38 research outputs found

    Combining content analysis with usage analysis to better understand visual contents

    Get PDF
    This thesis focuses on the problem of understanding visual contents, which can be images, videos or 3D contents. Understanding means that we aim at inferring semantic information about the visual content. The goal of our work is to study methods that combine two types of approaches: 1) automatic content analysis and 2) an analysis of how humans interact with the content (in other words, usage analysis). We start by reviewing the state of the art from both Computer Vision and Multimedia communities. Twenty years ago, the main approach was aiming at a fully automatic understanding of images. This approach today gives way to different forms of human intervention, whether it is through the constitution of annotated datasets, or by solving problems interactively (e.g. detection or segmentation), or by the implicit collection of information gathered from content usages. These different types of human intervention are at the heart of modern research questions: how to motivate human contributors? How to design interactive scenarii that will generate interactions that contribute to content understanding? How to check or ensure the quality of human contributions? How to aggregate human contributions? How to fuse inputs obtained from usage analysis with traditional outputs from content analysis? Our literature review addresses these questions and allows us to position the contributions of this thesis. In our first set of contributions we revisit the detection of important (or salient) regions through implicit feedback from users that either consume or produce visual contents. In 2D, we develop several interfaces of interactive video (e.g. zoomable video) in order to coordinate content analysis and usage analysis. We also generalize these results to 3D by introducing a new detector of salient regions that builds upon simultaneous video recordings of the same public artistic performance (dance show, chant, etc.) by multiple users. The second contribution of our work aims at a semantic understanding of fixed images. With this goal in mind, we use data gathered through a game, Ask’nSeek, that we created. Elementary interactions (such as clicks) together with textual input data from players are, as before, mixed with automatic analysis of images. In particular, we show the usefulness of interactions that help revealing spatial relations between different objects in a scene. After studying the problem of detecting objects on a scene, we also adress the more ambitious problem of segmentation

    Compréhension de contenus visuels par analyse conjointe du contenu et des usages

    Get PDF
    Dans cette thèse, nous traitons de la compréhension de contenus visuels, qu’il s’agisse d’images, de vidéos ou encore de contenus 3D. On entend par compréhension la capacité à inférer des informations sémantiques sur le contenu visuel. L’objectif de ce travail est d’étudier des méthodes combinant deux approches : 1) l’analyse automatique des contenus et 2) l’analyse des interactions liées à l’utilisation de ces contenus (analyse des usages, en plus bref). Dans un premier temps, nous étudions l’état de l’art issu des communautés de la vision par ordinateur et du multimédia. Il y a 20 ans, l’approche dominante visait une compréhension complètement automatique des images. Cette approche laisse aujourd’hui plus de place à différentes formes d’interventions humaines. Ces dernières peuvent se traduire par la constitution d’une base d’apprentissage annotée, par la résolution interactive de problèmes (par exemple de détection ou de segmentation) ou encore par la collecte d’informations implicites issues des usages du contenu. Il existe des liens riches et complexes entre supervision humaine d’algorithmes automatiques et adaptation des contributions humaines via la mise en œuvre d’algorithmes automatiques. Ces liens sont à l’origine de questions de recherche modernes : comment motiver des intervenants humains ? Comment concevoir des scénarii interactifs pour lesquels les interactions contribuent à comprendre le contenu manipulé ? Comment vérifier la qualité des traces collectées ? Comment agréger les données d’usage ? Comment fusionner les données d’usage avec celles, plus classiques, issues d’une analyse automatique ? Notre revue de la littérature aborde ces questions et permet de positionner les contributions de cette thèse. Celles-ci s’articulent en deux grandes parties. La première partie de nos travaux revisite la détection de régions importantes ou saillantes au travers de retours implicites d’utilisateurs qui visualisent ou acquièrent des con- tenus visuels. En 2D d’abord, plusieurs interfaces de vidéos interactives (en particulier la vidéo zoomable) sont conçues pour coordonner des analyses basées sur le contenu avec celles basées sur l’usage. On généralise ces résultats en 3D avec l’introduction d’un nouveau détecteur de régions saillantes déduit de la capture simultanée de vidéos de la même performance artistique publique (spectacles de danse, de chant etc.) par de nombreux utilisateurs. La seconde contribution de notre travail vise une compréhension sémantique d’images fixes. Nous exploitons les données récoltées à travers un jeu, Ask’nSeek, que nous avons créé. Les interactions élémentaires (comme les clics) et les données textuelles saisies par les joueurs sont, comme précédemment, rapprochées d’analyses automatiques des images. Nous montrons en particulier l’intérêt d’interactions révélatrices des relations spatiales entre différents objets détectables dans une même scène. Après la détection des objets d’intérêt dans une scène, nous abordons aussi le problème, plus ambitieux, de la segmentation. ABSTRACT : This thesis focuses on the problem of understanding visual contents, which can be images, videos or 3D contents. Understanding means that we aim at inferring semantic information about the visual content. The goal of our work is to study methods that combine two types of approaches: 1) automatic content analysis and 2) an analysis of how humans interact with the content (in other words, usage analysis). We start by reviewing the state of the art from both Computer Vision and Multimedia communities. Twenty years ago, the main approach was aiming at a fully automatic understanding of images. This approach today gives way to different forms of human intervention, whether it is through the constitution of annotated datasets, or by solving problems interactively (e.g. detection or segmentation), or by the implicit collection of information gathered from content usages. These different types of human intervention are at the heart of modern research questions: how to motivate human contributors? How to design interactive scenarii that will generate interactions that contribute to content understanding? How to check or ensure the quality of human contributions? How to aggregate human contributions? How to fuse inputs obtained from usage analysis with traditional outputs from content analysis? Our literature review addresses these questions and allows us to position the contributions of this thesis. In our first set of contributions we revisit the detection of important (or salient) regions through implicit feedback from users that either consume or produce visual contents. In 2D, we develop several interfaces of interactive video (e.g. zoomable video) in order to coordinate content analysis and usage analysis. We also generalize these results to 3D by introducing a new detector of salient regions that builds upon simultaneous video recordings of the same public artistic performance (dance show, chant, etc.) by multiple users. The second contribution of our work aims at a semantic understanding of fixed images. With this goal in mind, we use data gathered through a game, Ask’nSeek, that we created. Elementary interactions (such as clicks) together with textual input data from players are, as before, mixed with automatic analysis of images. In particular, we show the usefulness of interactions that help revealing spatial relations between different objects in a scene. After studying the problem of detecting objects on a scene, we also adress the more ambitious problem of segmentation

    Generating anatomical substructures for physically-based facial animation.

    Get PDF
    Physically-based facial animation techniques are capable of producing realistic facial deformations, but have failed to find meaningful use outside the academic community because they are notoriously difficult to create, reuse, and art-direct, in comparison to other methods of facial animation. This thesis addresses these shortcomings and presents a series of methods for automatically generating a skull, the superficial musculoaponeurotic system (SMAS – a layer of fascia investing and interlinking the mimic muscle system), and mimic muscles for any given 3D face model. This is done toward (the goal of) a production-viable framework or rig-builder for physically-based facial animation. This workflow consists of three major steps. First, a generic skull is fitted to a given head model using thin-plate splines computed from the correspondence between landmarks placed on both models. Second, the SMAS is constructed as a variational implicit or radial basis function surface in the interface between the head model and the generic skull fitted to it. Lastly, muscle fibres are generated as boundary-value straightest geodesics, connecting muscle attachment regions defined on the surface of the SMAS. Each step of this workflow is developed with speed, realism and reusability in mind

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Scalable Real-Time Rendering for Extremely Complex 3D Environments Using Multiple GPUs

    Get PDF
    In 3D visualization, real-time rendering of high-quality meshes in complex 3D environments is still one of the major challenges in computer graphics. New data acquisition techniques like 3D modeling and scanning have drastically increased the requirement for more complex models and the demand for higher display resolutions in recent years. Most of the existing acceleration techniques using a single GPU for rendering suffer from the limited GPU memory budget, the time-consuming sequential executions, and the finite display resolution. Recently, people have started building commodity workstations with multiple GPUs and multiple displays. As a result, more GPU memory is available across a distributed cluster of GPUs, more computational power is provided throughout the combination of multiple GPUs, and a higher display resolution can be achieved by connecting each GPU to a display monitor (resulting in a tiled large display configuration). However, using a multi-GPU workstation may not always give the desired rendering performance due to the imbalanced rendering workloads among GPUs and overheads caused by inter-GPU communication. In this dissertation, I contribute a multi-GPU multi-display parallel rendering approach for complex 3D environments. The approach has the capability to support a high-performance and high-quality rendering of static and dynamic 3D environments. A novel parallel load balancing algorithm is developed based on a screen partitioning strategy to dynamically balance the number of vertices and triangles rendered by each GPU. The overhead of inter-GPU communication is minimized by transferring only a small amount of image pixels rather than chunks of 3D primitives with a novel frame exchanging algorithm. The state-of-the-art parallel mesh simplification and GPU out-of-core techniques are integrated into the multi-GPU multi-display system to accelerate the rendering process

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Generating anatomical substructures for physically-based facial animation

    Get PDF
    Physically-based facial animation techniques are capable of producing realistic facial deformations, but have failed to find meaningful use outside the academic community because they are notoriously difficult to create, reuse, and art-direct, in comparison to other methods of facial animation. This thesis addresses these shortcomings and presents a series of methods for automatically generating a skull, the superficial musculoaponeurotic system (SMAS – a layer of fascia investing and interlinking the mimic muscle system), and mimic muscles for any given 3D face model. This is done toward (the goal of) a production-viable framework or rig-builder for physically-based facial animation. This workflow consists of three major steps. First, a generic skull is fitted to a given head model using thin-plate splines computed from the correspondence between landmarks placed on both models. Second, the SMAS is constructed as a variational implicit or radial basis function surface in the interface between the head model and the generic skull fitted to it. Lastly, muscle fibres are generated as boundary-value straightest geodesics, connecting muscle attachment regions defined on the surface of the SMAS. Each step of this workflow is developed with speed, realism and reusability in mind.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Generating anatomical substructures for physically-based facial animation

    Get PDF
    Physically-based facial animation techniques are capable of producing realistic facial deformations, but have failed to find meaningful use outside the academic community because they are notoriously difficult to create, reuse, and art-direct, in comparison to other methods of facial animation. This thesis addresses these shortcomings and presents a series of methods for automatically generating a skull, the superficial musculoaponeurotic system (SMAS – a layer of fascia investing and interlinking the mimic muscle system), and mimic muscles for any given 3D face model. This is done toward (the goal of) a production-viable framework or rig-builder for physically-based facial animation. This workflow consists of three major steps. First, a generic skull is fitted to a given head model using thin-plate splines computed from the correspondence between landmarks placed on both models. Second, the SMAS is constructed as a variational implicit or radial basis function surface in the interface between the head model and the generic skull fitted to it. Lastly, muscle fibres are generated as boundary-value straightest geodesics, connecting muscle attachment regions defined on the surface of the SMAS. Each step of this workflow is developed with speed, realism and reusability in mind.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability
    corecore