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Abstract

Supervising Professor: Roberto Pirrone

In this dissertation a new approach for non-rigid medical im-

age registration is presented. It relies onto a probabilistic framework

based on the novel concept of Fuzzy Kernel Regression. The theoric

framework, after a formal introduction is applied to develop several

complete registration systems, two of them are interactive and one

is fully automatic. They all use the composition of local deforma-

tions to achieve the final alignment. Automatic one is based onto the

maximization of mutual information to produce local affine aligments

which are merged into the global transformation. Mutual Information

maximization procedure uses gradient descent method. Due to the

huge amount of data associated to medical images, a multi-resolution

topology is embodied, reducing processing time. The distance based

interpolation scheme injected facilitates the similairity measure op-

timization by attenuating the presence of local maxima in the func-

tional. System blocks are implemented on GPGPUs allowing efficient

parallel computation of large 3d datasets using SIMT execution. Due

to the flexibility of Mutual Information, it can be applied to multi-

modality image scans (MRI, CT, PET, etc.).

Both quantitative and qualitative experiments show promising results

and great potential for future extension.

Finally the framework flexibility is shown by means of its succesful

application to the image retargeting issue, methods and results are

presented.
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Chapter 1

Introduction

In the current clinical setting, medical imaging is an umprescindible component

in a large number of applications throughout the whole track of events. It is not

required just for diagnostic purposes, but it is equally prominent in the plan-

ning, execution and evaluation of surgical and therapeutical procedures. There

exist two categories of medical imaging: anatomical and functional. Anatom-

ical, exhibiting mainly morphological structures, include X-ray, CT (computed

tomography), MRI (magnetic resonance imaging), US (ultrasound) and others

such as laparoscopy and laryngoscopy. Other can be derived from the previous,

such as MRA (magnetic resonance angiography), DSA (digital subtraction an-

giography derived from X-ray), CTA (computed tomography angiography), and

Doppler (derived from US). From the other hand, functional imaging, provides

information about the metabolism underlying anatomy, and include scintigaphy,

SPECT (single photon emission computed tomography), PET (positron emission

tomography) which belong to the nuclear medicine image modalities, and fMRI

(functional MRI). Other additional modalities exist, but they are poorly used or

are currently in a research state.

Since information gained from two different clinical tracks are usually comple-

mentary, proper integration of merged data can be desired. The first step of such

integration, which is the spatial alignment of the datasets, is referred as registra-

tion.

In addition to different modalities, the datasets to be aligned can be provided

by sequential acquisitions too. This can be useful to determine the variations of

1



1.1 Motivation and goals

some structures during time, for example due to the effects of a therapy, or pre-

and post-intervention imaging.

Image registration aims to obtain the best possible spatial correspondence be-

tween misaligned datasets, namely the floating (or moving) image, and the refer-

ence (or fixed) image. This procedure is also useful to correct distortions induced

by magnetic interferences with the acquisition equipment signals or the ones due

to patient’s involuntary movements such as heartbeat or breathing.

1.1 Motivation and goals

Listing the benefits of systems related to diagnosis support is a trivial task, since

the importance of precise and accurate diagnosis is obvious. Among these, med-

ical image registrations systems are versatile and can serve to several goals.

• Gain additional information from the data-fusion on multi-modal scans of

the same patient. This allows more accurate diagnosis and internvent plan-

ning for treatment by the clinician in order to obtain a detailed represen-

tation of patient’s anatomy.

• Observe the changes in the patient’s scans after a time period, due to a

therapy or surgical operation.

• Map the anatomical structure of the patient to an atlas in order to evaluate

more easily the morphology.

• Compare different heterogeneous datasets to accomplish several operations,

such as Content Based Image Retrieval.

The goal of the project is to design a generic framework and implement systems

for multi-modal brain images registration. Care is devoted to efficiency using

optimizations and parallel computer architectures.

2



1.2 Fuzzy Kernel Regression for Registration

1.2 Fuzzy Kernel Regression for Registration

The approach followed in this work for elastic image registration is based on the

hierarchic composition of local transformations. Regions of the floating image are

locally aligned to the reference image and the global transformation is recovered

blending the registered subimages. The method used for such composition is the

”Fuzzy Kernel Regression”, a novel technique for regression based onto two well-

established pattern recognition concepts: fuzzy c-means clustering and kernel

regression. Dense c-means memebership values (called membership maps) are

used as equivalent kernels for the regression procedure. In this way kernel shapes

are computed adaptively to the known data points without any optimization. The

whole framework is set up into a probabilistic context. Due to its flexibility it

represents a general basis for the construction of registration systems of different

nature.

1.3 Contributions

The framework, formally stated, can be used for image registration and other

regression- or interpolation-based purposes as well. It was applied to design and

develop several registration systems, which have been tested both quantitatively

and qualitatively to assess their effectiveness and performance. In addition, due

to the extremely intensive data-based nature of such procedures, critical imple-

mentation issues were faced using GPGPU-based parallel solutions. The main

work result is a general reusable framework and a set of systems. In addition, the

building blocks used, such as fuzzy kernel regression, GPU-based fuzzy c-means

and interpolation scheme, were extensively tested and individually evaluated. As

a result, they can be plugged into other systems to improve their performance.

This versatility is demonstrated with the application of such concepts to other

image processing problems, and the succesful case of content-aware image resizing

(or retargeting) is presented.

Resuming, the work done consists in the following:

• Fuzzy Kernel Regression (FKR) framework statement: the theoric

basis of the concepts involved in this dissertation.

3



1.4 Publications

• Three image registration systems:

– Simple landmark based (SLB): simple and straightforward registration

system deriving from FKR formulation.

– Improved landmark based (ILB): improves the previous using a region-

wise approach for registration.

– Automatic area based (AAB): fully automatic registration system based

on Normalized Mutual Information maximization.

• Additional optimization and improvements: several tuning and opti-

mizations are made to keep computation of very large datasets affordable

and efficient.

– GPUs-based implementations : Mutual Information estimation and Fuzzy

c-means clustering are implemented using GPU devices.

– Further operators enhancements : additional improvements are devoted

to most used operators.

• Application of FKR to retargeting: FKR framework is tested on dif-

ferent image processing problems, the case of retargeting is reported.

– Retargeting system design and implementation: formulation and real-

ization of a retargeting system based on linear optimization and FKR.

– Web implementation: implementation of the system as a web service

transparent to the developer.

1.4 Publications

During the Ph.D. course, several works related to this research activity were

published in the field of image processing and medical imaging:

• Medical Image Registration: interpolations, similarities and opti-

mizations strategies - R. Gallea, E. Ardizzone, R. Pirrone, O. Gambino -

CBMS 2010 - IEEE International Symposium on Computer-Based Medical

Systems, Oct 12-15, 2010, pp. 72-77, ISBN 978-1-4244-9166-7

4



1.4 Publications

• Effective and Efficient Interpolation for Mutual Information based

Multimodality Elastic Image Registration - R. Gallea, E. Ardizzone,

R. Pirrone, O. Gambino - ICCV 2009 - 2009 IEEE International Conference

on Computer Vision, Sept 27-Oct 4, 2009, pp. 376-381, ISBN 978-1-4244-

4442-7, DOI 10.1109/ICCVW.2009.5457677

• Multi-modal Image Registration using Fuzzy Kernel Regression -

R. Gallea, E. Ardizzone, R. Pirrone, O. Gambino - ICIP 2009 - 2009 IEEE

International Conference on Image Processing, 7-10 Nov. 2009, pp. 193-196,

ISBN 978-1-4244-5653-6, ISSN 1522-4880, DOI 10.1109/ICIP.2009.5414220

• Fuzzy Smoothed Composition of Local Mapping Transformations

for Non-rigid Image Registration - R. Gallea, E. Ardizzone, R. Pir-

rone, O. Gambino - ICIAP 2009 - 15th International Conference on Image

Analysis and Processing, LNCS 5716, Sep 8- 11 2009, pp. 777-786, ISSN

0302-9743, DOI: 10.1007/978-3-642-04146-4 83

• Fuzzy C-Means Inspired Free Form Deformation Technique for

Registration - R. Gallea, E. Ardizzone, R. Pirrone, O. Gambino - WILF

2009 - International Workshop on Fuzzy Logic and Applications, LNCS

5571, Jun 9-12 2009, pp. 148-154, ISSN 0302-9743, DOI 10.1007/978-3-

642-02282-1 19

• A combined Fuzzy and Probabilistic data descriptor for distributed
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ISBN 978-1-4244-7993-1, ISSN 1522-4880

1.5 Dissertation outline

The contribute of this thesis regards the design and the development of a general

framework for medical image registration, called Fuzzy Kernel Regression, and

some of its applications. Such dissertation covers several topics, regarding geo-

metrical transformations, similarity metrics, optimizations and interpolation. In

addition, the same framework has been succesfully applied to another different

problem of image processing: content-aware image resizing. Extensive validation

and evaluation are given for the described methodologies.

The thesis is divided as follows: after this indroduction, in Chapter 2 the image

registration problem is discussed and its state of the art is presented. In Chapter

3 the Fuzzy Kernel Regression framework is presented from a theoretic point of

view, while in Chapter 4 its applications are described in detail. The results of

these systems and methods are discussed in Chapter 5 both from a quantitative

and a qualitative perspective. In Chapter 6 is shown how the framework can be

applied to other problems, in particular the case of content-aware image resizing

is presented. Finally, conclusions and future work are stated in Chapter 7.
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Chapter 2

State of the art

The problem of Medical Image Registration has been widely studied in the last

decades by teams of researchers, and it has been faced with a variety of ap-

proaches, both for the general case and for specific images types. However, there

not exists a gold standard for such challenge, since the data involved and the

purposes followed can be extremely variable. For these reasons a formal problem

statement and a catagorization of the image registration problem according to

different criteria are given.

2.1 Image Registration problem

The problem of Image registration can be regarded as finding the transformation,

generally defined by a set of parameters, that best maps one dataset (namely

the input, floating or moving image) onto the other (namely the target, base

or fixed image) bringing them in spatial alignment. At the end of the process,

corresponding pixels/voxels will have the same positions in both images/volumes.

Formally, given a reference image R and a floating image F , the optimal spatial

transformation T should be such that applying T to F , the result of the distance

operator E(·) (i.e. the error) is minimum (2.1).

T ∗ = argmin
T∈Γ

{E (T )} . (2.1)
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2.2 Registration classes and taxonomies

In some cases the distance term can be the composition of a data term Ediff (·)
and a regularization term Ereg(·) to prevent the introduction of unwanted trans-

formations. In this case 2.1 becomes as follows:

T ∗ = argmin
T∈Γ

{E (T )} = argmin
T∈Γ

{Edis (R,F ◦ T ) + Ereg (T )} . (2.2)

The data term can be designed in different ways, generally is an optimization

operator of some similarity metrics between the two images.

2.2 Registration classes and taxonomies

Since Image Registration problems span into a broad set of categories, some clas-

sifications need to be made. In particular registration algorithms can be divided

in four classes:

• Different viewpoints (or multi-view analysis): The same object or scene is

acquired from different viewpoints: the goal is to obtain a larger view or a

3d representation of the object.

• Different times (or multi-temporal analysis): Images of the same object are

acquired in different times, perhaps under different conditions. The aim is

to evaluate differences between two or more acquisitions.

• Different sensors (or multimodal analysis): Images of the same object are

acquired by different sensors, for example magnetic resonance (MRI), com-

puter tomography (CT), positron emission tomography (PET), etc.

• Scene to model registration: images of a real scene and its model are regis-

tered. The model can be a synthetic representation or another scene with

similar content. The purpose of this method is to find the acquired image

in the model and compare them.
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2.2 Registration classes and taxonomies

In addition, each method should take into account the objects to be registered and

the characteristics of the deformations to be recovered. Furthermore, even more

elements as noise corruption should be considered too. Generally, a distinction

between feature-based and area-based approaches is operated, depending on how

much information is used for the registration task, in the first case just a sparse

information subset (the features) is used for recovering the mapping, in the latter

all of the image information is taken into account. Nonetheless, every strategy

generally uses four steps, with the exception of the first one. These steps are the

following:

• Feature detection: salient and unambiguous objects such as corners, inter-

sections, contours, etc., are manually or automatically detected in both the

input and reference image. This step is omitted in area-based strategies.

• Feature matching : the correspondences between the images are found by

means of matching the previously detected features. For this purpose, there

exist several feature descriptors and similarity measures based on features

appearance or informative content. Since area-based strategies use all of the

image information; such methods use a dense features map simply defined

by all of the pixels/voxels in the images.

• Transform model estimation: after the features are matched, this infor-

mation is used to recover a transformation function, which defines the de-

formation needed to map every pixel/voxel of the input image onto every

pixel/voxel of the reference image. Such a function is determined by choos-

ing its type and defining the value of its set of parameters.

• Image resampling and transformation: once the deformation estimation

is achieved, the mapping function is applied on the input image. Since

this mapping generally brings the pixels/voxels in non-integer coordinates,

proper interpolation techniques need to be used in order to avoid or limit

resampling artefacts.

Each of these steps has its intrinsic problems, so each one has to be developed

taking into account the properties of the objects that have to be registered. For
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2.2 Registration classes and taxonomies

example the presence of noise can affect feature detection. So, if noise is assumed

to be present, the detection procedure should be robust. A potential problem

in feature matching is the different appearance of corresponding features due to

illumination conditions or to sensors spectral sensitivity; in this case the similarity

measure adopted needs to take into account these factors.

For what concerns the transformation function several choices exist (Figure 2.1).

• Rigid

• Affine

• Projective

• Curved

Figure 2.1: Transformation functions used for registration purposes, being applied

globally or locally.

Generally, a registration algorithms takes into account the block diagrams

defined in Figure 2.2: the floating image is measured against the reference image,

if the similarity does not satisfy a stopping criterion, an optimization phase is

run in order to tune the transformation parameters, the deformation is applied

to the floating image and the cycle is repeated again.
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2.3 Current literature

Figure 2.2: Block diagram of the registration steps.

2.3 Current literature

Image registration techniques span into a broad class of methods and taxonomies

according to the type of registration basis and the nature of transformation.

Several surveys on the subject are present in literature, Brown (1992); Hawkes

(1998); Lester & Arridge (1999); Maintz & Viergever (1998); Zitová & Flusser

(2003) and as reported in Pluim & Fitzpatrick (2003) this field of research is very

active and in growth.

Image registration methods can be landmark-based or area-based. The first type

relies on the information provided by some corresponding features into the two

images, such as points, lines, regions, etc. The latter type uses the whole im-

age content to estimate the registration transformation by means of optimizing

some similarity metric. Among a lot of propsed similarity metrics for such opti-

mization, Mutual Information (MI) and its normalized version (NMI), has proven

to be one of the most effective, especially for multi-modality registration tasks,

Maes et al. (1996); Meyer et al. (1997); Studholme (1999); Viola (1995), since it

does not assume any functional relationship between the intensity values of the

images, but just statistical.

For what concerns the nature of transformation, many models exist in literature.

Simplest ones use global or local mapping models using rigid, affine or projective

transformations. Others, able to deal with local deformations, use radial basis

functions such as Thin-plate spline, Bookstein (1989) or Wendland’s functions,

Fornefett et al. (2001); Wendland (1995). Likar & Pernus (2001) propose a hier-

achical method based on local rigid or affine transformation. Arsigny et al. (2003)
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2.3 Current literature

use the so-called polyaffine transformation with differentiability and invertibility

properties. Ourselin et al. (2000) find block-level correspondences of sub-regions

of the images and use this information for recovering a global transformation.

Other more complex approaches are to adopt parameters free deformation func-

tions, by considering the image as a tensile material, Bajcsy & Kovačič (1989)

or a viscous fluid, Nielsen & Gramkow (1996), deformed by external and internal

forces subject to constraints. In this approach, registration is achieved by the

iterative minimization of an energy functional.

Using a global method is a practicable choice only when using simple transfor-

mation models, where just few parameters are required. When using curved

deformations and the number of parameters is large, a direct optimization is not

possible, due to large dimensionality of the search space and the presence of many

local optima. A possible solution is to decompose the image domain and operate

many local sub-image level registrations using simple models. The final global

transformation can be recovered by composing the local transformations, obtain-

ing a unique continuous and smooth complex deformation, Gaens et al. (1998);

Maintz et al. (1998).

When using MI or NMI for this purpose, this approach needs particular care be-

cause Mutual Information reliability strongly depends on the number of samples

used to estimate the joint histogram, so when using small sub-images or large

subsampling rates, the result can be compromised by the presence of additional

local optima Ji et al. (2003); Pluim et al. (2000); Tsao (2003). To avoid such

problems, a proper interpolation scheme should be used, in conjuction with addi-

tional techniques such as oversampling and/or intensity clustering Ji et al. (2003).
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Chapter 3

Fuzzy Kernel Regression

The registration methods developed rely onto a common framework, designed

and developed as part of the research work. Such theoric construct is called

Fuzzy Kernel Regression, since it is the combination of two known literature

Pattern Recognition techniques: Fuzzy C-means and Kernel regression. The

classic kernel regression is enhanced by fuzzy related techniques, in particular

the C-means clustering algorithm. In this section an overview of these methods

is given. After the explanation it is shown how they are combined to form the

proposed framework.

3.1 Kernel Regression

In pattern recognition, there exists a class of techniques, which uses data points

or a subset of them not just in the training phase, but also in the prediction phase.

These are called memory-based methods. Linear parametric models that can be

re-cast into equivalent dual representations where the predictions are given by

linear combinations of a kernel function evaluated at the training data points are

known as kernel regression methods. Kernel functions are are defined by training

data points. Kernels, which depend only on the magnitude of the distance of the

argument from the training points, are known as homogeneous kernels or radial

basis functions.

For our registration purpose we will use the derivation of kernel regression from

the scheme known as the Nadaraya-Watson model (Nadaraya (1964); Watson
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3.1 Kernel Regression

(1964)).

Starting from the training set {cn, tn}, the joint distribution p(x, t) can be mod-

eled using a Parzen density estimator:

p(x, t) =
1

N

N
∑

n=1

f (x− cn, t− tn) (3.1)

where f(x, t) is the component density function. There is an instance of f(·)
centered in each sub-image. The regression function y(x), corresponding to the

conditional average of the target variable depending on the input, is given by

y (t) = E [t|x] =
∫ +∞

−∞
tp (t|x) dt =

∫

tp(x,t)dt
∫

p(x,t)dt
=

=

∑

n

∫

tf(x−cn,t−tn)dt
∑

m

∫

f(x−cm,t−tm)dt
.

(3.2)

Assuming that the component density functions have zero mean so that
∫ +∞

−∞

f (x, t)tdt = 0 (3.3)

for all values of x, we can operate a variable change, and we get

y (x) =

∑

n

g (x− cn) tn
∑

m

g (x− cm) tm
=

∑

n

k (x, cn) tn, (3.4)

where the kernel function k(x, cn) is defined as

k (x, cn) =
g (x− cn)

∑

m

g (x− cm)
(3.5)

and

g (x) =

∫ +∞

−∞

f (x, t)dt. (3.6)

This form is known as the Nadaraya-Watson model or kernel regression. In case

of localized kernel functions, it has the property of weighting more the data points

cn close to x than the others. The kernel (3.5) satisfies the summation constraint

N
∑

n=1

k (x, cn) = 1. (3.7)

A graphical representation of a function recovered using kernel regression is re-

ported in Figure 3.1.
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3.1 Kernel Regression

(a) (b)

(c)

Figure 3.1: Example of kernel regression functions. Data points and correspond-

ing kernels (a,b), and the reconstructed function (c).

3.1.1 Constructing Kernels

In order to exploit kernel substitution, wa have to construct valid kernel functions.

Several approaches exist for this purpose. One consists in choosing a feature space

mapping φ(x) and use it for finding the corresponding kernel. Another possible

approach is to construct kernel functions directly. In this case, we have to assure

that we choose a valid kernel, i.e. it corresponds to a scalar product in some
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3.1 Kernel Regression

feature space. The last (and commonly used approach) is to build new kernels as

a composition of simple existing kernels, according to the following rules:

k (x,x′) = ck1 (x,x
′) (3.8)

k (x,x′) = f (x) k1 (x,x
′) f (x′) (3.9)

k (x,x′) = q (k1 (x,x
′)) (3.10)

k (x,x′) = exp (k1 (x,x
′)) (3.11)

k (x,x′) = k1 (x,x
′) + k2 (x,x

′) (3.12)

k (x,x′) = k1 (x,x
′) k2 (x,x

′) (3.13)

k (x,x′) = k3 (φ (x) , φ (x′)) (3.14)

k (x,x′) = xTAx′ (3.15)

k (x,x′) = ka (xa,xb
′) + kb (xb,xb

′) (3.16)

k (x,x′) = ka (xa,xb
′) kb (xb,xb

′) (3.17)

where c > 0 is a constant, f (·) is any function, q (·) is a polynomial with

nonnegative coefficients, φ (x) is a function form x to ℜM , k3 (·, ·) is a valid

kernel in ℜM , A is a symmetric positive semidefinite matrix, xa and xb are valid

kernel functions over their respecive spaces.
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3.1 Kernel Regression

3.1.2 Kernel regression in n-d

Usually, regression problems can occur for vectorial functions, as in the case of

image and volume processing. Kernel regression can be applied to reconstruct

n-d vectorial functions by means of being applied to each component separately.

At the end of the process, the results are composed to recover the interpolated

vectors, Figure 3.2 and Figure 3.3.

Figure 3.2: Fuzzy C-means example: final membership values assignation and

cluster centres positions.

(a) (b) (c)

Figure 3.3: Multi-dimensional regression: components are interpolated individu-

ally (a,b) and the results are composed in the final vectors (c).
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3.2 Fuzzy C-means

3.2 Fuzzy C-means

Before explaining how kernel regression can be applied to the registration task, it

is necessary to describe the Fuzzy c-means clustering technique, Bezdek (1981),

a powerful and efficient data clustering method.

Each data sample, represented by some feature values in a suitable space, is asso-

ciated to each cluster by assigning a membership degree. Each cluster is identified

by its centroid, a special point where the feature values are representative for its

own class. The original algorithm is based on the minimization of the following

objective function:

Js =
m
∑

j=1

k
∑

i=1

(uij)
sd (xi, cj)

2 , 1 ≤ s < ∞, (3.18)

where d (xi, cj) is a distance function between each observation vector xj and the

cluster centroid cj, s is a parameter which determines the amount of clustering

fuzziness, m is the number of clusters, which should be chosen a priori, k is

the number of observations and uij is the membership degree of the sample xi

belonging to cluster centroid cj.

An additional constraint is that the membership degrees should be positive and

structured such that ui1+ui2+. . .+uim = 1. The method advances as an iterative

procedure where, given the membership matrix U = [uij] of size k by m, the new

positions of the centroids are updated as:

k
∑

i=1

(uij)
s xi

k
∑

i=1

(uij)
s

. (3.19)

The algorithm ends after a fixed number of iterations or when the overall

variation of the centroids displacements over a single iteration falls below a given

threshold. The new membership values are given by the following equation:

uij =
1

m
∑

l=1

(

d(xi,cj)

d(xi,cl)

)
2

s−1

. (3.20)
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3.3 Fuzzy Kernel Regression

To better understand the whole process a one-dimensional example is reported

(i.e. each data point is represented by just one value).

Twenty random data points and three clusters are used to initialize the procedure

and compute the initial matrix U. Note that the cluster starting positions, repre-

sented by vertical lines), are randomly chosen. Figure 3.4 shows the membership

values for each data point relative to each cluster; their colour is assigned on the

basis of the closest cluster to the data point.

Figure 3.4: Fuzzy C-means example: initial membership values assignation.

After running the algorithm, the minimization is performed and the cluster

centroids are shifted, the final membership matrix U can be computed. The

resulting membership functions are depicted in Figure 3.5

3.3 Fuzzy Kernel Regression

Merging the results of the previous discussion, it turns out that Fuzzy C-means

membership functions can be used as kernels for regression in the Nadaraya-

Watson model since they satisfy the summation constraint (3.7). In the scenario

of image registration, the input variables populate the feature space by means of

the spatial coordinates of the pixels/voxels and cluster centroids are represented
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3.3 Fuzzy Kernel Regression

Figure 3.5: Fuzzy C-means example: final membership value assignation and

cluster centres positions.

by relevant points in the images, whose spatial displacement is known. For ex-

ample, landmark points where correspondences are known between input and

reference image can be used for this purpose.

As a result of such setting there is no need to execute any minimization of the

Bezdek functional, since image points are already supposed to be clustered around

the landmark points (or equivalent representative points). Fuzzy C-means is used

just as a starting point for the registration procedure. Once the relevant points

are known, a single FCM step is performed to construct Fuzzy kernels by means

of computing membership functions. For this purpose the distance measure used

in (3.20) is the simple Euclidean distance, since just spatial closeness is required

to determine how much any point is influenced by surrounding relevant points.

Such membership functions are then used to recover the displacement for any

pixel/voxel in the image using the following formula:

y (x) =
∑

n

u (x,xn) tn, (3.21)

where u(x,xn) is the membership value for the current pixel/voxel with re-
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3.3 Fuzzy Kernel Regression

gard to the relevant point xn, and tn is a 2d/3d vector or function representing

its known xy or xyz displacement. This will result in continuous and smooth

displacement surfaces, which interpolate relevant points.

Even if the registration framework is unique, it can be applied in several ways,

depending on the choice of the target variable, i.e. what is assumed to be the

prior information in terms of relevant points and their known displacement. In

the following chapter three different applications of the proposed framework will

be described.
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Chapter 4

Proposed systems

In the previous chapter the theory of the registration framework designed for

the registration purpose has been descripted. In this chapter an exaplanation

of the actual registration systems implemented will be given. Baiscally, three

applications have been developed. Beside increased complexity, the main differ-

ence between them lies in what are considered to be the target variables tn and

how prior information is obtained. In addition to the algorithmic details, fur-

ther attention is given to interpolation scheme. As will be shown, such issue is

critical in image registration, in particular for Mutual Information maximization

based procedures. Finally implementation details taken into account for tuning,

optimizing and improving the overall efficiency of the systems will be explained.

4.1 Simple landmark based registration

A first application arises naturally from the described framework. It is very sim-

ple and is meant to demonstrate the actual use of the fuzzy kernel regression.

However since it is effective notwithstanding its simplicity, it could be used for

actual registration tasks.

Basically, it consists in considering the landmark points themselves directly as

the relevant points representing the cluster centroids for the FCM step, and their

displacements vectors directly as the target variables. Each pixel/voxel is then

subjected to a displacement contribute from each landmark point. Such con-

tribute is high for closer points and gets smaller while relative distances between
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4.1 Simple landmark based registration

the input points and the landmarks increase. The final displacement vector for

any input point will consequently be a weighted sum of the landmarks points

movements.

To better understand this technique an example of the procedure is explained: a

pattern image showing four landmark points is depicted in Figure 4.1a. An input

point P is considered, and its distances from the four landmarks are shown. After

the procedure is applied with a fuzziness value s set to 1.6, the point P results

to have the following membership values for the four landmarks:

y (x) =
∑

n

u (x,xn) tn, (4.1)

This means that it will receive the greatest part of the displacement con-

tribute from the bottom-left landmark, and just a marginal contribute from the

other three. The results are confirmed in 4.1b, where the point has been moved

according to a displacement vector that is mostly similar to the displacement of

the third landmark. Anyway, other landmarks give small influences too.

(a) (b)

Figure 4.1: Example of single point registration using four landmarks.

Repeating the same procedure for the points in the whole image, complete

dense displacement surfaces are recovered, one for each spatial dimension. Such

surfaces have continuity and smoothness properties.

As a first example, visual results for conventional images are shown in Figure 4.2.
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4.2 Improved landmark based registration

(a) (b) (c)

Figure 4.2: Example of registration of conventional images. Input image (a),

registered image (b) and target image (c). In this example 31 landmark points

were used with the fuzziness s value set to 1.6.

In Figure 4.3 are shown the recovered displacement surfaces for x, (Figure

4.3a) and y (Figure 4.3b) values respectively.

4.2 Improved landmark based registration

Although the simple method previously described is effective and can be useful for

simple registration tasks, it does not result suitable for many applications in that

it does not take properly into account relations between neighbouring landmark

points. In other words, considering a single point displacement vector to represent

the deformation of the image in different areas is not enough. Thus, it is necessary

to find an effective way of estimate such zones. Given some landmark points, a

simple way to subdivide the image space in regions is the application of the classic

Delaunay triangulation procedure, Delaunay (1934), which is the optimal way of
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4.2 Improved landmark based registration

Figure 4.3: Displacement surfaces recovered for x (a) and y (b) values.

recovering a tessellation of triangles, starting from a set of vertices. It is optimal

in the sense that it maximizes the minimum angle among all of the triangles

in the generated triangulation. Starting from the landmark points and their

correspondences, such triangulation produces a most useful triangles set along

their relative vertices correspondences. An example of Delaunay triangulation is

depicted in Figure 4.4.

Figure 4.4: Example of Delaunay triangulation.

Once we have such triangle tessellation whose vertices are known as well as
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4.2 Improved landmark based registration

their displacements, it is possible to recover the local transformations, which

maps each triangle of the input image onto its respective counterpart in the target

image. Such transformation can be recovered in several ways; basically an affine

transformation can be used. In 2d space affine transforms are determined by six

parameters. Writing down the transformation equation (4.2) for three points a

linear system of six equations to recover such parameters can be obtained. Similar

considerations hold for the three-dimensional case.
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Each transformation is recovered from a triangle pair correspondence, and the

composition of all the transformations allows the full reconstruction of the image.

Anyway, this direct composition it is not sufficient per se, since it presents crisp

edges because transition between two different areas of the image are not smooth

even if the recovered displacement surfaces are continuous due to the adjacency

of the triangles edges. This can lead to severe artefacts in the registered image,

especially for points outside of the convex hull of the control points (Figure 4.5c

and Figure 4.5d), where no transformation information are determined. To better

understand this problem an example of registration along the recovered surfaces

plot are shown respectively in Figure 4.5 and Figure 4.6.

Fuzzy kernel regression technique can be used to overcome this drawback. To

apply the method, relevant points acting as cluster centroids must be chosen.

Since our prior displacement information is no more about landmark points, but

about triangles, they cannot be chosen as relevant points anymore. Thus, we have

to choose some other representative points for each triangle. For this purpose,

centres of mass are used as relevant points, and their relative triangle affine

transformation matrix is the target variable. In this way, after recovering the

membership functions and using them as kernels for regression, final displacement

for each pixel/voxel is given by the weighted sum of the displacements given by

all of the affine matrices. In this way the whole image information is taken into
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4.2 Improved landmark based registration

(a) (b) (c) (d)

Figure 4.5: Example of registration of conventional images. Input image (a),

registered image (b) and target image (c). In this example 31 landmark points

were used with the fuzziness s value set to 1.6.

Figure 4.6: Displacement surfaces recovered for x (a) and y (b) values with direct

affine transformation composition.

account. The final location of each pixel/voxel is then obtained as follows (2d

case):
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. (4.3)

In this way there are no more displacement values that change sharply when

crossing triangle edges, but variations are smooth according to the choice of the

fuzziness parameter s. In Figure 4.7. and Figure 4.8 registration results and
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4.2 Improved landmark based registration

deformation surfaces for the previous examples are shown. Note that there are

no more sharp edges in the surface plots and a displacement value is recovered

also outside of the convex hull defined by the landmarks points.

(a) (b) (c) (d)

Figure 4.7: Example of MRI image registration with fuzzy kernel regression affine

transformations composition. Input image (a), registered image (b) and target

image (c). Deformed grid in (d). In this example 18 landmark points were used.

Figure 4.8: Displacement surfaces recovered for x (a) and y (b) values with fuzzy

kernel regression affine transformation composition.
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4.3 Automatic intensity based registration

4.3 Automatic intensity based registration

Differently from the previous methods, last one is area-based, no landmark points

need to be selected, since correspondences are determined during the registration

process itself. In this case the problem of aligning input image I and target image

T can be represented as the problem of finding the optimal spatial transformation

F ∗ able to match I and T . Such parameters are found by minimizing a cost

function E:

F ∗ = argmin
F∈Γ

{E (F )} = argmin
F∈Γ

(Edis (T, I ◦ F ) + Ereg (F )) (4.4)

where the set Γ is the space of all the admissible transformations. The term I◦
F represents the transformation of I subject to F . E is divided into two parts: the

data dissimilarity term Edis and Ereg, which is the optional regularization term,

used to penalize undesired transformations. Edis can be designed using several

form and functionals: in our work we adopted Normalized Mutual Information

(NMI). Therefore the data term become as follows:

Edis (T, I ◦ F ) = Y (T, I ◦ F ) =
H (T ) +H (I ◦ F )

H (T, I ◦ F )
, (4.5)

where H (T ) and H (I ◦ F ) are the entropies of the target image and of the

transformed input image respectively, and H (T, I ◦ F ) is their joint entropy.

Since in our method registration is piece-wise, the minimization of the cost func-

tion is performed separetely in each sub-region considered in order to recover local

registration transformations. The composition of such deformations is then op-

erated by means of fuzzy kernel regression. The complete registration algorithm

is realized by several steps which are summarized in the block diagram reported

in Figure 4.9.

Since mutual information is sensitive to noise, a preproccesing step aimed to

noise reduction is applied to mitigate this weakness: a binary mask is used to

separate the content from the background, which is cutted and discarded. The

second step consists in the application of a global affine transformation used a

starting point for the successive elastic registration, as in Kohlrausch et al. (2005).

Such strategy reduces large misalignments and provides a speed up for the con-

vergence of the succissive steps. The core of the method is the elastic registration.
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4.3 Automatic intensity based registration

I, T
Pre-Processing

Global Affine

Registration

Elastic Registration

F
Hierarchic 

image 

subdivision

Local 

registration

Kernel 

regression 

composition

Figure 4.9: Blocks diagram for the area-based fuzzy kernel regression registration

algorithm. First block performs a binary image pre-processing. Second step

computes a first coarse global affine registration used as starting condition for

the elastic registration procedure, which performes iteratively three steps. Firstly

a hierarchical image subdivision is operated, then the resulting subimages are

aligned locally, finally a smooth composition of the registered image is achieved

by means of fuzzy kernel regression.

This step is realized with the smooth composition of several local affine transfor-

mations. In particular, such transformations are evaluated hierarchically, form a

coarser to a finer level of detail, i.e., the extent of the region subject to the effect

of the computed transformations, gets smaller and smaller throughout the evo-

lution of the procedure. This allows to take into account and align finer details.

For this purpose the input image is subdivided into several sub-images. Then, for

each sub-image, the local optimum transformation aligning it to the the target

image is computed maximizing the NMI measure. The recovered transforma-

tions are then propagated in the whole image using a composition based on the

fuzzy kernel regression model. At each step the input image is subdivided with a

regular grid of variable size depending on the current level of detail considered.

The centres of the resulting regions are the cluster centroids cn. Starting from

this disposition the fuzzy membership map U can be recovered. Note that it

needs to be evaluated only once for each level of detail and can be evaluated as a

lookup table during the iterations at a certain resolution. Each local affine trans-

formation matrix recovered from each sub-region alignment represents the target

variable tn. Once this values are known local deformations can be composed as

in the improved landmark-based approach using (4.3). As a consequence of the

whole process, each pixel in the image will be subject to a motion vector whose

direction and intensity are influenced, with the proper extent, by all of the local

transformations recovered for each sub-image. The closest regions will influence
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4.3 Automatic intensity based registration

the vector at the maximum degree, while furthest ones will provide progressively

minor contributions. The resulting deformation surface will be continuous and

smooth. As for the other methods, the amount of smoothness is governed by the

fuzziness tunable value s.

Figure 4.10: Pyramidal structure for the elastic registration step. The similarities

are evaluated and optimized at different level of detail (8, 4 and 2), from coarser

to finer, in order to speed up convergence and save computational time.

4.3.1 3d extension

The procedure was described as a 2d method. However, the concepts of fuzzy

kernel regression, hierarchical decomposition and local registration can be used

in 3d as well, without loss of generality. The main differences are:

• The image is no more decomposed into rectangular regions, but in box-

shaped regions.

• Fuzzy kernel regression is used to recover three deformation surfaces, re-

spectively for x, y and z dimensions.

• Local affine transformation matrices require the estimation of twelve pa-

rameters instead of six.

In Figure 4.11 is shown the hierarchical approach used for 3d registration, where,

as level of detail increases, image volume is partitioned into progressively smaller

subvolumes pairs which are registered by means of affine transformation matrices

parametrized with the maximization of NMI. After each volumes pair is registered

the resulting pieces are composed using fuzzy kernel regression to obtain a unique

transformed volume.
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Figure 4.11: Hierarchical approach to elastic image registration.

4.4 Interpolation

During the process of similarity metric optimization (like the one involved in

automatic intensity based registration), and especially for Mutual Information

maximization (as proved in several works, Ji et al. (1999); Pluim et al. (2000);

Tsao (1999)), a fundamental issue is interpolation. The importance of adopting a

good interpolation scheme regards two aspetcs: local optima reduction and image

reconstruction. While the latter is just an image quality issue, the first is critical

for the performance of a registration system.

Mutual information is sensitive to artifacts introduced due to the interpolation
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4.4 Interpolation

needed to apply the geometric transformations. These errors can introduce lo-

cal maxima in the mutual information function. Such local maxima prevent the

optimizer from finding the actual solution, thus not providing the best datasets

alignment.

Typical interpolators recover the image intensities in non-integer coordinate points,

where the values are unknown, by convolving a kernel function with the image.

This procedure is analog to a resampling step. The larger is the support of the

used interpolator, the smaller is the resampling error introduced. However, the

best image reconstruction, does not necessarily translate to a better registration.

This can be the result of several causes. One of these is the rounding error due

to the binning process required in the joint histogram estimation. In addition,

some other factors such as image noise can produce severe artifacts using stan-

dard interpolators. It is important to remark that for registration purposes what

is important is not how high is the value of the maximum found, but rather its

position in the admissible transformations space. This means that probably two

different methods should be used for accomplishing, separately, the two tasks.

In order to solve this issue, a novel interpolation scheme was designed. It is based

on simple distance measures so it keeps affordable for computation purposes even

for processing large amount of data. The method uses optimized operators to

achieve maximum efficiency. A variety of tests have been conducted to validate

such scheme from both effectiveness (i.e. reduction of local maxima in MI) and

efficiency (i.e. computation efforts required) points of view. Experimental results

were compared with some literature interpolators: 1) Nearest Neighbor (NN),

2) Linear (LI), 3) NN with jittered sampling (NNJIT) and 4) Partial Volume

Interpolation (PVI) Maes et al. (1997). Results show that the method provides

a good tradeoff between effectiveness and efficiency for registration purposes. In

addition it provides good image reconstruction too, representing a good unique

candidate for both tasks. Some prior studies on this matter have used rigid trans-

formation such as pure translation or rotation Ji et al. (2003); Pluim et al. (2000);

Tsao (2003). For method evaluation non-rigid transformations were used instead.
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4.4 Interpolation

4.4.1 Interpolation effect

When applying a registration algorithm to a pair of images the main problem

is that for several reasons the MI function does not result to be a concave func-

tion, and significative fluctuations leading to local maxima are present. The main

causes of such fluctutions are imputable to interpolation effects and local similar-

ities in the images. However, since the latter is a problem that exists no matter

what the adopted similarity metric is, we will cope just with the interpolation

problem.

In Ji et al. (2003) is shown that the interpolation problem will always be present

even using an ideal interpolator. This results as a direct consequence of the sam-

pling process. Thus, what is possible to do is just to reduce the interpolation

effects by using strategies such oversampling or intensity clustering, coupled with

an effective interpolation method. In addition it is worth noting that an effective

interpolator from a visual persepctive still can have undesirable effects in the MI

metric.

In general different interpolators yield different, sometimes dual, kind of artifacts.

4.4.2 Literature interpolation schemes

During registration process interpolation is needed, after any transformation, to

recover voxels intensities from non-integer coordinates. For this purpose several

interpolation techniques can be used. However, since this operation is extensively

repeated during the procedure, a good tradeoff must be chosen between speed

and precision.

The quickest though simplest interpolator is nearest neighbor (NN), which assigns

the intensity value of the closest voxel. Although this choice can be sufficient for

some applications, it is not suited in cases of sub-voxel accuracy or large magnifi-

cations, thus resulting not convenient for elastic registration where generally both

of them are locally present. In addition it causes severe artifacts in the MI metric.

A most used approach is linear interpolation (LI), which weighs linearly, along

each direction, the intensity contribute of all the six voxels in the neighborhood

proportionally to their distance from the considered point. It gives better results

than NN even though it produces local maxima in the MI Pluim et al. (2000).

Cubic interpolator (CI) provides better results than LI but is more expensive
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4.5 Mutual Information Remarks

from a computation cost perspective. In theory the best and ideal, though most

complex, interpolator is provided by the sinc kernel. However, it cannot be re-

produced in practice due to its infinite support extent, so various approximations

have been proposed, from direct truncation to more complex windowing, some

of the most used are Hamming’s raised cosine or Lanczos Blinn (1998) windows.

Other strategies (NNJIT) can enhance standard interpolation schemes making

use of a normal distributed random offset in order to effectively reduce grid-

dependent artifacts (which do not often occur in elastic deformations) but on the

other hand this introduces small stochastic perturbations. Another practice is to

use joint histogram blurring (BLUR) which results in MI curve smoothing. Both

NNJIT and BLUR can be used together to overcome the respective problems at

an additional computing cost. Last kernel based interpolator is Gaussian filtering

which gives results similar to cubic interpolator. One non-conventional approach

commonly used in the latest years is PVI Maes et al. (1997) which weighs voxels

in neighborhood proportionally to the volume defined by their locations and the

requested voxel at non-integer coordinates. Although this method is efficient it

provides severe artifacts in pure translational transformations Ji et al. (2003).

4.5 Mutual Information Remarks

Mutual Information is an information theory concept which expresses the amount

of information that a variable A contains about a variable B. It can be expressed

in several ways, all of them equivalent. One of the most common form is the

following Cover & Thomas (1991):

I (A,B) =
∑

SA

∑

SB

pAB (i, j) log
pAB (i, j)

pA(i)pB(j)

. (4.6)

This equation states that the distance between the joint distributions of the gray

levels contained in the images in case of dependency pAB (i, j), and in case of

independency pA(i)pB(j) is a measure of the relative dependency between the two

images. Such dependence between pixels’ gray levels is maximum when the images

are aligned. On the other hand, when this measure decreases a misregistration

between the two images exists.

Mutual information has the following properties:
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4.5 Mutual Information Remarks

1) I(A,B) = I(B,A): since it is mutual information, the amount of information

provided by one image toward the other one is symmetric. However, this is true

only in theory, since finite machine precision and interpolation error can introduce

differences.

2) I(A,A) = H(A): The self information of an image is equal to its own entropy.

3) I(A,B) ≤ H(A), I(A,B) ≤ H(B): Mutual information cannot be greater than

the information contained in the images themselves.

4) I(A,B) ≥ 0: Acquiring information about B cannot increase the uncertainty

about A.

5) I(A,B) = 0 if and only if A and B are independent. In this case acquiring

information about B does not add any knowledge about A.

In practice, having some evidence about A and B, there are several ways of

estimating the required probabilities for the computation of I(A,B), such as

histogram-based methods Maes et al. (1996); Moddemeijer (1989), kernel-based

methods (for example Parzen windows) Viola (1995); Wells et al. (1996), and

other parametric models. However, we use histogram-based method since it is

one of the most used methods for image registration purposes.

The joint histogram of two images is a bidimensional histogram where each of

the axis represents the intensity levels of the two images. In this way, the value

of each cell in the histogram is incremented each time a pair I1(x, y), I2(x, y)

occurs in the images. If the two images are identical, the result is a population

of values disposed only along the main diagonal of the histogram (see. Figure

4.12a), otherwise, if differences or misalignments are present, a dispersion of the

values will occur (Figure 4.12b). However, as happens for multimodal medical

images, if different gray levels correspond to aligned anatomical structures, the

values in the histogram will cluster into regions.

4.5.1 Proposed interpolation scheme

From the study conducted in Pluim et al. (2000) it resulted that polynomial and

PV interpolation suffer from opposite problems. Polynomial interpolation gen-

erates new intensity levels when images grid get unaligned, while PVI generates

peaks in the MI function when grids overlap. For this reason, the ideal choice

for a new interpolator would be to design a function of the neighborhood which
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(a) (b)

Figure 4.12: Left: joint histogram of two identical images. Right: joint histogram

of two unaligned images.

eliminates the disadvantages of the two techniques while preserving their advan-

tages.

This needs bring to the construction of an interpolation function which linearly

depends by the distance of the neighbors in its computation but using a strategy

similar to PVI Maes et al. (1997) in order not to introduce new spurious intensity

levels.

The neighborhood is represented by the pixels/voxels surrounding the considered

point. The idea is very simple: we choose to use the same schema of PVI but

the weights wn are not given by the volumes defined by the neighbors and the

requested voxel, but by their euclidean distances. A 2d diagram of the approach

is shown in Figure 4.13. Resulting values are then normalized to sum to 1:

wn =
dn

∑

m∈N

dm
, (4.7)

where N is the set of the neighboring pixels/voxels.

4.6 Implementation issues

A huge amount of computation is required for the solution of the image registra-

tion problem, so particular care should be taken for keeping the process affordable

and efficient. To speed up convergence, as mentioned, a multi-resolution pyrami-

dal approach has been used. A three level pyramid has been built from input and

target images. At each level the images are subsampled with different factors,
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Figure 4.13: Illustration of the proposed interpolation schema: each neighbor’s

intensity level is weighted by the opposite euclidean distance.

which are 8, 4 and 2. The deformation is evaluated iteratively at each level. The

deepest is the level, the finer are the details that can be taken into account.

However, such scheme per se is not sufficient to achieve affordable performances,

in particular for the 3d case. For this reason, additional improvements are needed

to accelerate the process. Many operations, notwithstanding their simplicity are

repeated thousands to millions times, so even a small improvement in a little

computational detail can provide a substantial speed up. Two types of improve-

ments have been introduced, code parallelizations and code optimizations. These

will be explained in the following paragraphs.

4.6.1 Parallelization with CUDA and GPU clusters

In the last years, GPUs (Graphical Processing Units) gained a large diffusion,

firstly for graphics-based applications, and successively for general purpose com-

putations. For this reason the new acronym GPGPU (general purposes GPU)

was introduced. This technology can be briefly described as the combination

between hardware and software which allows to use traditional GPUs for any

type of computation. For a detailed explanation about GPU computing, refer to

Appendix A.

Many vendors, such as nVidia and ATI have designed and developed branded

solutions for GPUs and a standard API called OpenCL has been proposed as a

common layer to provide code compatibility between them. However, each ven-

dor provide its own API for developing onto their cards.

Since it is a common opinion that OpenCL drivers are not mature enough, it was

chosen to use specific hardware and API from a single vendor. After a research,
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and thanks to the donation received, nVidia and CUDA were chosen as develop-

ment platform. Detailed reference about CUDA can be found in Appendix A.

Basically, the following three operations have been parallelized in the system

(which, for what concerns the rest of the dissertation is AAB):

• Joint histogram generation: used for MI computation, represents the co-

occurence matrix of the intensity level into the two images considered.

• Fuzzy c-means algorithm: needed for speeding up the fuzzy maps generation

used for kernel regression.

4.6.1.1 Joint histogram generation

Parallel joint histogram generation is an issue which, although in appearance is

an extremely good candidate for parallelization, is hard to implement effeciently.

The operation consists in incrementing by one the histogram bin located at the

coordinates defined by the intensity values of the floating and reference images.

Although this is in theory an embarassingly parallel operation, a problem occurs.

If the histogram updates are made in parallel synchronization issues known as

race conditions occur. Parallelizing a histogram with B bins over N threads is

schematically shown in 4.14. Updates to the histogram memory is data depen-

dent, this can results in race conditions and memory access conflicts. For this

reason one of the main problem concerns the resolution of such conflicts.

A typical solution, for medium sized histograms, is to produce several sub-

histograms with conflicts-free access, and then combine them into the final his-

togram. For a joint histogram of size 256x256x4 byte = 256 kB, this is possible.

However, this size is larger than the actual shared memory size, so the histogram

computation has to be segmented too. The computational schema proposed is

shown in 4.15. Each dataset is splitted into partitions which are delegated to

each thread block (three in the example), which for each step compute a sub-

histogram for a single segment. Before proceeding with the next segment, cur-

rent one is updated to global memory. Using compute capability 2.0+ (Fermi

architecture), such steps can be performed in parallel using streams). The last

consideration is for global memory update. Since CUDA provides atomic opera-

tions from compute capability 1.1, not all of the GPUs allow to use them. Then,

for old generations GPUs, the approach is to make each thread block update each
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sub-histogram segment into different global memory location, and subsequently

perform a reduction to the complete histogram with log(n) steps where n is the

number of sub-histograms.

Figure 4.14: Scheme for the parallel calculation of an histogram with B bins

distributed over N threads. Update conflicts make necessary the synchronization

of the threads to the device memory containing the histogram.

Joint Histogram {
} Histogram segment1 2 3
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Figure 4.15: Scheme for Joint Histogram computation over 3 thread blocks. Each

block computes a segment of its own sub-histogram. At the end of each time step

the result is update into the global memory to obtain the complete segment.
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4.6.1.2 Fuzzy c-means algorithm

Fuzzy c-means clustering process consists essentially in the manipulation of the

data matrices containing the data points and cluster centres. This can be effi-

ciently accomplished using GPUs since there is low data dependency and high

parallelization rates can be achieved. However, in literature, only one work facing

this issue exists, but it uses traditional GPUs dealing with the graphic pipeline,

Anderson et al. (2008). In this work, GPGPUs where used, allowing a more flex-

ible management of data structures and algorithms (for example there is no need

of using textures for managing arrays).

The computation is spread across several kernels, each one performing some pro-

cessing. The six-pass procedure for FCM is shown in Figure 4.16.

Kernel 1 computes the (euclidean) distance matrix D from X and C. Kernel

2 takes D and computes the new membership values M. Since for the rest

of the computation membership values are used raised to sth power to avoid

recomputations. Kernel 3 multiplies the membersip values for the data points,

creating the individual terms of the centers update equations. Kernels 4 and

5 operate two reductions to obtain the summation of the values in the centers

update equations, which are finally divided by kernel 6. Reduction is an operation

repeated over a series of elements to produce a final scalar values. Examples of

reductions are the sum, min and max operators. A parallel reduction algorithms

takes log2(N) number of passes, since at each time step is processed a fraction of

the previous timestep results. The first pass processes N/2 elements, the second

N/4, and so forth. A graphical example of reduction is shown in Figure 4.17

In Table 4.1 and Figure 4.18 is reported a plot showing the speedup of GPU

versus CPU fuzzy c-means clustering. This example reports the results using

4096 data points, 64 clusters and varying the feature space dimensionality be-

tween 8 and 128. Tests were performed on a Nvidia Tesla C2070 GPU. The

outcomes point out that the performance increases linearly as the feature space

dimensionality grows. Thus, the speed up becomes higher as the feature space

becomes larger. Finally, in Table 4.2 absolute performances for various large and

very large clustering profiles are reported.
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Figure 4.16: GPU algorithm for fuzzy clustering. X is the dataset, C are the

cluster centers, M are the membership values and D the distance matrix. Kernel

1 computes the distance matrix, kernel 2 updates the memebrship values, kernel 3

computes the numerator for centers update, kernels 4 and 5 operate the reduction

of the numerator and denominator of the centers update equation, and kernel 6

accomplish the centers update.

4.6.2 Additional improvements

Some additional improvements have been introduced to make the computation

faster. Particular care has been devoted to interpolation. Since this operation

will be extensively repeated throughout the whole registration process, it should

be implemented in the most efficient way possible. To achieve this purpose and

save computational time, most of the effort should be done with the most complex
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Figure 4.17: Parallel reduction scheme. At each iteration, elements are reduced

to an half.

Table 4.1: Speedup measured as CPU/GPU ratio of fuzzy c-means clustering

using 4096 data points, 64 cluster varying the feature space dimensionality.

Dimensionality CPU/GPU ratio

8 29,852

16 44,216

24 50,101

32 42,600

40 49,984

48 56,525

56 63,742

64 65,978

72 73,847

80 75,266

88 78,215

96 85,488

104 80,946

112 78,585

120 92,352

128 104,445

function involved in the process, that is square root function. For its evaluation

we chose to adopt Newton’s method, such procedure computes iteratively the

square root as:

√
b ≈ xt+1 = 0.5

(

xt +
b

xt

)

. (4.8)
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4.6 Implementation issues

Figure 4.18: Speedup measured as CPU/GPU ratio of fuzzy c-means clustering

using 4096 data points, 64 cluster and varying the feature space dimensionality.

Table 4.2: Time in seconds for various profiles on the Nvidia Tesla C2070.

Clustering profile Time in seconds

C=4, DP=4096, F=4 0,005

C=4, DP=4096, F=128 0,009

C=64, DP=4096, F=4 0,021

C=64, DP=8192, F=4 0,029

C=16, DP=40960, F=32 0,124

C=4, DP=409600, F=8 0,258

In addition, a very useful version of this algorithm was designed by the creator

of the game Quake 3 and then motivated in Lomont (2003). It uses as initial guess

the magic value 0x5F3759DF , which has proven to give as outcome, after a single

iteration, an average error around 10−6, and a maximum error around 10−3. In

addition, how can be seen from Figure 4.19 it is around two times faster than the

standard sqrt() function.

The used square root approximation exploits the IEEE 754 log-style floating

point format, in particular the code used is reported in the following snippet:

Listing 4.1: Listing for the code used for square root function optimization.

f loat SquareRootFloat ( f loat number ) {
long i ;

f loat x , y ;

const f loat f =1.5F ;
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4.6 Implementation issues

Figure 4.19: Comparison of average execution

time between standard and optimized square

root functions applied to 1000 samples. Values

are normalized w.r.t. reference sqrt() implemen-

tation.

x=number ∗0.5F ;

y=number ;

i =∗( long∗)&y ; // ge t f l o a t i n g va lue b i t s

i=0x5f3759df −( i >>1);// i n i t i a l guess

y=∗( f loat ∗)& i ; // re−convers ion to f l o a t

y=y∗( f−(x∗y∗y ) ) ; // Newton s t e p

return number∗y ;
}
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Chapter 5

Results and discussion

The framework and all of its applications have been extensively tested in order

to evaluate their performance both quantitatively and qualitatively. First exper-

iments were conducted on the theoric kernel regression framework, to determine

its precision and applicability. Framework applications are then tested, evaluated

and with toy examples and both simulated and real datasets. Successively follow

some tests on the interpolation scheme proposed, evaluating the suppression of

MI local minima resulting from its application. Lastly, a qualitative evaluation

from an expert radiologist is given too, in order to provide a feedback directly

from the final system user.

5.1 Tests on Fuzzy Kernel Regression

Before doing any test with images, we needed to validate the Fuzzy Kernel Re-

gression framework. In order to do this, we evaluated simple mono-dimensional

function regression performance and evaluated the error induced by the three

strategies used: direct interpolation from random function samples representing

the landmark displacements for simple landmark based registration in Figure 5.1a

(for comparison purposes we evaluated the error even for equally spaced sam-

ples in Figure 5.1b), regression used for smoothing piece-wise linear interpolation

from random function samples for improved landmarks based registration in Fig-

ure 5.1c, and regression used for smoothing piece-wise linear interpolation from

equally spaced function samples for automatic area-based registration in Figure
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5.1 Tests on Fuzzy Kernel Regression

(a) (b)

(c) (d)

Figure 5.1: 1d Function regression results. simple landmark based (a, b) and

improved landmarks based (c, d). Results are shown using random samples (first

column), equally spaced samples (second column). On the bottom of each dia-

gram fuzzy kernels shapes are plotted.

5.1d. In each of the pictures is shown the recovered function from 16 known sam-

ples along their relative fuzzy membership kernels (on the bottom). As it can be

seen, regression operated directly from samples values leads to some oscillations,

while smoothing piecewise linear interpolation leads to a much better estimation

of the samples underlying function. These results were quantitatively measured

computing the Root Mean Square error of the regression function w.r.t. the exact

function. Results are reported in Table 5.1 for several type of limited codomain

functions.

As it is evident from the results, the improved method outperforms simple

one. In addition, the lowest the variance of the distances between the known

function samples, the lowest is the resulting regression error, getting very low

when it approaches 0. Errors in simple method are mainly due to the fluctuations

occurring as getting further from the samples. The biggest the distance between

two samples, the largest are the fluctuations. In improved method this effect
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5.2 Quantitative results

Table 5.1: Root Mean Square errors for Simple and Improved Fuzzy kernel re-

gression, results are given both for randomly spaced (σdist = 1.9) and equally

spaced

Regression errors, RMS (%)

Simple Improved

Function Random Equispaced Random Equispaced

sin(x) 7.70 3.84 1.60 0.61

sinc(x) 5.18 3.50 1.78 1.15

sigmoid(x) 1.76 0.92 0.19 0.06

gauss(x) 4.38 2.83 1.20 0.56

is removed because the values are constrained by linear interpolation. This is

a theoretic basis which confirms how these methods can be used for recovering

registration functions.

5.2 Quantitative results

In order to validate the performance of the registration framework, several tests

were conducted using the three applications proposed with 2d datasets. In ad-

dition 3d tests for the area-based automatic method were conducted too. The

datasets used for the experiments are both synthethic and real. For synthethic

data we used the Brainweb generator Cocosco et al. (1997); Collins et al. (1998);

Kwan et al. (1996, 1999), while real datasets were obtained from the Oasis

database Marcus et al. (2007) and scans provided by “Ospedale Civico di Sci-

acca”. The registrations were done using the proposed distance based interpo-

lation method, however its validation is done separately after the registration

tests. The type of the images used are CT and PD-, T1- and T2-weighted MRI.

For each experiment, results of Simple landmark-based approach (SLB), Improved

landmark-based approach (ILB) and Automatic area-based approach (AAB) are

compared.
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5.2 Quantitative results

(a) input (b) SLB result (c) ILB result (d) AAB result (e) target

Figure 5.2: Theoretic multimodal example results. The input circles (a) are

registered to the target squares (e). Results for simple landmarks based (b),

improved landmarks based (c) and area based (d) methods are shown.

5.2.1 Theoretical multimodal example

Before starting the actual experiemnts, some registration tests were operated on

toy example. Using as test images two multi-modal patterns (concentric circles

as input, Figure 5.2a, and squares as target, Figure 5.2e), we computed the

required aligning transformation using the three registration methods. For the

landmarks based method each circle was marked with eight equally spaced points.

Using SLB (Figure 5.2b), the corners are not well aligned due to the fluctuations

induced by raw fuzzy kernel regression. With ILB (Figure 5.2b), corners are

better aligned due to the regularization effect provided by affine transformations

composition. Lastly, with AAB many iterated affine transformations grant a

more correct corner and edge alignment.

5.2.2 Synthetic Multimodal registration

In this second experiment, we intended to evaluate the performance of the regis-

tration schemes on synthetic data. To generate the pairs of images, we start from

an unmodified image obtained from the Brainweb database. We then produce

some artificial random deformations with a maximum amplitude of 20 pixels. This

is done by means of Thin-plate Spline surfaces. Such deformations are applied to

the target image which is succesively registered back. The error is evaluated com-

puting the average intensity differences (AID) and the root mean square (RMS)

of the local registration error in each voxel. The results for this experiment is

reported in Figure 5.3 and Figure 5.4. Figure 5.3 shows the original image, an ex-
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5.2 Quantitative results

(a) original (b) warped (c) avg. warped

(d) avg. SLB (e) avg. ILB (f) avg. AAB

Figure 5.3: Average of the results obtained over 200 registrations.
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SLB
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Figure 5.4: Boxplot of the registration results over 200 image pairs. The graphs

show the distribution of the average intensity difference (AID) and the root mean

square (RMS) of the registration error. Registrations were performed using the

application of the proposed framework in its three versions: simple landmark

based (SLB), improved landmark based (ILB) and automatic area-based (AAB).

ample of a deformed image, the average of the transformed brain images and the

average of the registered brain images using the three proposed methods. Sharper

images indicate that the registrations are, in average, more accurate. In addition,

in Figure 5.4 are reported boxplot diagrams for AID and RMS indexes. The same

results, along with relative computation times, are summarized in Table 5.2.
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5.2 Quantitative results

Table 5.2: Results for the experiments shown in Figure 5.3

AID RMS time (s)

SLB 9.89± 2.42 25.99± 4.28 11.70± 0.09

ILB 7.63± 2.34 21.26± 5.12 13.58± 0.05

AAB 2.18± 1.41 8.43± 3.35 165.39± 12.11

initial 11.15± 2.64 26.89± 5.30

5.2.3 Real Multimodal registration

Last registration experiment regards real multi-modal images. Images acquired

with different technology equipment were involved in the registration process. To

validate the robustness of the system inter-patient images with extremely differ-

ent anatomies were used. Test cases patients present eventually also pathologies

or diseases which vary drastically the intensity level distribution in the image. An

example of such registrations is shown in Figure 5.5 for the three applications of

the framework. Note the different head shape and the stain (Figure 5.5a). SLB

registration (Figure 5.5b) and ILB (Figure 5.5c) succeed in registering anatomi-

cal parts of the brain (if landmark points are well-determined) but does not fully

recover the shape of the head. AAB (Figure 5.5), allowing free-form like trans-

formations, deforms the structure to achieve succesful alignment of the whole

anatomy.

5.2.4 Sequential registration

Next experiment regards images of the same patient acquired in different time

presenting anatomic differences (for example due to resections). Tests were op-

erated on 30 CT case studies. An example, using AAB registration is shown in

Figure 5.6. As can be seen in this case study, the pose unalignment and the

large differences in the ventricles are diminished granting a complete overlap of

the target (Figure 5.6b) and registered (Figure 5.6c) images using a checkerborad

visualization (Figure 5.6d).
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5.2 Quantitative results

(a) input (b) SLB regis-

tered

(c) ILB regis-

tered

(d) AAB regis-

tered

(e) target

(f) initial over-

lap

(g) SLB overlap (h) ILB overlap (i) AAB overlap

(k) initial grid (l) SLB grid (m) ILB grid (n) AAB grid

Figure 5.5: CT-T2 registration example test. In the first row, input image (a)

is registered onto target image (e). Results for simple landmarks based (b),

improved landmarks based (c) and area based (d) methods are shown. In the

second row, checkerboard visualization for alignment is depicted: in (f) for input

and target image, in (g), (h) and (i) for simple, improved landmarks based, and

area based approaches respectively. Last row (k-l) represents the deformation

grid for the recovered transformations.

5.2.5 Tests on Interpolation

Existing literature studies, such as Tsao (2003) and Ji et al. (2003), generally

evaluate algorithms using rigid transformations. Due to the large proliferation

of non-rigd and elastic registration techniques, it is important to assess interpo-

lation schemes performance using elastic deformations instead. For this reason,

experimental tests on the proposed interpolation were performed using several
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5.2 Quantitative results

(a) input image (b) target image

(c) registered image (d) overlap

Figure 5.6: Registration results for different time inter-patient scans. Floating

image (a), reference image (b), registration result (c), checkerboard overlap (d).

type of parametric transformation, which, although are not likely to exist glob-

ally in reality, they can occur locally in real cases. For each transformation the

trend of the MI measure has been evaluated both qualitatively and quantitatively.

From a qualitative perspective is sufficient to visually inspect the shape of the

function and evaluate the amount of local maxima. For a quantitative assess-

ment, a smoothness measure was used as done in Tsao (2003). This measure is

computed as the inverse of the root mean square (RMS) error of the difference

between the MI functional and its smoothed version (Figure 5.7). The proposed

interpolator (DI) and its jittered version (DIJIT) were evaluated and compared

against nearest neighbor (NN), jittered nearest neighbor (NNJIT), linear inter-

polation (LI) and partial volume interpolation (PVI), which are the current best

literature tradeoffs between quality and speed. The transformation used for the

experiments are polynomial, pinch/spherize and twirl. In Figure 5.8 are shown

examples of such transformations. As previously remarked, MI estimate is based

on joint histogram computation. Such histogram was evaluated for a different

number of bins (N = 8, 16, 32, 64, 128, 192, 256) for each interpolation scheme.
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5.2 Quantitative results

- =

Original Smoothed Difference

Smoothness = 
1/rms(Difference)

Figure 5.7: Quantitative measure of interpolation artifacts. Left: original MI

curve. Center: smoothed version. Right: difference between original and

smoothed curves. The result is mainly the amount of artifacts generated in the

interpolation process. Smoothness is estimated as the inverse of rms of the dif-

ference curve.

Figure 5.8: Type of deformations used for performance evaluation: polynomial

transformation (a-b), twirl transformation (c-d), pinch/spherize transformation

(e-f).

The independent parameter of the transformations was adjusted in a convenient

range (for example twirl transformation varies the rotation angle in the range

±40◦).

Resulting registration curves plots are reported in Figure 5.9. As can be seen

NN keeps quite smooth but eventually exhibits some step-like artifacts when ap-

proaching the correct alignment. However their presence in elastic deformations

is smaller than in rigid transformations due to the non-regular image grid defor-

mation. As known this problem is mitigated with jittered NN. Artifacts in the

MI curves are reduced, but some random fluctuations are added. Both LI and

PVI can suffer from local maxima/minima presence problems. For what concerns

DI the curves keep smooth and the local maxima/minima are less pronounced

and their presence results even more reduced using jittered sampling. Another
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5.2 Quantitative results

remarkably aspect regards the numbers of bin used for joint histogram estimation.

Using more bins does not necessarily correspond to a better MI estimate. From

Figure 5.9 it can be seen that the optimal number of intensity bins is around

32-64. Using more bins does not improve the estimate since the number of sam-

ples populating each bin is too low to give an accurate measure. Such effect was

already reported in Ji et al. (2003), where is suggested to use intensity clustering,

which is actually equivalent to use less intensity bins or to decrease the quanti-

zation levels. Another advantage of intensity clustering is to reduce the effect of

noise.

Such effect is visible and quantitatively appreciable analyzing the smoothness

measure plots. Results for the six interpolation methods are depicted and com-

pared in Figure 5.10. The plots show the trend of the smoothness assessment

for each of the three deformations applied, as a function of the number of in-

tensity bins. For polynomial and pinch/spherize transformations it results that

even from this perspective, a number of bins around 64 represents the optimal

choice, except for DIJIT and PVI, for which the maximum value is achieved us-

ing around 128 bins. Note that notwithstanding using 8 bins provides an higher

smoothness value, the MI estimate is very poor since all the samples are flattened

due to an excessive loss of information. For what concerns twirl transformation,

the trends are quite different, this is due to the high deformation introduced and

the consequent increase of the interpolation errors. In this case, decreasing the

numbers of bins will not help since the resampling error induced is too high, in

fact the smoothness measure values obtained are substantially lower than in the

other two cases.

It is remarkable that in all the three cases, distance interpolation and its jittered

version keep more performant than the others or at least comparable.

Last considerations are about timing performances. Average computational times

were measured on a AMD Phenom Quad-core, 2.30Ghz equipped with 4gb of

RAM. Results are reported in Figure 5.11, values are normalized w.r.t. NN inter-

polation. Except from NN and NNJIT which are very quick to compute, other

interpolation schemes have comparable timings. DI and DIJIT, thanks to the

optimized function used, keep their computation time quite low, allowing to use

the methods as a valid alternative in practical aplication even from an efficiency

point of view.
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Figure 5.9: Registration curves. In each row is represented a different deformation, from top to bottom: polynomial,

pinch/spherize, twirl. In each column is represented an interpolation scheme, from left to right: Nearest Neighbor,

Jittered Nearest Neighbor, Linear, Partial Volume, Distance, Jittered Distance. In each plot are represented the

registration curves varying the number of histogram bins. The used values are 8, 16, 32, 64, 128, 192, 256.
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Figure 5.10: Smoothness values for different interpolators as a function of the intensity bins used for joint histogram.

Values are reported in semi natural-log scale. Each row corresponds to a different applied deformation, from top

to bottom, polynomial, pinch/spherize, twirl. In each plot, the curves represent the smoothness of the relative

registration curve using different interpolators.
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5.3 Qualitative results: expert validation

Figure 5.11: Timing performance for the considered interpolation schemes. Val-

ues are normalized w.r.t. NN interpolation.

5.3 Qualitative results: expert validation

In order to add value to the framework and the proposed systems, we submitted

our results to the evaluation from expert radiologists. Such activity was belived

very important for estabilishing whether such results are satisfying not just from

a numerical or visual perspective, but also from the usage of the system on real

diagnosis tasks. The evaluation was based on the following level of assessment:

- Global alignment rating : The overall evaluation of the registration procedure,

in terms of shapes and contours matching.

- Availability of points of interest : The chance to found the points of interest in

the very same positions of the images. For each test case a list of features are

given and their alignment after registration is rated.

- Morphological structures coherency : The coherence of the morphology after the

registration of the image is rated to report any structure deformation or anomaly.

For the evaluation 30 test cases were used, each one consists in a pair of MRI

datasets (T1-, T2- or PD-weighted). In addition to the existing unalignment a

further random roto-translation is injected to stress the method. Results for these

tests are reported in Table 5.3. Each row reports the test number, the image type,

the points of interest considered and the rating for the three levels of assessment.

Automatic area-based registration was used for this test. Some of the low-rated

test cases came out to be outliers, since after the artificial roto-translation some

peripheral information lied out of the cropping bounds. Consequently, some of the

structures got lost and cannot be realigned, compromising (even if just locally)

the whole registration task.
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Table 5.3: Expert evaluation for the registration procedures

Test Image type Points of interest Global align. Pts.of interest Morph.coherency

1 Axial T1 vs T1 Lateral v., corpus c., frontal g. 5 5 5

2 Axial T1 vs T1 Lateral v., 3rd v., basal ganglia, thalamus 5 5 5

3 Axial T1 vs T1 4th v., bulb, cerebellar hemisp., maxillary sinus 5 5 5

4 Coronal T1 vs T1 Lateral v., basal ganglia, Sylvian fissure, opt. chiasm and tract 5 5 5

5 Sagittal T1 vs T1 Temporal g., cerebellum 5 5 5

6 Axial T1 vs T1 4th v., bulb, cerebellar hemisp. 5 5 5

7 Axial T2 vs T1 Lateral v., corpus callosum, frontal g. 5 4 4

8 Axial T2 vs PD Acqueduct, midbrain, basal cistern, cerebellar hemisp. 4 5 4

9 Axial T2 vs T1 Lateral v., basal ganglia, thalami 5 5 5

10 Axial T2 vs PD 4th v., bulb, cerebellar hemisp., maxillary sinus 5 5 5

11 Axial T1 vs T1 Fronto-parietal g. 5 5 5

12 Axial T2 vs T1 Basis pontis, 4th v., acustic nerve, cerebellum, ocular bulbs 5 5 5

13 Axial T2 vs PD Basis pontis, 4th v., acustic nerve, cerebellum, ocular bulbs 5 5 5

14 Coronal T1 vs T1 Frontal g., orbital fat 4 5 3

15 Coronal T1 vs T2 Frontal g., orbital fat 4 5 4

16 Coronal PD vs T2 Parieto-occipital g., cerebellum, sup. sagittal sinus 4 5 3

17 Sagittal T1 vs T2 Temporal lobes, cerebellum 5 5 4

18 Sagittal T1 vs T1 Temporal lobes, cerebellum 4 5 4

19 Sagittal T2 vs T2 Occipital horn, cerebral g., cerebellum 3 5 3

20 Sagittal PD vs T1 Occipital horn, cerebral g., cerebellum 5 5 4

21 Axial T1 vs T1 Midbrain, Cerebellar vermis, temporal g., ocular bulbs, opt.nerves 3 5 4

22 Sagittal T1 vs T1 Fronto-temporal g., cerebellum, maxillary sinus 5 5 5

23 Sagittal T1 vs T1 Corpus callosum, fornix, brainstem, cerebellum, pituitary 5 5 4

24 Sagittal T1 vs T1 Corpus callosum, fornix, brainstem, cerebellum 5 5 5

25 Axial T1 vs T1 4th v., temporal lobes, cerebellum 5 5 5

26 Axial T1 vs T1 Brainstem, temporal lobes, cerebellum 4 5 4

27 Coronal T1 vs T1 cerebellum, occipital g. 3 5 4

28 Coronal T1 vs T1 cerebellum, occipital g. 5 5 5

29 Sagittal T1 vs T1 Corpus callosum, brainstem, cerebellum 4 5 5

30 Sagittal T1 vs T1 Fronto-temporal g., cerebellum, maxillary sinus 5 5 4

Mean - - 4.57 4.97 4.40
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Chapter 6

Beyond Image Registration:

Content aware image resizing

While working on image registration, it turned out to be clear that the same

approach can be applied to other deformable image transformations. In this

direction, the first problem approached is ”content aware image resizing”, i.e.

the problem of resizing an image, changing its aspect ratio, without deforming

relevant content.

6.1 Content aware image resizing

With the advent and proliferation of display devices which come with different

aspect ratio and resolutions, automatic resizing is becoming an important issue.

Applying image cropping is not sufficient due to information loss. Arbitrary re-

sizing, which produces deformations, is not suitable as well. Any approach that

applies homogeneous transformations to each image region, will spread distortion

equally. An alogorithm for content-aware image resizing should preserve relevant

regions of the images, introducing distortions just in the regions where no impor-

tant content elements are present.

Recently, some techniques were proposed. Seam carving Avidan & Shamir (2007);

Rubinstein et al. (2008) removes or inserts discrete 1D seams passing across the

less important regions in the image. Warping methods Gal et al. (2006); Wolf

60



6.2 Related work

et al. (2007); Yu-Shuen Wang & Lee (2008) introduce mesh grid that get warped

according to a functional which keeps unchanged important regions as much as

possible. Combination of several operators try to apply them in an adaptive fash-

ion Rubinstein et al. (2009). The first approach has intrinsic limitations due to its

discrete nature, which limit its effectiveness to cases where the content spreads

in a region smaller than the new image size, the second one becomes as more

expensive to compute as the grid size and/or the image resolution increase, thus

resulting inefficient for large or detailed images.

We present an efficient method which, using a simpler approach, can achieve

results superior or comparable with literature methods. It consists in determin-

ing shift values for each column/row in the image such that distances between

relevant columns/rows are left unchanged. In this way, distortions are reduced to

the minimum, while content can get scaled in order to fit arbitrary image sizes.

Relevant columns/rows are determined using a measure that can be derived us-

ing several relevance maps, such as visual saliency map Itti et al. (1998), corner

detectors Harris & Stephens (1988), eye-gaze measurement Santella et al. (2006),

etc. The process requires the solution of a simple linear system with a limited

number of variables, equal to the number of columns/rows. This can be efficiently

solved allowing real-time usage.

In addition the method can been improved by adding both automatic or interac-

tive cues to the system solution: a face detector Viola & Jones (2001) can help in

preserving faces in the images, other geometric constraints can be given by the

user to explicitly preserve structures.

6.2 Related work

Normal resizing operators used by image processing applications generally work

by resizing images to a target size by using an homogeneous a shrinking or enlarg-

ing operator. In literature several works have been propsed for image retargeting.

First attempts were done using automatic cropping Suh et al. (2003) where the

most important region of the image is determined using a saliency map or a face

detector before cropping it to show only the most salient region in the image.

Another solution, proposed in Liu & Gleicher (2006), is to compute an optimal
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6.3 Proposed solution

path through the most salient region of the image and to display them serially

on low resolution mobile devices. Such techniques for changing the image size,

always rely on standard resizing and cropping methods. More recent approaches

use adaptive image resizing instead. The idea is to preserve important image

features by applying a non-linear content driven resize operator. Most remark-

able works were done using seam carving, Avidan & Shamir (2007); Rubinstein

et al. (2008) where 1D seams are removed/added to reduce/increase the image

size. Such seams are chosen from low energy regions of the image. The result

is very impressive. However, due to the discrete nature of the method, notches

in the objects may appear. In addition when no more discardable information

exists, important details get removed and severe distortion appears. Warping

methods Gal et al. (2006); Wolf et al. (2007) overcome this limitation by squeez-

ing or stretching homogeneous regions, minimizing the distortion in relevant re-

gions. In Yu-Shuen Wang & Lee (2008) regions are scaled by different factors

in order to preserve aspect ratio too. Multi-operator approach Rubinstein et al.

(2009), uses a combination of seam carving, scaling and cropping. Seam carving

is very efficient but limited in its use, warping methods are more effective but

computationally expensive, limiting their use for real-time applications with high

resolution images or embedded devices with low power profiles.

Our work aims to design a non-linear resizing operator which can deal effectively

with content preservation while requiring efficient and fast computation.

6.3 Proposed solution

In our model a set of m by n grid points L = [l0,0, l0,1, ..., lm−1,n−1] is superposed

to the image, where li,j are the initial points positions and m and n are the initial

sizes. To resize the image to the new dimension m′n′ we look for the new set

L′ =
[

l′0,0, l
′

0,1, ..., l
′

m−1,n−1

]

where distances between two neighboring points are

preserved (6.1) in order not to introduce distortions.

(li,j − li−1,j) =
(

l′i,j − l′i−1,j

)

,

(li,j − li,j−1) =
(

l′i,j − l′i,j−1

)

.
(6.1)

Obviously, due to image resizing, some distances should be necessarily changed

and some deformation must be introduced. The model is built in order to spread
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the required deformations non-uniformly across the whole image, according to

lines significance.

6.3.1 Region significance

Literature image retargeting methods rely on various significance measures, Avi-

dan & Shamir (2007) and Wolf et al. (2007) consider large gradient magnitudes

regions as significant, Rubinstein et al. (2008) uses the accumulation of the dis-

continuities of the neighborhood if a given pixel is removed. In Yu-Shuen Wang

& Lee (2008) a combination of gradient information and visual saliency maps are

used Itti et al. (1998). Such measure, that was used in this work, is defined as

W = Wα × Wβ , where Wα =

√

(

(

∂
∂x

)

2

+
(

∂
∂y

)

2
)

is the 2-norm of the gradient and Wβ is

the saliency map. This map is computed by applying various filters to extract

properties such as color, intensity and orientation, and then searching neighbor-

ing regions exhibiting differences in these properties on multiple scales.

The measure can be obtained at different resoultion scales. In our model we work

on a tessellation of sub-regions, so saliency is computed for variable size areas,

one value for each of them.

Note that, even though we adopted this measure, any different one can be used

without loss of generality.

6.3.2 Reduced linear system model

Given the new image size, we compute the new points positions, such that dis-

tances between points containing prominent objects are left unchanged, while

distortions are applied to low-importance lines. The new disposition should be

subject to boundary constraints. We formulate the distortion energy for each

point li,j measuring how much varies the distance from the neighboring point

li−1,j and li,j−1. The total energy function can then be defined as:

Du =
n−1
∑

i=1

m−1
∑

j=1

[

(

l′i,j − li−1,j

)

′

+
(

l′i,j − l′i,j−1

)

]

. (6.2)

This formulation alone will produce homogeneous resizing, then, in order to

achieve content-aware resizing each term should be multiplied by its weighting
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factor wi,j defined by visual saliency. (6.2) then becomes:

Du =

n−1
∑

i=1

m−1
∑

j=1

[

(

l′i,j − li−1,j

)

′

+
(

l′i,j − l′i,j−1

)

]

w(i, j). (6.3)

Expanding (6.3) and factoring its results produces:

Du = −
n−1
∑

i=1

m−1
∑

j=1

[

(wi−1,j − wi,j) l
′

i−1,j + (wi,j−1 − wi,j) l
′

i,j−1

]

. (6.4)

Since weighting factors w(i, j) are known, (6.4) represents the objective function

of the linear model. The model needs to be constrained for several reasons: (note

that similar considerations hold both for shrinking and enlargement).

1) The procedure, while attaining the minimization would increase the distance

in high saliency regions, while it should be left unmodified (i.e. equal to the grid

element size s).

The inequalities expressing this constraint is the following:

l′i,j − l′i−1,j ≤ s

l′i,j − l′i,j−1 ≤ s
, ∀i, j ∈ [1, m− 1; 1, n− 1] . (6.5)

2) Low relevance lines distances can get compressed to 0, and this can produce

unwanted discontinuities and artifacts, so a minimum/maximum distance should

be assured:

l′i,j − l′i−1,j ≥ k

l′i,j − l′i,j−1 ≥ k
, k ∈ [0, 1] , ∀i, j ∈ [1, m− 1; 1, n− 1] . (6.6)

3) Boundary conditions must be respected to enclose the image into the new size:

l′0,j = 0, ∀j ∈ (0, n− 1) ;

l′m−1,j = m′, ∀j ∈ (0, n− 1) ;

l′i,0 = 0, ∀i ∈ (0, m− 1) ;

l′i,n−1 = n′, ∀i ∈ (0, m− 1) .

(6.7)

The optimization is performed using a primal-dual interior-point method Mehro-

tra (1992) which converges iteratively to the optimal solution. Experiments shown

that the displacements of neighboring columns should be similar, then, to avoid

sharp differences in columns displacements, the values provided by the optimiza-

tion are low-pass filtered to achieve a smooth displacment distribution and a

better visual result.
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6.3.3 Fuzzy Kernel Regression application

After the optimization of (6.4), the new grid points positions L′ are recovered and

their disposition on the new image is determined. On this basis, the underlying

image pixels have to be interpolated to move them in the resized image (see Figure

6.1). This situation is the same as the image registration problem, where points

correspondences are known. Determining from (4.2) the affine transformation

which maps each grid patch, fuzzy Kernel Regression framework can be applied,

using (4.3), to recover the mapping function and obtain a smooth global mapping

function for the whole image.

Figure 6.1: Grid deformation after minimizing the content distortion energy.

6.4 Results

The described method was implemented on a PC with Quad CPU 2.30 GHz.

Since the method relies on the solution of a simple linear system, the computation

is very efficient. In Figure 6.2 is shown the timing function diagram varying the

size of images with aspect ratio 4:3. This result points out that the method can

be used for real-time usage even for large image resizing purposes, especially if

ported to an executable application. In addition, large image can be also fastly

resized using downsampling ratios without substantially altering the final result.

Comparison. In order to evaluate the results of our system, we compared it
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Figure 6.2: Time elapsed for resizing an image. Values are function of the number

of lines involved in the process.

(a) Original image (b) 50% width image

(c) 150% width image

Figure 6.3: Examples of the resizing algorithm. Original image (a), shrinked (b)

and enlarged (c) images .

with other literature retargeting systems: Multi-operator Rubinstein et al. (2009),

Non-homogeneous warping Wolf et al. (2007), seam carving Rubinstein et al.

(2008) and scale-and-stretch Yu-Shuen Wang & Lee (2008) using the datasets

and measures provided by RetargetMe framework Rubinstein et al. (2010). Ex-

amples of such comparisons are reported in Figure 6.4, where can be seen how

less deformation are present in the shown images (most evident case is child’s

head in third row of Figure 6.4). Beside visual inspection, which is intrinsically

subjective and not easily evaluable, an objective analysis was conducted to as-
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6.4 Results

Figure 6.4: Comparisons with reference algorithms. From left to right: original

image (a), proposed (b), Multi-operator (c), Non-homogeneous warping (d), seam

carving (e) and scale and stretch (f).

sess the quality of the results. Two measures were used for this purpose: Earth

Mover’s Distance (EMD) Pele & Werman (2009) and SIFTflow Liu et al. (2008),

two commonly used similarity metrics which does not require the two dataset

to be the same size, a binding property for the case of image retargeting. Re-

sults, reported in Figure 6.5 and summarized in Table 6.1, show that the images

produced with the proposed method provide in average measures comparable to

literature methods, or even better. Considering these results, the main strenght

of the proposed method is that just linear algebra operations are needed.

Table 6.1: EMD and SIFTflows measures for images of RetargetMe framework

Measure EMD SIFTflow

Proposed 8.13± 3.36 · 103 4.15± 2.12 · 105
Multi-operator 8.30± 3.58 · 103 3.94± 1.99 · 105

Non-homogeneous 8.68± 3.73 · 103 4.12± 2.15 · 105
Seam carving 8.69± 3.60 · 103 4.09± 2.38 · 105

Scale and stretch 8.95± 3.82 · 103 5.37± 2.69 · 105
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Figure 6.5: Comparisons: boxplot diagrams over 37 images, values from reference

algorithms are provided by RetargetMe framework. Last row shows values from

springs network retargeting.

6.5 Web implementation

Generally, web designers have to deal with the potential access of their pages

from very different devices, spanning from desktop PCs, laptop, netbook, smart-

phones, other mobile devices, etc. For this reasons image size compliance should

be provided for almost any display device. Traditionally there exist two possible

approaches:

- Conservative: the webpage layout is developed in order to be compatible with

the smallest device considered, however this results in a bad use of large displays.

- Multiple views : the developer realizes several page views, displaying to the user

the most suitable one according to its display device. Even though this choice

produces better results, it is very time-consuming in the development and main-

tenance phases.

A third innovative approach could be to use liquid layouts which dynamically

resize both textual content and images. However, current web browsers are able

to perform natively just simple homogeneous resizing. Obviously this kind of

transformation is not suited because, being applied equally in each image region,

will spread distortions uniformly across the whole image. In the same way, image

cropping technqiues are not sufficient since they may result in a severe loss of

information. For this task the proposed algorithm was implemented as a web-

service to dinamically adjust image size according to the available visualization

device
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Natively, the HTML <IMG> tag does not allow manipulation of an image at

pixel level. Hence, JavaScript has to be used to push retargeting functionality

into the page. A simple solution can be to replace all of the <IMG> tags in the

page with Flash objects, or with the HTML5 canvas elements, thus allowing pixel

level manipulation. However, both solutions are not applicable since are really

time consuming and can freeze the browser for a long time. For these reasons, all

of the computation should be done at the server side, leaving to the client just

the task of loading the resized images from a service.

The designed application is composed by two parts. A server side, implemented

as a web service, which encapsulates the image resizing procedure, and a client

side, which, trasparently to the developer, performs the request for the resized

image.

6.5.1 Server side

The server side is realized by a Java servlet which receives a GET request from

the client containing the following input:

- Image URL: the URL of the requested image.

- Width: The requested width (in pixels) for the resizing task.

a typical servlet request will look like this:

http://www.hostname.com?http://path.to/image.jpg&750

the servlet, given these parameters, performs the content-based image retargeting

procedure and returns the resized image bytes in the form of an HTTP response.

6.5.2 Client side

A webpage can call directly the servlet using the syntax described in 6.5.1. How-

ever, this requires the developer to know such syntax and does not allow dynamic

resizing of the images (i.e. image size needs to be chosen at design time).

For this reasons a different solution is required for allowing both the following:

- Automatic width selection w.r.t to the display device or window size.

- Dynamic resizing triggered by window resizing event.

A seamless way to code images which needs to be resized would be the following:
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<body>

...

<img class="retarget" src="path_to_img.jpg" width="20%" />

...

</body>

Natively, specifying the width in percentage, resizing will be performed homo-

geneously, thus leading to severe distortions. In order to achieve content-aware

image resizing, each time that the window onresize and the onload events are

fired, images labeled with the retarget class should be resized in a content-aware

fashion by the servlet and reloaded onto the webpage. This behavior can be

obtained using a set of javascript functions which, registering themselves (using

closures) to the stack of onresize and onload callbacks, when executed will:

- parse the HTML page DOM looking for images labaled with the retarget class;

- edit their src attribute with the correct servlet request;

- display the new image into the page.

All of these functions are contained in a single javascript file, named retarget.js

which should be included in the <HEAD> section of the HTML document. In

this way a webpage using content-aware resized liquid images will look like the

following:

<html>

<head>

...

<script language="javascript1.5" src="retarget.js">

</script>

...

</head>

<body>

...

<img class="retarget" src="path_to_img.jpg" width="20%" />

...

</body>

</html>

In this way, almost no effort at all should be done by the user, which just needs

to include a javascript file and add a class label to the images he or she wants to

resize in a content-aware fashion.

The described system was tested with several display devices and different

browsers in order to assure complete cross-platform and cross-device compliance.

In particular the tests were done on the following browsers:
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Figure 6.6: System at work: in (a) desktop computer browser, canvas width

= 1270px, top right original image, top left homogeneous resizing, bottom left

content-aware resizing. In (b) and (c), mobile phone browser, canvas width =

320px, top homogeneous resizing, bottom content-aware resizing.

- Google Chrome

- Mozilla Firefox

- Microsoft Internet Explorer

- Apple Safari

- Nokia S60 OSS Mobile Browser

- Opera Mobile

The resizing is operated correctly notwithstanding the resolution or the display

size used. In Figure 6.6 several example of the systems at work are shown. As can

be seen in Figure 6.6a, the original image (top right) has been resized to 50% of

the window size in a desktop PC web browser on a high resolution screen. On top

left is shown the result of homogeneous resizing, where is evident the shrinking of

the main object. On bottom left is depicted the result of content-aware resizing,

the size of the main object is unchanged and the deformation are diffused into

the background. In Figure 6.6b-c, the same image is resized onto the browser

of a low resolution mobile device. The homogeneous resize shrinks drastically

the main object, while it is kept almost unchanged in the content-aware resized

version, where just the background content is lost.
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Although its purpose is different from the described application, an online content-

aware image resize service called rsizr 1 implementing seam-carving algorithm, can

be used for comparing and evaluating performances. The main differences from

the two approach is that seam-carving is iterative, thus its timing depends on the

number of seams to remove/add. The proposed system is one-shot, it just needs

one step to resize an image to an arbitrary image size. These differences emerge

from the plot of timing performance depicted in Figure 6.7. The values report the

processing time for resizing an image of resolution 1024x768 in terms of seconds

versus the target image size. For seam-carving, the smaller the target size, the

higher is the processing time, since a larger number of seams have to be removed.

For the described system instead, the elapsed time keeps quite constant, getting a

bit shorter as the target image size decrease. This is due to the smaller amount of

data needed to be transmitted to the browser once the resizing task is complete.

Figure 6.7: Timing performance comparisons between the proposed system and

rsizr service based on seam carving.

1http://rsizr.com/
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Chapter 7

Conclusions and future work

In this dissertation a theoretic framework for non-rigid image registration along

with its application was presented. It relies on kernel regression and fuzzy c-

means. In particular, fuzzy membership maps obtained as the result of fuzzy

clustering are used as equivalent kernels for regression, allowing to reconstruct

full global deformations needed to align input and target images on the basis

of some prior local information. After the framework explanation, three differ-

ent applications are introduced and described. Two of them (SLB and ILB) are

landmark-based, while the third one (AAB) is area-based. SLB and ILB rely on

manual selection or automatic extraction of some landmark points to recover the

transformation in a one-shot fashion, while AAB, assuming as input just the two

images, recovers the needed correspondences (and the consequent local deforma-

tions) by maximizing the normalized mutual information of the sub-regions of

the images. Local transformations are subsequently composed using fuzzy kernel

regression to obtain a unique global registration function. The method works

both for 2D slices and 3D volumes.

Several optimizations, such as efficient operators implementation and GPGPUs

parallel procedure development for Mutual Information estimation and fuzzy c-

means clustering allow a remarkable speed up of the computation, essential for

the huge size of medical image datasets.

After a theoric framework evaluation, its applications were tested and perfor-

mance measured with several experiments. The experimentation was done taking

both a quantitative and a qualitative assessment. Tests were operated on syn-

thetic and real datasets, both mono- and multi-modal. Mono-modal tests were
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conducted for intra-patient evaluation, with scans taken at different time and pre-

senting anatomical differences. For multi-modal images different patients scans

were used to align completely different anatomical structures. Finally, a team of

expert radiologists performed evaluation of real mono- and multi-modal pairs to

assess actual application of the framework in a true diagnostic environment.

The fuzzy kernel regression framework demonstrated to be usable for other spa-

tial image transformation purposes: the case of retargeting was presented, the

proposed method achieves promising results comparable to existing literature ap-

proaches. Future work consists in the extension and improvement of the current

methods and in its application to additional image processing scenarios, such as

mosaicing and virtual garment.
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Appendix A

GPUs and Nvidia CUDA

The following appendix contains an introduction to GPUs and CUDA devices,

and is mainly an excerpt from Nvidia CUDA Programming Guide, NVIDIA

(2008).

A.1 Graphics Processing Units

A graphics processing unit or GPU is a specialized microprocessor that offloads

and accelerates graphics rendering from the central (micro-)processor. Currently,

it is often used in embedded systems, mobile phones, personal computers, work-

stations, and game consoles. Modern GPUs are very efficient at manipulating

computer graphics, and their highly parallel structure makes them more effective

than general-purpose CPUs for a range of data-parallel algorithms. In a personal

computer, a GPU can be present on a video card, or it can be on the mother-

board, or as in certain Core Intel CPUs, on a CPU die. More than 90% of new

desktop and notebook computers have integrated GPUs, which are usually far

less powerful than those on a dedicated video card.

The term was defined and popularized by Nvidia in 1999, who marketed the

GeForce 256 as ”the world’s first ’GPU’, or Graphics Processing Unit, a single-

chip processor with integrated transform, lighting, triangle setup/clipping, and

rendering engines that is capable of processing a minimum of 10 million polygons
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per second.” Rival ATI Technologies coined the term visual processing unit or

VPU with the release of the Radeon 9700 in 2002.

Early GPUs main functions were strictly related to computer graphics operations,

such as polygons rendering, texture mapping, vertices manipulation, oversam-

pling and interpolation. However since, such functions act mainly on matrices

and vectors, the interest for GPUs has increased with studies involving general

computing. This road led to the introduction of the concept of GPGPUs (general

purpose graphics processing unit). GPGPUs devices left the scheme imposed by

the graphic pipeline, providing a general-purpose computing power, as opposed

to being hard wired solely to do graphical operations.

This concept was mainly followed by the two main GPUs designers, Nvidia and

ATI.

Recently NVidia began releasing cards supporting an API extension to the C

programming language CUDA (”Compute Unified Device Architecture”), which

allows specified functions from a normal C program to run on the GPU’s stream

processors. This makes C programs capable of taking advantage of a GPUs abil-

ity to operate on large matrices in parallel, while still making use of the CPU

when appropriate. CUDA is also the first API to allow CPU-based applications

to access directly the resources of a GPU for more general purpose computing

without the limitations of using a graphics API.

A.2 Nvidia CUDA

Following is an excerpt from CUDA Programming Guide NVIDIA (2008).

CUDA (an acronym for Compute Unified Device Architecture) is a parallel com-

puting architecture developed by NVIDIA. CUDA is the computing engine in

NVIDIA graphics processing units (GPUs) that is accessible to software develop-

ers through variants of industry standard programming languages. Programmers

use ’C for CUDA’ (C with NVIDIA extensions and certain restrictions), compiled

through a PathScale Open64 C compiler, to code algorithms for execution on the

GPU. CUDA architecture shares a range of computational interfaces with two

competitors -the Khronos Group’s Open Computing Language and Microsoft’s

DirectCompute. Third party wrappers are also available for Python, Perl, For-

76



A.2 Nvidia CUDA

tran, Java, Ruby, Lua, MATLAB and IDL, and native support exists in Mathe-

matica. CUDA gives developers access to the virtual instruction set and memory

of the parallel computational elements in CUDA GPUs. Using CUDA, the lat-

est NVIDIA GPUs become accessible for computation like CPUs. Unlike CPUs

however, GPUs have a parallel throughput architecture that emphasizes execut-

ing many concurrent threads slowly, rather than executing a single thread very

quickly. This approach of solving general purpose problems on GPUs is known

as GPGPU. In the computer game industry, in addition to graphics rendering,

GPUs are used in game physics calculations (physical effects like debris, smoke,

fire, fluids); examples include PhysX and Bullet. CUDA has also been used to

accelerate non-graphical applications in computational biology, cryptography and

other fields by an order of magnitude or more. An example of this is the BOINC

distributed computing client. CUDA provides both a low level API and a higher

level API. The initial CUDA SDK was made public on 15 February 2007, for

Microsoft Windows and Linux. Mac OS X support was later added in version

2.0, which supersedes the beta released February 14, 2008. CUDA works with all

NVIDIA GPUs from the G8X series onwards, including GeForce, Quadro and the

Tesla line. NVIDIA states that programs developed for the GeForce 8 series will

also work without modification on all future NVIDIA video cards, due to binary

compatibility.

A.2.1 CUDA programming model

When programmed through CUDA, the GPU is viewed as a compute device ca-

pable of executing a very high number of threads in parallel. It operates as a

coprocessor to the main CPU, or host: In other words, data-parallel, compute-

intensive portions of applications running on the host are off-loaded onto the

device.

More precisely, a portion of an application that is executed many times, but in-

dependently on different data, can be isolated into a function that is executed on

the device as many different threads. To that effect, such a function is compiled

to the instruction set of the device and the resulting program, called a kernel, is

downloaded to the device.

Both the host and the device maintain their own DRAM, referred to as host mem-
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ory and device memory, respectively. One can copy data from one DRAM to the

other through optimized API calls that utilize the devices high-performance Di-

rect Memory Access (DMA) engines.

The batch of threads that executes a kernel is organized as a grid of thread blocks

as illustrated in Figure A.1. A thread block is a batch of threads that can coop-

erate together by efficiently sharing data through some fast shared memory and

synchronizing their execution to coordinate memory accesses. More precisely,

one can specify synchronization points in the kernel, where threads in a block are

suspended until they all reach the synchronization point.

Each thread is identified by its thread ID, which is the thread number within the

block. To help with complex addressing based on the thread ID, an application

can also specify a block as a two- or three-dimensional array of arbitrary size

and identify each thread using a 2- or 3-component index instead. For a two-

dimensional block of size (Dx, Dy), the thread ID of a thread of index (x, y) is

(x + yDx) and for a three-dimensional block of size (Dx, Dy, Dz), the thread ID

of a thread of index (x, y, z) is (x+ yDx + zDxDy).

There is a limited maximum number of threads that a block can contain. How-

ever, blocks of same dimensionality and size that execute the same kernel can be

batched together into a grid of blocks, so that the total number of threads that

can be launched in a single kernel invocation is much larger. This comes at the

expense of reduced thread cooperation, because threads in different thread blocks

from the same grid cannot communicate and synchronize with each other. This

model allows kernels to efficiently run without recompilation on various devices

with different parallel capabilities: A device may run all the blocks of a grid se-

quentially if it has very few parallel capabilities, or in parallel if it has a lot of

parallel capabilities, or usually a combination of both. Each block is identified by

its block ID, which is the block number within the grid. To help with complex

addressing based on the block ID, an application can also specify a grid as a two-

dimensional array of arbitrary size and identify each block using a 2-component

index instead. For a two-dimensional block of size (Dx, Dy), the block ID of a

block of index (x, y) is (x+ yDx).
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Figure A.1: The host issues a succession of kernel invocations to the device. Each

kernel is executed as a batch of threads organized as a grid of thread blocks.

A.2.2 Memory model

A thread that executes on the device has only access to the devices DRAM and

on-chip memory through the following memory spaces, as shown in Figure A.2:

• Read-write per-thread registers,

• Read-write per-thread local memory,
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• Read-write per-block shared memory,

• Read-write per-grid global memory,

• Read-only per-grid constant memory,

• Read-only per-grid texture memory.

The global, constant, and texture memory spaces can be read from or written to

by the host and are persistent across kernel launches by the same application.

The global, constant, and texture memory spaces are optimized for different mem-

ory usages. Texture memory also offers different addressing modes, as well as data

filtering, for some specific data formats.

A.2.3 Hardware implementation

The device is implemented as a set of multiprocessors as illustrated in Figure

A.3. Each multiprocessor has a Single Instruction, Multiple Data architecture

(SIMD): At any given clock cycle, each processor of the multiprocessor executes

the same instruction, but operates on different data.

Each multiprocessor has on-chip memory of the four following types:

• One set of local 32-bit registers per processor,

• A parallel data cache or shared memory that is shared by all the processors

and implements the shared memory space,

• A read-only constant cache that is shared by all the processors and speeds

up reads from the constant memory space, which is implemented as a read-

only region of device memory,

• A read-only texture cache that is shared by all the processors and speeds up

reads from the texture memory space, which is implemented as a read-only

region of device memory.

The local and global memory spaces are implemented as read-write regions of

device memory and are not cached.
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Figure A.2: A thread has access to the devices DRAM and on-chip memory

through a set of memory spaces of various scopes.

Each multiprocessor accesses the texture cache via a texture unit that imple-

ments the various addressing modes and data filtering mentioned in the previous

paragraph.

A.2.4 Execution model

A grid of thread blocks is executed on the device by executing one or more blocks

on each multiprocessor using time slicing: Each block is split into SIMD groups

of threads called warps; each of these warps contains the same number of threads,

called the warp size, and is executed by the multiprocessor in a SIMD fashion;
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Figure A.3: A set of SIMD multiprocessors with on-chip shared memory.

a thread scheduler periodically switches from one warp to another to maximize

the use of themultiprocessors computational resources. A half-warp is either the

first or second half of a warp. The way a block is split into warps is always the

same; each warp contains threads of consecutive, increasing thread IDs with the

first warp containing thread 0.

A block is processed by only one multiprocessor, so that the shared memory space

resides in the on-chip shared memory leading to very fast memory accesses. The

multiprocessors registers are allocated among the threads of the block. If the

number of registers used per thread multiplied by the number of threads in the

82

Appendix1/Appendix1Figs/EPS/cuda5.eps


A.3 Application Programming Interface

block is greater than the total number of registers per multiprocessor, the block

cannot be executed and the corresponding kernel will fail to launch.

Several blocks can be processed by the same multiprocessor concurrently by al-

locating the multiprocessors registers and shared memory among the blocks.

The issue order of the warps within a block is undefined, but their execution can

be synchronized to coordinate global or shared memory accesses.

The issue order of the blocks within a grid of thread blocks is undefined and there

is no synchronization mechanism between blocks, so threads from two different

blocks of the same grid cannot safely communicate with each other through global

memory during the execution of the grid.

If a non-atomic instruction executed by a warp writes to the same location in

global or shared memory for more than one of the threads of the warp, the num-

ber of serialized writes that occur to that location and the order in which they

occur is undefined, but one of the writes is guaranteed to succeed. If an atomic

instruction executed by a warp reads, modifies, and writes to the same location in

global memory for more than one of the threads of the warp, each read, modify,

write to that location occurs and they are all serialized, but the order in which

they occur is undefined.

A.3 Application Programming Interface

The goal of the CUDA programming interface is to provide a relatively simple

path for users familiar with the C programming language to easily write programs

for execution by the device. It consists of:

• A minimal set of extensions to the C language, described in Section 4.2, that

allow the programmer to target portions of the source code for execution

on the device;

• A runtime library split into:

– A host component, described in Section 4.5, that runs on the host and

provides functions to control and access one or more compute devices

from the host;
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– A device component, described in Section 4.4, that runs on the device

and provides device-specific functions;

– A common component, described in Section 4.3, that provides built-in

vector types and a subset of the C standard library that are supported

in both host and device code.
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