166 research outputs found

    FUZZY KERNEL REGRESSION FOR REGISTRATION AND OTHER IMAGE WARPING APPLICATIONS

    Get PDF
    In this dissertation a new approach for non-rigid medical im- age registration is presented. It relies onto a probabilistic framework based on the novel concept of Fuzzy Kernel Regression. The theoric framework, after a formal introduction is applied to develop several complete registration systems, two of them are interactive and one is fully automatic. They all use the composition of local deforma- tions to achieve the final alignment. Automatic one is based onto the maximization of mutual information to produce local affine aligments which are merged into the global transformation. Mutual Information maximization procedure uses gradient descent method. Due to the huge amount of data associated to medical images, a multi-resolution topology is embodied, reducing processing time. The distance based interpolation scheme injected facilitates the similairity measure op- timization by attenuating the presence of local maxima in the func- tional. System blocks are implemented on GPGPUs allowing efficient parallel computation of large 3d datasets using SIMT execution. Due to the flexibility of Mutual Information, it can be applied to multi- modality image scans (MRI, CT, PET, etc.). Both quantitative and qualitative experiments show promising results and great potential for future extension. Finally the framework flexibility is shown by means of its succesful application to the image retargeting issue, methods and results are presented

    Processing remotely sensed data for geological content over a part of the Barberton Greenstone Belt, Republic of South Africa.

    Get PDF
    Various methods and techniques developed by researchers worldwide for enhancement and processing ATM, MSS· and TM remotely sensed data are tested. on LANDSAT 5 Thematic Mapper data from a part of the Barberton Greenstone Belt straddling the border between the Republic of South Africa and the Kingdom of Swaziland. Various enhancement techniques employed to facilitate the extraction of structural features and lineaments, and the findings Of the ensuing photogeologlcal interpretation are compared with existing geological maps~ Methods for the detection of zones of hydrothermal alteration. are also considered. The reflectance from vegetation, both natural and cultivated, and the possible reduction of the interference caused by this reflectance, are considered in detail. Partial unmixing of reflectances through the use of various methods and techniques, some of which are readily available from the literature, are performed and its effectiveness tested. Since large areas within the study area are covered by plantations, the interfereiice from the two types of vegetation present (i.e. natural and cultivated), were initially considered separately. In an attempt to isolate the forested areas from the natural vegetation, masks derived through image classification were used to differentially enhance the various features. Results indicate that the use of any particular method to the exclusion of all others will seriously limit the scope of conclusions possible through interpretation of the information present. Enhancement of information in one domain will inadvertently lead to the suppression of information from one or more of the coexisting domains. A series of results from a sequence of procedures interpreted in parallel will in every case produce information of a higher decision making quality.AC201

    Digital scaling of binary images

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1979.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.Includes bibliographical references.by Robert A. Ulichney.M.S

    Visual Perception of Garments for their Robotic Manipulation

    Get PDF
    Tématem předložené práce je strojové vnímání textilií založené na obrazové informaci a využité pro jejich robotickou manipulaci. Práce studuje několik reprezentativních textilií v běžných kognitivně-manipulačních úlohách, jako je například třídění neznámých oděvů podle typu nebo jejich skládání. Některé z těchto činností by v budoucnu mohly být vykonávány domácími robotickými pomocníky. Strojová manipulace s textiliemi je poptávaná také v průmyslu. Hlavní výzvou řešeného problému je měkkost a s tím související vysoká deformovatelnost textilií, které se tak mohou nacházet v bezpočtu vizuálně velmi odlišných stavů.The presented work addresses the visual perception of garments applied for their robotic manipulation. Various types of garments are considered in the typical perception and manipulation tasks, including their classification, folding or unfolding. Our work is motivated by the possibility of having humanoid household robots performing these tasks for us in the future, as well as by the industrial applications. The main challenge is the high deformability of garments, which can be posed in infinitely many configurations with a significantly varying appearance

    Experimental and model-based analysis of twin-screw wet granulation in pharmaceutical processes

    Get PDF
    A shift from batch to continuous processing is challenging but equally rewarding for the pharmaceutical sector. This opportunity for moving beyond traditional batch processing is possible due to a change of attitude in the regulatory environment by the publication of the process analytical technology (PAT) guidance. However, in order to utilise this opportunity, detailed process understanding about the key processes in pharmaceutical manufacturing is required to turn this transformation to the continuous mode into a success. Continuous wet granulation is a crucial part of future continuous manufacturing of solid dosage forms. Continuous high shear wet granulation is performed using a twin-screw granulator (TSG) which is characterised by a modular screw profile including a sequence of different screw elements with various shapes, orientations and functions. A TSG achieves mixing and granulation by a complex interplay between the screw configuration and process settings (e.g. feed rate, screw speed, etc.) to produce granules with certain specifications in a short time. Therefore, a fundamental understanding of these complex phenomena is required to optimise and control this new technology. Analysing the twin-screw wet granulation to a satisfactory degree is only possible when sufficient information on the rheo-kinetic characteristics of the granulation mixture is available. Thus an investigation of residence time distribution (RTD), the solid-liquid mixing, and the resulting granule size distribution (GSD) evolution governed by the field conditions in the TSG contain interesting information about mixing and different granulation rate processes such as aggregation and breakage. For this purpose, a combination of experimental and mathematical techniques/approaches was applied in this work. Additionally, a single placebo formulation based on α-lactose monohydrate was granulated in the experimental studies performed to verify the hypothesis proposed in this work. The characterisation of wetted material transport and mixing inside the confined spaces of the rotating screws was performed by the experimental determination of the residence time distribution at different process conditions and screw configurations using near infrared chemical imaging. The experimental data was later compared with a conceptual model based on classical chemical engineering methods to estimate the parameters of the model and to analyse the effects of changes in number of kneading discs and their stagger angle, screw speed, material throughput and liquid-to-solid ratio (L/S) on RTD. According to this study, increased screw speed resulted in a low mean residence time mean residence time and wider RTD, i.e. more axial mixing. Increasing powder feed rate increased mean residence time by higher throughput force while increasing L/S increased mean residence time by raising the sluggishness or inertia of the material in the barrel. The material transport in the mixing zone(s) of the TSG became more plug-flow like. Thus, an increase in the number of kneading discs reduced the axial mixing in the barrel. In addition, to understand the GSD dynamics as a function of individual screw modules along the TSG barrel, the change in GSD was investigated both experimentally and mathematically. Using a TSG which allows the opening of the barrel, samples from several locations inside the TSG barrel were collected after granulation at different process conditions and screw configurations. A detailed experimental investigation was hence performed to understand the granule size and shape dynamics in the granulator. The experimental data from this study together with the residence time measurements was then used for calibrating a population balance model for each kneading disc module in the twin-screw granulator in order to obtain an improved insight into the role of the kneading discs at certain locations inside the TSG. The study established that the kneading block in the screw configuration acts as a plug-flow zone inside the granulator. It was found that a balance between the throughput force and conveying rate is required to obtain a good axial mixing inside the twin-screw granulator. Also, a high throughput can be achieved by increasing the liquid-solid ratio and screw speed. Furthermore, the study indicated that the first kneading block after wetting caused an increased aggregation rate, which was reduced after the material processing by the second kneading block. In contrast, the breakage rate in the increased successively along the length of the granulator. Such a reversion in physical phenomena indicated potential separation between the granulation regimes, which can be promising for future design and advanced control of the continuous twin-screw granulation process. In another experimental study the transport and mixing (both axial and bulk mixing of solid-liquid) was linked to the GSD of the produced granules. This study demonstrated that insufficient solid-liquid mixing due to inability of the currently used kneading discs is the reason behind the inferior performance of the TSG in terms of yield. It was shown that other factors which support mixing such as higher axial mixing at a high screw speed and a low fill ratio support an increase in the yield. However, more effort is required to explore non-conventional screw elements with modified geometries to find screws which can effectively mix the solid-liquid material. Furthermore, in order to generalise the TSG knowledge, a regime map based approach was applied. Herewith, the scale independent parameters, L/S and specific mechanical energy (SME) were correlated. It was shown that an increasing L/S strongly drives the GSD towards a larger mean granule size. However, an increasing energy input to the system can effectively be used to lower the mean granule size and also narrow the width of the size distribution. Along with this, particle-scale simulations for the characterisation of liquid distribution in the mixing zone of the granulator were performed. It was found that the agglomeration is rather a delayed process which takes place by redistribution of liquid once the excess liquid on the particle surface is transferred to the liquid bridges. Moreover, the transfer of liquid from particle surface to liquid bridges, i.e. initialisation of agglomeration, is most dominant in the intermeshing region of the kneading discs. Besides the major outcomes of this work, i.e. building fundamental knowledge on pharmaceutical twin-screw wet granulation by combining experimental and theoretical approaches to diagnose the transport, mixing and constitutive mechanisms, several gaps and potential research needs were identified as well. As the regulators have opened up to increasingly rely on the science- and risk-based holistic development of pharmaceutical processes and products for commercialisation, the opportunity as well as responsibility lies with academic and industrial partners to develop a systematic framework and scientific approach to utilise this opportunity efficiently

    Assessment of the CORONA series of satellite imagery for landscape archaeology: a case study from the Orontes valley, Syria

    Get PDF
    In 1995, a large database of satellite imagery with worldwide coverage taken from 1960 until 1972 was declassified. The main advantages of this imagery known as CORONA that made it attractive for archaeology were its moderate cost and its historical value. The main disadvantages were its unknown quality, format, geometry and the limited base of known applications. This thesis has sought to explore the properties and potential of CORONA imagery and thus enhance its value for applications in landscape archaeology. In order to ground these investigations in a real dataset, the properties and characteristics of CORONA imagery were explored through the case study of a landscape archaeology project working in the Orontes Valley, Syria. Present-day high-resolution IKONOS imagery was integrated within the study and assessed alongside CORONA imagery. The combination of these two image datasets was shown to provide a powerful set of tools for investigating past archaeological landscape in the Middle East. The imagery was assessed qualitatively through photointerpretation for its ability to detect archaeological remains, and quantitatively through the extraction of height information after the creation of stereomodels. The imagery was also assessed spectrally through fieldwork and spectroradiometric analysis, and for its Multiple View Angle (MVA) capability through visual and statistical analysis. Landscape archaeology requires a variety of data to be gathered from a large area, in an effective and inexpensive way. This study demonstrates an effective methodology for the deployment of CORONA and IKONOS imagery and raises a number of technical points of which the archaeological researcher community need to be aware of. Simultaneously, it identified certain limitations of the data and suggested solutions for the more effective exploitation of the strengths of CORONA imagery

    Conception et mise en oeuvre de méthodes vortex hybrides-frontières immergées pour des milieux solides-fluides-poreux. Application au contrôle passif d'écoulements.

    Get PDF
    In this work we use a hybrid vortex penalization method (HVP) to simulate incompressibleflows past bluff bodies in complex solid-fluid-porous media. In this hybrid particle approach,the advection phenomenon is modeled through a vortex method in order to benefit from thenatural description of the flow supplied by particle methods and their low numerical diffusionfeatures. A particle remeshing is performed systematically on an underlying Cartesian grid inorder to prevent distortion phenomena. On the other hand, the viscous and stretching effects aswell as the velocity calculation are discretized on the mesh through Eulerian schemes. Finally,the treatment of boundary conditions is handled with a penalization method that is well suitedfor the treatment of solid-fluid-porous media.The HVP method is applied to passive flow control. This flow control study is realized pasta 2D semi-circular cylinder and a 3D hemisphere by adding a porous layer on the surface of thebody. The presence of such porous layer modifies the characteristics of the conditions at theinterfaces and leads to a regularization of the wake and to a decrease of the aerodynamic dragof the controlled obstacle. Through parametric studies on the permeability, the thickness andthe position of the porous coating, this works aims to identify efficient control devices for flowsaround obstacles like the rear-view mirrors of a ground vehicle.Dans cette thèse nous mettons en oeuvre une méthode vortex hybride pénalisée (HVP) afin desimuler des écoulements incompressibles autour de corps non profilés dans des milieux complexessolides-fluides-poreux. Avec cette approche particulaire hybride, le phénomène de convection estmodélisé à l’aide d’une méthode vortex afin de bénéficier du caractère peu diffusif et naturel desméthodes particulaires. Un remaillage des particules est alors réalisé systématiquement sur unegrille cartésienne sous-jacente afin d’éviter les phénomènes de distorsion. D’autre part, les effetsdiffusifs et d’étirement ainsi que le calcul de la vitesse sont traités sur la grille cartésienne, àl’aide de schémas eulériens. Le traitement des conditions de bords aux parois de l’obstacle esteffectué à l’aide d’une technique de pénalisation, particulièrement bien adaptée au traitementde milieux solides-fluides-poreux.Cette méthode HVP est appliquée au contrôle passif d’écoulement. Cette étude de contrôleest effectuée respectivement en 2D et en 3D autour d’un demi-cylindre et d’un hémisphère parl’ajout d’un revêtement poreux à la surface de l’obstacle. La présence de cette couche poreusemodifiant la nature des conditions aux interfaces, permet de régulariser l’écoulement global etde diminuer la traînée aérodynamique de l’obstacle contrôlé. A travers des études paramétriquessur la perméabilité, l’épaisseur et la position du revêtement poreux, ce travail vise à identifier desdispositifs de contrôles efficaces pour des écoulements autour d’obstacles comme des rétroviseursautomobiles
    • …
    corecore