aperture
(b), at the corner point, the motion can be fully measured as there is sufficient
local structure, i. e., both normal motions are visible.

The normal velocity v⊥ and the normal direction n are given by

v⊥ =
−It
‖∇I‖

,

n =
∇I
‖∇I‖

. (2.10)

This vector is referred to as normal flow as it points normally to lines of
constant image brightness, parallel to the spatial gradient.

v

u

v⊥

n
Constraint line

Figure 1: The optical flow constraint equation.

v⊥ v

v⊥

(a) (b)

(c)

Figure 2: Illustration of the aperture problem.

To find the optical flow, another set of equations is needed, given by
some additional constraint. All optical flow methods introduce additional
conditions for estimating the actual flow. Popular techniques for computing
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optical flow include methods proposed by Horn and Schunck [46], Lucas
and Kanade [75], Black and Anandan [16], and Szeliski and Coughlan [120].

Widely known methods for estimating optical flow are completely dis-
cussed in Beauchemin and Barron [9].

For the performance evaluation of the optical flow methods, the interested
reader are referred to the surveys presented by Barron et al. [8] and Galvin
et al. [33].

In Vega-Riveros and Jabbour [130], alternative methods to motion analysis
rather than optical flow are also reviewed. These alternative methods are
based in matching approaches such as cross-correlation based methods.

Background subtraction
Object detection can also be achieved by constructing a reference repre-

sentation of the environment called background model and then finding
deviations between this model and each incoming frame. A significant change
between the background model and an image region denotes a moving ob-
ject. This process is referred as background subtraction and represents a
popular method for motion detection, especially under those situations with
a relatively static background.

A simple way to represent the image background can be achieved by
accumulating and averaging a sequence of frames for a certain interval of
time, so called a temporal median filter [55, 66]. An alternative is to model
the intensity of each pixel with a Kalman filter [103]. Using different Kalman
filter gain, foreground pixels are adapted more slowly than the background
pixels.

In Wren et al. [137], the background model initialisation is performed by
acquiring a sequence of video frames without moving objects. The colour of
each pixel is associated with a Gaussian distribution. Mean and variance are
learnt from the colour observations in several consecutive frames. Once the
background model is derived, for every pixel in the new frame, the likelihood
of its colour is computed, and the pixels that deviate from the background
model are labelled as foreground pixels. In each frame, background classified
pixels have their statistics updated using an adaptive filter. This approach is
also used in Wang [134]. A similar method is proposed by McKenna et al. [81].
Working in RGB colour space, a pixel in the background model is described
by [mr,mg,mb,σ2r ,σ2b,σ2b]. Background model is adapted using a recursive
estimation of mean and variance. Also it is assumed that the camera’s R, G
and B channels have Gaussian noise and therefore three variance parameters
σ2rcam, σ2gcam, σ2bcam are estimated for these channels. For a given pixel
x = (r,g,b) in the current frame, if |r−mr| > 3max(σr,σrcam), or if similar
test for components g or b is true, then the pixel is considered foreground.

In Haritaoglu et al. [43, 44], each background pixel is modelled by its min-
imum and maximum intensity values together with the maximum intensity
difference between consecutive frames observed during the training period.
A pixel in the new image is considered foreground if the absolute difference
between the minimum or the maximum values of the background model
is greater than the maximum intensity difference observed in the training
period.

In Friedman and Russell [32] a mixture of three Gaussian distributions was
used to model the pixel value for traffic surveillance applications. The pixel
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intensity was modelled as a weighted mixture of three Gaussian distributions:
road, shadow and vehicle distribution. An incremental algorithm was used
to learn and update the parameters of the model. A generalisation of the
previous approach is presented in Stauffer and Grimson [117, 118]. The pixel
intensity is modelled by a mixture of K Gaussian distributions (K is a small
number from 3 to 5) to model variations in the background like tree branch
motion and similar small motion in outdoor scenes. This mixture of Gaussian
distribution is also used in Atev et al. [4] and Zhang et al. [143] to perform
car detection.

In general, most tracking methods for fixed cameras use background sub-
traction methods to detect regions of movement. This fact occurs because
recent subtraction methods have the capabilities of modelling illumination
changes, noise, and the periodic motion of the background regions and, there-
fore, can accurately detect objects in a variety of circumstances. Moreover,
these methods are computationally efficient.

In practice, background subtraction provides incomplete object regions
in many instances, that is, the objects may be split into several regions, or
there may be holes inside the object since there are no guarantees that the
entire object will be different from the background model. However, the
most important limitation of background subtraction is the requirement of
stationary cameras. Camera motion usually distorts the background models.

2.4.2 Feature based

A feature is a distinctive characteristic or attribute of an object. The most
desirable property of an object feature is its uniqueness so that the object
can be easily distinguished in the image. Selecting the right feature plays a
critical role in tracking. Features could be grey level, colour, edges or texture.
In general, many tracking algorithms use a combination of these features.

Contours
It is possible to detect and represent an object by its boundaries. Object

boundaries usually generate strong changes in image intensities. Edge de-
tection is used to identify these changes. An important property of edges is
that they are less sensitive to illumination changes compared to intensity or
colour features. Usually, algorithms that track the boundary of objects, use
edges as the representative feature.

First order derivatives of an image, ∇I, are a common approach to edge
detection. They are computed from variations of the 2D image gradient
defined as

∇I =

[
Gx

Gy

]
=

[
∂I
∂x
∂I
∂y

]
. (2.11)

Roberts cross operator was one of the earliest edge detection opera-
tors [105]. It implements a basic first-order differentiation edge detection
and uses two templates obtained by forming differences of diagonal pairs of
pixels, Figures 3a, and 3b. The edge point is the maximum of the two values
derived by convolving the two templates at an image point.

In order to reduce the effects of noise, local averaging is incorporated and
the Prewitt edge detection operator arises [98]. This operator consists of two
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templates giving the rate of change of brightness along the two orthogonal
axis, Figures 3c, 3d.

Sobel edge detection operator is obtained when the weight at the central
pixels, for both Prewitt templates, is doubled, Figures 3e, 3f. It provides, in
general, a better performance than Roberts and Prewitt operators.

However, the Canny edge detection operator is perhaps the most popular
edge detection technique [18]. It was formulated with three main objectives:

1. Good detection - There should be a low probability of failing to mark
real edge points, and low probability of falsely marking nonedge points.

2. Good localisation - The points marked as edge points by the operator
should be as close as possible to the centre of the true edge.

3. Only one response to a single edge - This is implicitly captured in the
first criterion since when there are two responses to the same edge, one
of them must be considered false.

A common approximation of this filter can be described in four steps:

1. Apply a Gaussian smoothing.

2. Use the Sobel operator.

3. Use non-maximal suppression: any pixel that is not at the maximum
value is suppressed from the image.

4. Threshold with hysteresis to connect edge points: The gradient array is
now further reduced by hysteresis by means of two thresholds: t1 and
t2 where t1 > t2. If the magnitude is below t2, the pixel is set to zero
(considered a nonedge). If the magnitude is above t1, it is considered
an edge. If the magnitude is between t1 and t2, then it is set to zero
unless there is a path from this pixel to a pixel with a gradient above
t2.

An alternative to first-order differentiation methods explained above, is
to apply second-order differentiation and then find zero-crossings in the
second-order information. The 2D Laplacian of an image I is a second order
derivative defined as follows:

∇2I = ∂2I

∂2x
+
∂2I

∂2y
. (2.12)

The Laplacian operator is a template which implements second-order
differentiation which can be approximated using the difference between two
adjacent first-order differences. An example of a 3× 3 Laplacian operator
template is portrayed in Figure 4. The Laplacian operator used in its basic
form is more sensitive to noise than a first-order operator since it is differen-
tiation of a higher order. To reduce noise effects and to increase stability in
the differentiation step, Torre and Poggio [124] suggested a regularisation of
the image intensities by a filtering operation preceding differentiation.

Also, to prevent erroneous responses due to noise, Marr and Hildreth [77]
have proposed the Laplacian of Gaussian (LoG) edge detection operator in
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Figure 3: First order derivative template operators.
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Figure 4: 3× 3 Laplacian operator.

which Gaussian smoothing is performed prior to application of the Laplacian
operator.

Since these operators are applied locally, it is difficult to extract edges in
a global concept. In addition, if an image is noisy or if its region attributes
differ by only a small amount between regions, the detected boundary may
often be broken. In such case, edge linking techniques can be employed to
assemble the edge fragments present in a boundary.

The two principal properties used in local edge linking approaches are
the strength of the response of the gradient operator used to produce the
edge pixel and the direction of the gradient vector [36]. A pixel in the
neighbourhood is linked to the edge pixel if both magnitude and gradient
direction criteria are satisfied.

The Hough Transform (HT), presented in Duda and Hart [29], can also
be used as a means of global edge linking. It has been used to extract lines,
circles and ellipses.

The HT involves a mapping from the image points into an accumulator
space (Hough space). The mapping is achieved in a computationally efficient
manner, accordingly the function that describes the target geometric shape.
Higher the number of geometric shape parameters, higher the complex-
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ity. It is required significant storage and high computational requirements.
However, the most important advantages of this approach is that HT based
methods are insensitive to noise and to partial defined boundaries.

Different versions of the original HT have been proposed by several authors
such as Princen et al. [99] and Guil et al. [37].

Active contours or snakes, introduced by Kass et al. [57], is a completely
different approach to contour extraction. Object segmentation is achieved by
molding a closed contour to the boundary of an object in an image. The snake
model is a controlled continuity closed contour that changes their shape
under the influence of internal forces, image forces and external constraint
forces. These forces are combined to form an energy function that governs
the evolution of the contour. The object boundary is obtained when this
energy function reaches a local minimum. The use of snakes turns boundary
extraction into an energy minimisation problem.

Several tracking approaches using active contours have been proposed
in [60, 59, 2, 82, 126, 76, 50].

Intensity or colour
Many images can be described as containing some object of interest denot-

ing a reasonably uniform intensity or colour placed against a background
with different intensity or colour. If an object of interest is white against a
black background, or vice versa, it is a trivial task to set a midgrey threshold
to segment the object from the background. Practical problems occur when
the observed image is influenced by noise and when both the object and
background are nonuniform and assume some range of grey scales or colours.
However, image thresholding is a simple segmentation method and plays a
central role among the existing image segmentation techniques and is still
widely used in several applications. Many different approaches are used in
image thresholding.

Rosenfeld’s convex hull method is based on analysing the concavity struc-
ture of the histogram defined by its convex hull [106]. When the convex
hull of the histogram is calculated, the deepest concavity points become
candidates for the threshold value.

Ridler and Calvard algorithm [104] uses an iterative technique for choosing
the threshold value. At iteration n, a new threshold Tn is established using
the average of the foreground and background class means. The process is
repeated until the changes in Tn become sufficiently small.

Otsu’s technique [88] is based on discrimination analysis, in which the
optimal threshold value calculation is based on the minimisation of the
weighted sum of the object and background pixels within-class variances.
Let 1 and 2 be considered as two distinct classes. The weighted within-class
variance can be expressed as

σ2w(t) = P1(t)σ
2
1(t) + P2(t)σ

2
2(t). (2.13)
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Where the class probabilities are estimated as

P1(t) =

t∑
i=0

p(i),

P2(t) =

255∑
i=t+1

p(i). (2.14)

The probability density function p(i) gives the probability that the intensity
value i occurs in the image. It is estimated as the quotient between h(i) and
the total number of pixels in the image

p(i) =
h(i)

N
, (2.15)

where N is the total pixels of the image and the histogram H(i) gives the
number of pixels in the image having the intensity value i.

The class means are given by

m1(t) =

t∑
i=0

ip(i)

P1(t)
,

m2(t) =

255∑
i=t+1

ip(i)

P2(t)
, (2.16)

and the individual class variances are computed as

σ21(t) =

t∑
i=0

(i−m1(t))
2 p(i)

P1(t)
,

σ22(t) =

255∑
i=t+1

(i−m2(t))
2 p(i)

P2(t)
. (2.17)

Finally, all we need to do is just run through the full range of t values,
[0,255], and pick the value t that minimises σ2w(t).

In Kittler and Illingworth’s minimum error thresholding method it is
assumed that the image can be characterised by a mixture distribution of
object and background pixels [61].

An exhaustive survey of image thresholding methods can be found in Sez-
gin and Sankur [112] and Weszka [135]. In Weszka and Rosenfeld [136], two
techniques for image threshold evaluation are proposed. These techniques
use a cost function that should reach its minimum at the correct threshold
value.

Theoretically, Seeded Region Growing (SRG) is one of the simplest ap-
proaches to provide image segmentation. SRG consists in grouping together
neighbour pixels of similar homogeneity criterion to achieve a segmented
region. This method starts with the definition of one or more initial points,
so-called seed points, and neighbour pixels are assigned into a region if they
satisfy the homogeneity criterion of the respective region. An usual homo-
geneity criterion uses the average grey level of the growing region [1, 53].



2.4 object detection 21

However, in practice, the selection of the number of seeds, their initial
location and the definition of the homogeneity criterion to achieve acceptable
results can be reasonably complex. Brice and Fennema [17] have developed a
region-growing method based on a set of simple growth rules.

In Tuduki et al. [127], an automatic SRG approach is achieved using the
resulting points of a previous image threshold and thinning algorithm as
the initial seeds. Also, Fan et al. [30], propose a hybrid image segmentation
technique by integrating the results of colour-edge extraction and SRG, in
which the obtained edge regions are used as the initial seeds for the SRG

procedure.
Another technique considered similar to SRG is region splitting and merg-

ing [92]. The region split and merge technique is based on a quad tree
data representation. A square image segment is divided (split) into four
quadrants if the homogeneity criterion of the original image is not satisfied.
If four neighbouring squares are found to be uniform, they are merged
forming a single square composed by the four adjacent squares. As in SRG

techniques, the selection of the homogeneity criteria plays a central role in
the performance of region split and merge algorithms.

Representing the image intensity grey levels using topographic concepts
has been proved useful in the development of region segmentation meth-
ods [11, 131, 119, 40]. This concept based on visualising an image in three
dimensions (two spacial coordinates versus grey levels) is called watershed.
This algorithm consists on morphological operators and integrate many
concepts of the approaches discussed above (thresholding, edge detection,
region processing). Due to these factors, watershed segmentation often dis-
plays more effective and stable segmentation results, including continuous
boundaries. In this context, an image is considered to be an altitude surface
in which high intensity pixels correspond to ridge points and low intensity
pixels correspond to valley points.

Two watershed approaches have been discussed in the literature: flooding
and rainfall [97]. The flooding approach is the most used and is based on
an immersion process analogy. The water will enter through the valleys
at a uniform rate and flood the surface. The accumulation of water in the
neighbourhood of a local minima is called a catchment basin. To avoid the
water of distinct catchment basins from merging, a conceptual dam is build.
The dam is made up of pixels with a height slightly higher than the peaks.
The flooding process stops when only the top of the dams are visible. At
this stage, the dam walls are called the watershed lines which form a closed
contour and are the desired segmentation result.

In the rainfall approach, each local minima is tagged uniquely. Adjacent
local minima are combined with a unique tag. Next, a conceptual water drop
is placed at each untagged pixel. The drop moves to its lower-amplitude
neighbour until it reaches a tagged pixel, at which time it assumes the tag
value. The method stops performing when all the pixels are tagged.

Watershed algorithms as described above are computationally expensive
and can easily produce over-segmented images due to noise or local irregu-
larities of the gradient [73].
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Texture Many images do not denote sharp edges over large areas, however,
the scene can often be described as exhibiting several consistent textures
and, therefore, texture can be used as a discriminant feature to segment an
image. There is no formally definition of texture and consequently, there
is no unique mathematical model to represent texture. Intuitively, texture
can be defined in terms of fineness, smoothness, coarseness and regularity,
and, therefore, texture descriptors (texture measurements that characterise
a texture) have been developed. Three principal approaches used in image
processing to deriving the measurements which can be used to describe
textures are statistical, structural and spectral [36].

Statistical approaches describe texture as smooth, coarse, grainy and so
on, defining qualities of texture based on spatial distribution of grey val-
ues. Haralick et al. [42] suggested the use of Gray Level Co-occurrence
Matrices (GLCM) which have become one of the most well-known and widely
used texture features. Spatial grey level co-occurrence estimates image prop-
erties related to second-order statistics, revealing certain properties about the
spatial distribution of the grey levels in the textured image.

The repetitive nature of the placement of texture elements in the image
is an important property of many textures. Therefore, the autocorrelation
function can be used to assess the amount of regularity as well the fineness
or coarseness of the texture present in the image.

Structural techniques attempt to describe a texture by rules which govern
the placement of primitive elements (texture elements) which make up the
texture. That placement is seemed to be approximately regular and spatially
repetitive in the image. Structural texture analysis consists of two major
steps: extraction of the texture elements and inference of the placement rule.
Commonly, texture elements consist of regions in the image with uniform
grey levels. Such approaches are appropriate for ideal, regular, artificial, or
periodic textures with low noise.

A review on statistical and structural approaches applied to texture de-
scription is presented by Haralick [39].

An alternative to characterise texture is in the spectral domain. Primarily,
the application of a Fourier transform to the image was used to detect
periodicity in the image. The Fourier spectrum is suitable for describing
the periodic or almost periodic patterns in an image. Gabor filters [94]
and wavelet transform are also used to texture feature extraction. Randen
and Husoy [101] review the most major filtering approaches to texture
feature extraction and perform a comparative study with two non spectral
techniques.

2.5 object matching

The correspondence of detected objects in consecutive frames represents
another important step in tracking systems. Object correspondence is a
difficult problem in the presence of detection errors, occlusions (self, inter-
object or background), exits, and entries of objects. Several approaches are
presented in the literature, depending on the final application and feature
properties, different matching techniques have been widely used.
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Figure 5: Different motion deterministic constraints. 4 denotes object position at
frame t− 2, ◦ denotes object position at frame t− 1, and finally × denotes
object position at frame t.

2.5.1 Point correspondence

Concerning point correspondence, two categories of methods, called deter-
ministic or statistical, appear in the literature. Using deterministic methods,
qualitative motion heuristics are used to constrain possible tracks and to
identify the optimal track set [129]. These qualitative motion heuristics could
be proximity (Figure 5a), maximum velocity (Figure 5b), smooth motion
(Figure 5c), common motion (Figure 5d), rigidity (Figure 5e) or any combi-
nation of them. Statistical methods use the measurement and the motion
model uncertainties into account to establish the correspondence. Qualitative
motion heuristics can also be used in the context of tracking using statistical
methods. In this type of methods, statistical tools such as Kalman filter,
particle filter, Joint Probability Data Association Filtering (JPDAF) or Multiple
Hypothesis Tracking (MHT) are used.

Sethi and Jain [111] solve the correspondence problem as an optimisation
problem using a greedy approach based on the notion of path coherence
and assuming smoothness of motion. The algorithm is initialised by the
nearest neighbour criterion. Using these nearest neighbours, m trajectories
are initialised. Therefore, the problem is to find trajectories of m points
in n frames. To solve this problem, general assumptions based on motion
characteristics have been made. These assumptions are the following: an
element in a frame can only belong to one trajectory; there should be m
trajectories, each containing n points; for each trajectory, the deviation should
be minimal; the sum of the deviations for trajectories should be minimal.
The correspondences are exchanged iteratively to minimise the function cost.
However, this method cannot handle occlusions, entries or exits.

Salari and Sethi [110] handle these problems by first establishing correspon-
dence for the detected points using a modifying greedy algorithm capable to
extend the tracking of missing objects by adding a number of hypothetical
points. This is achieved by specifying local constraints that limits the accept-
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able location of a feature point in the next frame given its location in two
previous frames.

Rangarajan and Shah [102] propose a greedy algorithm which is con-
strained by proximal uniformity. According to this constraint, most objects in
the real world follow a smooth path and cover a small distance in a small time.
Therefore, given the location of a point in a frame, its location in the next
frame lies in the proximity of its previous location. Initial correspondences
are obtained by computing optical flow in the first two frames. The method
does not address entry and exit of objects. If the number of detected points
decrease, occlusion or misdetection is assumed. Occlusion and misdetection
are handled by predicting the position of the objects based on a constant
velocity assumption.

Veenman et al. [129] extend the work of Sethi and Jain, and Rangarajan
and Shah by introducing the Greedy Optimal Assignment (GOA) Tracker.
The cost function is minimised by Hungarian assignment algorithm in two
consecutive frames. The algorithm also assumes that the number of points
remains the same over all frames. Shafique and Shah [113] propose a mul-
tiframe approach to preserve temporal coherency of speed and position.
The correspondence problem is formulated as a graph theoretic problem.
This work is closely related to Veenman et al. [129], however, multiple frame
correspondence problem is introduced as opposition to the two frame cor-
respondence problem presented in [129]. In addition, GOA assumes that the
number of points in the scene remains constant, which is not a constrain
for the algorithm proposed by Shafique and Shah. The correspondence is
established by a greedy algorithm and uses a window of frames during point
correspondence task to handle with occlusions whose durations are shorter
than the temporal window used.

Statistical correspondence methods can also be used in correspondence
problems by taking the measurement and the model uncertainties into ac-
count during object state estimation. The statistical correspondence methods
use the state space approach to model the object properties such as position,
velocity, and acceleration.

In situations where the state is assumed to be described by a Gaussian
probability distribution, a Kalman filter can be used to estimate the state of
a linear system. Kalman filtering is composed of two steps: prediction and
correction. The prediction step uses the state model to predict the new state
of the variables. Similarly, the correction step uses the current observations to
update the state vector of the object. The Kalman filter has been extensively
used in the vision community for tracking purposes [15, 66, 126, 143].

One limitation of the Kalman filter is the assumption that the state variables
follow a normal probability distribution. This limitation can be overcome by
using particle filtering.

When tracking multiple objects using Kalman or particle filters, it is neces-
sary to associate the most likely measurement for a particular object state
vector, that is, the correspondence problem needs to be solved before these
filters can be updated. The simplest method to perform correspondence is to
use the nearest neighbour approach. However, if two objects are close to each
other, then there is a chance that the correspondence will be incorrect. An
incorrectly associated measurement can cause the filter to fail to converge.
There exist several statistical data association techniques to deal with this
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problem. Two widely used techniques for data association are the JPDAF

and the MHT. The major limitation of the JPDAF algorithm is its inability to
handle new objects since it performs data association of a fixed number of
objects tracked over two frames. The MHT overcomes this limitation. It is an
iterative algorithm that begins with a set of current track hypotheses. For
each hypothesis, a prediction of the position of each object is made. These
predictions are compared with actual measurements and a set of correspon-
dences are established for each hypothesis based on a distance measure. Each
measurement can belong to a new object, a previously tracked object a or a
false measurement. Besides, a measurement may not be assigned to an object
because the object may have exited or a measurement corresponding to an
object may not be obtained due to occlusion or misdetection. In comparison
with the JPDAF, the MHT algorithm is more computationally expensive both in
memory and time. A detailed review of these two statistical data association
techniques can be found in the survey presented by Cox [27].

An alternative to the point correspondence methods referred above, are
the matching methods based in kernel, shape or contour matching.

2.5.2 Kernel matching

Tracking algorithms using kernel matching are typically performed by com-
puting the motion of the object, which is represented by a primitive object
region such as a rectangle, an ellipse, etc, from one frame to the next. Prim-
itive geometric shapes are most suitable to represent simple rigid objects,
however they could also be used for tracking nonrigid objects combining
some primitive shapes. One approach is to use template matching. Templates
are formed using simple geometric shapes carrying both spatial and appear-
ance information. Template matching consists of searching in the current
image for a region similar to the object template. The position and, conse-
quently, the object matching between two consecutive frames is achieved
by computing a similarity measure such as cross-correlation process. The
cross-correlation concept and its normalised version are presented in Lewis
[64].

The concept of cross-correlation for template matching is based in a dis-
tance measure (squared Euclidean distance). A squared Euclidean distance,
d2I,T (u, v) can be computed as

d2I,T (u, v) =
∑
x,y

[I(x,y) − T(x− u,y− v)]2, (2.18)

where I is the image and the sum is over (x,y) under the window contain-
ing the feature T positioned at (u, v).

Expanding Equation 2.18 as

d2I,T (u, v) =
∑
x,y

[I2(x,y)− 2I(x,y)T(x−u,y− v)+ T2(x−u,y− v)], (2.19)

the term
∑
T2(x− u,y− v) is constant. If the term

∑
I2(x,y) is approxi-

mately constant, then the remaining cross-correlation term

c(u, v) =
∑
x,y

I(x,y)T(x− u,y− v), (2.20)
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is a measure of the similarity between the image and the template.
However, there are several disadvantages when using Equation 2.20 for

template matching:

1. Equation 2.20 tends to match the brightest regions rather than the best
topological fit. If the image energy

∑
I2(x,y) changes with position,

the correlation between the template and an exactly matching region in
the image may be less than the correlation between the template and a
bright spot in the image.

2. The range of c(u, v) is dependent on the size of the template.

3. Equation 2.20 is not invariant to changes in image amplitude such
as those caused by changing lighting conditions across the image
sequence.

To overcome these difficulties the Normalized Cross-Correlation (NCC) is
introduced

γ(u, v) =

∑
x,y[I(x,y) − Iu,v][T(x− u,y− v) − T ]{∑

x,y[I(x,y) − Iu,v]2
∑
x,y[T(x− u,y− v) − T ]2

} 1
2

, (2.21)

where T is the mean grey level of the template and Iu,v is the mean of
I(x,y) in the region under the template.

Despite of this improvements, NCC is not the ideal approach to feature
tracking since it is not invariant with respect to imaging scale, rotation, and
perspective distortions.

To overcome the shortcomings of the previous approach, Porikli et al.
[96] proposed a covariance matrix representation to describe the object. A
feature is defined by d-dimensional feature vectors fkk = 1..n constructed
using two types of information: spatial attributes and appearance attributes,
such as, colour, gradient, edge magnitude, edge orientation, filter responses,
etc. These attributes may be associated directly to the pixel coordinates or
they can be arranged in radial relationship. This latter association offers
rotation invariant spatial formation of the features. The computed covariance
matrix for a feature defined by a rectangular region is a symmetric matrix
where its diagonal entries represent the variance of each attribute and the
non-diagonal entries represent their respective correlations. For each frame,
the whole image is searched to find the region which has the smallest
distance between the covariance matrices of the target object window and
the candidate regions. To incorporate a model update algorithm to adapt the
object deformations and appearance changes, a mean covariance matrix of
the T previous matrices is computed.

On the other hand, when the search region (current image) is too large,
the process is more computational expensive during the matching process.
To overcome this high computational cost, the object search area is reduced.
Usually the search area is constrained at the neighbourhood of object previ-
ous position or at the neighbourhood of an estimated position obtained by a
prediction and estimation algorithm such as Kalman filter.

Instead of templates, other object representations can be used for matching,
for instance, colour statistics or histogram based information of the pixels
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inside the primitive shape boundaries. Fieguth and Terzopoulos [31] define
a rectangular object region to be tracked and the mean colour of the pixels
inside the region is computed to model the object. For each frame, different
regions of search are defined. These regions are centred at different positions,
encircling the predicted location. The similarity between the object model and
each one of the hypothesised regions is calculated. The region that provides
the highest ratio of similarity is selected as the current object location.

In Comaniciu et al. [24] a weighted histogram from a circular region is
used. This weighted scheme assigns smaller weights to pixels farther from
the centre of the region. To locate the object, an iterative algorithm consisting
of a mean shift procedure followed by a histogram similarity measure is
used. This technique of modelling an object by a weighted colour histogram
is also adopted by Muñoz-Salinas et al. [85] where the information of the
distance between the position of the object and its predicted position and the
proximity between the colour model of the object are used as inputs in a cost
function.

In the works presented by Avidan [5, 6] a Support Vector Machine (SVM)
based classifier has been used for matching. SVM is a classification method
that, given a set of positive and negative training examples, finds the best
separating hyperplane between these two classes. Positive training examples
are images of the object to be tracked and the negative examples consist,
in general, of background regions that could be confused with the object.
During the test period, the SVM indicates the degree of membership of the
test data to the positive class. Avidan’s tracking method is achieved by
maximisation of the SVM membership degrees over image regions in order to
estimate the position of the object.

In Nguyen and Bhanu [87] a tracking algorithm based on Bacterial Foraging
Optimization (BFO) is introduced. Several bacterial particles, or agents, are
generated and placed randomly in the image. These agents can move through
the image looking for regions with higher fitness according a fitness function
defined previously. Agents that cannot find areas of high fitness are relocated
near to the agents with the best fitness. To ensure that the search space
remains covered, a dispersal step is performed.

2.5.3 Shape matching

Shape matching can be performed in similar way than tracking based on
kernel matching (Section 2.5.2). In this case an object silhouette and its
associated model is searched in the current frame. The matching is performed
using a similarity measure between the object shape in the current frame
and the estimated shape model based on previous frame. The model of the
object, usually an edge map, can be updated during time to accommodate
viewpoint, changes in lighting condition and nonrigid object motion.

In the work presented by Huttenlocher et al. [49], a shape matching scheme
is performed. The representation of the object is based on an edge map and
the similarity measure is achieved using the Hausdorff distance. The main
condition imposed by this method is that the two dimensional shape of an
object not change rapidly between two consecutive frames. The model of the
object is also updated during time to incorporate changes in the object shape.
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One limitation of this approach could be the fact that only one object can be
tracked in a sequence.

An alternative to model the object shape as an edge map representation is
to use the silhouette of the object. Typically, the object silhouette detection is
carried out using background subtraction (Section 2.4.1) and, consequently,
an object model is constructed. Object models are, in general, in the form of
colour or edges histograms, silhouette boundary or a combination of these
models.

To distinguish people that were already tracked from new people that
emerge in the scene, Haritaoglu et al. [44] combine together the grey scale
appearance and shape information of a person in an appearance dynamic
model.

Kang et al.[56] proposed an object model using a combination of colour
and edges histograms. To provide rotation, translation and scale invariant
models, they use a scheme of special histograms generated by concentric
circles with different radius centred on a set of control points located in the
smallest circle that involves the object silhouette. These way, the appearance
model encodes both colour and shape information of the detected object.
Using several distance measures such as cross-correlation, Bhattacharya
distance and Kullback-Leibler distance, the similarity between the model
is obtained. Comparing the performance of these distance measures, the
authors conclude that both the Bhattacharya and Kullback-Leibler distance
perform similarly and better than the cross-correlation based measure.

2.5.4 Contour tracking

Active contour based algorithms track objects by representing their outlines
as bounding contours and updating these contours in successive frames. Two
different approaches can be used to perform such evolution. One approach
defines the contour by minimising the contour energy using minimisation
techniques, the other uses state space models to model the contour shape
and motion. The first approach is closely related with the contour based
segmentation introduced earlier and, in this case, the shape of the contour is
dictated only by the forces acting on it, and does not necessarily belong to
any specific family of curves that could be mathematically described. The
contour energy can be defined in terms of temporal information based on
the optical flow.

In Kim et al.[60] the initialisation of the contour is assumed and, two
modes of contour tracking are discussed. Rolling mode is used when the
overlapped area exists between two sequential images for the object to be
tracked, Figure 6. Contour nodes from the previous image are rolled into the
boundary of the object of which location is moved to the other region in the
next image. When an object area is not overlapped between two consecutive
frames, a jump mode is used, Figure 7. In the jump mode the nodes of the
contour are jumped to the next frame based on the information of the optical
flow and the contour is reinitialised by performing a segmentation process.
Optical flow is estimated using correlation between two regions.

A similar approach is presented by Bertalmío et al. [10] where the opti-
cal flow is computed for all pixels of the contour. In Akgul et al. [2] and
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Mikic et al. [82], an active contour tracking method guided by optical flow
information is applied in ultrasound image sequences to track internal body
structures for medical purposes.

An alternative of using minimisation techniques is proposed by Isard and
Blake [50]. The contour state is defined in terms of spline shape parame-
ters and motion parameters. The contour state is updated using a particle
filter which measurements consist of image edges computed in the normal
direction to the contour. With an appropriate parametrisation, a complex
set of deformable contours could be described by a reasonable number of
parameters. The key advantage over the previous method is that acceptable
contours are guaranteed by the mathematical model itself, not by a particular
energy function.

2.6 occlusion

Occlusion is a frequent situation that appears in tracking systems. It can
be classified into three categories: self occlusion, inter object occlusion, and
occlusion by the background scene structure [140]. Self occlusion occurs
when one part of the object occludes another part of the same object. Inter
object occlusion occurs when one or more objects being tracked occlude
other objects. Occlusion by the background occurs when a structure in
the background occludes the tracked objects. In single camera tracking
systems, misdetection errors are frequently considered as occlusion cases.
Using different feature detection algorithms or multiple camera viewing, this
erroneous consideration can be overcame.

A common approach to deal with the presence of misdetections or occlu-
sions is to estimate objects position using the object motion model until the
object reappears. In the traffic surveillance system for urban intersections pre-
sented by Zhang et al. [143], the occlusion problem is solved by establishing
predictive positions for the vehicles, using a Kalman filter estimator.

An alternative approach to cope with occlusion is the implementation of a
multiple view image tracking using a set of calibrated cameras. Black et al.
[15] use collaboration between multiple views to solve dynamic (inter object)
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and static (by the background) occlusions. Kalman filter is also used to track
each object in 3D world coordinates and 2D image coordinates. Information
is shared between the 2D and 3D trackers of each camera in order to improve
the performance of object tracking and trajectory prediction. When the Field
of View (FoV) of two cameras is separated spatially by a small distance, the
system tracks an object when it leaves one FoV and enters another using
trajectory prediction in 3D world coordinates to determine when the object
should reappear in the adjacent FoV. If the object does not appear when
expected it is deleted.

2.7 discussion

The aim of tracking is to estimate a trajectory of an object when it moves
around a scene. Object tracking is performed every day by humans, often in
an unconscious way. Tracking is performed when we want to cross a road
and we are attentive to the speed of the cars that are approaching. If their
speed starts reducing and we estimate that it will stop in security, we can
cross the road, otherwise we must wait. Tracking happens also when we walk
into a busy street and we try not to lose sight of our friends and estimate
their trajectories to stay close, or when we assist a football game and our
eyes follow the ball or the players.

Situations where a tracking system can be applied are wide (surveillance,
HMI, traffic monitoring, sports and medical applications) but, after years of
improvements, a construction of a robust object tracking system is still a
challenge. Despite its definition was not consensual, it is constituted by two
general and important steps: object detection and matching.

Object detection is itself a challenge and some distinctive properties that
represents the object must be defined. The performance of the detection task
influences the subsequent process of matching and tracking. Good track-
ing systems need good object detection methods. Considering a moving
object, object motion could be a suitable property that can be extracted from
the sequence. Several techniques to estimate object motion in the image
plane are frame differencing, optical flow or background subtraction. Frame
differencing is a simple and not computational expensive technique but it
requires a good selection of a threshold value, it is sensitive to noise and,
objects can contain holes inside when they have regions with constant grey
level intensity or colour. Optical flow is a more stable approach, however it
requires high computation time and, since it is a neighbourhood operation,
the aperture problem can occurs. Another method is background subtraction.
This method is computationally efficient, but a representation of the station-
ary background is required. This representation can achieve high complexity
when it incorporates illumination changes, noise or the periodic motion of
background regions.

An alternative to locate the objects in an image is to search object properties
such as contours, intensity, colour or texture.

Object boundaries generates strong changes in image intensity and edge
detection techniques can be computed to extract the object in the image.
Good results are obtained when using the popular Canny operator (first
order differentiation) or the LoG (second order differentiation) but, in general,
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the resulting boundary is often broken. Some linking strategies are based in
the magnitude and direction of the gradient. A global method to detect edges
is the HT. It can detect lines, circles and ellipses even with partial occluded
edges, however, it requires high computational requirements.

When the object denotes an intensity level different from the background,
the well known technique proposed by Otsu can be applied. Nevertheless,
this constraint is hard to achieve for all images in the sequence and the
background suffers illumination changes and noise. SRG approaches sounds
attractive but the definition of the initial seeds are a critical point. Watershed
methods are a different approach that produce regions with well defined con-
tours but it is more computationally expensive with comparison to threshold
and SRG techniques.

Object matching strategy depends on the representation model of the
object that is selected according the final application. Point, kernel or shape
matching are common techniques to perform this task. Contour tracking
are also used particularly in medical purposes. Point representation is the
simplest and can be used when the dimensions of the object is considerably
lower than the entire image or when we are tracking a specific and small
feature present in the object. There exist deterministic and statistical methods
to perform point matching, however, a combination of both is widely used.
More complex and resource expensive matching schemes are based on
primitive geometric shapes and a template or in shape information. In the
first case a rectangle, circle or ellipse are used to represent the object region
and an appearance model (colour statistics or region histogram) are used
to represent the object and mathematical tools as correlation, mean shift or
SVM are applied to perform the correspondence process. In shape matching
the object region is defined by its edges or by its silhouette and dynamic
models must be incorporated to handle with object shape changing. These
methods, using further information about the object, are more robust than
point matching, nevertheless, object models could be complex and higher
computational resources are required. Contour tracking is based on energy
minimisation process or spline shape parameters estimation. In both cases,
information concerning image gradient or optical flow is required for contour
convergence.

Interpreting and solve occlusion situations is a challenge in tracking algo-
rithms. Several types of occlusion can appear and, with a monocular system
is hard to distinguish them and often they are considered as misdetections
situations. Using a more expensive vision system, with several cameras
and information interchanging is possible to handle with inter object and
background occlusions.





As far as the laws of mathematics refer to reality, they are not certain.
And as far as they are certain, they do not refer to reality.

— Albert Einstein

3F U Z Z Y L O G I C T H E O RY I N O B J E C T T R A C K I N G

3.1 introduction

Fuzzy logic was first developed to be a representation scheme and calculus
to handle with uncertain or vague notions. In their essence, it could be seen
as a multi-valued logic incorporating intermediate categories or degrees
between notations such as true/false, yes/no, 1/0, or similar, commonly
used in Boolean logic. Therefore, fuzzy logic can be seen as an extension of
conventional Boolean logic that was extended to deal with the concept of
partial truth or partial false rather than the absolute values and categories
present in Boolean logic. As its name suggests, it is the logic underlying
modes of reasoning which are approximate rather than exact. The importance
of fuzzy logic arises from the fact that most modes of human reasoning and
especially common sense reasoning are approximate by nature.

In this chapter a brief presentation about the emerging of fuzzy concepts
is introduced in Section 3.2. After this short historical introduction, the
basic concepts of fuzzy logic concerning fuzzy sets, properties, operations
and commonly used membership functions are presented, respectively, in
Sections 3.3 and 3.3.5. Several fuzziness measures in fuzzy sets are presented
in Section 3.3.6. The state of art concerning the application of fuzzy logic
concepts in object tracking tasks, such as object detection and matching,
is presented in Section 3.4. Finally, in Section 3.5, a discussion about this
chapter is performed.

3.2 historical foundations of fuzzy logic

The success of the precision in classical mathematics depends, in large part, to
the efforts of the classical Greek philosopher Aristotle and the philosophers
who preceded him. In their efforts to formulate a concise theory of logic, and
later mathematics, the so-called "Laws of Thought" were posted. One of these
thoughts, the Law of Excluded Middle, stated that every proposition must
either be true or false. However, considering a middle filled glass, the glass
can be half-full and half-not-full. Clearly, this disprove the Aristotle’s law of
bivalence. It was Plato (Aristotle’s teacher) that laid the foundation for what
would become fuzzy logic, by proposing a third region between true and
false where the two notions collapse together. But it was Jan Lukasiewicz
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who first proposed a systematic alternative to the bi-valued logic of Aristotle.
In his paper, published in 1920, titled "On Three-Valued Logic"1, Lukasiewicz
extended the conventional bi-valued logic of Aristotle and proposed a tri-
valued logic where a new truth value, so-called possible, was added to the
classical binary logic. Lukasiewicz made experiments with four and five
valued logic and hypothesised the possibility of infinite-valued logic. This
new logic approach, however, did not gain much prominence until Zadeh has
introduced the notion of an infinite-valued logic, describing the mathematical
support of fuzzy sets theory.

3.3 essentials of fuzzy logic theory

In 1965, fuzzy sets were introduced by Zadeh [141] to represent or ma-
nipulate data and information containing non-statistical uncertainties. This
theory was specifically created to mathematically represent uncertainty and
vagueness and to provide tools for dealing with the imprecision intrinsic to
many problems. Fuzzy logic provides an inference morphology that enables
approximate human reasoning capabilities to be applied to knowledge-based
systems. The theory of fuzzy logic offers a mathematical framework to incor-
porate the uncertainties associated with human cognitive processes, such as
thinking and reasoning. Some of the essential characteristics of fuzzy logic
are related to the following ( Zadeh [142]):

• In fuzzy logic, exact reasoning is viewed as a limiting case of approxi-
mate reasoning;

• In fuzzy logic, everything is a matter of degree;

• In fuzzy logic, knowledge is interpreted as a collection of elastic or,
equivalently, fuzzy constraint on a collection of variables;

• Inference is viewed as a process of propagation of elastic constraints;

• Any logical system can be fuzzified.

3.3.1 Fuzzy Sets

A classical (crisp) set is defined as a collection of elements x ∈ X where each
single element can either belong to or not belong to a set A, A ⊆ X. Such
classical set can be described in different ways: one can either enumerate
the elements that belong to the set, describe the set analytically or define
the member elements by using a characteristic function. Using this latter
way, the subset A may be represented as a set of ordered pairs, with exactly
one ordered pair presented for each element of X. The first element of the
ordered pair is an element of the set X, and the second element is an element
of the set {0, 1}. The value 1 is used to represent that the element belongs to
the set and the value 0 means that the element doesn’t belong to the set.

1 Translation of the title of the original paper "J. Lukasiewicz, O logice trójwartościowej, Ruch
filozoficzny, 5:170-171, 1920" written in Polish. English version available in "Jan Lukasiewicz:
Selected Works, L. Borkowski (ed.), North-Holland, Amsterdam, 87-88, 1970. ISBN 0720422523".
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Definition Let X = {x1, ..., xn} be an ordinary finite non-empty set. A subset
A in X is as set of ordered pairs A = {(x,χA(x))|x ∈ X}, where χA : X→ {0, 1}
represents the characteristic function.

Knowing that, in a crisp set each element has a 0 or 1 membership to
the set, one can look at a fuzzy set as an extension or a generalisation of a
classical set since its elements can achieve various degrees of membership in
the set. Therefore, fuzzy sets have more flexible membership requirements
allowing the elements to have partial memberships between 0 and 1 rather
than the unique memberships 0 and 1 like in classical sets.

Definition Let X = {x1, ..., xn} be an ordinary finite non-empty set. A fuzzy
set Ã in X is as set of ordered pairs Ã = {(x,µÃ(x))|x ∈ X}, where µÃ : X→
[0, 1] represents the membership function.

Definition A fuzzy set Ã is said to be empty, written Ã = ∅, if and only if

µÃ(x) = 0∀x ∈ X. (3.1)

Definition Two fuzzy sets Ã and B̃ in X are equal, written Ã = B̃, if and
only if

µÃ(x) = µB̃(x)∀x ∈ X. (3.2)

Instead of writing µÃ(x) = µB̃(x)∀x ∈ X, it can be written, more simply,
µÃ = µB̃∀x ∈ X.

The membership function µÃ is also called grade of membership, degree
of compatibility or degree of truth. The range of this function is a subset of
the non-negative real numbers whose supremum is finite, normally 1.

Definition A fuzzy set Ã defined in X, is said to be normal if and only if

maxµÃ(x) = 1, (3.3)

i. e., there exists at least an element x ∈ X, such that µÃ(x) = 1. Otherwise,
the fuzzy set is called subnormal.

As stated previously, a fuzzy set is a generalisation of a classical set and
the membership function is a generalisation of the characteristic function.
Some elements of a fuzzy set may have the degree of membership zero.
Often it is appropriate to consider those elements that have nonzero degree
of membership in a fuzzy set.

Definition The support of a fuzzy set Ã in X, written supp(Ã), is the crisp
set

supp(Ã) = {x ∈ X|µÃ(x) > 0}. (3.4)

A more general and even more useful notion is that of an α-level set or
α-cut.

Definition The α-cut of a fuzzy set Ã in X, written Ãα, is the crisp set

Ãα = {x ∈ X|µÃ(x) > α}. (3.5)

Ã
′
α = {x ∈ X : µÃ(x) > α} is called the strong α-level set or strong α-cut of

a fuzzy set Ã in X.
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3.3.2 Properties of Fuzzy Sets

Since classical sets can be thought as a particular case of fuzzy sets, fuzzy
sets follow the same properties as crisp sets. Frequently used properties of
fuzzy sets are presented in Ross [108].

P1. Commutativity

Ã∪ B̃ = B̃∪ Ã
Ã∩ B̃ = B̃∩ Ã (3.6)

P2. Associativity

Ã∪ (B̃∪ C̃) = (Ã∪ B̃)∪ C̃
Ã∩ (B̃∩ C̃) = (Ã∩ B̃)∩ C̃ (3.7)

P3. Distributivity

Ã∪ (B̃∩ C̃) = (Ã∪ B̃)∩ (Ã∪ C̃)
Ã∩ (B̃∪ C̃) = (Ã∩ B̃)∪ (Ã∩ C̃) (3.8)

P4. Idempotency

Ã∪ Ã = Ã and Ã∩ Ã = Ã (3.9)

P5. Identity

Ã∪ ∅ = Ã and Ã∩X = Ã

Ã∩ ∅ = ∅ and Ã∪X = X (3.10)

P6. Transitivity

If Ã ⊆ B̃ and B̃ ⊆ C̃ then Ã ⊆ C̃ (3.11)

P7. Involution

¬¬Ã = Ã (3.12)

3.3.3 Basic Fuzzy Sets Operations

The basic operations in fuzzy set theory are the complement, intersection
and union. Since the membership function is the crucial component of a
fuzzy set, it is therefore not surprising that operations with fuzzy sets are
defined via their membership functions. These concepts, firstly suggested
by Zadeh [141], constitute a consistent framework for the theory of fuzzy sets.
However, they are not unique since Zadeh and other authors have suggested
consistent alternative or additional definitions for fuzzy set operations.

Definition The complement of a fuzzy set Ã in X, written ¬Ã, is the fuzzy
set

¬Ã = {(x,µ¬Ã(x) = 1− µÃ(x))|x ∈ X}. (3.13)
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1

Figure 8: The complement of a fuzzy set (adapted from Kacprzyk [54]).

1

Figure 9: The intersection of two fuzzy sets (adapted from Kacprzyk [54]).

A graphical idea of the complement can be visualised in Figure 8.

Definition The intersection of two fuzzy sets Ã and B̃ in X, written Ã∩ B̃, is
the fuzzy set

Ã∩ B̃ = {(x,µÃ∩B̃(x) = ∧(µÃ(x),µB̃(x)))|x ∈ X}, (3.14)

where ∧ is the minimum operator. The intersection of two fuzzy sets is
illustrated in Figure 9.

Definition The union of two fuzzy sets Ã and B̃ in X, written Ã∪ B̃, is the
fuzzy set

Ã∪ B̃ = {(x,µÃ∪B̃(x) = ∨(µÃ(x),µB̃(x)))|x ∈ X}, (3.15)

where ∨ is the maximum operator. The essence of the union can be
portrayed as in Figure 10.

1

Figure 10: The union of two fuzzy sets (adapted from Kacprzyk [54]).
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A closely related pair of properties which hold in ordinary set theory are
the law of excluded middle, A∪¬A = X, and the law of non-contradiction
principle, A ∩ ¬A = ∅. However, the laws of excluded middle and non-
contradiction are not satisfied in fuzzy logic. This laws are also known as the
Laws of Aristotle.

Lemma 3.3.1 The law of excluded middle is not valid.
Let µÃ(x) =

1
2∀x ∈ X, then it is easy to see that

Ã∪¬Ã = max{µÃ,µ¬Ã}

= max{
1

2
, 1−

1

2
}

=
1

2
6= 1

Lemma 3.3.2 The law of non-contradiction is not valid.
Let µÃ(x) =

1
2∀x ∈ X, then it is easy to see that

Ã∩¬Ã = min{µÃ,µ¬Ã}

= min{
1

2
, 1−

1

2
}

=
1

2
6= 0

However, fuzzy logic satisfies De Morgan’s laws.

¬(Ã∩ B̃) = ¬Ã∪¬B̃
¬(Ã∪ B̃) = ¬Ã∩¬B̃

3.3.4 General Fuzzy Sets Operations

The operations on fuzzy sets listed in Equations 3.13, 3.14 and 3.15 are called
the standard fuzzy operations [108]. However, these standard fuzzy opera-
tions are not the only operations that can be applied to fuzzy sets and, for
each standard operation, there exists a class of functions that can be con-
sidered a general definition of these standard operations. General operators
for the intersection and union of fuzzy sets are referred as triangular norms
(t-norms) and triangular conorms (t-conorms or s-norms), respectively.

Definition A function

t : [0, 1]× [0, 1]→ [0, 1], (3.16)

satisfying, for each a,b, c,d ∈ [0, 1], the following properties:

P1. it has 1 as the unit element: t(a, 1) = a;

P2. it is monotone: t(a,b) 6 t(c,d) if a 6 c and b 6 d;

P3. it is commutative: t(a,b) = t(b,a);

P4. it is associative: t[t(a,b), c] = t[a, t(b, c)].

is called a t-norm.
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Some relevant examples of t-norms are referred in Kacprzyk [54]:

1. the minimum: t(a,b) = a ∧ b = min(a,b). Which was proposed
by Zadeh [141].

2. the algebraic product: t(a,b) = a · b

3. the Lukasiewicz t-norm: t(a,b) = max(0,a+ b− 1)

Definition A function

s : [0, 1]× [0, 1]→ [0, 1], (3.17)

satisfying, for each a,b, c,d ∈ [0, 1], the following properties:

P1. it has 0 as the unit element: s(a, 0) = a;

P2. it is monotone: s(a,b) 6 s(c,d) if a 6 c and b 6 d;

P3. it is commutative: s(a,b) = s(b,a);

P4. it is associative: s[s(a,b), c] = s[a, s(b, c)].

is called a t-conorm or s-norm.

Some relevant examples of t-conorms are also referred in Kacprzyk [54]:

1. the maximum: t(a,b) = a ∨ b = max(a,b). Which was proposed
by Zadeh [141].

2. the probabilistic product: s(a,b) = a+ b− ab

3. the Lukasiewicz s-norm: s(a,b) = min(a+ b, 1)

Note that a t-norm is dual to an s-norm in that:

s(a,b) = 1− t(1− a, 1− b). (3.18)

3.3.5 Membership functions

All information contained in a fuzzy set is provided by its membership
function. The most common membership functions described in the literature
are described in this section.

The simplest membership functions are piecewise linear mathematical
functions, formed using straight lines. A membership function to represent
the fuzzy set "integer numbers which are greater than a" can be mathematically
defined as follows:

µ1(x) = µ(x,a,b) =


0 x < a

(x−a)
(b−a) a 6 x 6 b

1 x > b

(3.19)

With parameters a = 5 and b = 10, this membership function is illustrated
in Figure 11.
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Figure 11: Piecewise linear membership function to represent the fuzzy set "integer
numbers which are much greater than 5" with parameters a = 5 and b = 10.
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Figure 12: Piecewise linear membership function to represent the fuzzy set "integer
numbers which are much lower than 15" with parameters a = 5 and b = 15.

In opposite, a membership function to represent the fuzzy set "integer
numbers which are lower than b" is mathematically defined in Equation 3.20

and is depicted in Figure 12, with parameters a = 5 and b = 15.

µ2(x) = µ(x,a,b) =


1 x < a

(b−x)
(b−a) a 6 x 6 b

0 x > b

(3.20)

Membership functions to represent the fuzzy set "integer numbers which
are more or less α" could be the triangular and trapezoidal functions. These
membership functions are mathematically defined in Equations 3.21 and
3.22, respectively.

A triangular membership function is mathematically defined as

µtri(x) = µ(x,a,b, c) =


0 x < a

(x−a)
(b−a) a 6 x 6 b
(c−x)
(c−b) b 6 x 6 c

0 x > c

(3.21)

A triangular function with parameters a = 7.5, b = α = 10 and c = 15 is
depicted in Figure 13.
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Figure 13: Triangular membership function to represent the fuzzy set "integer numbers
which are more or less 10" with parameters a = 7.5, b = α = 10 and c = 15.
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Figure 14: Trapezoidal membership function to represent the fuzzy set "integer num-
bers which are more or less 10" with parameters a = 2, b = 8, c = 12 and
d = 15.

The trapezoidal membership function has a flat top and really is just a
truncated triangle curve. It is defined as follows

µtrap(x) = µ(x,a,b, c,d) =



0 x < a
(x−a)
(b−a) a 6 x 6 b

1 b 6 x 6 c
(d−x)
(d−c) c 6 x 6 d

0 x > d

(3.22)

A trapezoidal function with parameters a = 2, b = 8, c = 12 and d = 15 is
depicted in Figure 14.

These piecewise linear membership functions have the advantage of sim-
plicity, however, non linear membership functions can be employed to ensure
variable slope behaviour.

The S-function can be used to represent fuzzy sets "numbers which are
greater than a". This function is described as

µS(x) = µ(x,a,b, c) =


0 x 6 a

2
(
x−a
c−a

)2
a 6 x 6 b

1− 2
(
x−c
c−a

)2
b 6 x 6 c

1 x > c,

(3.23)

where b = 1
2 (a+ c). The S-function can be controlled through parameters

a and c. Parameter b is called the crossover point where µAS(b) = 0.5.
Considering a = 10, b = 12.5 and c = 15, its shape is illustrated in Figure 15.
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Figure 15: The S-function to represent the fuzzy set "integer numbers which are much
greater than 10" with parameters a = 10, b = 12.5 and c = 15.
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Figure 16: The Z-function to represent the fuzzy set "integer numbers which are much
lower than 15" with parameters a = 5, b = 10 and c = 15.

The Z-function is defined by an expression obtained from S-function as
follows

µZ(x) = µ(x,a,b, c) = 1− µS(x;a,b, c). (3.24)

A Z-function with parameters a = 5, b = 10 and c = 15 is illustrated in
Figure 16.

Non linear membership functions to represent the fuzzy set "integer num-
bers which are more or less α" could be the Gaussian and bell shaped functions.

The symmetric Gaussian membership function depends on two parameters
σ and m as given by

µgauss(x) = µ(x,σ,m) = e
−(x−m)2

2σ2 . (3.25)

Considering sigma = 2 and α = m = 10, a Gaussian function is portrayed
in Figure 17.

The generalised bell shaped function depends on three parameters a, b,
and c as given by

µbell(x) = µ(x,a,b) =
1

1+
(
x−c
a

)2b . (3.26)

where the parameter b is usually positive. The parameter c locates the
centre of the curve.

A bell-shaped function with parameters a = 3, b = 4 and c = 10, is
illustrated in Figure 18.
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Figure 17: Gaussian membership function to represent the fuzzy set "integer numbers
which are more or less 10" with parameters σ = 2 and m = 10.
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Figure 18: Bell-shaped function to represent the fuzzy set "integer numbers which are
more or less 10" with parameters a = 3, b = 4 and c = 10.

3.3.6 Measures of fuzziness

A reasonable approach to estimate the average ambiguity within fuzzy sets
is measuring their fuzziness [90]. The fuzziness of a crisp set should be zero,
as there is no ambiguity about whether an element belongs to the set or not.
A myriad of approaches to do this end are discussed in the literature.

In 1972, de Luca and Termini [28] introduced the concept of fuzziness
measure in order to obtain a global measure of the vagueness connected
with fuzzy sets.

Definition Let µÃ(x) be the membership function of the fuzzy set Ã for
x ∈ X, X finite. It seems desirable that the measure of fuzziness d(Ã) should
have then the following properties:

P1. Crispness: d(Ã) = 0 if and only if µÃ(x) ∈ {0, 1} for all x ∈ X, i. e., Ã is
a crisp set in X.

P2. Maximality: d(Ã) assumes a unique maximum if and only if µÃ(x) =
1
2∀x ∈ X.

P3. Resolution: d(Ã) > d(Ã
′
) if Ã

′
is any sharpened version of Ã, that is:

µ
Ã
′ (x) 6 µÃ(x) if µÃ(x) 6

1
2 and µ

Ã
′ (x) > µÃ(x) if µÃ(x) >

1
2 .

P4. Symmetry: d(Ã) = d(¬Ã) where ¬Ã is the complement of Ã.

Also, in de Luca and Termini [28], is suggested, as a measure of fuzziness,
the entropy of a fuzzy set, defined as follows:
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Definition The entropy, d(Ã), as a measure of fuzziness of a fuzzy set
Ã = {(x,µÃ(x))} is defined as

d(Ã) = H(Ã) +H(¬Ã), x ∈ X,

H(Ã) = −K

n∑
i=1

µÃ(xi) ln(µÃ(xi)), (3.27)

where n is the number of elements in the support (elements with a non-
zero membership to the fuzzy set) of Ã and K is a positive constant.

Using Shannons’s function S(x) = −x ln x− (1− x) ln(1− x), de Luca and
Termini simplify the Equation 3.27 to arrive at the following definition:

Definition The entropy d as a measure of fuzziness of a fuzzy set Ã =

{(x,µÃ(x))} is defined as

d(Ã) = K

n∑
i=1

S(µÃ(xi)). (3.28)

Yager [139] suggested that the basis for any measure of fuzziness should
be a measure of the lack of distinction between Ã and ¬Ã or µÃ(x) and
µ¬Ã(x). For that purpose, a possible metric to measure the distance between
a fuzzy set and its complement is suggested by Yager:

Definition The distance between a fuzzy set Ã = {(x,µÃ(x))} and its com-
plement ¬Ã = {(x, 1− µÃ(x))}, written Dp(Ã,¬Ã), is defined as

Dp(Ã,¬Ã) =

[
n∑
i=1

|µÃ(xi) − µ¬Ã(xi)|

]1/p
,p = 1, 2, 3, . . . (3.29)

Definition The entropy d as a measure of fuzziness of a fuzzy set Ã =

{(x,µÃ(x))} can be defined as

d(Ã) = 1−
Dp(Ã,¬Ã)
‖supp(Ã)‖

, (3.30)

where supp denotes the support of Ã and ‖.‖ the cardinality of the set.

Kaufmann [58] introduced an Index of Fuzziness (IF) of any fuzzy set
defined by a metric distance between its membership function and the
membership function of its nearest crisp set.

Definition A fuzzy set Ã∗ is called the nearest crisp set of Ã if the following
conditions are satisfied

µÃ∗(x) =

{
0, if µÃ(x) < 0.5
1, if µÃ(x) > 0.5

(3.31)
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The index of fuzziness is then calculated by measuring the normalised
distance between Ã and Ã∗.

Definition The index of fuzziness of Ã can be defined as

ifk(Ã) =
2

n1/k

[
n∑
i=1

|µÃ(xi) − µÃ∗(xi)|
k

]1/k
, (3.32)

where n is the number of elements in Ã,k ∈ [1,∞[. Depending if k = 1 or
2, the measure of fuzziness is called linear or quadratic.

Several well known measures of fuzziness for fuzzy sets are also presented
and discussed in Pal and Bezdek [90].

3.3.7 Extensions of Fuzzy Sets

Since fuzzy sets were introduced, many approaches and theories dealing
imprecision and uncertainty have been proposed. The use of extensions
of fuzzy sets tends to overcome the problem of choosing the membership
function since the success of the use of fuzzy sets theory depends on the
choice of the membership function by an expert. However, there are some
applications in which experts do not have precise knowledge about the
membership function that should be taken.

Some of these new approaches like Interval Valued Fuzzy Sets (IVFSs),
Type-2 Fuzzy Sets and Atanassov’s Intuitionistic Fuzzy Sets (A-IFSs) are
considered extensions of classical fuzzy sets theory.

Rather than assigning a membership degree to each element of the fuzzy
set, in IVFSs theory the membership degree of each element of the set is given
by a closed subinterval of the interval [0, 1].

Definition Let S([0, 1]) denote the set of all closed sub-intervals of the inter-
val [0, 1] and let X be an ordinary finite non-empty set. An Interval Valued
Fuzzy Set (IVFS) A in X is a mapping A : X→ S([0, 1]) such that

A = {(x,A(x) = [µL(x),µU(x))]|x ∈ X}, (3.33)

where µL(x) and µU(x) are functions that satisfy the condition

µL(x) 6 µU(x)∀x ∈ X. (3.34)

µL(x) and µU(x) are called, respectively, the lower and upper membership
functions. Figure 19 illustrates a Gaussian membership function of an IVFS.

The amplitude of the considered interval, δA(x) is given by δA(x) =

µU(x) − µL(x).

IVFSs can be generalised by allowing their intervals to be fuzzy. Therefore,
each interval becomes an ordinary fuzzy set and these new fuzzy sets are
referred as Type-2 Fuzzy Sets.
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Figure 19: Gaussian membership function of an IVFS.

Atanassov suggested another generalisation of classical fuzzy sets, called
an intuitionistic fuzzy sets.

Definition Let X be an ordinary finite non-empty set. An intuitionistic fuzzy
set A in X is given by a set of ordered triples

A = {(x,µÃ(x),νÃ(x))|x ∈ X}, (3.35)

where µÃ,νÃ : X→ [0, 1] are functions that satisfy the condition

0 6 µÃ(x) + νÃ(x)) 6 1∀x ∈ X. (3.36)

For each x, the numbers µÃ(x) and νÃ(x) denote, respectively, the degree
of membership and the degree of non-membership of the element x in set A.

For each element x ∈ X we can compute, the so called, intuitionistic fuzzy
index of x in A defined as follows

πÃ(x) = 1− µÃ(x) − νÃ(x). (3.37)

Each fuzzy set Ã can be seen as an intuitionistic fuzzy set where the non-
membership function νÃ is given by 1−µÃ. Since µÃ(x) +νÃ(x) = µÃ(x) +
1− µÃ(x) = 1, in this sense fuzzy sets will be considered as a particular case
of A-IFSs. Trivially, if the set Ã is fuzzy, then πÃ(x) = 1− µÃ(x) − νÃ(x) =

1− µÃ(x) − 1+ µÃ(x) = 0.

3.4 object tracking using fuzzy logic

Since the arise of fuzzy logic theory, it has been successfully applied in a
large range of areas such as process and equipment control systems, auto-
motive navigation systems, information retrieval systems, image processing,
among others. Consequently, fuzzy logic is also present in numerous tracking
systems, improving the performance by incorporate uncertainty in several
crucial tasks of the tracking process. As presented beforehand, a tracking
system can be seen as a multi-stage process that comprise figure-ground
segmentation and temporal correspondences. Hence, fuzzy logic can appear
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in this two different stages working as a component of the global process.
During the recent decades, several related works have been presented in the
literature.

3.4.1 Fuzzy logic in object detection

In the work presented by Tao et al. [121], human knowledge is used to
construct a set of linguistic if-then rules for edge detection. A set of fuzzy
if-then rules is designed based on the relationship between each pixel and
its eight closest neighbour pixels. Comparison studies with the gradient,
Laplacian, and Laplacian of Gaussian edge detectors having fixed parameters
(which means no prior information about the images is known) are provided.
The empirical results show that the edge detector based on fuzzy if-then
rules is generally more applicable to a wider class of images ranging from
clear to very vague images.

An adaptation of the Newton’s Law of Universal Gravitation using t-norms
to edge detection is presented by Lopez-Molina et al. [74]. The intensity of
each pixel is considered the body mass and the product of both masses is
seen as a t-norm. Four definitions of t-norms are used and the results are
also compared with the Prewitt, Sobel and Canny edge detectors.

Couto et al. [25] propose a segmentation approach using an extension of
fuzzy set theory, so called A-IFSs. This approach uses the A-IFSs theory for
representing the uncertainty of the expert in determining if a pixel belongs
to the background or to the object. The optimal threshold value is associated
with the intuitionistic fuzzy set of lowest entropy. Using the same concept,
an extension to multilevel image segmentation is also presented.

Fuzzy C-means (FCM) clustering is an unsupervised technique that has
been successfully applied in image segmentation [13, 14, 52]. The prob-
lem of fuzzy clustering is that of partitioning the set of N sample points,
x1, x2, ..., xN, into c classes. The algorithm is an iterative optimisation that
minimises one cost function that is dependent on the distance of the pixels
to the cluster centres defined as follows

J =

N∑
j=1

c∑
i=1

umij ‖ xj − vi ‖
2, (3.38)

where uij represents the membership of pixel xj in the ith cluster, vi is the
ith cluster centre, ‖ . ‖ is a norm metric, and m is a constant.

The parameter m ∈ [1,∞[ is a weighting exponent called the fuzzyfier that
controls the fuzziness of the resulting partition. The Equation 3.38 reaches
its minimum when pixels close to the centroid of their clusters are assigned
with higher membership values, and lower membership values are assigned
to pixels far from the centroid.

The membership values are randomly initialised according to

c∑
i=1

uij = 1,∀j = 1, ...,N. (3.39)
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The minimisation of the function J is accomplished by repeatedly adjusting
the values of uij and vi according to the following equations

uij =
1∑c

k=1

( ‖xj−vi‖
‖xj−vk‖

) 2
m−1

, (3.40)

and

vi =

∑N
j=1 u

m
ij xj∑N

j=1 u
m
ij

. (3.41)

The algorithm stops when the changes in the cost function for two consec-
utive iteration steps are smaller than a predefined tolerance. In this algorithm
the number of clusters c must be initialised. To implement a simple image
threshold, the value of c = 2 is assigned. However, in some applications,
several distinct regions must be identified and the value of c cannot be
previously initialised.

In Sahaphong and Hiransakolwong [109], a so called FCM algorithm is
presented, where the optimal cluster number is automatically obtained based
in the size of the clusters. Two initial cluster centre are defined based on Otsu
algorithm and the iterative algorithm is performed. The optimal clusters
number will be reached when the area of at least two clusters is less than six
percent of the whole image. In this situation the algorithm stops performing.
Another extension of the standard FCM algorithm is proposed in Chuang et al.
[23]. In this approach, spatial relationship between pixels is incorporated in
the algorithm. Spatial information means that neighbouring pixels possess
similar feature values and, therefore, the assumption that they belong to the
same cluster is assumed. To exploit the spatial information, a spatial function
is defined as

hij =
∑

k∈NB(xj)
uik, (3.42)

where NB(xj) represents a square window centred on pixel xj in the spatial
domain. Then, spatial function is incorporated into membership function as
follows

u′ij =
u
p
ijh
q
ij∑c

k=1 u
p
kjh

q
kj

, (3.43)

where p and q are parameters to control the relative importance of both
functions. This new implementation reduces the number of spurious blobs
and the segmented images are more homogeneous.

Huang and Wang [48] assign a membership degree to the pixel using
the relationship between its grey value and mean grey value of the region
to which it belongs. The image is regarded as a single fuzzy set where
the membership distribution reflects the compatibility of the pixels to the
region to which they belong. In this sense, the smaller the absolute difference
between the pixel grey level and the mean of grey levels of its belonging
region, the larger membership value the pixel has. For each grey level a
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fuzzy set is constructed and the optimal threshold value is the level of grey
associated with the fuzzy set with lowest entropy. Using the same concept,
an extension to multilevel thresholding is also presented.

A method for histogram thresholding which is not based on the minimisa-
tion of a criterion function is proposed in [122, 123]. Instead, the histogram
threshold is determined according to the similarity between grey levels.
Two initial fuzzy subsets, placed in the boundaries of the histogram, are
defined and they are the seeds for the similarity process. A pixel grey level
is assigned to the subset that denotes more similarity between them. For
similarity purposes, the IF, explained already, was used. In [122] these initials
subsets are defined manually. This initialisation is a critical issue since that
subsets should contain enough information about the regions (object and
background) to ensure the convergence of the method. Lopes et al. [72]
proposes an extension of this method and in Lopes et al. [71] this new exten-
sion is supported with statistical analysis. In this new approach the initial
subsets are defined automatically and they are large enough to accommodate
a minimum number of pixels defined at the beginning of the process. To
measure the performance of the proposed method the misclassification error
parameter is calculated and results are compared with two well established
methods: the Otsu’s technique and the FCM clustering algorithm. After re-
sults analysis, is concluded that the proposed approach presents a higher
performance for a large number of tested images.

Since texture is also a suitable property to perform object detection,
Chamorro-Martínez et al. [19] introduce a model of the concept of coarseness,
used in texture descriptors, by means of fuzzy sets. The assessments of hu-
man subjects have been aggregated by means of ordered weighted averaging
aggregation operators and a fuzzy set which models the human perception
of fineness is obtained.

3.4.2 Fuzzy Kalman Filter

Fuzzy logic concepts also incorporates the estimation and prediction tasks.
Several extensions of the standard Kalman filter using fuzzy concepts are
proposed in the literature.

Lalk [62] proposes the use of 28 fuzzy rules to adapt diagonal elements
of the process noise covariance matrix or the measurement noise covariance
matrix, or both, present in the traditional Kalman filter process. In Chen et al.
[21] a new filtering algorithm, called Fuzzy Kalman Filtering (FKF) algorithm
is presented. This algorithm is an evolution of the previous Interval Kalman
Filtering (IKF) algorithm presented in Chen et al. [20]. In the IKF algorithm, all
notations are the same as those of the classical Kalman filter. Nevertheless, all
the matrices and vectors involved in the IKF algorithm are interval quantities,
except the ordinary covariance process, measurement noise and the identity
matrices. As a result, this algorithm produces interval estimation vectors,
which are optimal in the same sense as the Kalman filter but for interval
systems. The FKF algorithm follows the same of its predecessor but produces
a scalar valued result using a three step procedure: fuzzification, fuzzy logic
inference rules and defuzzification.
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Most of the previous references on fuzzy Kalman filtering focus on using
fuzzy rules or fuzzy relations. Matía et al. [79] propose to include fuzzy
logic in the definition of the variables. The novelty of this approach derives
from the fact that by using possibility distributions, instead of Gaussian
distributions, a fuzzy description of the expected state and observation is
sufficient to obtain a good estimation. Some characteristics of this approach
are that uncertainty does not need to be symmetric and that a wide region of
possible values for the expectations is allowed. This approach also contributes
a method to propagate uncertainty through the process model and the
observation model, based on trapezoidal possibility distributions.

3.4.3 Fuzzy Tracking Systems

In Lazoff [63] an active sonar system to track submarines using a Kalman
filter and a posterior fuzzy rule logic association is presented. The Kalman
filter provides a likelihood for associating each new detection to a track. Using
the nearest neighbour approach, the detection with the highest likelihood is
associated to the track and, in this case, only cinematic information was used.
However, this data provided by the Kalman filter will be used as one input
in a fuzzy logic association framework. Other non cinematic inputs include
the neural net classifier score, the aspect angle, the SNR, and the distance to
the nearest detected target. Using additional information, not used in the
Kalman filter, a better method for associating a new detection with a track
was achieved.

A fuzzy approach to assign one or several blobs (detected pixels grouped
in a zone) to a track is described in Molina et al. and García et al., [84, 34].
This system is used for automatic surveillance in airport areas. The core of the
system is the association function, in which the developed fuzzy system takes
decision about what blobs belong to what tracks. This process is important
when the segmentation process generates several non connected regions
(blobs) from one moving object. Therefore, when multiple targets move
closely spaced, their image regions overlap, appearing some targets occluded
by other targets or obstacles, so that some blobs can be shared by different
tracks. Three different fuzzy systems have been tested and compared with a
hard decision system. The fuzzy rules for the first one were developed using
an expert knowledge, the rules for the second one were learnt from recorded
videos, and those for the third were developed as a refinement taking into
account evaluation with ground truth information. For the tested scenarios,
the fuzzy systems achieve better accuracy than the rigid scheme system.

3.5 discussion

Fuzzy logic can be seen as an extension of Boolean logic since it was intended
to deal with the concepts of partial true or partial false rather than absolute
values of true and false. Despite of some attempts to incorporate intermediate
degrees between the notions of true and false, they did not gain much
relevance until Zadeh has introduced the mathematical support of fuzzy
logic theory. Zadeh introduced the mathematical definition of fuzzy sets
where each element of the set is assigned with a membership degree between
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0 and 1 allowing elements to have partial memberships rather than a unique
membership 0 or 1 like in classical sets. Also, he introduced some properties
and basic operations on fuzzy sets. After the firsts steps given by Zadeh
other authors have suggested alternative definitions for fuzzy set operations
and the interest in fuzzy logic starts emerging. Authors such as Lukasiewicz,
Yager, Kacprzyk, Aldo de Luca, Kaufmann, Atanassov, among many others,
have also played an important role by developing new definitions, concepts
and measurements in the field of fuzzy logic.

Fuzzy logic was firstly applied in control systems but its concepts rapidly
appeared in different areas such as image processing and tracking systems.
Object detection started to be performed using fuzzy rules, the concepts
of A-IFSs, using the FCM clustering method or by histogram thresholding
using fuzzy measures on fuzzy sets. Also, several approaches to incorporate
fuzzy concepts in the well known Kalman filter have been proposed in
the literature. Finally, encouraging experimental results of fuzzy tracking
systems that incorporate fuzzy concepts to improve the correspondence task
have been presented by several authors and, therefore, they are referred in
this chapter.





Part II

M E T H O D O L O G Y A N D R E S U LT S





Those who become enamoured of practices without science
are like sailors who go aboard ship without a rudder and compass,

for they are never certain where they will land.

— Leonardo da Vinci

4F U Z Z Y S E G M E N TAT I O N A L G O R I T H M

4.1 introduction

In order to implement a fuzzy feature tracking system both steps of feature
detection and matching based in fuzzy concepts have to be developed. The
first procedure is to study and develop a new and suitable fuzzy segmenta-
tion technique to perform feature detection to be incorporated in the tracking
system. Among several fuzzy segmentation detection techniques, the one
presented by Tobias and Seara [122] sounded very attractive since the his-
togram threshold is determined according to the similarity between grey
levels instead the minimisation of a criterion function. Despite its attractive-
ness, the method didn’t perform in an automatic mode and this automatic
mode is needed to ensure that it could be incorporated in the global tracking
system.

In this chapter an automatic histogram threshold algorithm based in fuzzy
concepts will be presented. The threshold value is computed using a concept
of similarity between pixels grey levels. This algorithm is an improvement of
an existing method based on a fuzziness measure to find the threshold value
in a grey image histogram previously presented in Tobias et al. and Tobias
and Seara [123, 122]. The method incorporates fuzzy concepts that are more
suitable to deal with imprecise object edges and ambiguity and avoids the
issues involved in finding the minimum of a cost function. This method was
developed to provide good results even in multimodal histograms where
there is no clear separation between object and background. However it has
some limitations concerning the initialisation of the method, and, to achieve
an automatic process, these limitations must be overcome.

The remainder of this chapter is organised as follows. In Section 4.2 some
preliminary considerations about this methodology are presented. An ex-
planation about the used membership functions and the similarity measure
is presented Section 4.3. After this introductory stage, the original method
is discussed in detail in Section 4.4. To achieve an automatic version of the
original method, a new algorithm is introduced in Section 4.5. In Section 4.6
the results of the proposed algorithm are compared with well established seg-

55
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mentation methods. Finally, this chapter ends with a discussion concerning
this new approach, Section 4.7.

4.2 initial considerations

In order to implement the thresholding algorithm on a basis of the concept
of similarity between grey levels, Tobias and Seara made the assumptions
that there exists a significant contrast between the objects and background
and that the grey level is the universe of discourse, a one-dimensional set,
denoted by X. The first assumption means that is expected an input image
with an object considerably brighter than the dark background, or vice versa.
The second assumption tell us that membership functions used in the method
assign membership values to the image grey levels.

At the beginning of the method, two initial fuzzy sub sets are manually
defined called the seed sub sets. These fuzzy sub sets are constructed with
pixels whose grey levels are present at histogram intervals located at the
beginning and the end regions of the histogram. These dark and brighter
sub sets will, with certainty, belong to the final sets object and background.
These initial fuzzy sub sets must contain enough information to represent
correctly the entities object and background.

4.3 membership functions and similarity measure

Two distinct membership functions are used in this method for modelling the
membership degrees. The S-function is suitable to represent the set of bright
pixels and it was defined in Equation 3.23. Higher the grey level of a pixel
(closer to white), higher membership value and vice versa. In opposition,
the Z-function is used to represent the dark pixels and is defined by an
expression obtained from S-function, defined previously in Equation 3.24.

The controlling parameters of both functions are variable according the
properties of the fuzzy set. These parameters are calculated as follows:

b =

∑q
i=p xih(xi)∑q
i=p h(xi)

, (4.1)

c = b+ max{b− (xi)max,b+ (xi)min},p 6 i 6 q, (4.2)

a = 2b− c, (4.3)

where h(xi) denotes the image histogram and xp and xq are the limits of
the subset being considered. The quantities (xi)max and (xi)min, in Equation
4.2, represent the maximum and minimum grey levels in the current set for
which h((xi)max) 6= 0 and h((xi)min) 6= 0. Note, that the crossover point b,
Equation 4.1, is the mean grey level value of the interval [xp, xq]. Next, by
using Equations 4.2 and 4.3, c and a are obtained.

Both membership functions could be seen, simultaneously, in Figure 20, To-
bias and Seara [122]. The S-function in the right side of the histogram and
the Z-function in the left side.

A reasonable approach to estimate the average ambiguity in fuzzy sets is
measuring its fuzziness [90]. The fuzziness of a crisp set should be zero, as
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Figure 20: Histogram and the functions for the seed subsets.

there is no ambiguity about whether an element belongs to the set or not.
If µA(x) = 0.5,∀x, the set is maximally ambiguous and its fuzziness should
be maximum. Degrees of membership near 0 or 1 indicate lower fuzziness,
as the ambiguity decreases. Kaufmann in [58] introduced an IF comparing a
fuzzy set with its nearest crisp set. The mathematical definition of this index
was previously described in Section 3.3.6.

4.4 original method

The purpose is to split the image histogram into two crisp subsets, object
subset O and background subset F, using the measure of fuzziness previously
defined. A detailed description of this method can be found in Figure 21.

The initial fuzzy subsets, denoted by B and W, are associated with initial
histogram intervals, [xmin, xj] and [xr, xmax], respectively, located at the
beginning and the end regions of the histogram. The grey levels in each of
these initial intervals have the intuitive property of belonging with certainty
to the final subsets object or background. For dark objects B ⊂ O and W ⊂ F,
for light objects B ⊂ F and W ⊂ O. These initial fuzzy subsets, W and B, are
modelled by the S and Z membership functions, respectively. The parameters
of the S and Z functions are variable to adjust their shape as a function of
the set of elements as described above.

These subsets are a seed for starting the similarity measure process. A
fuzzy region placed between these initial intervals is defined as depicted in
Figure 20. Then, to obtain the segmented version of the grey level image,
a classification for each grey level of the fuzzy region as being object or
background is performed. The classification procedure is done by adding to
each of the seed subsets a grey level xi picked from the fuzzy region. Then, by
measuring the index of fuzziness of the subsets B∪ {xi} andW ∪ {xi}, the grey
level is assigned to the subset with lower IF (maximum similarity). Applying
this procedure for all grey levels of the fuzzy region, we can classify them
into object or background subsets. Since the method is based on measures of
index of fuzziness, these measures need to be normalised by first computing
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% ----------------------------------------------------------
% Histogram Threshold using Fuzzy Sets
% ----------------------------------------------------------
Initialization ();
Read Image (Image);
Compute Image Histogram (Image);
Normalize (Image Histogram);
Define Initial Intervals ([xmin,xj], [xr,xmax]);
% White Region
Compute µs Parameters (a,b,c);
Compute Fuzzy Set (W);
Compute IF (ψ(W));
% Black Region
Compute µz Parameters (a,b,c);
Compute Fuzzy Set (B);
Compute IF (ψ(B));

Compute Normalization Factor (α = ψ(W)
ψ(B) );

% Fuzzy Region
for Gray Level xi = xj+1 : xr-1,

% White Region
Define Interval (W ∪ {xi});
Compute µs Parameters (a,b,c);
Compute Fuzzy Set (W ∪ {xi});
Compute IF (ψ(W ∪ {xi}));
% Black Region
Define Interval (B∪ {xi});
Compute µsz Parameters (a,b,c);
Compute Fuzzy Set (B∪ {xi});
Compute IF (ψ(B∪ {xi}));
% Dark Objects
if (Object == Dark && ψ(W ∪ {xi}) < αψ(B∪ {xi})),

xi is included in set F;
else

xi is included in set O;
end
% White Objects
if (Object == White && ψ(W ∪ {xi}) < αψ(B∪ {xi})),

xi is included in set O;
else

xi is included in set F;
end

end �
Figure 21: Detailed steps of the original algorithm.

the index of fuzziness of the seed subsets and calculating a normalisation
factor α according to

α =
ψ(W)

ψ(B)
, (4.4)

where ψ(W) and ψ(B) are the IFs of the subsets W and B, respectively. This
normalisation operation ensures that both initial subsets have identical IF at
the beginning of the process. It is a necessary condition since the method is
based in the calculation of similarity between grey levels. Figure 22 illustrates
how the normalisation works.

4.5 proposed new method

The concept presented above sounds attractive but has some limitations
concerning the initialisation of the seed subsets. In the original method
these subsets, that should contain enough information about the regions, are
defined manually. Since the intervals are defined manually, there exists an
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Figure 22: Normalisation step and determination of the threshold value. Adapted
from Tobias and Seara [122].
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Figure 23: Divergence of the method. Solid thin line: image histogram; Bold lines:
evolution of the IF’s

initialisation process that is human dependent and, therefore, considering the
same input image, different results can be achieved according the definition
of these initial fuzzy subsets. If these initial fuzzy subsets are too large,
the fuzzy region between them becomes smaller and, consequently, the
grey levels considered as candidates for the threshold value are reduced.
However, if the initial fuzzy subsets are too little, they do not contain enough
information about the regions and the method can diverge, Figure 23. In this
example, the image of the peppers is used (Appendix A, Figure 76t) and the
initial fuzzy intervals [1, 6] and [223, 226] were considered.

When these initial fuzzy subsets are representative of both regions, the
method performs as presented beforehand. This situation is depicted in
Figure 24. In this case, the initial fuzzy intervals are [1, 80] and [177, 226], and
the threshold value of 119 is obtained.

The proposed method aims to overcome some limitations of the existing
method. In fact, the initial subsets are defined automatically and they are
large enough to accommodate a minimum number of pixels defined at the
beginning of the process. Considering the initial fuzzy subsets defined as
[xmin, xj] and [xr, xmax], the values for xmin and xmax are, respectively,
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Figure 24: Method’s convergence. Solid thin line: image histogram; Bold lines: evolu-
tion of the IF’s

the lowest and highest grey levels of the image and, xj and xr are calculated
to ensure that these intervals accommodate a required minimum number of
pixels. This minimum number depends on the image histogram shape and it
is a function of the number of pixels in the grey level intervals [0, 127] and
[128, 255]. It is calculated as follows

MinPixBseed(Wseed) = P1

127(255)∑
i=0(128)

h(xi), (4.5)

where P1 ∈ [0, 1] and h(xi) denote the number of occurrences at grey level
xi. Equation 4.5 can be seen as a special case of a cumulative histogram.

However, in images with low contrast the method performs poorly due
to the fact that one of the initial regions contain a low number of pixels. So,
previous histogram equalisation is carried out in images with low contrast
aiming to provide an image with significant contrast in which the pixel’s
occurrences are distributed along the histogram. If the number of pixels
belonging to the grey level intervals [0, 127] or [128, 255] is smaller than a
value PMIN defined by PMIN = P2MN, where P2 ∈ [0, 1] and M, N are the
dimensions of the image, the image histogram is equalised.

Equalisation is carried out using the concept of cumulative distribution
function [36]. The probability of occurrence of grey level xi in an image is
approximated by

p(xi) =
h(xi)

MN
(4.6)

For discrete values the cumulative distribution function is given by

T(xi) =

i∑
k=0

p(xk) =

i∑
k=0

h(xk)

MN
(4.7)

Thus, a processed image is obtained by mapping each pixel with level xi
in the input image into a corresponding pixel with level si = T(xi) in the
output image using Equation 4.7.



4.5 proposed new method 61

Table 1: Minimum values of P1(%).

image name P1(%)

baboon 25

boats 40

cameraman 55

field 30

horses 50

lena 35

mouse2 25

peppers 40

potatoes 65

savanna 50

sea star 25

shadow 25

statues 35

stones 55

m 39.64

σ 13.37

4.5.1 Calculation of parameters P1 and P2

In Lopes et al. [72] the parameters P1 and P2 are determined using ad hoc
heuristics after a test period with a set of images. However, in Lopes et al. [71],
a statistical approach is used to obtain parameters P1 and P2. Parameters
P1 and P2 are concerned with the number of pixels of the initial intervals
and histogram equalisation, respectively. As the parameters are not mutually
related, the statistical study is made independently.

In this study, 30 test images are used. These test images, illustrated in
Appendix A, Figure 76, were obtained from Berkeley Segmentation Dataset1

[78] and from Centro de Investigação e de Tecnologias Agro-Ambientais e
Biológicas (CITAB).

To determine parameter P1, images in the data base presenting a significant
contrast are used. Such images exhibit a significant distribution of pixels
with grey levels over the interval [0, 255] and it is not necessary an histogram
equalisation. For each image, the parameter P1 is chosen to ensure that both
the IF’s of the subsets W and B provide an increasing monotonic behaviour.
If P1 is too high, the fuzzy region between the initial intervals is too small
and the values of grey levels for threshold are limited. On the other hand, if
P1 is too low, the initial subsets are not representative and the method does
not converge. With these minimum values of P1 that ensure the convergence,
Table 1 is constructed and the mean (m) and the standard deviation (σ) are
calculated. After analysis of the results, the mean value of P1 = 39.64% is
adopted.

1 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Table 2: Minimum values of P2(%).

image name P2(%)

airplane 18.10

bath 36.29

bird 44.44

birds 10.92

blocks 17.02

blood 35.36

boat 20.42

gearwheel 45.99

moon 0.51

mouse 0.13

mush 20.62

newspaper 3.62

plane 29.32

rice 18.45

ski 11.43

zimba 18.51

m 20.70

σ 14.30

To determine the value of P2, images with low contrast and parameter
P1, calculated earlier, are used. These images present a small contrast with
most pixels concentrated in half side of the histogram. For these images, the
minimum number of pixels in the grey level intervals [0, 127] or [128, 255]
that ensures the convergence of the method is obtained by trial and error
and the parameter P2 is calculated. With these minimum values, Table 2 is
constructed and the mean and standard deviation are also calculated. In this
work, the value of P2 = 20.70% is used.

A detailed description of this new method is presented in Figure 25.

4.6 experimental results

In order to illustrate the performance of the proposed methodology, 14
images are randomly selected from our original 30 images database. A
manually generated ground-truth image has been defined for each image
and used as a gold standard.

The ground-truth images were generated manually and represent the
useful information of each grey level image that is relevant for further pro-
cessing. In the image named bath (Figure 26a), the elephant was considered
the relevant object, in the bird image (Figure 26b), the entire bird needs to be
separated from the background, in the blocks image, the four blocks must be
extracted, and similar procedure is applied to the remaining images. Note
that the method works with both dark or bright objects since the method is
a grey level histogram thresholding approach dividing a grey level image
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% ----------------------------------------------------------
% Automatic Histogram Threshold using Fuzzy Sets
% ----------------------------------------------------------
Initialization ();
Read Image (Image);
Compute Image Histogram (Image);
Normalize (Image Histogram);
if (Image Histogram is not Equalized),

Equalize (Image Histogram);
end
Find Initial Intervals ([xmin,xj], [xr,xmax]);
% White Region
Compute µs Parameters (a,b,c);
Compute Fuzzy Set (W);
Compute IF (ψ(W));
% Black Region
Compute µz Parameters (a,b,c);
Compute Fuzzy Set (B);
Compute IF (ψ(B));

Compute Normalization Factor (α = ψ(W)
ψ(B) );

% Fuzzy Region
for Gray Level xi = xj+1 : xr-1,

% White Region
Define Interval (W ∪ {xi});
Compute µs Parameters (a,b,c);
Compute Fuzzy Set (W ∪ {xi});
Compute IF (ψ(W ∪ {xi}));
% Black Region
Define Interval (B∪ {xi});
Compute µsz Parameters (a,b,c);
Compute Fuzzy Set (B∪ {xi});
Compute IF (ψ(B∪ {xi}));
% Dark Objects
if (Object == Dark && ψ(W ∪ {xi}) < αψ(B∪ {xi})),

xi is included in set F;
else

xi is included in set O;
end
% White Objects
if (Object == White && ψ(W ∪ {xi}) < αψ(B∪ {xi})),

xi is included in set O;
else

xi is included in set F;
end

end �
Figure 25: Detailed steps of the proposed algorithm.

into two distinct regions, according the similarity between grey levels and,
therefore, does not impose any limitation concerning on which region is
the object or background. Another point is the fact that the regions that
were selected to represent the ground-truth image are not homogeneous, i. e.,
in the selected regions could appear dark and bright pixels and, moreover,
some pixels denoting similar grey levels are not considered as belonging to
those regions. As a matter of fact there is no thresholding algorithm that
performs correctly in such conditions, but it is reasonable to compare several
thresholding algorithms with the desired and manually generated output
image. Original images and their gold standard are illustrated in Figure 26.

Results are compared with two well established methods: the Otsu’s tech-
nique (OTSU) [88] (explained in detail in Section 2.4.2) and Fuzzy C-means
clustering algorithm (FCM) [52] (explained in detail in Section 3.4). In this
way, a comparison between fuzzy and non-fuzzy threshold algorithms is
carried out. Applying these different methods to the images, the correspond-
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(a) Bath. (b) Bird.

(c) Blocks. (d) Blood.

(e) Field. (f) Gearwheel.

(g) Moon. (h) Mouse.

(i) Mouse 2. (j) Potatoes.

(k) Rice. (l) Shadow.

(m) Stones. (n) Zimba.

Figure 26: Test images and the corresponding ground-truth images.
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ing threshold values are calculated and Table 3 is constructed. The methods
indicated by IM1 and IM2 represent the improved method without and with
the possibility of histogram equalisation, respectively.

Table 3: Threshold values of individual methods.

image name otsu fcm im1 im2

bath 107 127 67 67

bird 96 113 93 93

blocks 82 127 30 44

blood 112 129 64 64

field 131 137 115 115

gearwheel 103 121 3 3

moon 55 136 254 82

mouse 47 91 20 64

mouse2 105 127 87 87

potatoes 129 126 129 129

rice 74 119 8 35

shadow 124 131 109 109

stones 137 132 142 142

zimba 71 120 10 59

With these values, grey level images are thresholded and binary images
are obtained. The result binary images of the three techniques are presented
in Figure 27.

Performance is obtained by comparing the gold standard image with the
corresponding image provided by the three different methods. To measure
such performance, a parameter η, based on the misclassification error, has
been used [112]. Thus,

η(%) =
|BO ∩BT |+ |FO ∩ FT |

|BO|+ |FO|
× 100 (4.8)

where BO and FO are, respectively, the background and foreground of the
original (ground-truth) image, BT and FT are the background and foreground
pixels in the resulting image, respectively, and |.| is the cardinality of the
set. This parameter varies from 0% for a totally wrong output image to
100% for a perfectly binary image. The performance measure for every
algorithm is listed in Table 4. Mean and standard deviation are also presented.
After comparing results, the improved method with histogram equalisation
provides, in general, satisfactory results with particular attention in images
with imprecise edges.

4.7 discussion

Segmentation process is a critical task to achieve a robust tracking system
since the results of the segmentation algorithm will determine the tracking
performance. Therefore, to accomplish a robust segmentation method, an au-
tomatic histogram threshold approach based on index of fuzziness measure
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Figure 27: Results of three algorithms (first frames). For each image, from left to right:
Otsu’s technique, Fuzzy C-means algorithm and final improved method.
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Figure 27: Results of three algorithms (last frames). For each image, from left to right:
Otsu’s technique, Fuzzy C-means algorithm and final improved method.
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Table 4: Performance of individual methods (%).

image otsu fcm im1 im2

bath 62.65 55.92 76.32 76.32

bird 87.88 76.98 89.40 89.40

blocks 94.38 80.41 98.87 99.34

blood 95.61 95.73 85.09 85.09

field 93.36 90.71 96.28 96.28

gearwheel 97.85 97.07 95.59 95.59

moon 26.56 99.97 99.53 91.40

mouse 49.00 85.87 41.68 57.68

mouse2 73.56 59.09 79.63 79.63

potatoes 96.98 97.06 96.98 96.98

rice 93.51 85.84 82.06 95.91

shadow 90.46 88.30 93.26 93.26

stones 96.59 95.95 97.05 97.05

zimba 97.60 84.67 96.55 98.86

m 82.57 85.25 87.73 89.48

σ 21.91 13.58 15.28 11.58

is introduced. This work overcomes some limitations of an existing method
concerning the definition of the initial seed intervals.

In the original method the definition of the initial intervals is made man-
ually by the user, however, it is not a desirable procedure since the goal is
to develop a method capable to correctly detect objects, in many images as
possible, without the human supervision. Nevertheless, method convergence
depends on the correct initialisation of these initial intervals and this point
was the aim of this work. Using experimental data and statistical analysis,
some global parameters were defined to ensure a correct definition of the
initial seed intervals. After the definition of the initial seeds, a similarity
process is started to find the threshold point. This property of similarity is
obtained calculating an index of fuzziness of a fuzzy set.

To measure the performance of the proposed method the misclassification
error parameter is calculated. For performance evaluation purposes, results
are compared with two well established methods: the Otsu’s technique and
the Fuzzy C-means clustering algorithm.

After analyse these comparative results it can be concluded that the pro-
posed approach presents a higher performance for a large number of tested
images. However, no segmentation method performs correctly for all images
tested, suggesting that the segmentation process must be carefully chosen
according to the final application to ensure good results.



All truths are easy to understand once they are discovered;
the point is to discover them.

— Galileo Galilei

5F U Z Z Y F E AT U R E T R A C K I N G M E T H O D O L O G Y

5.1 introduction

In this chapter a new tracking approach based in fuzzy concepts will be
introduced. The aim of this methodology is to solve the problem of feature
tracking using the concepts of fuzzy sets theory. Several fuzzy sets are con-
structed according both kinematic (movement model) and non kinematic
properties (image grey levels) that distinguish the feature. Meanwhile cin-
ematic related fuzzy sets model the feature movement characteristics, the
non cinematic fuzzy sets model the feature visible image related properties.
The tracking task is performed through the fusion of these fuzzy models by
means of a fuzzy inference engine. This way, object detection and matching
steps are performed using inference rules on fuzzy sets. The user just needs
to select the feature at the beginning of the sequence and the algorithm
returns the estimated trajectory performed by the selected feature over the
sequence.

The remainder of this chapter is organised as follows: in Section 5.2
some preliminary assumptions concerning this algorithm are presented. The
definition and detailed explanation of the used membership functions are
introduced in Section 5.3. In Section 5.4, the procedure to deal with a situation
of occlusion is demonstrated. The proposed fuzzy tracking algorithm is
presented in Section 5.5. Results with synthetic and non synthetic sequences
are analysed in Sections 5.6 and 5.7, respectively. Further experimental results
with low frame rate acquisition sequences and with alternative membership
functions are also introduced in Section 5.7. An attempt to perform multiple
feature tracking is demonstrated in Section 5.7.4. At the end of this chapter, in
Section 5.8, a discussion related to this fuzzy tracking approach is presented.

5.2 initial considerations

The implementation of this methodology is based in some preliminary as-
sumptions. These assumptions are commonly used in most tracking systems:

1. The feature has constancy of grey levels intensity;

2. The feature presents smooth motion;

69
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3. For sake of simplicity, the motion between two consecutive frames can
be described using a linear motion model;

4. The area occupied by the feature is small when compared with the
total image area;

5. The size of the feature is preserved during the sequence.

In this approach feature brightness constancy is assumed. This situation
can mathematically be described as

I(x,y, t) ≈ I(x+ δx,y+ δy, t+ δt), (5.1)

where δx and δy are the displacement of the local region at (x,y, t) after
time δt. Nevertheless, slightly changes in illumination, camera sensor noise,
among other factors that cause variations in the intensity of the feature, are
tolerated.

The smoothness of the movement concerns the continuity of the feature
movement. The feature movement is assumed to be continuous and, therefore,
using a typical acquisition frame rate and assuming there are no occlusions
or misdetections, the next position of the feature lies inside a neighbourhood
of its previous position.

It is also assumed that the feature movement between two consecutive
frames can be represented by a linear motion model with constant accelera-
tion. The feature can move along both the x and y axis and, therefore, the
position p(t) can be obtained from the previous position p(t− 1) applying
the following equation:

p(t) = p(t− 1) + v∆t+
1

2
a∆t2, (5.2)

where p(t) = [x,y] ′ is the feature position at instant t, p(t− 1) = [x0,y0] ′

is the feature position at instant t− 1, ∆t is the elapsed time from instant t− 1
to instant t, v = [vx, vy] ′ and a = [ax,ay] ′ are, respectively, the observed
velocity and acceleration in both axis during ∆t.

The size of the feature is considerably small when compared with the total
image area. Assuming this, the feature can be represented as a point or by a
small region (represented by a A× B matrix) and, similar strategies to the
ones used in point correspondence can be developed for feature matching.

Furthermore, the size of the feature is considered to be approximately
constant over the entire sequence, however, the presented methodology is
robust against slightly size changes.

5.3 membership functions

The fuzzy sets constructed in this methodology are derived from the initial
considerations presented beforehand. Three fuzzy sets, concerning the first
three enumerated assumptions are constructed. Other fuzzy sets could be
incorporated if necessary, in the methodology, addressing different properties
of the features such as texture, colour or shape. In order to minimise com-
putational resources and to increase speed and simplicity, the algorithm is
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(a) Membership function µS(x,y).

(b) Fuzzy set S using
µS(x,y).

(c) 3D view of fuzzy set S.

Figure 28: Membership function µS(x,y).

constructed based only on these three fundamental and generic assumptions.
These generic assumptions are used in order to demonstrate the viability of
the proposed methodology.

Assuming the smoothness of the feature movement, i. e., assuming that
the feature position will not drastically change between two consecutive
frames, it is plausible to suppose that the next location of the feature lies in a
neighbourhood centred in its previous location.

Therefore, a fuzzy set S associated with each image pixel (x,y) by means
of this proximity assumption related to the feature position in the previous
frame is constructed. The membership function µS(x,y) ∈ [0,α] can be
graphically depicted as illustrated in Figure 28a, where the horizontal axis
represents the Euclidean distance between the image pixels position and
the previous location of the feature. In Figure 28b, is depicted a pictorial
description of the fuzzy set S assuming a previous position (x,y) = (100, 100),
with d1 = 40, d2 = 50 and a maximum value α = 0.9.

Three distinct zones of certainty are present in the definition of the member-
ship function µS(x,y). For distances lower than d1 the membership degree
is maximum, defining a circular region centred in the feature previous po-
sition, where the new feature location is expected with equal certainty. For
distances greater than d1 the membership degree decreases in a linear way
until it reaches the zero value at distance d2. For distances lower than d2
the membership degree is zero. This behaviour can be explained due to the
fact that, for distances greater than d1, the certainty of finding the feature
is lower since the distance increases. The new position is not expected for
distances greater than d2 and the membership degree is zero for all these
positions. These two controlling parameters d1 and d2 vary over time. Both
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values are directly proportional to the observed feature displacement fd(t).
This displacement is based in an Euclidean distance defined as

fd(t) =
√
(p(t) − p(t− 1))2, (5.3)

where p(t) = (x(t),y(t)) and p(t−1) = (x(t−1),y(t−1)) are, respectively,
the current and previous positions of the feature.

To avoid abrupt changes in this parameter, a weighted sum is performed,
using the previous displacement information and an actualisation factor. This
reasoning can be mathematically represented as

∆d = Affd(t) + (1−Af)fd(t− 1), (5.4)

where Af is a constant within the interval [0, 1], fd(t − 1) is the previ-
ous displacement and fd(t) is the current observed displacement. Then,
parameters d1 and d2 of µS(x,y) are defined as

d1 =M1 +
∆d

2
, (5.5)

d2 = d1 +M2 +
∆d

2
, (5.6)

where M1 and M2 are two positive constants. These constants act as
minimum values for these two parameters in order to deal with features
presenting zero velocity. Parameter d1 has a minimum value of M1 and
parameter d2 has a minimum value of d1 +M2. Values M1 and M2 can be
related with the dimensions of the feature.

The bright constancy assumed earlier ensures that the feature intensity
level remains stable, or approximately stable, during the sequence. Hence,
the initial grey level of the feature is considered unchangeable over time
meaning that pixels denoting similar grey levels regarding the initial feature
grey level are more likely to belong to the feature.

Under these conditions, a fuzzy set is constructed in order to access the
certainty of a pixel belonging to the feature in such a way that higher
similarity in grey levels intensity higher the membership degree to that
fuzzy set. Gaussian or triangle membership functions completely satisfy this
requirement and then, they can be employed to perform the operation of
membership degree attribution. For simplicity reasons, the triangular shaped
function is used.

Defining the membership function as µg(x,y), the initial feature grey level
as q and a non negative value d, it can be graphically represented as depicted
in Figure 29.

The membership function µg(x,y) assigns a membership degree to a pixel
located in the image position (x,y) according the similarity between grey
levels. Parameter d is used to adjust the shape of the function and the
function can be more permissive or restrictive for, respectively, higher or
lower values of d.

Applying this pixel-wise operation, adjacent pixels could be assigned with
very different membership degrees. However, on the basis that, if a pixel
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Figure 29: Illustration of the membership function µg(x,y).

belongs to a feature then its adjacent pixels have high probability of also
belonging to that feature, spatial information is incorporated by representing
the feature by means of a set of pixels rather than a single pixel. As a
consequence, the effect of variations in the feature pixels due to noise is
intended to be minimised.

A new membership function µG(x,y) is introduced and it can be mathe-
matically described as follows:

Definition Let I be an image with dimensions M×N, I(x,y) is the grey
level of the pixel (x,y) so that 0 6 I(x,y) 6 L and If(i, j) an intensity matrix
of dimensions A× B representing the original feature grey levels, where
A = 2a+ 1, B = 2b+ 1 and {a,b} ∈ N.

For all (x,y) such that a 6 x 6M−a and b 6 y 6 N− b, the membership
function µG(x,y) is defined as

µG(x,y) = 1−

∑a
i=−a

∑b
j=−b |I(x+ i,y+ j) − If(i+ a, j+ b)|

A×B× L
. (5.7)

All pixels (x,y) of the image, such that 0 6 x 6 a∨M− a 6 x 6 M

and 0 6 y 6 b∨N− b 6 y 6 N have zero membership values. This set of
pixels are located at the boundaries of the image and, since a and b are small
positive integers, this discontinuity does not change the global performance
of the method.

In Figure 30, comparative results using membership functions µg(x,y)
and µG(x,y) applied to the same test image are illustrated.

In order to reduce processing time and increase computational speed, this
membership function is applied locally in a neighbourhood centred in the
previous position of the feature. The interested area could be seen as a square
region whose sides have a length l defined as

l = 2KG.d2, (5.8)

where KG is a positive constant and d2 is the parameter defined previously
in Equation 5.6.

Another membership function is constructed based on the assumption
that the feature motion between two consecutive frames can be described
using a linear motion model with constant acceleration. Stating this, a feature
can increase its velocity between two consecutive frames. Several motion
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(a) Original image.

(b) Resulting fuzzy set us-
ing µg(x,y).

(c) 3D view.

(d) Resulting fuzzy set us-
ing µG(x,y).

(e) 3D view.

Figure 30: Comparative results between membership functions µg(x,y) and µG(x,y).

models are discussed in the literature, however, the selected motion model
is a compromise between the proximity with the real motion performed by
the feature and computer processing requirements. The used motion model
follows the equation described previously in Equation 5.2.

Kalman filter is a powerful tool to predict the feature position during the
image sequence. Using information from previous frames, it is possible to
predict the feature location in the current frame. The Kalman filter is used
based on the assumption that the velocity and the direction of the feature
doesn’t suffer drastic changes from frame to frame, that is to say, the feature
follow a linear motion model with constant acceleration.

In Kalman filter the motion model is introduced in state space representa-
tion. Using state space representation, a system can be defined by

x(t) = Ax(t− 1) +Bu(t),
y(t) = Cx(t),

(5.9)
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where x(t) represents the state vector in the current time, A represents the
motion model, B represents the state vector dependency matrix with respect
the input u(t), y(t) represents the system output and C is called the output
matrix.

For this particular motion model, previously described in Section 5.2, the
state vector x(t) can be written as

x(t) =
[
x vx ax y vy ay

]′
, (5.10)

where x and y are the location coordinates of the feature, vx and vy the
velocities, ax and ay are the acceleration values.

Matrix A is defined as

A =



1 taq
t2aq
2 0 0 0

0 1 taq 0 0 0

0 0 1 0 0 0

0 0 0 1 taq
t2aq
2

0 0 0 0 1 taq

0 0 0 0 0 1


, (5.11)

where taq is the elapsed time between two consecutive frames.
Matrix C is defined as follows

C =

[
1 0 0 0 0 0

0 0 0 1 0 0

]
. (5.12)

Kalman filter is used to estimate the state vector of the feature, i. e., its
position, velocity and acceleration. Using information provided by the state
vector of the feature it is possible to predict the feature position (x,y) in the
next frame. This thoughts led to the development of another membership
function, called µK(x,y). This membership function assigns higher mem-
bership degree to pixels near the predicted location and its value decreases
for locations far from this predicted point. To implement such behaviour,
a Gaussian shape function is used, Figure 31a. A Gaussian function was
used rather than a triangular shape function to ensure a higher decay in the
membership degrees and, this way, is given more prominence for locations
near the predicted one. The Gaussian function shape can be changed through
the standard deviation parameter σ defined as follows

σ =
3Mσ +∆d

3
, (5.13)

where Mσ is a minimum value to deal with stopped features and ∆d is
the previous observed displacement of the feature. Then, this parameter is
changed according to the velocity of the feature with higher velocities giving
rise to higher standard deviation values.

This membership function µK(x,y) is applied in a circular neighbourhood
with radius equal to 3σ centred in the predicted position. For locations
whose distance to the predicted position is greater than 3σ the membership
degree is zero. In Figure 31b, is depicted the resulting fuzzy set K assuming
a predicted position (x,y) = (100, 100) and σ = 15. The corresponding 3D
view is also illustrated in Figure 31c.
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(a) Illustration of the membership function µK(x,y).

(b) Resulting fuzzy set K. (c) 3D view.

Figure 31: Membership function µK(x,y).
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Figure 32: Correspondence situations in single feature tracking.

5.4 occlusion and misdetection

In single feature tracking systems, two distinct situations can occur. The
tracked feature is assigned to a candidate point in the current frame or no
correspondence is performed. These two situations are depicted, respectively,
in Figures 32a and 32b, where ◦ denotes feature position at frame t− 1, ×
denotes feature position at frame t and the question mark (?) indicates the
absence of detected candidates. In the first situation, the current position of
the feature is assumed to be the position of the candidate, however, when
there are no candidates for matching, an occlusion or a misdetection situation
is present.

When an occlusion or a misdetection occurs, the proposed method tends
to solve this situation acting in several directions. In such situations, the
proposed method uses a predicted position determined using the information
given by the estimated state vector of the Kalman filter and the motion model
equation described in Equation 5.2. During occlusion the position of the
feature is predicted until the algorithm detects the feature once again.
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On the other hand, dynamic membership functions µS(x,y) and µK(x,y)
assume a different behaviour. When an occlusion or a misdetection are
detected, parameters d1 and d2 of µS(x,y) and parameter σ of µK(x,y)
increase. The purpose of this behaviour is to define a large region of search
and to accommodate the uncertainty concerning the motion model.

During the occlusion period no matching is performed and the approach
doesn’t have reliable information about the position of the feature. Therefore,
feature displacement ∆d is not updated.

5.5 methodology

The proposed methodology can be globally described through the pseu-
docode presented in Figure 33. This pseudocode will be explained in detail
in this section.

In this methodology, two distinct stages are present: a setup stage and a
closed loop stage.

% ----------------------------------------------------------
% Fuzzy Logic Tracking Approach for Single Feature Tracking
% ----------------------------------------------------------

Initialization Stage ();
Read Image (First Frame);
Show Image (First Frame);
Select Feature (By the User);
Save (Data of Selected Feature);

for Current Frame = Next Frame : Last Frame,
Read Image (Current Frame);
Compute (µG, µK, µS);
µM = Fuzzy Union (µK, µS);

for All Pixels where µM > 0,
Candidates = Find (Max(µG) > 0.8);

end

% Begin {Inference Engine}
if (Number of Candidates == 1),

Current Position = Position of the Candidate;
Predicted = 0;

elseif (Number of Candidates > 1),
Nearest Candidate = Find (Candidate closest to Max(µK));
Current Position = Position of Nearest Candidate;
Predicted = 0;

else
Current Position = Position of Max(µK);
Predicted = 1;

end
% End {Inference Engine}

if (Predicted == 1),
Increase µS Parameters (d1, d2);
Increase µK Parameter (σ);

end

Update (Kalman Filter);
Show Image (Current Frame);
Draw (Current Position, Estimated Trajectory);

end �
Figure 33: Detailed steps of the algorithm.
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At the setup stage several steps are performed in order to define and
initialise all the variables, matrixes and structures. It is assumed that the
feature is described by a 3× 3 matrix, α parameter of µS is 0.8, it has an
initial displacement of 10 pixels and the displacement actualisation ratio
Ar = 0.75. Since the feature is described by a 3× 3 square matrix, parameters
M1 and M2 of Equations 5.5 and 5.6, parameter MG of Equation 5.8 and
parameter Mσ of Equation 5.13 are considered equal to 3. Parameter KG
of Equation 5.8 is also considered 3 and controls the size of the interested
region centred in the previous feature position in the input image. If this
value is too high, local processing is not accomplished but if it is too low,
this region couldn’t accommodate the fuzzy set µM defined in Equation 5.14.
A value of KG = 3 also assumes that the feature displacement in the current
frame is lower than three times the displacement observed in the previous
frame. This assumption is valid since it is considered smooth motion.

Is also assumed that parameters d1 and d2 of µS(x,y) and parameter σ of
µK(x,y) increase 10% in occlusion situations. The value of 10% is assumed
to establish a smooth increasing of the region of search. In this stage is
also defined the initial frame number and then, it is possible to observe the
performance of the approach starting in different frames of the sequence.
After these assignments, the initial frame of the sequence is displayed and
the human operator must select the feature to track. Feature properties, such
as intensity and initial position values are then recorded for further use.

In the closed loop stage, the algorithm performs as follows:

1. After opening the next frame of the sequence, a fuzzy set G is con-
structed by applying the membership function µG(x,y) to the image
pixels;

2. Fuzzy set K is constructed through the definition of the membership
function µK(x,y) using the Kalman filter information and motion
model;

3. Fuzzy set S is constructed using the previous position of the feature
and µS(x,y);

4. Fuzzy set µM is computed;

5. Using an inference engine with a set of rules the position of the feature
is determined;

6. The membership function parameters and the state variables of the
method are updated;

7. The estimated trajectory is illustrated and the algorithm jumps to the
first step until it reaches the last frame of the sequence.

The first three steps are the direct implementation of the membership
functions where three fuzzy sets are constructed and the last two steps are,
respectively, an actualisation and display procedures. The fourth and fifth
steps can be considered the most relevant and innovative steps in the method
and, therefore, they will be explained in detail.
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Before applying the rules to the fuzzy sets, a fuzzy set M is constructed
from the fuzzy union between fuzzy sets K and S, using the maximum
operator as follows

µM(x,y) = ∨(µK(x,y),µS(x,y)) (5.14)

After defining the fuzzy set M, an inference engine with the following set
of rules is constructed. The output of the engine is a fuzzy set E that will
ultimately lead us to the feature position which will be the pixel (x,y) that
corresponds to the higher µE(x,y) value.

The proposed inference engine is constructed using the following three
rules:

rule 1 : IF, within the area defined by membership values of the fuzzy
set M, such that µM(x,y) > 0,∀(x,y), there is one and only one local
maxima of µG(x,y) > α, THEN, fuzzy set E is the union between fuzzy
sets S and G. This fuzzy set is constructed using the maximum operator
in the following way:

µE(x,y) = ∨(µG(x,y),µS(x,y)). (5.15)

rule 2 : IF, within the area defined by membership values of the fuzzy
set M such that µM(x,y) > 0,∀(x,y), there are n > 2 local maxima
of µG(x,y), located at position (xi,yi),∀i = 1, . . . ,n that satisfy the
condition µG(xi,yi) > α, THEN, fuzzy set E is the union between
fuzzy sets S and G ′i,∀i = 1, . . . ,n.

The fuzzy sets G ′i are constructed using fuzzy set G in the following
way:

µG ′i
(x,y) = ψiµG(x,y),∀i = 1, . . . ,n, (5.16)

with

ψi = 1−
di

dMAX
,∀i = 1, . . . ,n, (5.17)

and

di =
√
(xi − xK)2 + (yi − yK)2,∀i = 1, . . . ,n, (5.18)

dMAX = max{di},∀i = 1, . . . ,n, (5.19)

where (xK,yK) is the location of the maximum value of fuzzy set K.

Finally, fuzzy set E is constructed using the maximum operator

µE(x,y) = ∨(µG ′1
(x,y), . . . ,µG ′n(x,y),µS(x,y)). (5.20)

rule 3 : IF, within the area defined by membership values of the fuzzy
set M, such that µM(x,y) > 0,∀(x,y), there is no local maxima of
µG(x,y) > α, THEN, fuzzy set E is to be equal to fuzzy set K.

µE(x,y) = µK(x,y). (5.21)
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The design of this inference engine and its rules is based in human
reasoning. People expect to find an object or a feature in its last known
location or at locations in the neighbourhood, particularly when dealing with
static objects or objects with small movement. This kind of human reasoning
is modelled by fuzzy set S. When dealing with fast moving objects, people
are capable to understand the feature motion pattern and consequently
anticipate its next position. This thought is also valid when the object is
occluded. Consequently, the fuzzy set K tends to incorporate this reasoning.
According to these two behavioural attributes, the area defined by fuzzy set
M, i. e., the image area where µM(x,y) > 0, can be seen as the first area of
search to locate an object or a feature. Looking for this region, if a person see
an identical feature as expected, then it is plausible to consider this feature
as the one that is been tracked. From rule 1, the feature position will be the
pixel, with coordinates (x,y), that denotes the maximum value of µG(x,y).

If multiple identical features are present in that region then, it is reasonable,
based on the previous acquired motion pattern, to choose the feature near
the predicted feature position (rule 2).

In situations when the feature is not visible, its location can be only
estimated by the understanding of the behaviour of the motion observed
until that moment (rule 3). In this case, the feature position will be the pixel,
with coordinates (x,y) with the maximum value of µK(x,y).

When the feature is not detected, the search area increases due to the
uncertainty of the movement described by the feature and the used motion
model. Furthermore, if the output of the engine results from rule 3 then,
since all the µG(x,y) values in the considered image area are below than α,
probably due to an occlusion, the membership functions of fuzzy sets S and
K change in such a way that the region where µM(x,y) > 0 becomes bigger,
allowing the tracked feature to be searched in a wider area.

5.6 experimental results using synthetic sequences

In order to illustrate the performance of the proposed methodology, the
proposed algorithm is foremost applied to four synthetic image sequences
(S1, S2, S3 and S4) generated at 25 frames per second (fps) with a spatial
resolution of 200× 200 pixels. These sequential images illustrate a set of small
moving points, to simulate object features moving across a scene. These small
points could be completely black or have different grey levels and the scene
could denote uniform or non-uniform background. With these assumptions
four synthetic sequences were generated with the following properties:

• In the sequence S1, objects are similar having grey level equal to zero
and the background is uniform with white colour.

• In the sequence S2 the objects remain the same but the background is
non-uniform presenting grey level values ranging from 0 to 255.

• The sequence S3 is composed by moving objects denoting different
grey levels in a uniform white scene.

• The sequence S4 is composed by objects denoting different grey levels
that move across a non-uniform scene.
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The human operator selects one point at the beginning of the process and
the algorithm will track the selected point till the end of the sequence. The
first image of the four sequences are illustrated in Figure 34 and the selected
feature is located near the left lower corner of the image.

Figure 34: First frame of the four sequences. From left to right: S1, S2. S3 and S4

The first sequence used to test the performance of this approach is the
sequence S1 whose characteristics were already presented previously.

The first relevant situation occurs when two similar features cross each
other and the estimated trajectory during this period is illustrated in Fig-
ure 35. This situation is observed from frame 6 to frame 11 as depicted in
Figure 36. In Figure 36a, the leftmost image is the original image of the
sequence and the four images of the right represents, respectively, fuzzy set
µG, fuzzy set µS, fuzzy set µK and fuzzy set µM. Same image arrangement
is considered for similar subsequent figures.

1

(a) Frame 6

1

(b) Frame 7

1

(c) Frame 8

1

(d) Frame 9

1

(e) Frame 10

1

(f) Frame 11

Figure 35: Estimated trajectory in crossing situation.

As explained earlier, fuzzy set G represents the proximity between grey
levels of the feature and grey levels of the image pixels. In the image repre-
sentation of this fuzzy set, higher proximity is represented by brighter pixels
and, in opposition, darker pixels represent the absence of similarity between
grey levels. As we can see, brighter regions in fuzzy set G correspond to
darker regions in the original image because the chosen feature is dark. The
fuzzy set S represents the smoothness of the feature motion is represented
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(a) Frame 6

(b) Frame 7

(c) Frame 8

(d) Frame 9

(e) Frame 10

(f) Frame 11

Figure 36: Crossing situation in sequence S1.

by a circular region with higher values when locations become near the
previous position of the feature. When the difference becomes lower than a
predefined parameter d1, the value of µS remains constant. The illustration
of fuzzy set K is an image with a brightest pixel at the coordinates of the
estimated next position of the feature and the bright is rapidly reduced for
pixels far from this point.
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In this crossing situation, features have different motion patterns, i. e., the
tracked feature moves from left to right and other similar feature moves in
the opposite way. Using the motion model of the feature and Kalman filter is
possible to define a region in the next frame where the feature will be found.
If the tracked feature denotes a movement from left to right, is expected
to find the feature, in the consecutive frame, at the right of its previous
position. When these two features are overlapped in the image, forming just
one region, the tracked feature is expected to appears in the right side of the
region, maintaining its motion behaviour.

In this particular situation, the fuzzy set K, which incorporates motion
model information, and the inference engine play an important role to
achieve a correct tracking of the feature.

The following pertinent situation is the feature occlusion that occurs
from frames 35 to 39, as illustrated in Figures 37 and 38. To indicate the
occlusion situation the colour of the estimated trajectory changes to red and
the predicted location is indicated by a red ◦ rather than a green ×. In this
case the feature is not present in the image but, using the information of the
previous position and the model of the movement, a new feature position
can be predicted. The motion model used to describe the dynamic behaviour
of the feature assumes an important role, since it will define the estimated
trajectory of the feature during occlusion situation.

In the occlusion stage, the radius of the membership function µS increases
resulting in a higher area of search. Furthermore, the parameter sigma in
the membership function µK also increases. These two procedures tend to
accommodate the differences between the considered motion model of the
feature and the real motion described by the feature.

When the feature stops moving, the algorithm still detects its presence,
Figure 40. This fact can be considered an advantage comparing this approach
with tracking algorithms whose feature detection is based uniquely in motion
analysis such as frame differencing, background subtraction or optical flow.

Since the detection is performed using the information about grey levels
of the features given by fuzzy set G, the feature continues to be detected
using this tracking approach when it stops. In this stage, the searching region
defined by µS and the sigma parameter in membership function µS start
reducing as observed in Figure 39.

The estimated trajectory of the feature over the sequence is illustrated in
Figure 40f. The presented trajectory represents the estimated path described
by the feature in a smooth way. Since the motion model of the feature
is described by a linear motion with constant acceleration, in occlusion
situations, it is assumed that feature denotes a linear movement, and this
linear behaviour can also be seen in this picture when the feature starts
to move straight forward (red line). When it reappears in the scene it is
immediately detected by the approach and the location is then updated.

To understand the evolution of the outer radius d2 of membership function
µS, its evolution is indicated in Figure 41a. At the beginning of the process
this parameter is initialised. During the sequence, this value is directly
dependent on the velocity of the feature and, in occlusion situations, this
value starts to increase from its last value. With these statements, the shape
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(a) Frame 35

(b) Frame 36

(c) Frame 37

(d) Frame 38

(e) Frame 39

(f) Frame 40

Figure 37: Occlusion situation in sequence S1 (frame 35 to 40).

of Figure 41a is easily understood. This value decreases from a starting
value and remains substantially constant until the occlusion period. In the
occlusion situation this value starts to increase until the feature reappears
in the scene. After this moment, this parameter returns to similar values
before the occlusion. When the feature stops, at the final of the sequence, this
parameter reaches its minimum value since the feature doesn’t denote any
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Figure 38: Estimated trajectory in occlusion situation.

movement. Similar behaviour describes the evolution of σ value concerning
the membership function µK which is depicted in Figure 41b.

For the remaining sequences the results are very similar. The algorithm
performs as expected, tracking the selected feature during the sequence.
Because of this similarity, the illustration of fuzzy sets and result images are
neglected and just the estimated trajectory and the evolution of parameters
of membership functions µS and µK are shown. Making an analysis to the
graphics depicted in Figures 42, 43 and 44, its easily noticed that non-uniform
background and different features grey level don’t decrease the performance
of this methodology.

5.7 experimental results using non synthetic sequences

After some preliminary tests with synthetic sequences, the algorithm was ap-
plied to several non synthetic image sequences. These microscopic sequences
were obtained from Bacterial Motility and Behavior group located in the
Rowland Institute at Harvard1 with approval of Professor Howard C. Berg.

The first sequence shows a bacteria called Serratia Marcescens moving over
the surface. This sequence is constituted by 300 frames recorded with a frame
rate of 13 fps and each frame has a size of 320× 240. In this sequence, the
bacteria denotes a white colour against a dark background. To illustrate the
effectiveness of the approach, one bacteria is picked at the initial frame and
the trajectory of such bacteria is estimated until it reaches a predefined final
frame. The initial and final frames are defined by the user. In Figure 45a
the selected bacteria is indicated and, in Figure 45b, its estimated trajectory
is depicted with a solid green line indicating the absence of occlusion or
misdetection situations.

The other test sequence is also a bacteria, an organism called Synechococcus,
swimming in a medium. The sequence was recorded with an acquisition

1 http://www.rowland.harvard.edu/labs/bacteria/index.html

http://www.rowland.harvard.edu/labs/bacteria/index.html
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(a) Frame 50

(b) Frame 51

(c) Frame 52

(d) Frame 53

(e) Frame 54

(f) Frame 55

Figure 39: Static situation in sequence S1 (frame 50 to 55).

rate of 30 fps, with an image size of 320× 240 and a total of 103 frames. This
sequence is more complex than the previous one. There are more similar
features in the scene, the background is not uniform and the difference of
grey levels between feature and background is lower. Once again, one feature
is selected in frame number 1, Figure 46a, and the estimated trajectory until
frame number 100 is depicted in Figure 46b.
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Figure 40: Estimated trajectory in static situation.
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Figure 41: Parameters of membership functions µS and µK during sequence S1.
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Figure 42: Estimated position and evolution of parameters in membership functions
µS and µK during sequence S2.

The third sequence is a Mycoplasma bacteria gliding. 704 frames with a
spatial resolution of 720× 480 were recorded with a temporal resolution of
30 fps. An initial bacteria is selected in frame number 1 and its estimated
trajectory is presented until frame number 540. These two situations are
depicted in Figures 47a and 47b, respectively.
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Figure 43: Estimated position and evolution of parameters in membership functions
µS and µK during sequence S3.
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Figure 44: Estimated position and evolution of parameters in membership functions
µS and µK during sequence S4.

Frame n:222 1

(a) Selected bacteria.

Frame n:254

1

(b) Estimated trajectory.

Figure 45: Estimated trajectory of a bacteria between frames 222 and 254.

5.7.1 Performance Measurement

In order to access a performance measure of the proposed approach, exper-
imental results are compared with manually generated feature positions.
These ground-truth positions have been manually defined for each frame of
the sequences presented previously. They represent the centre of mass of the
feature and they will be used as a gold standard. Using these ground-truth
positions, a tracking error measurement could be developed calculating the
average and standard deviation of an Euclidean distance between experimen-
tal and ground-truth positions.
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Frame n:1

(a) Selected organism.
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Frame n:100

(b) Estimated trajectory.

Figure 46: Estimated trajectory between frames 1 and 100.

Frame n:1

1

(a) Selected organism.

Frame n:540

1

(b) Estimated trajectory.

Figure 47: Estimated trajectory between frames 1 and 540.

In Figures 48, 49 and 50, a pictorial comparison between the experimental
and ground truth (x,y) coordinates and the distance error for all frames
are presented, respectively, for the three image sequences introduced previ-
ously. Since both experimental and ground-truth positions have single pixel
resolution, the distance error values are discrete rather than continuous.

Table 5 gives the average and standard deviation of the distance errors. The
first sequence denotes higher values since the moving bacteria denotes the
tracked feature (high grey level intensity) in all their surface and the bacteria
presents an elongated shape leading the method to provide experimental
positions not close enough to the centre. However, since the tracking process
is performed correctly, these errors could be solved using morphological
approaches. In the Mycoplasma bacteria sequence the results are better but not
the best since this bacteria presents grey level variations over the sequence
leading the method to provide positions not close enough from its centre and
fuzzy boundaries causing difficulties to achieve ground-truth positions with
high accuracy. The second sequence provides best results since the feature is
radial, with well defined boundaries and no significant variations in its grey
level intensity are observed over the sequence.

5.7.2 Feature Tracking with Low Frame Rate

Performance tests concerning low frame rate acquisition were also subject
of attention. To simulate a low frame rate acquisition, the images of the
sequence used in the algorithm are not taken in a consecutive manner but a
jump of several frames is made. The first sequence was recorded at 13 fps, if
the method gets a frame, discard the consecutive frame and uses the next
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Figure 48: Ground truth comparison between frames 222 and 254 of a Serratia
Marcescens.

frame, i. e., the frames are used with an interval of 2 frames, the frame rate is
halved. If the sequence was acquired at 30 fps, if the method makes a jump of
5 frames, its equivalent to have a frame rate of 6 fps. These procedures were
used in the sequences to simulate low frame rate.

Figure 51a illustrates the estimated trajectory between frames 1 and 76
with a frame rate of 6.5 fps, Figure 51b represents the trajectory between
frames 1 and 100 and Figure 51c depicts the estimated trajectory between
frames 1 and 300. The frame rate used in these two latter sequences was
6 fps. Since the time interval between two frames used by the methodology
increases, less information is used and therefore, the trajectory is not so
detailed as shown previously. However, the selected features still continue to
be tracked correctly. An important issue is related with the velocity of the
feature between two consecutive frames, if it is too high, the current position
of the feature could not lie inside the search region, specially at the beginning
of the sequence when the state vector of the feature is not stable yet.
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Figure 49: Ground truth comparison between frames 1 and 100 of a Synechococcus.

5.7.3 Feature Tracking with Alternative Membership Functions

Since this methodology is modular it can be easily adapted according the user
end application. The number and nature of used membership functions can
change to deal with the suitable distinguish properties denoted by the feature.
For instance, instead of using only the grey level to distinguish the feature it
can be used also its template. With a template of the feature, the concept of
cross-correlation between the template and the image can be used. According
to Equation 2.21, a new membership function µC can be developed. Image
regions where the template matches perfectly have higher cross-correlation
values, otherwise, regions not denoting a similarity between the template
have lower µC values. The range of the membership function µC belongs to
the interval [0, 1]. Since the range of Equation 2.21 is [−1, 1], negative values
are truncated to zero. This procedure doesn’t affect the performance of the
method because the interested values are the maximum values of µC.

To evaluate the performance of using cross-correlation in the methodology,
a feature is selected to be tracked during several frames of the sequence. At
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Figure 50: Ground truth comparison between frames 1 and 540 of a Mycoplasma.

frame number 8 the feature is selected by the user, Figure 52a, and a template
of the selected feature is defined, Figure 52b. Between frame number 8 and
frame number 40 an estimated trajectory is constructed as illustrated in
Figure 52c. This trajectory is represented by a green line, but after several
frames this line becomes red. Red colour indicates a period where the
feature is occluded or not detected by the algorithm and the trajectory is
constructed using predicted positions calculated using the motion model
and the information of the feature state vector. During this period the use
of this alternative membership function fails because the feature changes
significantly its appearance and the membership function µC returns low
values. If the values of membership function µC are lower than a predefined
value, all the regions of the image are considered quite different from the
template and, in this situation, the feature will not be detected. Fortunately,
after some time the feature returns to an appearance very similar with the
template and it will be detected once again. Figure 53 illustrates a situation
where the tracked feature changes permanently the similarity between its
template and, consequently, the tracking fails. This tracking failure is related
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Table 5: Average distance error and standard deviation.

sequence interval of frames mean standard deviation

Serratia
Marcescens

[222, 254] 3.7911 1.1000

Synechococcus [1, 100] 0.7286 0.6188
Mycoplasma [1, 540] 1.4452 0.7991

1

(a) Frame rate = 6.5 fps

1

(b) Frame rate = 6 fps

1

(c) Frame rate = 6 fps

Figure 51: Estimated trajectory with low frame rate.

with the inner limitations of the cross-correlation concept because cross-
correlation is not invariant to template scale and rotation.

Also in Lopes et al. and Couto et al. [70, 26] slightly different membership
functions were used to construct the fuzzy sets S and K. In Lopes et al. the
membership function µK, illustrated in Figure 54a, is very similar with the
one described in this work but the sigma value of µK is defined exclusively
by ∆p

3 , where ∆p is equal to half of the displacement of the feature from
frame t− 2 to frame t− 1. When feature stops the sigma value becomes zero
and the membership function fails since the Gaussian function needs a non-
zero sigma. To overcome this situation a minimum sigma value should have
been established in this work. Also, the membership function µS depicted in
Figure 54b, denotes an exponential decay, however, this behaviour introduces
more computational resources and, when replaced by a linear decay, no
performance losses were observed. Therefore, this latter behaviour has been
adopted in future work.

In Couto et al. the membership function µK is also a Gaussian shaped
function but the membership function µS is asymmetrical and two distinct
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Figure 52: Estimated trajectory between frames 1 and 40.

1

(a) Selected feature. (b) Feature template (zoomed).

1

(c) Estimated trajectory.

Figure 53: Estimated trajectory between frames 50 and 75.

zones of certainty are present in the definition of this membership function.
More certainty is given in the feature movement direction. A 3D representa-
tion of these two membership functions is illustrated in Figures 55a and 55b,
respectively.

In order to illustrate the experimental results of both methods, two se-
quences are used. The used sequences were taken from the Object Tracking
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and Classification in and Beyond the Visible Spectrum (OTCBVS) Benchmark
Dataset Collection2 and from the Center for Image Processing Research (CIPR)
3.
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Figure 54: Alternative used membership functions.
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Figure 55: 3D representation of alternative used membership functions.

5.7.4 Multiple Feature Tracking

After testing the performance of the tracking algorithm for one feature, the
methodology is extended to track simultaneously more than one feature in
the sequence. This extension was achieved repeating the tracking method
for each feature. At the beginning, the user selects several features to track
and the method starts finding the best correspondence in the next frame,
and consequently, defines each trajectory. Figures 56, 57 and 58 illustrate
the estimated trajectories of several selected features. This correspondence
process starts to be performed from the first selected feature to the last.
However, this fixed matching sequence based uniquely in the order of the
selected features couldn’t be the optimal scheme during the entire sequence
and another matching sequence must to be implemented. This new matching
sequence must be dynamic to ensure that well behaved and mature features
are processed and assigned first than erratic features. Mature features are
features that had been tracked correctly for a long time and being well
behaved they are expected to maintain the same motion pattern. Therefore,

2 http://www.cse.ohio-state.edu/OTCBVS-BENCH/index.html
3 http://www.cipr.rpi.edu/resource/sequences/sif.html

http://www.cse.ohio-state.edu/OTCBVS-BENCH/index.html
http://www.cipr.rpi.edu/resource/sequences/sif.html
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the next position of these features could be predicted, potentially, with more
confidence and the matching process would perform better.
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Figure 56: Estimated trajectories between frames 26 and 43.
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Figure 57: Estimated trajectories between frames 1 and 80.

1

2

3 4

(a) Selected feature.

1

2

3

4

(b) Estimated trajectory.

Figure 58: Estimated trajectories between frames 1 and 200.

5.7.5 Feature tracking using macroscopic sequences

In the microscopic sequences introduced previously the tracking feature is
present in all the area occupied by the moving object. However, in most
macroscopic object tracking systems, the tracked feature is present only in a
particular region of the moving target. To access the behaviour of this method-
ology in macroscopic scenes, two sequences obtained from Context Aware
Vision using Image-based Active Recognition (CAVIAR) 4 and Performance

4 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Figure 59: Estimated trajectory between frames 260 and 400 (first frames).

Evaluation of Tracking and Surveillance (PETS) 5 test case scenarios are used.
These two sequences are used because the selected features to track denote
different motion patterns and occlusion situations are also present.

The first sequence, used in CAVIAR test case scenarios, represents two
people meeting and walk together in an entrance lobby. The selected tracking
feature is the black hair of one person chosen by the user at the beginning of
the sequence. This feature starts to move in a single direction, stops for a few
moments and then takes another direction to continue its motion. Figure 59

illustrates the effectiveness of the proposed methodology between frames
260 and 400.

To achieve a performance evaluation of the approach, experimental posi-
tions computed by the proposed methodology for all frames of the tested
sequence are compared with ground-truth positions generated manually.
The evolution of the Euclidean distance between these two positions can be
observed in Figure 60.

The maximum value of the error distance is lower than 3 pixels as observed
in Figure 60. This maximum value is considerable small and can be explained

5 http://www.cvg.rdg.ac.uk/PETS2010/a.html

http://www.cvg.rdg.ac.uk/PETS2010/a.html
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Figure 59: Estimated trajectory between frames 260 and 400 (last frames).
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Figure 60: Distance between experimental and ground-truth positions.

due to errors introduced in the ground-truth generation and also because
the proposed method doesn’t ensure that the output estimated position lies
at the centre of mass of the feature. However the methodology performs a
correct feature tracking.

The other sequence, presented in PETS test case scenarios, represents two
people walking together in the street and one person is carrying several
white paper sheets in its hand. The high grey level intensity of these white
paper sheets is the selected tracking feature.
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Figure 61: Estimated trajectory between frames 50 and 150 (first frames).

This sequence is more challenging than the previous because the feature
presents more complex motion behaviour since it denotes a swinging motion
pattern due to the human hand movement during walking and it suffers
several occlusions along the sequence.

The result of the proposed methodology between frames 50 and 150 is
illustrated in Figure 61.

The evolution of the Euclidean distance between experimental and ground-
truth positions is depicted in Figure 62.

Higher error values at the beginning of the sequence are easily explained
by the large size and also by the swinging pattern of the feature observed
in the image plane leading the estimated positions given by the proposed
methodology to be not close enough from its centre of mass. Another issue
is related with the occlusion situations that could increase the errors between
the ground-truth positions since the method doesn’t have any information
about the feature. Despite these source errors, the maximum error value
observed in the first half of the sequence doesn’t degrade the tracking process
of the proposed methodology. In the second half there are no presence of
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Figure 61: Estimated trajectory between frames 50 and 150 (last frames).
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Figure 62: Distance between experimental and ground-truth positions.

occlusions and the feature starts to move along a direction that reduces the
swinging motion of the feature observed in the image plane, therefore, the
distance errors are significantly decreased.

The average and standard deviation of the Euclidean distance between
experimental and ground-truth positions for the tracked feature in these two
sequences are presented in Table 6.
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Table 6: Average distance error and standard deviation.

sequence interval of frames mean standard deviation

CAVIAR [260, 400] 1.0186 0.6307
PETS [50, 150] 2.1320 1.7490

In Table 6, it is possible to observe that the average distance error and
standard deviation values are low for both sequences, indicating the correct
performance of the method.

5.8 discussion

In this chapter a new feature tracking approach based in fuzzy sets was
introduced. This approach adopts the concepts introduced in fuzzy logic
theory but implements a new viewpoint related to the use of fuzzy logic
concepts to perform feature tracking.

With the definition of three basic membership functions and the con-
struction of a rule based inference engine, an algorithm providing quite
satisfactory results was achieved. Using fuzzy logic theory, human like rea-
soning approaches have been used to develop this methodology. Humans are
capable to interpret changes in the environment and think forward to predict
future behaviours. One distinctive property sensitive to human eyes is the
grey level intensity, therefore, a membership function is constructed related
with the feature grey level. This membership function assigns a value, to
each pixel of a frame, according its proximity to the grey level of the selected
feature. Humans always start to find an object in its last known position,
so, a membership function is used to define a search region around the last
position of the feature. Finally, a third membership function is constructed
related with the predicted position of the feature in the next frame. When
a feature denotes a constant motion pattern, humans are capable to think
forward and focus their attention in regions where it is expected to find
the near feature. Even in cases of occlusion, its plausible to estimate the
localisation of the feature using its previous position and motion behaviour.
These three membership functions combined with a rule inference engine
are an attempt to implement a human inspired reasoning based system.

This approach was formerly applied to several synthetic sequences and
then to real image sequences. The results are quite satisfactory and when the
velocity of the feature is low, the algorithm can perform with low acquisition
rates without losing its performance. If the feature changes rapidly its velocity,
the next position of the feature could lie outside the expected search region
and the method fails.

Since this methodology is modular, alternative membership functions
could be used and an example of feature tracking using cross-correlation was
presented. A preliminary test to achieve a multiple feature tracking system
is performed, however, this simplest attempt is not acceptable because well
behaved features should be always processed first and this issue is not
ensured.





If I find 10000 ways something won’t work, I haven’t failed.
I am not discouraged, because every wrong attempt discarded

is another step forward.

— Thomas A. Edison

6H I E R A R C H I C A L M AT C H I N G A P P R O A C H F O R
M U LT I P L E F E AT U R E T R A C K I N G

6.1 introduction

In this chapter an extension of the fuzzy based tracking algorithm presented
previously will be introduced to deal with multiple feature tracking. The
purpose of this extension is to incorporate a hierarchical scheme in the
processing sequence of the features. When the user picks up several features
to track, 1, . . . ,n, the natural order is to start processing the first selected
feature and continuing till the last, for all frames in the sequence. This
initial schedule could be suitable during the first frames of the sequence,
however, after some time it could bring worst results. Performance reduction
could be explained due to the fact that along time, some features could
become occluded, due to background or other existing features, and less
information about these occluded features is available to the algorithm. This
lack of information causes degradation in the estimation of the state vector
of such features leading to predicted positions with higher uncertainty. If
these features were the ones selected first by the user, the algorithm will start
to match these low certainty features rather than well behaved features.

Hence, to avoid these features to have higher priority, and being assigned
first than features that provide more information to the algorithm, its plau-
sible to implement a hierarchical matching scheme. In this hierarchical
matching scheme, features that provide more information to the algorithm
have priority in the matching step. Furthermore, when features became oc-
cluded, their location will be predicted over several frames, if the algorithm
continues to not get reliable information about the location of the features,
such features will be deleted from the list of tracked features.

The remainder of this chapter is organised as follows: In Section 6.2
some preliminary assumptions concerning this algorithm are presented.
In Section 6.3, the procedure to deal with situations of inter feature and
background occlusion is explained. The proposed hierarchical fuzzy tracking
approach is presented in Section 6.4. Results with synthetic and non synthetic
sequences are analysed in Sections 6.5 and 6.6, respectively. At the end of
this chapter, in Section 6.7, a brief discussion concerning this hierarchical
matching approach for multiple feature tracking is presented.
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6.2 initial considerations

This new approach assumes the same initial considerations introduced in
the method presented previously: the feature has constancy of intensity, has
smooth motion, the feature motion between two consecutive frames can be
described using a linear motion model, the area occupied by the feature is
small compared to the total image area and the shape of the feature doesn’t
suffer relevant changes over the sequence.

The used membership functions and, consequently, the used fuzzy sets
remain the same. One fuzzy set S related to the previous location of the
feature, one fuzzy set G concerning the feature grey level and another fuzzy
set K concerning the predicted position of each feature. The rule inference
engine is also maintained in this extension, however, this extension will
implement a hierarchical matching scheme. To perform this hierarchical
scheme each feature is associated with a confidence degree modelling the
amount of knowledge about the feature. Higher the knowledge about the
feature higher the confidence degree and, therefore, higher the priority.

At the beginning of the process, when the user selects the features to track,
all features are associated with a predefined maximum value of confidence.
If a feature becomes occluded its confidence degree decreases, otherwise
increases until reaches the predefined maximum value. The fuzzy matching
approach explained in Chapter 5 is then first applied for features denoting
higher confidence degree. When its confidence degree becomes too low, the
approach doesn’t have reliable information about the location of the feature
for a long time and its location can’t be predicted with reasonable certainty.
In this case this feature is no longer tracked.

6.3 occlusion and misdetection

In multiple feature tracking several correspondence situations can occur.
Figure 63 depicts these situations, where ◦ denotes the feature position at
frame t− 1 and × denotes the feature position at frame t. The question mark
(?) represents the absence of correspondence at frame t. The first situation
depicted in Figure 63a indicates that each feature is matched with a different
candidate point in the next frame and the current position, at frame t, of the
feature will be the position of the corresponding candidate.

Sometimes different features in frame t− 1 will be assigned to the same
point in frame t. When two moving features pass close each other or when
one feature occludes an other, or even also due to the representation of a 3D
world in a 2D plane, they can appear as being just one region in the image.
However one region in the image plane represents several features. This
situation could be seen as a merging of features or a inter feature occlusion,
Figure 63b.

The opposite situation is also considered, i. e., several features could have
different motion directions and one single region, representing multiple
features, could result in multiple matching points. It could be seen as a split
of features, Figure 63c.

Finally, at some instant, there are no candidate points for a feature and,
without correspondence, a predicted position is assumed, Figure 63d. Its
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Figure 63: Correspondence situations in multi feature tracking.

a typical situation of background occlusion. All these situations must be
considered in the tracking algorithm and appropriate procedures must be
applied in each case.

In this multiple feature tracking approach it is possible to distinguish
between inter feature occlusion and background occlusion and different
actions could be performed for each case.

6.4 methodology

According the assumptions and situations described previously, a new track-
ing approach was developed. At the beginning, the user selects multiple
features to track and each feature is associated with a confidence level. This
confidence level is related with the trust or knowledge about a feature. At
the beginning of the sequence, each feature has its confidence degree at the
maximum value meaning the position of each feature is known with higher
certainty or confidence. When the algorithm doesn’t have information about
the feature, its confidence degree decreases. It is considered that situations of
inter feature or background occlusion and misdetections introduce absence
of information about the feature. Inter feature occlusion is considered when
the distance between the location of several features is lower than the size of
each feature. Using the similar assumption indicated previously in the fuzzy
tracking algorithm, each feature is represented by a 3× 3 matrix, then, when
the distance between the position of two features is lower than 3 pixels, it
indicates the presence of an inter feature occlusion.

For all situations previously described, the algorithm performs as follows

1. When only one feature is matched with a candidate, its confidence
degree increases until it reaches a maximum value, Figure 63a;

2. When several features are matched with the same candidate, the feature
assigned first with that candidate see its confidence degree increasing
and the other features see their confidence degree decreasing slowly,
Figure 63b;

3. When there is no candidate to be matched with a feature, a predicted
position is used and its confidence degree decreases faster, Figure 63d;

4. Features with low confidence degree are removed from the list of
tracked features.



106 hierarchical matching approach for multiple feature tracking

All the procedures indicated previously are first applied to features with
higher confidence level and this way the hierarchical matching approach is
performed.

Situation depicted in Figure 63c is covered by the first step since one single
feature is matched with a candidate and, in this situation, the confidence
degree for such features increases. To perform the fourth step, a threshold of
minimal confidence degree is assumed and features denoting a confidence
degree below this minimum value will not be tracked.

In inter feature occlusion situation there exists one region visible in the
frame that represents at least one visible feature. Some features could have
disappeared at this moment but at least one visible feature is present and
continues to be tracked. The feature with higher confidence degree continues
to be tracked without decreasing its confidence degree but the occluded
features suffer a slow decrease in their confidence degree. When background
occlusion occurs, there is no candidate present in the frame and the feature
suffers a higher decrease on its confidence degree. The slow decay in con-
fidence degree when inter feature occlusion situation occurs ensures that
inter occluded features continue to be tracked over a large number of frames,
giving the opportunity to some inter occluded features come out from the
common region before being deleted.

The proposed approach can be globally described through the pseudocode
presented in Figure 64.

At the initialisation stage several steps are performed in order to define
and initialise all the variables, matrixes and structures. It is also defined a
maximum and minimum confidence degrees equal to 16 and 6, respectively.
After this point, the first image of the sequence is displayed and the user
must select the features to track. Features properties, such as grey level
intensity and initial position values are recorded for further use. The next
frame of the sequence is opened and the features are sorted according their
confidence degree. Features with higher confidence degree are processed
first by the fuzzy logic algorithm introduced previously. The fuzzy logic
algorithm performs the matching for that feature and returns the current
position. If that current position was not been assigned to previous processed
features and if such position was not predicted using motion model and
vector state information then the confidence degree increases. However, if
the current position is predicted due to an occlusion situation, the confidence
level decreases. Moreover, if the current position of this feature lies in a
circular neighbourhood of 3 pixels from a previously processed feature (with
more confidence degree), this feature is considered occluded by that feature.
It’s the case when these two features appear in the image close together
forming one single region. When this situation occurs, the feature with lower
confidence degree suffers a reduction on its confidence degree. These steps
are repeated for the remaining features. After all features had been processed
by the fuzzy algorithm, an update stage is needed to update the Kalman
filter and to remove features with lower confidence degree. If there exists
more frames to analyse, the next frame is open and the cycle is repeated until
it reaches the end of the sequence.
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% ----------------------------------------------------------
% Hierarchical Fuzzy Logic Tracking Approach
% for Multiple Feature Tracking
% ----------------------------------------------------------
Initialization Stage ();
Read Image (First Frame);
Show Image (First Frame);
Select Features (By the User);
Save (Data of Selected Features);

for Current Feature = First Feature : Last Feature,
Current Feature.Confidence = Maximum Confidence;

end

for Current Frame = Next Frame : Last Frame,
Sort Descending (Feature.Confidence);
Read Image (Current Frame);

for Current Feature = Higher Confidence : Lower Confidence,
[Current Position, Predicted] = function Fuzzy Tracking(Current Feature);

if (Predicted == 0),
Merged = 0;
for All Previous Features

if (Current Position == Previous Feature.Position),
Merged = 1;

end
end

if (Merged == 1)
% Inter Feature Occlusion or Merging
Decrease Current Feature.Confidence;

else
% Correspondence One to One
Increase Current Feature.Confidence;

end

else % Background Occlusion or Misdetection
Decrease Current Feature.Confidence;
Increase µS Parameters (d1, d2);
Increase µK Parameter (σ);

end
end

Remove (Lower Confidence Features);
Update (Kalman Filter);
Show Image (Current Frame);
Draw (Current Positions, Estimated Trajectories);

end �
Figure 64: Detailed steps of the hierarchical tracking approach.

6.5 experimental results using synthetic sequences

In order to test the performance of this new approach, the methodology
is first applied to a synthetic sequence. In this synthetic sequence all the
situations described above are represented in different moments to evaluate
the effectiveness of this methodology.

At the beginning of the sequence the user selects all the features to be
tracked and the methodology must estimate each trajectory until the end
of the sequence. The first frame of the sequence, the indication of the se-
lected features with their confidence degrees and the final frame of the
sequence showing the estimated trajectories are illustrated, respectively, in
Figures 65a, 65b and 65c.
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Figure 65: Multi feature tracking.

When the user selects the features to track, a numeric label and a confidence
degree are assigned to each feature. The label will be exclusive for each
feature and is preserved until the end of the sequence and the confidence
degree starts with its maximum value and could suffer changes according to
the assumptions described earlier. In this particular test, the maximum and
minimum confidence values are, respectively, 16 and 6. The relevant issue in
the selection of these confidence values is just the difference between them.
The difference between both values determines the amount of time that a
feature continues to be tracked when it suffers an occlusion or a misdetection.

The first relevant moment occurs between frames 4 and 15 as depicted in
Figure 66. During this period, when features 1 and 3 are not detected, their
confidence level decreases and only start to increase when the correspondence
is established once again. When a feature is occluded or not detected, its
estimated trajectory line turns red and the marker becomes a circle rather
than a cross.

Another interesting moment to observe the behaviour of this method
takes place between frames 22 and 36. At frame number 23 an inter feature
occlusion is observed, i. e., features 4 and 5 become merged. Since they had
the same confidence level just before this merging, no priority according
their confidence degree could be performed. In draw situations, the feature
selected first by the user gains priority. As illustrated in Figure 67, feature
4 is matched correctly but feature number 5 is assumed occluded and then
its confidence level decreases. This behaviour remains until frame number
27. At frame 28 it is considered that feature 1 overlapped features 4 and 5.
In the previous frame, features 1 and 4 had equal confidence degree but as
previous explained, feature 1 prevails. Feature 2 also overlaps feature 3 and
feature 2 prevails. At frame 29 all features increase their confidence degree
except feature number 5. Despite the consecutive reduction on its confidence
level, it remains above the minimum confidence degree defined previously
and the feature continues to be tracked. At frame 33 the same region where
it is supposed to accommodate features 4 and 5 suffers a division. At this
point, feature number 5 is the least to be processed by the corresponding
task but a correspondence was performed and then its confidence level starts
increasing.

At frame 45, feature number 3 completely disappears, however, its trajec-
tory will be estimated until its confidence degree reaches the established
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Figure 66: Background occlusion or misdetection.

minimum value. At frame number 50 this feature is removed from the list
of tracked features and its trajectory is no longer updated. This situation is
depicted in Figure 68.

Since the hierarchical matching approach performed as expected using
synthetic images, the methodology will be tested in non synthetic sequences
where more challenging tracking conditions were observed.

6.6 experimental results using non synthetic sequences

After observing the results obtained from the preliminary tests with synthetic
sequences, the algorithm is tested in several non synthetic image sequences.
These sequences are the same used in Section 5.7 but now several features
are selected at the initialisation stage.
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Figure 67: Features merging and splitting.

6.6.1 Multi feature tracking using microscopic sequences

The first microscopic sequence shows a bacteria called Serratia Marcescens
moving over the surface. In this sequence, the bacteria denotes a bright
intensity against a dark background. To illustrate the effectiveness of the
approach, several bacterias are picked up and the trajectories are estimated,
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Figure 68: Permanent occlusion.

Figure 69. The second test sequence is an organism called Synechococcus,
swimming in a medium. This sequence is more complex than the previous
one: there are more similar features in the scene, the background is not
uniform and the difference of grey levels between feature and background is
lower (Figure 70). The third sequence is a Mycoplasma bacteria gliding. Several
initial bacterias are selected in frame number 1 and their estimated trajectory
is presented until frame number 500. The evolution of their trajectories is
depicted in Figure 71.

These sequences where chosen because they present additional difficulties
to the tracking process. There are features crossing each other, there are
permanent occlusions, the trajectories described by the features are complex,
the boundaries of the features are not defined clearly and their grey level
changes over time. In these sequences all features are labelled with a unique
identification number and their confidence level is also shown.

To implement a performance measure of the proposed approach, exper-
imental results are compared with manually generated feature positions
that represent the centre of mass of the features. Using these ground-truth
positions, a tracking error measurement could be developed calculating the
average and standard deviation of an Euclidean distance between experi-
mental and ground-truth positions as presented in Table 7. Due to the large
number of analysed frames of the sequence Mycoplasma, the ground-truth
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Figure 69: Estimated trajectories between frames 30 and 50.

positions were extracted just for features number 1 and 2. However, the
obtained results for these two features could be extended to the remaining
features (3 and 4) since they are similar in shape, size and behaviour.
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Figure 70: Estimated trajectories between frames 40 and 70.

Results presented in Table 7 denote coherency with the results presented
previously in Table 5 since the fuzzy matching strategy remains the same.
As explained earlier, the first sequence generates higher error values since
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Figure 71: Estimated trajectories between frames 1 and 500.

the moving bacterias denote the tracked feature (high grey level intensity) in
all their surface and these bacterias present an elongated shape, leading the
method to provide experimental positions not close enough to the centre of
mass.

The tracked features in the second sequence denote well defined bound-
aries and intensity over time and, therefore, the approach provides best
results.

The selected features to be tracked in the third sequence denote fuzzy
boundaries causing difficulties to the extraction of precise ground-truth
positions and, moreover, their grey level intensity is not constant over the
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Table 7: Average distance error and standard deviation.

sequence feature mean standard deviation

Serratia Marcescens 1 2.7752 1.5534
2 1.0908 0.8948
3 2.7443 1.5628

Synechococcus 1 0.8051 0.6809
2 1.0598 0.7572
3 0.8462 0.6782
4 0.8032 0.6583

Mycoplasma 1 1.9122 1.0972
2 1.7377 0.9613

entire sequence, leading the method to provide results not close enough from
the ground-truth positions.

Despite of these errors between experimental and ground-truth positions,
the tracking task is performed correctly for all selected features presented in
each sequence, as illustrated in Figures 69, 70 and 71.

6.6.2 Multi feature tracking using macroscopic sequences

After applying the proposed approach in microscopic sequences, two macro-
scopic sequences are used. The first sequence is a test case scenario used in
CAVIAR project. The second was obtained from PETS datasets.

The first tested sequence comprises 150 frames starting at frame number
420. At this starting frame, three persons are present in the scene: one person
will walk straight on the corridor, one will go inside a store and the other
will wait outside. The selected feature to track is the dark intensity of their
hairs. The result of the proposed methodology is illustrated in Figure 72.
In this sequence there are no occlusions or misdetections and therefore the
confidence level of each feature remains at its maximum.

In the second macroscopic sequence, the white pixels denoted by a mark
of concrete placed in the floor and the white paper sheets carried by a
person are selected to be tracked. In this sequence both features suffer
occlusions and their confidence level changes accordingly. The result of the
proposed methodology between frames 50 and 150 is illustrated in Figure 73.
Despite of the static behaviour of the concrete mark it suffers occlusions
by the pedestrians in such a way that its confidence level decreases below
the predefined minimum value of 6. When it happens this feature is no
longer tracked by the approach. To ensure that features that don’t provide
information to the method are still tracked by the approach for a long period
of time, the difference between the maximum and minimum values of the
confidence level must be higher.

Once again, experimental positions of each feature in the sequences com-
puted by the proposed methodology are compared with a ground-truth
position generated manually. The evolution of the Euclidean distance be-
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Figure 72: Estimated trajectories between frames 420 and 570 (first frames).

tween them, for all frames of the sequence, can be observed in Figures 74

and 75, respectively, for CAVIAR and PETS sequences.
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Figure 72: Estimated trajectories between frames 420 and 570 (last frames).

The average and standard deviation of the Euclidean distance between
experimental and ground-truth positions for all tracked features in these two
sequences are presented in Table 8.
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Figure 73: Estimated trajectories between frames 50 and 150 (first frames).

After result analysis, some remarks could be performed. In the sequence
obtained from CAVIAR, the distance error for feature number 1, depicted in
Figure 74a, assumes higher values at the end of the sequence. This issue
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Figure 73: Estimated trajectories between frames 50 and 150 (last frames).

is explained since the long hair of the woman becomes more exposed in
the image plane and also it changes in intensity. These two factors lead the
method to provide positions not equal with the ground-truth. The error
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(b) Distance between experimental and ground-truth posi-
tions for feature number 2
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(c) Distance between experimental and ground-truth posi-
tions for feature number 3

Figure 74: Distance between experimental and ground-truth positions for all features.

Table 8: Average distance error and standard deviation.

sequence feature mean standard deviation

CAVIAR 1 2.3208 1.6405
2 1.5577 0.6460
3 1.8297 0.7723

PETS 1 2.2577 1.7355
2 1.2716 0.6595

values observed in the other two features are considerable lower and don’t
denote a clear variation.

In feature number 1, related with the sequence obtained from PETS, higher
error values at the beginning of the sequence could be explained by the large
size, intensity changes and the swinging pattern of the feature observed
in the image plane. Another issue is related with occlusion situations that
increase the errors between the ground-truth positions since the method
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(b) Distance between experimental and ground-truth posi-
tions for feature number 2

Figure 75: Distance between experimental and ground-truth positions for all features.

doesn’t have any new information about the location of the feature. An
interesting analysis concerning feature number 2 could be presented since it
is a landmark and the camera is static, its position should remain constant
along time, but observing Figure 75a the error between experimental and
ground-truth positions changes over the sequence. Moreover, after frame
number 96 the approach stops to track this feature. Error variations can
be explained by partial occlusions made by pedestrians passing across the
concrete mark that introduce an apparent displacement. After frame 96
the confidence degree of this feature becomes lower than the established
minimum value and it is removed from the tracking process because this
feature suffers several consecutive total occlusions leading a fast decreasing
on its confidence degree.

Despite these errors, feature tracking is performed successfully for all
features in both sequences. The maximum error values are not significant if
compared with the dimensions of the frames of the sequence and with the
size of the selected features.

6.7 discussion

In this chapter a hierarchical matching approach for multiple feature tracking
is introduced. This approach is an extension of the proposed methodology
presented in Chapter 5. It adopts similar initial assumptions but the method-
ology is changed to achieve a hierarchical scheme to perform multiple feature
tracking.

In order to implement this hierarchical scheme, each selected feature is as-
sociated with a confidence degree that represents the amount of information
provided by such feature to the methodology. This information is related
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with the visibility of each feature, i. e., when a feature is visible to the method
its confidence degree increases, otherwise, when the feature is occluded, its
confidence degree decreases. To avoid features with low information to be
assigned first than features that had been present in the scene for a large
number of frames, a hierarchical scheme must be implemented.

In this hierarchical scheme, features denoting higher confidence degree
are assigned first than features with lower confidence degree. Moreover, it is
possible to discern two occlusion situations: inter feature and background
occlusion and different procedures are performed. When two or more tracked
features became merged in the image plane the approach is capable to detect
that one or more feature are occluded by other features. Since the approach
continues to see one region with similar attributes to those features, the
confidence degree of occluded features suffers a slow decay. In opposition,
when a background occlusion occurs, no region is present in the image and
the confidence degree of such features have a higher decay. To avoid tracking
features whose information about them is too low, features with a confidence
degree lower than a minimum are deleted from the list of tracked features.

The hierarchical multiple feature tracking approach was firstly applied in
synthetic sequences and after that, microscopic and macroscopic sequences
were also used to assess its performance. A performance measurement using
the difference between experimental and ground-truth positions is used and
the observed errors are not significant and do not affect the tracking process.

Since the approach must to track several features, computational time and
resources increase proportionally with the number of selected features.



Part III

C O N C L U S I O N





If I have seen further,
it is by standing on the shoulders of giants.

— Isaac Newton

7C O N C L U S I O N A N D F U T U R E W O R K

Despite of all the work developed over the last decades, the problem of
feature tracking is still challenging and plays an important role within the
research field of image processing. The difficulty of feature tracking derives
from its inner steps of segmentation and matching. These two steps had
been also subject of intensive study and finding optimal segmentation and
matching algorithms is not trivial, and is indeed a very difficult task.

With the introduction of fuzzy logic concepts by Zadeh, human based
reasoning could be incorporated in digital systems trough the definition of
membership functions, construction of fuzzy sets and rules inference engines
that translate linguistic variables and common sense to a computational
domain.

The concepts of fuzzy logic were rapidly adopted in control purposes
specially in cases where the model of the control system couldn’t be math-
ematically defined with accuracy and a large amount of uncertainty was
present. The observed results in control applications encouraged researchers
to develop and apply fuzzy logic concepts in a large number of areas. Re-
cently, several well known image processing tasks find their replica using
fuzzy concepts.

Developing a new framework using fuzzy logic concepts to implement a
tracking system sounds very attractive due to its singularity. Furthermore,
using fuzzy concepts, human reasoning and uncertainty could be incorpo-
rated in the method. The first step to achieve a fuzzy tracking system would
be the development of a fuzzy segmentation algorithm to perform feature
detection. Assuming that features denote a significant contrast against back-
ground, an automatic fuzzy segmentation algorithm was introduced. This
automatic fuzzy approach was an improvement of an existing method based
on a fuzziness measure to find the optimal threshold value in a grey image
histogram. After comparing the experimental results with other well known
methods, the results were very satisfactory. This way we have been able to
think forward to the fuzzy correspondence process.

At this stage, new developments have emerged and a novel fuzzy frame-
work was constructed. This framework uses fuzzy concepts as fuzzy sets and
inference rules on fuzzy sets to perform both detection and matching tasks.
Then, a novel fuzzy tracking system was introduced.

In this work a compromise between functionality and simplicity was taken
in consideration. With the definition of three membership functions related
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with kinematic and non kinematic properties of the feature and with a
construction of an inference engine with three rules the fuzzy tracking ap-
proach is implemented. Experimental tests with synthetic and non synthetic
sequences were performed to evaluate the performance of the approach.
Also, a extension of this approach to deal with multiple feature tracking
is presented. It was developed a hierarchical approach since features that
provided more information to the method are assigned first than features
with low confidence degree. Therefore, candidate points in the next frame
are first matched with features denoting high confidence degree.

A comparison between other classic tracking approaches can also be
carried out. Since the concept of this methodology is considerably different
from the classic ones it could be difficult to perform an accurate comparison.
Foremost, there is no clear separation between the tasks of feature detection
and matching as in classical methods and, the decision block is performed
by a fuzzy inference engine that incorporates human reasoning. In classic
tracking approaches two distinctive levels of processing were performed
to implement the feature detection and the correspondence tasks. In the
proposed approach these two steps are performed in a single level through
the definition of several fuzzy sets and the uncertainty inherent to each
task is considered in the process. Concerning classical approaches based on
template matching such as cross correlation, the presented method allows
more significant changes in feature shape and intensity without decreasing
its performance. Moreover, methods of tracking moving features based in
frame differencing, optical flow or even background subtraction are not
suitable to deal with static features. When a feature stops, these strategies
are not capable to perform the feature detection. The proposed approach can
deal with this particular situation without losing its performance. Since the
proposed approach is based on human reasoning described by a set of rules,
the minimisation of a cost function, the formulation as a graph theoretic
problem and the use of statistical data association techniques to solve the
correspondence problem are avoided.

The presented hierarchical matching approach for multiple feature track-
ing has provided encouraging results, however this results lead us to further
work with intend to improve robustness, introduce new capabilities and
achieve computational efficiency over different image sequences.

Further work is intended on the validation of the methodology through
an exhaustive comparative study with other state of the art techniques.

It will be relevant the introduction and performance evaluation of different
distinctive feature properties such as colour or other descriptors, in order
to construct suitable fuzzy sets and introduce new rules in the inference
engine. This way, it’s expectable an increasing of robustness in the estimated
trajectories.

The introduction of an automatic capability to deal with entries and exits
of features over the sequence is also an important issue to be studied and
implemented.

It’s also a purpose the construction of an expert tracking system capable to
satisfy real time requirements, meaning the algorithm should be optimised
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to increase computational speed and the selection of an operating system
with real time kernel should be ensured.

According to the nature of moving features, the use of different motion
models to characterise the feature movement model should be considered
since it could bring better results.

An alternative to the use of Kalman filter, such as particle filters should be
considered and comparative performance tests must to be carried out.

It’s intended the extrapolation of this point tracking framework to other
feature representations such as shape or kernel based representations.

And finally, in order to provide the ability to perform behaviour analysis,
an higher level fuzzy model intended to deal with feature behavioural
patterns should be developed.





Part IV

A P P E N D I X





AD ATA B A S E I M A G E S F O R S E G M E N TAT I O N A L G O R I T H M

In this Appendix, the images used in the fuzzy segmentation algorithm are
presented.

(a) Airplane. (b) Baboon. (c) Bath.

(d) Bird. (e) Birds (f) Blocks.

(g) Blood. (h) Boat. (i) Boats.

(j) Cameraman. (k) Field. (l) Gearwheel.

Figure 76: Database images for fuzzy segmentation algorithm (first images).
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(m) Horses. (n) Lena. (o) Moon.

(p) Mouse. (q) Mouse 2. (r) Mush.

(s) Newspaper. (t) Peppers. (u) Plane.

(v) Potatoes. (w) Rice. (x) Savanna.

(y) Sea star. (z) Shadow. (aa) Ski.

(ab) Statues. (ac) Stones. (ad) Zimba.

Figure 76: Database images for fuzzy segmentation algorithm (last images).
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