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ABSTRACT

Various methods and techniques developed by researchers worldwide for
enhancement and processing ATM, MSS· and ™remotely sensed data are
tested. on LANDSAT 5 Thematic Mapper data from a part of the Barberton
Greenstone Belt straddling the border between the Republic of South Africa and
the Kingdom of Swaziland.

Various enhancement techniques employed to facilitate .the extraction of
structural features and lineaments, and the findings Of the ensuing
photogeologlcal interpretation are compared with existing geological maps~
Methods for the detection of zones of hydrothermal alteration. ate also
considered.

The reflectance from vegetation, both natural and cultivated, and the possible
reduction of the interference caused by this reflectance, are considered in detail.
Partial unmixing of reflectances through .the use of various methods and
techniques, some of which are readily available from the literature, are
performed and its effectiveness tested. Since large areas within the study area
are covered by plantations, the interfereiice from the two types of vegetation
present (i.e. natural and cultivated), were initially considered separately. In an
attempt to isolate the forested areas from the natural vegetation, masks derived
through image classification were used to differentially. "inhance the various
features.

Results indicate that the use of any particular method to the exclusion of all
others will seriously limit the scope Ofconclusions possible through interpretation
of the information present. Enhancement of information in one domain will
inadvertently lead to the suppression of information from one or more of the co-
existing domains. A series of results from a sequence ('If procedures interpreted
in parallel. will in every case produce information of a higher decision making
quality.
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1. Introduction

r;

In 1956 Dr F.C., .Truter, the then Director of the geological Survey, wrote the

following ,~bout a manuscript on the, Barberton Mountain Land being

submitted: 1I••The revision of itslthe Barberton area] mappingwas undertaken
"with the purpose of obtaining more detailed information on its

complicated ',stl'atigraphy"andgeological structure, assessing more
\i '

accurately its mineral potentialities, and establishing the relation

between structure and ore deposits ...11 [From: Visser, D.J.L (1956)

nP(iii), para 2.]
;)

c, , Ii
Since then, and guided and inspired by the maps accompanying this special

publication, quite a few studies of a mo~e detailed nature were undertaken by
(\' .. «, '

geologists and researchers from various institutions, The underlying objective of

all these studies were to further our knowitdge of the area, and each and
'''~ <i

everyone contributed to o!~rknowledge and und~rstanding of the Barberton

Mountain Land.

During the last decade or so, new technologies increasingly enabled us tospend

less time in the veld gathering data, and more time in the'"office dissecting,

digesting, interpreting and eventually composing that piece which could complete

the puzzle.
~-';

))
This study is aimed at providing one of tho~~/pieces.
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2. Locality (\

This study centres on an area just to tfie east of the town of Bru;,perton in the
, " ';'-''(.'

~3Stern'TraBSvaal, Republic of South Africa. The area. is covered byparts of six

1::50000 sheets, viz. 2530 DB Kaapse Hoop & DD Nelshoogte, 2531 CA Sheba,

CB Kaapmuiden,, CC •Barberton & CD Shiyalongybo.: It lies roughly between

30°57':25°38' northwesterly and 31on':251)57' southeasterly and includes the

northwestern part of Swaziland.

Photo .2.1 Part or the 1:250 000 Topographical map c,overing the study area
=============='~'=' =:;:====:==============

Topographically the Barberton Mountain Land comprises a series of nearly
rl

parallel ranges of rugged mounta'ihklseparated by deeply incised v-shaped valleys.

2-2
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if'> ., " c.

The ranges consist,'mainly of quartz or chert, while the valley~ were cut dnt6
,'I a

softer shaly material. The northwestern path of the area consists of a basin, (i

,- , i. ~,.

formed on the Ka~p'Valley Pluton, which lies around 700 meters lower than"
.;; ;,_::;

most the moj..intaln land itself. Rivers in the area .drain towards-the n~rtheast.

The town of Barberton lies at the foot of the mountain land, witlJ a view to~t~rds"

the northwest, over the basin.

A substantial part of thi~mountain land is covered with either Pine or Eycaluptus
, - - - - - ~

forests, mostly commeiti3.l plantations,
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3. General Geology

Photo .~.J.Part of the 1:250 000 Geological map covering the study area

3.1 Barberton Sequence

The Barberton Sequence constitutesthe major part of the Barberton Greenstone

Belt volcano-sedimentary pile. The sequence has been divided by SACS (1980)

into three lithological groups: a dominantly volcanic lower assemblage, the
\\

Onverwacht Group" and a dominantly sedimentary upper as$,ymblage displaying

the largely argillaceous Fig Tree Group and the largely arei1aceous Moodies

Group. The base of the se.guence is nowhere exposed. Although discenforrnable

3..4
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GROUP (Informal Unit) \ '
w~·
I

MOOPIES Baviaanskop ~~andstone,grit, conglomert~,~e, shale,
1~(3_:5_00_tn.,:_)~ -I-__ ...._+- ~ +-'s'&bgre)'wack'e, phyllite.

Joe's LJck Sl\ale, subgreywac!ce, sands~~)ne,
qu~tzite, phyllite, jaspillte, \,1
fertu.ginous shale, basaltic h~,la. ,I--~-----+-----.....,.....,_.,-------+----"~ . , '. " .'r--....

Clutha -.Shal\~f quartzite, conglO)llerait~,
jaspihte. i,\i...... ......,.,~..,--.....,

, . . ..' -':ii
FIG TREE Trach)~ictufft agglomerate, n~\va,
(2000 m) tufface~'us.,gl~ywacke, cODgloin\l~\rate.I~~-_;_----'+------I_---------i~ ........,...·.··-:" '. -. " ".. .. ""~r-:

_-_ .' " . . n _ 'f'i'

Siltstone, shale and subOtllin~,I;e'.
.' greyWac!te, banded ferrugino~l\ '
chert, trachytic tuff. '. \',J

Belvue Road
(Ulundi bar)

Greywacke and shale with \':--_
interlayers of chert and fettugJtflOutlchert ,'. \',

• . I"
'-"'i-------il

Malic and felsic lava, tuff. ' \,1,

agglomerate, ebert, shale, carbl~\p.ate
rocks, ultramafic lava, :'::

II.....--------!-----+-·--------- __I--- '-_...,-------..-\j:
Mafic and felsic lava, tuff, : :
agglomerate, pillow breccia, sb~~le;
komatiitic lava, porphyry. Mai.lll;{
metamorphosed. : II~-----------~-~~---I---------~~----~·----~~~------·~·
Mafic to felsic volcanic rocks, ,i:
porph\'1[Y, shale, komatiitic lava,' 1\\

irhyoda~itic tuff and agglomeratQ:ji
r.hert-cal)booate lay6i"s. :
Metatno~hosed at lower,Greenshlst
lPacies ".

II-~------ ......-+---------I-- .......-----.-- __i-!~ :~. "I"
Basaltic andl,Perldotitic kom.atiit(\,
tholeiite, chei)1ical sediment.
Metamorphos~d.

II---~--~----~ .......-------~I--..._.------~---~-----_.._..-----~-

Sheba

ONVERWACHT Geluk Zwartkoppie
(920 m)

Kromberg
(1920 m)

Hooggenoeg
(4S50 m)
(Middle marker)

Tjakastad Komati
(3500 m)

Theespruit
(1980 m)

Vmoos mafic illd ultramafic schists
interlayered with\.,banded iron.
formation and fel\.ous" black,
white and grey che~ acid to
inte-mediate vol~~ rocks, MainlY]
metamorphosed.

Sandspruit
(3ZOO m)
- =

Table 3;1 1tratigrapby of the Barberton Sequence
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\1 '

and unc\bnfdrmable r(~lati()nships eXist locally, the suceessiou as a' whole' is
1\ \\ " ,

',' I, i ',' .

corifonnJ~ble (Table .3.1).
Ii
\l

\i

1\ \i
3.1.1 on1:,',rerwa,btGroup

, ~
\1 ~d 1.1

consistJn~\ of twd\!lrell defined g~ological entities, the" group is subdivided int.d

the Y'ltralll\~fican~i.i'l1afiCmagnesiam-rich lavas of the lower Tjakastad 'SuJ:>group,

and the mJ~c and\I,intermediate"to acid volcanics of the upper Geluk, Sujpgroup.

A persiste~lt chel~\rband, the middle marker; at the base of the Hoog~eno~g

Formation \~epara~\~s the Subgroups. Each of the SubgrQUps is divtded' into 3

forrnations'\\The Tj\akastad Subgroup is preserved around the periphery of the
'Ii i:' ,,(, ," " (,

Barberton j~elt, wliile the Geluk Subgroup is confined to the southe~~ and
1\, • , V

central part\f. .'
'III
II

3.1.2 Fig T~leeGroup
II
jj

'The Fig Tr~~ Group' consists of greywackes .at the bottom, shale with banded

ferruginous <thert in the middle and J:X1aWly volcanic rock. on top, and is divided
[,

into three f~rmatiorul;.
Ji
II,

3.1.3 Moodi\~sGroup

Consisting ofi:r~peated cycles of arenaceous and argillaceous rocks with a well

developed arfd persistent basal conglomerate, banded magnetite-jaspilites and
,

poorly yxpos~~dbasaltic lavas, the Moodies Groups is also divided into three
, 'j

formations.
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The rig Tree and Moodies Groups are preserved in the synclinal-core of the
I

belt. i
\\

u,
{'~

I'
I',
i

3.2 Jtetamorphism
,\ I:'

\'1

\,i: ,_',' ' __.' _ " , ,,: _.. .: '" , " ' " , _ ;The B\:~rbertonMountain Land has undergoae only greenshise facies regional

metam\,?rphisn1.Whn~1the sedimentary core often show almost no signs of
I

metamerphism at the cpntacts with the granitoids, the Onverwacht volcanics have
I

been dpgraded to the upper, greeIis1rlst facies, and lqcally even to the

amphibolite and granullte facies with a very narrow higher grade aureole.
1i
u .

Regardless of th~~high grade contact aureole present around most of the
. 1\. , '.

individual granitq~ds, the rock still retain a fabric indicative of regional

metamorphism.

3.3 Diabase (lykes

The whole snountain range is also eris-crossed 'with, diabase dykes, primarily

,striking northwest ..southeast, forming. conspicuous topographic features. These

dykes cut across the folds and fault~ associated with the orogenic movements that

caused the formation. of the mountain land, and are older than the Godwan

Formation.

The dykes show considerable variation in texture and mineralogical composition,

varying from mostly typically mafic to more felsic types, The leucocratic hybrids

are thought to have formed due to the assimilation of granitic or siliceous

/1
1].-,
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sedimentary material, and show quartz and micropegmatite instead of olivine. A

typical dyke shoWs an equigranular medium grained rock'witl; ai/dark greer/to

greenish grey fresh, and brown weathered colour. The mineral assemblage Is

typically orthopyroxene and olivine, with the orthopyroxene altering to ~.fine.

needle-like actinolite (Visser, 1956).

,~

3.4 Dolerite dykes

Dykes of Karoo dolerite, showing a strike of generally northeast-southwest, are

distributed over the entire Barberton area. While they can display a local

abundance, with their moderate width they are not nearly as topographically

imposing as the diabase dykes. Rapid disintegration had, however, a marked

effect on the development of the drainage pattern in the area.
1,1

Very few of the dolerite dykes show persistence for more than a few kilometres.

One of the more noteworthy exceptions in the study area stretches from :the

Swaziland border in the south to Three Sisters .in the northeast, a distance of

more than, 10 kilometres.

The woo dolerite in the area is a remarkable fresh fine grained, dark, blue

grey rock that weathers to display a smooth, greyish brown surface.

3.5 Folding and faulting

Intense faulting and complicated folding of the rocks that built the mountain

'\



land is obvious ,frorti·,any gd~logica1 map of the ·Bar!=>ertonarea. On closer
c, . ., u

examination it is apparenr'tha] the general trend of the folding axes art;;' roughl~>
;' it

east-northeast and west-soutbwest, This is also the trend" of the ,longer strike

faults.

(\ (,

:3.5.1 Folding

The Onverwacht Group lavas display a faiiiy uniform composition, making

determination of the extent and nature of the folding within th,e gr?UP rather
l\

difficult. Because of its rp.assiVE~nature, the rocks yielded mos. to shearing, and

some shear cleavage planes is visible in some of the deep valleys leading off to

the east,
(-,'~',-,\"

crl'.._ __ f'

The thinly bedded, predominantly argillaceous sediments of the Fig TretG~oup

have been intensely deformed, resulting in a series/of isoclinal folds. To the

south of Barberton, these folds,have a strike of roughly northeast-southwest and
\\ ,J/

numerous crossfQJds occur. To the east end northeast of the tov,rn numerous
\)

synclinal structures occur, some :being separated by anticlinal structures,

Extremely complex folding is characteristic of the Fig Tree) beds in the Sheba

and Hlambanyati Hills.
v t

Because of the coarser, more heterogenous and more competent, nature of the

beds of the Moodies Group, only a series of simple folds resulted from tectonic
"

action. The beds are largely preserved in synclinal closures within the Fig Tree

Group.

3.5.1.1 The Eureka-Moodies syncline

3 9



One c of the most conspicuous structural elements of the area, it stretches. from.

roughly 31°16' to 31°06.' east and from 25°41' to 2Sil481 south; and even

beyond to the southwest. The axis of the sync1in~changes from approximately

east-west in the east to almost north-south in the southwest. The bending is
'd)

accompanied by the development of tension f1actures alongvne northern limb
I'· . . .... ,\

and compression faults along the southern limb of the syncline, To the

northeastern side of the structure shear faulting occurs.

The contact between; the 'Moodies and Fig Tree beds to the south are

characterized by massive shearing as well as overfolding of the beds from the

southeast, The fault bounding the syncline in the east may very well continue

beyond the main Barberton-Havelock road, possibly even as far southward as

Concession Creek on the farm Brommer 28 (approximately 31°02' E:25°49.' S),

Along the northwestern rim of the syncline the basic rocks of the Tjakastad

Subgroup are intrusive into the Moodies Group, but the contact is marked by

extensive shearing of beth formations:
'-~)

3.5.J.~2Saddleback syncline t;!

j
j

Situated between roughly 31°14' E:25°46' S and 30°59' E:25°52' S, it also

displaysa change in strike direction from west-southwest to southwest from.north

to south.The syncline is terminated on the southwestern side by the Inyoka fault,

which strike northwest. On the western side the syncline is bounded by the

Saddleback fault striking northwest and cutting progressively higher across the

northwestern flank of the syncline.
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3.5,1.3 Makonjwa •syi].(~linoriurn

The synclinorium, consisting of a series of simple anticlinal and synclinal

structures, can be ;8raced in a northeasterly direct jon from rOtlghly
':'

31°03' E:25°53' S to past the edge of the area. It is bounded on the northwest

flank by the Inyoka fault. Since no marker horizons exists here, mapping of the

'fold axes are difficult

3.5.1.4 Emlernbe synclinorium

Traceable along the Swazilan/i border from. roughly 3r13~E:25°52' s in. a
;'1

southwesterly direction, the synclinorium va,nes in width, with a series of three
""

synclines separated by two anticlines at the widest point (roughly

3.5.2 Faulting

Parallel with the folding defol'I11atio~ large scale faulting also occurred. The

principal faults strike mostly parallel to the regional strike of. the beds, Several

smaller faults cut across the beds at angles ranging from as much as 90° to as

little as a few degrees. Movement along these oblique faults seems to h.:":v ~ belen

horizontal in nature. Ingeneral the mechanism of faulting is extremely complex.

3.5.2.1 Strike faults

3.5.2 ..1.1 Sheba fault

Running from the southern side of the Eureka syncline, it is •a high angle
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overthrust along w~ich the argillaceous sediments Qf the Fig Tree Group have

been pushed over tile more arenaceous sediments of the Moodies Group.
;;(i 'C';

'.0

35.2.1.2 Scotsman fal;J.1t
!\

~;: ,',,', ',' (,\

Situated mostly within Fig Tree sediments and stretchmg roughly'-' from
. ." " 'II

310:20' E:2soS0' S in a northeasterly direction, its nature is diffi<mlt t6'detetmine

due to the lack of market beds.

3.5.2.1.3 Barbrook, fault

Visible from about 3r04' E:25°47' S to the northeasterly edge of the area, it

separates Fig Tree sediments (north) and the Onvel;Wachtvolcanllcs (south)~m

the south and faUs entirely within the sediments of the Fig Tree Group in the
_, '. " 1,· >,(

middle, where mylonite is typically present along the fault plane. This zone of
"

mylonitiza~iOIi c;aracterizes the fault all the way east, also where it separates Fig
_o.: )

. -
Tree (north) and the Moodies (south) sediments in the northeast.

3.5.2 ..1.4 Saddleback fault

Running roughly parallel with the Barbrook fault, it terminates in the south

against a east-west striking. oblique fault. In the middle (approramately

.30°07' E:25°47' S) it is displaced along an oblique fault striking almost north-

south. South of (Batbert on it separates the Onverwacht volcanics, (northjand the

fig Tree and Moodies sediments (south) on the northern limb of the Saddleback
!,

syncline. To the east it joins the Inyoka fault.

3.5.2.1.5 Inyoka fault

Having a persistent northeast-southwest trend, it separates Moodies quartzites

(southeast) and Fig Tree sediments (northwest), except where diabase occur to
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:, the;\north of me fault. To th~ southvr:est o~ tb~ art~a a parallel fault occ~s (,some
:_ - ''' 1";,- _ ',_ \\

200 meters southeast of the Inyoka fault. "
\ ~\ " .. '

\) ,'<

3.5.2,2 Oblique faults

Although they are notas extensive as the strike faults, they ,:nevertlieless tt~ve
:(:~~~,'._ _ _',: .: " '" _', _ _', _ n

tdpt,Jraphic significance. Almost none of these faults follow a straig;!tt course.

Some of the. oblique faults cut, across ~~?isplace. some of the strike faults;

others seem to branch off from the strike faults"

It appears that none of the oblique faults are mineralized,

3.6 Mineralization in the Barberton Mountain Land
',. \.,

Gold has been mined in the Mountain Land for over a century. Since the. first
\\

production in 1884, more than seventy percent ofthe production came from four

mines in the area: Sheba, New Consort, Fairview and Agnes gold mines. The

remaining thirty percent came from some, 350 occurrences, often nothing more

than a small working or a short lived prospect.

Distribution of the gold seems to be closely linked to structural disturbances,

however, not all the structural features are gold bearing. Most of the deposits

seem confined to areas to the north and northeast of Barberton, known as the

Jamestown and Sheba Hills area, and southwest of the town, in the- Moodies

Hills.
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Other occurrences are. found. along, and adjacent to," the major strike faults:

Scotsman, Lily,' Albion, Sheba, Barbrook arid Meodies faults."

In Swaziland gold occurs along the granite-grJenstone contacts in the Hhohho,

Pigg's Peak and. Forbes, R.r-efareas. It is thought (Anhaeusser, 1986a) that the

absence of mineralization in the. central part o(the Mountain Land south of the
"HarD:ro(}kfault may be due to the absence of rocks from the Onverwacht Group

volcanic assemblage. These rocks are perceived to have been the Primary source

of gold and sulphides for mineralization, In addition, the distance from the "

granite-greenstone contact also seems to have a significant: effect on
j,

,1{

mineralization, since suitable structural environrn(!l.J.!sdo exist inthe area, but

no mineralization have been found.

3.6.1 Sheba Hills

'Twoprominent structural features account for most of the gold production in the

Sheba Hills area. I)

3.6.1.1 Eureka syncline

Most ofthe current production of gold are from reefs occurring on the inner arc \

of the syncline. AU. these occurrences can be traced to either the Fairview or

Sheba mines,
"

The mineral deposits in the Eureka syncline owe their origin to stlii'ctural

control, the locations of the' are bodies being determined through faulting in

particular.
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Numerous tension fractures radiate about the arcuate structure, which consists
(' II• " /!

' 6f structurally competent Moodies quartzite interlay~rq(d with shale, sandstone

and subgreywackei Most of the gold mined came from the gold-quartz veins in

these tension fractures. (Wiggett et al., 1986)

On the southern and eastern limbs of the fold, between the fairview and Sheba

mines, numerous fractures are found the orientation of which approximates that

of the Sheba fault. These fractures are thought to have. been .caused by

concentric shearing due to strike movements between fold units. Mineralization

was due to the later infiltration of hydrothermal fluids.

In general, it seems that the distance from the Sheba fault have a direct bearing

on the overall abunqjTIce of mineralization, with the highest pr09;4ction yield
),' ",<,?

closest to the fault. c: ,q j

3.6.1.2 Ulundi syncline

Two of the biggest mines, Sheba and Fairview, are located symmetrically about

the northwest orientated fold axes of the Eureka and Ulundi synclines.

Most of the mineralization in the Ulundi syncline is epigenetic in character, since

the minerals are present in concordant and discordant fractures in greywacke

and shale of the Sheba Formation at Fairview mine, and also in a zone of schist

and associated banded chert in the Swartkoppie Formation at. Sheba mine.

The fractures resulted mainly from tangential shear movements produced during

folding episodes. Payable gold are usually found in discrete, shorter pay shoots;
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h1regularly spaced along strike of the main fracture (Wiggett et al., 1986).

3.6.1.3 Jamestown Schist Belt

Practically all the gold mineraiizationin the Jarnestown Schist Belt is structurally

controlled, belng confined to fold, fault and shear ZOne3.l_?;~ceptfor two la.rger

producers, Worcester and New Consort mines, a.:l the other deposits were small

producers .
.,
j

The New Consort mine is situated at the contact between the 'inanc and'
()

ultramafic schists of the Onverwacht Group and the overltng Fig Tree

assemblage consisting of metamorphosed shale sediments at the bottom and

feldspathic tuffaceous greywacke on to~~

The mineralization is associated with a fine grainetl silicious zone which

separates komatiite dominated Onverwacht rocks from me Fig Tree

metasediments. This zone, known as the Consort Bat (Voges, 1986) is a r6ughly

four rnetres thick, intensely folded 9fld contorted in places, laminated and highly
i

siliceous chert rock with interlayered sulphide rock bands.

The gold enriched sulphide bands are found above or below the Consort Bar

over a distance of about two metres. ;

3.6.2 Moodies Hills

Southwest of Barberton the greatest cluster of gold deposits occur in the vicinity

\ i of the Agnes mine, which is one of the four large mines in the area.

3 - 16



<,'0.
. '\

As with' most of the mineralization in thb: MOUtftairi Land, the locati6f~, of the

mineralization display distinctive evidence ofsttUctural cqlltrol. The gold bearing

pyritic zones generally sttaddle the contact between Ca1careou;""~udstone and

more shaly units in a zone several hundred metres wide. The gold is normally

not visible.

3.6.3 Region east of Barberton
r~\

Areas of prime importance ate situated in the 'Three Sisterlb region and strung

out along the Barbrook fault. Mines in the area are located hi greywacke, shale,
1!

banded iron formation and chert of the Fig Tree Group. Shears are generally
~'-\

found close to shale-greywacke contacts, or along contacts with chert layers.

Where shears join, or diverge, an increase in the degree of silicification, which

usually show good gold values, is often apparent,
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4. Platforms and sensor s(1stems \)

,~-

Since this study was undertaken using only LANDSAT Thematic Mapper data,

other sensors systems and platforms will not be dealt with in detail. Howe-ver,

quite a few of the procedures' evaluated or used were in fact derived by the

various workers using data fi~m other instruments. The similarities and

differences between these instruments will be indicated where necessary.

BllDd·pass
(11111)

ATM
Sp.ecu-a.l
Band

MSS
Spectnl
Band

1M
Spectral
Band

'i.

SPOT
Spectral
Band

0.42 - 0.45 1

0.45 - 0.52 2 1

4 2 1

P
5 2 A3

N
3

6

4

7

0.52 w 0.60

0.605 - 0.625

3

4

0.63 - 0.69

0.695·0.75

5

6

0.76 0.76 - 0.80

0.90 0.80 .. 0.90
7

0.91·1.05 SI~------ ----~t--------~------~----~~_+~------_"
1.55 .. ;t.75 9

8.50

2.08 .. 2.35 10

13.0

10.4 .. 12.5 11 8

7

6

Table 4.1 GeDel1ll~d Sptdrat Band-passes for A'l'M, MSS, ™and SPOT

One of the instruments whose datasets feature quite prominently in the
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(,

lit~ratuIje, is the':paedalus At\DS ..1268 "Airborne. TheOla"tic Mapper'!' (ATM)1

w{t!ch l)riginated as a simulation. instrument for the not-then ..launchcd:)

L~"NDSATThematic Mapper (TM). The ATM scanner employs 10 spectral

bands i.l the .visible to middle infrared and one broad band thermal infrared

channef featuring the same spar-a! resolution as the reflective channels (unlike
. ., I:

the tM). The spectra! similarity is apparent from Table 4.1.

Despite the extra channels, the A1'M remains a broad band multi-application

instrument. It's main advantage over™is the increased spatial resolution due

to the lower flying hight, Problems common to all aircraft-based scanners, such

as geometric distortion, non-uniform scene illumination and limite.d view often
(')

negates any perceived advantage fncre~sed spatial resolution l"9aybring.
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5. Image processing techniques

\
\\

This section looks at the different &gbmques used to prepare and beautify\,
\\

remotely sensed data. The aim is of cou.rSeto present the data in such away-that:

useful information can be g~,~\anedfrom ,the processing product. Four descriptive

categories are defined:

1. Preprocessing,

2. Image Enhancement,

3. Classificatioi., and

A. Multi-source data correlation.

Since the current research excluded the last category, only the first three will be

discussed.

5.1 Preprocessing

,-',

During data acquisition, various errors routinely occur. Preprocessing 1Snecessary

to correct these errors, which can be divided into four groups:

a) Platform effects ~Attitude variations (roll, pitch, yaw), altitude variations,

scan skew and spacecraft velocity changes;

b) Sensor effects ...Mirror scan non-linearity, detector sampling delay, detector

bias/gain, .geometric perspective and panoramic distortion;



c) Scene effects • Earth rotation, curvature and elevation, and

d) Atmospheric effects . Attenuation and scattering.

Since most of the radiometric correction and preprocessing are don~ tat the

receiving station as part ofthe service to the customer, it-was only .necesshry for

the author to do geometric correction during the data preparation phase.

During geometric correction and image registration a new grid for the spatial

distribution of the pixels is constructed. For the data to fit this new grid, it is
i;·

necessary to resample the data to fit the new relative positions. This spacial

interpolation is done through a geometric coordinate transformation, constructed

by identifyingJ~e geometric relationship between the input pixel location and the

associated map coordinate of the same point,

While the radiometric value of the displaced P.LxeIS no l.onger.tepre. Sent l'lhevalue ,
sensed. in the first place, the approximation ranges from spot on to clos J enough
for the overall difference to be negligible. The technique used for intensity

interpolation will determine the difference between the original and ;esultant

radiometric. values of the pixels.

Three commonly used res amp ling routines are:

1. Nearest Neighbour - A zero order

interpolation routine, which is

comoutationally efficient and does

not alter the pixel brightness values

during resampling. The value of the

" 1\



closest input pixel to the corresponding one in the transformed output

array is accepted as equal to the new one;

3. Bilinear Interpolation - This first order Figure5j 8Uine"r Interpolatiou

routine assigns output pixel values

by interpolating brightness values in

two orthogonal directions in the

inpZlt image. The new pixel is

assigned a brightness value

calculated as the distance weighted average V?Ju~'of the four input pixels

surrounding the transformed output pixel, and

3. cp;bie Convolution - The distance . Figure 5.3 Cubic Convolution

weighted average value for the 16
G'

closest input pixels grouped around

any new pixel is adopted,

It follows that the accuracy of the output

values, statistically speaking, increases from one through three. The resampling

method used for this study was cubic convolution.

S.2 Single Band Image Enhancement
(J

Although enhancement may be looked upon by some as part of the

preprocessing phase, it should be noted that some enhancement routines are

powerful enough to produce stand alone results, therefore the author believe it
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to rather be part of the processing than the preprocessing phase.

Single image manipulation concentrates" fln applying successful enhancement

techniques to a single band Or image. Some of these techniques are discussed

below.

5.2.1 Contrast Stretching
1\

Changing the range of grey levels within an image is often the single most

revealing and informative operation performed on the scene.. The •technique

involves the. calculation of the DN range for each, band, which is then displayed

in a histogram. Typically the limits of the brightness values lie within a.rather

narrow range within the full scale.

Stretching the values to spread out over the Flgu~ 5.4 Linear Contrast Stretch

full scale, ,typically 0 - 255, can be done

through either linear or non-linear processes.

Linear stretching (Figure 5.4) is the easiest

and most common. This enhancement is best

applied to images with Gaussian (which is rather uncommon) or near-Gaussian

histograms,

A piece-wise or multiple linear stretch, (Figure 5.5) where the analyst identifies

the number of different linear enhancements to be performed, is preferred for

non-Gaussian images (Photo 5.1 and Photo 5.2).



Photo 5.1 Natural Colour False Colour TM·123 Composite

Photo 5.2 Histograms for Auto·2·Unear stretch on ™·U3
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Photo 5.1 displays ™Bands, 1, 2 and 3°on oFlguJ:'e$.5~WiseLinearStrete::-:"o,)

Blue-Green-Red to simulate natural colour,

The scale of the photograph is approximately

1:300 000. For visual clarity the data is I.
viewed through a lookup table which

\)
stretches the data to fully,:: utilize the

available range of grey levels. For the equipment used in this study 255 grey

o

" ... . i:i:

levels are available. The stretch used was an Auto 2 Linear stretch, wh'ich is a

piece-wise linear stretch' utilizing one break in the line (Figure 55). This

breakpoint. is automatically calculated according '0 to jhe-spread of the data and
i,

the result usually displays a slightly 0 higher percentage of the data in the upper

128 grey levels as opposed to the lower 128 grey levels, as,can be seen on ~~e

histograms of the' datasets (Photo 5.2). Since the whole input store.is stretched,

the stretch is based on a 128 x 128 point regular grid across the input area. Only

when. a mask is used is the histogram calculated from every pixel underlying the

mask.

The histograms also quite clearly show the amount of stretch that had to be

applied to the dataset to fill the available range. The Standard Deviation

increased by almost 50 in all three cases, with the movement of the Median to

around grey level 127. To get an idea what the un stretched scene would look

like, notice the dark background underneath the text. The difference between

chat and the rest 0 of the scene is some 80 grey levels, which is similar to the

difference between the before and after median values for the three datasets.

(TM1:90, TM2:96 and TM3:54). It should also be noted that the narrow spread

of the input dataset is not unusual, therefore contrast stretching is- usually

applied .•s a matter of course before viewing the dataset. It is, however, normal
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to keep the data unstretched for further processing.

I .,

, ~on-1inear stretching functions, which tend to favourably extend some parts of">;
('-1

the DN range ~t the expense of other parts, include:

1. Histogram Equalization (Figure 5.6) - Figure S.6 I:ilstogram Equalization

where approximately equal mitnbe.S

of pixels are assigned to each of the

predetermined number of output
;,,,\

grey-scale classes;

""'"-
~ i.~
c'l

Q '*' \\I!
2511

I' INPUTltmmiiTY

2. LogaritbpUc (Figure 5.7) - where .the Figure 5.7 Logaritbmic Stretch

3. Gaussian .. where the emphasis is

placed on values found in the middle oflJhe range.

greatest impact are on the brightness

values fou~d. in the darker part of

the histogram, and

lNPOl'l1(feNSrrY.

Density slicing (Figure 5.8) is the lumping of Figure 5.8 Deki!iitySlicing

DN's (Digital Numbers) with different values

within a specified range, into a single value.

This method. works best if the given surface

feature has a unique and narrow spread of

values. Several features, each with its own

separable narrow range of DN's, can be separated into several grey level slices.

With different colours assigned to each grey level set, the entire range can be
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displayeciat once.

5.2.2 Spatial Filtering

This technique differs from the previous techniques in that it look at the values

of neighbouring pixels as,well, when determining the output pixel value.

A linear spatial filter is a filter for which the brightness value at a specified

location in the output image is a function of some weighted average of

brightness values located in a particular spatial pattern around \'the specified
\ 1

location in the input image. Byusing thisweighted neighbouring pixel evaluation,

or two-dimensional convolution (Jensen, 1986), the spatial frequency

characteristics of any image can easily be changed.

Linear spatial filters emphasizing high spatial frequencies, or high-pass filters,

enhances fine detail, that is, sharpen up .an it1iage,wrille filters emphasizing low

frequencies, or low-pass filters, are used for image smoothing, because they

suppress the high frequencies by generating moving averages over, say, a 5 x 5

pixel square area or kernel. Each pu.:~lvalue is replaced by the average value,

hence the smoothed output. This technique can-also be used to clean up noisy

images. In effect, the high-pass filtered output is simply the difference between

the input image and the low-pass filtered output,

\
\.

Edge Enhancement is a technique applie(iwu 'c~ihancethose features that are
~, 1'\:\~

characterized by abrupt changes in radio:m~tric response. Structural and

stratigraphic details can thus be accentuated by enhancing the linear and curved

image features that represent them. The technique typicallyinvolves three steps:
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1. Creation of a low-pass filtered iraage where the high. frequency data 'are
removed;

2. Subtraction of the averaged image from the original image, thereby

separating the edge 'Or high frequency component, and

3. Adding the edge component back to the original image to produce an

image with double brightness edges.

The result is invariable. enhanced linear features and drainage patterns, as the

enhancement is done irrespective of the direction of the edges.

5.2.2.1 Band Independent Edge Enhancement

Although Fourier Transform methods and filtering in the frequency domain are

more exact for spatial processing of image data, small window convolution

methods bave achieved greater popularity due to their lesser computing power

requirements, versatility, and proven effectiveness.

One of the more basic, but very popular edge enhancement techniques is using

the "moving average" derivation from an image. This averaged image contains

only the lower spatial frequencies of the original image, Subtracting the averaged

image from the original would result in: an image containing the higher spatial

frequencies of the original image. Combining this higher fre,r.mencieswith the
I

original results in the enhanced image.As explained before, the' enhanced image
~)

is simply the combination of the input image and the high-pass filtered output.

It should be noted that although the structure and stratigrap~fis enhanced, some

loss of colour contrast will occur as a result of the edge enhancement.
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5.2.2.1.1 Linear Edge Enhancement

One simple method of extracting 'edges is the application of the running

difference operation. The original image is shit't~~ ,by one pixel, and then tested

for a ,difference in corresponding pixels in the two images. -ADN value of:127

is substituted for the pixel if there is no. difference, a darker value, of say .oN =
c.

30, is substituted for the pixel if the difference is a negative, and' a lighter value,

of say DN = 200t is substituted for the pixel if there is a positive diffe.fence.

Therefore transitions from dark to light produce black lines and from light to

dark produce white lines.

It is also possible to perform edge.enhancements by convolving the original data

with a weighted mask or kernel. The optimum kernel size, (i.e. 3,x 3, 5 x 5, 7 x 7, .

or 9x 9) is a function of the surface roughness and sun angle characteristics at

the time the data were collected: The values used in the chosen kernel depends

on the direction the enhancement is required for. This compass gradient method

is generally preferred for finding lines.

Edge er•.hancement without regard td edge Figure 5.9 Iso,'tropic Laplace

directipn may be obtained by applying a Laplacian

convolution mask (Figure 5.9) to the imagery. The

Laplacian is more useful in edge and boundary

detection, but it is a second derivative (as opposed

to the gradient, a first derivative) and therefore

more troubled by image noise, The Laplacian edge enhancement emphasizes

maximum values, or ,t)eaks, within the image.

}!

0 -1 O[
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5.2.2.1.2 Non-linear Edge Enhancement

Non-linear edge enhancements are performed using

non-linear combinations of pixels, mostly using 2 x 2 or

:3 x 3 kernels. The Sobel edge detector is based on a

3 x 3 window and is computed according to the

relationship:

Sobel '" Ix 2+y2
5,01lt V·

where

and

The Robert's edge detector is based on the following 2 x 2

pixel window:
DNI DNz
DN3 DN4

The new pixel value at pixel location .DNl is computed

according to the equation:

where Abs refers to absolute values.

Figure 5.10 Sobel
Horizontal

1 2 1
000
..1 ..2 ..1
I

Figure 5.11 Sobel
Vertical

1 0 ..1
2 0 ··2
1 0 -1

"'-J~"""""""_

Ffgul'c 5.12
1(00011$ 1 '

10 2
1-2 0

Figure 5.13
Roberts 2'

..2 0
o 2

Utilizing these different filters,' it was possible to extract

virtually all the edges for the study area, as can be seen on Photo 5.3. Starting

with a single input band, (in this case a TMSITMl ratio), the output from Sobel



Horizontal (Figure 5.10) and Sobel Vertical (Figure 5.11) was added together

and displayed on blue. Similarly the sum of Roberts 1 and 2 (Figure 5.12 and

Figure 5.13) was display~d on green while the red is the high-pass filtered output

from the input image using an isotropic Laplace filter (Figure 5.9).

Enhancing features that trend in a specific direction will' need a directional

filtering technique. This may be necessary if one orientation is of particular

significance.

Applying weighted digital filters, through Fourier analysis or convolution

techniques to the data will result in extracted edge components having a

selected, dominant orientation, rather that the non-directional result of a

standard edge enhancement technique. Interpretation must, however, be done

with caution, as artifacts of processingmay be included in the result.

Pboto 5~ Extrac~d edges (or Barberton Mountain Land
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D
5.2.2.2 Band Dependent Edge Enhancement

Principal components produce an effective tonal and colour separation as the

first two components, which represent the commonality and differences between

spatial bands, respectively. By definition, the PCl vector is along the major axis
'~\

of the elliptical distribution, and the PC2 vector along the next widest minor axis

of the ellipsoid (See 5.3.2.1).

Preserving the colour contrast is possible because of the Figure 5.14 Law Pass
Kernel

separability of the PCl & pe2 components. By

performing the moving average process on PCl, using

a 3 x 3 low-pass kernel (Figure 5.14), and subtracting

the result from the spectral bands, the spectral

differerlces between the bands are preserved. This process results in a 25%

improvement overnormal edge enhancement.

1/9 119 1/9 i
I

1/9 1/9 1/9
1/9 1/9 1/9

This method produces better results if the image variance accounted for by PC2

is less than 25%. If the image variance accounted is more than 25%, edge
.'

enhancing bands independently from one another produces better results

(Longshaw, 1.983),

Separation of the convolution window method into two processes, enables one

to directionally bias the edge enhancement. This can be done by separating a

directional convolution kernel into two components; Tl:le.fir~tcomponent will
..';

{}

operate on the ortghial pTh;¢las'fa 3 1(, 1weiFt~daverag~,functiohand the secQndt:'

component will operate on the supervisedPC1, (derived th~'ough the analysls of

training areas on th~ iDlage), as a 3 x 3 non-directional averaging wIndow:



1 2 1 -1 -2 --1
P 3P P( n-l)+(____n)+(~) - 2 2 2 ..... 2 4 2
48.4

1 2 1 -1 -2 -1

A mixture of the two resultant components will have the properties of the

directional kernel, but retain the colour enhancement attributes.

5.3 Multiple Image Enhancement

5.3.1 Ratioing

Somewhat favoured by geologists, this technique enables one to look at .the

spectral aspects of certain types of ground features. The DN of anyone pixel in

Photo 5.4 B~lld Ratio TM5/TM7:TM3/TM1:TM4jTM3 with Auto Gaussian stretch=============================================~====
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any band is simply divided by the ON of the equivalent pixel in another band.

'The resulting quotient is a number that can theoretically lie between zero and

infinity, but in practice lies somewhere between 0.3 and 3 (Short, 1982. P 438)

These values are normally expanded to fit the range 0 - 255 for visual clarity.

Ratio images tend to smooth out intrinsic tonal contrasts related to topography

by removing differences in reflectances from surfaces composed from the same

features caused by topography. This is clear when Photo 5.4 is compared to

Photo 5.1. It should be noted that Photo 5.4 was stretched using a Auto-z-Llnear

stretch while Photo 5.1 is displayed through a Auto Gaussian stretch.

Ratioing different bands will produce, enhance or suppress different features.

This is evident when comparing the different band ratios used to create the false

colour composite Photo 5.4. Ratios TM5/TM7 (Photo 5.5), TM3/TMl

Photo 5.5 Band Ratio TM5,/TM7 on black and white



Photo 5.6 Band Ratio TM3/TMl on black and wbite

Photo 5.7 Band Ratio TM4/TM3 on black and white



Photo 5.8.Band\~tio TM5/TMl on blaclcand white

(Photo 5.6) and TM4/TM3' (Photo 5.7) was displayed on blue, green and red,

respectively.

Generally, the lower the correlation between the bands, the greater rthe.,

information content of the band ratioed image. Note the difference between the

TM4/TM3 ratio and the TMS/TMl ratio (Photo 5.8) with regards to the

vegetation. Scattergrams ofTMS/TM7 and TM4/TM3 ratios (Photo 5.9) clearly

display the correlation between the hands. From these scattergrams is should be

clear that ratio TM4/3 will display 2 distinct trends. Photo 5.7 confirms this.
.', " XI

Si1:l1ilarlyPhoto 5.5 confirms th~ expected rather trendless dull image.

Band ratios become rather inadequat~ with higher spectral resolution data,

where the aiW is tt) extract and characterize the. shape of the spectral reflectance

curve. Here-the approach is to partition the image into spectral classes based on

5 - 36



Photo 5.9 Seattergrams TMS vs 1M7 and TM4 vs TM3

similarity of shape.

5.3.2 .Data Transformations

Rather than choosing three "best" bands from ri-bands, one can use '(lata

compression' techniques to extract most of the n-dimensional information into

typically a three dimensional space. This also minimizes data redundancy

characteristic of highly correlated datasets and enhances subtle spectral

differences. Favoured methods are the important mathematical transformation

Principal Components Analysis. TIle results are typically colourful, but often

difficult to interpret, imagery. Canonical Analysis also belongs to this group,

\J

5.3.2.1 Principal Components Transformatlon
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Principal Components: Transformation (per) is a multivariate statistical

technique which is often 1:~sedto determine the •underlying statistical

dimensionality of the irpage data set for image enhancement, for CHgita/change
J·~,;.v

detection and for characterization of seasonal changes in cover types, to f!J.~ntion
C) .• ~:::.:-::

but a few avenues reported on in the literature.

The technique basically consists of choosing tW ~~ "related linear combinations of
}

variables in such a way that each linear combination (the principal components)

extracted successively, show less variance. The result is to redefine the axes on

which the data .plot so that all the DN values are redistributed with respect to

a new set of axes. Basically an.axis rotation and translation procedure resulting

in a linear combt~~<;iti()nof the origin¥ data, where each new axis defines a new

dimension of information. The correlation that exists between the individual

bands of the image is therefore removed,

A covariance matrix, derived from a random sample of the original data, is used

to .calculate a set of eigenvectors and s, eigenvalues wJ1ich'represent new or

transformed axes. The new axes are uncorrelated, and conta4l~a percentage of

the total variance from the original dataset. If the linear inJetcorrelatiolls of the

variables are significant, the first few components will account for a large part

of the total variance. The first order component contains the largest percentage

of variance, typically 80% or more, with each successive component containing

less, The first component can be thought of as an albedo or brightness image

produced by data from all the bands. Random uncorrelated DN values (noise)

from the input bands are normally relegated to the lower order components,

where useful information is minimal, The information contained in these lower

components are, hq~evet, often significant from a geological.point of view,
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Correlation between the bands arise from:

1. Natural spectral correlation - a bright object will tefl<;l~ appear bright in

a wavelength range, with a value distribution approa(:hing a gaussian

distribution;

2. Topographic slope and effect - for all practical purposes topographic

shading is the same in all solav reflectance bands and 6.1n even be the

dominant image contrast component in mountainous areas like the

Barberton Mountain Land, and also at low sun angles, and

3. Overlap of spectral sensitivities between adjacent spect~dl bands. This factor

is minimized through design, but cannot be eliminated.
\\
\\
'\,»

Looking at the scattergrams of the ™bands (Photo 5.10), the high degree of

correlation between the bands are clear. Most of the bands display a definite

linear correlation between bands. The exception is band 4, which has a distinct

bimodal relationship with the other bands. This is due to the large percentage

uniform canopy cover (Pine and Eucalyptus plantations) which reflects strongly·· )

in the NlR (Near InfraRed).

To simplify, creating a scattergram of say :FigureS.15 pet: Step1

band 1 against band 2, with means /JI and /J21 c X2

the plot would look like Figure 5,,15. It is

clear that by shifting the axes toX'(/Jl,1J2), a.

new coordinate system is defined.

~.~
ol..-..----!.,---~·- Xl

)II

Values for the new data points are found by the transform relations X'1 :.:::X, ~

J.1.z and X'2 :.:::X2 ~ #2 (Figure 5.16).
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Photo S.10 Scattergrams ™ 1.7 Unstretched~~~=================================================

Pb~to S.l1 Scattergrams PC 1-6 Unsu'1!tcbed==================================~~=======~========
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/ ?/

![

The X axisnsystem is ,,fCt,tatedabout its origin

(jJZ,}J2 in the! qr.iginal system) so th~t the
{ \

variance ifpC1 j~'a' maximum (Figure!5.17).

Since PC2' must' be perpendicular tlb PCl,
',. 1

and there are only, two dimensionsj'PC2 is
/

fixed. The PC axes are the Principal

Components of this 2~dirnensionalspace,with PCl essentially a weighted average

albedo image containing. most of the scene brightness infonnation.

t li'igt.lre 5.11 PC'l'; Step .3

Related to an N-dimensional feature space,

correlation between bands will tend to result (

in a stronglYrylliptical pixel,distribution~ The

principal components of this lV-band image

data set are thus the orthogonal axes of the

N-dimensional ellipsoid constituting the image feature space. The longest axis of
"

the ellipsoid accounts for most of the reflectance, variance ,!p, the multi band
G

image, the First Prinoipaf Component. By definition the second ,longest axis of
.' . . .. ....: . ., ',',. II

the ellipsoid is the Second Principal Component. Subsequent higher axes contain
)1 '

successively smaller portions of the remaining scene va6-ance with a decrease in

Signal to noise ratio.

Setting the mathematics aside, the following characteristics of the principal

components transformaticas are of special interest to remote senrpg:
,1/'

L The total variance is preserved in the transformation, i.e.:
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Photo 5.12 Principal Com re'r:bed (i;,. Bbl'~·Greel...Red
-=-'....::..·~',,-\t.,"=_============:

Photo 5.13 Principal Components 123 view.'ld through Auto·2·Linear stretch===========~=--===============------=== -
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where a/ are the variances of the original variables.

2. It minimizes the mean square approximation errors.

3, This is the only transformation that generates uncorrelated coefficients

(Moik, 1980). In a geometrical sense, it rotates the highly correlated

features inN-dimensions to a more favourable orientation in the feature

space, orthogonal to each other, such that the maximum amount of

variance is accounted for in decreasing magnitude along the ore red

components, The process has been viewed as an information

compression into a smaller number of components from the large

number of features by discarding redundant information into higher

order components.

Photo 5.14 HfstogI'8ms for Auto·Z.UnefU' stretch on PC·123
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Photo 5.12 displays principal components PC-J23 on :SC:.tR.Although the change

in colour from the ~aturaHalse colour composite (Phot~ 5~1) is most stcfiking,it

is the increase in the volume of visual information that is remarkable. The north-
a .

northwest striking dykes are much more prominent 0.0 the principal components

image. As this image seemed not to make use of th'e full digital number rart'g~
. ,-"

[J

available, a stretch was applied. The stretch chosen was the Auto ..2-Linear
stretchy which)Vas also applied to the natural colour composite (Photo 5.2). The

o
'',,)

resultant enhancement to the visual quality of the 'Image is quit~ drastic!

considering that the principal components transformation should have utilized
/) . .-;,

more. of the avaitab~.e ON range. 'The histograms for the three components
.: >" -r

confirms this apparent shortcoming.

As indicated before (Section 5.2.1) the statistics fo~ any of the operations are

cal~H~atedusing a 128 Xi 128 grid, which.explains why the transformation output~r {
occupies a narrower than expected range. Calculating the eigenvectors and~ . ..

eigenvalues under amask covering the complete inpu,t store should eliminate this

problem, but it is cornpurationally very expensive and the results are not

.perceptibly better than the results from the two stage procedure used here.

The higher order components from principal components transformation usually

contains very little useful information, however with regards to geology, one

often finds that~ome feature which is drowned out in the lower order

components, becomes quite noticeable When the surrounding features "are less

prominen- (Photo 5.15).

In remote sensing applications the principal components are usually calculated

from a variance-covariance matrix. Another approach is that of using the
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Phl)tQ5.15 Principal Components 456 viewed tbrough an Auto~2·Linellr stretch
"" =
correlation matrix, derived from the division of the covariance matrix by the

appropriate standard' deviations, This reduces all the variables to equal

importance as measured by scale. Since principkl.lcomponents are not invariant

under the linear transformation where separate scaling of the original variables

exists, it is clear that the principal components of the covariance matrix and that

of the correlation matrix. are not the sahle, since principal. components of the

correlation matrix are invariant under separate scaling of the original variables.

External variances can be minimized through standardization of all the data from

diffeYentbands to a standard deviation of one. Then each band would contribute

equal variance.

A significant difference is evident when comparing the results from using

variance-covariance and correlation matrices for two LANDSAT subscenes



(Singh & Harrison, 1985). Regarding these variables, standardized to unit
1

variance, as a better basis for carrying out principal components analysis seems

reasonable, Visual inspection of the first principal compon~nt images reveals that

the images obtained from the correlation matrix has better contrast. The

Significant improvement in image enhancement, however, occurs in the second

principal component image using the correlation l11a;_trix.

It should also be p.oted that a significant Improvement inSignal ..to-Noise ratio
\., . .... ,

is effected when using the correlation matrix method of calculating principal

components.

Although ..principal components transformation is used in data compression, it

should be noted that for land cover discrirninations, the higher order components
\\.

contain \:'l~uable ~nformation in comparison with some of the lower order

components, which have no obvious information content.

As the interband covariance for a particular scene is always unique, the outcome

ofprincipal component analysis tralwform~tion will be lilghly scene-dependant
\

and difficult to apply predictively (Lamb, 1~84)
\

5.3.2.2 Canonical Analysis

This transformation is based on the spectral characteristics of categories defined

witpin the data. These categories are represented by training areas selected from

the original data. The spectral characteristlcs of the training areas are statis~ically

described in terms of the mean, standard deviation and covariance,
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The objective is to maximize the covariance between categories and minimi- n
I,: ,', ()o;··· )

the covariance. Within categories, Whichincreases the separabUity of classes whm.

nnbintizing the differences within each class. As with PCr, the first component

contains most of the variance, and the lower order components contalns the

noise. Information falling outside the spectral characteristics of the training areas

are looked at as being noise, therefore t}!e lower order components will displa,
t.) ~, •

more noise than the corresponding components of a per.

Canonical Analysis differs from principal component, analysis in. that training

afeas are defined from which the statistics necessary for the transformations are

calculated. This is similar to PCT statistics calculated only under a masked area

of the-image,

5.3.2.3 Geological Applications of PCT

Enhancing edges to emphasize geological structure and colour to emphasize
/;

lithological' differences are particularly relevant in a geological sense.

Subtle colour differences will feature as irlrormation poorly correlated from band

to band, and are therefore more apparent in higher order components.

Geological edges, representing lithological boundaries, joint and fracture patterns

and fault traces, etc., are mostly visible as a result of topography and shadow.

Since these boundaries occur in all the bands, the bands are strongly correlated.

Therefore a pel image can be expected to highlight geological structure

expressed. through topographical features. The edges defined by,~colourchanges

will tend to be poorly correlated, and therefore orJy show up in higher order

component images.
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5.3,2.3.1 Spectral Feature 8epw;ation
r:

In areas with minimal vegetation covet per cari'be expected to enhance.spectral
"c'

'.~

contrasts between rocks in a non-predictive way.

Using the first three PC's, more than 90% of the information can be displayed::
Ii

simultaneously. While the colour variations in the false colour composite. may

enhance less noticeable variations, it should be-noted tliat colour per se cannot

be used quantitatively, only as an indicator of change. Since PCl represents most

9f the topography related brightness information, composites from higher order

components ...will be less topographic in appearanc~l leading to the possible

detection of subtle geol~gle~ contrasts enhanced in the higher order
-i) (~,

components.

5.3.2.3.2 Spectral Classificauon

(!,
.:

Spectral feature separation leads to classification, a procedure that has been
.'\

most successfully applied to agriculture. Classification routines have not been

particularly successful whenapplied to geology. This is largely due to natural

inhomogeneity pf geological mate~ialsj gradatfonal boundaries and the influence

of vegetation, as well as the small spectra! response range for geological

materials in general.

While per may optimally separate geological features, the output component

imagery will only be suitable for qualitative visual interpretation. The re-

alignment of the image feature space in a different and more. efficient way is

only a method of assisting the analyst in the selection of features and training
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areas, but it will not contribute much' td an. improved classification.

5.3.3 Enhancement through Colour

5.3;3.1 Colour CompositeSelection

Band selection for colour (composition should be based orrspectral logic, rather

than some statistically based approach that often confuses data variance with

informatf One of the more meaningful approaches is to use the correlation

matrix, because we are basically attempting to maximize colour information by

selec T,. the three least correlated bana.s ..'

5.3.3.2 .Colour Enhanced Original Band Imagery

Correlation between three spectral bands combined as a colour triplet results in

a 3-(.1 ogram in the .shape of an thin ellipsoid near the achromatic brightness

axis. Contrast stretching of the three input images does not remove this

correlation, it merely enlarges the ellipsoid, with the result that the available

colour space remains under utilized.

To Inf,IXimize the utilization of tfie available colour space, the correlation

between the individual input bands need to be removed, or at least significantly

reduced. This is done by enhancing colour differences between the components

by stretching, followed by a inverse principal components transformation, which

, will not reintroduce the original correlation, This decorrelatiorr stretch

(Photo 7.12~ Section 7.4) produces a colour enhanced output with an improved

signal to noise ratio and a spherical symmetrical histogram, indicating a much

it
"'.\



A result similar to the decorrelation

stretch can be obtained by transforming

the colour triplet to the Munsell Colour

Space coordinates of Brightness, Hue and

Saturation (Figure 5.18). As PCl .is

strongly related to the scene brightness,

high-pass filtering of the brightness image

together with any desired stretches to 'the Munsell coordinates will produce a

result similar to deeorrelation stretch through inverse principal component

better utilization of the available colour space.

5.3.3.3 Edg~ and Colour Enhanced Imagery

transformation (Lamb, 1984).

Fi.gure 5.18 Munsell Colour
Coordinates

llIuo .'

This method can be Il10dined to produce a less noisy colour .image by

substituting the brightness image in the illS transformation with the PCl

component, saturated and edge enhanced, before transforming the colour co-

ordinates back to the Original cartesian band coordinates. This technique has the

advantage in permitting total predictive control of colour, unlike an inverse PCT

transformation.

5.3.3.4 Colour Transformations

For this study the remotelysensed data are displayed using the BGR (Blue-

Green-Red) colour space. A different coding technique displays data according

to intensity or brightness, saturation or cQlout value (on grey scale) and hue or
/ -,_ __<I

'.

5 .. 50

i)



colour tone (in the range blue-green-red-violet-blue), This is known as Intensity-

Hue-Saturation (IHS) coding and displays the information pertaining to the

intensity on red, to hue on green and to saturation 011 blue.

The processing system used calculated JHS as follows:

1: p 'ty . (Red+Green+. Blue)'.(n~'ensl =
3

Saturation :::{V~ +vff
where

y; = (Red -Green)
2

Photo 5.16 displays the RGB colour space after a two stage IRS colour

transformation. This was accomplished by transforming the ROB colour space

into the IHS colour space, and inverting the transformation back to the ROB

colour space, replacing the intensity component with a-monotone image with DN
>1

128.An Auto-z-Linear stretch was applied.

Another colour transformation used during the research were the transformation

to Hue-Lightness-Saturation (HLS) colour space, Which is a perceptual eolatlr

space recommended for computer graphics by the Graphics Standards

Committee, Siggraph, ACM (Gemstone Interactive User Manual, 1990).

Hue is a circular measure of the colour (blue-green-red-violet-blue) in the range

5 .. 5J.



Photo 5.16 RGB to IRS to RGB Colour Transformation

Photo 5.17 RGB to HLS Colour Transformation
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o to 360 with 0 representing blue. Lightness is a measure of the intensity or

luminosity of the colour. Saturation is a measure of the purity with 0

representing no colour (monochrome) and 1 representing pure colour.

Transforming the ROB colour space into the HLS colour space results in a

rather blight, but not very informative image (Photq, 5.17).

5.4 Classification

The basis for classification is the correlation of different categories of interest

with statistically separable groups of data as defined by their spectral properties

in multidimensional space. Multivariate classification may be performed by either
'I

of two methods: supervised an!,\~unsupervised (See Table 5.1).
u
\1', 1 \

\\
'I'

In an unsupervised classification, the computer is asked to group pixels into

different spectral classes or clusters on the basis of. mutual differences in

multispectral data space. The identities of these groups are not known
,~'\

beforehand and a name is assigned if the classes prove to be meaningful.

In a supervised classification, the classes are known for small training areas. TIle

computer uses these training sets to classify the rest of the scene,

The classification types available for this study were:

1. Box - The upper and lower limits for each image band are defined from

training sets. Only one class results;
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.··~mcatiOJi
Method

Supervised Maximum
Likelihood

tr

Based on the principle that a given pixel ShOl'ild
be assigned to a class to which it belongs with the
highest probability. A common stratagy, the
.•Bayes-optimal, minimizes' the error of
lllisclas,)ification .when. the probabilities of
occurrence of each class are equal.

Linear A general term to mean all techniquea which use
linear surfaces (hyperplanes) to separate classes.
Several iterative methods for deriving these
classes Can be used.

Piecewise
Linear

Unsupervised Distance
Based
Clustering

Gep,eraliza' .on for linear classifiers. Useful when
the classes canuot be. separated by linear surfaces,
The parallelepiped or 'bolt' classifier is an:"
example. \.II----,_",..--+----------I--- ,_-=--__-- _ _,...---.........------i,......_.... ........
Unsupervised classification is an atte~pt~t() \,
determine the location and limits '?~4.g!,flcah~
clusters in feature space with no' p,-'.:':'( :d1owledge
of what is contained with the image.'Several •...
methods use distance measures to group data mlto
clusters. These are iterative methods, varying
sU£'htlYin detail of ~.andling! initiation and
updating clusters.

80th Table Lookup Can be used to Implement any decision rule
obtained from anY,claSsification method.

" ,

Table.Sol Some cpmmon ClaSSification metbodl3
\,

(j'

2. Discrete ~The discrete or histogram classifier operates by generating a list

of p~~l value combinations which appear within the training set. Only
\

one cldss results, and

3. Maximum Likelihood - Bither 16 or 64 classes resulted from this statistical

approach.

Attempts to classify the image of the study area through a maximum IQelihood

classifier into 64 classes failed due to hardware limitations. In ordet.,to perfoAy.
a classification over the study area, an area of 300 by"400 pixel were selected and I,

the maximum likelihood classifier initiated. Some nine classes resulted (Tomthe
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Photo S.18 Classes for Maximum Llkellhood Classifier

Photo 5.19 Classified ~mage
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i',

classification of three bands; and these were manually combined into five classes.

g Meant, Standard Deviations l
Band! Band 2 BanG: 3 :eand! J) Band 2 T=B;ci3 I

1 82.32 115.6 111.2 32.S ~4.8 10.9

2 1:31.3 104.0 ! 104.0 31.7 1\\17.7 12.3
1/

3 151.0 151.6 156.8 23.5 18.1 15.9

4 121.9 196.9 143.9 6.9 ;',.7 5.0

5 220.8 31.19 29.52 15.5 5.1 3.3

Table 5.2 Means and Standard Deviations for MAX64 CJnssific~tion

Table 5.2 lists the means and standard deviations for the five classes displayed

On Photo 5.18. When studying the scattergrams in Photo 5.18, classes four and

five could conceivably be lumped together. (This is. the light and ..darker reddish

coloured classes on the photo.) As far as the band 3/2 scattergram is concerned.

class two, the whitish area, does not have a definable outline. (Please notethat

due to photographic reproduction, there are two whitish classes, The distinction

is visible only on the soattergram of band 2/1.)

Using thesz five classes to classify the image resulted in a rather messy and

singularly uninformative view, Photo 5.19.

5.5 Predictive t;~hniques for identifying spectral anomaltes
i(

Band ratios, spectral indices and pair-wise principal components all operate on

two bands of data only, while quite a number of other bands are also available.
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5.5.1 Pair-wise Principal Components

This technique compensates tor atmospheric conditions automatically. The

second principal component is considered in each case, since the spectral

reflection and absorption contained in the second component represent the "less

correlated" component of each of the two bands. In the case of™ bands 5 and

7, the. resultant PC2 should give an estimate of the clay plus vegetation

absorption as a more effective alternative to a ratio. Sin1harly, if the second

component from input bands 3 arid 4 is used.xogether with the second

component from bands Sand 7, the resultant second component should give an

indication of only the clay. This type of approach was used by Fraser and Green

(1981) to formulate their "Directed Principal Components" method of reducing

the Influence of vegetation (Section 7.4.3).

5.5.2 Multiple Linear Regression

Multiple linear regression estimates the expected value of an image band as the

linear combination of the other. or all bands, using a single set of partial

regression coefficients. The predicted value is then subtracted from the' actual

value to give a residual or error image. This approach assumesiinear mixing of

the radiance from all surface materials contributing towards the pixel of interest,

and is able to separate vegetation from "clay" e~'~cts in the 2.2p.m region as well

as offering a good overall solution for atmospheric path radiance.

The main drawback of this technique is that a single trane'ormation is used to

predict the band of interest, which may not describe the optimal coefficients for

smaller subsets of the image.



5.5.3 Polynomial regression .,...~./ ~
, I

..-'/" !

./ ./
( J/

" '. " " • ", , "', " "c'./

Polynomial regression fits a polynomial of a specified degree 'to each pixel

spectrum. It also allows us. to examine the error between the predicted and,

observed data values. A polynomial of degree five vli!,l uniquely' describe a
spectrum of six values .:Choosing a lower order polynomial should result in,some

error between the calcUlated and observed va1ues,which should increase with the

decrease of the order of the Interpolating polynomial.

5.5.4 Data-adaptive linear filter

Considering image spatial data in band prediction ate the basis of the data-

adaptive linear filter", In this instance the predictions made frorn neighbouring
il

pixels influences the prediction for the current pixel. This helps in avoiding

spurious anomalies. The computational expense of this technique would normally

be prohibitive.
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6. Obstacles in Geological Remote Sensing

Envirpnmental conditions such as deep weathering, fireburn mid vegetation are

significant obstacles to geoscience remote sensili.-)

6.1 Deep weathering.

Extensive chemical weathering and alteration of surface rocks, sometimes to

depths of hundreds of meters, like the arid environments of the Australian

continent, will result in the developmentofsurficial crusts or layers of chemically

enriched material, mostly laterites, silcrete, calcrete and bauxite. Breakdown and

leaching of the surface rooks also leads to the formation of clays with. the

mobilization of iron and silica. These deeply weathered regions are thus

characterised by the extensive development of clay minerals and the various

concentrations of iron oxides, carbonates and silica minerals, .totally obscuring ~,

the underlying geological environment.

It can be seen that the ability of remote sensing techniques to map clay

alteration directly associated with mineralization, as in the semi-arid conditions

of Arizona, is unlikely to be successful in Australia's deeply weathered

environment (Simpson, 1990).

6.2 Fb.'ebnrn

From a remote sensing viewpoint, the effect of fire is more important that the
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fire itself." The resultant drastic reduction -in veget8:tipll density an~ery =,

prominent and bffiting scar patterns are probably the most-serious 00bstacle tot)

thematic remote sensing of arty' kind in any and and. tropical environment

worldwide.

.. . , ~
The time necessary for re~1~11~rated~egetadon to reach a densi~ which would

render it indistinguishable from the surrounding unburnr y~ge~~ttl(Ptlis litrgely
-c,; .:' li~ ,/ \' : I,. :;

determined by the climate of the area. However", as fuel. from l.egejfN·I~ated

vegetation becomes available, older burns can be partially or totally overprinted

by subsequent burns, leaving. a patchwork of fireburn scars which appear on

visible and near-infrared imagery as a dark-bright mosaic.jhe darkest being the
.\

~... .. !(~.. .. .. __ .: _ _ r

oldest and tIle ~ght the ,newest burnt are~:.
'.' ~-=-~~, "~!') \\ .;/-;;;"

It may be extremely diffiCU!({ven impos$~ble, to determine whether a boundary
'\

change observed in imagery~~ due to changes in rock 'type, or to vegetation

density differences across (I, fideobOundary.
(j

~-",Y'
Photo 5.13 shows ythat can only be the result of a not so recent fireburn.

Towards the top halfOftb;e study area, in the region otr.h-e Copper Creek (refer
'" '<---

to Photo 2.1), the princip~ components transformation, ~.!ti.vi~wed through the
( "~

Auto-z-Linear stretch, dispiays an area which is distinctly different to the

adjacent areas on both sides. Since this area seems to be enclosed by streams on

all sides, the conclusion is that this represents.a firescar. Note that within the

forested area quite a number of these blueish patches is evident, which would

be consistent with the practice of burning the newly logged areas to-get tid of,

the undergrowth before replanting.
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To enhance th~ underlying~eologic~ features, it is Pli'stly necessary to drtfiance,

detect or nuru41 as' far as possible the overlying fireburn features; In, grassfand
f/

recent firescw:s, are .generally obvious, while the (\speed o£ regeneration of

grassland, coupled wf,th the frequel1CY~f burns, normally lessens the im~act of

older burns. Problems occur in identifying recent low intensity fires in woodland
~:;:~\.. .. i

areas, particularly those in which only. the ground cover veget~tion and grasses

are removed, since the ash darkened areas may be indistinguishable from the

darker canopy vegetation.

One technique useful ill detecting recent burn areas through principal

component analysis, is to (,applyPCT to ™bands l'to 4 and so.tey the second

principal .camp-onent which gives an excellent display of vegetation density.
Ii .'

Firescars can be easily detected visually. This will then give an indication-of the

likelihood of the detected edge beingthe terminatf 'of a lithology or rock type.

6.3 Veget~tion and GeOlOgical remote sensing
,I'

)!

In conr'itions where roots penetrate to the. subsurface geological environment,

analysis of the vegetation pattern may provide the only indirect indicator of that

environment. From a geological viewpoint, vegetation spectral signatures are

considered to be a noise contaminant. In the short wavelength infrared region

(1.1-2.5~m) the interference of both dry and green vegetation are significant in

realizing the. spectral characteristics of various clays, carbonates and sulphates

important to a geologist.

Another problem is lichen, which can completely cover both rock and soi~

!,~

6 - 61



surface, even in areas where other vegetation species are s~;j.se. Th!9. absence or

a distinctive chlorophyll absorption feamre at 0.65-0.70 ~m or a infrared plateau
~)

between 0.7 and 1.0 jJ.ID me~ that processing techniques normully used to

detect veg~tation will not necessarily Show lichen. J~chen, as small s1ibmilljy:Ietrc
u -,

colonies, will at any signlfican(density completelyobscure the signature from the(( (/ «-:
'I "'-.r

rock below. '

!}
if

A typical vegetation reflectance lipectrum shows a region of strong absorption in
~.' d. -

the vilHble.due to plant pigmentl~, including chlorophyll, adjacent tdi1.''region of

much.higher reflecta:if~ in the n~ar-infrared dominated by reflectance from the

cell structure. Laboratory. studies have shown that anomalously high

concentrations of many different metals in plant nutrients will cause a stress

response. This response is displayed spectrdlcopically by reduced absorption in

chlorophyll bands in the visible and an accompanying shift of the abrupt ris4\iin

reflectance between the visible and the near-infrared, or ..'red edge' toward
-.,_(

shorter wavelengths (Chang and Collins, 1983).

Either of the reduced chlorophyll absorption in the visible, or the Shift of the red

edge, can be used .~odetect plant stress response caused directly or indirectly by I

minerals derived from underlying ore bodies, by using} ae spectroscopic anomaly

to infer a geochemical onomaly,

Scattering for. vegetation is generally assumed to be Lambertian (isotropic)

throughout the visible and near-infrared. It was found, however, that the

reflectance properties of leaves tend to be more specular in'th .....,visible, and
\

Lambertian in the near-dnfrared (Salisbury, et al., 1987).
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Considering the fact tlfat;Fa i'large par] of the" vegetation 'in the 'Barberton
, .\1

\'>.... i,.\ 'I

Mountain Land study are'fu. "ate\ regularly spaced forests, either Pipe or

Eucalyptus, with very little undergrowth and,@. ground-covering carpet, of 'pine

needles or Ieavesxthe absorption in both the visible 'and the near-infrar~d will

'/ be higher than for the surrounding areas where natural vegetation occurs. The I

shape of the pine needles also lend it to a greater amount 'of isotropic scattering
./ . Ci:~:;

than would leaves of other indigenous forests,

It should therefore be easier to identify a geobotanical or biogeophysical

anomaly within the area. covered by the plantations than in the area covered by

natural vegetatiQn~~\es~,use of the uniiormity of the signature returned.

6.3.1 Vegetation Spatial Variability

The NoAA AVHRR collects data in the spectrum ranging from the,yisible to

the thermal infrared. The resolution at nadir is about 1.1 kilometre. Looking at

the various ratios one can deduce quite a lot of information aliGut the canopies
r,I

being studied. Ratios developed through the use of this data.include those in

Table 6.1.

[Ratio Name J
Simple ratio • NIR/Visible

\.', (O.9ILIll/O.58!lm.)

Normalized difference (NOV!) (NlR - Visible)/(NIR + Visible)

Vegetative Index - (NJR - Visible)=====*=====~==================~
Table 6.1 Rat!.os used Cor Vegetation Indexes



/)

NDVI is a bound ratio with 'values between ..1.0 and +1.0. The usefulness of

vegetation indices. we .repe~c.lv,ilt on the ...degree to which the ·sp.:ctral
c,'

contribution of non-vegetation components (soil in this. case) can de isolated

from measured response data. At higher vegetation densities the Simple Ratio

seems more useful.

6.3.2 Forest Classification"

Spectral variations caused bYotopographical effects leads to difficulties in

dis6rimipating between many individual species. Using band ratioing rJ\sult in an
('.:-.\" "':;;;,' _. '. \-'_/''''> ',_, . "

increase in classification inaccuracy because of the accumulated spectral variance

betwe\:'l the bands.

It is generally accepted that the configutatiotj\ of LANDSAT 1M data is well

described in a three-dimensional Euclidean space, with a loss of less than 10

percent of the total variance and that the first principal com~pnent (PC1) can

be related to scene brightness.

Late summer proved to be a good period for forest discrimination through
..\

remote sensing. (Heller and Ulliman, 1983)

To overcome the high spectral variability of the TM scenes, it is accepted that

subjecting all the scenes to smoothing filters with a neighbourh~fd function of

5 x 5 pixels (3 x 3 in band 6) without threshold, will tend to smooth the

heterogenicy of the images! which canimprove the final classification accuracy,
j

In this study the images were not smoothed.
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"6.4 Mineral Mapping, and Vegetation Removal

Techniques for mapping surface components, attempt to relate the. known
I__\ -

).,.-~.:, _ (I _ _; " \; I)

spectral signatures of surtace types to the detected band responses of the data.

Twocommonly use9}echniques are:

1) Ratid~ methods. which compfe two •channels highlight~~g spectral

<~'" Al~orption of particul~ surfaces (Podwysocki et al; 1983)~and
I)

2) Classificat!9u methods which use ground reference information to identify "

spectral grouping ~vitl:'Jnthe. data (Curren, 1985)':
:l

This d,oesinot solve the problem of pixel spectra being a mixture of component
f( " •

" spectra, i.e. the influence of one surface type will be confused by the.Influences

oiall the other contributing§I,~rf~ce1tyPes within range.

A method is required which uses all" the information to determine the

composition of each pixel given some prior knowledge of component

reflectances, Such a method would enable specific mapping of individual

materials and, as a by-product, obscuring materials, like vegetation, could be

removed.

By assuming that pixel reflectance is a linear mix of component reflectances; i.e.

where

£4••1ij are the reflectances of substances in the

wavelength i,

'A...N are the proportional amounts of substances which
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compose the pixel;! and

R; is the pixel reflectance value in the wavelength

interval i.

o
one is faced with the problem of non-reflective influences:

1) sensor peculiarities;

2) atmospheric interaction with radiation, and

3) variations in mumi~~tion betwcbll bands and betwee~~i;~\'{elS.

The raw data consists of pixel. count values.. which must be converted to

reflectance to fa\?lltate the removal of the non-reflectance »nfluences. The

method consists qf four stages:

1) Minimum value subtraction;
>\

2) Band-mean division;

3) Reflectance-mean multiplication, and

4) Pixel unmlxing,

Although the results from this technique is reported to agree well ,,*h field

observations and mapped geology (Bierwirth, 1990), and accurate mapping of the
'.'J

spacial distribution of individual surface types is almost a certainty, the system

is very sensitive and end-member spectral separability, very accurate reflectance

calibrations and realistic modelling of the dominant scene are prerequ, ." for

successful modelling,

Removing vegetation has particular application for mineral exploration, since
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~..' .'. ." _ .' _ f\ _ .e. _ _. ,~\ _ '. '1

vegetation cover invariably con1wjc~tes the issue enormously. Having unmixed

vegetation and geological end-members it is possible to recalculate brightness

values in the original bands with both green and dry vegetation(_:~rtloved.
II

By scaling.minerai solutions to sum the original pixel total and recalculating the

Iinea(mix of cbmponent reflectances for each band, de-vegetated geological

reflectancelma'ges can be produced with the topography retained. If vegetation

totally covers the pixel, the removal thereof fails, l~aving the pixel black in

output images,

However, with careful modelling only a small signature from geological materials

may be necessary to obrilin. meaningful geological information in heavily

vegetated areas. Further enhancem,ents and processing can realize even more

information.

nL,
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7. Processing for Geological Co'ntetlt

Geological remote sensing is pursued on the basis of two distinct approaches,

viz.:

a) Photogeological ~ the classic process Of visual assessment of shape, size

pattern and texture of an area's weathering and erosional characteristics,

i.e:~!th~topographi9~1 expression or spatial aspect, and

b) Spectral - the spectra1;~pproach uses the known-spectral characteristics of

materials to enable (j1eduction of their (1ompo$ition from ll.lulti,spectral
U . ~

data.

Due to the rather S1Jlalr scale of satellite images, features covering a larger area

are more readi1ydiscernab~~}',~lhile the smaller regionally insi~nifica.n~ fe~~ures

are suppressed. The most comm,)n featu~es, linear and circularare also the most
\,;;

easy to pick, out, sometimes too easy, as there are a fine distinction between

deducing correctly afeature from minimal data and supposing a feature from too

little data.

The spectral. basis for geological, remote sensing relies on phenomena such as the

FeO charge transfer absorption in the range 0.4 - D.6 jJ.mand the Fe3+ electronic

transition absorption in the range 0.8 - 1.0 !.Lm" the position of the minima

varying with the particular mineral (Goetz and ROWan, 1981). Chlorophyll

absorbs strongly 'at,0.45 and O~68J.l.ID. The 1.6 J.Lmregion represents the highest
I '

reflectance for most r(jc~, whilst the 2.08 - 2.35 IJ.mregion records absorption
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™ S~tml'Range 'Chant~ttes .na·~D¢i~Alt)1ne8tfunS
Band - (~m) '~f 'l'MSpect'o"IlI mmdS,I~--~+---~~~--~----~ '~----~~--~----------------~I
1 0.45.0.52

(blue)
Shorter'waveiength cutoff is just below the peak
transmittanG~ of clear water, the upper cutoff is the limit of
blue chlorophyll absorption for healthy green vegetation.
WailelcIIgths be1ow'0.451J.1Il are influenced by atmospheric
scattering ahd. absorption.
Coastal wClter Il1tippmg, Soil-Vegetation differentiation.
Dedduou$~coniferous differentiation.!~-------~--------------.--~-------~
Covers the region between the blue and red chlorophyll
absorption bailds. "
Corresponds to the green reflectance of healthy vegetation;

I
I

0.52·0.60
{green)

3 0.63·0.69
(red)

The red chl()rophyl~.~b$orption baud for plant species
differentiadon. Less affeCted by~atmospherir.: attenuation. The
0.69!lm cutoff is below the region where vegetation
reflectance crossover take place, which can reduce thtl
accuracy of vegetation investigatiohs. Ferruginous lIlit,terais
can be separated ffom vegetation due to the high reflectance
of iron minerals. ';,1

I

4 0.76-0.90
(reflective-
infrared)

\Ic__
The lower cutoff is above, the vegetation reflectance. crossoVer
region from O.68llm to 0.75lJ.m. The red edge feature of "
vegetation with its unique high response compared to other

.(, terralli cover. Biomass surveys.
Water body delineation.

Sensitive to amount of water m plants. Used for vegetation
moisture measurement.
Snow-cloud-ice differentiation.I~----+-------~----+-"'"
Measures amounr of infrared flux emitted from surfaces.
Plant heat stress measurement,
Local geothermal activity mapping, Thermal inertia mapping,

r.-.,..._+- .......... l--0_th_e_1.'thennal mapping.

7 2.08-2.35 Discr~ination of geological rock formations. Effective fot
(mid-infrared) hydroilicnnai mapping.

5 1.55-1.75
(mid-infrared)

'II

6 10.4-12.5
(thermal-
infrared)

Table 7.1 Plincipal AppUcatlon of TM Sp~tral Bands

in rocks and soil~,of hydrous clay and micaceous minerals, where the absorption

minima vary for different minerals. Moist vegetation has a similar 1.6llm/2.2.jJ.m

contrast to "clay ..bearing" rocks and soils.

Radiometric resolution, or signal-to-noise ratio, is vital for "minerai species

mapping, ...Le, variability introduced by atmosphere and vegetation oftC;111hide
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weak mineral signatures, making extraction in the presence of noise virtually"
U

impossible. I,

In spectral terms there is no pixel size that can cope with with-in pixel mixtu:;cs

of minerals.

Since the geological world is inhomogeneous, quantitative conclusionsthrough

remote sensing are not aimed for. Geological image processing usually comprises

optimization of the imagery to support an essentially qualitative, photo-

interpretive approach. With remote sensing techniques it is possible to obtain

,certain structural and lithological information more efficiently than can be

achieved on the ground. Geological mapping with the aid of satellite data entails

the description of structure, lithological units and geobotanical relationships.

Lithological information obtained from LANDSAT images are typically derived

through:

a) Textural information, as defined from landform and drainage analysis, and

b) Spectral information, as displayed by the reflectance signatures of the

.various mineral assemblages present in the Utholo~ies.

The data ate generally obtained ~Qm the upper micrometres or millimetres of

the surface because of the high opacity and scattering characteristics of natural

materials. Some information concerning body properties, as opposed to surface

properties can be obtained if one analyzes the chaeges in surface temperature

that are induced by diurnal solar heating. This .property, the measure of the

resistance of an material to change its temperature in response to a change in

the temperature of its surroundings, is called the Thermal Inertia (P), and is
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defined as: (j

where k :::thermal conductivity,

p = density, and

c = specific heat.

Even this method allows measurements to a depth of less than 10 em (Goetz ar19

Rowan, 1981).

The spectrum can be divided. into several distinct segments: ultraviolet, visible

and near-infrared, short wavelength infrared, mid-infrared, far-infrared and
"

microwave. The ultraviolet region, below 0.4jJ.~ and the far...infrared and

microwave regions, above 15.0jJ.m, are not considered here" since the "data

acquired came from reflectances in the region between 0:45 and 12.5urn

(Figure 7.1).

The short wavelength infrared region, 1 to 3f.lom,provides more diagnostic

spectral information about the composition of minerals and rocks than the visible

and near-infrared regions. The region around 1.6~4m exhibits the hin:hest

reflectance for most rocks as it is near the middle between the ultraviolet-visible

iron absorption bands and a: strong fundamental OH- vibration at.2.74jJ.In(Goetz

and Rowan, 1981). Altered rocks containing clay with or Without a short

wavelength Fe:l+ absorption, displays a strong peak reflectance at 1..6fJ.In.'The

region 2 to 2.5tLmis also of interest because it contains sharp, diagnostic spectral

absorption bands which Can identify various clays, micas and carbonazes,

The emissive portion of the spectrum, between 3 and 151J.m,are of particular
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Figure 7..1™. S~tral and Radiometric Chanwterlsti(:~
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interest for terrestrial observation. Between 3 and 8IJ.m~pectra for various

minerals such as nitrates and sulphates can be found. The region beyond 8IJ.m

is of prime importance for geological applications, as spectral emittance,

variations provide a basis for distinguishing between silicate and non-silicate

rocks, and for discrimination among silicate rocks.

Because of 'the synoptic view of the data acquired through satellite, regional

morphological features are characteristically visible in any or all the data,

irrespective of' the window through which the data were acquired. Quite a

number of these alignments of features or lineaments.rare normally found to be

previously unmapped, irrespective of the depth of detail to which a particular

area was mapped. The reason for this is that the larger the scale, typically

1:50000 or 1:30000 with a synoptic view covering less than 7 km2 (aerial

photographs), the less the likelihood of recognizing a subtle regional feature

stretching for perhaps tens of kilometres, or even further.
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Lineaments are particularly important inmineral resource studies, since quite a

number' of ore deposits are localized along fracture zones.. The Barberton
r;_;

Mountain Land is a good example of this.

Several factors induence the.detection of lineaments. Features that trend parallel
()

u

to the illumination source are normally not so easy to detect as.those orientated

perpendicularly, therefore the angular relationship between thelinear feature

and the illumination source Is rather important.

A lower illumination angle is also preferred for the detection of subtle
("\

topographical features, however, ali LANDSAT is in a sun-synchronous polar

orbit, the only variation available is through seasonal change, since data

acquisition time is locally a constant throughout the year.

In the visible and near-infrared regions, the most diagnostic properties of rocks

are brightness (the average reflectance in visible and near-infrared regions),

spectral radiance, and the spatial distribution of landforms. Colour ratio

composites are used to display spectral reflectance differences in colour while

subduing brightness variations due to topographic slope.

Acid soil conditions, which characterizes manyhydrothermally altered areas, tend

to limit the vegetation cover. Some geobotanical associations are related to

regional lithological variations, whereas others, such as barren areas or certain

types of vegetation, are specifically related to anomalous concentrations of

metals (Brooks, 1972;Raines and Canney, ''1980).

The detectability of normal and transcurrent faults with respect to thrust faults
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\.\ .

differ considerably. While the first two are generally characterized by high angle
_. .. - . ", . '-", . ~I

slip planes, resulting in rectilinear surface trend,' the thrust faults correspond to \f
~)

low angle' planes with sinuous traces, the detection of which. is generally more
\,. '

difficult. Using band 7 (0.8-1.1 urn) yielded the best results. ()
"

Drainage systems (past and present) and their tectonic control are more clearly
,.

(- .
observable on the enhanced images. "Strike slip motion along.a lineament will

result in drag effects on the drainage panern, More densely vegetated areas,

consisting of natural vegetation almost exclusively, indicate depressions where

water may he available in greater abundance. The potential 'fo~ groundwater in

such areas are higher.

\'

\~

"';'\':~~:'ii

" ( \
The iit•._",esproduced by band ratioing, principal components transformation, and

canonical analysis provided little additional information useful in deri~#g the

final geological interpretation, according to Bailey ef al. (1982), in their study of

the Qaidam basin in China.

Most of.the information which contributed to the final geological interpretation

of the area was derived from the standard, contrast enhanced and edge enhanced

false colour images. The landform and drainage characteristics interpreted from
D

these images were the criteria most important in both lithological and structural

interpretation. Colour (tonal) variations expressed in images produced from

canonical analysis, principal components analysis and band ratioing, proved

useful in. deriving the final geological interpretation. Some of these variations
",,~I',

were particularly useful in resolving questions on lithological unit identity in

SOme areas.
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During processing the ™data for the study area, it was found that virtually all"

the procedures .used yielded information. Arguably the "results fr?m

computationally more expensive procedures were not necessarily significantly
'C

better or different to results possible through less expensive procedures.
)

7.1 Edge Enhancement

Edge Enhancement accentuates abrupt changes in DN from one pixel to the
u

next, thereby producing an image with sharpened edges between contrasting

areas. Such features are often topographically related and include lineaments

and drainage.

For this study edge enhancement was done irrespective of direction trough the

USe.of a filter with values equal to -i/a; where T = Total number of weights,

except for the centre value, which equals (T-l )/T.

T=25 Figure 7.2 Edge Enbance Kernel

..~048.04 -.04 ~.04 -.04
-.04 -.-.04' -.04 -.04 -.04
-.04 -.04 .96 -.04 -.04
-,04 ~.04-.04 ...04 -.04
-.04 -.04 -.04 -,04 -.04

-l/T=-O.04

(T-l)/T=O.96

The sum of all the .weights is equal to zero. This means that if the filter is

convolved with a uniform area of the image, the result is zero, and if the area

is non-uniform, the filter produces a non-zero result. The result of the filter is

added to the original image to produce the image with enhanced edges. The sjze

of the filter used for this study wa$:s x 5 (Figure 7.2),
\.,

(,!
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All the photographs of images'contained in this report is of edge enhanced data,

7.2 Band Combination Sefection

Experimentation revealed that band 5 or 7 in a three band colour combination,
" !~

together with bands 4 and. 3, does 110t show good discrimination between iron ~.

oxide.and vegetation. Using TMl, which alone does not diserimirrate between ~
;, j'" "'-'\

iron oxide and vegetation, in combination with TM4 and Ti~:.Jhfhebest original
.,

bands false colour composite image is produced. for detection areas of iron

minerals related to red soils (dcosta and Moore, 1989a).

Correlation analysis of Landsat ™ data for arid areas and laboratory spectral

data for various combinations of minerals "indicate that from the possible 20

band combinations; combination TM..147 maximally differentiates lithological

materials in most scenes, but that band combination TM-157 is preferable for

scenes in which hydroxyl rich minerals are prominent or of specific interest.

Among the possible 455 band ratio combinations, 3/1 d 5/4 - 5{1 ranks high for

optimal information display (Crippen, 1989) (Refer Table 7.2).

During this study it was found that using TM2 in preference to TMl]n: both
'IC

combinations as described-above yielded a slightly better product. Photo 7.1
;i\'\

displaysthe reddish hue typical of peak chlorophyll reflectance quite clearly over

the plantations in the area. Riverine vegetation is also clearly visible.As with

Photo 5.2 (Section 5.2.1), the histograms also show that only a small part of the

available DN range was utilized by the sensor. This is also the same for the

histograms for TM..247 (Photo 7.4).(~ote the bimodal character of bands TM3
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Photo 7.1 TM-234 on BGR with Au!0-2-Linear stretch

Photo 7.2 Histograms for Auto·2·Unear stretch on TM·234
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Photo 7..3TM·247 on BGR with Auto·2·Lintmr stretch

Photo 7.4 Histograms for Auto·Z·Linear stretch on TM·247
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and TM7 On these histograms,

Photo 7.3 displays the vegetation in. the moreJamiliar green tones, while the

~<information.Jrom the near-infrared TM4 and mid-infrared TM7 is represented

by the magenta tones. A comparison between the two phptographs clearly shows

that f6r vegetation studies Photo 7.1 is superior, while for the structural and

lithological content one would choose Photo 7.3.

7.3,' Band Ratioing

5/4 /' Argillic versus Fe2+
'ifl

... : .' .. '
\~;. '.

7/5 Argillic versus non-argillic--~,----------~I
3/4 Rocks versus vegetation

5/1 Fe3+ + Fe4+versus iron-free

4/7 Argillic versU$Fe3+

Table 7.2™ Ratios for Geological Applications

'The result of ratioing is to minimize the effects on scene brightness that are

caused by variations in topographic slope and aspect. Thus reflectance

differences between rocks, soils and other surface .materials which may be the
/J

result of compositional differences, are enhanced.'

The 1.55-1.75 "!lm wavelength region represents a reflectance peak for most

geological materials, while the 2.08-2.35 um region represents the famous clay
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;:~'and where hydrous clay and micaceous minerals abs9J~, theref0t:e· clay-rich
..j"

areas-can be enhanced witlI a 1.6/2.2 !LIn (TM5jTM7) ratio~{Photo 5.5, Section
\;

5.3.1). Carbonates and sulphates also exhibit some absorption in this region.

Shortcomings of the band ratio approach are that a haze correction may be

necessary for especially the shorter wavelengths before ratioing is done. It should

be noted that the influence of albedo on the formulation of the ratio is normally

ignored. If the desired results are of a qualitative nature only, the 'albedo

component becomes much less critical.

It should also be noted thal_~egetation will also appear bright in the ratio as the
II

spectral slope for ve&etatfon, due to leaf moisture effects, is similar b~tween the
\..;."'. II

two bands, Separations .er the vegetation Can be achieved by in~od,'~~jn3a
) _,

vegetation ratio, i.e, 0.83/0.66 !-LID (Photo 5.7) with the 1.6/2.2jirrf.iitfo.

It should be noted that the effectiveness of band ratioing decreases with

increased correlation between the bands being ratioed,

Photo 7.5.rusplays the ratio TM5/TM7, TM5/TMl and TM3/TMl on BGR. An

Auto Gaussian stretch was applied to the data. Note the orange patches

indicating some on-surface disturbance, mostly due to mining activities in the

area.

7.3.1 Band Ratios vs Difference

Since ratios such as TM3/TM1, TM4/TM3, TM5/TMl and TM4/TMl tends to

show only the widespread OCCWTenceof lateritic minerals, these ratios yield
\;
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Photo 7.s Ratio TM5/1, TM 5/1 and T:M3/1 through ag Auto Gaussian stretch,c

c~
limited results, Lateritic minerals are common in tropical environments, where

small amounts of lateritic products can be found even in soils derived from iron-

poor rocks.

A more suitable result can be obtained by using differencing instead ofratioing,

Similarly to ratioing, band differencing extracts spectral eoatrastv-ctween two

bands, but does it in a linear fashion. The resulting image can therefore be

linearly stretched without loss of information.

According to Crosta and Moore (1989aJ TM3 minus TMl is a good indicator of
"

iron oxide content. As these two bands have different average intensities and

contrast, the result of arithmetic subtraction of TMl'from ThI3 is dominated by
\\

the brighter image, in this case TM3, with a.mean DN of 11.88 and a standard

deviation of 6.15, against 8.36 and 3.76 respectively for TM1. Since the common
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spectral information are not totally eliminated horn the resultantimage, another

procedure must be used to obtain better results. This can be achieved though the

performance of a balanced contrast stretch (Lui and Moore, 1989) of]he1two

bands, prior to the differencing operation. This will allow a compensation for the

bias introduced by TM3, producing two almost linearly stretched images with the

same mean and value range.

7.3.2 Alternatives to Band Ratios

Using the clay ratio, vegetation will be highlighted with the genuine soil and rock

Clay features. Separating the two is difficult.

A spectral indices approach has been proposed by Elvidge and Lyon (1984),

where a regression of the 1.6 and 2.2 urn bands p; edicts an expected value in the

2.2 IJ.mband. This is subtracted from the actual 2.2 1J.n1band pixel value to give

a residual representing total clay and vegetation absorption .. The vegetation

component .is then removed by regressing total absorption against the

Perpendicular Ve:getation Index, where predicted PVl is subtracted from total

:?.2 1J.D1 absorption to leave a residual attribute to geology. The PYI image is the..

perpendicular distance to a bare rock-soil baseline in red against NIE, which is

determined beforehand,

During the course of this study various other simple and computationally cheap

procedures were tested. Photo 7.6 displays the result of an addition operation on

BGR. TMl was; added to TM2, TM3 to TM4, and TM5 to TM7. An

Auto-z-Linear stretch was applied. Comparing this photo to Photo 5.1 and

Photo 7.3, the increased amount of information available is clear. Moving to



Photo 7.6 TM(1+2), T1\'1(3+4) and TM(5+7) with Auto·2·Linear stretch on BGR

Photo 7.7 TM(111<2),TM(3*4) and TM(5*7) on BGB.
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Photo 7.8 TM(1*2), ™,(3*4) and TM(5*7) with Autn Gaussian stretch O~l BGR
..============================

Photo '7.9 Histograms tor Auto Gausslan stretched multiplied TM bands



Photo 7.'J, there is a noticeable decrease in amount of information visible in the

forested areas, while the non-forested areas d~~play an increase in contrasts and

therefor an increase in visible information. This view was derived through the,

multiplieation of consecutive pairs of Auto Linear stretched TM.bands.

When a second stretch (Auto 'Gaussian) Was applied to this view, Photo 7.8
resulted. The gain in informationf~er the forested areas is quite drastic, but the

price is the loss of definition over the non-forested areas. The amount of shift

due to the stretch is clear. from the histograms pertaining to these two

photographs (Photo '7.9).

7.4 Principal Components Transformation
i.l

Principal components nansformation orytImizes the usc of remotely sensed

imagery by ret],...)ving the correlation which is inherent to many sensors. Major
r.

drawbacks of this technique include the fact that colours in the peT colour

composites have no simple relationship to spectral features from the original

bands.

'~~::\
The lower order components (PC1-3) often represent nothing more thai(a

topographic enhancement of the original data (Photo 5.13). Photo 7.10 is an..~<\
unstretched principal components combination 234 on BGR, while Photo 7.11

is an Auto ...2...Linear stretched combination 534 on BGR. The sharper appearance

of Photo 7.11 is the result of the applied stretch.

Note the yellowish colour or halo around the Barbrook fault (refer to Photo 3.1)
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Photo 7.10 Principal Components 2, 3 and 4 on BGR

Photo '1.11 Principal Components 5, 3 and 4 through an Auto·2-Linear stretch
-i;:=
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and Joe's Luck Formation, which is related to the ironstone and ferruginous

shale associated with these features. Other surficial disturbances are also

noticeable, for example both Fairview and Clutha mine slime dams appear very

prominently on these views. The same with Sheba and Agnes mines.

Since the least correlated features are mapped to the higher order components,

the features of most interest for mineral exploration are normally lost between

the noisewhich, being totally uncorrelated, are also mapped to the higher order

components. This causes the standard pcr to be disregarded for mineral

exploration applications.

Applying a decorrelation stretch (Rothery, 1987) is one way of minimizing the

problem of colour distribution. This technique makes effective use of stretching

the principal components to give it a spherical distribution in PC feature space,

Photo 7.12 Decorrelation stretch Combinations 645 with Auto Gaussian stretch



followed by the inverse of the rotation used in the PCT, in order to produce a

three band colour composite with a complete range of colour variations on the

original axes. The main advantage of decorrelation lies in retaining the same

colour relationships as the composite using the three original bands. The

disadvantage is that it also uses information from only three spectral bands.

Crosta and Moore (1989a) found that using hands 1, 3 and 4 as input for

decorrelation stretching resulted in the clear enhancement of iron rich soils in

relation to vegetation.

In another approach, followed by Rothery and Francis (1987), the first principal

component is replaced by an uniform DN image, before applying the inverse

transformation. This method removes most of the additive atmospheric effects,

since PC1, which is analogous to intensity and luminosity, is parallel to the

Photo 7.13 C·stretch Combinations 423 viewed through an Auto·2·Linear stretch



principal axis of the probability density function of the image. The resultant

Colour stretched displays areas of identical composition but different slope

aspect more consistent in colour than is possible through other methods if an

atmospheric correctibn is not carried out on each band.

For both Photo 7.12 and Photo 7.13 all 6 TM bands were utilized in the

principal components transformation, Photo 7.12 displays combinations 654 as

viewed through anAuto Gausstaii stretch on BGR. For the C-stretch, Photo 7.13,

PCl was replaced with a DN 128 grey image before the inverse transformation

was effected. The C-stretch is viewed through an Auto-Z-Linear stretch. Note

,\that this view also enhances the ferruginous shale and ironstone, similar to

Photo 7.11, while the D-stretch (Photo 7.12) does not

7.4.1 Feature Orientated Principal Component Selection

Crosta and Moore (1989a) described. an alternative approach to principal'

components, which is used for targets from which the theoretical spectral

response is known. This technique of "Feature Orientated Principal Component

Selection" allows for the identification of components which concentrate spectral

information due to specfficsuperfieial targets. The eigenvectors used to calculate

the principal components are examined, and each PC image is related to the two

or three original bands which contributed fhe most data to it, Specific PC's can

then be selected to display the desired features, based on the major

contributions, both negative and positive, from the original bands most. likely to

display the desired target.

As expected, PCl does not reveal any significant spectral feature, since it is
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composed of a positive mixture of all the bands, •in this case with a greater

proportion of TM5. showing topographic shadowing and albedo information. PC2

is dominated by the contribution of TM4, showing spectral response due to

vegetation; while PC3 is similar to PCl, in t~at several original bands contribute

in balanced proportions. Detailed analysis of how the PC's .are formed reveals

spectral information due' to iron Oxides.

...•...•. 6.1%

I . PCl

7.6% 4.4% 13.0% 20.0% 50.0%

1.0% 11.0% 12.5% 4.8%

H5.6% 19.3% 24.2% (~)39.6%

61.2% 12.7% (-)7.8% 1.2%

5.7% (~)22.6% 4.5% 1.1%

(-)22.1% 21.4% (-)31.0% 3.3%

8.21% 2.07% 1.34% 0.31%

(-)11.7%TM3 13.5%

11C! '.'> fPt f.;i ; .J~~6\ ;'iftliii'; < l!Ql i ~
(-)J9.0%

59.3%

TMl .

1.1%

~4 6.0%
fr---------I---
TM5 44.0%

(-)2.5%

"

TM7 22.8% (-)1.0%

% 87.99%
Variance' of

, Total

0.08%

Table 7.3 Contributions to Frlncipal Components

A~ iron oxides have a high response in TM7 and TM5, and low in TM1" the

component with the biggest contribution from TM5 and TM7 and.the lowest

from TM1, would reflect the most information about the presence of

goethite/hematite in high digital numbers. For this area and data set, PCl seems

to fit the bill best. Similarly iron oxides will be represented by low digital

numbers in PC2 and PC4. This result is in sharp contrast to that of Crosta and

Moore (1989a), which reflected high ON's in PC4 and low DN's inpe5 and PC6.

The application of feature orientated principal component selection to the test

area seems to be a good way to display spectral features due to the goethite and
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hematite in soils derived from the greenstone volcanics. However, -due to a

te,e:","kal problem, it was not possible to include the photograph in this report.
"_,':' )

7.4.2 A Fourth Dimension in PC Colour Composites,

iJ

Since the highest order PC's concentrate most.of the noise from the data set, a

colour composite of the 3 higher order pes usually turns 'out to he inappropriate

for visual interpretation, The complete lack of terrain mform~.tionrep\esentillZ

topographic shadowing and albedo, which is ~electivelycpncelltrated in'the first

PC,.does ngt allow interpretation of geologic structures and precise lOI.;~tionof

areas containing anomalies. Crippen (1988) developed a technique whereby.four

statistically independent images generated through principal comp9nent

transformation are combined to form a single colour composite image. The

technique consists of selecting three components other than PC1, multiplying

each of these by,PC1, rescaling to fit the display range 0-255, and assigning each

result to an additive primary colour.

Using this technique to combine the three higher order components with PC1,

results in the spectral information from the high order PC's being retained as

hue and saturation (chromaticity) and the terrain information from pel

controlling the intensity. This combination represents almost 90% of the total

scene variance from the 6 bauds.

Taking the process one step further, the square roots of the principal

components were taken beforemultiplication. Photo 7.14 is the result after the

square root of pct was multiplied with the square roots of PC2..4.
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Photo 7.14 Square roots of Princ.ip~J Components multiplied

BLUE
GREEN
RED

An Auto-2-Linear stretch was applied too the dataset before display .. Again,

another way of viewing the same image.

7.4.3 Directed Principal Component Analysis

While vegetation can be used to indicate both gf;" Jcical and biogeochemical
\

) \\
anomalies, for most geological studies its effects '~~ a distraction. The method

of "DirectedPrincipal Components Analysis or DPCA" (Fraser and Green, 1987)

was tested on Airborne Thematic Mapper data, and found to be successful for

substantially reducing the effects of vegetation due to tropical savannah

woodland with 50 tolD per cent vegetation cover. For areas with more cover,
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the results may be less definitive.

Ferric oxides and vegetation exhibit strong absorption features in the visible and

near-infrared spectral region (0.35-1.1 urn), while various phyllosilicates,

carbonates and sulphates, together with both dry and green vegetation, are

characteristically responsive in the short wavelength infrared region (1.1-25 ~m).

Band .ratio analysis is a traditional and effective method for\~etecting spectral
"~~~

'...

differences between bands of in!.~agedata. The pixel brightness values of two

spatially co-registered bands are expressed as a ratio, and the resulting values re-

scaled for display purposes. Band ratios are particularly suited to those data sets

where the numerator band is chosen to monitor a little-varying standard, whereas

the dominator .band maps the variability of a specific spectral feature. Overall

brightness differences are effectively removed by ratioing, It is however difficult

to decide whether changes in the denominator, numerator or both are

responsible for the remaining variability.

The 0.83/0.66 urn serves as an excellent vegetation index. The strong

characteristic chlorophyll absorption of green vegetation at 0.66 11m. and the

high infrared plateau at 0.83 urn mean that few other materials give as high a

ratio.

c'

For geological applications images of 1.65/2.22 IJ.m(TM7/1'M5) and 0.66/0.45

urn (TM3 /TM1) band ratios are commonly used to enhance clays and iron

oxides, respectively.

Since pixels represent mixtures of reflectances, considerable confusion' exist as
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r;,
to which contributing reflectane« is responsible for which component

characterization. The smaller the pixel, the ..less the likelihood of a variety '~f

cover types being present.

However, except for cases 'f,nere the sensots are flooded by very strong
'/

reflectance emanating from a single source, pixels will almost always represent

a mixture of reflectances. Thus a method is=needed to reduce the effect of

vegetation.

The aim is to direct a PCI' at two specific band ratio images. Band ratio images

are used because they are theoretically easier to interpret and are already

decorrelated for albedo.

Input ratios are selected on the basis that one ratio contains information

regarding the component of interest (i.e. a geological discriminant); however, its

effectiveness is lessened by the similar responses of another component (i.e,

vegetation). The second ratio contains information about this spectrally
';

interfering component (i,e. a vegetation index) ..i

As long as there are no additive path radiance effects, the ratios calculated frorn'

the raw digital number (D.N) values will be. consistent with each image and

proportlonal.to tI).!_eradiance ratios, As the DPCA.uses scene statistics,. and re-
~~-'.-~.. "-,_-

scales using the standardized PCI' method, Lite results 'wJ1 be independent of
..

whether raw DN or corrected radiances are used. Unless path radiance effects

are very large, they shculdrrot have a marked effect on this procedure. This is

because it is the correlation structure that is important, not the absolute values
.\

of the ratios. As the correlation is determined .fr~)il1th~! data themselves, the
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Photo 1.15 Directed Principal Component 1 Faille Colour Composite

Photo 7.16 Directed Principal Component 2 Fnlse Colour Composite
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procedure j.s in a sense self-calibrating,

The problem being addressed is one of spectral mfxtures: mixtures of substrate

and vegeta'ion frpm which we would like to separate substrates that are

absorbing from those that are non-absorbing in the 2.22p.ln band, The DPCA

method assumes that the axis of major variability (i.e, DPC1) in the space

defined by the two input band ratlos is dominated by mixtures of vegetation and
<'

unaltered substrate. The high degree "of correlation between the 0.83/0.66 11m

and the 1.65/2,22 p.nt band ratios, present because of vegetation, results in the

vegetation and non-vegetation (i.e. clay) components of the 1.65/2.22 iJ.In band

ratio being separated into DPCl and DPC2, respectively.

Photo 7.15 is the view of combination 1 of the directed principal components

transformation, after an Auto ..2~Lineal'stretch was applied. The flooded pixels
i)

in the areas covered by fore ,ts and other dense vegetation are strongly

contrasting with the darker pixels in the rest of the image. Photo 7.15 represents

the vegetation "stripPled-off"from Photo 7.16, which is the component 2, as

viewed through an Auto Gaussian stretch.

.. " C"\

Note how structural and ev~n-Uthologi¢al information were "lifted out" from

underneath the plantations. During the research an attempt was made to

separate the plantations from the rest of the image through the use of various

masks. The results were very similar, except for two things:

1) a definite edge fanned between the area covered by plantations and the

rest of the image, and

2) the process involved a similar number of steps but which took at least three
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times the disk space and ti~e to p~rfonn.

Photo 7.11 is a normalized vegetation index, viewed through a Auto Mean

stretcht.

NY! ;:: [1Y7 ~ TM5 + 1~7] x 20 "
[TM7 + 7M.5]

Utilizing this vegetation index as the common denominator for the 1. to 1

principal components transformation, produces a rather different result .

Photo 7.18.

Comparing this to Photo 7.16, the difference is startling. This is it typical result

of overprocessing; rather a mess, with very little information decernable,

Using the square. toot and multlplicative technique similar to the one described

earlier (Photo 7.14) 011 the defoliated dataset, the resultant view (Photo 7.19)

show a slight decrease of information visible over the forested areas. Since the

mathematical function. utilizes PCl from a normal 6 band principal components

transformation as the common denominator

fDp~
VPCt x {DPC2(l)

VDPC2(l)

BLUE
GREEN
RED

the thicker vegetation is to be expect~O.The resultat1.tview, as seen through an
, ('l,

Auto Gaussian stretch, is computattonfU!y not Y~lstifi~ble.'
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Photo 1.17 Normalized Vegetation lode)! viewed through an Auto Mean stretch

Photo 7.18 Directed Prlndpal Components using Normalized VegetatioQl Index
=== .""-



Photo 7.19 Multiplicative technique applied to Deroliated view

7.4.4 Further Processing

Processing does not have to stop after principal component transformation.

"Where the transformation is used as a data compression technique, it is
\,

considered to be part of the pre-processing stage and therefore most of the

processing for content is still to follow. It this case principal components

transformation was not used for data compression, although enhancing and

combining the various components of features present in the various bands into
only a few bands is What data compression is all about. The, aim.;,was to

redi?tribute information throughout the six bands in such a way that false colour

combinations may reveal features ~lltlsfar bidden (See Ph9to 7.10).

Using Photo 7.6 (Section 7.3,.2) as input dataset, (a step 1), a three ba.nd

principal components transformation resulted in Photo 7.20. As with the



Photo 7.20 Step 2: PC·123 frOID pair-wise 1'M bands with Auto Lineal" stretch

Photo 7.21 Step 3: Inverse PCT with DN128 grey as PCI with Auto Linear stretch=============================================
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principal components combinations' PC-234 (Photo 1.10) and PC-534

(Photo 7.11), the iron bearing units can be traced, even on this scale. It is quite

possible that an enlargement of this view to, say, 1:100000 \\111show more

information than either of the two PC combinations on the same scale. Again,
"

the slightsmoothing of information over the forested areas is to be expected, For

step 2 (Photo 7.21) the inverse transformation was effe;ctedwith PCl being

replaced by a 128 ON grey image. Using this as input for a HLS colour

transformation again resulted in a colour flooded view, as can be seen on

Photo 7.22. As no 'stretch was used for this view, an Auto-z-Linear stretch was

applied to see if contrast stretching could soften the harsh colours somewhat.

The rather surprising result, Photo 7.23, displays quite a bit of detail over the

forested areas, ifone consider that neither of these steps have been submitted

to the defoliation routine used previously(Section7.4.3). Transforming the Auto-

2·Linear stretched fILS colour space back into :RGBcolour space lessened the

information over the forested areas, but greatly enhanced the amount of

geologicalinformation visible, as can be seen on Photo 7.24.Note that no stretch

wits applied for this view.

Changing the order of processing routines utilized also varies the output

markedly, Starting WIth the same Photo 7.6, a similar principal components-
,," ,. 'l..;,

colour transformation set of routines resulted in Photo 7.25, a slightlyless bright

but possibly more \lsable view. The set and sequence of routines applied to the

starter set consisted of: i;

1)/Principal components transformation of the three input bands, displayed

without any contrast stretch;

2) RGB to IHS colour space transformation, again without a stretch;
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Photo 7.22 Step 4: HLS transformation viewed without stretch

Photo 7,23 Step 4: HLS transformation viewed through 1'\'.1 Auto·2·Linear stretch
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Photo 7.24 Step 5: HLS to KGB t~nsformation viewed without stretch

Photo 7.2.5 Inverse peT on IHS transformation of three PC combinations
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3) An inverse colour transformation, IRS to RGB, but wi1P th,e intensity
~",]l

component replaced with a 128 DN grey image and no stretch, and

4) An inverse principal components transformation using the transformed

RGB colour space as input.

The results were viewed through an Auto Gaussian stretch. On this view the

ferruginous formations is displayed as dark bands.
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8. Conclusions

Scanning through the photographs contained in this report, on~ is struck by the~

diversity of the views (photographs) present. It is clear that even simple

operations like contrast stretching and edge enhancement cause a marked

improvement in the visual result, as can be seen from Photo 5.12 and Photo 5.13,

as well as the accompanyinghistograms (photo 5.14), among others. Techniques

like supervised and unsupervised classification does not always live up to

expectations, as can be seen in Photo 5.19.

Although the use of the word beautify in the same breath as image processing

techniques (Section 5) may be construed as being insulting to the remote sensing

community at largeJt should be pointed ousthat the more pleasing the picture

presented, the more likely the use thereof by laymen. Having said that, the

author must immediately concede that it is often not these pretty pictures that

supply the good solid information which further scientific knowledge. In actual

fact, quite a bit of additional information gathered during the course of this

study had very little to do with the beauty rating of the views.

Enhancing for structural features proved relatively easy.Edge enhancement using

a 5 x. 5 kernel produce good results without overprocessing the data (Photo 5.1).

Viewing different band combinations also enhanced ~·eatur~.t_Jlifferent1y,but
\'

thereis only so much information that can be extracted without removing the

inherent correlation between the bands, Applying principal components

transformation, either as a data compression technique, or as a pr6~essing
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technique in it's own right, the results are still qualitative and worth very little

unJess interpreted by someone. Comparing the Csstretched image, combination

145 as viewed through an Auto-z-Linear stretch (Photo 8.1) to Photo 5.13, it is

(":learthat each of these views has something to contribute to the bigger' picture.

Photo 5.13 shows less lineament information than Photo 8.1, but it does show the

ferruginous lithologies associated with the Barbrook fault and Joe's Luck

Formation.

Since plantations covered areas critical for identification of lithological

boundaries, a concerted effort was made to find, .('~eductor develop techniques

which would enable one to at least minimize the contribution of the vegetation

component to the pixels being investigated. Utilizing various techniques, ranging

from masking operations followed by differential contrast enhancement to the

directed principal components approach, and leading to some quite drastically

Photo 8.1 C·stretch CombiJr)tion 145 viewed through an Auto-Z-Linear stretch
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Photo 7.1 and Photo 7.15).
i

;'"

different results, it was possible to enhance and isolate areas covered by dense

vegetation, including both plantation and riverine fo~ests (re~er Photo 5.7,

As was to be expected, the production of one single view which would enable

near complete visual interpretation turned out to be pretty much impossible, The

best single view result came from the addition of two of the directed principal

component second combination bands (Photo 8.2). Again, this is only a better

base for visual interpretation.

As the pixel size of LANDSAT TM is 30 m, ~clarging these photographs to a

scale of 1:50 000 produce," i

dowrrto a 15 OT 10 m pix,,~

"i.xelated'~image. Resampling the dataset

~ev.}.t.;."t~·{'!dramatically, but it also
"

Implies an accuracy which th, .ave,

Photo 8.2 Two Directed PriT"'CipfJComjl)onent second combination added together
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Deciding which of the procedures tested during this study resulted in"

enhancements which could be justified with regards to computational expense,

.the foremost enhancement came from the directed" principal components

transformation (Photo 7.16). Multiplying the square roots of PC's produced

acceptable results, but this was also partly att~inable through band selection of

principal component combinations. Sitiularly D-stretch (Photo 7.12) and

C~stretch (Photo 7.13, Photo 8.1) algorithms resulted in usable 'views.

Relating the views to the geology show a definite increase in information when

compared to the existing published maps (Photo 3.1). Lineaments ~,th a
northwest-southeast strike dominate the processed views, with quite a number

of northeast-southwest trending lineaments also visible.

After comparing these views with the geological map, it is clear that some of the

linear features are net represented to their fullest extent on the map. Most of

these features seem to be somewhat larger than indicated. Some of the shorter

northwest-southeast trendmg dykes seem to be just parts of the same dyke, for
.-:/

example the dykes to the southeast of the town, stretching over a greater

distance than indicated, that is, from the Mountain Land right through into the

Kaap Valley Pluton (Photo 5.3, Section 5.2.2.1.2 and Photo 7.20, Section 7.4.4),

Some of the northwesterly trending Valleys to the southeast or the Saddleback

fault show distinct evidence of structural control (Photo 7.16, Section 7.4.3),

however, none are indicated on the geological map,

Since a large part of the Saddleback syncline and the associated faults are

covered by commercial forests, these features turned 011t to be less easy to trace
\'J
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through. In this case the illumination angle. also played a Paltt as' ~henorthwest

trending features are quite visible, regardless of their size.

(I

The outlines of both the Eureka and Saddleback synclines can be traced on

more than one view (Photo 7,6, Sectiono7.3.2 and Photo ,$.12, Section 5.3.2.1),

but the more complex Makonjwa and Emlembe syncliaoriums are not visible.
,;

Some Ilthological delineations can be made, but any interpretation of this nature

must be verified with fieldwork.

,-,Enhancing for iron content uti!iz:ing the-ratio TM5/1 produced disappointing

results, however, ferruginous shale and ironstone formations were highlighted

through the use of PCI'. Viewing ~hePcr~534· combination, (Photo 7.11), the

yeUowish.tinge"ihighlightmg the Joe's Luck F()rma~ion, ~ well as the Barbrook
t-:

fault (associated \')~ded ironstone) is quite clear. The same colour shading in
",. .. ,.

other areas is probably also due to"iron content, but this has to be verified with

fieldwork.

\
\

Taking all the-results, excluding the computationally Ul1jl.l~)tifi~pleresults, into

account, is the only way that most of the information contained in the datasets

call be extracted. Utilizing a big enough spbset of these procedures will ensure

informed decision makillg within a reasonable timeframe, and often at a fraction

of the cost of a regular exploration budget.
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