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Résumé

Dans cette thèse nous mettons en œuvre une méthode vortex hybride pénalisée (HVP) afin de
simuler des écoulements incompressibles autour de corps non profilés dans des milieux complexes
solides-fluides-poreux. Avec cette approche particulaire hybride, le phénomène de convection est
modélisé à l’aide d’une méthode vortex afin de bénéficier du caractère peu diffusif et naturel des
méthodes particulaires. Un remaillage des particules est alors réalisé systématiquement sur une
grille cartésienne sous-jacente afin d’éviter les phénomènes de distorsion. D’autre part, les effets
diffusifs et d’étirement ainsi que le calcul de la vitesse sont traités sur la grille cartésienne, à
l’aide de schémas eulériens. Le traitement des conditions de bords aux parois de l’obstacle est
effectué à l’aide d’une technique de pénalisation, particulièrement bien adaptée au traitement
de milieux solides-fluides-poreux.

Cette méthode HVP est appliquée au contrôle passif d’écoulement. Cette étude de contrôle
est effectuée respectivement en 2D et en 3D autour d’un demi-cylindre et d’un hémisphère par
l’ajout d’un revêtement poreux à la surface de l’obstacle. La présence de cette couche poreuse
modifiant la nature des conditions aux interfaces, permet de régulariser l’écoulement global et
de diminuer la traînée aérodynamique de l’obstacle contrôlé. A travers des études paramétriques
sur la perméabilité, l’épaisseur et la position du revêtement poreux, ce travail vise à identifier des
dispositifs de contrôles efficaces pour des écoulements autour d’obstacles comme des rétroviseurs
automobiles.

Mot clés :
Méthode vortex hybride, méthode de pénalisation, contrôle passif d’écoulements, milieux

poreux.

Abstract

In this work we use a hybrid vortex penalization method (HVP) to simulate incompressible
flows past bluff bodies in complex solid-fluid-porous media. In this hybrid particle approach,
the advection phenomenon is modeled through a vortex method in order to benefit from the
natural description of the flow supplied by particle methods and their low numerical diffusion
features. A particle remeshing is performed systematically on an underlying Cartesian grid in
order to prevent distortion phenomena. On the other hand, the viscous and stretching effects as
well as the velocity calculation are discretized on the mesh through Eulerian schemes. Finally,
the treatment of boundary conditions is handled with a penalization method that is well suited
for the treatment of solid-fluid-porous media.

The HVP method is applied to passive flow control. This flow control study is realized past
a 2D semi-circular cylinder and a 3D hemisphere by adding a porous layer on the surface of the
body. The presence of such porous layer modifies the characteristics of the conditions at the
interfaces and leads to a regularization of the wake and to a decrease of the aerodynamic drag
of the controlled obstacle. Through parametric studies on the permeability, the thickness and
the position of the porous coating, this works aims to identify efficient control devices for flows
around obstacles like the rear-view mirrors of a ground vehicle.

Keywords :
Hybrid vortex method, penalization method, passive flow control, porous media.
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Introduction

In recent years, advances in computing enabled a large enhancement of numerical simulations
related to Computational Fluid Dynamics (CFD). These simulations allow to predict the phys-
ical behavior of fluid flows and constitute a real economic issue when applied to bio-medical
or engineering problems. In this thesis, we will particularly focus on incompressible Newtonian
fluid flows past obstacles, which have been and are still subject to many investigations due to
their close relation to aerodynamic efficiency.

Among the numerous numerical approaches used in CFD, particle methods occupy an im-
portant place thanks to their intuitive and natural description of the flow as well as their low
numerical diffusion and their stability. Vortex methods [Cottet and Koumoutsakos, 2000] be-
long to this class of Lagrangian approaches and will constitute the key point of the present work.
In the last three decades, the wide range of research works performed on these methods allowed
to highlight their robustness and accuracy while providing a solid mathematical framework with
convergence analysis and studies on conservation features. On the other side, a lot of efforts
have been devoted to overcome their main intrinsic difficulties, mostly relying in the treatment
of the boundary conditions and the modeling of the viscous effects due to particle distortion.
The remeshing technique [Huberson and Jollès, 1990, Koumoutsakos and Leonard, 1995] may
be considered as one of the most efficient and popular method to bypass the inherent problem
of particle distortion. It consists in periodically redistributing the particles onto an underlying
Cartesian grid in order to ensure their overlapping and thus the convergence of the solution.
Following the introduction of this remeshing procedure, hybrid vortex methods emerged. These
semi-Lagrangian approaches are characterized by the fact that the vorticity transport equations
and the velocity equation are both handled on the particles field and on a Cartesian grid. They
allow to benefit from the strengths of vortex schemes to handle convection phenomenon and
from the one of grid-based methods, like immersed boundary methods, to model boundary con-
ditions. Based on these different improvements, vortex methods have matured and now offer a
robust framework able to compete with pure Eulerian methods in the handling of challenging
problems. Besides the numerical approach, vortex methods also need computational compet-
itiveness to pretend for being used in the CFD community. A lot of investigations related to
algorithmic issues were therefore carried out in order to achieve this goal. Nowadays, a very
few number of high performance scientific libraries using hybrid vortex methods exist. Based
on this analysis, the present work is in line with a desire to demonstrate the effectiveness of
a hybrid vortex method through the implementation of a dedicated scientific library, parallel,
flexible, portable and modular.

The hybrid vortex method considered in this thesis is coupled with an immersed boundary
method in order to account for the presence of obstacles in the flow and to model the boundary
conditions. The method chosen here is the Brinkman penalization technique [Caltagirone, 1994,
Angot et al., 1999, Kevlahan and Ghidaglia, 2001]. The underlying idea is to extend the fluid
velocity inside the solid body and to solve the flow equations with a penalization term, depending
on the intrinsic permeability, to enforce rigid motion inside the solid, using a vorticity formula-
tion. Beyond the advantages specific to immersed boundary methods, the penalization approach

1



2 Introduction

allows to handle solid-fluid-porous media. The differentiation between the three different media
is indeed easily performed defining the value of the penalization parameter without prescribing
a boundary condition at the solid boundary or a condition at the porous-fluid interface. This
point is the main issue of the numerical application handled in this thesis, dealing with passive
flow control around bluff bodies.

In recent years, applications related to flow control widely developed, especially in the au-
tomotive industry. A striking example is that of trucks companies, for which 25% of the overall
budget is spent on fuel, while it is estimated that 60% of the truck engine power is dedicated
to fight the drag force at speed of 90-100 km/h [Mohamed-Kassim and Filippone, 2010]. Drag
reduction therefore appears as a real issue. For this purpose many flow control devices have
been developed. They may be classified in two categories: the active and the passive tech-
niques. The first ones consist in modifying the flow by supplying energy to the system and
the passive devices rely on the change of structural and morphological configuration of the con-
trolled body. In this thesis we aim at performing flow control past the rear-view mirrors of a
ground vehicle. The latter, in spite of the fact that they only represent 0.5% of the projected
surface of the vehicle, are responsible for about 10% of the total aerodynamic drag because
of their spanwise position. Due to the size and the geometry of rear-view mirrors, passive
control devices appear as the most suited. The passive technique considered here in order to
smooth the flow dynamics involves porous media. As highlighted in [Pluvinage et al., 2014],
it is interesting to mention that flow throughout porous media may be observed in multiple
applications, like tennis balls [Mehta and Pallis, 2001] or carbon-nanotubes-based flow sensors
[Vaseashta and Dimova-Malinovska, 2005], as well as natural structures like vegetation canopies
[Gosselin, 2009], birds’ covert feathers [Venkataraman and Bottaro, 2012] or endothelial gly-
cocalyx (i.e. “sweet shield”) of blood vessels [Secomb et al., 2001]. The presence of such
porous layers enables a damping of the flow-induced surface instabilities, therefore modify-
ing the flow behavior in the vicinity of the solid-porous-fluid interface. Based on the works
of [Bruneau and Mortazavi, 2004, Bruneau and Mortazavi, 2006, Bruneau et al., 2008], the pas-
sive flow control device designed in the present work relies in a total or partial coating of the
rear-view mirror surface with a porous layer. Under optimal conditions related to the perme-
ability of the added porous layer, its thickness and its position, the modifications of the flow
induced by the presence of such device may lead to a regularization of the wake and to a drag
reduction.

The main objective of this thesis is to demonstrate the relevance and efficiency of the pre-
sented hybrid vortex penalization method in the context of two- and three-dimensional complex
flows involving solid, porous and fluid media. It particularly requires the implementation of a
parallel library which conception must take into account important considerations like flexibil-
ity, robustness or portability on different architectures and systems. The completeness of the
proposed study also involves, in a second place, a careful analysis of the numerical results from
a validation as well as a flow control application point of view. The present numerical method is
based on a DNS (Direct Numerical Simulations) model, which limits the choice of the Reynolds
number. The modeling of realistic fully turbulent flows, characterized by high Reynolds num-
bers, would require unaffordable computational resources in the context of DNS. Nevertheless,
the presently performed simulations constitute a necessary step in order to validate and under-
stand the physical phenomena involved in solid-porous-fluid media, considering all length scales,
before tackling turbulence models of industrial scope.

This thesis is organized as follows. In the first chapter we propose a survey on vortex meth-
ods. By retracing the history of these particle methods from their introduction in the 1930’s
through calculations by hand until nowadays, with the apparition of the first highly efficient
parallel vortex-methods libraries, this state of art aims to precisely define the scientific context
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and the numerical issues of the thesis. The second chapter will be dedicated to the description
of the hybrid vortex method considered in this work. We will first express the continuous gov-
erning equations before introducing the algorithm and numerical schemes designed in order to
discretize the problem. A full description of the co-implemented scientific library designed to
solve the problem will be given at the end of the chapter. In chapter three, we will perform a
validation study of the proposed method for two- and three-dimensional flows past different bluff
bodies. The analysis of the validation and convergence results will be preceded by a descrip-
tion of the physical mechanisms involved in incompressible viscous flows past bluff bodies. The
understanding of these phenomena is necessary for a correct interpretation of the obtained vali-
dation results and the one related to flow control. This latter point will be addressed in chapter
four. This chapter reports all the 2D and 3D numerical passive flow control results obtained
using porous media around bluff bodies with a square back wall. In this study, we will carry out
several parametric studies on the porous layer permeability, thickness or position, intending to
determine the optimal devices in terms of drag reduction and global flow regularization. Finally,
some perspectives related to the present work will be outlined in chapter five.
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Résumé 1

Afin de situer les travaux de cette thèse dans leur contexte scientifique et afin d’en com-
prendre les enjeux, nous proposons dans ce premier chapitre un état de l’art des méthodes
vortex. Dès leur création dans les années 1930, ces méthodes particulaires ont su susciter un
attrait dans la communauté de la mécanique des fluides numérique de par leur capacité à
modéliser de façon précise, robuste et naturelle des écoulements où le phénomène convectif
est dominant. Cependant, leur utilisation à grande échelle fut freinée par leur difficulté à
modéliser les conditions d’adhérence sur la paroi d’un solide immergé ainsi qu’à traiter les
effets dus à la viscosité de l’écoulement. Ce dernier point s’explique par le phénomène de dis-
torsion, caractéristique des méthodes lagrangiennes, se manifestant par une accumulation ou
une raréfaction des particules dans les zones de forts gradients. Malgré de multiples études
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menées entre 1973 et le début des années 90 afin de remédier à ces faiblesses, les méthodes
vortex ne parvinrent pas à s’imposer dans leur contexte initial. C’est avec l’apparition de
schémas de remaillage et leur utilisation dans le cadre de méthodes hybrides eulériennes/la-
grangiennes que les méthodes vortex réussirent à contourner leurs difficultés intrinsèques,
tout en conservant leurs atouts d’origine, et gagnèrent en compétitivité. En effet, la procé-
dure de remaillage permit de redistribuer les particules sur une grille sous-jacente assurant
ainsi leur recouvrement, et l’utilisation de méthodes eulériennes sur la grille facilita le traite-
ment des effets visqueux mais aussi des conditions limites avec par exemple l’introduction
de méthodes aux frontières immergées. Ce nouveau cadre semi-lagrangien suscita alors de
nombreux efforts, notamment en termes de développement algorithmique et de calcul haute
performance. Rendues ainsi plus rapides et plus efficaces, les méthodes vortex devinrent
alors capables de traiter des problèmes ayant des enjeux industriels ou biologiques. C’est
dans ce contexte semi- lagrangien que s’inscrit la méthode proposée dans cette thèse ayant
pour but d’être appliquée, à terme, à la modélisation de contrôle passif d’écoulement pour
des problèmes d’aérodynamique automobile.

Through the first vortex sheet computations of [Prager, 1928] and [Rosenhead, 1931] in the
1930’s, the Vortex Methods (VM), which stem from particle methods, actually correspond to the
first numerical method ever used in the Computational Fluid Dynamics community. This can be
explained by their very natural framework, close to the physics, which make them particularly
well suited for advection dominated flow problems.

In particle methods, the physical quantities involved in the simulated problem are discretized
onto a set of particles evolving spatially in the domain according to the problem dynamics. The
particles are therefore characterized by their position in the computational domain and the value
of the physical quantity they are carrying. Since they are intrinsically close to the physics that
they aim to model, the Lagrangian methods have been widely used to simulate problems related
to astrophysics, solid mechanics and fluid mechanics, hence providing a relevant alternative to
grid-based methods.

In vortex methods, the particles discretize the Navier-Stokes equations in their velocity-
vorticity formulation. This formulation allows to directly point to the essence of vorticity dy-
namics in incompressible flows, which is characterized by advection and diffusion as well as
stretching and change of orientation. As we aim in this work to perform DNS of incompressible
flows with application to flow control, the choice of a vortex method is first justified by the fact
that the vorticity formulation of the Navier-Stokes equations is a natural framework to address
questions related to flow control. Indeed, the vorticity is a signature of wakes in bluff body
flows and, as such, is related to aerodynamic performance of obstacles. Furthermore, we aim
to deal with moderate and high Reynolds numbers and under these regimes, the vorticity ad-
vection is predominant, which motivates the use of particle schemes to discretize these equations.

This chapter proposes a literature survey of the vortex methods from their introduction in
the 1930’s until nowadays. We will start with the presentation of the VM in the context of
two-dimensional inviscid flows, that is to say the context in which they arose, before detailing
their extension to the three-dimensional case. We will then introduce step by step the different
approaches which were developed in order to model viscous effects as well as the presence
of immersed boundaries in the fluid flow, until we reach recent hybrid VM allowing to solve
accurately and efficiently the Navier-Stokes equations for incompressible flows past bluff bodies.
The next part will present the outlines of the hybrid penalization vortex method used in the
present work and the last section of this chapter will be dedicated to the algorithmic issues
related to hybrid vortex methods.
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1.1 Vortex methods for inviscid incompressible flows

Before introducing the initial version of vortex method, which was given in the case of inviscid
flows, let us first define the vorticity. From the physical point of view, the vorticity measures
the local rotation of the fluid flow. It is obtained by taking the curl of the velocity field:

ω ≡ ∇ × u. (1.1)

In the case of a two dimensional flow, the vorticity is perpendicular to the flow plane and
corresponds to a scalar field. We note it by ω in that case. In the Cartesian coordinates system,
the vorticity respectively expresses in 2D and 3D as follows:

ω = ωz =
∂uy

∂x
− ∂ux

∂y
, ω = (ωw, ωy, ωz) =

(
∂uz

∂y
− ∂uy

∂z
,
∂ux

∂z
− ∂uz

∂x
,
∂uy

∂x
− ∂ux

∂y

)
.

(1.2)
The circulation Γ corresponds to the macroscopic rotation of the flow. It is a scalar field defined
as the line integral of the velocity field along a closed path. Using the Stokes theorem, the
circulation associated to a patch of vorticity A, bounded by a closed path L, is defined by:

Γ =
∮

L
u ds =

∫

A
ω dx. (1.3)

In other words, the vorticity may be defined as the microscopic rotation of the flow at a given
point, while the circulation may be considered as a vorticity flux.

1.1.1 Two dimensional vortex methods

As mentioned in the introduction of this thesis, the first calculations based on vortex methods
were performed, by hand, independently by [Prager, 1928] and [Rosenhead, 1931]. For that
purpose, they discretized the flow into elements, namely the particles, each carrying a local
circulation α. These calculations were limited in terms of number of flow elements as well
as in computational time. Based on these pioneer works, the method described in the sequel
corresponds to the general definition of vortex methods, first introduced in the 1970’s.

Vortex blob method

The design of vortex methods for inviscid two-dimensional incompressible flows is based on
vorticity-velocity formulation of the Euler equations:

∂ω

∂t
+ (u · ∇)ω = 0 (1.4)

div u = 0 (1.5)

ω(·, 0) = ω0 (1.6)

|u| → u∞ (1.7)

where (u · ∇)ω denotes the advection term in the conservation momentum equation 1.4 and
equation 1.5 corresponds to the incompressibility condition. The idea of vortex blob method
was originally introduced by [Chorin and Bernard, 1973]. Let a regular approximation ωh of ω,
and xh

p the trajectories of the particles transported by the flow. This approximated vorticity ωh

may be numerically expressed at time t by:

ωh(x, t) =
∑

p

αpδ[x − xh
p(t)], (1.8)

where αp corresponds to the local circulation around xh
p . We note that this requirement directly

comes from the Kelvin’s theorem on which the vortex methods are based. This theorem states
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that in an inviscid flow the circulation around a closed curve, enclosing the same fluid elements,
remains constant in time when moving with the fluid, which mathematically writes:

∂Γ
∂t

=
∂

∂t

∫

V (t)
ω(·, t) dx = 0. (1.9)

At all times, the velocity field u is coupled with the vorticity ω through the Poisson equation:

∆u = −∇×ω, (1.10)

obtained from the definition of the vorticity (eq. 1.1) and the incompressibility condition (eq.
1.5), as follows:

∇×ω = ∇×(∇×u) = −∆u + ∇(∇ · u). (1.11)

Considering periodic boundary conditions, the solution of equation 1.10 is recovered solving
the following Biot-Savart equation:

u = K ⋆ ω, (1.12)

where ⋆ denotes the convolution and K is the rotational counterpart of the periodic Green’s
function of the Poisson equation 1.10. The velocity field recovered from ωh is thus given by:

uh(x) = curl(G(x,x′) ⋆ wh(x)) + uh
∞(x) =

∫
−∇G(x,x′) ωh(x′) dx + uh

∞(x), (1.13)

where the Green’s function G satisfies

∇2G(x,x′) = δ(x − x′). (1.14)

In 2D, the fundamental solution of the above equation yields:

G(x,x′) =
1

2π
ln(|x − x′|), (1.15)

and the Poisson equation kernel, denoted K, is then equal to:

K(x,x′) = ∇G(x,x′) =
1

2π
(y − y′,−(x− x′))

|x − x′| . (1.16)

Consequently, at any time, the velocity field uh is related to the vorticity ωh through the Biot-
Savart law:

uh(x) = −
∫

K(x,x′) ωh(x′) dx + uh
∞(x) (1.17)

= K(x,x′) ⋆ ω(x′) + uh
∞(x). (1.18)

According to equation 1.16, a singularity appears in the kernel K when the distance between
two particles becomes too small. Faced with this problem, the idea of a global regularization of
K arose. This is the creation of the vortex blob method which now basically stands for most of
the commonly used vortex methods. In this numerical approach, the vorticity of a flow element
is distributed on a blob, that is to say on a disk of finite radius ε. This vorticity distribution is
defined by a smooth cutoff function ζ.
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Definition 1.1

One calls cutoff function of order r a radially-symmetric function ζ, satisfying the following
r-ordered moment properties:





∫
ζ(x)dx = 1

∫
xsζ(x)dx = 0, 1 ≤ |s|≤ r − 1, r ≥ 2

∫
|x|r|ζ(x)|dx < ∞

(1.19)

If the blob radius ε is small enough, one denotes ζε the mollified function defined by:

ζε =
1
ε2

ζ

(
x

ε

)
. (1.20)

The vorticity ωh
ε of the mollified particles is then given by:

ωh
ε (x) =

∑

p

αpζε(x − xh
p), (1.21)

where the numerical particles locations xh
p(t) are obtained by solving the following ODEs:

∂xh
p(t)

∂t
= uh(xh

p(t), t) (1.22)

with
uh = Kε ⋆ ω

h = (K ⋆ ζε) ⋆ ωh (1.23)

which, using a discrete integral estimation, may be expressed by:

uh(x) =
∑

p

αpKε(x − xh
p). (1.24)

Among the possible cutoff functions, the Gaussian-based ones are often favored because of their
smoothness property and their fast decay. Let us first give the example of the first-order Gaussian
cutoff function, which is defined by:

ζε(r) =
e−r2/ε2

πε2
, (1.25)

where r = |x − x′| and where the proportionality factor allows the integral of the above function
to be equal to 1 over the infinite plane. One can notice that this function approaches the Dirac
function as ε → 0 (the vortex blob narrows to a single point and the vorticity amplitude goes
to ∞) and its area integral remains unity. Moreover, the behavior of a point vortex is mimicked
as we move away from the center. In the case of Gaussian-based cutoffs, the corresponding
velocity kernel is given in explicit algebraic form. For the first-order function (equation 1.25),
one obtains:

Kε =
1

2πr2
(−y, x)

(
1 − e−r/ε2

)
. (1.26)

Concerning high-order cutoff functions, [Beale and Majda, 1982] constructed smooth functions
at any order. These functions are defined by:

Γl(x) = clF−1
(
e−|ξ|2l

)
, (1.27)

where l ≥ 1 denotes the order of the cutoff, F−1 is the inverse Fourier transform, and cl are
normalization coefficients ensuring that the first property of definition 1.1 to be satisfied. If
l = 1 one recovers equation 1.25.
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1.1.2 Three dimensional vortex methods

The resolution of three dimensional inviscid flows mainly relies on two classes of vortex methods:
the vortex filament method and the vortex particle method. The first one appeared in the 80’s,
introduced by Leonard [Leonard, 1975, Leonard, 1980, Leonard, 1985]. This method leans on
the theorems of Helmholtz and Kelvin, stating that tubes of vorticity retain their identity and
move as material elements in an inviscid flow. In this approach, the quantity carried by the
Lagrangian elements is a scalar, as in two dimensions, and the elements are now deformable
lines instead of discrete points. As for two-dimensional vortex schemes, the circulation of the
particles remains constant in time.

The second method, called particle vortex method, was introduced later by [Cottet, 1988a,
Anderson and Greengard, 1985]. It can be considered as a direct extension of the two-dimensional
vortex schemes since the vorticity is still carried by a set of points (the particles). The differ-
ence with the two-dimensional case lies in the fact that the quantity transported by particles
is a vector instead of a scalar and that the circulation is no more constant in time because
of the presence of the stretching term in the vorticity equation. Before presenting these two
approaches, let us first define the Euler equations governing a three-dimensional inviscid flow.

In three dimensions, the vorticity ω = ∇×u is a vector. The vorticity-velocity formulation
of the Euler equations writes:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = 0 (1.28)

ω(·, 0) = ω0 (1.29)

u = K ⋆ ω, (1.30)

where K is the non-regularized matrix-valued function given by:

u(x) = K ⋆ ω(x) = − 1
4π

∫
x − x′

|x − x′|3 × ω(x′) dx = curl(G ⋆ ω) (1.31)

and where G is the Green function of Poisson equation 1.30 given in 3D by G = (4π|x|)−1. The
equation 1.28 is a transport-deformation equation for the vorticity field and (ω ·∇)u = [∇u][ω],
the vector of component ωj ∂ui/∂xj , corresponds to the stretching term. A conservative vortex
scheme can be derived considering the conservative formulation of the stretching term, which
stands as:

div(ω : u) = (ω · ∇)u − u(div ω). (1.32)

According to the fundamental laws of fluid mechanics, the vorticity is a solenoidal field (div ω ≡
0). Therefore equation 1.32 corresponds to the conservative form of the stretching term, which
means that is does not contribute to the creation of circulation. Physically, the vortex stretch-
ing phenomenon corresponds to the lengthening of vortices in the three-dimensional fluid flow,
associated with an increase of the component of vorticity in the stretching direction. For incom-
pressible flow, the volume conservation of fluid elements implies that the longitudinal stretching
goes together with the shrinking of the fluid elements in the directions perpendicular to the
stretching direction. This reduces the radial length scale of the associated vorticity and explains
the fact that the vorticity stretching is considered as the mechanism responsible for the energy
transfer from the large scales to the small scales of the flow.

1.1.2.1 Vortex filament method

The vortex filament method relies on a very natural framework, which explains their earliest his-
torical apparition [Leonard, 1975]. Instead of dealing with single points it considers deformable
line vortices on which the circulation is conserved, according to the Kelvin’s theorem. Intuitively,
it seems clear that a vorticity distribution along a line can experience lengthening and defor-
mation (caused by the stretching term), whereas it is impossible to model such a phenomenon
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through the point-particles handled in the vortex particle method. Concretely, a filament vortex
method consists in following the discrete markers of a Lagrangian curve (the filament) which
model the vorticity field distribution and then in reconstructing the corresponding curves at
each time step.

From the geometrical point of view, the vortex filament is defined as a vorticity field that
is concentrated on a tube of radius ε and of infinitesimal cross section with a singularity at the
center (Figure 1.1). A vortex line cannot end in the fluid: it must form a closed path or extend
to infinity. The direction of a vortex filament is tangent at each point of its constitutive curve,
and its circulation Γ is equal to the vorticity flux through a cross section of the filament:

Γ =
∫

tube
ω dA =

∮

L
u ds = uθ(2πε), (1.33)

where uθ denotes the tangential velocity. According to the first Helmholtz theorem, this flux
is independent of the considered cross section and from Kelvin’s observations we know that
the circulation of a vortex line does not change along its length. Therefore, this eliminates the
need to calculate the stretching component of the vorticity equation and explains why the first
three-dimensional vortex simulations were performed using vortex filament methods.

ε

Γ 

ω

Figure 1.1: Geometrical representation of a vortex filament. The dashed line characterizes the
filament singularity.

Let us now present the definition of a vortex filament and the solution of equation 1.28
using this approach. The mathematical description presented here follows the one detailed in
[Cottet and Koumoutsakos, 2000]. Let us consider a smooth closed oriented curve L in IR3. A
vortex filament with unit circulation supported by L is the vector-valued measure µL defined
by:

〈µL, ϕ〉 =
∫

L

∂γ

∂ξ
· ϕ[γ(ξ)] dξ (1.34)

where γ(ξ) corresponds to a parametrization of L, preserving its orientation, and ϕ is a contin-
uous test function. Then, according to the Kelvin’s circulation theorem, the unique solution of
equation 1.28 is the vortex filament:

ωh(x, t) =
∑

p

αpµLh
p (t), (1.35)

which, coupled with the filament dynamics:

∂Lh
p

∂t
= uh(Lh

p , t) = Kε ⋆ ω
h, (1.36)
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defines the vortex filament methods. The mollified Poisson equation kernel Kε is computed as
usual with a cutoff function ζ. If this function has a spherical symmetry, then the velocity field
can be explicitly recovered with the following formula:

uh(Lh
p , t) = −

∑

q

αq

∫

Lq

ρ
[

γp−γq(ξ)
ε

]

|(γp − γq)|3 [γp − γq(ξ)] × ∂γq

∂ξ
dξ, (1.37)

where
ρ(r) =

∫ r

0
ζ(s)s2 ds (1.38)

In practice, vortex filament methods were chosen to perform one of the first 3D simulation
in CFD [Leonard, 1980] and were also used more recently by [Angelidis and Neyret, 2005] in
graphic works. However, they suffer from several weaknesses: first of all, they are most of the
time quite difficult to initialize for a given flow. Only specific problems like vorticity rings and
jets are spared from this trouble. Also, some filament “surgeries” might become necessary in
order to avoid tiny loops or to reconnect neighboring filaments, which make the method complex
to use. Eventually, there is no straightforward way to include the diffusion effects in the model
with filament method. All these major drawbacks led to the introduction of vortex point method
to handle three dimensional inviscid flows in a pure Lagrangian way.

1.1.2.2 Vortex particle method

Proceeding in the same spirit as with the two dimensional case, the vortex particle method
proposed by [Anderson and Greengard, 1985, Cottet, 1988a] is obtained by approximating the
vorticity field as follows:

ωh(x, t) =
∑

p

αh
p(t) δ[x − xh

p(t)], (1.39)

where the particles xh
p follow the trajectories defined by the vector field uh according to the three

dimensional form of equation 1.22 and where αh
p are vectors satisfying the following ODEs:

∂αh
p

∂t
= αh

p · ∇uh(xh
p , t). (1.40)

As we can see, the presence of the stretching term in the vorticity transport equation 1.28
modifies the circulation of the particles.

As in two dimensions, the velocity field uh is recovered from the vorticity field solving
the Biot-Savart equation 1.30 for a mollified vorticity field. This mollification of the vorticity
distribution is achieved using a cutoff function ζ which satisfies the moment conditions given in
definition 1.1. Then one has:

ζε(x) = ε−3ζ(x/ε), Gε = G ⋆ ζε, Kε = ∇Gε, (1.41)

and finally, the velocity field is given by:

uh = Kε ⋆ ω
h (1.42)

The computation of the mollified kernel Kε is performed in the same way as in two dimensions.
For example, if ζ is a spherical symmetric cutoff function, one gets:

Kε(x) = − x

|x|3 f
(

x

ε

)
(1.43)

with
f(r) =

∫ r

0
ζ(s)s2ds (1.44)
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This approach, further developed by [Beale and Majda, 1985, Gustafasson and Sethian, 1991]
was also adopted by [Beale et al., 1991] who tested it for several formulations of the stretching
term, in particular [∇uh][αh

p ] and the transpose scheme [∇uh]T [αh
p ] [Choquin and Cottet, 1988].

They applied it to model a vortex ring with swirl. It was also used for the same application
in [Lifschitz et al., 1996]. Compared to vortex filament methods, the vortex particle methods
are certainly less natural from a physical point of view but they remain easier to handle and
to implement since they are more generic. In that sense they are much more suitable to model
viscous flows. This point will be addressed in section (1.2) of this chapter.

1.1.3 Convergence of vortex methods

What distinguishes vortex methods from grid-based methods is the fact that they are build in
such a way that many inviscid flow invariants are conserved. This makes them particularly
interesting from a fluid mechanics point of view since they ensure a correct qualitative answer,
even in the case of underresolved simulations. Besides this important feature, vortex methods
indisputably belong to the category of plain numerical methods by means of their complete
numerical analysis.

Historically, the first complete proof of convergence was given by [Hald, 1979] as part of the
vortex blob methods. This analysis included the influence of the numerical parameters involved
in the model, namely the blob radius ε (that is to say the cutoff width) and the particle spacing,
denoted h. It turned out that, in two dimensions, the vortex blob trajectories tend to the exact
one when the number of eddies increases. But this statement relies on a restrictive overlapping
condition (i.e h ≪ ε) and on several assumptions about the considered cutoff function ζ. One
has to wait until 1982 with the work of [Beale and Majda, 1982] to get a generalized convergence
analysis, in the sense of h = O(ε). These results allow to reach high orders of convergence in
two dimensions. An extension to the three dimension case is also proposed in this study, giving
birth to new high orders three dimensional vortex methods. An other convergence analysis
of three-dimensional vortex methods was further given in [Cottet, 1988a]. On the other hand,
Cottet identified a minimal smoothness requirement for the cutoff function ζ and proposed
a simplified consistency analysis based on quadrature estimates [Cottet, 1982]. In 1985, the
time discretization is added for the first time in the convergence analysis of the 2D and 3D
Euler equations [Anderson and Greengard, 1985]. Until then, the vortex methods had only been
analyzed in terms of semi-discretized schemes. The most important result which came out from
this study is the fact that these methods do not suffer from any Courant-Friedricks-Levy (CFL)
condition, which constraints the time step to be related to the minimal grid size in Eulerian
methods. Indeed, in vortex methods the stability constraint on the time step only depends on
the velocity gradient:

∆t ≤ C

‖∇u‖∞
, (1.45)

where the constant C, also called LCFL number (for Lagrangian CFL), must be lower or equal
to 1. This condition provides a much less restrictive constraint for the time step compared to
purely grid-based schemes. This outcome is of great importance, especially when considering
turbulent flows for which highly resolved simulations are needed. We will come back in details
on these time step concerns in the next chapters of this thesis.

The convergence proof of the so-called vortex point method (where ε = 0) for incompressible
Euler equations was only brought in 1990 and 1991 respectively by [Goodman et al., 1990] and
[Hou et al., 1991]. This method was shown to converge quadratically to the exact solution,
provided it is smooth enough. To achieve this convergence analysis, the authors relied on the
techniques used in the early work of [Beale and Majda, 1982].
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1.2 Viscous vortex methods

One of the main applications that vortex methods aim to model, and which correspond to
those considered throughout this thesis, are the incompressible flows past bluff bodies. In
order to numerically solve such flows, it is essential to include the viscous effects which, along
with the presence of the obstacle’s boundaries, are responsible for the creation of vorticity. To
understand this phenomenon, it is important to recall that the viscosity of a fluid is a measure of
its resistance to gradual deformations by shear stress. Thus when a fluid encounters a solid body,
the intermolecular forces, due to the viscosity, oblige the fluid to decelerate very rapidly in a thin
layer (called boundary layer) surrounding the body. High tangential constraints then occur in
this region, thus creating circulation and consequently, vorticity. Under the action of viscosity,
this vorticity diffuses away in the flow, where no vorticity used to exist before. Therefore, an
accurate resolution of flow past bluff bodies implies to carefully take into account the viscous
effects, at least in the vicinity of the solid walls. The first numerical schemes including viscous
effects in vortex methods were designed with the desire to conserve the Lagrangian framework.
They were consequently purely based on particles.

In this section we will present in details two main existing viscous vortex methods, namely
the Random Walk method (RW) and the Particle Strength Exchange method (PSE). The first
one proposes a stochastic approach to model the vorticity diffusion phenomenon in the Navier-
Stokes equations, whereas the second one is a pure deterministic method and is based on the
integral approximation of the diffusion equation. Before starting with the description of the
Random Walk method, which was historically the first viscous vortex method developed by
[Chorin, 1973], it is necessary to introduce the concept of viscous splitting of the Navier-Stokes
equations. Indeed, in order to handle the diffusion term, it seemed natural to separate the inertial
term from the diffusive one within the time-stepping scheme, and to solve them independently.
The first subsection below is thus dedicated to the presentation of the viscous splitting algorithm.

1.2.1 Viscous splitting method

The original concept of viscous splitting was first introduced at the beginning of the 20th century
by [Prandtl, 1904]. However, its design within the framework of vortex methods was originally
proposed in the early 70’s by [Chorin, 1973] in order to develop his Random Walk Method suited
to model the diffusive phenomenon.

In a two-dimensional viscous flow, the transport of vorticity is governed by the Navier-Stokes
equations, expressed in their velocity-vorticity formulation (u, ω), written:

∂ω

∂t
+ (u · ∇)ω = ν∆ω, (1.46)

where ν denotes the viscosity of the fluid. This equation is coupled with the Poisson equation
∆u = −∇ × ω in order to recover the velocity field from the vorticity.
The viscous splitting algorithm consists in performing substeps in which the convective and the
diffusive effects, respectively governed by (u · ∇ω) and (ν∆ω), are handled successively. Thus,
the two steps of the viscous splitting algorithm for a two-dimensional flow are the following:

1) convection:
∂ω

∂t
+ (u · ∇)ω = 0, (1.47)

2) diffusion:
∂ω

∂t
= ν∆ω. (1.48)

In a Lagrangian frame, the viscous splitting algorithm stands as follows:
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1) convection:

dxp

dt
= u(xp) (1.49)

dωp

dt
= 0, (1.50)

2) diffusion:

dxp

dt
= 0 (1.51)

dωp

dt
= ν∆ω(xp), (1.52)

where in the first step, the particles locations (xp) are updated using the local flow velocity
and in the second one the vorticity of the flow is modified at these new positions (ωp) by the
diffusion.

The convergence of the viscous splitting method was proved by [Beale and Majda, 1981] and
is given by the re-formulated theorem [Cottet and Koumoutsakos, 2000]:

Theorem 1.1

Let ωn denote an approximation of the exact solution ω(·, tn). If ω0 ∈ W 3,∞(IR2)
⋂
W 3,1(IR2),

then the following estimate holds for all p ∈ [1,+∞]:

‖ωn − ω(·, tn)‖0,p ≤ C(T )ν∆t. (1.53)

1.2.2 Random Walk method (RW)

The method of Random Walk [Chorin, 1973] is based on the probabilistic interpretation of the
Green’s function, solution of the diffusion equation:

ω(x, t) =
∫
G(x − y, νt)ω0(y) dy, (1.54)

which, in d-dimensions is known to be explicitly equal to:

G(x − y, νt) =
1

(4πν∆t)d/2
exp

(
−‖x − y‖2

4ν∆t

)
. (1.55)

As mentioned previously, the RW method is inherently related to the viscous splitting approach
since the vorticity field obtained after the advection step is assigned to the initial condition of
the diffusion equation. The diffusion effects are then modeled imposing a Brownian motion to
the flow particles which positions are updated over a time step ∆t according to the following
scheme:

xn+1 = xn + ∆tun + g, (1.56)

where g is a vector of independent random variables obtained through a Gaussian probability
distribution with zero mean and a variance σ = 2ν∆t:

N n
p (0, 2ν∆t) =

1
(2πσ)d/2

exp

(
−‖x‖2

2σ

)
. (1.57)

Moving the particles in such a way creates a concentration field that converges to the above
Green’s function solution of the diffusion equation, as the number of particles tends to infin-
ity. [Marchioro and Pulvirenti, 1982], [Goodman, 1987] and [Long, 1988] successively proved the
convergence of the Random Walk method.
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Thank to its main advantages, namely its simplicity, its capability to easily handle flows
around complicated boundaries and its property to conserve the total circulation, this method
has been extensively used during the last thirty years of the 20th century. In terms of applications
related to the one considered in this thesis, we can cite the works of [Chorin, 1973, Chorin, 1989],
[van Dommelen, 1986] and [Smith and Stansby, 1988, Smith and Stansby, 1989] who applied the
Random Walk method for the simulations of flows around cylinders. We can also refer to
[Wang, 1995] who studied in his thesis several active flow control techniques to prevent the dy-
namic stall of airfoils and to [Lewis, 1990] who used the Random Walk method to simulate flows
over airfoil cascades. However, this viscous vortex method is a stochastic method: it therefore
presents several drawbacks. First, it does not exactly conserve the mean position of the vortic-
ity in free space. Next, the computed solutions are noisy due to the statistical errors. Indeed,
increasing the viscosity ν makes the variance of the random variables larger and consequently
deteriorates the solution. In flow control studies, these statistical errors could mask the effects
of variation in the control parameters. The statistical errors can also cause symmetric flows
to turn asymmetric erroneously which could also corrupt the flow control analysis. Finally, the
stochastic feature of the Random Walk method limits its convergence capability. The error is in-
deed proportional to 1/

√
N [Milinazzo and Saffman, 1977], where N is the number of particles.

Therefore, accurate simulations need a very large number of fluid elements, which increases the
computational cost. In conclusion, one can state that Random Walk methods that use rather
small number of elements should be considered as methods delivering a qualitative behavior of
the flow, instead of a way to approximate the Navier-Stokes equations.

1.2.3 Particle Strength Exchange method (PSE)

The origin of this deterministic viscous vortex method comes from a previous type of methods
called Resampling Methods first developed by [Cottet and Mas-Gallic, 1983] for linear equations
and further proposed in a conservative formulation by [Choquin and Huberson, 1989] and then
extended to the Navier-Stokes equations by [Cottet and Mas-Gallic, 1990]. These resampling
methods use viscous/inviscid splitting of the vorticity equation where the resolution of the
diffusion equation is performed exactly using the fundamental solution of the heat equation and
resampling the vorticity field induced by one particle on its neighbors. Unlike the RW method,
resampling methods are characterized by the fact that diffusion is modeled by a change in the
strength of the particles and not their positions.

Based on the same idea, the Particle Strength Exchange method was later introduced by
[Degond and Mas-Gallic, 1989]. It is based on a deterministic approach allowing to approximate
the Navier-Stokes equations. The mathematical description of the PSE method is here given
in a two-dimensional framework but the main ideas of this approach remain the same in three
dimensions:

1. Approximate the diffusion operator ∆ωp by an integral operator. This approach is moti-
vated by the fact that integrals are better suited to handle particle methods compared to
second-order differential operators.

2. Consider the strength (circulation) of each particle as an unknown quantity that changes
with time due to diffusion effects. We recall that the circulation associated to a particle
corresponds to the product of the vorticity by the volume of the particle: αp = vpωp.

3. Discretize the integral operator of step 1 using the particle positions as quadrature points.

First of all, let us consider a mollified diffusion kernel ηε(x) = ε−2η(x/ε) where η is of order of
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r, that is to say satisfying the following moment properties:




∫
xixjη(x)dx = 2δij , for i, j = 1, 2

∫
xi1

1 x
i2
2 η(x)dx = 0, i1 + i2 = 1 or 3 ≤ i1 + i2 ≤ r + 1

∫
|x|r+2|η(x)|dx < ∞

(1.58)

According to Proposition 1.1, the Laplacian operator may be replaced by:

∆εω(x) = ε−2
∫

[ω(y) − ω(x)]ηε(y − x) dy. (1.59)

Proposition 1.1

Assuming that ω ∈ W r+2,∞(IR2), then the following estimate holds:

‖∆εω − ∆ω‖0,∞ ≤ Cεr‖ω‖r+2,∞. (1.60)

The resulting discrete scheme is written as:

ωh(x, t) =
∑

p

vp ω
h
p (t) δ(x − xp), (1.61)

and using the numerical integration of ∆ε (equation 1.59) we finally obtain the following system
of ODEs allowing to get a particle approximation of the diffusion effects:

dωh
p

dt
= νε−2

∑

q

(vqω
h
q − vqω

h
p ) ηε(xh

q − xh
p). (1.62)

This equation can be interpreted as changes in the strength of particles due to the neighboring
particles. We refer to the works of [Degond and Mas-Gallic, 1989] regarding the construction of
the kernel η, but one possibility is to use η = ∆ζ (where η statisfies the conditions 1.58 if ζ is a
cutoff function of the order of r - see Definition 1.1 -).

The main advantages of the PSE method rely on its deterministic approach and on the
integral framework used to obtained the approximation of the viscous effects. These two as-
pects make the method more accurate compared to the Random Walk method presented pre-
viously. The reliability of the method is also based on its capability to conserve the natu-
ral invariants of the flow, which is not the case with non corrected Resampling Methods (see
[Cottet and Koumoutsakos, 2000]). Eventually, the PSE method is not based on the viscous
splitting algorithm, contrary to Resampling Methods, which therefore discards the intrinsic er-
ror of the splitting process (see Theorem 1.2). However, a major disadvantage of this approach
lies on the necessity to achieve a significant overlap of the vortices needed to ensure a great
convergence of the method. This requirement reduces the ability of the method in resolving the
smallest scales since it noticeably increases the computational cost.

From the pioneer works of [Koumoutsakos and Leonard, 1995] who applied the PSE method
to impulsively started and stopped flows around translating and rotating cylinders for Reynolds
numbers ranging from 40 to 9500, a wide range of applications related to bluff body flows have
been handled based on this deterministic approach.

The problem consisting in modeling viscous effects in vortex methods has been subject
to numerous works between 1980 and 2000, and besides the famous RVM and PSE methods
one can also cite other approaches like the Core Expansion Method [Leonard, 1980], the Fish-
elov’s Method [Fishelov, 1990a], the Diffusion Velocity Method [Fronteau and Combis, 1984],
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the Free-Lagrange Method [Borgers and Peskin, 1987, Rees and Morton, 1991] or the Redistri-
bution Scheme [Shankar and van Dommelen, 1996]. However, most of these methods proved
unable to handle three-dimensional problems.

Apart from the RVM and PSE methods, one of the rare approach that has been success-
fully applied to model the diffusion term in the three-dimensional Navier-Stokes equations is
the Diffusion Velocity Method (DVM) of [Rivoalen et al., 1997]. This method, first introduced
by [Fronteau and Combis, 1984], relies on the idea that the diffusion of vorticity is handled
within the convective process by absorbing the diffusion term into the convection one in the
Navier-Stokes equations 1.46. This process gives rise to two different velocities: the convection
velocity and the diffusion velocity. The latter can be considered as an artificial velocity. Thus,
the transport of vorticity (due to convection and diffusion effects) is modeled by the vortices’
movement provoked by the convection velocities and the diffusion velocities. However, the DVM
is subject to lack of accuracy, even numerical instability, in the regions of the flow with high
vorticity gradients or vanishing vorticity. The method requires the particle size eps to be large
in these regions in order to achieve an important particle overlapping and thus a higher accuracy.

In order to conclude this section, one can highlight the fact that, regardless of the type
of approach, the viscous vortex methods show some difficulties in efficiently and accurately
modeling the diffusion effects in a pure Lagrangian framework. A common drawback is the need
of a large particle overlapping to prevent numerical instabilities. This problem will be treated
in section (1.4).

1.3 Treatment of the boundary conditions

In this thesis we aim to model incompressible viscous flows past obstacles. It is therefore
of great importance to carefully handle the question of boundary conditions at the solid walls.
Furthermore, as explained at the beginning of section (1.2), the boundaries and the flow viscosity
are the only source of vorticity, which explains the efforts made in order to design a method
able to accurately model the flow behavior in this region, essentially governed by the no-slip
boundary condition. The major difficulty lies in the fact that the no-slip boundary condition only
involves the velocity field in its expression whereas the vortex methods are based on a vorticity
formulation of the Navier-Stokes equations. In this section we will give a global description of
all the main approaches dealing with boundary conditions in the vortex methods framework.
We will therefore consider the velocity-vorticity formulation of the Navier-Stokes equations and
we will restrict this survey to solid and rigid obstacles. Before introducing these approaches,
we start by giving the expression of the no-slip boundary condition as a function of the velocity
field.

1.3.1 The no-slip boundary condition

The no-slip boundary condition results from the kinematics and the molecular viscosity. On
one hand, the kinematics force the normal component of the flow velocity u to be equal to the
normal velocity of the body us, at any location on the solid surface (xs):

u(xs) · n = us · n. (1.63)

On the other hand, the molecular viscosity dictates that, at their interface, the tangential
component of the flow velocity must be equal to the body velocity:

u(xs) · s = us · s. (1.64)

The coupling of equations 1.63 and 1.64 gives the no-slip boundary conditions:

u(xs) = us. (1.65)
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Under this condition, the fluid elements present in the vicinity of the solid walls experience a net
torque imparting a rotational motion to the surrounding fluid. This phenomenon corresponds
to the creation of vorticity at the boundaries.

In the context of vortex methods, we aim to express the boundary conditions in terms of
the vorticity field, equivalent to the no-slip boundary condition 1.65. To write these boundary
conditions one may choose a Dirichlet formulation (wall vorticity) or a Neumann formulation
(wall-normal vorticity flux). The Neumann form is often preferred since it directly governs the
local production of vorticity at a solid wall. Indeed, the wall-normal vorticity flux, given by:

∂ω

∂n
, (1.66)

measures the vorticity that enters the flow from the boundaries. This flux is actually responsible
for the total production of vorticity at the no-slip wall. It will be taken into account in all the
different methods we will present. These approaches, designed to model the boundary conditions
with a vorticity formulation, will be introduced respecting their historical order of appearance.
The first family of methods belongs to the ones based on viscous splitting that mimic the
vortex creation at the interface. The second group of methods gathers the ones dealing with
exact formulation of vorticity boundary conditions. The last type of method presented hereafter
consists in defining vorticity flux boundary conditions in order to create vorticity at the wall
boundary and thus to enforce the no-slip.

1.3.2 Methods based on viscous splitting and vorticity creation

1.3.2.1 The Chorin’s vortex sheet method

The first successful approach designed to handle the boundary conditions in vortex methods for
fluid flows is due to [Chorin, 1973]. The method he introduced uses the fractional step tech-
nique (described previously in section (1.2.1)) and relies on creating a vortex sheet at the solid
boundary in order to vanish the slip velocity and thus to enforce the required no-slip boundary
condition. Practically, the wall is discretized into segments. Each of these segments is associated
to a local slip velocity where vortex blob elements are created at each time step to cancel it.
We detail the different steps of the algorithm used in the method proposed in [Chorin, 1973]
to discretize the Navier-Stokes equations, with boundary conditions. In the following, Ω and
S refer respectively to the whole domain and the solid surface, and ωn denotes the vorticity
approximation at time tn = n∆t:

1. Resolution of the inviscid part
The Euler equation is solved, coupled with a no-through-flow boundary condition (1.68):

∂ω

∂t
+ u · ∇ω = 0 in Ω, (1.67)

u · n = 0 on S. (1.68)

At the end of this first step, one has the expression of the intermediate vorticity, denoted
ωn+1/2, associated to the velocity un+1/2 whose normal component is equal to zero at the
solid boundary.

2. Enforcement of the no-slip boundary condition (vorticity creation)
The no-slip boundary condition is obtained by creating a vortex sheet across the wall. This
operation is performed adding an odd extension to the velocity field along the boundary,
as depicted in Figure 1.2. The generated vortex sheet then has a strength equal to γ =
un+1/2 ·s ⊗δS , which corresponds to the jump of the tangential component of the velocity
field. At the end of this step, the vorticity is known in the fluid and a vortex sheet has been
created at the solid surface. As the vortex sheet γ may be considered as interior vorticity
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(contrary to external vorticity, that is vorticity of the flow), the resulting vorticity, leading
to velocity cancellation, is:

ω̃n+1/2 = ωn+1/2 − un+1/2 · s ⊗ δS (1.69)

Let us mention here that this result is inspired by the pioneer works of [Lighthill, 1963]
who already gave in 1963 the expression 1.69 of the new vorticity. At that time, Lighthill
ended the description of his vorticity creation model assuming that the vortex sheet was
slightly impinging on the domain Ω and that, consequently, the velocity associated to ω̃
satisfied the no-slip boundary conditions, experiencing a jump inside the domain. But
this first model suffered from the fact that the vortex sheet strength γ was not explicitly
taken into account in a vorticity-type boundary condition. This is precisely the point on
which Chorin focused to improve the model. This point is described in the third step of
the present algorithm.

u

boundary

Figure 1.2: Odd extension of the velocity field at the wall boundary leading to the creation of a
vortex sheet.

3. Resolution of the viscous part with homogeneous Neumann boundary condi-
tion
The diffusion equation is solved in the whole domain Ω taking ω̃n+1/2 as initial condition,
and an homogeneous Neumann boundary condition is imposed on the surface S:

∂ω

∂t
− ν∆ω = 0 in Ω, (1.70)

ω(·, 0) = ω̃n+1/2 in Ω, (1.71)
∂ω

∂n
= 0 on S (1.72)

This Stokes step conserves the symmetry of the velocity across the solid wall and thus
provides an even and smooth vorticity field along the boundary. Therefore, the vortic-
ity satisfies ∂ω/∂n = 0 on S and the discontinuous velocity of step 2. is regularized,
establishing a boundary layer (see Figure 1.3).

The success of this method is due to its efficiency and its user-friendliness. Nevertheless,
establishing a proof of convergence for such an algorithm is far from being so easy. Indeed,
in this approach the step dealing with inviscid part only handles the no-through-flow boundary
condition. Thus, the two following steps in the algorithm are biased by the fact that the velocity
field violates its boundary condition. The convergence proof of this splitting scheme given by
[Chorin et al., 1978, Benfatto and Pulvirenti, 1986] is then much more advanced than the one
corresponding to the result of Theorem 1.2. The main drawback of the method lies in the fact
that the creation of vortex blobs at the boundary is responsible for an increase of the global
numerical dissipation of the algorithm. Indeed, adding such blobs near the surface artificially
smooths the vorticity field in this region.
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Figure 1.3: Pattern of no-slip velocity acquisition at the solid wall using Chorin’s vortex sheet
method.

In order to overcome this weakness and to recover accuracy, [Chorin, 1978] presented an
improved approach consisting in coupling the Prandtl boundary-layer equations near the surface
and the Navier-Stokes equations everywhere else. This method is also known as the vortex
sheet/vortex blob method.

1.3.2.2 The vortex sheet/vortex blob method

The outline of the algorithm proposed by [Chorin, 1978] is the same as the one just presented,
with the addition of two main elements. The first one is the use of segments of vortex sheets
(that is to say flat vortex sheets) instead of vortex blobs, in the boundary layer. It leads to a
more natural discretization of the created vortex sheets in step 2. The second main ingredient
added in this approach is the consideration of the Prandtl boundary-layer equations to model
the flow fields near the surface of the body. These equations rely on the assumption that, in
the boundary region, vorticity diffusion mainly occurs in the direction normal to the wall and
high velocity gradients are essentially along the component tangential to the wall. In order to
take into account these assumptions, the Prandtl equations are expressed in a coordinate system
where x and y respectively denote the tangential and the normal coordinates, and where (u, v)
corresponds to the velocity vector field in this system. The wall is assumed to be at y = 0 and
the fluid domain is defined by the half-space y ≥ 0. The Prandtl boundary-layer equations are
then given by:

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= ν

∂2ω

∂y2
(1.73)

ω = −∂u

∂y
, (1.74)

They are completed by the continuity equation and the following boundary conditions:

u = 0 at y = 0, (1.75)

u(x, y∞) = U∞(x), (1.76)

where equation 1.75 imposes the no-slip boundary condition at y = 0 and equation 1.76 expresses
a far-field condition for the u component when y ≥ y∞. The value y∞ is often taken of the order
of the boundary layer thickness.

Let us now consider a set of N elements Si of vortex sheets, of strengths αi. These elements
should be seen as segments of a straight line, parallel to the x axis and of length ε, such that the
two values of u at the extremities of Si differ from each other by αi. According to this definition,
the vortex sheet approximation of ω is given by:

ω ≃
∑

j

αjbε(x− xj)δ(y − yj), (1.77)
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where bε is a one-dimensional cutoff function given by bε = ε−1b(x/ε) and where δ is the one-
dimensional Dirac mass in the normal direction.

The u component of Si, due to the presence of the other surrounding segments, is then
obtained from a direct integration of equation 1.74, using the right-hand side of the above ω
approximation (Eq. 1.77):

u(x, y) = U∞(x) +
∑

j

αjbε(x− xj)H(yj − y) (1.78)

where H is the Heavyside function. The expression of v can then be deduced from u, using the
continuity equation:

v(x, y) = −∂U∞(x)
∂x

y −
∑

j

αjb
′
ε(x− xj)min(y, yj) (1.79)

One is now able to give the substeps constituting the algorithm of the Chorin’s vortex
sheet/vortex blob method:

1. Evaluation of the u and v components from formulations 1.78, 1.79 and convection of the
vortex sheets with this velocity field.

2. Computation of u on the wall (y = 0) and creation of new sheets at the boundary
with strengths αi = −u(xi)dl in order to impose the no-slip boundary condition (these
strength values directly come from the integration of equation 1.74). As explained in
[Chorin, 1978], the velocity field is here extended across the wall by the anti-symmetry
u(x,−y) = −u(x, y). As a consequence ω(x,−y) = ω(x, y) and a vortex sheet is generated
at y = 0. This anti-symmetry replaces the vorticity creation process used in [Chorin, 1973].

3. Diffusion of the vortex sheets in the y direction using a random walk approach (see section
(1.2.2)). If a sheet arises in the far-field region (y ≥ y∞), it is transformed into a vortex
blob. If a sheet crosses the boundary, moving into the body, it is reflected on the other
side.

Each of these steps are depicted in Figure 1.4.
Thanks to its more natural framework, this random vortex sheet/vortex blob method turned

out to be widely used to model slightly viscous flow past obstacles. For example, one can
refer again to the work of [Smith and Stansby, 1988] who studied flows around cylinder, to
[Sethian and Ghoniem, 1988] who performed a validation study of this technique for flow past a
backward-facing step at different regimes or to [Cheer, 1983] who carried out simulations of flows
past airfoils and blunt bodies. All these studies demonstrate the capability of the method to
supply the qualitative behaviors of the flows. However, [Anderson and Reider, 1994] has shown
numerically that the Prandtl-Navier-Stokes coupling is not consistent.

About 3D version

The three dimensional version of the vortex sheet/vortex blob method was introduced shortly
after by [Chorin, 1980]. In this version, the vortex sheets within the boundary-layer region are
now defined as “tiles”. These tiles are rectangles, parallel to the wall and their motion is dictated
by the straightforward extension of equation 1.74, that is:

ωx = −∂uy

∂z
, ωy =

∂ux

∂z
. (1.80)

Like in two dimensions, the tiles undergo random walk. They are transformed into vortex
blobs (also referred to as vortex segments in 3D, as opposed to vortex filaments) when they
leave the boundary layer. This method was successfully used in several studies, for instance by
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Figure 1.4: Steps of the vortex sheet/vortex blob algorithm.

[Fishelov, 1990b, Gharakhani and Ghoniem, 1998], who respectively dealt with flow past infi-
nite plate and flow inside a cylinder equipped with an eccentric inlet port and a driven piston.
However, and besides the lack of consistency highlighted numerically by Anderson and Reider
in two dimensions, some other limitations arise in 3D. For example, the divergence free condi-
tion for the vorticity field is only satisfied approximately, which prevents from getting accurate
application of vortex methods to three-dimensional flows. All these remarks therefore make this
procedure limited.

The next subsection is dedicated to the methods using exact formulation of the vorticity
boundary conditions. Their development is motivated by the wish to derive vorticity boundary
conditions free of any ad hoc parameters.

1.3.3 Methods based on exact formulation of vorticity boundary conditions

In the literature, the problem of expressing exact formulation of vorticity boundary conditions
was first addressed in order to solve the two-dimensional Navier-Stokes equations in a domain
with rigid walls, in the vorticity (ω)-stream function (ψ) formulation:

∂ω

∂t
+ (u · ∇)ω = ν∆ω (1.81)

∆ψ = −ω, (1.82)
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where ∇ ×ψ ≡ u. In this formulation of the Navier-Stokes equations, one must prescribe at the
walls two boundary conditions in terms of the stream function:

ψ = 0 (1.83)

∂ψ/∂n = 0, (1.84)

where 1.83 models the no-through flow boundary condition, and 1.84 specifies the no-slip bound-
ary conditions. There is no direct explicit boundary condition on the vorticity. The first and
the most common approach to express the vorticity value on the boundary consists in using the
normal derivative condition [Roache, 1972, Orszag and Israeli, 1974, Peyret and Taylor, 1983].
In this type of approach, often dealing with finite-differences space approximations along with
time marching to satisfy the boundary conditions, a lack of accuracy is often observed with a
vorticity field that may be only of order one. Other approaches have been considered in or-
der to overcome this difficulty. One can for instance cite the works of [Quartapelle, 1981] and
[Anderson, 1989] who considered that the vorticity boundary conditions have to be global. In
other words, one has to solve a system of equations coupling all points located on the bound-
ary together to achieve the boundary value of vorticity. Then one gets vorticity conditions of
integrodifferential type (non local) instead of boundary value type (local).

Finally, one can also refer to the approach proposed by [Cottet, 1988b], which completely fits
into the vortex methods realm and which allows to formulate either a Dirichlet or a Neumann
boundary condition on the vorticity. It consists in evaluating the velocity as the solution of
the following Poisson equation, supplemented with the no-slip boundary condition expressed in
terms of the velocity:

−∆u = ∇ × ω in V, (1.85)

u = 0 on S. (1.86)

The Dirichlet boundary condition on the vorticity is then given by:

ω = ∇ × u on S, (1.87)

ensuring the incompressibility condition div u = 0. A Neumann-type boundary condition on
the vorticity was also derived in [Cottet, 1988b], defined as:

∂ω

∂n
=

∂

∂n
(∇ × u) − 1

|S|

∫

S

∂

∂n
[∇ × u(y)] dy, (1.88)

where the second term of the right-hand side is a constant whose subtraction ensures the con-
servation of circulation at all time (see Kelvin’s theorem).

The major weakness of the approaches detailed in this section lies in the lack of associated
stability analysis and energy estimate necessary to quantify the impact of the errors made though
the vorticity boundary condition on the velocity computation and thus on the discretization of
the governing equations.

1.3.4 Vorticity creation methods using vorticity flux boundary conditions

The type of method presented in this section was designed later and re-use the framework of
algorithms based on viscous splitting and vorticity creation. However, contrary to the Chorin’s
methods, detailed in sections (1.3.2.1) and (1.3.2.2), it handles vorticity flux boundary conditions
to enforce the no-slip condition on the walls, instead of vortex blobs or vortex sheets. In a first
part we will give the expression of the corresponding continuous problem and secondly we will
focus on the numerical schemes and techniques used to approximate the integral solution of this
continuous problem. Unlike the models based on the formulation of exact vorticity boundary
conditions, we will see that the methods relying on vorticity flux boundary conditions provide
energy estimates, ensuring the stability of the numerical schemes.
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1.3.4.1 The continuous problem

2D formulation

The idea of a vorticity creation method based on a vorticity flux boundary condition was
independently proposed by [Cottet, 1994] and [Koumoutsakos et al., 1994]. The so-called vor-
ticity flux boundary condition is characterized by a relation between the normal derivative of
the vorticity and the time derivative of the tangential component of the velocity. To derive the
global Navier-Stokes problem, we follow the development described in [Cottet, 1994] starting
with the Stokes problem. Let us consider two vorticity fields ω1 and ω2 in the same time in-
terval [tn, tn+1]. Each time step is initialized by the exact initial vorticity field ωn and provide
at the end the solution ωn+1 where ω1 and ω2 are the solutions of the 2 following sub-problems
within the interval [tn, tn+1]:

Sub-problem 1:




∂ω1

∂t
− ν∆ω1 = 0 in V,

ω1(·, tn) = ωn in V,

∂ω1

∂n
= 0 on S

(1.89)

Sub-problem 2:




∂ω2

∂t
− ν∆ω2 = 0 in V,

ω2(·, tn) = ωn in V,

ν
∂ω2

∂n
= − ∂

∂t
(u1 · s) on S,

(1.90)

where s denotes the tangent vector to the surface S and u1 corresponds to the velocity field
associated with ω1. According to the following explicit Euler discretization:

∂u

∂t
(tn + ∆t) =

u(tn + ∆t) − u(tn)
∆t

+ O(∆t) =
u(tn + ∆t)

∆t
+ O(∆t), (1.91)

one can then write the approximated formulation of 1.90:




∂ω2

∂t
− ν∆ω2 = 0 in V,

ω2(·, tn) = ωn in V,

ν
∂ω2

∂n
= −u1 · s

∆t
on S.

(1.92)

In summary, in sub-problem 1, the Stokes equations are solved with an homogeneous Neu-
mann boundary condition, that is to say without creating any vortex sheet on the walls. Then,
in sub-problem 2, vorticity is produced at the boundary thus enabling to cancel the slip resulting
from sub-problem 1. At the end of the time step, ωn+1 is set to ω2(·, tn+1). We respectively refer
to parts 2.1 and 2.3 of [Cottet, 1994] for the proof of equivalence with Chorin’s algorithm and
the proof of convergence using energy estimates. The generalization of the present algorithm to
the Navier-Stokes problem is straightforward. It simply consists in adding the advection term
in equations 1.89 and 1.90 and in replacing the vorticity flux boundary condition of 1.90 by:

ν
∂ω2

∂n
= −

[
∂u1

∂t
+ (u1 · ∇)u1

]
· s (1.93)
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3D formulations

In three dimensions, as the vorticity has three components, three boundary conditions are
now needed instead of one.

The half-plane case

The first three dimensional extension of the above algorithm was given in the specific case of
a flat plate, that is to say for a body with no curvature. We propose here to give the outline of
the algorithm detailed in [Cottet and Koumoutsakos, 2000]. The plate is located at z = 0 and
the x and the y axis are parallel to the surface S, where x = (x, y, z) denotes the coordinates in
a Cartesian system. In these coordinates, one has:

ω = ∇ × u = (ωw, ωy, ωz) =
(
∂uz

∂y
− ∂uy

∂z
;
∂ux

∂z
− ∂uz

∂x
;
∂uy

∂x
− ∂ux

∂y

)
. (1.94)

If one assumes that the velocity vanishes at the walls, i.e. ux = uy = 0, then the normal
component of the vorticity also vanishes:

ωz = 0 on z = 0. (1.95)

Concerning the tangential components of the vorticity, ωx, ωy, it seems natural to extend the 2D
vorticity flux boundary condition, in other words to impose the no-slip for the velocity compo-
nents ux and uy by creating vorticity for the components ωx and ωy respectively. Discarding the
subscripts ·1 and ·2 for the sake of clarity, the two sub-problems presented before then become:

Sub-problem 1:

The convection-diffusion equation is solved for the three components of the vorticity field us-
ing the homogeneous Dirichlet boundary condition for ωz and homogeneous Neumann boundary
conditions for ωx, ωy:





∂ω

∂t
− ν∆ω = 0 in V,

ω(·, tn) = ωn in V,

ωz = 0 on S,

∂ωx

∂z
=
∂ωy

∂z
= 0 on S.

(1.96)

Sub-problem 2:

After computing the slip (ux, uy) at the walls, resulting from convection, the sub-problem
1 is repeated with the new Neumann boundary condition for the tangential component of the
vorticity:





∂ω

∂t
− ν∆ω = 0 in V,

ω(·, tn) = ωn in V,

ωz = 0 on S,

ν
∂ωx

∂z
= − uy

∆t
on S,

ν
∂ωy

∂z
= +

ux

∆t
on S.

(1.97)
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We note that in 3D, one must ensure that the vorticity is divergence free in order to satisfy
the fundamental laws of the fluid mechanics. This algorithm do guarantee this condition and
we refer to [Cottet and Koumoutsakos, 2000] for the proof. However, if the considered body has
a non-zero curvature, this statement is not true anymore. One then has to modify the problem
1.97 adding a corrective curvature term.

Curvature effects

Let us consider in this part the case of a cylinder, with curvature κ = 1/R. The nat-
ural coordinate system to consider herein is the cylindrical coordinate system where we de-
note by (er, ez, eθ) the basis vectors, respectively corresponding to the unit normal vector
(er) and the tangent vectors to the cylinder surface (ez, eθ). According to [Poncet, 2001,
Cottet and Poncet, 2003] it appears that the divergence free condition is ensured if the bound-
ary condition on the tangential component ωθ (previously referred to as ωy in 1.97) is modified
into a Robin type boundary condition. The correct continuous problem thus yields:





∂ω

∂t
− ν∆ω = 0 in V,

ω(·, tn) = ωn in V,

ω · er = ω · n = 0 on S,

ν
∂ω

∂n
· ez = −u · eθ

∆t
on S,

ν

(
κω +

∂ω

∂n

)
· eθ = +

u · ez

∆t
on S.

⇐⇒





∂ω

∂t
− ν∆ω = 0 in V,

ω(·, tn) = ωn in V,

ωr = 0 on S,

ν
∂ωz

∂n
= − uθ

∆t
on S,

ν

(
κωθ +

∂ωθ

∂n

)
= +

uz

∆t
on S.

(1.98)
One can notice that if κ = 0, then one recovers problem 1.97.

1.3.4.2 The integral approach

The issue now lies on the resolution of the continuous problems derived above in order to obtain
an explicit expression of the approximated vorticity field, such that the no-slip boundary con-
dition is satisfied. The successive substeps of the general existing algorithms stand as follows:
first, the particles are advected and the diffusion is solved in the domain with a PSE scheme.
Then the vorticity flux boundary condition is expressed in terms of an integral formulation and
finally the PSE scheme in complemented by distributing this vorticity flux onto the existing
vortex blobs so that vorticity enters the domain. In this last step, particles just experience
a change in their strength without multiplying themselves, like in Chorin’s methods. In the
following, we will focus on the different approximations of the continuous diffusion problems
described previously.

The 2D solution

The method presented hereafter to solve the continuous problem 1.90 was introduced and
validated by [Koumoutsakos et al., 1994, Koumoutsakos and Leonard, 1995]. We re-write the
problem 1.90 by considering the vorticity diffusion equation supplemented with an homogeneous
initial condition and a Neumann boundary condition:

∂ω

∂t
− ν∆ω = 0 in V × [0, t], (1.99)

ω(x, 0) = 0 in V, (1.100)

ν
∂ω

∂n
= F (x, t) = − ∂

∂t
(u · s) on S × [0, t]. (1.101)
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The integral solution of equation 1.101 for the vorticity involves integrals over the surface S
only. To discretize this integral, a boundary integral method is employed by defining S as a
set of discrete panels, denoted with index i, length d and centered in xi. Then, the vorticity
induced by a panel i can be given by the following integral:

ωi(x, t) =
1
2

∫ t

0
µi(τ)φ(x − xi, t− τ) dτ, (1.102)

where, if one defines a coordinate system x = (x, y) with the x axis parallel to the surface, the
φ function yields:

φ(x, t− τ) =
e

−y2

4ν(t−τ)

√
4πν(t− τ)

{
erf

[
d+ x√

4ν(t− τ)

]
+ erf

[
d− x√

4ν(t− τ)

]}
, (1.103)

and where µ(x, t), the diffusion potential, can be approximated for points s along S by:

µi(s) ≈ −2Fi(s)
[
1 − κ(s)

√
πν∆t

]−1
≈ −2

(
−(u · s)

∆t
(si)

) [
1 − κ(s)

√
πν∆t

]−1
, (1.104)

where γi = −(u · s)
∆t

(si) corresponds to the vortex sheet strength derived from 1.101. We refer

the reader to [Koumoutsakos et al., 1994] for a full description of the integral evaluation of
equation 1.102.

Then, the strength Γj = ω(xj)vj of the particles are modified by distributing the vorticity
flux:

Γj(t) = Γj(0) +
vj∆t

2

N∑

i=1

µiφ
(
(xj − xi),∆t

)
, (1.105)

with N denoting the number of panels on the surface of the body. Finally, replacing µi by
approximation 1.104 in the above equation, the prescription of the no-slip boundary condition
is performed through the following particle strength update:

Γn+1
j = Γn

j + vj∆t
N∑

i=1

γi(
1 − κ(s)

√
πν∆t

)φ
(
(xj − xi),∆t

)
. (1.106)

The 3D solutions

The half-plane case

An analysis similar to the one just detailed above was performed in three dimensions by
[Casciola et al., 1996] in order to solve the problem 1.97. First of all, this study supplies the
expression of the integral equation for the vorticity creation. An approximation of such integral
equation is then given and identified as the slip velocity at the surface of the body. Moreover,
this work exposes an error estimate of the proposed approximation and also proves that the
vorticity generated at the wall and then diffused in the flow is solenoidal.

Curvature effects

Finally, the tri-dimensional numerical scheme giving the solution of 1.98 is derived by
[Poncet, 2001, Cottet and Poncet, 2003]. In these studies, the initial continuous problem is
split in two sub-equations, respectively referred to as:

the axial equation: 



∂ωz

∂t
− ν∆ωz = 0 in V,

ωz(·, tn) = ωn
z in V,

ν
∂ωz

∂n
= − uθ

∆t
on S,

(1.107)
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and the azimuthal equation:




∂ω

∂t
− ν∆ω = 0 in V,

ω(·, tn) = ωn in V,

ωr = 0 on S,

ν

(
κωθ +

∂ωθ

∂n

)
= +

uz

∆t
on S.

(1.108)

The final solution is expressed as the synthesis of the two sub-solutions of 1.107 and 1.108.
We refer the reader to [Poncet, 2001] for the complete formulation of the resulting solution along
with a full description and validation of the integral techniques used to solve the problem. This
validation, performed in the case of a ring impinging on a 3D cylinder at Re = 400, shows the
accuracy of the vorticity flux boundary conditions in terms of the flow diagnostics.

All the different approaches presented in this section highlight the important efforts which
have been made between the early 1970’s until the mid 1990’s in order to design methods able to
model the no-slip boundary condition. The successful idea of the pioneer approach, introduced
by Chorin in 1973 and further improved in 1978, was based on the mimicking of the physical
creation of vorticity at the boundary due to viscosity. However, the difficulties of this method
in modeling fully separated flow and in providing a consistent numerical model led to consider
exact formulations of the vorticity boundary conditions. However, because of the lack of related
energy estimate and stability analysis, the latter did not really manage to be adopted. The
handling of the no-slip boundary condition using vorticity flux formula finally stands as the
most suitable method. It indeed allows to treat in an accurate way the high velocity gradients
at the solid-fluid interface while overcoming the main drawbacks of the prior approaches.

1.4 Distortion of particle distribution, remeshing and hybrid
methods

1.4.1 The particle overlapping

In pure Lagrangian method, the particle distribution may undergo distortion, that manifests it-
self by the clustering or spreading of the flow elements in high strain regions. This accumulation
or dispersion phenomenon is then translated in inaccurate computations because of a deterio-
rated communication between particles, which is actually the keypoint of the vortex methods.
As meaningful illustrations of the distortion effect one can cite the test case of the axisymmetric
inviscid vortex patch, illustrated in [Cottet and Koumoutsakos, 2000]. In this example, one can
observe the distortion of the initial and uniform particle distribution due to the important shear.
One can also refer to [Henshaw et al., 1989, Krasny, 1986] for comparable observations concern-
ing the appearance of non-physical small scales in vortex sheet calculations in the context of two
dimensional inviscid flows. Concerning viscous flows and as already mentioned in section (1.2.3),
the use of particle strength exchange may increase the difficulty in getting accurate simulations,
since the particles can not diffuse their vorticity if they do not overlap, that is to say if the
cutoff size ε is not at least of the order of h, the distance between particles. More precisely, the
numerical analysis given in [Cottet and Koumoutsakos, 2000] provides the following convergence
result, already mentioned in section (1.1.3):

Theorem 1.2

Assume that ζ is a cutoff function of the order r in the sense of definition 1.1. Assume also
that there exists s > 0 such that h/ε ≤ εs, then for h small enough the following estimate
holds for t ∈ [0, T ]:

‖ωn − ωh
ε ‖Lp(Ω) ≤ C(T )εr (1.109)
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where ωn refers to the vortex point approximation 1.8 and ωh
ε to the vortex blob approximation

1.21. In other words, this theorem means that the overlapping of particles (h/ε → 0) is necessary
in order to ensure the convergence of ωh

ε towards ωn.

Several solutions have been designed in order to overcome the distortion problem. One can
separate these methods in two different classes.

The first class deals with methods involving a change in particle strength in order to correct
the vorticity field without modifying the particle location. Among these methods one can first
refer to the approach developed by [Beale, 1988] which consists in correcting the circulation at
each time step, through an iterative procedure. This technique has been successfully used by
[Choquin and Lucquin-Desreux, 1988] to model incompressible viscous flow with a PSE scheme.
However, the iterative process may be slow to converge in case of particle clustering or irreg-
ularities in the vorticity fields. A second type of methods one can mention, and which was
already cited in the section dedicated to viscous vortex methods, are the Free-Lagrange meth-
ods. They were not initially designed to tackle the distortion problem but they actually offer
a good framework to handle it. They consist in creating a triangulation, whose nodes are the
particles locations, which is then used to interpolate the circulation carried by the flow elements.
For instance, the Delaunay triangulation, suggested by [Russo and Strain, 1994] and obtained
connecting the particles when they belong to adjacent polygons in a Voronoi diagram, enables
one to successfully avoid the distortion of the particle distribution and provides a second-order
accurate vortex scheme. An other example one can cite among these Free-Lagrange methods
is the adaptive quadrature method introduced by [Strain, 1997]. This approach allows to in-
crease the order of accuracy of the usual triangulation methods by considering sub-elements
that would combine several triangles together. Finally, one can cite the strategy introduced by
[Schrader et al., 2010] which can be considered as a generalization of the PSE method. It indeed
proposes to correct the method given by [Eldredge et al., 2002] consisting in approximating the
derivatives on scattered particles locations. This corrected framework of the PSE scheme en-
ables one to achieve the convergence without any overlapping condition and regardless of the
resolution. However, the convergence of the latter was limited to a certain range of resolutions.

The second class of methods designed in order to remedy the distortion problem are based
on a frequent re-location of the particles onto new positions where the overlapping condition
is satisfied. These methods allow to directly control the distance between the particles, thus
ensuring the convergence of the solution. Historically, this approach first appeared in the frame-
work of vortex filament methods, where the connectivity of the particles along the filament was
used for refinement/regridding when the distance between particles became critical. Since the
positions of markers along the filament are known at all times, it was indeed easy to create a
new particle between two consecutive markers whenever their distance exceeds a given threshold.
This curve reconstruction strategy was originally introduced by [Rehbach, 1978] and thoroughly
used since then. More recently, [Farjoun and Seibold, 2009] proposed a similar approach, first
of all motivated by the will to satisfy the conservation laws. It consists in inserting new particles
in under-resolved regions and merging particles in the clustering parts of the flow. We can note
that this technique has been also widely used with Smooth Particle Hydrodynamics methods
(SPH) in order to achieve realistic visual effects as well as improvements in computational per-
formance [Adams et al., 2007, Dongli and Hong, 2012].

The following section is dedicated to the description of another re-location method, called
the remeshing technique, on which the vortex method considered in this thesis is based.
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1.4.2 The remeshing procedure

From the pioneer work of [Huberson and Jollès, 1990, Koumoutsakos and Leonard, 1995], this
approach has been widely and is still successfully used in vortex methods [Koumoutsakos, 1997,
Ould-Salihi et al., 2000, Cottet and Poncet, 2003, Koumoutsakos, 2005, Cottet and Weynans, 2006,
Chatelain et al., 2008, van Rees et al., 2013]. Since we will also handle the remeshing process
in the numerical method proposed in this thesis, a whole section is here dedicated to the global
and historical description of this technique, which represents an efficient way to control the
distance between particles. More details will be provided in the following chapter of this thesis
concerning the practical use of the remeshing step in our case.

The remeshing technique consists in redistributing the particles on an underlying Cartesian
grid. The description of the regridding process is here proposed for the one-dimensional case.
Let us denote by x̃q the position of the particle q carrying the circulation Γ̃q. These particles
are remeshed at the grid points xk of a uniform Cartesian grid, with spacing h, using the
interpolation kernel W of support [−Ms, +Ms] like follows:

Γk =
∑

q

Γ̃qW

(
xk − x̃q

h

)
. (1.110)

In other words, this procedure means that every grid point k receives the sum of the weighted
values of the circulation carried by the particles for which k is included in the interpolation
support.

Let us recall that one of the strong advantages of the vortex methods lies in their capability to
satisfy the conservation properties. In order to preserve this important feature, the interpolation
kernel has to be constructed such that the successive moments are conserved. For instance, to
satisfy the total circulation invariance (and more generally, the conservation of mass), W must
ensure: ∑

k

W

(
x− xk

h

)
= 1. (1.111)

The conservation of the first p moments is given by the following conditions:
∑

q

xα
q W

(
xq − x

h

)
= xα, 0 ≤ |α| ≤ p− 1, (1.112)

andW is therefore an interpolation kernel of order p (we refer to [Cottet and Koumoutsakos, 2000]
for the proof of this assessment). For p = 0, 1 and 2, the conservation of the total circulation,
the linear impulse and the angular impulse are respectively ensured.

In the following, we will describe the different kernel families, detailing their construction as
well as their properties.

1.4.2.1 The ordinary interpolation kernels

This class includes the kernels whose construction is only based on the satisfaction of conditions
1.112. These kernels, denoted Λp where p refers to the maximum order of conserved moments,
are piecewise polynomial functions of degree p. Their construction requires the calculation of
p(p+1) coefficients, obtained from the relations 1.112. For p = 1, one gets the linear interpolation
kernel, satisfying mass conservation:

Λ1(x) =

{
1 − |x| if |x| ≤ 1

0 otherwise.
(1.113)

As can be seen on Figure 1.5a where are also plotted Λ2,Λ3 and Λ4, this type of kernels suffer
from a lack of regularity. One can notice that Λ2 is not even continuous, which is expected
to lead to inaccurate solutions. In order to reduce the creation of oscillations due to the poor
regularity of the kernels, [Cottet and Magni, 2009, Magni and Cottet, 2012] proposed to insert
correction formulas in the expression of Λp.
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Figure 1.5: Remeshing kernels



1.4. Distortion of particle distribution, remeshing and hybrid methods 33

1.4.2.2 The B-splines-based kernels

Smooth kernels, denoted Mp, may be obtained using B-splines [Schoenberg, 1946]:

Mp(x) =
1

2π

∫ ∞

−∞

(
sin ξ/2
ξ/2

)p

eixξ dξ (1.114)

For p = 1 one gets the top-hat function, M1. The p-order kernels Mp thus correspond to

the successive convolutions of M1: Mp = M
(∗p)
1 and each kernel Mp is of class Cp−2 (Figure

1.5b). M3 and M5 particularly distinguish themselves for their non-oscillatory properties, as
illustrated in [Magni, 2011]. Nevertheless, the Mp kernels only ensure the conservation of the
two first moments, which strongly limits the accuracy of the remeshing procedure.

1.4.2.3 Extrapolation of B-splines-based kernels

In order to achieve higher order remeshing schemes while preserving their smoothness properties,
an extrapolation of the Mp kernels is proposed by [Monaghan, 1985]. It consists in deriving linear

combinations of the Mp kernels and their derivatives, more precisely W =
∑p/2

l=0 αl+1x
lM

(l)
j , such

that the successive continuous moments of W are canceled:

∫
yαW (y) dy =

{
1 if α = 0
0 if 1 ≤ α ≤ p.

(1.115)

With this approach, [Monaghan, 1985] obtained the so-called M ′
4 kernel defined by:

W = M ′
4 =

1
2

(
3M4(x) + x

dM4

dx
(x)
)

(1.116)

=





1 − 5
2

|x|2 +
3
2

|x|3 if |x| ≤ 1
1
2

(1 − |x|)(2 − |x|)2 if 1 ≤ |x| ≤ 2

0 otherwise.

(1.117)

This kernel is of class C1, it is piecewise cubic, and its support is of size 4 on [−2, 2]. Locally
this kernel offers a third-order accurate scheme, although its global order is 2. In practice, the
M ′

4 is a very good compromise between regularity, accuracy and computational cost: that is the
reason why it is still used to simulate vortex flows [Gazzola et al., 2011, Gazzola et al., 2012,
Gazzola et al., 2014]. However, these extrapolated smooth kernels do not systematically satisfy
the following interpolation property:

W (i) =

{
1 if i = 0
0 otherwise.

(1.118)

For instance, the M ′
4 kernel does satisfy this condition, but it is not the case of the one derived

from M8 (Figure 1.5c). Nevertheless, this property is essential since its dictates the algebraic
conservation of the exact solution if the velocity is zero (that is to say if the particles do not
move from their original location on the grid).

1.4.2.4 High order kernels

Recently, [Bergdorf and Koumoutsakos, 2006] proposed a higher order kernel, called M ′
6 and

in 2014 [Cottet et al., 2014] used high order kernels in a systematic way, also providing proofs
of stability for remeshing problems. These high order kernels satisfy simultaneously the in-
terpolation property, the smoothness and the moment conditions to any desired order. Their
construction thus relies on the satisfaction of the five following properties:
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• P1: W has support in [−Ms, +Ms],

• P2: W is even and piecewise polynomial of degree M in intervals of the form [i, i+ 1],

• P3: W is of class Cr,

• P4: W satisfies the moment properties 1.112 for a given value of p

• P5: W satisfies the interpolation property 1.118.

In [Cottet et al., 2014], a new global notation is proposed for these high order remeshing kernels
and stands as Λp,r where p denotes the order to which moment conditions are satisfied and r
refers to the regularity of the kernel. Figure 1.5d depicts some of these kernels. We particularly
focus the attention of the reader on kernels Λ2,1 and Λ4,2, which respectively correspond to M ′

4

previously mentionned and M ′
6 proposed by [Bergdorf and Koumoutsakos, 2006], since they will

be the two different kernels mainly used in the present thesis.

1.4.2.5 The directional splitting

For multiresolution problems, the remeshing step is classically performed through a tensorial
product of the chosen 1D kernel formula. It is the case for instance for all the studies cited
at the beginning of section (1.4.2). For example, if the desired kernel has a 1D-support of
S = 2Ms points, then the number of operations needed to interpolate one particle on the grid
is proportional to S2 for a two-dimensional problem and to S3 for a three-dimensional one. Re-
cently, a new method was proposed in [Magni and Cottet, 2012] for the particle redistribution
procedure. Based on a viscous splitting (see section (1.2.1)), it consists in successively solving
monodirectional sub-problems, including the advection and the remeshing step. In other words
for a N -dimensional problem, one applies the following algorithm for each particle:

for d ∈ {1, ..., N}:

• advection in the direction d

• remeshing in the direction d

We refer to Figure 1.6 for a comparative pattern of tensorial product and directional splitting
methods. As a consequence, if the chosen kernel contains S points in its 1D-support, the number
of operations with the directional splitting method goes from O(S2) to O(2S) in 2D and from
O(S3) to O(3S) in 3D. If we consider the three-dimensional case, a meaningful example is the
one of the Λ8,4 interpolation kernel (Figure 1.5d). Indeed, as its support includes 10 points,
the directional splitting method allows to divide the number of operations by more than 33!
For kernels Λ2,1 (S = 4) and Λ4,2 (S = 6), the ratios are respectively ∼ 5 and 12. This
directional splitting consequently allows for a drastic reduction of the computational cost in
terms of regridding operations.

To remedy the main drawback of this approach, which lies in the fact that the increase of
the time-order of the method is more complicated than for the traditional tensorial approach,
[Magni and Cottet, 2012] also proposed the so-called Strang splitting method, which was suc-
cessfully used afterward by [Cottet et al., 2014] in the context of passive scalar advection prob-
lems. This method consists in performing the directional advection/remeshing step using half
time steps, except for the last direction where one can gather the operations on [tn; tn+1/2[ and
[tn+1/2; tn+1[ together. It is therefore of order 2 in time. The different substeps of this approach
are respectively given below for the 2D and the 3D case:
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remeshing by directional splitting

remeshing by tensorial product

Figure 1.6: Remeshing procedure using a tensorial product (on top, depicted by plain arrows)
and a directional splitting (on bottom, depicted by dashed arrows). The red lines indicate the
support of the remeshing kernel. In this example, the kernel has a 1D-support of 4 points.

2D case

• advection + remeshing in the X-direction on [tn; tn+1/2[

• advection + remeshing in the Y -direction on [tn; tn+1[

• advection + remeshing in the X-direction on [tn+1/2; tn+1[

3D case

• advection + remeshing in the X-direction on [tn; tn+1/2[

• advection + remeshing in the Y -direction on [tn; tn+1/2[

• advection + remeshing in the Z-direction on [tn; tn+1[

• advection + remeshing in the Y -direction on [tn+1/2; tn+1[

• advection + remeshing in the X-direction on [tn+1/2; tn+1[

With the Strang splitting method, a multidimensional remeshing thus costs O(3S) (respectively
O(5S)) operations per particle in 2D (respectively in 3D).
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The introduction of an underlying grid in order to ensure particle overlapping modifies the
essence of the original vortex methods since Lagrangian vortex particles and Cartesian mesh
now coexist. As a first type of vortex method using the existence of an underlying grid, one
can cite the one proposed by [Ploumhans et al., 2002]. This method, which is a 3D extension
of the two dimensional vortex PSE method derived for viscous flows, involves a regular indicial
lattice in order to remesh the vortex particles. Among the other vortex methods that use grids,
there are the semi-Lagrangian methods, also called hybrid vortex methods in this context. In
this type of approach, Lagrangian and Eulerian schemes are alternatively used in order to solve
the governing equations. The last part of this section is dedicated to the description of the two
main hybrid vortex methods, namely the domain decomposition method and the Vortex-In-Cell
(VIC) method.

1.4.3 Hybrid vortex methods

Hybrid vortex methods were developed in order to overcome the main weaknesses of the pure
Lagrangian vortex methods which essentially lie in the treatment of the viscous effects (see sec-
tion (1.2)) and the near wall boundary conditions (see section (1.3)). In order to preserve the
robustness of the global scheme, characterized by minimal numerical dissipation, these methods
still involve a Lagrangian framework for the convection process but they also handle a fixed
Cartesian grid. The presence of this grid facilitates the prescription of the no-slip boundary
conditions as well as the modeling of the diffusive term, using Eulerian schemes, and ensures
the particle overlapping condition. Concerning these Eulerian schemes, we will often refer in
the following to finite-differences schemes, but it should be noticed that any type of grid-based
schemes may also be used, like finite-volumes, finite-elements or spectral methods. To sum-
marize, in the following we will consider a vortex method as hybrid whenever the resolution of
the vorticity transport equation and the velocity Poisson equation will be handled both on the
particles and on an underlying Cartesian grid.

The first hybrid vortex method presented here relies on the fact that grid methods and
Lagrangian methods are used in different parts of the computational domain, where Eulerian
schemes are implemented in the near wall region while a grid-free vortex method is chosen to
solve the wake region. This Eulerian-Lagrangian domain decomposition method distinguishes
itself from the Vortex-In-Cell (VIC) method which alternatively uses grid schemes or vortex
methods to handle the different sub-equations of the viscous splitting algorithm (see section
(1.2.1)). The VIC method will be further introduced in this section.

Before introducing these two particle-grid approaches, we need to define the common thread
between all hybrid methods which stands in the way to exchange information between Eule-
rian and Lagrangian schemes. More precisely, hybrid methods require on one hand to transfer
the values of the flow fields a from the particles to the grid points (we will denote it the
P2M process, for Particle to Mesh) and on the other hand to transfer the values of a from
mesh points to the particle distribution (we will denote it the M2P process, for Mesh to Particle).

Let us first define the P2M scheme, also called the assignment scheme. This process can be
considered as a particular case of the remeshing procedure presented previously and is defined
by the following scheme:

ak =
1

Vk

∑

p

vpapφk(xp), (1.119)

where Vk corresponds to the volume surrounding the grid point xk (this volume equals to h3 if
the mesh is Cartesian with a uniform mesh size h) and the basis function φk is defined by:

φk(xp) = φ

(
xp − xk

h

)
, (1.120)
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assignment scheme (P2M) interpolation scheme (M2P)

Figure 1.7: Assignment and interpolation schemes.

and satisfies: ∑

k

φk ≡ 1. (1.121)

If the considered grid is Cartesian, the basis function φ may be taken as one of the Mp, M ′
p or

Λr,p functions described in the previous section.

On the other hand, the M2P scheme, also called the interpolation scheme, yields:

ap =
∑

k

akφk(xp) (1.122)

These P2M and M2P formula lead to conservative schemes. They are depicted in Figure 1.7.

1.4.3.1 The Eulerian-Lagrangian domain decomposition methods

With this type of hybrid methods, the idea is to benefit from the respective strengths of grid-
based and vortex schemes. On one hand the grid-based method, which is used in the flow
regions containing obstacles, enables one to accurately impose the no-slip boundary conditions
and on the other hand the vortex method, which is implemented elsewhere, ensures an accurate
modeling of the convection-diffusion effects and also provides a simplified treatment of the far-
field boundary conditions. Following the idea of [Cottet, 1991], who first proposed this approach
in the context of inviscid flows, we detail hereafter a domain decomposition algorithm allowing
to solve the Navier-Stokes equations with overlapping domains. Let us respectively denote by
Ω1 and Ω2 the Eulerian (grid-based) and Lagrangian (grid-free) domains. S1 and S2 respectively
refer to the outer boundary of Ω1 and the inner boundary of Ω2; they define the boundaries of
the overlapping zone (Figure 1.8).

The algorithm, based on viscous splitting, consists in solving in a first time the Poisson
equation for the velocity and in a second part the convection-diffusion equation.

In Ω1 these equation express as:

(Poisson equation) ∆ψ = −ω, (1.123)

u = ∇ ×ψ, (1.124)

(Convection-diffusion)
∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = 0,

∂ω

∂t
= ν∆ω, (1.125)
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Ω1

Ω2

S2S1

overlapping zone

Figure 1.8: Domain decomposition for flow past a circular obstacle with overlapping Eulerian
Ω1 and Lagrangian Ω2 domains. In this case, inspired from [Cottet et al., 2000], Ω1 is defined
by a polar mesh and a uniform Cartesian grid lies in Ω2 for particle remeshing.

and in Ω2 as:

(Poisson equation) ψ =
∫

Ω2

G(x − y)ω(y) dy +
∫

S2

∂G

∂nx
(x − y)ψ(y) dy (1.126)

+
∫

S2

G(x − y)
∂ψ

∂n
(y) dy,

u = ∇ ×ψ, (1.127)

(Convection-diffusion)
dxp

dt
= u,

dωp

dt
= (ω · ∇)u + ν∆ωp (1.128)

The Poisson equation is commonly solved using a Schwarz alternative method. The later
relies in computing firstly the solution in Ω1 using the boundary conditions on S1 obtained in
Ω2 at the previous iteration (let us call them Sn−1

1Ω2
) and then in computing the solution in Ω2

using the boundary conditions on S2 obtained in Ω1 at the current iteration (let us call them
Sn

2Ω1
). Then, once the convergence of the Schwarz algorithm is achieved, the convection-diffusion

equation is solved in each domain where the respective boundary conditions are evaluated using
assignment (P2M) and interpolation (M2P) formulas (1.119 and 1.122).

Finally, the complete algorithm yields as follows:

1. Poisson equation

Schwarz iterative method

(a) Solve 1.123 in Ω1 using a grid solver, with ψ on Sn−1
1Ω2

(b) Deduce the values of ψ and ∂ψ/∂n (for source terms of integral equation 1.126) on
fixed grid points on S2 (i.e. ψ and ∂ψ/∂n on Sn

2Ω1
)

(c) Solve 1.126 in Ω2 with an integral solver and deduce ψ on S1 (i.e. ψ on Sn
1Ω2

)



1.4. Distortion of particle distribution, remeshing and hybrid methods 39

Velocity computation

(d) After Schwarz algorithm convergence, compute final velocity field:

u =
(∇ ×ψΩ1

)
︸ ︷︷ ︸

in Ω1

+
(∇ ×ψΩ2

)
︸ ︷︷ ︸

in Ω2 − Ω1

(e) Evaluate velocities on particles in Ω1 ∩ Ω2 using a M2P formula.

2. Convection-diffusion equation

(a) Update ω1 in Ω1 solving 1.125 with an Eulerian solver.
For boundary values of ω1 on grid points of S1, assign to these grid points the vorticity
of the closest particles in Ω2 through a P2M formula. The distance from S1 to S2

must then be larger or equal to the width of the assignment function φ.

(b) Update ω2 in Ω2 solving 1.128 with a remeshed PSE scheme.
This update depends on the particles surrounding S2. These particles are located
around S2 in a layer called Ω12 whose width depends on the size of the support of
the kernel η used in PSE formula (see [Cottet and Koumoutsakos, 2000]). Particle
vorticity values are thus computed in Ω12 through a M2P formula.

We note that the remeshing procedure performed in step 2.(b) is not as crucial in this context
as in a pure Lagrangian framework (see section (1.2.3)). Indeed, the distortion effects mainly
occur in the vicinity of the wall boundaries, where the highest velocity gradients are observed.
In the far wake, where the PSE scheme is here applied to solve the convection-diffusion, these
gradients are smoothed and the particle distribution on an underlying Cartesian grid may not
be necessary.

Let us precise that the present algorithm, successfully applied in [Cottet et al., 2000] to model
flow past several cylinders, corresponds to a particular version of the domain-decomposition
method. Several variations may be brought to this model, while keeping the same base lines.
First, this algorithm only deals with overlapping domains but one can also cite the works of
[Guermond et al., 1993] who considered matching domains. This type of decomposition makes
the definition of interface boundary conditions more challenging but enables a reduction of com-
putational operations. Secondly, we handled here a problem involving a unique obstacle, included
in Ω1. For sure, this algorithm may be derived for several bodies, where the flow in the vicinity of
each body is discretized on an independent grid domain [Manickathan, 2014]. Then, the Eulerian
method used to solve 1.125 in this algorithm is based on an explicit time integration scheme. An
implicit scheme can for sure be implemented in this domain [Cottet and Koumoutsakos, 2000]
and we refer to the works of [E and Liu, 1996] for a complete comparison between implicit and
explicit advancing schemes in the context of finite-differences methods. Finally, this method is
based on a velocity-vorticity formulation of the Navier-Stokes equations in the whole computa-
tional domain. A velocity-pressure formulation may also be used on the grid domains for a more
flexible and natural treatment of the viscous boundary conditions. Concerning these different
aspects we refer the reader to the chapter 2 of [Ould-Sahili, 1998].

1.4.3.2 The Vortex-In-Cell (VIC) methods

This hybrid vortex method, proposed in the pioneer studies of [Christiansen, 1973], relies in
dealing with an underlying grid while solving the governing equations with a particle vortex
method. Then, Eulerian schemes or Lagrangian schemes are used to solve the different parts
of the equations, according to their respective strengths. Concretely, in a VIC method, the ad-
vection is performed by updating the trajectories and the vorticity of the Lagrangian particles
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through a set of ODEs. On the other hand, Eulerian schemes are handled on the underlying grid
to efficiently compute the particle velocities and to solve the diffusion terms for which pure vor-
tex method encounter difficulties (see section (1.2)). For three dimensional flows, the stretching
term is often resolved on the mesh for the sake of simplicity.

The general Vortex-In-Cell algorithm can thus be described as follows:

1. Poisson equation:

(a) Assign particle vorticity values to the grid using a P2M formula.

(b) Compute the velocity field solving the following equation on the grid:

∆ψ = −ω. (1.129)

(c) Solve ∆u = ∇ ×ψ on the grid.

2. Convection:

(a) Interpolate the velocity field on the particles using a M2P formula.

(b) Perform a Lagrangian advection of the particles and get their new positions and
vorticity values:

dxp

dt
= up,

dω

dt
= 0 (1.130)

(c) Assign vorticity values and cell volumes to the grid using a P2M formula.

3. Stretching:

(a) Solve the stretching equation on the grid by differentiation of the velocity field:

∂ω

∂t
= (ω · ∇)u (1.131)

Note: One can also write the stretching term in its conservative form:

∂ω

∂t
= div(ω : u) (1.132)

4. Diffusion:

(a) Solve the diffusion equation on the grid and get the final grid values for the vorticity
field:

∂ω

∂t
= ν∆ω (1.133)

(b) Interpolate the particle values from the grid using a M2P formula.

Let us precise that this algorithm corresponds to the original version of the VIC algorithm,
following the idea of [Christiansen, 1973]. We note that this initial version of the VIC method ac-
tually suffers from the same difficulties as the one experienced by purely Lagrangian approaches
because of the distortion effects provoked by the Lagrangian resolution of the convection equa-
tion (step 2). The emergence of the remeshing technique in the mid 1990’s allowed to overcome
this problem and the VIC method then became particularly attractive.

Concerning the grid-based solver used to solve steps 3 and 4, a finite-differences scheme is
often chosen [Ould-Salihi et al., 2000, Gallizio, 2009, van Rees et al., 2011]. A more challenging
problem relies in the choice of the Poisson solver handled in step 1. The resolution of the
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Poisson equation actually stands as the most expensive operation in the present algorithm.
Indeed, for N particles, the classical discretization of equation 1.129 through the Biot-Savart
Law 1.17 implies to compute the interactions between each particles and all the others, leading
to a O(N2) complexity.

In order to decrease this number of operations, several grid-based Poisson solvers were de-
signed. They are called fast Poisson solvers, as opposed to the traditional “slow” solvers based
for instance on Jacobi, Gauss-Seidel, Conjugate Gradients or Successive Over Relaxation (SOR)
methods. These fast Poisson solvers can be defined as hierarchical methods and among them,
one can distinguish the direct solvers from the iterative one. The most popular direct solvers
are the Fast Fourier Transform method, which consists in solving exactly the Poisson solver in
the Fourier space using FFT, and the Cyclic Reduction method, consisting in discretizing the
Poisson equation by means of finite-differences method over a rectangle by a successive splitting
of the initial problem (see [Buzbee et al., 1970]). These two direct grid-based Poisson solvers
present a O(N logN) complexity. On the other hand, one of the most famous iterative solver
relies on the Multigrid method, which recursively uses coarse discretizations of the Poisson prob-
lem to approximate its solution (see [Brandt, 1977]). The complexity of Multigrid algorithms is
O(N), which makes them very attractive in terms of computational cost. However, they may
require more efforts in terms of implementation and use.

An other very famous Fast Poisson solver, also having a O(N) complexity, is based on
the Fast Multipole Method (FMM). However, contrary to all the solvers mentioned above,
this one is grid-free and consequently does not take place in the framework of Vortex-In-Cell
methods. As this method is part of the most efficient one nowadays, we shortly depict its
outlines: this technique, introduced by [Greengard and Rokhlin, 1987], exploits the geometri-
cal distributions of the vortices to evaluate the velocity. The key point is that the velocity
field induced by a group of particles clustered around a center does not need to be computed
directly from its individual members, but it can be approximated by a finite number of multi-
pole expansions. This approach has been widely used in the context of vortex methods like in
[Marzouk and Ghoniem, 2005, Yokota et al., 2009, Rossinelli, 2011].

This section only supplied a detailed description of two semi-Lagrangian methods, namely
the domain decomposition and the VIC approach, but it is important to mention the existence of
other hybrid vortex methods, like for instance the one recently designed by [Kornev et al., 2013],
consisting in representing the large scale field on the grid, whereas the small scale field is eval-
uated through a pure Lagrangian vortex method.

In the context of the present work we will use the remeshed VIC method. This hybrid tech-
nique was indeed chosen for its relevant advantages that we recapitulate in the following list:

✓ Lowest computational cost of the Fast Poisson solvers compared to the classical particle-
particle interactions,

✓ Easy treatment of the viscous effects using finite-differences schemes on the grid (or finite-
volumes schemes, spectral schemes) for the resolution of the diffusion equation,

✓ Easiness of implementation compared to domain decomposition methods,

✓ Conservation of the less restrictive stability condition on the time step (eq. 1.45),

✓ Satisfaction of the particle overlapping condition all along the simulation through remesh-
ing procedures, whose computational cost may be greatly decreased by the use of direc-
tional splitting schemes (see subsection (1.4.2.5)),

✓ Limitation of the diffusive effects in the convection/remeshing step.
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For all these reasons, the remeshed VIC method has been extensively used in DNS to dis-
cretize the Navier-Stokes equations [Liu, 2001, Cottet and Poncet, 2003], especially in the case
of highly transitional regimes with Reynolds numbers ranging from 1000 to 10000. One can
mention for example the work of [van Rees et al., 2011] who carried out periodic vortical flows
at Re = 1600 are compared their results to the one obtained with spectral methods, as well
as the studies of [Morgenthal and Walther, 2007, Kudela and Kozlowski, 2009] where the VIC
method is used to model incompressible flows past cylinders up to Re = 3000 and Re = 9500
respectively. In terms of engineering applications, [Gallizio, 2009] used a VIC method in order
to model incompressible flows past a vertical axis turbine with a Reynolds number scaling up
to Re = 10000 and [Gazzola et al., 2014] made use of this approach to study fish schooling for
energy harnessing issues. All these problems successfully solved with the VIC method show its
competitive features.

However, the Cartesian mesh makes difficult the simulation of flows over complex geometries.
The coupling of the remeshed VIC scheme with an immersed boundary method thus appears as
an interesting solution to handle such problems. The last section of this survey is dedicated to
the so-called hybrid vortex penalization method, which is part of the Vortex-In-Cell/immersed
boundary methods and on which the present thesis is based.

1.5 A vortex immersed boundary method

As discussed in the previous sections, the treatment of the boundary conditions may be handled
in different ways in the context of vortex methods. First, we presented boundary element
methods to which belong the Chorin’s vortex sheet approaches. We also highlighted the accuracy
provided by the vorticity flux boundary conditions detailed in section (1.3.4). Finally, we can
mention the strategy consisting in handling a body-fitted underlying mesh, as for instance the
polar mesh usually employed in Eulerian-Lagrangian domain decomposition methods (see Figure
1.8). However, the ease of use of these methods strongly depends on the obstacle geometry, and
in the case of body-conforming grids, the computational time needed to build such meshes might
become important, even prohibitive if moving obstacles are considered.

In order to overcome the difficulties related to the body geometry, while ensuring an accurate
enforcement of the boundary conditions, immersed boundary methods are often chosen. In the
following we give a general description of the main categories of immersed boundary methods
before focusing on the method of interest in this thesis: the hybrid vortex penalization method.

1.5.1 Families of immersed boundary methods (IBM)

Among the most famous categories of immersed boundary methods, one can cite the three
following one: the continuous forcing method, the discrete (or direct) forcing method and the
cut-cell method. The two former are based on the introduction of a forcing function in the
momentum equation in order to model the presence of an immersed body in the fluid. The
latter consists in reshaping the Cartesian cells located on the immersed boundaries such that
they coincide with the surface geometry.

1.5.1.1 The continuous forcing method

This immersed boundary method was introduced by Peskin in 1972 and presented as a new
technique enabling to easily model fluid-structure interactions. In its original context, this
method was used to simulate blood flow inside deformable human heart valves [Peskin, 1972,
Peskin, 1977]. This technique is based on an Eulerian-Lagrangian approach where the fluid is
represented on a uniform Cartesian grid and the structure is defined by a set of points, also
called fibers in the original context of elastic heart valves, which do not necessary fit with the
regular mesh. The method invented by Peskin to model the presence of the structure boundaries
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consists in defining the force f(x, t) applied by the immersed structure to the surrounding fluid
and in distributing this force from each Lagrangian fiber over its neighboring grid nodes (Figure
1.9a). The forcing function f is then inserted in the right-hand-side of the governing momentum
equations of the neighboring points before discretization. The main distinction between all the
existing continuous forcing methods lies in the definition of the forcing function f , which is often
desired to be smooth in order to prevent oscillations at the fluid-structure interface.

Contrary to the two following IBM, the main advantage of the continuous forcing approach
relies in the fact that it does not depend on the discretization scheme used on the underlying
grid, which makes this technique generic and easy to set up on a given grid-based/hybrid Navier-
Stokes solver.

(a) Application of forcing f from Lagrangian
point to neighboring fluid points.

(b) Direct forcing is applied on the red grid points
from velocities interpolated from next grid nodes.

(c) Fluxes for different types of cut-cells

Figure 1.9: Immersed boundary methods

1.5.1.2 The discrete forcing method

Whereas the continuous method consists in adding a forcing term in the momentum equations
before their discretization, the discrete forcing approach, introduced by [Mohd-Yusof, 1997],
proceeds in the opposite way since the forcing is now computed from the discretized Navier-
Stokes equations. One advantage resides in the workaround of the stiffness problem encountered
by the function f used in the continuous approach. The outlines of the discrete forcing algorithm
are given hereafter following the one reported by [Balaras, 2004]. Let us first consider the
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incompressible Navier-Stokes equations in their velocity-pressure formulation. Including the
forcing term, they are expressed by:

∂u

∂t
+ (u · ∇)u + ∇p− ν∆u = f , in Ω × (0, T ) (1.134)

div u = 0, in Ω × (0, T ) (1.135)

u = ū, on ∂Ω (1.136)

After time discretization, one can write the body force on grid point i as follows:

un+1
i − un

i

∆t
= RHSi + fi (1.137)

where the RHS includes the convection, the diffusion and the pressure gradient terms. Knowing
that the role of the forcing function f is to enforce the desired boundary conditions at the
immersed boundary, then it must impose un+1

i = ūn+1
i on ∂Ω, and therefore f is defined by:

fi =





ūn+1
i − un

i

∆t
− RHSi near ∂Ω,

0 elsewhere.
(1.138)

We give here the algorithm for the f computation in the general case where the boundary does
not fit with the mesh:

1. Compute u∗ from equation 1.134, without the forcing term f . The fluid is then allowed to
enter inside the solid and the velocity u∗ does not satisfy the correct boundary conditions.

2. Interpolate the velocity ū on the forcing points from the surrounding nodes (Figure 1.9b)
and compute f from equation 1.138, taking u∗ for the computation of the RHS term.

3. Compute un+1
i from equation 1.134, with the forcing term f resulting from the previous

step. This velocity now ensures the correct boundary conditions.

Many variations of this algorithm have been derived. They mainly focus on how to determine
the forcing points of step 2. and how to interpolate ū on these points. On that subject, one
can for instance cite the works of [Mohd-Yusof, 1997, Balaras, 2004] and [Verzicco et al., 2000,
Fadlun et al., 2000, Iaccarino and Verzicco, 2003] where, in the latter ones, the direct forcing
method is used in the framework of finite-differences Large Eddy Simulations (LES), proving
the efficiency of IBM in the treatment of turbulent incompressible flows.

1.5.1.3 The cut-cell method

A different approach, not relying on the momentum forcing technique, was proposed by Ye et
al [Ye et al., 1999]. Based on a finite-volumes framework, it consists in cutting the Cartesian
cells crossed by the immersed boundary according to the following rule: if the center of the
cell is located in the fluid region, the cell is reshaped by removing the portion that lies in
the solid part. On the contrary, if the cell center lies in the solid, then the remaining part
located in the fluid can be absorbed by the surrounding cells to overcome stability problems.
These cut cells of trapezoidal shape then define the new control volumes in the vicinity of the
immersed boundary for the finite-volumes discretization scheme (Figure 1.9c). The modeling
and computational efforts then mainly lie on the evaluation of the fluxes on the sides of reshaped
cells [Udaykumar et al., 1999, Ye et al., 1999, Udaykumar et al., 2001].

The cut-cell methods are particularly accurate in the treatment of the boundary conditions
since they often rely on second-order schemes. However, their implementation requires a lot
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of efforts. More generally, these features (accuracy and difficulty of implementation) are also
verified for the continuous and direct forcing immersed boundary methods.

For a complete description and comparison of the different immersed boundary methods
with their respective improved versions, we suggest the works of [Mittal and Iaccarino, 2005,
Bandringa, 2010].

1.5.1.4 The penalization method

The penalization technique, firstly proposed by [Caltagirone, 1994] and further developed by
[Angot et al., 1999], is actually part of the continuous forcing immersed boundary methods and
relies on the simple following idea: the fluid in which the flow evolves is assumed to be a porous
medium of infinite permeability while, on the other hand, the solid obstacles immersed in the
fluid are considered as media with zero permeability. A flow evolving in such media may be
modeled by the Brinkman-Navier-Stokes equations, which stands for the whole domain and
which contains an additional term with respect to classical Navier-Stokes equations, acting as a
forcing term. The latter, called the penalization term, directly comes from the Darcy equations
that govern flows in porous media. In the velocity-pressure formulation, the Brinkman-Navier-
Stokes equations yield:

∂u

∂t
+ (u · ∇)u + ∇p− ν∆u = f , in Ω × (0, T ) (1.139)

div u = 0, in Ω × (0, T ), (1.140)

where f corresponds to the penalization term, equal to:

f = − u

K
, (1.141)

where K is a coefficient mainly depending on the permeability of the medium. This K coefficient
is consequently set to infinity in the fluid region and to zero in the solid ones. In that way the
force is therefore activated only inside the solids, making the velocity vanishing in these regions,
and the no-slip boundary conditions are automatically satisfied. In case of moving obstacles, the
penalization term is given by (ū − u)/K, where ū denotes the velocity of the moving obstacle.
The condition u = ū is thus prescribed on the boundary and rigid motion is ensured within the
solid.

One can also mention an alternative to this method proposed by [Pasquetti et al., 2008] and
called the pseudo-penalization method. In this approach, no penalization term is involved in
the governing equations such that no penalization coefficient explicitly appears. The pseudo-
penalization technique is finally equivalent to consider the Navier-Stokes equations in the fluid
domain coupled to penalized steady Stokes equations in the solid domain. This coupling is
performed through the prescription of natural transmission conditions. This approach has
been successfully applied to the control of turbulent wake flows in the very recent works of
[Pasquetti and Peres, 2015].

1.5.2 The hybrid vortex penalization method

When they are used with Cartesian meshes, remeshed Vortex In Cell methods turn out to be
robust and reasonable in terms of computational cost. They should therefore definitely benefit
from immersed boundaries approaches, that would allow to supply flexibility in their application.

Historically, the first type of vortex immersed boundary methods consisted in imposing a
specific treatment, namely imposing the no-slip boundary conditions, on the computational
cells intersecting the boundary. The identification of these cells was realized through corrected
interpolation formula, enabling to quantify the overlapping of the boundary and the cells, in the
spirit of Volume of Fluid (VOF) methods. This approach was successfully used in particular
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by [Ploumhans and Winckelmans, 2000, Ploumhans et al., 2002] to handle complex 2D and 3D
geometries, at highly transitional flow regimes.

A second class of vortex immersed boundary methods was then introduced, in which the
boundary conditions are in the form of local forcing terms in the right-hand side of the mo-
mentum equations. In this approach, the flow equations are discretized in a unique way in the
computational domain, independently of the nature of the cells (i.e fluid, solid or mixed cells).
One can particularly cite the approach proposed by [Cottet and Poncet, 2003] where the no-slip
boundary condition is enforced from source points that are located on the boundary itself on
all grid points that are at a distance less than the grid-size from the boundary. In this way the
boundary conditions are prescribed on the body boundary regardless of the position where the
flow particles are initialized and remeshed.

More recently, a third class of vortex immersed boundary method was proposed, consisting
in using the penalization technique to enforce the boundary conditions. The hybrid method
handled in this thesis belongs to this class and is called the hybrid vortex penalization method.
This approach simply consists in coupling the u − p penalization method presented in the pre-
vious paragraph with the Vortex-In-Cell method. For that purpose, one needs to express the
Brinkman-Navier-Stokes equations 1.139-1.140 in their vorticity formulation. Setting K = 1

λχ,
where χ denotes the characteristic function of the solid bodies and λ is the penalization parame-
ter related to the medium permeability, and taking the curl of equation 1.139, we obtain the fol-
lowing vorticity-penalization equations, originally proposed by [Kevlahan and Ghidaglia, 2001]:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u − ν∆ω = ∇ × [λχ(ū − u)], in Ω × (0, T ) (1.142)

div u = 0, in Ω × (0, T ) (1.143)

With this formulation, the zone variation is performed by changing the value of the λ parameter:
a λ-value tending to infinity will model a solid region and, on the contrary, a λ-value equal to
zero will model the fluid part.

In the last decade, the hybrid vortex penalization method has been used successfully for dif-
ferent types of applications. First, we can cite the works of [Gallizio, 2009, Morency et al., 2012]
who coupled the penalization technique with a level-set method in order to handle moving bod-
ies. Then, [Rasmussen et al., 2011] proposed a multiresolution VIC algorithm with Brinkman
penalization and validated it in the case of classical benchmarks involving bluff bodies. In terms
of fluid-structure interactions, we can cite the works of [Coquerelle and Cottet, 2008] who cou-
pled the penalization method with a level-set method and a collision model to simulate the
interaction of an incompressible flow with rigid bodies, as well as those of [Gazzola et al., 2014]
(and all prior related studies from the same authors) dealing with fish schooling, where the
penalization method is combined to a projection approach allowing to model the action of the
fluid on the deforming fishes. Finally, [Hejlesen et al., 2015] introduced very recently an itera-
tive vortex-Brinkman penalization method in order to enhance its accuracy while allowing larger
time steps.

In terms of numerical advantages, besides the one already cited concerning remeshed Vortex-
In-Cell methods, the present hybrid vortex penalization method first naturally exhibits the ones
of the immersed boundary methods, that is the absence of explicit prescription of the boundary
conditions, the existence of a unique equation for the whole domain and the possibility to handle
complex geometries. Nevertheless, on this last point, it distinguishes itself from some other IBM
since its implementation is totally independent of the obstacles’ shape, which is not the case
for example with the previously presented direct forcing method where high curvatures in the
immersed boundary require more sophisticated interpolations and fluxes computations. Then,
the Brinkman penalization method is particularly easy to implement: the only thing to do is
changing the value of λ in the penalization term. Finally, we directly benefit from the variable-
permeability background of the method to handle passive flow control. Indeed, as the objective
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of this work is to perform passive flow control by covering the surface of the immersed obstacle
with porous areas, the penalization technique will particularly ease the implementation and the
handling of such bodies since we will simply have to set λ to an intermediate permeability value
in these areas.

The major drawback of the present penalization method is its first-order accuracy. Never-
theless, we will see in the next chapters that it still provides a precise behavior of the flow in
the boundaries region.

The next chapter will be fully dedicated to the mathematical description, the discretization
and the implementation of the hybrid vortex penalization method adopted in this thesis in the
context of passive flow control applications.

The last point that remains to evoke in this survey concerns the algorithmic issues related to
vortex methods. The question related to the computational performance of the library in which
they are implemented are indeed crucial since they determine the capability of these methods
to handle challenging problems.

1.6 Algorithmic issues

Besides the aspects related to accuracy and particle distortion, the low expansion of pure par-
ticle methods in the CDF community is also explained by their computational implementation.
The main limitations indeed rely in the fact that particle methods are difficult to parallelize
efficiently and that most of the relevant scientific libraries are incompatible with such approach.
In recent years, with the appearance of efficient hybrid vortex methods, a lot of efforts were
dedicated to the design of competitive algorithms and the first parallel codes based on remeshed
vortex methods arose. In this last section, we present two main scientific libraries that clearly
enhance the challenging features of the vortex methods in modeling complex fluid dynamics
problems.

The first one is the so-called Parallel Particle-Mesh (PPM) library. As explained by its
authors in [Sbalzarini et al., 2006], it supplies a general-purpose parallel and portable framework
that can handle particles-only, mesh-only, as well as hybrid particle–mesh systems. In terms of
parallelism, the PPM library is usable on single processor machines as well as on distributed
memory, shared memory, and vector parallel processors. Finally, concerning numerical methods,
PPM is able to handle mesh-based solvers, evaluations of differential operators on particles, Fast
Multipole Method (FMM), parallel FFT, and multi-stage ODE integrators. This library was
successfully used to simulate a wide range of three-dimensional challenging problems, like the
diffusion in the endoplasmic reticulum of a live cell, the reacting of compressible double shear
layer or the instability of two anti-parallel vortex tubes. These applications always showed
parallel efficiencies reaching or exceeding the state of the art, and satisfactory run-times on
large systems.

The second library is called MRAG-I2D, for Multi-Resolution Adapted Grids for Incompress-
ible flow simulations in 2D. This open source software was developed by [Rossinelli et al., 2015]
for multiresolution simulations of two-dimensional incompressible flows on multicore architec-
tures using remeshed particle methods. In this library, the concept of wavelet adaptivity is used
in order to generate adapted grids that enable the optimization of computations for fluid flows,
developing multi-spacial and temporal scales. More precisely, the set up of the multiresolution
analysis of both velocity and vorticity field is performed using biorthogonal wavelets. The latter
introduce a pair of analysis functions (used by the Fast Wavelet Transform) and a pair of syn-
thesis functions (performed by the inverse FWT). A function can therefore be decomposed in
scaling and detail coefficients at different levels of resolution. Each point of the adaptive grid is
thus represented by a scaling and a detail coefficient. The aim is to discard the detail coefficients
which, compared to a fixed threshold, do not carry relevant information about the flow field.
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The space-adapted grids are also coupled with local time-stepping (LTS) integration schemes in
order to speedup the computational efficiency. These schemes, exploiting the time step locality
imposed by the different stability conditions, allow to integrate the coarser elements with larger
time steps than the finer ones and thus enable one to perform fewer integration steps. Local
time-stepping schemes are shown to speedup the computation by one order of magnitude at each
level of resolution from a certain number of levels. The non-uniformity of the grid imposes the
use of a Fast Multipole Method (FMM) to solve the velocity Poisson equation. The MRAG-I2D
library efficiently maps these different algorithmic and numerical aspects onto modern comput-
ing architectures, in particular onto heterogeneous CPU-GPU platforms. It as been used for
the simulation of bluff body flows with Reynolds numbers ranging until 40000, flow-mediated
interactions between two solids, analysis of optimal shapes in anguilliform swimming and rein-
forcement learning in the context of self-propelled bodies.

Beyond the scope of these two software, another algorithm issue lies in multi-scales simula-
tions. Indeed, as exposed in the previous sections, vortex methods are a natural approach to
investigate the main features of incompressible turbulence, in particular the mechanisms that
drive the organization of the small scales into large eddies. This concern has been addressed
in the framework of vortex methods by [Cottet, 1996, Cottet and Wray, 1997], who proposed a
eddy viscosity model, with anisotropic non-linear diffusion, leading to artificial viscosity schemes.
This subgrid-scale model is intrinsically anisotropic and able to distinguish between vorticity and
strain, which is not the case of the commonly used Smagorinsky model. As a result the artificial
dissipation does not affect large eddies. A discussion related to the implementation of an eddy
viscosity algorithm will be addressed at the end of this thesis as a perspective of the present work.

Conclusion 1.1

The intensive development of the vortex methods between 1973 and the mid 1990’s was
motivated by the will to design robust and accurate numerical schemes able to overcome the
main weaknesses of traditional grid methods, especially in the case of dominant convection
effects in the flows. The major advantages arising from these pure Lagrangian methods
are the following: appealing physical attributes, automatic adaptivity of the discretization
elements (particles), compactness of vorticity support, accurate handling of boundary condi-
tions at infinity, low numerical diffusion, conservation of the flow invariants, relaxed stability
condition on the time step and usefulness of vorticity in terms of results interpretations.
However, during this period, vortex methods experienced some difficulties. First they had to
face an inaccurate modeling of the viscous effects due to the particle distortion phenomenon.
They were also confronted with the expensive resolution of the Poisson equation allowing to
recover the velocity field from the vorticity. Finally, they failed in providing both accurate,
efficient and generalized treatment of boundary conditions on solid walls due to the velocity
formulation of the no-slip boundary conditions. For all these reasons, the pure vortex meth-
ods did not manage to become a common tool for the simulation of incompressible real flows.
In order to bypass their intrinsic difficulties, they started to move towards hybrid formula-
tions in the early 1990’s, resulting in the introduction of underlying grids with remeshing.
The presence of Cartesian grids thus enables the use of Fast Poisson solvers as well as grid-
based schemes for the discretization of the diffusion term, and makes possible the handling
of immersed boundary methods for the treatment of the solid bodies, while ensuring particle
overlapping. In the meantime, the particle discretization of the flow allows to keep most
of the advantages of the Lagrangian methods. All these advances allowed to highlight the
interest and potential of VM in handling challenging CFD problems. Important efforts were
therefore supplied to design efficient algorithms in the context of hybrid vortex methods and
eventually gave birth to high performance scientific libraries.

Returning to the realm of the present work, aiming to deal with passive flow control
around bluff bodies, the choice of the hybrid vortex penalization method is therefore jus-
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tified by three main arguments: first, the framework addressed by the vortex methods is
particularly well suited to the moderate and highly-transitional flow regimes that we aim
to handle and allows to solve the governing equations in a fast and robust Lagrangian way.
Secondly, the presence of an underlying grid in the present method enables a permanent
control of the particles overlapping and allows the use of a fast summation algorithm for
the Poisson solver as well as finite-differences schemes to discretize differential operators.
Finally, the penalization immersed boundary method facilitates the modeling of the complex
fluid-solid-porous media considered in this work.
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Résumé 2

Ce chapitre est dédié à la description de la méthode vortex hybride pénalisée mise en oeuvre
dans cette thèse. Nous présentons dans un premier temps les équations fondamentales du
problème, à savoir les équations de Navier-Stokes incompressibles exprimées dans leur formu-
lation vitesse-vorticité. Le but de ces travaux étant de contrôler passivement un écoulement
par l’ajout d’un matériau poreux à la surface de l’obstacle immergé, la construction d’un mod-
èle d’écoulement dans un milieu solide-fluide-poreux devient alors nécessaire. Pour cela, les
équations de Navier-Stokes sont alors couplées avec l’équation de pénalisation de Brinkman,
où le terme de pénalisation ainsi ajouté est fonction de la perméabilité du milieu et permet de
modéliser les différentes parties du système. Après avoir décrit les caractéristiques physiques
d’un écoulement dans un milieu solide-fluide-poreux et après en avoir détaillé le modèle con-
tinu, nous déclinons ensuite l’algorithme général, basé sur une méthode de splitting, ainsi
que les schémas de discrétisation mis en place afin de résoudre le problème. Un schéma
semi-lagrangien d’advection/remaillage d’ordre élevé est utilisé afin de traiter l’équation de
convection tandis que les autres opérateurs différentiels présents dans les équations du prob-
lème sont discrétisés sur une grille sous-jacente à l’aide d’une méthode de différences-finies.
L’ensemble de ces schémas de discrétisation sont implémentés au sein d’un code de calcul
scientifique dont une description détaillée est faite dans la dernière partie de ce chapitre.
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This chapter is devoted to the description of the numerical algorithm and the implementa-
tion of the Hybrid Vortex Penalization (HVP) method that is not only appropriate to model
incompressible flows past bluff bodies, but also to simulate flows in complex media involving
fluid, porous and solid regions. The method proposed in the present work to handle this type of
problem is based on the vortex Brinkman-penalization technique. As explained in the dedicated
section (1.5.2) in chapter 1, this approach involves a unique equation for the whole domain and
ensures an accurate modeling of each of the different regions thanks to the dimensionless penal-
ization factor. In the penalization technique the system is considered as a single flow, subject
to the Navier-Stokes equation with a penalization term that enforces continuity at the solid-
porous and porous-fluid interfaces as well as rigid motion inside the solid. The main advantage
of this method is that it needs neither the mesh to fit the boundaries nor to specify no-slip
boundary conditions. This Brinkman-penalization technique has already been used success-
fully in its original velocity-pressure formulation under a purely Eulerian approach by Bruneau
and Mortazavi in order to model 2D flows in fluid-porous-media [Bruneau and Mortazavi, 2004,
Bruneau and Mortazavi, 2006, Bruneau and Mortazavi, 2008]. The present hybrid algorithm
provides an extension of this penalization approach to the two- and three-dimensional (u,ω)-
Navier-Stokes equations in order to perform passive flow control using porous media.

Moreover, aside from proving the competitiveness of the present hybrid vortex penalization
method and applying it for the first time to passive flow control, a major goal of this work
was also to implement the present method within a new perennial and upgradable open source
library able to handle a broad spectrum of incompressible flow problems with challenging issues,
based on hybrid simulations using particles.

The outline of this chapter is the following: starting from the original Brinkman Navier-
Stokes equations in velocity-pressure formulation, we will first give the successive steps enabling
to achieve the numerical model used in this thesis, based on a vorticity formulation. We will then
present the algorithm derived in order to discretize the governing equations. This algorithm has
been implemented in a computational solver that will be presented in the last part of this chapter.

We precise that all the notations introduced in this chapter will be further used in the next
parts of this thesis.

2.1 Mathematical and physical description of the model

2.1.1 The Brinkman Navier-Stokes equations in velocity formulation

The three-dimensional Navier-Stokes equations governing the incompressible flow of a Newtonian
fluid in a domain D, without external forces, are given by:

ρ
∂u

∂t
+ ρ (u · ∇)u + ∇p− µ∆u = 0 in D × (0, T ), (2.1)

div u = 0 in D × (0, T ), (2.2)

where ρ refers to the density of the fluid (considered as constant throughout this work), µ
corresponds to the dynamic viscosity of the fluid, u is the three dimensional velocity vector field
and p denotes the pressure scalar field.

As explained in section (1.5.1.4), the penalization method consists in adding a forcing term
in the equation of momentum conservation. This term models the entire domain as a porous
medium with different permeabilities.

In a porous medium the velocity u is given by the Darcy law:

u = − k

µΦ
∇p, (2.3)
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Insert 1 – Porosity and permeability

• The porosity Φ of a porous medium corresponds to the fraction of void space (air, water,
...) in a material. It is defined by the ratio:

φ =
VV

VT
(2.4)

where VV indicates the volume of the void-space and VT is the total volume of the
material, including the solid and the void parts. The porosity is therefore a value between
0 and 1.

• The permeability k measures the ability of a porous material to allow fluids to pass
through it. High permeabilities will therefore enable a fluid to evolve fastly within a
porous medium. This quantity directly derives from the Darcy equation and its unit of
measure is the darcy (Da = 0.97 × 10−12 m2).

where Φ denotes the porosity of the medium and k is the intrinsic permeability (see Insert 1).
On the other hand, assuming that the Boussinesq hypothesis is satisfied for the fluid satu-

rating the porous medium, we get the Brinkman equation that includes the diffusion inside the
body and which is only valid when the porosity coefficient is close to one:

∇p = −µΦ
k

u + µ̃Φ∆u, (2.5)

with µ̃ denoting the Brinkman’s effective viscosity. To model solid-porous-fluid media, the
Brinkman equation is actually preferred to the Darcy equation since it can either model the flow
in a highly porous region or the interface with the fluid (which can always be seen as a medium
with a porosity close to one). The Brinkman equation prescribes similar equations on both sides
of the interface, which supplies a natural coupling between the fluid model and the porous one.
Concerning the effective viscosity µ̃, it should be seen here as a parameter that enables the con-
nection of the shear stress boundary conditions across the fluid/porous interface. Many studies
had been carried out concerning the relation between µ and µ̃. Brinkman himself originally set
µ = µ̃, however this assumption is not true in the general case. [Liu and Masliyah, 2005] stated
that µ̃ is actually highly dependent on the considered porous medium and the strength of the
flow. Nevertheless, they conclude that it is of common practice to set µ approximately equal
to µ̃ when high porosities (close to 1) are involved, which is the case in this study. Therefore,
assuming that µ̃ ∼ µ/Φ, then the Brinkman equation yields:

∇p = −µΦ
k

u + µ∆u. (2.6)

If the velocity of the immersed body ub is non-zero, then the Brinkman equation expresses as:

∇p =
µΦ
k

(ub − u) + µ∆u. (2.7)

Complementing this equation with the inertial terms of the Navier-Stokes equation, and following
the way the Forchheimer-Navier-Stokes equation is derived by [Whitaker, 1999], we finally obtain
the modified Forchheimer-Navier-Stokes equation, also called Brinkman Navier-Stokes equations
([Bruneau and Mortazavi, 2004]):

∂u

∂t
+ (u · ∇) u +

∇p
ρ

=
µΦ
kρ

χb(ub − u) +
µ

ρ
∆u in D × (0, T ), (2.8)

div u = 0 in D × (0, T ), (2.9)
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where χb is the characteristic function equal to 0 in the fluid and 1 in the body.
We now seek to express this Brinkman Navier-Stokes equation in its velocity-vorticity for-

mulation.

2.1.2 The Brinkman Navier-Stokes equations in vorticity formulation

Taking the curl of equation 2.1 and using equation 2.2, we get the three-dimensional Helmholtz
equation, also called Vorticity Transport Equation (VTE), for the vorticity ω = ∇ × u:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u =

µ

ρ
∆ω in D × (0, T ), (2.10)

where the terms (u · ∇)ω, (ω · ∇)u and µ/ρ ∆ω respectively model the convection, the
stretching and the diffusion of the vorticity field. This equation has to be coupled to the system
giving the velocity in terms of the vorticity. It is convenient to use the Helmholtz decomposition:

u = ∇ ×ψ + ∇ϕ. (2.11)

The stream function ψ and potential ϕ satisfy the following systems in D:

− ∆ψ = ω, ∇ ·ψ = 0, ∆ϕ = 0, (2.12)

complemented with appropriate boundary conditions (we will come back to this point is the
sequel). Using the incompressibility condition 2.2, the velocity may also be directly linked to
the vorticity through the following relation, already mentioned in the previous chapter and
justified by relations 1.11:

∆u = −∇×ω. (2.13)

One can notice that equation 2.10 no more contains pressure term. Indeed, since the density
ρ is constant in this study, the curl of ∇p/ρ vanishes. But the pressure can be recovered from
the velocity field by integrating the following Poisson equation:

∆p = −∇ · (u · ∇)u, in D, (2.14)

which is derived from the divergence of equation 2.1.
By dividing equation 2.7 by ρ and by taking the curl of the resulting equation, one obtains

the Brinkman equation in its velocity-vorticity formulation:

0 = ∇ ×
(
µΦ
kρ

(ub − u)
)

+
µ

ρ
∆ω. (2.15)

Proceeding exactly in the same way as we did to get equation 2.8, one obtains from the Brinkman
equation 2.15 and the VTE 2.10 the dimensional penalized Vorticity-Transport-Equations, orig-
inally proposed by [Kevlahan and Ghidaglia, 2001]:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = ∇ ×

(
λ χb(ub − u)

)
+ ν∆ω in D × (0, T ), (2.16)

∆u = −∇×ω in D × (0, T ), (2.17)

where λ = µΦ/kρ is the penalization parameter of dimension [s−1] and ν = µ/ρ is the kinematic
viscosity of the fluid of dimension [m2][s−1].
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2.1.3 The dimensionless problem

In order to get the non-dimensional formulation of equation 2.16, let us consider the following
usual substitutions involving the mean velocity of the fluid ū, the size of the body H and the
reference time t̄:

ω = ω′ ū

H
u = u′ū x = x′H t = t′t̄ = t′

H

ū
λ = λ′ 1

t̄
. (2.18)

From these relations, one can evaluate each term of equation 2.16 in its non-dimensional
form. The detail of the computations is given in appendix (A). After substitution, one finally
gets:

ū2

H2

∂ω′

∂t′
+

ū2

H2
(u′ · ∇′)ω′ − ū2

H2
(ω′ · ∇′)u′ = ∇′ ×

(
µΦū

ρkH
χb(u′

b − u′)
)

+
µū

ρH3
∆′ω′. (2.19)

Multiplying the above equation by
H2

ū2
eventually gives:

∂ω′

∂t′
+ (u′ · ∇′)ω′ − (ω′ · ∇′)u′ = ∇′ ×

(
µΦH
ρkū

χb(u′
b − u′)

)
+

µ

ρHū
∆′ω′, (2.20)

where the penalization parameter λ′ = µΦH/ρkū is indeed a non-dimensional parameter since
one has λ′ = λ H/ū = λt̄ and thus [λ′] = [s−1].[s]. The same conclusion holds for the quantity
µ/ρHū which actually corresponds to the inverse of the Reynolds number: 1/Re = µ/ρHū =
ν/Hū and thus [1/Re] = [m2.s−1]/[m2.s−1].

Finally, skipping the (·)′ notation in equation 2.20 for the sake of clarity, one obtains the
dimensionless penalized Vorticity-Transport-Equations:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = ∇ ×

(
λ χb(ub − u)

)
+

1
Re

∆ω in D × (0, T ), (2.21)

∆u = −∇×ω in D × (0, T ). (2.22)

In the above equations λ = µΦH/ρkū denotes the non-dimensional penalization parameter
and Re = Hū/ν corresponds to the dimensionless Reynolds number, measuring the relative
importance of the inertial effects compared to the viscous ones.

2.1.4 A vortex penalization method for solid-porous-fluid media

This section is devoted to the study of flows in solid-porous-fluid media and aims to highlight
the efficiency of the present vortex penalization method to solve such problems.

For a three different media configuration composed of solid, porous and fluid parts, it is of
great importance to clearly understand the flow behavior at the fluid-porous interface in order
to model the physics correctly. As described in [Bruneau and Mortazavi, 2008], we can consider
five different flow regions from the solid to the free flow in the fluid. First, there is the boundary
layer inside the porous medium, close to the solid wall. It is very thin compared to the second
region which is characterized by the homogeneous porous flow with Darcy velocity uD (numbers
1 and 2 in Figure 2.1). In the vicinity of the porous-fluid interface, two transient layers can be
recognized (numbers 3 and 4 in Figure 2.1). The first one corresponds to the increase of the
porous layer velocity, reaching the value ui at the interface, and the second one to the fluid
boundary layer which extends from the interface to the free flow. The fluid boundary layer
growth is then determined by u∞ − ui where u∞ denotes the velocity of the main fluid flow
(number 5 in Figure 2.1).

Several approaches have already been proposed to deal with this problem, among which one
can distinguish two main techniques. The first one, which is essentially used to model flows past
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Figure 2.1: Velocity profile in the vicinity of a porous medium. uD denotes the Darcy velocity
of the flow within the porous medium, ui is the non-zero velocity at the porous/fluid interface
and u∞ corresponds to the velocity of the main fluid flow.

a solid with permeable walls [Hahn et al., 2002, Jimenez et al., 2001], avoids to solve the porous
flow by enforcing appropriate porous-fluid boundary conditions [Beavers and Joseph, 1967]. This
method neglects the porous medium physics and does not permit to have an overall view
of the problem. On the contrary, the second approach considers that the porous flow has
to be accurately computed. For that purpose, it solves the governing equations in each re-
gion by coupling the Darcy equation (which governs flows in porous media) and the Navier-
Stokes equations (which govern flows in free-fluids) with a right treatment at the interface
[Breugem et al., 2005, Hanspal et al., 2006]. However, this approach is very difficult to handle
especially because of the interface problem.

Therefore, the penalized Vorticity-Transport-Equation 2.21 appears to be very convenient
to model the flow in the whole domain thanks to the dimensionless penalization factor λ, whose
value allows to distinguish between the different materials. As mentioned in the previous section,
λ is expressed as λ = µΦH/ρkū where ū actually corresponds to the main uniform fluid flow
velocity u∞ = (u∞, 0, 0). In this study we set H = ρ = u∞ = 1 and we recall that the porosity
Φ is close to 1 as imposed by the Brinkman equation ([Nield and Bejan, 1999]). Therefore λ
essentially depends, in the inverse proportion, on the intrinsic permeability k of the medium.
Varying the value of λ thus directly defines the different media. Indeed, in the fluid, the intrinsic
permeability coefficient k goes to infinity, thus the fluid can be considered numerically as a porous
media with a very high permeability. We set lambda = 0 in this region. As a consequence, the
penalization term vanishes in equation 2.21, and we naturally recover the dimensionless Vorticity
Transport Equation:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u =

1
Re

∆ω. (2.23)

On the contrary, the solid has a permeability coefficient k close to zero, it can be consequently
modeled by fixing the penalization parameter λ to a very high value. In this study λ is set to 108

in the solid. It was proved in [Angot et al., 1999] that solving equation 2.21 with such a value of
λ was equivalent to solve Darcy’s law in the solid. Furthermore, setting the λ parameter to an
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intermediate value, reasonably chosen between these two extreme values (λ = 0 and λ = 108),
would model a porous medium in which the flow has a Darcy velocity uD (Figure 2.1). Complete
studies will be presented in the chapters 3 and 4 in order to determine the range of λ-values
allowing to actually model a porous medium.

As a conclusion, the variation of λ corresponds to the variation of k and specifies the intrinsic
porous material permeability. The following table recapitulates the settings used in this study
according to the different regions of the domain:

Domain regions λ-value and corresponding permeability State of the velocity flow
Fluid λ = 0 (infinite permeability) u is not penalized
Solid λ = 108 (vanishing permeability) u → 0

Porous 0 < λ < 108 (intermediate permeability) u = uD

2.2 Forces evaluation

The accurate computation of the unsteady aerodynamic force exerted by the fluid on an im-
mersed body is of great importance in the framework of this study (see Insert 2).

Insert 2 – Aerodynamic force

The aerodynamic force is the force exerted by a fluid on an immersed body.

It originates from the relative motion between body and fluid and arises from two causes:

• the normal force due to the pressure on the surface of the body

• the shear force due to the viscosity of the fluid, also known as skin friction, acting locally,
parallel to the surface .

In three dimensions, the components of the vector force F are the following:

• the drag Fx: component parallel to the direction of relative motion.

• the vertical lift Fy: component normal to the direction of relative motion, vertically.

• the lateral lift Fz: component normal to the direction of relative motion, horizontally.

pr

y

z

F

z

Indeed, on one hand the force provides a reliable diagnostic to validate the ability of the
present method to model the problem correctly and on the other hand it represents the main
physical quantity to be minimized in terms of the flow control application handled in this thesis.
However, the evaluation of this force is not so simple and many works have been carried out
on that subject. One can for instance refer to the studies of [Quartapelle and Napolitano, 1982,
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Pan and Chew, 2002, Protas, 2007]. In this section, we will present different formulations of
the aerodynamic force and we will try to highlight the one that would be suited to the present
framework. For that purpose, let us assume a flow in RN around a bounded body B with ve-
locity and vorticity vanishing at infinity.

A first approach to compute the force consists in using the penalization term, since it actually
corresponds to a forcing term in the Navier-Stokes equations. Indeed, the Brinkman penalization
method allows to compute the pressure as a continuous field on the whole domain including
the bodies when the velocity-pressure formulation is considered. It was therefore shown in
[Caltagirone, 1994] that one can compute the force by integrating the penalization term on the
volume of the body:

F =
1
Re

∫

B
∆u dx −

∫

B
∇p dx ≈

∫

D
λχbu dx. (2.24)

This formula is based on the velocity-pressure formulation of the penalization method. It as-
sumes that the velocity is of the order of λ−1 inside the body. However, in a vorticity formulation
there is no direct control of the velocity in the body. In practice one observes that the velocity
in the body is small but larger than λ−1. This is illustrated in Figure 2.2 showing a converged
velocity in the order of 2.5 × 10−3 inside the obstacle in the case of flow past a 2D circular
cylinder at Re = 550. In that case, we found that accurate computations of the force could
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Figure 2.2: Mean velocity magnitude profiles in a section across the center of a circular cylinder,
at x = 0, obtained for different λ values at Re = 550.

not be achieved using the formula 2.24. We may instead use the force evaluations in terms of
vorticity distributions around the body.

The force F exerted by a flow on the body is given by:

F = − d

dt

∫

B′

u dx, (2.25)

where B′ denotes the domain outside B. Integration by parts allows to express this force in
terms of the vorticity, with N denoting the space dimension:

F = − 1
N − 1

d

dt

∫

S′

x × ω dx − 1
N − 1

d

dt

∮

∂S
x × (n × u)ds. (2.26)
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In the above expression, the first integral is the linear hydrodynamical impulse and the second
integral is the bound vorticity (see [Saffman, 1992]). For an impulsively started obstacle at early
times, the vorticity remains essentially attached to the body, and this formula can be used by
taking a computational domain large enough to contain the vorticity support. When vorticity
shedding occurs, this is no longer possible.

Alternatively, one may consider the method used by [Koumoutsakos and Leonard, 1995] and
[Poncet, 2001]. By integrating the velocity-pressure Navier-Stokes equations on B′ (the domain
around B), one gets:

d

dt

∫

B′

u dx − ν

∫

B′

∆u dx +
∫

B′

∇p dx = 0. (2.27)

Therefore, according to the force definition 2.25, F may be expressed as follows:

F = −ν
∫

B′

∆u dx +
∫

B′

∇p dx, (2.28)

where one assumes that vorticity vanishes at infinity, which in practice is always the case.
Moreover, one has: ∫

B′

∇p dx =
∫

∂B
pn ds, (2.29)

and according to the Poisson equation 2.13 and the Green’s formula:

− ν

∫

B′

∆u dx = ν

∫

B′

∇ × ω dx = −ν
∫

∂B
ω × n ds. (2.30)

Finally, the expression of F is given by:

F = −ν
∫

∂B
ω × n ds +

∫

∂B
pn ds. (2.31)

One advantage of such expression is that it allows to distinguish friction (in the first integral)
from pressure drag (in the second integral), which can be very interesting in terms of flow control
issue to quantitatively determine the respective contribution of the two different components of
the total drag. However, the use of this expression requires an accurate computation of the
pressure term which is precisely a complicated task that vortex methods allow to bypass. To
overcome this difficulty, a solution would be to perform substitutions and integrations by parts
of this relation in order to remove the pressure term. In the case of a 2D circular cylinder of
radius r, this yields the following formula [Koumoutsakos and Leonard, 1995]:

F = ν r

(∫ 2π

0
ω−→eθ dθ −

∫ 2π

0

∂ω

∂n
−→eθ dθ

)
. (2.32)

For a detached bluff body flow this formula can be used as long as vorticity and its normal
derivatives are accurately captured at the boundary. However, the penalization method just
described is derived from a method which is only first order for the velocity. It therefore does
not capture vorticity values and fluxes at the boundary with enough accuracy to give reliable
force evaluation through 2.32 with reasonable grid sizes. It is consequently necessary to use a
method which does not involve integrals of the physical quantities on the surface of the body. The
technique chosen here combines time derivatives, volume integrals of the vorticity momentum -
like in formula 2.26 - and vorticity boundary values as well as fluxes on a surface away from the
body, where these quantities are accurately computed.

For that purpose, we follow the approach proposed by [Noca et al., 1999] who presented
some closed formulations of the incompressible Navier-Stokes equations with such properties.
In this study, we mainly focus on the so-called momentum Noca’s equation that we rewrite as
follows:

F = − d

dt

∫

V
u dx +

∫

Σ
n · γ dx, (2.33)
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where, as depicted in Figure 2.3, V is a control volume containing the body B, Σ denotes its
boundary and

γ = (2.34)
1
2

|u|2I − 1
N − 1

u · (x × ω) +
1

N − 1
ω · (x × u)

− 1
N − 1

[(
x · ∂u

∂t

)
I − x · ∂u

∂t

]
+

1
N − 1

[x · (∇ · T)I − x(∇ · T)] + T.

In the above equation N corresponds to the space dimension and T is the viscous stress tensor:

T = µ(∇u + ∇ut), (2.35)

where µ is the dynamic viscosity of the fluid. The main advantage of this formulation compared
to equation 2.26 lies in the fact that the computation of the force is performed on a fixed control
volume V , containing B and included inside the computational domain D, which does not need
to adapt to the vorticity distribution. Moreover, the surface integrals involved in this Noca’s
formulation give rise to less difficulties than in 2.26 since they are evaluated away from the
obstacle.

V

D

x

z

Figure 2.3: Computational domain D and control volume V around the body B.

The Noca’s expressions encounter a large success both in the experimental community,
where it is often used along with the Digital Particle Image Velocimetry (DPIV) technique
[Sterenborg et al., 2014], and in the numerical approaches, especially when the pressure field
is not explicitly computed (the pressure is indeed not involved at all in Noca’s formulations).
Such formulas, and in particular formula 2.33, have been for instance used successfully by
[Gallizio, 2009] to accurately compute the force in the context of a two-dimensional hybrid vor-
tex methods.

However, some questions arise about this method. For instance, one can expect that the
force evaluated with Noca’s formulations is sensitive to the size of the control volume V . A
parametric study on that subject is precisely carried out in [Noca et al., 1999] and concludes
that the force results indeed strongly depend on the size of V and on the origin taken for the
values of the x positions involved in the formula. It emerges from this study that large control
volumes (with a size of roughly the order of the computational domain) and a body centered
origin represent the set of parameters leading to the most accurate results.

In any case, regardless of the results, the main issue lies in the fact that, in 3D, Noca’s
formula 2.33 is quite expensive to evaluate, first because of the numerous operations involved by
the volume integral in V and secondly because of the complicated computations implicated in
the surface integrals on Σ. Moreover, it would be preferable to discard any parameter influence
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in the evaluation of the force.

The last method we propose for force evaluation is the more numerical approach introduced
by [Morency et al., 2012] under the name of change of momentum. It is based on the fact that
the time dependent force exerted by a fluid on a body of constant mass is directly proportional
to the body acceleration. For unit density one has:

F = − d

dt

∫

B
u dx. (2.36)

If we (already) think in terms of numerical iterative process, we can consider that, at each time
step, the fluid is allowed to enter inside the rigid body before the penalization term enforces
the velocity u to be equal to uλ = 0 inside the body. Therefore, the obstacle experiences the
following change of momentum:

∆m =
∫

B
(u − uλ) dx, (2.37)

and the force is finally obtained by the formula:

F =
d

dt

∫

B
(u − uλ) dx, (2.38)

which indeed corresponds to the numerical acceleration of the body.

Based on the overall issues emerging from this section, we finally decided to consider the
Noca’s momentum equation 2.33 to compute the aerodynamic force in two-dimensions. This
choice ensures the accuracy of the results, provided that the control volume is sufficiently large.
For the three-dimensional problems addressed in this work, the change of momentum formula
2.38 will be preferred for its ease of use. The numerical flow solutions obtained with such ap-
proaches will be detailed in the next chapter of this thesis.

To conclude this section, we give the dimensionless quantities used to quantify the different
components of the aerodynamic force. They are called the drag and lift coefficients and are
defined by:

CD =
Fx

q × A , CL =
Fy

q × A , CS =
Fz

q × A , (2.39)

where the lift coefficient is decomposed into CL (vertical lift) and CS (side lift), q = 1
2ρu

2
∞

denotes the dynamic pressure and A is the reference area, also defined as the surface of the
body “seen” by the fluid. In the case of a 2D cylinder and a 3D sphere the reference area is
respectively equal to A = 2r and A = πr2, where r refers to the radius.
For a 2D cylinder of diameter d, the force coefficients write:

CD =
2Fx

ρu2
∞d

, CL =
2Fy

ρu2
∞d

, CS =
2Fz

ρu2
∞d

(2.40)

and for a 3D sphere of radius r, they are given by:

CD =
2Fx

ρu2
∞πr

2
, CL =

2Fy

ρu2
∞πr

2
, CS =

2Fz

ρu2
∞πr

2
(2.41)

2.3 Far-field boundary conditions

As mentioned in the previous section, the present study uses a bounded computational domain.
Artificial boundary conditions therefore need to be prescribed at the box walls. To model flows
past obstacles in bounded domains, the common and natural far-field boundary conditions are
uniform-flow at the inlet and outflow type boundary condition at the outlet, usually handled
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with Neumann type boundary conditions. These conditions ensure a given inlet flow. They are
often coupled with Dirichlet type boundary conditions in the other directions.

In the present work, we consider periodic boundary conditions. This choice will allow us to
use a Fast Fourier Transform method to solve the Poisson equation ∆u = −∇×ω. The dedicated
parallel fftw library, particularly well suited for periodic Poisson problem, can therefore be used.
However, handling periodic boundary conditions implies special treatments on the flow fields in
order to recover the desired uniform flow at the inlet. These treatments appear in two types of
corrections that we describe here.

Eddies absorption

A first consequence of periodic boundary conditions is the emergence, in the upstream region,
of eddies coming periodically from the outlet (we suppose in this study that the domain has a
sufficient size in the y and z directions so that the wake do not reach the concerned boundaries).
In order to discard these arising vortices, one needs to apply a specific treatment on the vorticity
field. This treatment consists in an absorption, in the flow direction, of the vorticity within a
band located at the outlet of the domain. The absorbed vorticity ω̃ is defined as:

ω̃ = f(x) ωperiodic, (2.42)

where f is the following one-dimensional smoothing function defined in the flow direction, that
is to say the x-direction [Parker and Balachandar, 2001]:

f(x) =





1 if x < xb

tanh(α(x− xc)) − tanh(α(xe − xc))
tanh(α(xb − xc)) − tanh(α(xe − xc))

if xb ≤ x ≤ xe

0 if x > xe

(2.43)

with xb, xc and xe respectively referring to the beginning, the center and the end of the ab-
sorption band at the outlet (see Figure 2.4). The parameter α allows to adjust the steepness of
the absorption function f .
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Figure 2.4: Schematic representation of the smooth vorticity absorption performed at the outlet.

In two dimensions the vorticity field has only one non-zero component, it therefore automatically
satisfies the condition div ω = 0. In three dimensions it is not the case and one needs to ensure
the solenoidal condition in the absorption procedure.

For that purpose, let us first define the expression of the corrected velocity ũ allowing to
recover a uniform flow field at the inlet:

ũ = f(x) uperiodic + (1 − f(x)) u∞, (2.44)
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where f is given by definition 2.43.
One then obtains:

ω̃ = ∇ × ũ (2.45)

= f(x) ωperiodic + [∇f(x) × uperiodic] + ∇[1 − f(x)] × u∞ (2.46)

=



ωxf(x)
ωyf(x)
ωzf(x)


+




0
−f ′(x)uz

f ′(x)uy


+




0
f ′(x)uz∞

−f ′(x)uy∞


 . (2.47)

Knowing that the divergence of a curl is always zero, the above absorption guarantees div ω = 0.
As can be seen on Figure 2.5, a 3D vorticity absorption based on equation 2.42 instead of 2.47
would be responsible for spurious reflections at the outflow boundary, affecting the solution.
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Figure 2.5: Time evolution of drag coefficient for flow past a 3D sphere at Re = 300: comparison
of two types of 3D vorticity absorptions respectively performed with equation 2.47 (green curve)
and equation 2.42 (red curve).

Velocity correction

The prescription of periodic boundary conditions also implies a zero circulation, i.e.
∫

D ω = 0,
which is not satisfied in our case. Solving the Poisson equation ∆u = −∇ × ω with periodic
boundary conditions consequently leads to a modification of the space-average velocity field.
To account for non-zero circulation, a correction of the velocity is therefore necessary after
the Poisson equation resolution, at each time step, by adding transverse velocities with their
streamwise dependencies. This correction is performed as follows.
Let us introduce the present notation in order to express the corrected velocity:

u = ũ + u. (2.48)

In this relation, ũ denotes the output velocity field obtained from the FFT-evaluations performed
in the Fast Poisson Solver and u represents the space-average velocity, that we aim to correct.
The x-axis of the Cartesian system corresponds to flow direction and the velocity is initialized
setting u(t = 0) = (ux∞, uy∞, uz∞).

ux is a spatially constant flux, therefore
∂ux

∂x
=
∂ux

∂y
=
∂ux

∂z
= 0 and the mean vorticity is given
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by:

ωx =
∂uz

∂y
− ∂uy

∂z
(2.49)

ωy = −∂uz

∂x
(2.50)

ωz =
∂uy

∂x
. (2.51)

First of all, a correction of the streamwise component of the velocity ux is necessary in order
to correct the flux at the inlet. This correction stands as follows:

ux correction:

Let I be the inlet rectangular surface of the computational box, normal to the flow direction,
of area LyLz. Ly and Lz respectively denote the lengths of the computational box in the y and
z directions. According to the decomposition u = ũ + u and knowing that ux is a constant and
that the desired flow rate at the inlet is equal to ux∞LyLz, one has:

∫∫

I

ux dydz

︸ ︷︷ ︸
desired flow rate

=
∫∫

I

ũx dydz

︸ ︷︷ ︸
calculated flow rate

+
∫∫

I

ux dydz (2.52)

⇐⇒ ux = ux∞ −

∫∫
I
ũx dydz

LyLz
(2.53)

and finally:

ux = ux∞ + ũx −

∫∫
I
ũx dydz

LyLz
. (2.54)

Next we need to correct the transverse velocities uy and uz in order to recover a non-zero
circulation.

uy correction:

According to relation 2.51 one has uy = ωzx+c1, with c1 a constant value that we aim to eval-

uate and ωz =
1

LxLyLz

∫

D

ωz dx, with LxLyLz corresponding to the volume of the computational

domain D. From the decomposition u = ũ +u, one therefore concludes that uy = ũy +ωzx+ c1.
Thus:

∫∫

I

uy dydz

︸ ︷︷ ︸
desired flow rate

=
∫∫

I

ũy dydz

︸ ︷︷ ︸
calculated flow rate

+
∫∫

I

ωzx dydz +
∫∫

I

c1 dydz. (2.55)

Since the flow rate is desired to be uy∞LyLz, then:

uy∞LyLz =
∫∫

I

ũy dydz + ωzx0LyLz + c1LyLz (2.56)

⇐⇒ c1 = uy∞ −

∫∫
I
ũy dydz

LyLz
− ωzx0, (2.57)

and finally the corrected y-component of the velocity fields stands as:

uy = uy∞ + ũy + ωz(x− x0) −

∫∫
I
ũy dydz

LyLz
, (2.58)
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where x0 corresponds to the x-coordinate of the inlet surface in the Cartesian system.

uz correction:

Following the same principle, and according to the relation 2.50 one obtains uz = −ωyx+ c2

with c2 a constant value. From the decomposition u = ũ + u, one gets uz = ũz − ωyx + c2.
Finally, mimicking the process used for uy, one gets:

uz = uz∞ + ũz − ωy(x− x0) −

∫∫
I
ũz dydz

LyLz
. (2.59)

In conclusion, for a free stream velocity equal to u∞ = (ux∞, uy∞, uz∞) = (1, 0, 0), the
corrected streamwise component of the velocity allowing to recover the desired flux at the inlet
is:

ux = 1 + ũx −

∫∫
I
ũx dydz

LyLz
, (2.60)

and the corrected transverse components of the velocity allowing to account for a non-zero
circulation are:

uy = ũy + ωz(x− x0) −

∫∫
I
ũy dydz

LyLz
(2.61)

uz = ũz − ωy(x− x0) −

∫∫
I
ũz dydz

LyLz
. (2.62)

In order to validate the use of periodic boundary conditions coupled with the above special
treatments, let us consider a flow past a 3D sphere at Re = 300 in a bounded domain D =
[−2, 8.24] × [−2.56, 2.56] × [−2.56, 2.56]. The free stream velocity is desired to be uniform at
the inlet, with u∞ = (1, 0, 0). Figure 2.6 shows upstream isocontours of ux at the end of the
simulation (T = 75) in the inlet YZ plane (x = x0 = −2) for two different cases. In the first case
(left figure), the absorption band lies from xb = 7.24 until xe = 8.24 and α = 10 in the definition
of f (eq. 2.43). The range of ux values at the inlet surface is then equal to [0.973, 1.009]. In
the second case (right figure), the absorption band is twice thicker (xb = 6.24, xe = 8.24) and
ux inlet ∈ [0.977, 1.007].

The present inlet streamwise velocity thus only shows a maximum relative error of respec-
tively 2.7% and 2.3% for the first and the second case compared to the theoretical uniform free
stream flow (ux∞ = 1). Let us also notice the symmetrical patterns of the velocity isocontours.
This symmetry is explained by the periodic boundary conditions.

We also performed simulations with a domain twice longer in the x-direction, i.e. xb = 17.48,
xe = 18.48 and obtained very similar results (ux inlet ∈ [0.975, 1.004]). Finally, a simulation
was carried out in the original domain D with a higher Reynolds number, Re = 1000, setting
xb = 7.24, xe = 8.24 and comparable results were achieved (ux inlet ∈ [0.977, 1.004]).

2.4 Complement on stability conditions

In the present numerical algorithm, the advection and the stretching schemes will be subject to
a stability condition. The aim of this section will be first to express each of these conditions
and secondly to identify the correct values of the involved constants in order to define a global
condition on the simulation time step.
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Figure 2.6: Flow past a 3D sphere: isocontours of the inlet streamwise velocity ux in the YZ plane
when imposing periodic boundary conditions coupled with adapted corrections. (Left picture)
The width of the absorption band equals 1. (Right picture) The width of the absorption band
equals 2.

2.4.1 Stability condition for the advection scheme

In particle methods, the non-linear stability of the convection/remeshing scheme is ensured
under the following condition on the time step:

∆tadv ≤ LCFL
‖∇u‖∞

, (2.63)

where the Lagrangian CFL must satisfy LCFL ≤ 1 [Cottet et al., 2014]. From a physical point of
view, this stability condition imposes that particles trajectories do not cross. One can notice here
that the time step in not constrained by the grid size or the distance between the particles but
only by the flow strain, which often provides larger time steps compared to Eulerian grid-based
schemes, constrained by the following condition:

∆tadv ≤ CFL ∆x
‖u‖∞

, CFL ≤ 1. (2.64)

Another derived version of the stability condition 2.63 may also be found in literature, like for
instance in [Gallizio, 2009, Gazzola, 2013]:

∆tadv ≤ LCFL
‖ω‖∞

. (2.65)

2.4.2 Stability condition for the stretching scheme

The stretching equation, which models the lengthening of vortices in a three-dimensional flow,
may be given under several formulations [Cottet and Koumoutsakos, 2000]:

∂ω

∂t
= div(ω : u) (2.66)

∂ω

∂t
= [∇u] · ω (2.67)

∂ω

∂t
= [∇u]t · ω (2.68)

∂ω

∂t
=

1
2

([∇u] + [∇u]t) · ω. (2.69)
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We note that these formulations are all equivalent at the continuous level. However, it is not
the case at the discrete level. The formulation which will be retained in the present work is the
conservative formulation 2.66 but for the sake of simplicity, the stability analysis is performed
from equation 2.67. The details of this study are provided in Appendix (B) and we give here
the resulting stability condition for the stretching scheme:

∆tstretching <
C

max
1≤i≤3

∑
1≤j≤3

∣∣∣∣∣
∂ui

∂xj

∣∣∣∣∣

, (2.70)

where C is a constant depending on the time integration scheme used to discretize the stretching
equation. The following table gives the values of C for different time integration schemes:

Scheme order C

Euler 1 2
Runge-Kutta 2 2 2
Runge-Kutta 3 3 2.5127
Runge-Kutta 4 4 2.7853

2.4.3 Definition of the global simulation time step

The global simulation time step has to take into account the two conditions 2.63 and 2.70.
Since these conditions both depend of the flow strain, one can define the global time step as an
adaptive parameter along the simulation, like follows:

∆tnadapt = min(∆tnadv,∆t
n
stretching), (2.71)

where n denotes the current iteration. Such definition of the time step thus allows to strongly
accelerate the simulation when the flow quantities present low gradients, while ensuring the
stability of the overall numerical scheme.

Concerning ∆tadv, the theory stands that the LCFL number should be taken lower or equal to
1. In practice, this parameter is often set to LCFL= 1/4 with condition 2.65 and to LCFL= 1/8
with condition 2.63. We aim here to numerically verify the choice of such values, depending on
the definition of ∆tadv. For that purpose we consider the test case of a flow past a 3D sphere
at Re = 300 and we compare the adaptive time step values obtained from 2.71 for different
LCFL values using conditions 2.63 and 2.65 for ∆tadv. The evolution of the adaptive time step
is given by Figure 2.7a which is complemented by Table 2.7b. These results show that when
condition 2.63 is chosen for the ∆tadv constraint, the value LCFL= 1/4 is too large and leads to
a lack of stability. The same conclusion holds with the condition ?? and the value LCFL= 1/2.
Stable solutions are obtained with condition 2.63 for LCFL= 1/8 and with condition 2.65 for
LCFL= 1/4 and LCFL= 1/8. We note here that the commonly used LCFL values are justified
in the case of this study. As we aim on one hand to ensure the stability of the solution and on
the other hand to use time steps ∆tadapt as large as possible, a good compromise here according
to Table 2.7b lies in defining ∆tadv with respect to condition 2.63 and to set the LCFL number
to 1/8.

We now have to look at ∆tstretching. The stability condition for the stretching equation 2.70
is much less restrictive than the one for advection, which means that the stability of the solution
is only dictated by the condition on ∆tadv. This statement is illustrated in the context of the
3D sphere test case by Figure 2.8 which clearly shows that the values of ∆tstretching are much
larger than the one of ∆tadv (see Table 2.7b) and actually depend on it.

Based on this analysis, the global adaptive time step will be defined as follows by default in
all the three-dimensional simulations performed in this thesis:

∆tnadapt =
1

8 ‖∇u‖n
∞

. (2.72)
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LCFL/‖∇u‖∞ 1/4 unstable -
LCFL/‖∇u‖∞ 1/8 stable ⋍ 0.011
LCFL/‖ω‖∞ 1/2 unstable ⋍ 0.02
LCFL/‖ω‖∞ 1/4 stable ⋍ 0.0095
LCFL/‖ω‖∞ 1/8 stable ⋍ 0.004

(b)

Figure 2.7: Study of ∆tadv according to different stability conditions in the case of incompressible
flow past a 3D sphere at Re = 300.
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Figure 2.8: Time evolution of ∆tstretching along the simulation of incompressible flow past a 3D
sphere at Re = 300 for different definitions of ∆tadv.

Concerning the 2D case, as the computational cost of the overall simulation is much smaller,
we can handle the more restrictive constraint 2.65 on ∆tadv, setting LCFL to 1/4.

2.5 Numerical discretization and sketch of algorithm

As the aim of this thesis was to first perform passive flow control in the context of two-
dimensional flows before handling the three-dimensional problem, the present method has been
used and discretized, in a first place, in 2D (see [Mimeau et al., 2015] in Appendix (C)). For the
extension to the 3D case, the discretization of the method was improved and implemented in a
new computational solver able to satisfy needs related to efficiency and memory management.
This section and the following will essentially deal with the three-dimensional case.

In the current section we present the methodology adopted in order to numerically discretize
the 3D penalized Vorticity-Transport-Equation:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = ∇ ×

(
λ χb(ub − u)

)
+

1
Re

∆ω in D × (0, T ), (2.73)

∆u = −∇×ω in D × (0, T ), (2.74)
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The above governing equations are discretized on a plane-parallel computational box. The
domain is meshed with an uniform Cartesian grid and periodic boundary conditions are pre-
scribed on the walls (see section (2.3)). Equations 2.73-2.74 are discretized through a viscous
splitting algorithm, consisting in solving successively the different operators within the same
time iteration (see section (1.4.3.2)). Concerning the main steps of this splitting algorithm,
the particle advection is performed in a Lagrangian way and complemented at each time step
by a remeshing procedure in order to redistribute the particles on the underlying grid and to
avoid the distortion effects (see section (1.4)). The penalization equation is handled on the grid
through an implicit time integration scheme and the diffusion equation as well as the Poisson
equation are solved on the grid using the Fast Fourier Transform method. The details of the
overall numerical discretization are given in the sequel. The successive steps are listed in algo-
rithm 1 and we describe each of these steps giving for each one the involved equation and the
numerical method used to discretize it.

Algorithm 1 3D case

Initialization

Preliminary velocity field (on grid) u0 = u∞ = (1, 0, 0) (2.75)

Preliminary vorticity field (on grid) ω0 = (0, 0, 0) (2.76)

Vorticity penalization (on grid) ω0
λ = ω0 + ∇ ×

(
−λχ∆tu0

1 + λχ∆t

)
(2.77)

Marching

Vorticity absorption (on grid) ωn = ∇ × [fun + (1 − f)u∞] (2.78)

Poisson problem (on grid) ∆un = −∇ × ωn (2.79)

Velocity correction (on grid) un = ũn + un (2.80)

Force computation (on grid) F =
d

dt

∫

B
(un − un

λ) dx (2.81)

Vorticity penalization (on grid) ωn
λ = ωn + ∇ ×

(−λχ∆tun

1 + λχ∆t

)
(2.82)

Stretching (on grid)
∂ωn

∂t
= div(ωn : un) (2.83)

Diffusion (on grid)
∂ωn

∂t
=

1
Re

∆ωn (2.84)

Advection (on particles)
∂ωn+1

∂t
+ (un · ∇)ωn+1 = 0 (2.85)

Enstrophy computation (on grid) Z =
∫

D
|ωn+1|2dx (2.86)

Evaluation of ∆tadapt (on grid) ∆tnadapt =
1

8 ‖∇u‖n
∞

(2.87)

Poisson equation

The resolution of the Poisson equation:

∆u = −∇×ω, (2.88)

corresponding to the step 2.79 in algorithm 1, is performed on the grid using the Fast Fourier
Transform method (FFT). For that purpose, one has first to express u and ω in terms of their
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Fourier Transform. For a three-dimensional problem, it gives:

F(u)(ξ) = û(ξ) =
∫

IR3
e−2πi<x,ξ>u(x) dx, F(ω)(ξ) = ω̂(ξ) =

∫

IR3
e−2πi<x,ξ>ω(x) dx

Then, one diagonalizes the Poisson equation in the ξ-space:

F(∆u)(ξ) = F(−∇×ω)(ξ) (2.89)

⇔ −|ξ|2F(u)(ξ) = F(−∇×ω)(ξ) (2.90)

⇔



ûx

ûy

ûz


 (ξ) =

1
|ξ|2 (∇̂×ω) =

i

|ξ|2



ξyω̂z − ξzω̂y

ξzω̂x − ξxω̂z

ξwω̂y − ξyω̂x


 (2.91)

Finally, the real solution u(x) is given by the inverse Fourier transform:

u(x) = F−1(û(ξ))(x) =
∫

IR3
e2πi<ξ,x> ∇̂×ω(ξ)

|ξ|2 dξ. (2.92)

In terms of complex Fast Fourier Transform, the solution is given in 3D by:

ukx,ky ,kz = FFT−1(ûjx,jy ,jz ) =
Nx−1∑

kx=0

Ny−1∑

ky=0

Nz−1∑

kz=0

∇̂×ωjx,jy ,jz

|k|2 e
2πi
Nx

jxkx e
2πi
Ny

jyky
e

2πi
Nz

jzkz , (2.93)

where ûjx,jy ,jz and ω̂jx,jy ,jz respectively denote the Fast Fourier Transform of u and ω. The eval-
uation of this solution is numerically carried out by the dedicated library fftw [Frigo and Johnson, 2005],
imposing periodic boundary conditions.

In algorithm 1, the resolution of the Poisson equation is preceded by step 2.78, corresponding
to the solenoidal vorticity absorption. As explained in section (2.3), this absorption is performed
through the following equation:

ωn+1 = f(x) ωn + [∇f(x) × un] + ∇[1 − f(x)] × u∞, (2.94)

where the discretization of the curl operator is done on the grid with a 4th order centered
finite-differences scheme.

The resolution of the Poisson equation is then followed by step 2.80, allowing to recover
correct flux and inlet velocity conditions (see section (2.3)):

u = ũ + u, ⇐⇒

ux = 1 + ũx −

∫∫
I
ũx dydz

LyLz

uy = ũy + ωz(x− x0) −

∫∫
S
ũy dydz

LyLz

uz = ũz − ωy(x− x0) −

∫∫
S
ũz dydz

LyLz
.

(2.95)

The discretization of the integral terms is performed with a 1st order midpoint rule.

Penalization

In its velocity-vorticity formulation, the continuous penalization equation stands as:

∂ω

∂t
= ∇ ×

(
λ χb(ub − u)

)
. (2.96)
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In the context of this study, where the immersed obstacle is considered static in the com-
putational domain, the body velocity ub is equal to 0. One can therefore rewrite the above
penalization equation as follows:

∂ω

∂t
= −∇ × (λ χbu). (2.97)

In order to discretize equation 2.97, let us first of all discretize the penalization equation for the
velocity:

∂u

∂t
= −λχbu. (2.98)

This is done using an implicit 1st order Euler scheme:

un+1 − un

∆t
= −λχbu

n+1 (2.99)

⇐⇒ un+1 =
un

1 + λχb∆t
. (2.100)

One therefore gets the penalized velocity field that we denote uλ. Taking the curl of the above
equation and then performing the following successive arrangements:

∇ × un+1 = ∇ ×
(

un

1 + λχb∆t

)

⇐⇒ ωn+1 = ∇ ×
(

un − λχb∆t un

1 + λχb∆t

)

= ∇ × (un) + ∇ ×
(−λχb∆t un

1 + λχb∆t

)
,

we finally obtain the conservative formulation of the discrete penalized vorticity [van Rees, 2014]:

ωn+1 = ωn + ∇ ×
(−λχb∆t un

1 + λχb∆t

)
. (2.101)

The treatment of this penalization equation is realized at step 2.82 in algorithm 1, using a 4th

order centered finite-differences scheme for the discretization of the curl operator. We notice
that the velocity field is not directly penalized in this algorithm. The velocity penalization is
implicitly realized through the resolution of the Poisson problem in step 2.79 of algorithm 1.

Stretching

As mentioned in section (2.4.2), several formulations may be used to express the stretching term.
In this study we choose the conservative one, given by:

∂ω

∂t
= div(ω : u). (2.102)

It corresponds to step 2.83 in algorithm 1. The time integration scheme chosen here to discretize
this equation is the commonly used 3rd order Runge-Kutta TVD (Total Variation Diminishing,
i.e. non extra oscillations) scheme [Gottlieb and Shu, 1998]. With this time discretization, the
velocity field involved in the divergence operator is not modified. The RK3 scheme approximates
ω at tn + ∆t from an approximation of ωn and un at time tn following this procedure:

ω(1) = ωn + ∆t div(ωn : un, tn) (2.103)

ω(2) =
3
4
ωn +

1
4

(
ω(1) + ∆t div(ω(1) : un, tn + ∆t)

)
(2.104)

ωn+1 =
1
3
ωn +

2
3

(
ω(2) + ∆t div

(
ω(2) : un, tn +

1
2

∆t
))
. (2.105)

The divergence operator is discretized through a 4th order centered finite-differences scheme on
the grid.
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Diffusion

The diffusion equation, appearing in step 2.84 of algorithm 1, and given by:

∂ω

∂t
=

1
Re

∆ω, (2.106)

is discretized in time using an implicit 1st order Euler scheme:

ωn+1 − ωn

∆t
=

1
Re

∆ωn+1 (2.107)

⇐⇒ ∆ωn+1 − Re

∆t
ωn+1 = −Re

∆t
ωn. (2.108)

This equation is solved in the Fourier space, where the solution is given by:

ω̂n+1 =
Re
∆t

|ξ|2 + Re
∆t

ω̂n. (2.109)

Particle advection and remeshing procedure

The semi-Lagrangian advection performed in the 3D case is performed using a 1st order direc-
tional splitting approach [Magni and Cottet, 2012] (see section (1.4.2) and Figure 1.6). This
technique consists in solving the convection/remeshing problem direction by direction. In other
words one has to solve here three different mono-dimensional problems. The method is therefore
described in the context of a mono-dimensional vorticity transport equation:

∂ω

∂t
+

∂

∂x
(uω) = 0. (2.110)

First, one solves the following ODE in order to update the new positions of particles at time
tn+1 from the grid positions xn

i and the velocity field un at time tn:




dxp

dt
= u(xp), t ∈ [tn, tn+1]

xn
p = xn.

(2.111)

A 2nd order Runge-Kutta scheme is used for the resolution of this equation:

xn+1
p = xn

p + ∆t un
(
xn

p +
∆t
2
un
)
. (2.112)

Once all the particles have been pushed in the same direction, they are remeshed on the
grid, in this direction. The kernel chosen here is Λ4,2 [Cottet et al., 2014] (also called M ′

6

[Bergdorf and Koumoutsakos, 2006]). Its 1D support includes 6 points and it satisfies 4 mo-
ment conditions, it is therefore a 4th order interpolation kernel. Its definition is the following:

Λ4,2(x) =





1 − 5
4

|x|2 − 35
12

|x|3 +
21
4

|x|4 − 25
12

|x|5 = p0(|x|) 0 ≤ |x| < 1

− 4 +
75
4

|x| − 245
8

|x|2 +
545
24

|x|3 − 63
8

|x|4 +
25
24

|x|5 = p1(|x|) 1 ≤ |x| < 2

18 − 153
4

|x| +
255
8

|x|2 − 313
24

|x|3 +
21
8

|x|4 − 5
24

|x|5 = p2(|x|) 2 ≤ |x| < 3

0 |x| ≥ 3

where |x| denotes the distance between the particle and a given grid point. From this formula,
one can evaluate the weights collected by each grid point involved in the kernel support. For
each direction, let us first consider the distance y = (xp − xi)/h between a particle located at
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Figure 2.9: One-dimensional representation of the computation of the remeshing weights using
the Λ4,2 kernel.

position xp and the closest grid point of minimum coordinate located at xi. This distance is
normalized by h, the uniform mesh size. Let us also denote α(y), β(y), γ(y), δ(y), ε(y), ζ(y) the
weights respectively collected by the grid points xi−2, xi−1, xi, xi+1, xi+2 and xi+3 included in
the kernel support.

According to the Λ4,2 formula these weights are defined as follows (see the graphical repre-
sentation of Figure 2.9):





α(y) = Λ4,2(−2 − y) = p2(2 + y) =
1
12
y − 1

24
y2 − 3

8
y3 +

13
24
y4 − 5

24
y5

β(y) = Λ4,2(−1 − y) = p1(1 + y) = −2
3
y +

2
3
y2 +

13
8
y3 − 8

3
y4 +

25
24
y5

γ(y) = Λ4,2(−y) = p0(y) = 1 − 15
12
y2 − 35

12
y3 +

63
12
y4 − 25

12
y5

δ(y) = Λ4,2(1 − y) = p0(1 − y) =
2
3
y +

2
3
y2 +

11
4
y3 − 31

6
y4 +

25
12
y5

ε(y) = Λ4,2(2 − y) = p1(2 − y) = − 1
12
y − 1

24
y2 − 11

8
y3 +

61
24
y4 − 25

24
y5

ζ(y) = Λ4,2(3 − y) = p2(3 − y) =
7
24
y3 − 1

2
y4 +

5
24
y5

(2.113)

In each direction, the remeshing scheme therefore stands as:

ωn+1
i =

∑

p

ωn
p Λ4,2

(
xn+1

p − xi

h

)
. (2.114)

We note that thanks to the directional splitting, the total number of weights to compute per
particle in 3D is equal to 3 (number of directions) ×6 (kernel support) = 18 instead of 63 = 216
with a tensorial approach. This important saving in operations allows here to handle a 4th order
remeshing kernel at a much lower price than the popular 2nd order kernel Λ2,1 (also called M ′

4)
used with a tensorial approach in 3D (43 = 64 weights/particle).
The particle convection/remeshing procedure is performed in step 2.85 of algorithm 1.
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Diagnostics computation

Besides the resolution of the governing equations, some diagnostic computations are required in
order to be able to analyze the flow behavior and to draw general conclusions in terms of flow
control.

Aerodynamic force

It will represent the main criterion in quantifying the flow control efficiency in this study. As
explained in section (2.2), the aerodynamic force is evaluated in 3D with respect to the change
of momentum equation 2.38. It is evaluated on the grid with a midpoint rule:

F =
1

∆t

∑

B

(
un − un

1 + λ∆t

)
h3, (2.115)

where un corresponds to the non-penalized velocity and h denotes the uniform grid space. We
note that the above equation is indeed equivalent to the discretized formulation of equation 2.38,
since:

F =
1

∆t

∑

B

(
un − un

1 + λ∆t

)
h3 (2.116)

=
1

∆t

∑

B

(
un(1 + λ∆t) − un

1 + λ∆t

)
h3 (2.117)

=
∑

B

(
λun

1 + λ∆t

)
h3, (2.118)

and if λ∆t ≫ 1, which in practice is always verified in our case since λ = 108 in B and ∆t ≥ 10−3,
then:

F =
∑

B

un

∆t
h3, (2.119)

which corresponds to the 1st order discretization of the change of momentum equation 2.38
where uλ = 0.

Let us notice that, if ∆t → 0, then:

F =
∑

B

λun h3, (2.120)

which corresponds to the discretized formulation of the force expression 2.24 proposed by
[Caltagirone, 1994].

The force evaluation is performed right before the penalization step in algorithm 1 (step 2.81).

Enstrophy

An other interesting flow diagnostic is the enstrophy. This quantity indeed allows to measure
the dissipation of energy in terms of kinetic energy. It is given by the following formula:

Z =
∫

D
|ω|2dx, (2.121)

and discretized with a 1st order midpoint rule in step 2.86 of algorithm 1.

2.6 Implementation and libraries description

As mentioned in the introduction of the previous section, the discretization of the two-dimensional
and three-dimensional problems has been implemented in two distinct computational solvers.
The current section aims to describe these two solvers, giving for each of them the context in
which they were created as well as the way they operate.
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2.6.1 The 2D solver

The numerical solver presented in this part is purely dedicated to the simulation of two-
dimensional flows past obstacles using the present hybrid vortex penalization method. It was
inherited at the beginning of this thesis from Federico Gallizio who successfully used it to model
incompressible flows past VAT (Vertical Axis Turbines) at different flow regimes [Gallizio, 2009].
This library is implemented in Fortran using an imperative programming paradigm. As ex-
plained previously, it is dedicated to the simulation of incompressible flows past immersed ob-
stacles and allows to consider moving obstacles thanks to the implementation of a module dealing
with a level-set function for the front capturing. The first objective of the present work was to
complete and improve this 2D solver in order to further demonstrate the robustness and accu-
racy of the proposed numerical method and also to carry out a preliminary and detailed passive
flow control study. The main goal through this two-dimensional approach was indeed to try
to correctly understand the intrinsic mechanism involved in the flow control of bluff bodies us-
ing a porous medium before handling the more realistic and complex three-dimensional problem.

In this thesis, the contributions to the presented 2D solver therefore involved modifications
in the implementation of numerical methods on one hand, and additions in the implementation
of the passive flow control devices on the other hand. Concerning the first point, the Poisson
solver was modified. The original one was using the Fishpack library [Adams et al., 1980] based
on the Cyclic Reduction method, which is not maintained anymore. The FFT-based method
was therefore chosen to overcome this problem. For this purpose, the Fortran fftw library
was used [Frigo and Johnson, 2005], imposing periodic boundary conditions to close the Pois-
son problem. As explained previously, these changes had to go along with the implementation
of an outlet vorticity absorption and a velocity correction (see section (2.3)). Concerning the
passive flow control application, the required modifications and additions mainly concerned the
implementation of porous areas at the surface of the considered body as well as diagnostics to
analyze and quantify the control efficiency. Among the latter, we can cite the pressure field,
the enstrophy, the velocity and pressure profiles and the output binary files representing the
averaged and instantaneous flow fields, handled with the VTK library.

The numerical discretization of the governing equations in the 2D solver mainly corresponds
to the two-dimensional counterpart of the discretization described previously in the 3D case.
Concerning the noticeable differences between the 2D and the 3D discretization, we can first
mention the force evaluation. As explained in section (2.2), the aerodynamic force is indeed
computed in 2D according to the momentum Noca’s equation. On the other hand, the remeshing
procedure is performed through the tensorial product (see section (1.4.2) and Figure 1.6) of the
one-dimensional Λ2,1 kernel formula (better known as M ′

4 kernel). Finally, the global time step
is fixed and the advection stability constraint:

∆tadv ≤ LCFL
‖∇u‖∞

, with LCFL = 1/4 (2.122)

is specifically prescribed within the advection step, leading to sub-iterations in the convec-
tion/remeshing process when the global fixed time step is greater than ∆tadv. These three
different points were then changed or improved in the three-dimensional version, as presented
in the previous section.

As will be confirmed in the next chapter dedicated to the method validation, the numerical
simulations performed with this 2D Navier-Stokes solver provide accurate results. Nevertheless,
the present library offers little flexibility. For this reason, its extension to the 3D case was
performed in an entirely new framework. The resulting library, that will be presented next,
ensures a robust, flexible and user-friendly software while taking into account the knowledge
obtained from the 2D solver.
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2.6.2 The 3D solver

This library was created with the intention to supply a flexible, portable and modular scientific
software able to solve a large range of problems involving partial differential equations and
related to computational fluid dynamics in 2D and in 3D. The present library, called HySoP
(Hybrid Simulations using Particles), includes two levels of hybridization. The first one is
related to the use of different types of numerical methods, namely Eulerian and Lagrangian (i.e.
vortex particle) methods. The second level is related to the exploitation of different architectures
on a same heterogeneous machine. HySoP indeed encompasses distributed computing on multi-
cores/nodes and computation on multi-GPU’s (Graphics Processing Unit). This second level
of hybridization has been developed simultaneously, beyond the scope of this thesis, and is for
the moment apart from the context of the present work. Nevertheless, it corresponds to a main
characteristic of the HySoP library and we aim in the future to make the considered problem of
flow past obstacles resolvable on such hybrid architecture in order to accelerate performances.
HySoP will be soon released under a GNU GPLv3 license. In the following we describe the
concepts, the characteristics and the operating of the present computational scientific library.

2.6.2.1 An object-oriented library

In order to overcome the problems due to the lack of flexibility inherent to imperative and
procedural programming, the present software was developed using an object-oriented paradigm
(see Insert 3). From a general point of view, this approach enables the users and the programmers
to handle objects which are very close to the mathematical and physical concepts they aim to
represent. To be more precise, the object-oriented paradigm provides, on one hand, robustness
thanks in particular to the encapsulation principle, which allows to interact with the objects
through their own methods instead of their data, and on the other hand ensures flexibility
thanks to the abstraction concept. The latter has to be conscientiously considered since a good
abstraction leads to a good portability. The next paragraph is dedicated to the description of
the different abstraction levels present in HySoP.

Insert 3 – The object-oriented programming

Object-oriented programming (OOP) is a paradigm in which the data structures are objects.
These objects contain on one hand data, also called attributes, and on the other hand pro-
cedures, often known as methods. The attributes can be seen as the main characteristics or
properties of the objects (in the form of fields) while the methods define the behavior of the
object or the actions that the object is able to perform (in the form of code). Most popular
OOP-based languages use the concept of class, meaning that objects are instances of classes.
The classes allow to determine the objects type.

The OOP paradigm is characterized by the following main features:

• Encapsulation: it is the packing of data and functions into a self-contained module (ex:
the classes).

• Inheritance: classes are created in hierarchies, and inheritance enables one class (the
parent class) to pass down its structure and methods to other classes (the descendant
classes).

• Abstraction: it consists in establishing levels of complexity. The first level corresponds
to the one on which a user interacts with the system. The more complex details are pushed
below.
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2.6.2.2 The abstraction levels

The present approach follows the one proposed by [Labbé et al., 2003] in the context of scientific
libraries development. It consists in splitting the physical PDE-based problem in four different
concepts: the problem itself, the operator, the variable and the domain. These concepts are
respectively handled at different levels of abstraction.

Highest abstraction level (→ user)

It corresponds to the abstraction level that is close to the physics. It is proper to the user. In
practice, this level corresponds to the definition of the four concepts by the user:

• Problem: it corresponds to the mathematical problem to be solved
ex: the incompressible Navier-Stokes equations

• Operator: it represents the notion of continuous mathematical operator. It can be an
elementary differential operator or a sub-problem
ex: Laplacian operator, transport operator

• Variable: it represents the mathematical entities involved by the operators within the
problem. It includes the specification of a type (vector or scalar) and an initial value or
an exact computation formula.
ex: velocity (vector field), pressure (scalar field)

• Domain: it describes the support on which the variables are defined. It includes the
specification of a geometry and boundary conditions
ex: plane-parallel box with periodic boundary conditions

Data and operator management abstraction level (→ programmer)

In this lower abstraction level we will find the implementations of the methods dedicated to the
communications management between the different computer entities, namely the CPU cores/n-
odes (MPI) and the GPU’s (OpenCL). It also includes the development of methods dedicated to
the variable’s data storage and distribution (topology management). Finally, it handles the in-
terfacing between the different programming languages (see next paragraph). For further details
concerning this abstraction level in the context of HySoP, we refer to [Etancelin, 2014].

Numerical method abstraction level (→ programmer)

This abstraction level encompasses all the variables and the operators discretization. In others
words, this is the level at which the programmer implements all the resolution algorithms (typ-
ically, those described in the previous section (2.5)).

The main advantage of this abstract approach lies in the fact that the operations performed
at one abstraction level do not depend on the operations realized at the other levels. Thus, it
becomes easy for instance to change the discretization algorithm of a given operator without
modifying the rest of the library. In the same spirit, face to a new type of architecture, it should
be rather easy to modify the setup instead of completely re-write the code.

2.6.2.3 External modules and programming languages

A natural choice for the HySoP’s programming language was Python. First, Python is first of
all a language that allows the use of both imperative and object-oriented paradigms. It is also
a language that is easily available on any platform. The present HySoP library is easy to install
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on any machine without administrator rights. Finally, it is an interpreted language. Thanks
to the absence of compilation, this feature is well suited to the source code development and
prototyping.

However, the main weakness of Python language precisely lies in this absence of compila-
tion since the numerical performances obtained in the context of a naive implementation are
extremely bad compared to non-interpreted languages like C++ or Fortran. In order to achieve
competitive simulation times, it becomes necessary to deal with the optimization libraries. In
our case we use the numpy package which is specialized in the treatment and the storage of data
arrays in the context of scientific computing.

As mentioned previously, Python language also offers a programmer-friendly framework to
interface other language. In HySoP, this possibility enabled us to use the fftw Fortran library for
the resolution of the Poisson equation (step 2.79 in algorithm 1) as well as the implementation in
Fortran of the semi-Lagrangian advection method, developed by [Lagaert et al., 2014] under the
name of scales library 1 (step 2.85 in algorithm 1). Finally, the input/output files describing
the flow fields are treated with HDF5 format through the H5py package.

A graphical representation of the resolution of the penalized Navier-Stokes equations using
the HySoP library is given by Figure 2.10. The contributions of this thesis to the overall library
development take place for most of them at the highest and the numerical method abstraction
levels.

The use of optimized packages, external modules and programming interfaces allows to
greatly enhance the library performances which then become comparable to those obtained
with compiled languages, like Fortran or C++. It is important to mention that HySoP is a
research library in development, it is therefore perfectible and further optimizations may be
done. We consider for instance the use of the Cython module in order to improve the library
performances by simplifying the implementation of compiled parts in the code.

Conclusion 2.1

In this chapter we described in details the hybrid vortex penalization (HVP) method which
will be applied for the first time to passive flow control past bluff bodies, using porous media.
In the context of this application, the governing equations and the physical description of the
problem were first presented before introducing the numerical discretization method handled
to solve the problem. This method has been implemented in the two-dimensional and the
three-dimensional cases. The 3D code was developed in the context of a library, called HySoP,
that uses an object-oriented paradigm. It provides flexibility as well as portability and in
that way, HySoP could be used for the resolution of many types of PDE-based problems
on different types of architectures, by simply adding the corresponding source code. This
software, like preceding or current developments made in particular at ETH Zürich (i.e. PPM
[Sbalzarini et al., 2006] and MRAG [Rossinelli et al., 2015] presented in chapter 1), is a key
ingredient to develop and maintain numerical algorithms able to handle billions of particles
for accurate DNS of complex flows.

1This library was developed in the framework of a collaborative work with the LEGI Grenoble (Laboratoire
des Ecoulements Géophysiques et Industriels)



2.6. Implementation and libraries description 79

POISSON EQUATION PENALIZATION STRETCHING

DIFFUSIONADVECTION

ADVECTION

input parameters

Python (numpy)

Python/OpenCL

Fortran (scales)

Fortran (fftw)

Fortran (fftw)

CPU

GPU

Python(numpy,MPI4Py)

FFT Euler | FD RK3 | FD

Euler | FFTRK2 |  Λp,r

RK2 |  Λp,r

output files

Highest abstraction level

Numerical method abstraction level

Python (numpy,H5py)

Python (numpy)

Python (numpy,H5py)

Language (library)

: continous level (phys./math. description)

: discrete level (numerical methods)

Data and operator managmt  abstr. level : parallelism/architecture/topology
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Résumé 3

Nous proposons dans ce chapitre une étude de validation de la méthode vortex hybride
pénalisée. Cette étude, visant à analyser la convergence ainsi que la précision de notre
méthode, est effectuée dans un cadre similaire à celui qui sera considéré dans l’application au
contrôle d’écoulements. Nous nous intéressons à des écoulements 2D et 3D autour d’un demi-
cylindre et d’un hémisphère, respectivement. En effet, le contrôle d’écoulements étant destiné
à être effectué autour d’un rétroviseur automobile, le demi-cylindre (en 2D) et l’hémisphère
(en 3D) peuvent être considérés comme une géométrie simplifiée de cet obstacle. Le nombre
de travaux portant sur des écoulements autour d’un demi-cylindre ou d’un hémisphère étant
très faible nous complèterons cette étude de validation par des simulations d’écoulements
autour d’un cylindre (2D) et d’une sphère (3D) qui constituent des écoulements de référence
pour lesquelles de nombreux résultats numériques et expérimentaux sont disponibles. Ce
chapitre est introduit par une description des phénomènes physiques mis en jeu au niveau
de la surface du corps immergé. La connaissance de ces mécanismes est nécessaire afin
d’être en mesure de valider les résultats obtenus numériquement mais aussi afin d’analyser
ultérieurement l’efficacité du contrôle passif. Les résultats issus de cette étude de validation
démontrent la convergence de l’algorithme ainsi que sa capacité à rendre compte de façon
précise des comportements des écoulements 2D et 3D étudiés. Cette étude permet par ailleurs
de mettre en exergue la différence notable entre le sillage développé à l’aval d’une sphère et
celui d’un hémisphère, venant ainsi confirmer les rares études analogues.

81
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In this chapter we propose a validation study of the HVP method. Its convergence and
accuracy are numerically analyzed in the 2D and the 3D cases for flows past different bluff
bodies. Simulations will be first performed in 2D around a semi-circular cylinder and then in
3D around a hemisphere. For both of them, the bluff-surface faces the upstream flow and the flat
one is oriented downstream. The main reason for choosing such a geometrical configuration is its
similarity with the sideview mirrors of a ground vehicle and the possible engineering extension of
the control study to reduce their drag. However, to our knowledge, very little research has been
conducted concerning incompressible flows past semi-circular cylinders and hemispheres. For
the sake of completeness, this validation study will therefore be supplemented with the analysis
of flows past a circular-cylinder in 2D and a sphere in 3D. These obstacles indeed represent very
classical benchmarks offering a lot of results in the literature. Before presenting the validation
results of the numerical method, a first introductory part is dedicated to the description of
viscous flows around bluff bodies.

3.1 Physical description of viscous flows past bluff bodies

A knowledge of flows past bluff bodies is absolutely essential in the context of the present study.
It will enable us in a first place to understand and validate the results obtained numerically and,
secondly, to precisely analyze the efficiency of the passive flow control in the last chapter. First
of all we give a description of the physical phenomena happening in the immediate vicinity of
the obstacle’s bounding surface.

3.1.1 Boundary layer, flow separation and drag production

3.1.1.1 Boundary layers

In the region of the obstacle’s surface, where the effects of viscosity are the most important, a
layer of fluid appears: it is the boundary layer. This layer starts from the stagnation point, that
is to say from the point where the local fluid velocity is zero, and its thickness increases as the
flow continues back. One can distinguish two different types of boundary layers: the laminar
(Figure 3.1a) and the turbulent one (Figure 3.1b). In the laminar boundary layer, the flow
is very smooth and takes place in layers on a microscopic scale. Any exchange of momentum
occurs only between adjacent layers. But the laminar boundary layer is not stable, and when
the Reynolds number reaches a certain threshold, it can turn to a turbulent state. The turbulent
boundary layer is characterized by swirls or “eddies” which come from the mixing across several
layers, on a macroscopic scale. The exchange of momentum and energy therefore happens on a
much larger scale compared to a laminar boundary layer.

3.1.1.2 Mechanism of flow separation

In viscous flows, when the Reynolds number reaches a certain threshold - more or less equal to
5 - the boundary layer detaches from the surface of the bluff body. In order to understand the
flow separation phenomenon, it is first important to highlight the effects of the viscosity. The
presence of a bluff body immersed in the flow forces the fluid to bypass it, that is to say to travel
a longer way, in the same amount of time (otherwise, accumulation would occur). Consequently,
the thicker will be the obstacle to bypass, the higher will be the flow acceleration. This is what
would happen with inviscid flows. Nevertheless, with viscosity, things get more complicated: the
latter is actually responsible for a deficit in the dynamic acceleration of the flow compared to
the potential acceleration obtained in the inviscid case. The pressure gradient is a predominant
factor in this situation. Indeed, a negative pressure gradient will counteract the retarding effect
of the shear stress due to viscosity in the boundary layer. A negative pressure gradient is then
called a favorable pressure gradient. A positive pressure gradient has the opposite effect and is
defined as adverse pressure gradient. The geometry of a bluff body’s surface involves a favorable
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Figure 3.1: (a) Laminar boundary layer. (b) Transition from laminar to turbulent boundary
layer

pressure gradient from the stagnation point to the point denoted P in Figure 3.2. An adverse
pressure gradient then appears downstream of P and starts to retard the flow. As a consequence,
the velocity in the vicinity of the wall decreases and the boundary layer thickens (see the velocity
profiles in Figure 3.2). A continuous deceleration of the flow leads the wall shear stress to vanish
at the point S. This is the separation point. From this S position, the flow no longer attaches
to the contour of the body and a recirculation zone develops.
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Figure 3.2: Flow separation on a bluff body profile.
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3.1.1.3 Drag production

In aerodynamics, boundary layer separation is a crucial physical phenomenon since it contributes
to enhance the drag force acting on the bluff body. It can be explained by the fact that the
pressure formed downstream due to the separation is relatively low. In the absence of flow
separation, the pressure force on the front side of the obstacle is the exact opposite to that on
the back side, leading to zero net drag acting on the body. When the flow detaches, the resultant
pressure force acting on the front side is greater in magnitude than the oppositely directed force
on the back side, giving rise to non-zero drag force.

A main issue in aerodynamics research consists in optimizing the shape of the obstacle in
order to delay the separation and increase the downstream pressure. The control application
performed in this work and presented in the next chapter will not involve shape optimization
but only passive devices using porous media in order to achieve these goals.

3.1.2 Incompressible flow regimes

The different flow regimes past an obstacle are determined by the shape of the body and by
the nature of the boundary layer, which in turn completely depends on the non-dimensional
Reynolds number:

Re =
inertial forces
viscous forces

=
u∞L

ν
, (3.1)

where u∞ is the free stream velocity, ν = µ/ρ is the kinematic viscosity and L denotes the
characteristic length traveled by the fluid (in the case of a circular obstacle, the characteristic
length would be the diameter).

In this section we detail the different regimes characterizing an incompressible flow past a
circular cylinder. These flow regimes are listed in Table 3.1 and detailed in the sequel:

Creeping flow

When Re < 5, the friction constraints are not sufficient to create a significant boundary layer.
Consequently, the flow field bypasses the cylinder with a perfect symmetry along the longitudinal
axis, without any separation. The behavior of such flows is identical to the one of inviscid flows.

Steady separated flow

For 5 < Re < 48, because of the increase of the inertial forces, the boundary layer cannot attach
to the cylinder anymore. A flow separation happens at the top and bottom of the solid, forming
a fixed and symmetric pair of counter-rotating vortices. The reattachment point, enclosing
this recirculation zone, moves away from the cylinder when increasing the Reynolds number
[Batchelor, 1967].

Unsteady laminar flow

When 48 < Re < 180, an intrinsic bi-dimensional instability appears and the flow becomes
unsteady. The pair of vortices then looses its symmetry with respect to the longitudinal axis
and the latter start to detach alternatively from the cylinder. This regime of alternated eddies
was studied by Von Kármán [von Kármán, 1912], who gave his name to this periodic formation
of vorticity in the wake. The eddies of the Von Kármán alley constitute a stable block which is
convected by the flow.

Transitional regime

At 180 < Re < 300, the flow becomes three-dimensional and the transition to turbulence
occurs in the wake. This region of transition moves towards the cylinder when increasing the
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Reynolds number. The experimental studies of [Gerrard, 1978, Williamson, 1988] show that the
two-dimensional features observed at the previous flow regime in the vortex shedding are now
clearly three-dimensional, with vortices shed in the spanwise direction.

Subcritical regime

When the Reynolds number is higher than 300, the wake is fully turbulent and the eddies cannot
be distinguished from each others. A large wake therefore forms at a separation angle of about
80 degrees with respect to the stagnation point. The important shear exerted in the detachment
zone amplifies the Kelvin-Helmholtz instability. When the Reynolds number becomes larger
(Re > 2600), this instability increases and leads to the creation of small eddies interacting with
the elementary ones. This regime is called sub-critical since the boundary layer is still laminar
at the separation point.

Critical regime

In the critical regime, characterized by Reynolds numbers ranging approximately between 105

and 106, the transition to turbulence happens in the boundary layer itself. This transition first
takes place at the location where the boundary layer separates, and as the Reynolds increases,
the transition region moves along the cylinder surface towards the stagnation point, making the
laminar boundary layer diminishing. This regime is consequently characterized by the fact that
the boundary layer is turbulent when the separation happens. We note by the way that at this
regime the separation occurs at a larger angle, which is approximately equal to 120 degrees,
leading to the formation of a narrower wake.

Supercritical regime

When Re & 2 · 106 the boundary layer of the cylinder surface is completely turbulent. This
regime is qualified as supercritical according to the definition originally given by [Roshko, 1961].

The regimes related to flow past a sphere (an other obstacle of interest in this study, be-
sides the cylinder) are quite similar. They also have been the subject of many numerical and
experimental analysis, and will be described in the sequel for the Reynolds numbers considered
in our study. However, concerning the two geometries handled in this thesis for control appli-
cation, namely the 2D semi-circular cylinder and the 3D hemisphere, very few numerical and
experimental studies have been performed to our knowledge. A comparable description of the
flow regimes past these obstacle is therefore non-existent in the literature. Another objective of
this work will consist in drawing some comparisons between flows past circular obstacles and
flows past square-back bluff bodies, at least for the Reynolds numbers considered in this study.
We indeed expect the square back of these obstacles to have a significant influence on the gen-
eral flow behavior (e.g. separation, recirculation at the rear back, vortex shedding). The flow
regimes treated in this thesis through Direct Numerical Simulations (DNS) will be transitional
(100 ≤ Re ≤ 300) and subcritical or rather “highly transitional” (300 ≤ Re ≤ 9500). We note
here that our problem of interest, namely the passive flow control, cannot be treated at a real-
istic level using DNS. Indeed, the Reynolds number describing a realistic flow past a rear view
mirror would rather reach values in the range of 104 − 105, which, in the present state of the
computational resources (access memory, data storage, running time), is not affordable.

3.1.3 Mechanism of vortex shedding

In order to conclude the first part of this chapter, we shortly explain the mechanism of vortex
shedding. This phenomenon is indeed characteristic for most of the flows analyzed in the present
work.
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Flow representation Regime Reynolds number
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Table 3.1: The different regimes for flow past a circular cylinder
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As explained in [Sumer and Fredsoe, 2006], when Re & 48, one of two vortex of the down-
stream recirculation zone becomes larger than the other one, due to the flow instability. This
situation is depicted in Figure 3.3a, where A denotes the larger vortex and B the second one.
The vortex on top (here, vortex A) swirls in the clockwise direction with a negative vorticity,
while the vortex formed on the bottom (here, vortex B) swirls in the anti-clockwise direction
with a positive vorticity. While growing, the vortex A draws the opposing vortex B across the
wake (Figure 3.3b). The approach of a vorticity of opposite sign finally leads to the disruption
of vorticity supply to vortex A from its own boundary layer. At this moment, vortex A is shed,
becoming a free vortex convected by the flow. The same process starts again with vortex B
growing and giving rise to the formation of a new vortex (vortex C in Figure 3.3c). A shedding
phenomenon develops alternatively on both sides of the bluff body.

A

B

(a)

A

B

(b)

A

B

C

(c)

Figure 3.3: First steps in the vortex shedding mechanism.

When dealing with unsteady oscillating flows, an important dimensionless number to consider
is the Strouhal number St (see Insert 4). In the following, this quantity will be used as a
diagnostic allowing to characterize the flow under study and to validate the simulation results
obtained with the present method.

Insert 4 – Strouhal number

The Strouhal number is a dimensionless quantity used to investigate the vibrations of a body
immersed in a fluid. It is defined by:

St =
fL

u∞
, (3.2)

where f is the dominant frequency of vortex shedding, L is the characteristic length (e.g. the
diameter in case of circular bluff bodies) and u∞ is the unperturbed free stream velocity.
Concerning the dominant frequency f :

• it is a function of the Reynolds number,

• it is equal to the frequency of the lift force oscillation and twice smaller than the one of
drag force oscillation,

• it may be obtained in practice by running a Fast Fourier Transform and plotting the power
spectrum of the lift force.

The Strouhal number is approximately constant and equal to 0.2 over a large Reynolds number
interval ranging from 250 to 2 · 105. It this case, the vortex shedding frequency is thus pro-
portional to the free stream velocity. At high Reynolds numbers one cannot identify a single
dominant frequency: the vortex shedding rather occurs over a narrow band of frequencies and
when the latter get close to the structural-vibration frequency of the body, then resonance may
happen.
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3.2 Numerical validations

The numerical validations presented in this section are based on DNS simulations performed for
different types of flows. Two types of regimes will be considered, namely the transitional and the
highly-transitional (subcritical) regime, as well as different obstacles: the circular-cylinder (2D)
and the sphere (3D) on one hand, for which a lot of investigations exist in the literature, and
the semi-circular cylinder (2D) and the hemisphere (3D) on the other hand, which constitute
the obstacles of interest in the context of the flow control study we aim to carry out.

In all our simulations the size of the computational box was chosen large enough so that the
presence of the artificial boundaries was found to be negligible. A careful convergence study
with respect to the domain size has been performed in [Cottet and Poncet, 2003] for flow past
a 2D circular cylinder using vortex methods. This study shows a first-order convergence for
the lift coefficient and Strouhal number and third-order convergence for the drag coefficient. It
demonstrates that a domain extending to about 6 cylinder diameters downstream is sufficient
to provide reliable flow diagnostics. In the subsequent simulations, the size of the domain is set
to D = [−4, 8] × [−5, 5] in 2D and to D = [−2, 8.24] × [−2.56, 2.56] × [−2.56, 2.56] in 3D.
The computational domains D and the geometrical setup are shown in Figure 3.4. A uniform
free stream velocity u∞ is imposed at the inlet with u∞ = 1. The non-dimensional diameter d
of each obstacle considered in this study is equal to 1 and the body is centered at the origin.
The whole domain is covered by a uniform Cartesian grid.
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Figure 3.4: Computational domains: (a) in two dimensions, (b) in three dimensions.

In a first place we will present the validation results obtained in the two-dimensional case
with the circular cylinder and the semi-circular cylinder. The second part of this section will
be dedicated to the validation of the present method in the three-dimensional case. For that
purpose we will consider flows past a sphere and a hemisphere. For each of these different flows,
a convergence study will be carried out and comparisons of our results with respect to numerical
and experimental references will be proposed.

3.2.1 The two-dimensional case

3.2.1.1 Flow past a 2D circular cylinder

Grid convergence study

A grid-convergence study is carried out for flow past a circular-cylinder at Re = 550 where
the value of the grid step h ranges from 0.02 to 0.0025, with h = 0.00125 as reference case. We
evaluate the L1, L2 and L∞ norms of the error e(x) of the drag coefficient and enstrophy time
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evolution, with respect to the reference case:

e(x)L1 =
∫

D
| qref(x) − q(x) | dx (3.3)

e(x)L2 =
(∫

D
| qref(x) − q(x) |2 dx

)1/2

(3.4)

e(x)L∞ = sup
x

| qref(x) − q(x) | (3.5)

where the quantity q either denotes the drag coefficient CD or the enstrophy Z. In this work
all spatial operators were discretized in 2D with second order accurate schemes, the remeshing
process is realized through the second order kernel M ′

4, the penalization discretization is of
order 1 and exact FFT-based evaluations were performed to solve the diffusion and the Poisson
equation. We therefore expect a space convergence order of approximately 2.

The numerical convergence results are reported in Figure 3.5a (drag coefficient) and 3.5b
(enstrophy). In terms of drag coefficient history, the present method shows around second order
convergence (2.41 for L1, 2.65 for L2 and 1.92 for L∞). A slightly lower order of convergence is
observed for the enstrophy (1.70 for L1, 2.11 for L2 and 1.71 for L∞), but the final global order
of convergence remains around 2. The convergence rates are thus in good agreement with our
spatial discretization.
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Figure 3.5: Grid-convergence study for flow past a circular cylinder at Re = 550. The errors
eL1 (black), eL2 (red) and eL∞ (blue) are plotted against the grid step (a) Convergence of the
drag coefficient. (b) Convergence of the enstrophy.

To complete this grid-convergence study, Table 3.2 gives the converged mean values of the
drag coefficient and the enstrophy. These mean values are calculated on the time range [t̃, tend],
where t̃ denotes the time from which the flow regime is established. All the mean values con-
sidered in this thesis will be evaluated upon this principle. According to this table, one can
consider that the grid convergence is achieved for h = 0.005, with values not varying more than
3% from those obtained with h = 0.0025.

λ-convergence study

We now perform a convergence study in terms of the penalization parameter λ in order to
verify the ability of the present immersed body method to correctly model rigid motion inside
a solid obstacle when increasing the value of λ. This λ-convergence study is carried out at
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Re = 550
Grid c̄D Z̄

h = 0.02 1.02 82
h = 0.01 1.31 121
h = 0.005 1.47 136
h = 0.0025 1.49 140

Table 3.2: Convergence study for flow past a circular cylinder atRe = 550. c̄D and Z̄ respectively
denote the mean values of drag coefficient and enstrophy.

Re = 550 with h = 0.005 and ∆t = 0.0025. The value of λ ranges from 1 to 106, with λ = 108

as reference case (solid case). We evaluate the L1, L2 and L∞ norms of the error e(y) in the
mean velocity magnitude profile ¯|u| (at x = 0) with respect to the reference case:

e(y)L• = ‖ ¯|u|λ=108(y) − ¯|u|(y) ‖L• , y ∈ [ymin, ymax]. (3.6)

As Figure 3.6a shows, the numerical error decreases as O(λ−1/2) when λ ≤ 102 and as O(λ−1)
when λ ≥ 102. The same study was performed at Re = 100 with smaller grid size and time
step, respectively equal to h = 0.0025 and ∆t = 0.001. This study may be considered as the
numerical reference. The results are given by Figure 3.6b and show that the error behaves as
O(λ−1/2) when λ ≤ 104 and O(λ−1) when λ ≥ 104. These convergence rates are in agreement
with the numerical results found in [Angot et al., 1999] where it is stated that to increase λ
to high values (λ ≥ 106) a mesh refinement is necessary. Moreover, these numerical results are
slightly better compared to the theoretical result given in [Angot et al., 1999], attesting that the
upper bound on the global L∞ error of the penalization is ‖uλ − u‖ ≤ Cλ−1/2. Furthermore,
we can consider from this figure that the circular cylinder reaches the solid state from λ = 104,
where e(y) ≤ 10−4. Thus, a permeable medium can be defined by setting the λ-values between
1 and 103, with very low permeability for the latter one.
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Figure 3.6: λ-convergence study for flow past a circular cylinder. (a) Re = 550 with h = 0.005
and ∆t = 0.0025. (b) Re = 100 with h = 0.0025 and ∆t = 0.001. The errors eL1 (black), eL2

(red) and eL∞ (blue) are plotted against λ values.

Flow analysis and validations

The first part of this flow analysis study is related to unsteady laminar flows, where the
viscous effects are still predominant. The evaluation of forces has been carried out using the
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momentum equation (2.33). The mean values and the amplitudes of the fluctuations of drag and
lift coefficients for flows at Re = 100 and Re = 200 are computed and given in Table 3.3, as well
as the value of the Strouhal number. As can be seen, these results are very close to experimental
and numerical data collected by [Braza et al., 1986] and [Russell and Wang, 2003]. We note
that, due to the symmetrical configuration of the cylinder, the mean value of the lift coefficient
is zero.

Re = 100 Re = 200
Authors c̄D c̄L St c̄D c̄L St

Braza et al. (1986) 1.36 ± 0.015 0 ± 0.25 0.160 1.40 ± 0.050 0 ± 0.75 0.190
Russel and Wang (2003) 1.43 ± 0.009 0 ± 0.322 0.172 1.45 ± 0.036 0 ± 0.63 0.201
Present 1.40 ± 0.010 0 ± 0.32 0.165 1.44 ± 0.05 0 ± 0.75 0.200

Table 3.3: Comparison of mean drag and lift coefficients and Strouhal number for flow past a
circular cylinder at Re = 100 and Re = 200.

Concerning the analysis of transitional flows, four Reynolds numbers are selected, namely
Re = 550, 1000, 3000 and 9500. For the two last ones, the flow is unstable and character-
ized by complex vortex pairings in the wake; it is then often considered as highly transitional.
The time evolution of the drag coefficient is reported in Figure 3.7 for each of these Reynolds
numbers and is compared to the one numerically found by [Koumoutsakos and Leonard, 1995],
[Ploumhans and Winckelmans, 2000] and [Rasmussen et al., 2011]. One can notice that the var-
ious results are in excellent agreement. For the particular case of Re = 1000, Table 3.4 shows the
comparison of mean drag coefficient, amplitude fluctuation of lift coefficient and Strouhal num-
ber with other studies [Mittal and Kumar, 2001, Apte et al., 2008] for long time simulations.
All these comparisons confirm an excellent agreement between our results and the reference
results in the literature.

The set of numerical parameters chosen for each of these simulations, performed at Re = 550,
1000, 3000 and 9500, is given in Table 3.5. This table confirms that the choice of the grid
resolution h at each flow regime is appropriate to capture the boundary layer thickness, expressed
by δ ≈ D/

√
Re.

Re=1000
Authors c̄D c̄L St

Mittal et al. (2001) 1.48 ± 0.21 0 ± 1.65 0.250
Apte et al. (2008) 1.50 0 ± 1.36 0.238
Present 1.51 ± 0.23 0 ± 1.54 0.245

Table 3.4: Comparison of mean drag coefficient, mean lift coefficient, and Strouhal number for
flow past a circular cylinder at Re = 1000.

Re Numerical parameters δ Nb of cells in boundary layer
∆t h

550 0.005 0.005 ∼ 0.043 8.6
1000 0.003 0.0025 ∼ 0.032 12.8
3000 0.0025 0.0025 ∼ 0.018 7.2
9500 0.002 0.00125 ∼ 0.010 8

Table 3.5: Justification of the choice of mesh size h based on the boundary layer thickness δ, for
the circular cylinder validation study.

More validations of the proposed method for flow past a circular cylinder can be found in
the article [Mimeau et al., 2015] reported in Appendix (C).
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Figure 3.7: Drag evolution for (a) Re = 550, (b) Re = 1000, (c) Re = 3000 and (d) Re = 9500.
Comparisons of present method (solid red line) with [Koumoutsakos and Leonard, 1995] (dashed
line). Solid black line are results from [Ploumhans and Winckelmans, 2000] in (a), (b), (c) and
from [Rasmussen et al., 2011] in (d).

3.2.1.2 Flow past a 2D semi-circular cylinder

In this section we consider flow past a semi-circular cylinder whose flat-surface is facing down-
stream. Compared to the circular cylinder, the semi-circular cylinder presents two singular
points. The numerical studies presented in the sequel were carried out at Re = 550 and
Re = 3000.

Grid convergence study

The grid convergence study is performed on three grid levels. For Re = 550 we con-
sider three mesh sizes: h = 0.01, h = 0.005 and h = 0.0025 in the computational domain
D = [−4, 8] × [−5, 5]. For Re = 3000 as the boundary layer is thinner, we perform the con-
vergence study with three finer mesh sizes, respectively h = 0.005, h = 0.0025 and h = 0.00125.
The simulations are carried out in a smaller domain D = [−2.5, 5] × [−3, 3] in order to reduce
the computational cost induced by the finest grid. We note that the drag coefficients we ob-
tained with the two coarser grids (h = 0.005 and h = 0.0025) in the reduced domain only showed
an error of 8% and 4% respectively compared to the one obtained in the large domain, which
legitimates the results obtained with the reduced domain. The mean drag and enstrophy values
are reported in Table 3.6. At Re = 550, on the basis of these results, one can consider that the
grid convergence is achieved for h = 0.005, where the time step is equal to ∆t = 0.0025. At
Re = 3000 grid convergence is obtained with h = 0.0025 and ∆t = 0.002 . This study enables us
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on one hand to prove the convergence of the method and provides on the other hand the optimal
set of numerical parameters for the flow control application, allowing to achieve accurate results
within a reasonable computational time. It is here important to emphasize the interest of the
vortex methods which allow here to consider a highly transitional regime using a relatively large
time step compared to classical Eulerian methods.

Re = 550 Re = 3000
Grid c̄D Z̄ c̄D Z̄

h = 0.01 1.49 122 - -
h = 0.005 1.91 158 1.89 313
h = 0.0025 1.98 161 1.94 292
h = 0.00125 - - 1.96 280

Table 3.6: Convergence study for flow past a semi-circular cylinder at Re = 550 and Re = 3000.
c̄D and Z̄ respectively denote the mean values of drag coefficient and enstrophy.

λ-convergence study

We now focus on the convergence of the present method with respect to the value of the
penalization parameter λ inside the semi-circular cylinder, at Re = 550 and Re = 3000. The
way this convergence study is carried out is exactly the same as presented previously in subsec-
tion (3.2.1.1). According to Figure 3.8, the numerical error is shown to decrease as O(λ−1/2)
when λ ≤ 102 and as O(λ−1) when λ > 102, like for the circular cylinder. Furthermore, the
semi-circular cylinder reaches the solid state at λ = 105, where e(y) ≤ 10−4, for both regime. A
permeable area can thus be defined with values of λ lower than 104. In the oncoming control
study, we will increase the penalization parameter up to 103 inside the added porous layer in
order to model a permeable medium.
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Figure 3.8: λ-convergence study for flow past a semi-circular cylinder. (a) Re = 550 with
h = 0.005 and ∆t = 0.0025. (b) Re = 3000 with h = 0.0025 and ∆t = 0.002 (b). The errors eL1

(black), eL2 (red) and eL∞ (blue) are plotted against λ values.
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Flow analysis and validations

The benchmark of incompressible flow past a semi-circular cylinder is not a classical one
and, as far as we know, only few references already exist on this subject. Nevertheless, we
aim at least to compare our results to numerical and experimental ones. To do so, we respec-
tively consider the works of Farhadi et al. [Farhadi et al., 2010] and Boisaubert and Texier
[Boisaubert and Texier, 1998].

As can be seen in Table 3.7, the results obtained at Re = 100 and Re = 300 show a
good agreement with the numerical values given by [Farhadi et al., 2010]. A more detailed
comparison is performed at Re = 200 and the related results are reported in Figure 3.9. As
for drag and lift coefficients, one can say according to Figure 3.9a that our results coincide very
well with those of [Farhadi et al., 2010] since we achieve c̄D = 1.85 ± 0.15, c̄L = 0 ± 0.53 and
St = 0.230 against c̄D = 1.85 ± 0.12, c̄L = 0 ± 0.50 and St = 0.215 in [Farhadi et al., 2010].
Figure 3.9b gives a comparison of the normalized near-wake length L with the numerical results
of [Farhadi et al., 2010] and the experimental data of [Boisaubert and Texier, 1998]. The near-
wake length is defined as the x-coordinate of the point located on the centerline in the x-direction
where the streamwise component of the velocity vanishes. As can be seen on the figure, the
values obtained with the present method greatly coincide with the numerical and experimental
reference results.

Re = 100 Re = 300
Authors c̄D St c̄D St

Farhadi et al. (2010) 1.73 0.180 1.955 0.22
Present 1.70 0.192 1.90 0.24

Table 3.7: Comparison of mean drag coefficient and Strouhal number for flow past a semi-circular
cylinder at Re = 100 and Re = 300.
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Figure 3.9: (a) Drag and lift evolution for flow past a semi-circular cylinder at Re = 200.
(b) Normalized near-wake length L/d of a semi-circular cylinder at Re = 200: compar-
ison with numerical results [Farhadi et al., 2010] (green triangles) and experimental data
[Boisaubert and Texier, 1998] (black squares).
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3.2.2 The three-dimensional case

3.2.2.1 Flow past a 3D sphere

Grid convergence study

The convergence studies are performed in the context of flow past a 3D sphere at Re = 300.
We first present the grid-convergence study, involving four mesh sizes: h = 0.08, h = 0.04,
h = 0.02 and h = 0.01. Convergence orders are determined by computing the L1, L2 and L∞

norms of the error of the drag coefficient and the enstrophy with respect to the best resolved
case (see eqs. 3.3-3.5). In the particular context of this grid-convergence study, the adaptive
time step is not defined by equation 2.72, which depends on the flow velocity gradient, but is
instead set to:

∆tnadapt =
CFL · h
max
1≤i≤3

|ui|
, with CFL = 0.5, (3.7)

such that a CFL of 0.5 is ensured at any time for each simulation performed at each grid reso-
lution. According to Figure 3.10, the method shows around second order convergence regarding
drag coefficient (1.95 for L1, 2.46 for L2 and 1.98 for L∞) and between first and second order
convergence for the enstrophy (0.93 for L1, 1.35 for L2 and 1.06 for L∞). The converged mean
values of the drag coefficient and the enstrophy are given by Table 3.8 for each mesh size, and
allow us to consider that the grid convergence is achieved for h = 0.02. The oncoming simula-
tions involving incompressible flows past a 3D sphere at Re = 300 will therefore be performed
fixing the mesh size to 0.02. As it will be outlined in the following, this mesh size involves a
number of grid points within the boundary layer that may be considered sufficient to account
for the expected flow dynamics.
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Figure 3.10: Grid-convergence study for flow past a sphere at Re = 300. The errors eL1 (black),
eL2 (red) and eL∞ (blue) are plotted against the grid step. (a) Convergence of the drag coefficient
(b) Convergence of the enstrophy.

Flow analysis and validations

The capabilities of the HVP method are now analyzed in the context of flow past a 3D
sphere. Like the circular cylinder, this type of flow has been widely studied numerically and
experimentally which allowed us to precisely determine the different flow regimes. Following the
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Re = 300
Grid c̄D Z̄

h = 0.08 0.732 64.8
h = 0.04 0.679 66.5
h = 0.02 0.673 67.7
h = 0.01 0.676 68.9

Table 3.8: Convergence study for flow past a sphere at Re = 300. c̄D and Z̄ respectively denote
the mean values of drag coefficient and enstrophy.

description given in [Ploumhans et al., 2002], we list the regimes related to Reynolds numbers
ranging from 0 to several thousands and we represent them in Table 3.9:

• Re < 210 - 212: the flow is steady and axisymmetric.
An axisymmetric separation bubble exists at the back of the sphere with zero lift force.

• 210 - 212 < Re < 270 - 290: the flow is steady and planar-symmetric.
A pair of planar-symmetric vortical structures appears in the wake.

• 270 - 290 < Re < 350 - 375: the flow is unsteady, time periodic and planar-symmetric.
The wake is characterized by a cyclic shedding of ring vortices, with planar-symmetry.

• 350 - 375 < Re < 800: the flow is unsteady, non-periodic and asymmetric.

• Re > 800: the flow is unsteady, non-periodic, asymmetric and a Kelvin-Helmholtz instabil-
ity occurs in the shear layer, propagating in the wake. The latter becomes fully turbulent,
characterized by the emergence of small scales.

In the sequel, we propose validation studies for two Reynolds numbers corresponding to
clearly distinct regimes: Re = 300 and Re = 1000.

We first present the results obtained at Re = 300. The simulation setup is the following:
according to the grid convergence study presented previously (see Table 3.8), the 3D computa-
tional box D = [−2, 8.24]×[−2.56, 2.56]×[−2.56, 2.56] is meshed by an uniform 512×256×256
Cartesian grid (h = 0.02). As in [Ploumhans et al., 2002], a perturbation is addressed to the
uniform upstream flow between the non-dimensional time T = 3 and T = 4, in order to trigger
the instability. This perturbation is applied on the y component of the velocity and stands as
uy∞ = sin(π(T − 3)). The time step, initialized with the value ∆t = 0.0125, is adaptive and is
defined according to equation 2.72. As previously mentioned in chapter 2 with Figure 2.7, the
time step actually shows to be approximately equal to 0.011 all along the simulation. Finally,
the penalization parameter λ is set to 108 inside the sphere.

Table 3.10 provides the values of the drag and vertical lift coefficients obtained with the
present method, as well as the Strouhal number for which the dominant shedding frequency is ob-
tained from the power spectrum reported in Figure 3.12. These values are compared to results in
literature [Roos and Willmarth, 1971, Johnson and Patel, 1999, Tomboulides and Orszag, 2000,
Constantinescu and Squires, 2000, Kim and Choi, 2002, Ploumhans et al., 2002]. As the table
shows, our results coincide well with these references. Figure 3.11 depicts the ωz and ωx iso-
contours for every quarter period of a shedding cycle. The contours obtained with the present
method are compared with those published by [Ploumhans et al., 2002]. As can be observed on
the figure, the vortical features are in very good agreement with the reference results. Moreover,
one can notice that a true periodic regime is attained (the snapshots in Figures 3.11a and 3.11b
depict the vorticity field at five equispaced times within one shedding period) and that the wake
is perfectly symmetric in the XZ plane (see the ωx isocontours in the XZ plane, Figure 3.11b).
These observations confirm the description of the flow regime corresponding to Reynolds 300
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Table 3.9: Different transitional regimes for flow past a sphere.

thoroughly investigated by [Johnson and Patel, 1999, Tomboulides and Orszag, 2000] and given
at the beginning of this subsection.

Re = 300
Authors c̄D c̄L St

Roos & Willmarth ⋆ (1971) 0.629 - -
Johnson & Patel (1999) 0.656 -0.069 0.137
Tomboulides & Orszag (2000) 0.671 - 0.136
Constantinescu & Squires (2000) 0.655 -0.065 0.136
Kim & Choi (2002) 0.657 -0.067 0.134
Ploumhans et al. (2002) 0.683 -0.061 0.135
Present 0.673 -0.066 0.133

Table 3.10: Comparison of drag and lift coefficients and Strouhal number for flow past a sphere
at Re = 300. Star notation (⋆) refers to experimental results.
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(a) Isocontours of ωz in the XY plane

(b) Isocontours of ωx in the XZ plane

Figure 3.11: Vorticity isocontours for flow past a sphere at Re = 300 for every quarter period
of a shedding cycle. Comparison between [Ploumhans et al., 2002] (left columns) and present
results (right columns).
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Figure 3.12: Power spectrum based on time evolution of the lift coefficient for flow past a sphere
at Re = 300.

The flow analysis at Re = 1000 is now considered. The simulation is performed on an uniform
1024×512×512 Cartesian grid (h = 0.01). Still following the setup of [Ploumhans et al., 2002],
a perturbation is applied between T = 3 and T = 4 on the y component of the velocity, defined
by uy∞ = 0.1 sin(π(T − 3)). The adaptive time step is initialized with the value ∆t = 0.005 and
keeps approximately this value all along the simulation. The penalization parameter λ is fixed
to 108 inside the sphere.

Figure 3.13 supplies several quantitative information about the flow quantities. First, a plot
of the time average streamwise velocity ux along the centerline is given in Figure 3.13a. The re-
sults obtained with the present method are compared to those of [Tomboulides and Orszag, 2000]
together with the experimental data of [Wu and Faeth, 1993] at Re = 960, and show a good
agreement. The same conclusion stands for the time evolution of force coefficients. Indeed,
as shown in Figure 3.13b, the time evolution of the drag coefficient CD and the vertical lift
coefficient CL coincide with the one found by [Ploumhans et al., 2002]. As emphasized in
[Ploumhans et al., 2002], although the prescribed perturbation is symmetric, the flow is be-
coming fully three dimensional. This is confirmed by Figure 3.13c, giving the evolution of the
force coefficients for a larger time range. We can especially notice that the side lift force co-
efficient CS is non-zero, contrary to Re = 300 for instance, and shows significant variations
which are actually in the same order of magnitude than the one of CL. Concerning the drag
coefficient CD, the mean value obtained in the present study is 0.485, which coincide well with
the numerical values reported by [Poon et al., 2009] and [Campregher et al., 2009], respectively
equal to 0.46 and 0.478. Isocontours of |ω| in the near wake are depicted in the XY and XZ
plane for early times, respectively by Figure 3.14a and 3.14b. They are compared to those of
[Ploumhans et al., 2002]. These figures, which show a good agreement, reveal that the flow is
initially symmetric in the XZ plane. However, as highlighted by Figure 3.15, the near wake
becomes asymmetric from T = 18. The same value of T is reported by [Ploumhans et al., 2002].
This loss in planar-symmetry intensifies in time and is perfectly clear at T = 48 (see Figure
3.15).
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Figure 3.13: Sphere flow analysis at Re = 1000: (a) Average streamwise velocity ux

along the x-axis: comparison of the present results (red curve) with numerical results
[Tomboulides and Orszag, 2000] (green curve) and experimental data [Wu and Faeth, 1993] at
Re = 960 (black circles). (b) CD (solid lines) and CL (dashed lines) time evolution: comparison
of the present results (red curves) with [Ploumhans et al., 2002] (black curves). (c) CD (solid
line), CL (dashed line) and CS (dotted line) time evolution.
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(a) Isocontours of |ω| in the XY plane (b) Isocontours of |ω| in the XZ plane

Figure 3.14: Isocontours of |ω| for flow past a sphere at Re = 1000. Comparison between
[Ploumhans et al., 2002] (left columns) and present results (right columns) at T = 6, 8, 10, 12.

T=16 T=18

T=20 T=48

Figure 3.15: Isocontours of |ω| in the XZ plane for flow past a sphere at Re = 1000. The near
wake becomes asymmetric from T = 18.
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3.2.2.2 Flow past a 3D hemisphere

Grid convergence study

The last validation study of this work is performed for flow past a 3D hemisphere atRe = 300.
In the same way as for the sphere, four different mesh sizes are considered for the grid conver-
gence study and the time step is defined according to equation 3.7. The order of convergence for
the drag coefficient was found to be 1.80 for L1, 2.23 for L2, 1.48 for L∞ and 0.95 for L1, 1.49 for
L2, 1.23 for L∞ concerning the enstrophy. These convergence orders are very similar to those
found for the sphere. They are complemented by Table 3.11, giving the converged mean values
of the two flow quantities at Re = 300. Here again, one may consider that the grid convergence
is obtained by setting h = 0.02.

Re = 300
Grid c̄D Z̄

h = 0.08 0.787 73.4
h = 0.04 0.725 73.0
h = 0.02 0.721 73.3
h = 0.01 0.725 74.0

Table 3.11: Convergence study for flow past a hemisphere at Re = 300. c̄D and Z̄ respectively
denote the mean values of drag coefficient and enstrophy.

λ-convergence study

Like in 2D, we verify the convergence of the method with respect to the penalization param-
eter λ. This study is performed at Re = 300 with h = 0.02, following the same process as in
2D. The results are reported by Figure 3.16.
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Figure 3.16: λ-convergence study for flow past a hemisphere at Re = 300 with h = 0.02. The
errors eL1 (black), eL2 (red) and eL∞ (blue) are plotted against λ values.

The numerical error is shown to decrease as O(λ−1/2) when λ ≤ 102 and λ ≥ 105, and as
as O(λ−1) when 102 ≤ λ ≤ 105. The fact that the error is shown to decrease as O(λ−1/2) for
λ ≥ 105 perfectly coincides with the already mentioned remark made in [Angot et al., 1999],
stating that to increase λ to high values a mesh refinement is necessary. This can be explained
by the fact that high values of λ model bodies of almost zero permeability, thus implying steep
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solid-fluid interfaces and high velocity gradients in this region. The results reported in Figure
3.16 therefore mean that the simulations carried out here with a mesh size equal to h = 0.02
are on the edge of under-resolution in the region of the boundary layer. Nevertheless, as it will
be presented in the following, this mesh size is enough to capture the global flow characteristics
needed to perform the flow control study.

Flow analysis and validations

As we aim to perform passive flow control past a hemisphere, it is important to validate
the present method in the context of such geometry. Similarly to the semi-circular cylinder,
we expect the hemisphere’s rear back to have an influence on the flow behavior. However, as
already mentioned at the beginning of this chapter, experimental and numerical results related
to this problem are very few to our knowledge. The main study on which this section is based
is the one carried out by [Kim and Choi, 2003], who investigated in details the behavior of flows
past a hemisphere at different Reynolds numbers, ranging from 100 to 300. In their study, the
authors report the following flow regimes:

• Re = 100, 130, 150, 170: the flow is steady and axisymmetric.

• Re = 180, 190: the flow is steady and planar-symmetric.

• Re = 200, 210: the flow is unsteady, time periodic and asymmetric.

• Re = 220, 250, 270: the flow is unsteady, time periodic and planar-symmetric.

• Re = 280, 300: the flow is unsteady, non-periodic and asymmetric.

Let us first draw some comparisons between these flow regimes and the ones of the sphere,
listed in the previous section. One can notice that steady flows over a hemisphere are very
similar to those over a sphere, even if the transitions between the different flow regimes occur at
lower Reynolds numbers in the hemisphere case. Indeed, as explained in [Kim and Choi, 2003],
the steady axisymmetric flow is characterized by an axisymmetric recirculation zone behind the
hemisphere, while for the steady planar-symmetric flow two streamwise vortical structures are
formed in the wake. However, according to the authors, an important difference exists between
the unsteady flows past a hemisphere and those past a sphere. We indeed notice that when
220 ≤ Re ≤ 270, the flow past a hemisphere recovers planar-symmetry while for lower Reynolds
number (Re = 200, 210), it was totally asymmetric. This behavior is not observed in the sphere
case.

As we only aim for dealing with unsteady flows, we will focus this validation study on three
Reynolds numbers, each corresponding to a different unsteady flow behavior: Re = 200, 250,
and 300. These Reynolds numbers are also studied in details in [Kim and Choi, 2003], which
supplies a great support for validation and comparisons. For each simulations, we consider a
512 × 256 × 256 Cartesian grid (h = 0.02), the time step is defined according to equation 2.72
and initialized with ∆t = 0.0125, and λ equals 108 within the hemisphere.

The flow at Re = 200 is first considered. Figure 3.17a shows the time evolution of the drag
and lift coefficients, which are compared to those obtained by [Kim and Choi, 2003]. First, one
can notice a very good agreement between the different results, which is confirmed by the first
lines of Table 3.12 giving the mean values of the force coefficients at Re = 200. Concerning the
Strouhal number, one can see in our case and in the reference results that the Strouhal based
on the lift is half the one based on the drag. Finally, we focus on the side lift coefficient CS .
At Re = 200 the time average of this coefficient is not zero, which corroborates the fact that
the flow does not maintain the planar-symmetry. This statement is confirmed by Figure 3.18
depicting the vorticity norm |ω| at two different times, where one can see that the wake is not
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symmetric in the plane XZ at this Reynolds number.

Let us now focus on flow past a hemisphere at Re = 250. Figure 3.17b and Table 3.12 show
that the present outcomes coincide well with the reference results. As for the flow at Re = 200,
the shedding frequency is equal to the frequency of the lift (Stlift = 0.128) and half the frequency
of the drag (Stdrag = 0.256). Finally, Figure 3.18 confirms that the flow at Re = 250 recovers the
symmetry in the XZ plane. This observation explains the zero time average side lift coefficient
(C̄S = 0) read in Table 3.12.

The last simulation is performed at Re = 300. According to Figure 3.17c the flow has a
more complex behavior, showing drag and lift coefficients with complicated variations in time.
The vorticity norm reported in Figure 3.18 also highlights the absence of any planar-symmetry,
as expected. On the other hand, Table 3.12 and Figure 3.20 reveal that, at this regime, there
co-exist two distinct values of the Strouhal number based on the power spectrum of the drag.
The lower frequency (Stdrag1 = 0.04) is due to the large-scale instability of the wake, while
the higher frequency (Stdrag2 = 0.270) is attributed to the small-scale instabilities caused by
the separation of the shear layer. The Stdrag2 value is still approximately equal to twice the
dominant frequency of the lift (Stlift = 0.138). One can also remark in Table 3.12 that the time
average lift coefficient C̄L is zero (like for Re = 200 and Re = 250), which is not the case for
flow past a sphere at Re = 300 (see C̄L in Table 3.10). This difference can be explained by
the discrepancy in the process of vortex shedding. Indeed, as can be seen in Figure 3.18, in the
case of a hemisphere the vortices shed alternatively with the same strength in the XY plane,
leading to C̄L = 0. On the contrary, at the same Reynolds number, the vortex shedding from
a sphere does not symmetrically alternate. This phenomenon is depicted in Figure 3.19 and
also in Figure 3.11a, where one can clearly see, in the XY plane, that the top eddies are much
stronger than the bottom ones. It confirms the observations made by [Kim and Choi, 2002].

Re = 200 c̄D c̄L c̄S Stlift Stdrag

Kim & Choi (2003) 0.790 0.0 ± 0.024 0.049 0.128 0.256
Present 0.805 0.003 ± 0.025 0.043 0.129 0.257

Re = 250 c̄D c̄L c̄S Stlift Stdrag

Kim & Choi (2003) 0.742 0.0 ± 0.05 0.0 0.127 0.254
Present 0.757 0.0 ± 0.05 0.0 0.128 0.256

Re = 300 c̄D c̄L c̄S Stlift Stdrag1 Stdrag2

Kim & Choi (2003) 0.715 0.0 ± 0.062 0.0 0.135 0.04 0.270
Present 0.729 -0.002 ± 0.063 -0.0016 0.134 0.04 0.270

Table 3.12: Comparison of mean drag and lift coefficients as well as Strouhal numbers for flow
past a hemisphere at Re = 200, 250 and 300.

Conclusion 3.1

This validation study presented in this chapter showed that the HVP method was able to
model the correct behavior of a transitional or highly transitional 3D flow. We also noticed
that this correct behavior was obtained with relatively reduced computational domains,
which shows the limitation of blockage effects due to the boundaries on the solution, and
with large time step values compared to classical Eulerian schemes. These outcomes thus
allow to save computational efforts. Finally, the present convergence and validation studies
enabled us to determine the appropriate numerical parameters (in the sense of grid size,
penalization parameter λ and time steps) needed to obtain accurate results in the more
challenging application that will be considered in the following chapter.



3.2. Numerical validations 105

cD present method

cD Kim & Choi

cL present method

cL Kim & Choi

cS present method

cS Kim & Choi
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

380 390 400 410 420 430
-0.1

-0.05

0

0.05

0.1

c
D

c
L
, 
c
S

T

(a) Re = 200

cD present method

cD Kim & Choi

cL present method

cL Kim & Choi

cS present method

cS Kim & Choi

0.6

0.65

0.7

0.75

0.8

380 390 400 410 420 430
-0.1

-0.05

0

0.05

0.1

c
D

c
L
, 
c
S

T

(b) Re = 250

cD present method

cD Kim & Choi

cL present method

cL Kim & Choi

cS present method

cS Kim & Choi

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

380 390 400 410 420 430
-0.1

-0.05

0

0.05

0.1

c
D

c
L
, 
c
S

T

(c) Re = 300

Figure 3.17: Time evolution of the force coefficients for flow past a hemisphere. Comparison
with the numerical results of [Kim and Choi, 2003].
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XY plane
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(a) T = 100
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Figure 3.18: Flow past a hemisphere at Re = 200, 250 and 300: instantaneous 3D vortical
structures with isocontour |ω| = 0.8 at (a) T = 100 and (b) T = 200.

Figure 3.19: Flow past a sphere at Re = 300: instantaneous 3D vortical structures with isocon-
tour |ω| = 0.45 in a longer computational domain D = [−2, 18.48]×[−2.56, 2.56]×[−2.56, 2.56].
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Application to passive flow control
using porous media
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Résumé 4

Dans ce chapitre, la méthode HVP présentée et validée précédemment est appliquée à l’étude
d’écoulements à travers des milieux solides-fluides-poreux. Cette étude peut-être considérée
comme une extension des premiers travaux proposés par Bruneau & Mortazavi, dans lesquels
la méthode de pénalisation est utilisée dans un contexte purement eulérien et bidimensionnel
afin de modéliser ce type de problèmes. A travers ce chapitre nous illustrons l’efficacité de
la méthode vortex hybride pénalisée dans le traitement de problèmes physiques 2D et 3D
où les propriétés intrinsèques du corps considéré ainsi que les conditions à la frontière vari-
ent. Plus précisément, nous nous focalisons sur une étude de contrôle passif d’écoulements
visant à recouvrir d’un revêtement poreux l’obstacle immergé afin d’en améliorer les per-
formances aérodynamiques. Pour mener à bien cette étude, nous nous intéressons au con-
trôle d’écoulements autour d’une représentation très simplifiée de rétroviseur automobile
(un hémisphère), le but étant de comprendre les mécanismes mis en jeu par la présence du
revêtement poreux régularisant afin de proposer des dispositifs viables et abordables. Pour
cela plusieurs configurations géométriques de revêtement poreux sont analysées en consid-
érant différentes épaisseurs et perméabilités. Les études de contrôle passif de ce chapitre
permettent de mettre en évidence l’efficacité des obstacles contrôlés où les parties poreuses
sont insérées au niveau des points de séparation de l’écoulement. Il s’avère également que,
dans certains cas, de faibles épaisseurs de revêtement poreux suffisent à diminuer de façon
significative la production de traînée ou d’enstrophie. Ces dispositifs se révèlent d’autre part
plus performants que ceux incluant une couche poreuse homogène sur la totalité de la surface
de l’obstacle. Ils constituent ainsi un bon compromis entre efficacité et facilité de production.
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This chapter is devoted to the study of passive flow control past bluff bodies with a rear
wall, using porous media. It illustrates the efficiency of the vortex penalization method to handle
problems where the physical properties or boundary conditions vary in the body.

The penalization method has already been used to model the solid-fluid-porous problem in 2D
with pressure-velocity formulations [Bruneau and Mortazavi, 2004, Bruneau and Mortazavi, 2006,
Bruneau et al., 2008]. In this work, the problem is handled through a velocity-vorticity formu-
lation of the governing equations. The resulting hybrid vortex penalization model, described
in details in chapter 2, is presently used to simulate two- and three-dimensional flows around
obstacles which are totally or partially covered with a porous coating. This passive flow control
study is performed in order to find out viable and affordable solutions that would allow to im-
prove the aerodynamic performances of the side-view mirrors on a ground vehicle. In this work,
the study will be focused on a very simplified version of the mirrors geometry which corresponds
to a hemisphere configuration. Let us precise that the simulations performed in this flow control
study are Direct Numerical Simulations, which imposes to consider a range of Reynolds num-
bers below the realistic values. Nevertheless, a clear understanding of the physical mechanisms
involved in the vicinity of the porous interfaces is necessary in order to consider further studies
at a realistic level. For that purpose, it seems important to first perform studies that take into
account all the physical scales.

This chapter will be introduced giving the motivations of the present flow control study as
well as an overview of the existing solutions in order to perform it. The passive control results
obtained in the present work in 2D and in 3D through the HVP method will then be presented.

4.1 Motivations and solutions

When the speed of a ground vehicle is greater than 80 km/h, most of the energy supplied by
the engine is dedicated to struggle against air resistance. This resistance is directly linked to
the vehicle aerodynamic drag. Consequently, the lower is the drag, the lower will be the fuel
consumption of the vehicle and thus, the carbon dioxide emissions. Nowadays, reducing the CO2

emissions is a crucial issue and the automotive industry has a responsibility to find solutions
to ensure this reduction. In particular, the side-view mirrors have a significant influence on the
drag production. Indeed, due to their spanwise position, they generate a non-negligible wake
which interferes with the flow past car sides. Although they only represent 0.5% of the total
projected surface, the mirrors are responsible for up to 10% of the total vehicle drag. This
observation provides a good motivation to find solutions leading to the regularization of the flow
past side-view mirrors and to the reduction of their drag.

Side-view mirrors have been subject to extensive investigations in order to reduce the vi-
bration of their surface [Watkins and Oswald, 1999] as well as the intrinsic acoustic noise they
produce [Ono et al., 1999, Dolek et al., 2004, Lounsberry et al., 2007, Chen et al., 2009]. These
aspects will not be considered in the present study.

This work instead focuses on a strategy allowing to reduce the drag production. For that
purpose, a natural and common solution is shape optimization. Recently, [Othmer, 2014] and
[Hojjat et al., 2014] independently used morphing routines in order to optimize the shape of the
side-view mirrors of a car. With a drag reduction of 7% for the mirrors, the first author achieved
a 1% drag reduction of the entire car by simply optimizing the mirror shapes and leaving the
rest of the car unchanged. Considering an additional constraint on the mirror shape, the sec-
ond authors reached a global drag reduction of 0.6% with the same drag reduction of 7% for
the mirrors themselves. In the same class of techniques, we can also cite the one consisting in
varying some parameters related to the mirror setup in order to reduce the drag. This problem
was for instance addressed recently by [Olsson, 2011] who proposed to numerically and experi-
mentally perform small variations in the height of the foot, the gap from the car sides and the
inclination of the mirror. All these approaches lead to significant improvements, nevertheless the
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drag reduction remains limited by the numerous regulations and legal demands related to safety
aspects, which impose strong constraints on the mirrors’ shape. Therefore, a complementary
issue would be to consider a drag reduction technique that do not change the geometry or the
position of the mirrors. This objective may be achieved through flow control.

Among the flow control techniques one can distinguish the active and the passive ones. Ac-
tive flow control devices have been thoroughly used to reduce the drag generated at the rear
back of a ground vehicle, which accounts for about 30% of the total vehicle drag. One can for
instance cite the use of synthetic jets (produced by a periodic ejection and suction of fluid from
a small opening) [Leclerc, 2008, Pasquetti and Peres, 2015], pulsed jets (device cyclically in-
jecting momentum in the flow) [Bruneau et al., 2010, Bideaux et al., 2011] or deflectors (power-
operated device allowing to modify the flow direction) [Aider et al., 2009]. This type of flow con-
trol is very efficient and may lead to local drag reduction of about 20% [Bruneau et al., 2010,
Bideaux et al., 2011]. Nevertheless, active flow control devices have a non-negligible produc-
tion cost and require maintenance. Moreover, they are practically impossible to implement on
side-view mirrors.

The solution therefore retained in the present work is the passive flow control technique.
The latter is becoming more and more used in automotive industry since it involves devices that
are easy to set up and low cost, like for example splitter plates (separating plates modifying
the wake dimension)[Gilliéron, 2001, Khalighi et al., 2001] or vortex generators (trapezoidal ob-
stacles settled on the car roof allowing to break the large vortical structures into smaller ones)
[Park et al., 2007, Aider et al., 2009]. In the case of a side-view mirror, a suitable solution would
be the one initially proposed by [Bruneau and Mortazavi, 2004, Bruneau and Mortazavi, 2006,
Bruneau et al., 2008]. It consists in adding a porous sheath on the obstacle surface in order to
reduce the vorticity generation of the boundary layer. The presence of a porous medium at the
solid-fluid interface indeed imposes a kind of mixed boundary condition intermediate between
the no-slip and the slip one on the solid boundary [Carbou, 2008]. As a result, the shear forces
are decreased and the flow dynamics is smoothed.

As a first step, this work aims to perform such passive flow control past a three dimensional
hemisphere, which can be considered as a very simplified geometry of a side-view mirror. As
shown in [Rouméas et al., 2009, Bruneau et al., 2010], a flow past a square back obstacle is
not dominated by longitudinal three-dimensional vortical structures. In [Bruneau et al., 2010],
the authors affirm that this flow characteristic ensures comparable tendencies between two- and
three-dimensional flow control studies. Therefore a preliminary two-dimensional control study on
flow past a two-dimensional semi-circular cylinder can be useful in our case to supply information
and general trends for a further control study in three dimensions around a hemisphere. In the
sequel we will first carry out a detailed flow control study in the 2D case. We will then take
advantages of the outcomes of this study to handle the more realistic 3D problem of flow past
a hemisphere.

4.2 Passive flow control past a 2D semi-circular cylinder

As explained in chapter 2, the method presented here, based on the vortex-penalization tech-
nique, involves a unique equation in the whole domain and enables one to accurately model
each of the different solid, fluid and porous regions by varying the value of the dimensionless
penalization factor λ. In two dimensions, the penalized vorticity equation reads:

∂ω

∂t
+ (u.∇)ω =

1
Re

∆ω + ∇ × [λ χS(us − u)]. (4.1)

We recall that λ = νΦH/kū essentially depends, in the inverse proportion, on the physical
intrinsic permeability of the medium k which directly derives from the Darcy law u = − k

µΦ∇p.
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Varying the value of λ thus directly characterizes the different media.
In this section, the vortex penalization method is applied to passive flow control around a

2D semi-circular cylinder. The control is achieved covering this obstacle with a porous coating.
The expected effect of a porous medium at the solid-fluid interface is to modify the vorticity
generation of the boundary layer as well as the vortex shedding, and therefore to reduce the drag
force improving the aerodynamic properties of the obstacle. The Direct Numerical Simulations
(DNS) are performed in the computational domain D = [−4, 8] × [−5, 5]. The semi-circular
cylinder has a total dimensionless diameter of d = 1. The backward face of the obstacle is
centered at the point (0, 0) (see Figure 4.1a). The total diameter of the semi-circular cylinder
includes a porous layer of thickness τ , constituting the passive control device (see Figure 4.1b).
According to the Brinkman’s equation on which our model is based, the porosity Φ of the added
layer has to be close to 1. In practice, one can consider materials like wire crimps (Φ ∼ 0.72),
fiberglass (Φ ∼ 0.9), steel wool (Φ ∼ 0.9) or hair like texture (Φ ∼ 0.97).
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Figure 4.1: Computational domain for flow control past a semi-circular cylinder.

4.2.1 Impacts of the porous layer on the flow

In this first part we aim to investigate the influence of the added porous layer on the flow
in a natural and simple case. For this purpose we consider the following flow control device:
an homogeneous porous layer of thickness τ = 10%d = 0.1 is inserted at the surface of the
semi-circular cylinder, following the pattern depicted in Figure 4.1b. The λ parameter is set
to 1 within this layer, which, according to the λ-convergence studies reported in Figure 3.8,
represents a high permeability. The control study is realized at Re = 550. Based on the
grid convergence study carried out in the previous chapter at this flow regime (Table 3.6), the
numerical simulations are performed on a 2400 × 2000 grid (corresponding to h = 0.005).

In order to analyze the effects of our control approach, a comparison between the controlled
device and the uncontrolled obstacle (that is to say the solid semi-circular cylinder with λ = 108),
is needed. For this purpose we will systematically analyze the following diagnostics in both cases:

• Global flow quantities :

– mean drag force (F̄x): we consider drag force instead of drag coefficient since the CD

formula (2.40) involves the diameter d of the obstacle which is not clearly defined
because of the porous coating
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– mean enstrophy (Z̄): the enstrophy measures the dissipation effects in the flow (see
equation 2.121). A decrease of enstrophy may lead in this context to a delay of
transition to turbulence.

– Strouhal number (St) (see insert 4)

• Time averaged flow fields 2:

– mean velocity field (in the whole computational domain)

– mean vorticity field (in the near wake)

– mean pressure field (in the near wake)

• Instantaneous vorticity field

• Time averaged profiles:

– mean pressure profile

– mean velocity profile

Let us first focus on the drag production. In the uncontrolled case, the mean drag force
is equal to 0.957 whereas it equals 0.695 with the added porous layer, which corresponds to a
decrease of 27%. As emphasized in the literature [Bruneau et al., 2010, Bruneau et al., 2008],
the main source of drag force for bluff bodies with square back is the low pressure recirculation
zone in the near wake of the vertical wall. In Figure 4.2 are plotted the mean pressure profiles
at the rear end of the two obstacles. One can see on this figure that the back wall pressure
significantly rises in the case of the controlled obstacle compared to the uncontrolled one, thus
explaining the important drag reduction.
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Figure 4.2: Mean pressure profiles at the rear end of the uncontrolled and the controlled semi-
circular cylinder at Re = 550.

This drag reduction may also be qualitatively confirmed by analyzing the time averaged flow
fields reported in Figure 4.3. Figure 4.3a precisely shows an increase of downstream pressure at
the rear back of the controlled body. Moreover, as can be seen in Figure 4.3b, the near wake
vortical structures of the controlled device are smaller, the back recirculation zone is strongly
reduced and the wake dimension L in the crosswise direction is thinner. These features therefore
explain the important drag reduction achieved with the controlled obstacle. Finally, the mean
velocity of the wake clearly diminishes, leading to lower vorticity gradients (Figure 4.3c).

2All the mean values considered in this chapter are calculated on the time range [t̃, tend], where t̃ denotes the
time from which the flow regime is established.
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This reduction of velocity gradients observed in the whole wake is also related to the en-
strophy, that is defined in the entire computational domain. With the controlled semi-circular
cylinder, we found the mean enstrophy to be reduced of 38% (Z̄ = 97.5) compared to the un-
controlled one (Z̄ = 158.4), which corresponds to a drastic diminution of the energy dissipation
in the flow. Concerning the Strouhal number related to the controlled case we found a raise
of 15% (St = 0.284) compared to the solid case (St = 0.248), which implies an increase of the
vortex shedding frequency. This quantitative result is supported by Figure 4.4 showing the Von
Kármán alleys of the two cases under study. Indeed, these instantaneous wakes indicate that
the eddies are shed more frequently from the body in the controlled case. The vortex shedding
is then characterized by a larger number of eddies of smaller size and lower intensity compared
to the solid case.

uncontrolled case porous case λ = 1

Figure 4.4: Instantaneous vorticity fields for flow past the uncontrolled and the controlled semi-
circular cylinder at Re = 550. The frequency of the vortex shedding is higher for the controlled
case than for the uncontrolled case (diminution of the inter-eddies distance).

In order to better understand the driving mechanisms of such flow control, a focus has to
be made inside the porous layer. Figure 4.5 (left) reports mean velocity profiles at x = −0.05
(see the right hand-side of the figure to visualize the profile position). These profiles are given
for three different cases: the uncontrolled case (solid case), the controlled case (porous case)
and the “fluid” case. The fluid case means a semi-cylinder including a porous layer of infinite
permeability (λ = 0): it actually corresponds to a smaller semi-circular cylinder of diameter
d− 2τ and thus to a diminution of the Reynolds number. Here, the “fluid” case corresponds to
flow past a semi-circular cylinder of diameter d = 0.8 at Re = 440.
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Figure 4.5: (Left) Mean profiles of the streamwise component of the velocity ux at x = −0.05 for
the uncontrolled case, the controlled case and the fluid case at Re = 550. (Right) Representation
of the profiles location.
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On the figure one can see that the flow has a non-zero velocity within the porous medium (green
curve). It corresponds to the Darcy velocity described in Figure 2.1 in chapter 2. This velocity
is bounded by the one of the uncontrolled case (blue curve), equal to 0 inside the layer, and the
one of the fluid case (red curve). The regularization effects observed previously are precisely
due to the establishment of a Darcy velocity inside the porous coating allowing to reduce the
velocity gradients at the interface with the fluid medium.

This section offered a first insight into the type of influence that an added porous layer may
have on the flow. In order to extend our control application and to analyze the performances of
such passive device in a more systematic way, we will perform in the following several parametric
studies based on the variation of the value of λ in the porous coating, the thickness τ and the
positioning of porous material at the surface of the semi-circular cylinder. These parametric
control studies will be performed for flows at transitional (Re = 550) and highly transitional
(Re = 3000) regimes.

4.2.2 Parametric study with respect to the penalization parameter λ

In this section we study the influence of the porous layer permeability, in other words the value
of λ, on the flow behavior and the efficiency of such a passive control. This parametric study is
performed at Re = 550 and Re = 3000 with different values of the penalization factor, ranging
from λ = 0.125 (very high permeability) to 103 (very low permeability). These values were
chosen according to the outcomes of the λ-convergence study presented in Figure 3.8. The
results are compared to the one corresponding to the solid (λ = 108) and fluid (λ = 0) cases.
As in the previous part, the thickness of the coating is set in a first place to ten percent of the
diameter, τ = 0.1, for all the cases (see Figure 4.6). The numerical simulations are performed
in the computational domain D represented in Figure 4.1 on a 2400 × 2000 grid (h = 0.005) for
Re = 550 and on a 4800 × 4000 grid (h = 0.0025) for Re = 3000, according to the results of the
grid convergence study presented in chapter 3 and reported in Table 3.6.

In order to analyze the effects of our control approach we take into account the same diag-
nostics and global flow quantities as the ones considered in the previous section.

τ

d d 

τ

d 

λ = 10 0.125 ≤ λ  ≤ 10 λ = 0
8 3

τ

Figure 4.6: (left) Solid/uncontrolled case, (center) Porous case, (right) Fluid case.

The results of the parametric study performed atRe = 550 are given in Table 4.1. Concerning
the Strouhal number St, one can notice that it continuously increases as the λ value decreases.
As highlighted in our preliminary control study, the presence of a permeable layer around the
obstacle induces a raise of the shedding frequency, and in the limit λ → 0 one tends to the flow
dynamics of the fluid case which is characterized by smaller vortices swirling at higher frequency
(Figure 4.7). Regarding F̄x, Table 4.1 shows that, as expected, the drag reduces as the controlled
case tends to the fluid case. Nevertheless, one can observe a slight increase of the drag force for
intermediate values of λ, namely λ = 100 and λ = 10. Figure 4.8 summarizes this observation
showing the evolution of the mean drag force (red curve) with respect to the λ parameter. In
fact, this range of permeability values (10 ≤ λ ≤ 100) is responsible for a high resistance of the
flow inside the layer inducing higher friction forces at the interface, and thus a higher total drag.
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Re = 550
Cases F̄x Z̄ St

uncontrolled case 0.957 158.4 0.248
porous case λ = 1000 0.957 (-0%) 154.0 (-3%) 0.248 (+0%)
porous case λ = 100 0.968 (+1.1%) 143.3 (-10%) 0.248 (+0%)
porous case λ = 10 0.970 (+1.4%) 114.4 (-28%) 0.252 (+1.6%)
porous case λ = 5 0.893 (-7%) 100.6 (-36%) 0.257 (+4%)
porous case λ = 2.5 0.788 (-19%) 93.7 (-41%) 0.268 (+8%)
porous case λ = 1 0.695 (-27%) 97.5 (-38%) 0.284 (+15%)
porous case λ = 0.5 0.664 (-31%) 101.9 (-36%) 0.291 (+17%)
porous case λ = 0.25 0.648 (-32%) 105.5 (-33%) 0.296 (+19%)
porous case λ = 0.125 0.643 (-33%) 107.7 (-32%) 0.298 (+20%)
fluid case 0.640 110.9 0.300

Table 4.1: Reduction effects in terms of mean drag force, mean enstrophy and Strouhal number
brought by the different layer permeabilities in comparison to the uncontrolled case at Re = 550.
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Figure 4.7: Instantaneous vorticity fields for flow past a semi-circular cylinder. The vortex
shedding of the two controlled cases (λ = 10 and λ = 1, with τ = 0.1) are compared to the one
of the uncontrolled case and the fluid case (reduced obstacle) at Re = 550
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Figure 4.8: Effects of various layer permeabilities on the mean drag force F̄x (red curves) and the
mean enstrophy Z̄ (blue curves) for flow past a semi-circular cylinder with τ = 0.1 at Re = 550.

The quantitative results reported in Table 4.1 are also highlighted in Figures 4.9 and 4.10
respectively depicting the mean velocity and mean vorticity fields.
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Figure 4.9: Isolines of mean velocity magnitude for the flow past a semi-circular cylinder at
Re = 550 with τ = 0.1.
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Figure 4.10: Mean vorticity fields and isolines in the near wake for the flow past a semi-circular
cylinder at Re = 550 with τ = 0.1.

Contrary to the case λ = 1 investigated in the previous part and also reported in these
figures, the flow behavior obtained with λ = 10 looks very similar to the one of the uncontrolled
case with an important crosswise extent of the wake (Figure 4.10) and high velocities in the flow,
comparable to those of the uncontrolled case (Figure 4.9). This confirms the results given in
Table 4.1 and allows us to conclude that this value of λ is not suitable at this regime to achieve
drag reduction. However, with λ = 10 we obtain an important reduction of the enstrophy (-28%)
which implies a delay in flow transition. This observation leads us to the analysis of control
efficiency in terms of enstrophy, for which we observe a more complex behavior. Indeed, as can
be seen in Table 4.1 and Figure 4.8 (blue curve), the enstrophy decreases with λ to reach an
optimal value, for lambda = 2.5 (-41% compared to uncontrolled case). Below this λ value, the
enstrophy increases again to finally reach the value corresponding to the reduced obstacle (fluid
case). Furthermore, when λ < 10 then Z̄λ < Z̄fluid, where Z̄λ and Z̄fluid respectively denote
the mean value of enstrophy in the controlled case and in the fluid case. It demonstrates the
non-monotonic behavior of the enstrophy in the range of permeabilities taken into account in
this parametric study (for all values of λ in {0.125, 1000}, Z̄λ < Z̄solid).

At Re = 3000, the evolution of the Strouhal number as a function of λ is similar to the
one observed at Re = 550: the more permeable is the added layer, the higher is the shedding
frequency (Table 4.2). This behavior is represented by the vorticity fields of Figure 4.11, where
one can clearly see the benefits of the porous coating which allows to go from a chaotic wake
with large eddies of strong intensity (uncontrolled case) to a time-periodic Von Kármán street
composed of numerous small vortices (controlled case with λ = 1), similar to the one of the fluid
case.
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Re = 3000
Cases F̄x Z̄ St

uncontrolled case 0.926 334.2 0.238
porous case λ = 1000 0.936 (+1%) 325.8 (-2.5%) 0.236 (-0.84%)
porous case λ = 100 0.873 (-6%) 270.0 (-19%) 0.211 (-11%)
porous case λ = 10 1.054 (+14%) 248.8 (-26%) 0.246 (+4%)
porous case λ = 5 1.048 (+13%) 211.9 (-37%) 0.282 (+19.5%)
porous case λ = 2.5 0.933 (+0.76%) 187.7 (-44%) 0.295 (+25%)
porous case λ = 1 0.870 (-6%) 236.7 (-29%) 0.313 (+33%)
porous case λ = 0.5 0.869 (-6%) 261.6 (-22%) 0.323 (+37%)
porous case λ = 0.25 0.838 (-9.5%) 302.3 (-9.5%) 0.321 (+36%)
porous case λ = 0.125 0.869 (-6%) 300.9 (-10%) 0.328 (+39%)
fluid case 0.880 319.3 0.331

Table 4.2: Reduction effects in terms of mean drag force, mean enstrophy and Strouhal number
brought by the different layer permeabilities in comparison to the uncontrolled case atRe = 3000.

uncontrolled 

case

porous

case λ = 10

porous

case λ = 1

fluid case

Figure 4.11: Instantaneous vorticity fields for flow past a semi-circular cylinder. The vortex
shedding of the two controlled cases (λ = 10 and λ = 1, with τ = 0.1) are compared to the one
of the uncontrolled case and the fluid case (reduced obstacle) at Re = 3000.
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On the other hand, the results obtained in terms of mean drag force and mean enstrophy are
also comparable to those obtained at Re = 550, with a more pronounced behavior. Concerning
the drag force, we indeed notice in Table 4.2 and Figure 4.12 that intermediate permeabilities
(λ ≈ 10) completely deteriorate the performances. On the contrary, below λ = 5, the drag
reduction is enhanced.
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Figure 4.12: Effects of various layer permeabilities on the mean drag force F̄x (red curves)
and the mean enstrophy Z̄ (blue curves) for flow past a semi-circular cylinder with τ = 0.1 at
Re = 3000.

This assessment is confirmed by Figures 4.13 and 4.14 showing on one hand low velocity gra-
dients and a symmetric, thin and regular wake as well as small recirculation zone with the case
λ = 1, whereas the case λ = 10 is responsible for a strong increase of the crosswise dimension of
the wake and of the recirculation region. However, the drag reductions obtained with λ < 5 at
this regime remain largely smaller than the one achieved with the same λ values at Re = 550.
Regarding enstrophy, similarly as in the Re = 550 study, we identify an optimum λ value, still
equal to 2.5, for which the enstrophy reaches a global minimum value leading to a reduction of
44% (Table 4.2 and Figure 4.12). In a general way, this non-monotonic behavior of the enstro-
phy proves that the regularization effects reported here are not due to a change of the Reynolds
number, since we have for instance Z̄λ=2.5 < Z̄λ=1 < Z̄fluid, whereas Reλ=2.5 > Reλ=1 > Refluid.
In fact, the introduction of a porous layer generates Kelvin-Helmoltz instabilities at the solid-
porous interface. These instabilities, depicted in Figure 4.15 at Re = 3000 for the λ = 1 test
case, change the shear forces at the interface and therefore modify the vortex shedding mecha-
nism and the global flow dynamics. The presence of such instabilities explains in particular the
qualitative and quantitative differences between the fluid case and the very permeable cases.
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Figure 4.13: Isolines of mean velocity magnitude for the flow past a semi-circular cylinder at
Re = 3000 with τ = 0.1.
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Figure 4.14: Mean vorticity fields and isolines in the near wake for the flow past a semi-circular
cylinder at Re = 3000 with τ = 0.1.
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Figure 4.15: Zoom of the instantaneous vorticity fields and isolines in the vicinity of the solid
interface at Re = 3000 for the two following cases: the fluid case (left) and the controlled case
with λ = 1 and τ = 0.1 (right).

Finally, an other important observation which emerges from this parametric study is the dif-
ference of behavior between the enstrophy and the drag evolution. In the presence of a porous
coating, we indeed highlighted a systematic enstrophy reduction compared to the solid case,
regardless of the permeability, whereas some values of λ were found to be responsible for a non
negligible drag increase, especially at Re = 3000. This is directly due to the way these two
quantities are evaluated. The enstrophy quantifies the energy dissipation of the whole system, it
is therefore evaluated in the entire domain. Thus, the laminar velocities caused by the presence
of the permeable layer and appearing in the vicinity of the separation points, lead to a delay in
transition to turbulence and directly impact the transport of the vorticity which is regularized.
On the contrary, the drag force is evaluated on the walls of the obstacle or in the vicinity of the
body and is directly linked to the vorticity generation. Therefore, the high friction phenomenon
caused by some permeabilities (namely intermediate permeabilities) and implying a resistance
of the flow in the front part of the obstacle, is directly reported in the drag diagnostic and in the
very near-wake analysis. The λ = 10 test case at Re = 3000 clearly illustrates these statements:
one can indeed notice the beneficial effects of the permeable coating on the wake, which tends
to become time-periodic and centered around the x-axis (Figure 4.11) and does not show high
velocity gradients anymore (Figure 4.13). As a consequence, we achieve a reduction of enstrophy
(Table 4.2). On the opposite, the effects on the very near-wake and on the drag in particular
are clearly not beneficial (Table 4.2). As can be seen on Figure 4.14, the case λ = 10 shows
important recirculation zones in the rear back of the solid, responsible for a pressure decrease
and thus for a drag growth. Therefore, the drag forces are more sensitive to the permeability
values.

To conclude this λ-parametric study we can assert that, when considering an homogeneous
porous layer device, the control should be performed with high permeability coefficients (λ ≤ 2.5)
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in order to combine both a significant drag reduction and a regularization of the wake. However,
we noticed in this analysis that even with very low values of λ, the drag and enstrophy reductions
were moderate at Re = 3000 which was not the case at Re = 550. As mentioned in this section,
these moderate results can be explained by the resistance experienced by the flow in the porous
front part of the obstacle. This phenomenon prevents the Darcy velocity from properly settling
within the porous medium before reaching the separation point, which therefore implies rather
poor drag reductions. It is even more enhanced with intermediate permeabilities, for which the
drag is increased compared to the uncontrolled case. A solution allowing to bypass this problem
would then consist in concentrating the porous zones in the vicinity of the separation points.
This point is addressed in the following section.

4.2.3 Influence of the porous layer configuration on flow control efficiency

According to the parametric study and to the final remarks of the previous section, we will study
different configurations of porous coating at the surface of the semi-circular cylinder. We propose
to compare the six test cases depicted in Figure 4.16. Case 0 refers to the uncontrolled case,
cases 1 and 2 correspond to the homogeneous layer cases already investigated in the previous
section where λ respectively equals 1 and 10, and cases 3 to 5 refer to heterogeneous cases where
the porous layer is split into two regions with different permeabilities. In case 3, high permeable
regions (λ = 1) are inserted at the top and bottom of the semi-circular cylinder and the front
part of the porous layer is characterized by an intermediate permeability (λ = 10). In a control
efficiency point of view, we expect this mixed configuration to be better than case 2 since the
separation points region is treated with a high permeability. The cases 4 and 5 first appear
as very interesting in terms of industrial applications. Indeed, compared to cases 1 and 2 they
involve less permeable material and are much easier to industrially build than case 3 which
mixes high and intermediate permeabilities. For these cases, the front part of the coating is no
more permeable, but completely solid and porous layers are only placed in the two edge parts
of the obstacle, which makes the practical implementation much more easier. Beyond this non
negligible practical aspect, cases 4 and 5 will enable us to verify our hypothesis stating that the
adding of a porous coating might be more beneficial when inserted in the region of the separation
points. Their geometrical configuration will be called the “poles” configuration in the sequel.
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Figure 4.16: Cases 1 to 5 corresponding to different porous layer configurations. Case 0 depicts
the uncontrolled case.

In a first place, the thickness of the layer is kept to τ = 0.1. The asymptotic mean values
of global flow quantities and the time averaged vorticity, velocity and pressure fields will be
analyzed for each of the six considered devices at Re = 550 and Re = 3000.

First of all, the results reported here give further information concerning cases 1 and 2 already
discussed in detail in the previous section. Indeed, Figures 4.17 and 4.18 clearly show that,
contrary to case 1, a low pressure still exists at the body’s back wall for case 2. These observations
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on the pressure field confirm the results obtained in the previous section and reported here in
Table 4.3, where we observe a drag reduction with case 1 (λ = 1) and a drag increase for case 2
(λ = 10).

P

0.12

0

-0.4

-0.8

-1.2

-1.58

0.12

0

-0.4

-0.8

-1.2

-1.58

case 0 case 2 case 4

case 1 case 3 case 5

Figure 4.17: Mean pressure fields and isolines in the near wake for the flow past a semi-circular
cylinder at Re = 550 with τ = 0.1.
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Figure 4.18: Mean pressure fields and isolines in the near wake for the flow past a semi-circular
cylinder at Re = 3000 with τ = 0.1.

Let us now focus on the heterogeneous devices. For both regime, the case 3 shows benefits
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Re = 550 Re = 3000
τ = 0.1 F̄x Z̄ F̄x Z̄

case 0 (uncontrolled case) 0.957 158.4 0.926 334.2
case 1 0.695 (-27%) 97.5 (-38%) 0.870 (-6%) 236.7 (-29%)
case 2 0.970 (+1.4%) 114.4 (-28%) 1.054 (+14%) 248.8 (-26%)
case 3 0.668 (-30%) 87.4 (-45%) 0.922 (-0.4%) 223.2 (-33%)
case 4 0.551 (-40%) 110.2 (-30%) 0.737 (-20%) 270.6 (-19%)
case 5 0.738 (-23%) 125.2 (-21%) 0.860 (-7%) 281.3 (-16%)

Table 4.3: Reduction effects brought by the different porous layer configurations in comparison
to the uncontrolled case at Re = 550 and Re = 3000 with τ = 0.1.

which are very comparable to those of case 1. We note that its only geometrical difference with
case 2 is the presence of highly permeable poles in the layer. This change allows a diminution of
the back wall recirculation zone (Figures. 4.19 and 4.20) and a noticeable increase of downstream
near wall pressure (Figures 4.17 and 4.18).
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Figure 4.19: Mean vorticity fields and isolines in the near wake for the flow past a semi-circular
cylinder at Re = 550 with τ = 0.1.
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Figure 4.20: Mean vorticity fields and isolines in the near wake for the flow past a semi-circular
cylinder at Re = 3000 with τ = 0.1.
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Figure 4.21: Fields and isolines of mean velocity magnitude for the flow past a semi-circular
cylinder at Re = 550 with τ = 0.1.
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Figure 4.22: Fields and isolines of mean velocity magnitude for the flow past a semi-circular
cylinder at Re = 3000 with τ = 0.1.

The case 3 also leads to a significant regularization of the wake, showing lower velocities
(Figures 4.21 and 4.22). It emerges from these observations that the reduction effects mainly
come from the permeable parts located in both edges of the body, corresponding to the region
where the flow separation occurs. In order to make sure of this statement, we should therefore
look at devices where the permeable zone is only positioned in the vicinity of the separation
points. This lead us to the study of cases 4 and 5.

For cases 4 and 5 and at both Reynolds numbers 550 and 3000, the enstrophy and the drag
force undergo a tremendous decrease except for the case 5 at Re = 3000 where the drop of the
drag force is limited to 7% because of the lower permeability of the porous layer (Table 4.3).
Figures 4.17 to 4.22 confirm these results. They show a reduction of the mean velocity in the
wake which becomes almost symmetrical with respect to the x-axis (Figures 4.21 and 4.22) as
well as a decrease of the crosswise dimension of the two counter-rotating vortical structures at
the back of the obstacle (Figures 4.19 and 4.20). Also, the near wall pressure values (Figures
4.17 and 4.18), especially for the case 4, are sensibly diminished which is in agreement with drag
results.
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These results emphasize the importance of the position of the permeable zones and confirm
the hypothesis made from the previous λ-parametric study: the beneficial effects obtained in
this study essentially come from the fact that a porous medium is inserted in the vicinity of
the separation points. Moreover, its presence in the front part of the obstacle may turn to
deteriorate the control performances due to the resistance effects experienced by the flow in
this region. The case 4 thus definitely appears as the most efficient device to regularize the
flow dynamics and more especially to reduce the drag. On the other hand, test case 5, made
of intermediate permeabilities on both edges of the body, may correspond to a more realistic
device compared to the very permeable poles of case 4.

4.2.4 Influence of the porous layer thickness τ on flow control efficiency

In the previous sections, the control effects were studied for different configurations using a
constant porous layer thickness τ = 10%d = 0.1. In this section, the effect of the thickness
for different configurations will be investigated, and a special focus will be made on thin layers
in order to reduce the use of porous materials and to find out a compromise between practical
constraints and control efficiency. The same test cases (see Figure 4.16) are now considered
setting the thickness of the layer to τ = 5%d = 0.05 and to τ = 2.5%d = 0.025.

Re = 550 Re = 3000
τ = 0.1 F̄x Z̄ F̄x Z̄

case 0 (uncontrolled case) 0.957 158.4 0.926 334.2
case 1 0.695 (-27%) 97.5 (-38%) 0.870 (-6%) 236.7 (-29%)
case 2 0.970 (+1.4%) 114.4 (-28%) 1.054 (+14%) 248.8 (-26%)
case 3 0.668 (-30%) 87.4 (-45%) 0.922 (-0.4%) 223.2 (-33%)
case 4 0.551 (-40%) 110.2 (-30%) 0.737 (-20%) 270.6 (-19%)
case 5 0.738 (-23%) 125.2 (-21%) 0.860 (-7%) 281.3 (-16%)

Table 4.4: Reduction effects brought by the different porous layer configurations in comparison
to the uncontrolled case at Re = 550 and Re = 3000 with τ = 0.1.

Re = 550 Re = 3000
τ = 0.05 F̄x Z̄ F̄x Z̄

case 0 (uncontrolled case) 0.957 158.4 0.926 334.2
case 1 0.774 (-19%) 123.7 (-22%) 0.999 (+8%) 285.2 (-15%)
case 2 0.914 (-4%) 123.5 (-22%) 0.979 (+6%) 253.7 (-24%)
case 3 0.751 (-22%) 110.4 (-30%) 0.947 (+2%) 247.6 (-26%)
case 4 0.618 (-35%) 127.6 (-19%) 0.819 (-12%) 326.2 (-2%)
case 5 0.753 (-21%) 135.4 (-15%) 0.847 (-8.5%) 312.3 (-6.5%)

Table 4.5: Reduction effects brought by the different porous layer configurations in comparison
to the uncontrolled case at Re = 550 and Re = 3000 with τ = 0.05.

Tables 4.4, 4.5 and 4.6 respectively report the control performances in terms of mean global
flow quantities, obtained for each case with τ = 0.1, τ = 0.05 and τ = 0.025. Table 4.4 is
actually a copy of Table 4.3. It is duplicated here to facilitate the comparisons between the
different cases. For both regimes Re = 550 and Re = 3000, when comparing Tables 4.4, 4.5 and
4.6, a slight decrease of control effects is observed when diminishing the thickness of the porous
coating. This can be explained looking at the mean profiles of the streamwise component of the
velocity, ux at x = −0.05 plotted in Figures 4.23 and 4.24.

These profiles show higher acceleration of the flow field inside the layer when its thickness
drops, inducing higher velocity gradients in the vicinity of the solid-porous-fluid interface and
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Re = 550 Re = 3000
τ = 0.025 F̄x Z̄ F̄x Z̄

case 0 (uncontrolled case) 0.957 158.4 0.926 334.2
case 1 0.821 (-14%) 139.3 (-12%) 1.011 (+9%) 318.4 (-5%)
case 2 0.879 (-8%) 134.5 (-15%) 1.018 (+10%) 283.7 (-15%)
case 3 0.824 (-14%) 129.6 (-18%) 0.929 (+0.4%) 271.1 (-19%)
case 4 0.768 (-20%) 140.2 (-11%) 0.806 (-13%) 331.4 (-0.8%)
case 5 0.810 (-15%) 143.4 (-10%) 0.828 (-10.5%) 320.6 (-4%)

Table 4.6: Reduction effects brought by the different porous layer configurations in comparison
to the uncontrolled case at Re = 550 and Re = 3000 with τ = 0.025.
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Figure 4.23: Mean profiles of the streamwise component of the velocity ux at x = −0.05 for
different porous layer thicknesses τ at Re = 550. Picture (d) gives the pattern of profile config-
uration at x = −0.05 showing the location of the profiles enlargement inside the layer proposed
in (a), (b) and (c).

make the vortex shedding occurring earlier, resulting in a little reduction of beneficial effects.
Also, Figure 4.25 shows a direct correlation at Re = 550 between the drag reduction achieved
with the different cases and the related back wall pressure forces: when the drag drops, the back
wall pressure rises. This fact is more unstable for the Re = 3000 as the flow is highly transitional
(Figure 4.26). Furthermore, for the later flow regime, decreasing the layer thickness in cases 1,
2 and 3 deteriorates the drag performances. This can be explained by the fact that the flow
velocity significantly slows down inside the thin layer compared to the thick one (Figure 4.24)
thus increasing the skin friction effects and so the drag forces.
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Figure 4.24: Mean profiles of the streamwise component of the velocity ux at x = −0.05 for
different porous layer thicknesses τ at Re = 3000 (see Figure 4.23d for profiles location.)

Now let us focus on cases 4 and 5. One can observe in Tables 4.4, 4.5, 4.6 that case 4 re-
mains the best control device in terms of drag reduction, regardless of the coating thickness and
Reynolds number. As discussed in the previous section, this is due to the fact that the front
part of the obstacle is completely solid and that highly permeable zones are precisely located
in the vicinity of the boundary layer separation points where the shedding starts. For both
cases 4 and 5, Figures 4.23 and 4.24 show a uniform and relatively low acceleration of the flow
field inside the layer, which does not change very much between the three different thicknesses.
This explains why for cases 4 and 5 the decrease of drag and enstrophy remains important
for thinner porous layers. As the case 5 is maybe the most practical benchmark (more than
all other cases since the porous materials with moderate permeability and edge locations are
easier to handle for the manufacturing of a real device), its control efficiency has to be stud-
ied attentively. Table 4.6 shows that at Re = 550 the drag reduction achieved with case 5
and τ = 0.025 is equal to −15% which represents a strong diminution. The most interesting
phenomenon arises at Re = 3000. At this regime, the control efficiency of case 5 is inversely
proportional to the porous layer thickness τ . Indeed, Tables 4.4, ?? and 4.6 respectively report
drag reductions of −7%, −8.5% and −10.5%. This promising assessment seems to be due to the
fact that the flow resistance inside a thin porous layer is less important than in a thicker layer
but the shedding is still well tuned thanks to the position of porous coatings in the body corners.
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Figure 4.25: Mean pressure profiles at the rear end of the body at Re = 550.
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Figure 4.26: Mean pressure profiles at the rear end of the body at Re = 3000.



132 Chapter 4. Application to passive flow control using porous media

The results obtained throughout this preliminary two-dimensional study are recapitulated
in the following list. They stand for the transitional and the highly transitional regime:

✓ When considering an homogeneous porous layer device covering the whole surface of the
semi-circular cylinder, the permeability should be set to high values (λ ≤ 2.5) in order to
combine significant drag and enstrophy reduction.

✓ The best porous layer configuration in terms of global flow regularization is the “porous
poles” configuration. Such passive flow control device concentrates the porous parts in the
vicinity of the separation points, thus preventing the flow-resistance effects in the front
part of the body.

✓ In general, reducing the thickness of the porous coating softens the control performances,
or even deteriorates them (in the case of the homogeneous porous layer for example).
Nevertheless, the “porous poles” configuration still provides significant drag reductions
with small thicknesses.

Taking into account these observations, a more realistic study is now carried out in the
three-dimensional case.

4.3 Passive flow control past a 3D hemisphere

The vortex penalization method is now used to discretize the three-dimensional penalized Navier-
Stokes equations 2.21-2.22 and is applied to passive flow control around a 3D hemisphere. The
two different Reynolds numbers carried out in the present study are Re = 300 and Re =
1000. These choices are based on the available reference results about flows past a sphere or
a hemisphere from which we could perform validations in chapter 3. These validations indeed
enabled us to identify the mesh sizes allowing to account for the correct flow behaviors at these
two Reynolds numbers, corresponding to two different flow regimes.

The direct numerical simulations are performed in a computational domain D = [−2, 8.24]×
[−2.56, 2.56] × [−2.56, 2.56]. The hemisphere has a diameter d equal to 1 and its rear back
surface is centered at the point (0, 0, 0). According to the convergence study and the validation
results reported in section (3.2.2), the simulations at Re = 300 and Re = 1000 are carried out
setting the grid resolution to 512 × 256 × 256 (h = 0.02) and 1024 × 512 × 512 (h = 0.01)
respectively. The time step is adaptive and defined according to equation 2.72. As in the
validation simulations, a perturbation is applied to the flow between T = 3 and T = 4 in order
to trigger the instability (see section (3.2.2)).

4.3.1 Influence of the porous layer configuration and permeability on flow
control efficiency

Following the same process as in 2D, the control around the hemisphere is achieved covering
the obstacle with a porous coating for which different geometrical configurations are considered.
These configurations are depicted in Figure 4.27, where case 0 refers to the uncontrolled case,
case 1 contains a porous layer on the whole hemisphere surface, case 2 involves two porous poles
on top and bottom of the body, case 3 contains a porous zone corresponding to the revolution
of the previous poles in the z-direction, case 4 implements a thin porous ring and finally the
“fluid case” corresponds to the hemisphere of diameter d − 2τ . We note that case 1 and case
3 respectively represent the three-dimensional counterpart of the “homogeneous layer” (cases
1-2 in Figure 4.16) and “poles” configuration (cases 4-5 in Figure 4.16) handled in 2D . In the
present simulations, the porous areas of cases 1, 2, 3 and 4 will be modeled setting λ to 1 or 10.
In a first place, the thickness of the coating is set to τ = 0.1 for all the cases.
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Figure 4.27: Cases 1 to 4 corresponding to different porous layer configurations. Case 0 depicts
the uncontrolled case and “fluid case” corresponds to the case of a smaller hemisphere of diameter
d− 2τ .
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4.3.1.1 Numerical results for Re = 300

The flow control results are first analyzed for Re = 300, fixing λ = 1 within the porous areas.
At this regime, the less efficient passive control device is the case 4. Indeed, as reported in
Table 4.7 and Figure 4.28, the drag reduction induced by the ring configuration is particularly
moderated (-1.4%) and concerning the enstrophy, one can notice a slight increase compared to
the uncontrolled case (+0.4%).

λ = 1, τ = 0.1 F̄x Z̄ St

case 0 0.285 73.0 0.134
case 1 0.246 (-14%) 49.6 (-32%) 0.140 (+4.5%)
case 2 0.269 (-7%) 69.0 (-5.5%) 0.087 (-35%)
case 3 0.224 (-21%) 55.0 (-25%) 0.140 (+4.5%)
case 4 0.281 (-1.4%) 73.3 (+0.4%) 0.140 (+4.5%)
fluid case 0.189 49.8 0.158

Table 4.7: Reduction effects brought by the different porous layer configurations in comparison
to the uncontrolled case at Re = 300 with λ = 1 within the permeable regions and τ = 0.1.
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Figure 4.28: Effects of various layer configurations on drag force (a) and enstrophy (b) for flow
past a hemisphere at Re = 300, with λ = 1 within the permeable regions and τ = 0.1.

The poor performance of this device is corroborated by Figure 4.29, showing the time-
averaged vorticity magnitude in the domain. On this figure one can indeed see that the mean
wake obtained with case 4 is very similar to the one obtained with case 0. The phase diagram
(Fy, Fz) plotted in Figure 4.30 also confirms that even with a porous ring the flow remains
chaotic and do not turn to become time-periodic. This statement is also verifiable with Fig-
ure 4.28. The phase diagram related to case 4 is moreover very comparable to the one of the
uncontrolled case. Finally, the instantaneous 3D vorticity field |ω| of case 4, presented in Fig-
ure 4.31, shows that the wake is thick and not planar symmetric. The lack of efficiency of
the porous ring can be explained by the fact that it is too close to the back wall edge and
does not offer a clear entrance area for the upstream flow inside the porous part (see the side
view and top view of case 4 in Figure 4.27). This makes the adding of such device almost useless.
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Figure 4.29: Effects of various layer configurations on mean vorticity magnitude for flow past a
hemisphere at Re = 300, with λ = 1 within the permeable regions and τ = 0.1.

According to Table 4.7 and Figure 4.28, the case 1 is an efficient device to reduce drag (-
14%) and more especially enstrophy (-32%). The mean wake related to this type of controlled
hemisphere is still relatively thick in the XY plane (although the vorticity intensity of the eddies
is strongly decreased compared to case 0) but it shows a perfect symmetry in the XZ plane
(Figure 4.29). This planar symmetry is confirmed by Figure 4.30 showing for case 1 a phase
diagram centered around Fz = 0. This diagram also indicates an emerging time-periodicity in
the solution which is indeed confirmed by Figure 4.28. The representation of the 3D vorticity
field in Figure 4.31 clearly highlights the capability of the homogeneous porous layer to regularize
the flow. We can notice that the result is very close to the one obtained with the fluid case, that
is to say with the hemisphere of diameter d − 2τ = 0.8, for which the actual Reynolds number
is equal to 240. Let us recall that in the validation study performed in the case of flow past a
hemisphere at Re = 250, the flow was indeed shown to be periodic and planar symmetric (see
section (3.2.2.2)). The efficiency of case 1 can be explained by the fact that the whole porous
layer acts as a damper and regularizes the flow.

The results obtained with the case 2 are much more moderated. Indeed, although the pres-
ence of porous poles tends to make the wake periodic (Figure 4.30) and planar symmetric (Figure
4.29b), high vorticity values can still be observed (Figure 4.29), and finally the drag force and
the enstrophy only reduce respectively of 7% and 5.5% compared to the uncontrolled case (Table
4.7 and Figure 4.28). The case 2 therefore has a positive effect but its action area remains too
small compared to the whole separation zone.
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Figure 4.30: Effects of various layer configurations on the phase diagram (Fy, Fz) for flow past
a hemisphere at Re = 300, with λ = 1 within the permeable regions and τ = 0.1.
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Figure 4.31: Effects of various layer configurations on instantaneous vorticity magnitude 3D
field and isocontour |ω| = 1 for flow past a hemisphere at Re = 300, with λ = 1 within the
permeable regions and τ = 0.1.

Let us consequently focus on the actual three-dimensional counterpart of the “poles” con-
figuration discussed in 2D. It corresponds to the case 3. The drag reduction induced by this
type of device is the best one among all the considered configurations. It indeed reaches -21%.
As regards enstrophy, a decrease of 25% is observed with such a device (Table 4.7 and Figure
4.28). These significant reductions are related to the global flow regularization, evidenced by
the wake in Figure 4.29 as well as the instantaneous vorticity in Figure 4.31. Nevertheless, one
can notice in Figure 4.29b that with case 3 the wake is not planar symmetric, contrary to case 1.
Indeed, the phase diagram (Fy, Fz) is not vertically centered at the point Fz = 0. Furthermore,
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no clear periodic pattern emerges from the solution (see Figure 4.28). Despite this absence of
periodicity, we can however remark the low amplitude of the drag and enstrophy solution, which
confirms the regularizing effects brought by this device. Unlike the case 4, this case allows the
flow to easily penetrate within the porous layer which greatly enhances the flow regularization.

The same devices are now analyzed, at the same flow regime, considering an intermedi-
ate permeability within the porous areas, materialized by λ = 10. According to the previous
discussion, the case 4 will not be taken into consideration in this study and in the sequel.

In general, the control performances obtained fixing λ = 10 in the porous areas are quite
reduced compared to the one achieved with devices containing high permeable zones (λ = 1).
Considering the case 1 in a first place, one can even notice non-beneficial effects in terms of drag
production. Indeed, as shown by Table 4.8 and Figure 4.32, case 1 is responsible for an increase
of 7.4% of the drag force compared to the uncontrolled case. The reduction of enstrophy allowed
with such device is quite limited and only reaches -7%.

λ = 10, τ = 0.1 F̄x Z̄ St

case 0 0.285 73.0 0.134
case 1 0.306 (+7.4%) 67.7 (-7%) 0.140 (+4.5%)
case 2 0.280 (-2%) 71.5 (-2%) 0.153 (+14%)
case 3 0.273 (-4%) 67.9 (-7%) 0.140 (+4.5%)
fluid case 0.189 49.8 0.158

Table 4.8: Reduction effects brought by the different porous layer configurations in comparison
to the uncontrolled case at Re = 300 with λ = 10 within the permeable regions and τ = 0.1.
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Figure 4.32: Effects of various layer configurations on drag force (a) and enstrophy (b) for flow
past a hemisphere at Re = 300, with λ = 10 within the permeable regions and τ = 0.1.

Contrary to the case where λ = 1 inside the porous layer, the mean wake do not present
here planar symmetry (Figure 4.33b) and is still rather perturbed (Figure 4.33a). The phase
diagram of case 1 plotted in Figure 4.34 is more regular that the one of case 0 but shows however
non negligible amplitudes for the lift forces Fy and Fz. In fact, as highlighted in the 2D study,
decreasing the permeability makes the fluid displacement more difficult inside the porous layer
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Figure 4.33: Effects of various layer configurations on mean vorticity magnitude for flow past a
hemisphere at Re = 300, with λ = 10 within the permeable regions and τ = 0.1.

and increases the resistance to its movement. All these observations highlight the importance of
the location of the porous parts on the obstacle. Once again it appears that these areas should
be concentrated in the vicinity of the flow separation points. The results obtained with case 2
confirm this statement. Even if the control effects achieved with such device are really moderated
(Table 4.8 and Figure 4.32), the performances are not deteriorated. From a qualitative point
of view, the phase diagram (Fy, Fz) and the mean wake in the XY plane remain very similar
to the one of case 0 (Figure 4.34 and Figure 4.33a), but a symmetry emerges in the XZ plane
(Figure 4.33a), confirming the beneficial effects brought by the two porous poles.

In the end, the case 2 cannot be qualified as efficient but its comparison with case 1 enables
us to enhance the importance of the position of the porous parts when their permeability is
increased. The best flow control device considered here is the case 3, allowing for a drag reduction
of 4% and a decrease of the enstrophy of 7% (Table 4.8 and Figure 4.32). Figure 4.33b shows
that compared to case 0 the flow better attaches to the obstacle with case 3, leading to a thinner
wake. The 3D instantaneous vorticity fields depicted in Figure 4.35 clearly show the benefits
obtained with case 3 compared to cases 1 and 2 since its wake is the only one showing a clear
regularization compared to case 0.

Finally, concerning the Strouhal number, one can see in Tables 4.7 and 4.8 that for cases 1,
2 and 4 the presence of a porous coating at the hemisphere surface is responsible for a small
and constant increase of the shedding frequency compared to case 0, while we notice sharp
fluctuations with case 2. In the 3D case, the evolution of the Strouhal number therefore seems
to be significantly influenced by the position and the permeability of the porous coating.
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Figure 4.34: Effects of various layer configurations on the phase diagram (Fy, Fz) for flow past
a hemisphere at Re = 300, with λ = 10 within the permeable regions and τ = 0.1.
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Figure 4.35: Effects of various layer configurations on instantaneous vorticity magnitude 3D
field and isocontour |ω| = 1 for flow past a hemisphere at Re = 300, with λ = 10 within the
permeable regions and τ = 0.1.

4.3.1.2 Numerical results for Re = 1000

Let us now focus on the flow control results at Re = 1000. At this regime, we only take
into consideration the best configurations outlined in the previous section, namely the case 1
(homogenous layer) and the case 3 (poles’ revolution). For the latter, two different permeabilities
are handled within the porous part: λ = 1 and λ = 10. The reduction effects in terms of drag
force and enstrophy are given by Table 4.9 and Figure 4.36. As can be seen, the case 3 with
λ = 1 is the only device providing a drag decrease (-16%). In particular, case 1 with λ = 1 is
responsible for a drag increase of 3% while it ensures a reduction of enstrophy of 30%, which
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is more than the reduction achieved with case 3 and λ = 1 (-19%). In this context, the case 1
is therefore better suited to regularize the wake. Indeed, as can be noticed on Figure 4.37, the
homogeneous layer of permeability λ = 1 significantly impacts the wake that tends to present
the same characteristics that the one of the fluid case. It allows in particular to recover a planar
symmetric wake (Figure 4.37b), which is not the case for the case 3 with λ = 1. However,
the latter represents the best device in terms of global regularization. Besides the important
reductions reported in Table 4.9, the mean wake obtained from case 3 with λ = 1 is smoother
than the one of case 0, with lower vorticity values and a thinner dimension in the crosswise
direction (Figure 4.37a) and in the spanwise direction (Figure 4.37b). The instantaneous 3D
vorticity field depicted in Figure 4.38 also shows the same effects on the wake and enhances the
regularization capabilities of such device. On the contrary, setting λ = 10 within the porous
area of case 3 deteriorates the performances. The wake indeed thickens, showing higher vorticity
values (Figures 4.37 and 4.38), and the drag force as well as the enstrophy raise of 5% and 2%
respectively (Table 4.9 and Figure 4.36). In conclusion, among the configurations handled in
this flow control study at Re = 1000 with the high layer thickness τ = 0.1, the most competitive
device is clearly the case 3 with a high permeability (λ = 1) settled within the porous coating.

τ = 0.1 F̄x Z̄

case 0 0.210 175.8
case 1, λ = 1 0.217 (+3%) 123.1 (-30%)
case 3, λ = 1 0.177 (-16%) 141.8 (-19%)
case 3, λ = 10 0.221 (+5%) 179.6 (+2%)
fluid case 0.143 126.5

Table 4.9: Reduction effects brought by different porous layer configurations in comparison to
the uncontrolled case at Re = 1000 with τ = 0.1.
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Figure 4.36: Effects of various layer configurations on drag force (a) and enstrophy (b) for flow
past a hemisphere at Re = 1000, with τ = 0.1.
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Figure 4.37: Effects of various layer configurations on mean vorticity magnitude for flow past a
hemisphere at Re = 1000, with τ = 0.1.
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Figure 4.38: Effects of various layer configurations on instantaneous vorticity magnitude 3D
field for flow past a hemisphere at Re = 1000, with τ = 0.1.
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4.3.2 Influence of the porous layer thickness τ on flow control efficiency

4.3.2.1 Numerical results for Re = 300

In this section we focus on the influence of the porous coating thickness τ on the flow control
efficiency. At the flow regime considered here, namely Re = 300, we will only perform this
τ -parametric study with the “poles’ revolution” device (case 3) where λ = 10 within the porous
part. Indeed, according to the above discussion, this device appears as a good compromise
between flow control efficiency and manufacturing constraints since it involves intermediate
permeability. In order to facilitate the manufacturing of such obstacle, it would be interesting
to investigate the performance of such device with a thickness lower than τ = 0.1. Like in the
2D study, we consider for that purpose two other values of τ , namely τ = 0.05 and τ = 0.025.
The 3D representation of the poles’ revolution device with the different values of τ is given by
Figure 4.39.

(a) τ = 0.1 (b) τ = 0.05 (c) τ = 0.025

Figure 4.39: Graphical representation of the control device corresponding to case 3 (poles’
revolution) with the resolution used for simulations at Re = 300 (i.e. h = 0.02). Three different
thicknesses τ are considered. The shaded areas depict the permeable part of the hemisphere.

The reduction effects brought by the case 3 with respect to the thickness are reported in
Table 4.10 and Figure 4.40.

λ = 10 F̄x Z̄ St

case 0 0.285 73.0 0.134
case 3, τ = 0.1 0.273 (-4%) 67.9 (-7%) 0.140 (+4.5%)
case 3, τ = 0.05 0.268 (-6%) 68.4 (-6%) 0.133 (-1%)
case 3, τ = 0.025 0.273 (-4%) 69.9 (-4%) 0.140 (+4.5%)
fluid case 0.189 49.8 0.158

Table 4.10: Reduction effects brought by the case 3 configuration for various layer thicknesses τ
with λ = 10 within the permeable region, in comparison to the uncontrolled case at Re = 300.

Surprisingly, the solutions obtained with τ = 0.05 and τ = 0.025 are quite similar to the
one obtained with τ = 0.1. In particular one can even notice an improvement in terms of
drag reduction with τ = 0.05 (-6%) compared to τ = 0.1 (-4%). The good performances of
case 3 with τ = 0.05 are indeed enhanced by Figure 4.41 showing a strong decrease of the
vorticity intensity in the mean wake, which tends to become very thin and planar symmetric
4.41b. The regularization effects caused by such device are also clearly shown on Figure 4.42.
When decreasing τ to 0.025, the drag and enstrophy decrease are both equal to 4%. All these
observations attest that the case 3 handled with a thickness equal to 0.05 corresponds to the best
candidate in terms of flow control, at this regime. However, we would like to temper the results
obtained with τ = 0.025 since the space resolution considered in our simulations (h = 0.02)
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Figure 4.40: Effects of various layer thicknesses τ for case 3 on drag force (a) and enstrophy (b)
for flow past a hemisphere at Re = 300, with λ = 10 within the permeable region.
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Figure 4.41: Effects of various layer thicknesses τ for case 3 on mean vorticity magnitude for
flow past a hemisphere at Re = 300, with λ = 10 within the permeable region.



144 Chapter 4. Application to passive flow control using porous media

case 3, τ=0.025

fluid case

case 0 case 3, τ=0.05

case 3, τ=0.1

Figure 4.42: Effects of various layer thicknesses τ for case 3 on instantaneous vorticity magnitude
3D field and isocontour |ω| = 1 for flow past a hemisphere at Re = 300, with λ = 10 within the
permeable region.

might be too large to perfectly capture the effects caused by this really thin porous part.

4.3.2.2 Numerical results for Re = 1000

A similar τ -parametric study is also performed at Re = 1000 considering the same three values
of τ , namely 0.1, 0.05 and 0.025. The controlled device under consideration here is the case 3
(“poles’ revolution”) setting λ = 1 within the porous region. As this device allowed to achieve by
far the best drag reduction in the study carried out at the same Reynolds number in subsection
(4.3.1.2) (see Table 4.9), we aim to investigate its performances with thinner porous layers, in a
search of manufacturing savings.

Table 4.11 and Figure 4.43 indicate that the drag and enstrophy reductions obtained with
τ = 0.05 and 0.025 are noticeably tempered compared to the case where τ = 0.1. Furthermore,
the results obtained with the lower value τ = 0.025 are quite similar to the one obtained
with τ = 0.05. The regularization effects brought by the cases τ = 0.05 and τ = 0.025 are
also qualitatively reported in Figure 4.44 and Figure 4.45. They show that the mean and
instantaneous wakes obtained with τ = 0.025 in case 3 resemble to the one obtained with the
uncontrolled case. A smoothing tendency is then observed from this lower value of τ to the
higher one. At this flow regime, the “poles’ revolution” configuration with τ = 0.1 therefore
appears as the most suitable control device.

λ = 1 F̄x Z̄

case 0 0.210 175.8
case 3, τ = 0.1 0.177 (-16%) 141.8 (-19%)
case 3, τ = 0.05 0.198 (-6%) 170.6 (-3%)
case 3, τ = 0.025 0.201 (-4%) 170.4 (-3%)
fluid case 0.143 126.5

Table 4.11: Reduction effects brought by the case 3 configuration with λ = 1 within the perme-
able region, in comparison to the uncontrolled case at Re = 1000.
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Figure 4.43: Effects of various layer thicknesses τ for case 3 on drag force (a) and enstrophy (b)
for flow past a hemisphere at Re = 1000, with λ = 1 within the permeable region.
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Figure 4.44: Effects of various layer thicknesses τ for case 3 on mean vorticity magnitude for
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Figure 4.45: Effects of various thicknesses τ for case 3 on instantaneous vorticity magnitude 3D
field for flow past a hemisphere at Re = 1000, with λ = 1 within the permeable region.

4.3.3 Comparable tendencies between the 2D and the 3D studies

Although a straight comparison between the flow control outcomes obtained in 2D and in 3D
would be inappropriate because of the major discrepancies existing between 2D and 3D flows,
it can be however interesting to enhance the common tendencies observed in both cases.

Let us first of all focus on the results obtained in transitional flow regime (i.e. Re = 550 in
2D and Re = 300 in 3D). When the permeability inside the porous areas is really high (typically
λ = 1) and the thickness is set to 10% of the diameter (τ = 0.1), we observed both in the 2D
and the 3D case that the best device in terms of drag reduction was the “poles’ revolution”
device (case 4 in 2D and case 3 in 3D). In terms of enstrophy reduction, we found that the best
candidate was the “homogeneous layer” device (case 1 in 2D and in 3D). We note that the same
conclusion holds for the highly transitional regime (Re = 3000 in 2D and Re = 1000 in 3D).

When the permeability of the porous coating is intermediate (typically λ = 10) and τ = 0.1,
we systematically noticed at a transitional regime that the “homogeneous layer” device was
responsible for an increase of the drag production, even if it ensured a reduction of enstrophy
(case 2 in 2D and case 1 in 3D). We can therefore conclude that this type of device is not viable
for passive flow control past a hemisphere. From these observations, the 2D and 3D studies
finally came to the conclusion that it was essential to carefully choose the position of the porous
zones, and in both case it turned out that a good location was the vicinity of the flow separation
points. The devices built on this principle indeed showed very satisfactory results.

Finally, some similar tendencies may be observed in terms of flow response to the thickness
variation, especially at highly transitional regime (i.e. Re = 3000 in 2D and Re = 1000 in 3D)
when considering the “poles’s revolution” device with high permeability (case 4 in 2D and case
3 in 3D). A summary overview is given by Table 4.12 and clearly shows that, in that case, the
best control results are obtained fixing τ = 0.1 and that the results achieved with τ = 0.05 and
τ = 0.025 are very comparable, both in 2D and in 3D.

Fx Enstrophy
Thickness τ 2D 3D 2D 3D
τ = 0.1 -20% -16% -19% -19%
τ = 0.05 -12% -6% -2% -3%
τ = 0.025 -13% -5% -0.8% -3%

Table 4.12: Drag force and enstrophy reductions brought by the “poles’ revolution” configuration
with λ = 1, compared to the uncontrolled case in 2D (at Re = 3000) and in 3D (at Re = 1000)
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Conclusion 4.1

The control application performed in this chapter illustrated the capability of the present
method to successively handle flows in solid-fluid-porous media. A passive flow control
study around a semi-circular cylinder in 2D and around a hemisphere in 3D was performed
at transitional and highly transitional regimes, consisting in adding a porous coating on the
obstacle surface in order to smooth the flow dynamics. The distinction between the three
different media was performed by varying the value of the penalization parameter without
prescribing a boundary condition at the solid boundary or at the porous-fluid interface. The
presence of a porous layer at the solid-fluid interface is responsible for a decrease of the
shear forces and the vorticity generation of the boundary layer, leading to significant wake
stabilization and drag reduction. Among the control devices investigated in this chapter, one
can retain the “poles’ revolution” configuration (respectively “porous poles” in 2D) which
only includes porous parts in the region of the flow separation. With an appropriate choice
of the permeability and the thickness, this porous device represents a good compromise
between control efficiency and manufacturing constraints. It is believed to be challenging in
an industrial point of view.
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Résumé 5

Dans la dernière partie de cette thèse nous proposons plusieurs pistes d’études afin de com-
pléter le travail exposé et rendre certains aspects plus performants. Tout d’abord, nous
soulevons un problème majeur lié à la performance numérique. En effet, avec des simula-
tions directes (DNS en anglais), les limites en termes de capacité de calcul de notre librairie
scientifique semblent clairement être atteintes. Une première solution pourrait donc consis-
ter à discrétiser le domaine avec des maillages cartésiens non-uniformes, permettant ainsi de
concentrer les efforts de calcul dans les régions comportant de l’information sur l’écoulement
(typiquement les bords de l’obstacle et le sillage). L’alternative plutôt priviligée dans notre
cas, du moins dans un premier temps, est celle de la mise en oeuvre d’un modèle de turbu-
lence, de type LES (Large Eddy Simulations), permettant de s’épargner la résolution des plus
petites échelles de l’écoulement. Quelques pistes de réflexion ont déjà été menées à ce sujet
et des résultats préliminaires sont exposés dans ce chapitre. Une deuxième perspective de
travail porte sur la montée en ordre globale de la méthode numérique. Cette dernière est en
effet limitée par la méthode de pénalisation, qui n’est discrétisée qu’avec un schéma d’ordre
1. La possibilité d’une montée en ordre de la méthode de pénalisation sera alors évoquée dans
ce chapitre. La dernière perspective proposée dans cette partie concerne la partie applicative
de cette étude, à savoir le contrôle passif d’écoulement autour de l’hémisphère. La méthode
proposée dans cette thèse ne permet pas d’identifier clairement l’apparition des instabilités
dans les écoulements autour d’une hémisphère non contrôlée et d’une hémisphère équipée
d’un dispositif poreux. Une étude d’instabilité apparaît alors essentielle afin de comprendre
les mécanismes physiques à l’origine des effets régularisants du revêtement poreux et donc
d’optimiser les dispositifs de contrôle passif.
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This last part aims to outline possible future work directions related to the present study.
These perspectives respectively concern the computational performances, the improvement of
the numerical approach and the physical interpretations of flow control results.

5.1 An artificial viscosity model for Large Eddy Simulations

As evoked throughout the two last chapters of this thesis, one of the main limitation expe-
rienced by the present numerical method is related to the computational resources needed to
deal with large problems. When increasing the Reynolds number in the present direct nu-
merical simulations, the handling of a uniform Cartesian grid finally requires to consider pro-
hibitive mesh sizes in order to correctly capture the boundary layer, which makes the compu-
tation unaffordable. In order to overcome this problem, a good solution relies in multiresolu-
tion [Bergdorf et al., 2005, Rasmussen et al., 2011] and grid adaptivity [Rossinelli et al., 2015].
However all these approaches require major modifications in the computational solver. A more
straightforward technique that could be considered in a first attempt relies in Large Eddy Sim-
ulations (LES), that is to say in the construction of a eddy viscosity model. LES models are
based on the resolution of the Navier-Stokes equations where a low-pass filtering is performed
on the flow quantities. The small scales of the solution are therefore discarded, allowing to
reduce the computational cost. Contrary to the Reynolds-Averaged Navier-Stokes turbulence
model (RANS) based on time-averaged Navier-Stokes equations, the LES resolves the large
scales of the flow, thus providing more accurate and realistic solutions. As regards the smallest
scales, they are not directly solved like in Direct Numerical Simulations, but modeled. The
filtered Navier-Stokes equations for Large Eddy Simulations are given in their velocity-pressure
formulation by:

∂ui

∂t
+ (u · ∇)ui +

∂pi

∂xi
− ν∆ui = −∂τij

∂xj
(5.1)

div u = 0, (5.2)

where u and p denote the resolved (i.e. filtered) velocity and pressure fields and τij corresponds
to the subgrid-scale stress tensor. This tensor models the small scales of the advection term
∂j(uiuj), which are not resolved. It is defined as follows [Leonard, 1974]:

τij = uiuj − uiuj . (5.3)

The aim of LES models based on the filtered Navier-Stokes relies in the estimation of τij , which
is usually modeled by a dissipation term, allowing the energy to cascade from the large scales
to the smallest one.

In the context of vortex methods, the derivation of a eddy viscosity model can be done in
a different way. When considering purely Lagrangian vortex methods, one obtains an exact
weak solution of convection equations. Therefore, the truncation error of these methods only
comes from the regularization used to compute the velocity of the particles (see subsection
(1.1.1)). Nevertheless, the studies of [Henshaw et al., 1991] highlighted the fact that vortex
methods experienced difficulties in modeling the merging of small eddies into larger ones. These
difficulties may be explained by dissipative mechanisms embedded in the truncation error. The
model derived in [Cottet, 1996] is based on a correction of the equations satisfied by vortex
schemes in order to recover the expected large eddy dynamics. We give hereafter the main steps
of this model derivation.
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5.1.1 Model description

The vorticity field ω is the solution of the following convection equation, using vortex blob
method (see subsection (1.1.1)):

∂ω

∂t
+ div(uεω) = 0, (5.4)

uε = Kε ⋆ ω, (5.5)

with
Kε = K ⋆ ζε, (5.6)

and where the function ζε results from a cutoff function ζ:

ζε =
ζ(x/ε)
ε2

. (5.7)

We assume the particular case of a positive cutoff function ζ, decaying at infinity, of mean value
1 and with radial symmetry. The approximation of the exact vorticity field ω is then naturally
defined by:

ωε = ω ⋆ ζε, (5.8)

Therefore, performing the convolution of 5.4 with ζε one gets:

∂ωε

∂t
+ div(uεωε) = E, (5.9)

where E represents the truncation error resulting from the fact that the convolution was only
applied on ω in the advection term div(uεω). When omitting the variable t for the sake of
clarity, the expression of this truncation error is given by:

E(x) = divx

∫
ω(y)[uε(x) − uε(y)]ζε(x − y) dy. (5.10)

In order to identify the antidiffusive mechanisms carried by the error E, we evaluate the enstro-
phy production based on equation 5.10. Replacing ω by ωε in 5.10, multiplying the equation
by ωε and integrating by parts, one obtains:

1
2
d

dt

∫
ω2 dx =

∫∫
ω(x)ω(y)[u(x) − u(y)] · ∇ζ(x − y) dxdy. (5.11)

where the subscript ε has been dropped for clarity. Then, rewriting ω(x) like follows:

ω(x) = ω(y) + ω(x) − ω(y), (5.12)

on gets:

1
2
d

dt

∫
ω2 dx =

∫∫
ω2(y)[u(x) − u(y)] · ∇ζ(x − y) dxdy

+
∫∫

[ω(x) − ω(y)]ω(y)[u(x) − u(y)] · ∇ζ(x − y) dxdy. (5.13)

Putting out ω(y) of the first integral with respect to x in the right-hand side and using the
incompressibility condition, this first integral vanishes. So, upon writing 2ω(y) = [ω(x) +
ω(y)] − [ω(x) −ω(y)], and using the radial symmetry of ζ, one obtains the following expression
of the enstrophy rate:

d

dt

∫
ω2 dx = −

∫∫
[ω(x) − ω(y)]2 [u(x) − u(y)] · ∇ζ(x − y) dxdy. (5.14)
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From this expression it is therefore clear that the enstrophy will increase because of the exchange
of vorticity between point x and y when they will satisfy:

[u(x) − u(y)] · ∇ζ(x − y) < 0. (5.15)

Considering the assumptions made on ζ, one can rewrite ∇ζ as follows, with f ′ ≤ 0:

∇ζ(z) =
zf ′(|z|)

|z| . (5.16)

Therefore, equation 5.15 is equivalent to:

[u(x) − u(y)] · (x − y) > 0. (5.17)

To cancel positive contribution to the enstrophy budget, one can consequently use the following
advection scheme:

dωp

dt
=
∑

q

vq

{
[u(xp) − u(xq)] · [xp − xq]

f ′(|xp − xq|)
|xp − xq|

}

−

(ωp − ωq) (5.18)

where a− = min(0, a) and where ωp and vp respectively refer to the vorticity value and the
volume of particle located at position xp. This defines a minimal artificial viscosity model,
which allows to cancel the enstrophy only under condition 5.15, thus preserving the anisotropy
of the model.

5.1.2 Preliminary numerical results

In our case, we aim to transport the vorticity field on a fine grid with a regularized velocity,
resolved on a coarse mesh, and to counterbalance the enstrophy production with the diffusion
model 5.18. In three dimensions, this model stands as follows:

dωp

dt
= (ωp · ∇)u(xp, t) + C

∑

q

vq

{
[u(xp) − u(xq)] · [xp − xq]g(|xp − xq|)

}
+

(ωp − ωq), (5.19)

where (ωp · ∇)u(xp, t) is the stretching term and where ∇ζ(xp − xq) is defined in this case by:

∇ζ(xp − xq) = C [xp − xq] g(|xp − xq|), (5.20)

with g a function decaying at infinity and C a constant to adjust in the model. The model 5.19
has been implemented in the present hybrid vortex scheme and has been applied to the Taylor-
Green vortex benchmark, which constitutes a relevant three-dimensional test case to investigate
the generation of small-scale vorticity. The simulations are handled in a periodic cubic box of
side length L = 2π and initialized with the following smooth condition:

ux(x, t = 0) = sin(x) cos(y) cos(z)

uy(x, t = 0) = − cos(x) sin(y) cos(z) (5.21)

uz(x, t = 0) = 0

The Reynolds number of the flow is set to Re = 1600. First of all, we are eager to validate
the results obtained with our method in the context of direct numerical simulations. The mesh
resolution is set to 2563. Figure 5.1a shows the curve of enstrophy as a function of time compared
to the one obtained with the same remeshed vortex method by [van Rees et al., 2011] with a
2563 resolution. One can see that these DNS results coincide very well.

Let us now consider a 643 mesh size for the velocity calculations and a 2563 particle mesh.
The vorticity field is thus fully resolved on the fine 2563 mesh while the small scales of the
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velocity field are filtered so that we only consider the velocity values on a coarse 643 grid. The
velocity filtering is performed through the following cutoff filter, defined in the Fourier space:

fk∆
(|k|) =

{
1 if |k| ≤ k∆ =

π

∆
0 otherwise,

where ∆ = 4h is the filter size, with h = L/256 denoting the fine grid step. Figure 5.1b reports
the evolution of enstrophy when no artificial viscosity is added in the model (black curve). It is
compared to the DNS result (blue curve). This figure clearly confirms the enstrophy production
induced by the original equations and justifies the use of an artificial viscosity model, namely
the model 5.19, able to provide artificial diffusion. Figure 5.1c shows enstrophy evolution curves
obtained with model 5.19 for different values of the constant C. It emerges from these results
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Figure 5.1: Enstrophy of Taylor-Green vortex as a function of time, at Re = 1600.

that the artificial viscosity model 5.19 with C = 0.04 manages to capture the correct behavior
of the flow, especially between T = 8 and T = 10 when small-scale vortical structures start to
appear. The enstrophy evolution obtained with 5.19 and C = 0.04 is reported in a clearer way
in Figure 5.1d and compared to the DNS result (red and blue solid lines). We also plotted in
this figure the curves corresponding to the same simulations where the enstrophy (denoted “Z”
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in the figure caption) has been evaluated on the coarse 643 grid (red and blue dashed lines).
Figure 5.1d thus clearly highlights the fact that the model 5.19, represented by the solid red
curve, is halfway between DNS (blue solid curve) and LES (red dashed curve) since it allows
to directly take into account some small-scales. The vorticity field representation is also given
at T = 8 (Figure 5.2) and T = 9 (Figure 5.3), comparing the results obtained from DNS with
a 2563 resolution and the ones obtained with model 5.19 and C = 0.04 with a 2563 resolution
for the vorticity field and a 643 resolution for the velocity field, denoted 2563 − 643 resolution.
The good qualitative agreement observed between the two models confirms the capability of the
proposed artificial viscosity model to capture the large scales of the flow and thus to account
for the global behavior of the flow.
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(a) 3D vorticity magnitude with DNS (left) and model 5.19 (C = 0.04) (right)
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(b) |ω| in the YZ plane at x = 0 with DNS (left) and model 5.19 (C = 0.04) (right)

Figure 5.2: Taylor-Green vorticity field at T = 8. Comparison between DNS results obtained
with a 2563 resolution and results obtained with model 5.19 and a 2563 − 643 resolution.

Simulations based on model 5.19 were also performed with a 5123 − 1283 resolution, set-
ting C = 0.04. Figures 5.4a and 5.4b compare the contours of |ω| obtained respectively at
T = 8 and T = 9 with a 2563 − 643 and a 5123 − 1283 resolution to the contours reported in
[van Rees et al., 2011] obtained with DNS based on a 5123 resolution. These figures show that
the contours obtained with model 5.19 and a 5123 −1283 resolution are very close in a qualitative
point of view to the one given by the Direct Numerical Simulations of [van Rees et al., 2011],
which confirms the capability of the proposed model to correctly take into account the physics
of the problem.

These results constitute preliminary studies. Among the next tasks to consider, the main one
would consist in dealing with multi-scale problems on hybrid CPU-GPU architecture in order
to significantly enhance the computational performances. In practice, we aim to dedicate the
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Figure 5.3: Taylor-Green vorticity field at T = 9. Comparison between DNS results obtained
with a 2563 resolution and results obtained with model 5.19 and a 2563 − 643 resolution.

(a) T = 8

(b) T = 9

Figure 5.4: Contours of |ω| in YZ plane at x = 0 obtained through the present model 5.19
(C = 0.04) with a 2563 − 643 resolution (left) and a 5123 − 1283 resolution (center). They are
compared to the DNS results obtained by [van Rees et al., 2011] with a 5123 resolution (right).
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high resolution vorticity transport/stretching sub-problems on multi-GPU’s while solving the
diffusion and Poisson equations on multi-CPU’s with a velocity field defined on a coarse grid.
This strategy would therefore require interpolation operations between the two interacting flow
quantities. Interesting multi-scales results have already been obtained with the HySoP library
in the context of passive scalar transport [Etancelin, 2014].
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5.2 A second order penalization method

Another perspective related to the present work concerns the penalization method. Indeed, the
global convergence order of our algorithm is limited by this technique which is only handled
through a first-order discretization method (see section (2.5)).

Among the few studies that have been carried out on this subject, we can first refer to the
method proposed by [Bergmann et al., 2014], called the Image Point Correction method (IPC).
This approach, designed through a (u, p) formulation of the Navier-Stokes equations, lies on a
simple principle: a correction of the penalized velocity is performed at the solid points having
at least one neighboring point in the fluid part. Let us denote these points xS . The classical
first-order penalization method is applied to all the remaining nodes in the body. The correction
step in the IPC method is done using a ghost-cell technique consisting in updating the penalized
velocity at the grid points xS such that the velocity gradient at the solid-fluid interface remains
the same on both sides. This method ensures a second-order accuracy in velocity and has been
successfully used to treat three-dimensional problems involving fluid-structure interactions with
moving and deforming bodies.

We can also cite the recent work proposed by [Hejlesen et al., 2015] based on an iterative
vortex-Brinkman penalization method. This approach allows to achieve more accurate results
thanks to the iterative process. It also prevents from considering very small time steps, which
are often required by the penalization method. However, even if the number of penalization-
iterations may be controlled, this algorithm remains quite costly since a Poisson equation has to
be solved at each iteration. Moreover, the existence of a fixed-point in the iterative algorithm
is not evident. Finally, this penalization method remains of order 1. This approach may be
consequently considered as a way to improve the accuracy of the overall method, but not its
order of convergence.

5.3 Flow instability analysis

The perspectives considered in this last section are related to the passive flow control application
presented in this thesis. Although we managed to enhance significant control performances
induced by the presence of a porous coating, the present direct numerical simulations did not
allow to clearly identify the physical causes of the observed behaviors. One may indeed wonder
for instance what are the physical mechanisms proper to solid-fluid-porous media responsible for
the delay in transition. A solution to answer that type of questions would be to carry out a flow
stability analysis. As discussed in the Chapter 3 of this thesis, stability analysis have been widely
performed in the case of flow past a cylinder or a sphere. They are nevertheless almost non-
existent concerning flow past a hemisphere or past a bluff body covered with a porous coating.
Concerning this last case, one can cite the stability analysis performed by [Pluvinage et al., 2014]
in the boundary layer of a permeable and compliant wall. This study highlights in particular the
capability of the permeable wall to destabilize the Tollmien-Schlichting (TS) modes, which are
related to the major streamwise instability arising in a viscous boundary layer and from which
a laminar boundary layer transitions to turbulence. The modification of the TS modes is shown
in this study to delay the transition. Flow instability analysis therefore plays a preponderant
role in the identification of the mechanisms that actually drive the flow control performances.

The future work that is considered in the framework of this thesis is the implementation
of a linear global stability analysis. This type of approach is based on the investigation of the
asymptotic time evolution of infinitesimally small perturbations leading a steady flow to become
unstable. In this case, the perturbations are small enough to consider the analysis as linear.
More precisely, and as explained in [Loiseau et al., 2014], a linear global stability analysis is
decomposed in two distinct steps:

1. The base flow computation
The aim of this sub-step is to find a stationary solution of the Navier-Stokes equations,
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from which the linear stability will be carry out afterward. This equilibrium solution may
be calculated using a selective frequency damping (SFD) technique, which consists in using
a low-pass filter to soften the oscillations carried by the unsteady part of the solution.

2. The global stability analysis
Based on the stationary solution computed previously, the dynamics of the infinitesimal
perturbations present in the vicinity of the equilibrium point of the original system may be
expressed. Their governing equations may then be recast into a linear dynamical system.

When starting the simulation from the base flow, the resolution of this linear problem allows to
enhance the so-called linear global mode, corresponding to a perturbation growing faster than
the others. Under the influence of the nonlinear effects, the growth of the linear global mode
becomes more and more limited and it finally saturates to a periodic state. This phenomenon
is called a Hopf bifurcation.

Based on the fully 3D linear global stability analysis performed in [Loiseau et al., 2014],
the same type of approach is aimed to be adopted in the context of the present hybrid vortex
penalization method.



Conclusion

The main objective of this thesis was to demonstrate the capability of particle methods to handle
complex and challenging incompressible flow problems. For this purpose it was applied to two-
and three-dimensional passive flow control using porous media.

Chapter 1 went through the history of vortex methods. This state of art enabled us to
better understand the development of these particle methods and their insertion in the CFD
community from their first appearance in 1928 until nowadays. In spite of the strong advantages
they intrinsically had over Eulerian methods, vortex methods experienced during several years
some difficulties in dealing with major problems like the treatment of boundary conditions or
the diffusion effects. With the emergence of hybrid vortex methods in the 1990’s, characterized
by the introduction of an underlying grid and a periodic remeshing of the particles on this grid
in order to prevent from distortion phenomena, vortex methods got more visibility. Since then,
the performance and algorithmic issues related to these methods became a keypoint and a lot
of works have been dedicated to improve their accuracy and implement them in an efficient
way. The present thesis was defined in this context and aimed in particular for highlighting the
competitiveness of these methods compared to purely grid-based ones.

In this work, a hybrid particle penalization technique has been employed in order to benefit
from the advantages of immersed boundary methods - through the penalization technique - and
remeshed particle methods. On one hand the latter maintain the efficiency and the robustness
of vortex methods, solving the flow equations in a fast Lagrangian way. Indeed, remeshed
vortex methods do not need classical CFL condition to ensure the stability, which enables
the use of greater time steps. On the other hand the penalization technique eases numerical
implementation since it allows to consider the governing equations in the whole computational
domain allowing the use of structural grids and avoiding the overhead and the complexity typical
of body fitted grids. This immersed-boundary method is also of particular interest to consider
multi-scales problems: the underlying Cartesian mesh indeed greatly simplifies the handling of
flow fields resolved on different grid sizes. The hybrid vortex penalization method was described
in chapter 2 as well as its implementation within a new parallel scientific library dedicated to flow
simulations, called HySoP. This common framework, written using an object-oriented paradigm,
has been designed paying a strong attention to flexibility, portability and modularity. HySoP
will be soon distributed under a GPLv3 license 3.

The validation studies reported in chapter 3 were systematically carried out at different flow
regimes in the case of a cylinder and a semi-cylinder in 2D and a sphere and a hemisphere
in 3D. Grid-refinement studies enabled us to identify the global order of convergence of the
method. This order was shown to be approximately equal to 2. Convergence studies on the
penalization parameter λ also allowed to validate the modeling of rigid motion inside a solid
obstacle through the penalization approach. It furthermore permitted to determine the range
of λ values modeling a porous medium, namely 1 . λ . 103. Finally, a careful flow analysis was
performed for the different obstacles considered in this study and the results were compared to
a large number of reference works in the literature. The two- and three-dimensional numerical
results reported in this chapter eventually prove the ability of the present method to correctly
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account for the expected flows’ behaviors at transitional and highly transitional regimes.
In chapter 4, we applied the present hybrid vortex penalization method to passive flow

control using porous media. The modeling of flows in solid-fluid-porous media was performed
through the variation of the λ penalization factor, corresponding to a non-dimensional quan-
tity inversely proportional to the intrinsic permeability of the considered medium. The control
studies were performed at different flow regimes around a semi-circular cylinder (in 2D) and a
hemisphere (in 3D) containing a porous coating. Several parameter studies were carried out in
order to determine efficient devices able to regularize the global flow and to decrease the drag.
For this purpose, the parameters considered in these studies were the permeability, identified
by the λ value, the thickness and the position of the added porous coating. Similar control
trends were obtained in 2D and in 3D, highlighting first of all the fact that better performances
were achieved with highly permeable and rather thick porous layers. Interestingly, it moreover
turned out that the efficiency of the controlled device was highly correlated to the location of the
porous coating: the control devices for which the porous area is only located in the vicinity of
the detachment points indeed show much better results than the ones containing a whole porous
layer at the surface. It was also noticed that, in some cases, thin porous coatings are sufficient
to achieve satisfactory control performances. The confirmation of such assessments would need
a comparison with experimental results. This point is actually under consideration and some
partnership are being created with the experimental community in order to reproduce similar
controlled devices and validate the results obtained with the proposed numerical study.
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A

Calculation of the dimensionless
terms of the Brinkman
Navier-Stokes equation

From the following relations:

ω = ω′ ū

H
u = u′ū x = x′H t = t′t̄ = t′

H

ū
λ = λ′ 1

t̄
, (A.1)

one evaluates the dimensionless formulation of each term of the following dimensional penalized
Vortex-Transport-Equation :

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = ∇ ×

(
λ χb(ub − u)

)
+ ν∆ω. (A.2)

Vorticity time derivative

∂ω

∂t
=

ū

H

∂ω′

∂t
=

ū

H

(
∂ω′

∂t′
∂t′

∂t

)
(A.3)

since t = t′
H

ū
then

∂t′

∂t
=

ū

H
and :

∂ω

∂t
=

ū2

H2

∂ω′

∂t′
(A.4)

Convection term

(u · ∇)ω = u′ū · (∇ω) = u′ū ·
(

∇
(
ω′ ū

H

))
(A.5)

since ∇(·) = ∇′(·) 1
H

then ∇
(
ω′ ū

H

)
=

ū

H

1
H

∇′ω′ and :

(u · ∇)ω =
ū2

H2
(u′ · ∇′)ω′ (A.6)

Stretching term

Processing similarly as for the convection term, one has :

(ω · ∇)u =
(
ω′ ū

H

)
· ∇(u′ū) =

ū

H

ū

H
(ω′ · ∇′)u′ =

ū2

H2
(ω′ · ∇′)u′ (A.7)

Penalization term
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∇ ×
(
λ χb(ub − u)

)
= ∇ ×

(
µΦ
ρk

χb(ub − u)
)

= ∇′ ×
(
µΦ
ρk

ū

H
χb(u′

b − u′)
)

(A.8)

because ∇(·) = ∇′(·) 1
H

and u = u′ū. Therefore :

∇ ×
(
λ χb(ub − u)

)
= ∇′ ×

(
µΦū

ρkH
χb(u′

b − u′)
)

(A.9)

Diffusion term

µ

ρ
∆ω =

µ

ρ

(
∆
(
ω′ ū

H

))
(A.10)

since
(

∆
(
ω′ ū

H

))
=

ū

H
∆(ω′) =

ū

H

1
H2

∆′ω′ then :

µ

ρ
∆ω =

µū

ρH3
∆′ω′ (A.11)

Replacing these dimensionless terms in equation A.2 gives :

ū2

H2

∂ω′

∂t′
+

ū2

H2
(u′ · ∇′)ω′ − ū2

H2
(ω′ · ∇′)u′ = ∇′ ×

(
µΦū

ρkH
χb(u′

b − u′)
)

+
µū

ρH3
∆′ω′, (A.12)

which, after multiplying by
H2

ū2
and omitting the (·)′ notation, yields :

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = ∇ ×

(
µΦH
ρkū︸ ︷︷ ︸

λ

χb(ub − u)
)

+
µ

ρHū︸ ︷︷ ︸
Re

∆ω (A.13)



B

Stability analysis for the stretching
equation

The stability analysis is performed from the following formulation of the stretching equation :

∂ω

∂t
= [∇u] · ω (B.1)

In order to solve equation B.1 one can consider the following linear system, where A = [∇u] :

ω′ = Aω (B.2)

If A is diagonalizable, this problem can be reduced to the study of the eigenvalues of matrix A :

ω′ = λiω with i ∈ {1, 2, 3} (B.3)

For the system to converge, λ has to satisfy Re(λ) < 1 (we only focus here on the real part
of λ since the complex part is a function oscillating between 1 and -1, that is to say bounded).

We want the equation to converge in time. In other words, if one considers a scheme involving
two different time steps:

ωn+1 = Bωn, (B.4)

we want the absolute value of B to be bounded by 1, such that :
∣∣∣∣∣
ωn+1

ωn

∣∣∣∣∣ < 1 (B.5)

The conditions to be satisfied for the Euler scheme and the RKα schemes, with α = 2, 3, 4,
are given in the following :

The Euler scheme (1
st order)

The discretization of equation B.1 using an Euler scheme is given by:

ωn+1 − ωn

∆t
= [∇u] · ωn (B.6)

which yields:
ωn+1 = [1 + ∇u.∆t] · ωn (B.7)

The condition for the Euler scheme is thus : |B| = |1 +X| < 1, where X = ∇u.∆t. Therefore,
X has to be greater than −2, that is to say:

− ∇u.∆t < 2 (B.8)
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If the matrix [−∇u] is diagonalizable, one has :

− λi∆t < 2 ∀ i ∈ {1, 2, 3}, (B.9)

and knowing that :
− λi < max

i
| − λi| ∀ i ∈ {1, 2, 3}, (B.10)

the inequality B.9 may be reduced to the following one :

∆t <
2

max
i

| − λi|
⇐⇒ ∆t <

2
max

i
|λi|

∀ i ∈ {1, 2, 3}. (B.11)

The use of the Gershgorin circle theorem now enables us to upper-bound the spectral radius
max

i
|λi| with respect to the coefficients of A = [∇u]. This will allow to supply a general condi-

tion on ∆t only depending on ∇u (a quantity that is easily available in the computational solver).

Theorem B.1 (Gershgorin circle theorem)

Let A be a complex n× n matrix with coefficients aij . Every eigenvalue of A lies within at

least one of the Gershgorin discs : Di = {z ∈ C, |aii − z| ≤
∑

i6=j

|aij |}.

According to this theorem, one therefore gets the following inequality :

max
i

|λi| ≤ max
i


∑

j

∣∣∣∣∣
∂ui

∂xj

∣∣∣∣∣


 , (B.12)

and the stability condition for the Euler scheme is finally given by:

∆t <
2

max
i

(∑

j

∣∣∣∂ui

∂xj

∣∣∣
) . (B.13)

The Runge Kutta 2 scheme (2
nd order)

With the RK2 scheme, the time discretization of equation B.1 gives:

ωn+1 =
[
1 + ∇u.∆t+

1
2

(∇u.∆t)2
]

· ωn. (B.14)

Applying again the theorem B.1, one eventually gets the following stability condition :

∆t <
2

max
i

(∑

j

∣∣∣∂ui

∂xj

∣∣∣
) , (B.15)

where the coefficient 2 is obtained from the non-zero solution given by figure B.1b.

The Runge Kutta 3 scheme (3
rd order)

Using the RK3 scheme one gets :

ωn+1 =
[
1 + ∇u.∆t+

1
2

(∇u.∆t)2 +
1
6

(∇u.∆t)3
]

· ωn (B.16)

According to the non-zero solution given by figure B.1c and using theorem B.1, one gets :

∆t <
2.5127

max
i

(∑

j

∣∣∣∂ui

∂xj

∣∣∣
) . (B.17)
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(a) Euler : y2 = |1 +X| (b) RK2 : y2 = |1 +X + 1

2
X2|

(c) RK3 : y2 = |1 +X + 1

2
X2 + 1

6
X3| (d) RK4 : y2 = |1 +X + 1

2
X2 + 1

6
X3 + 1

24
X4|

Figure B.1: Graphical representation of the solutions of equation y1 = y2, where y1 = 1 and
y2 = f(X), for the estimation of the time step condition when using (a) Euler scheme, (b) RK2
scheme, (c) RK3 scheme and (d) RK4 scheme.

The Runge Kutta 4 scheme (4
th order)

With the RK4 scheme, the time discretization of the stretching equation B.1 gives:

ωn+1 =
[
1 + ∇u.∆t+

1
2

(∇u.∆t)2 +
1
6

(∇u.∆t)3 +
1
24

(∇u.∆t)4
]

· ωn (B.18)

According to the non-zero solution read on figure B.1d and applying theorem B.1, one obtains:

∆t <
2.7853

max
i

(∑

j

∣∣∣∂ui

∂xj

∣∣∣
) (B.19)
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SUMMARY

In this work, a penalization method is discussed in the context of vortex methods for incompressible flows
around complex geometries. In particular, we illustrate the method in two cases: the flow around a rotating
blade for Reynolds numbers 1000 and 10,000 and the flow past a semi-circular body consisting of a porous
layer surrounding a rigid body at Reynolds numbers 550 and 3000. In the latter example, the results are
interpreted in terms of control strategy. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Vorticity is an important characteristic of flows in many applications. It is a signature of wakes in

bluff body flows and, as such, is related to aerodynamic performance of moving or fixed obsta-

cles [1]. The vorticity formulation of the Navier–Stokes equations is therefore a natural framework

to address questions related to flow control. In these equations, for moderate and high Reynolds

numbers, the vorticity advection is predominant, which motivates the use of Lagrangian or semi-

Lagrangian schemes to discretize these equations. Particle methods belong to this category. They

have long been used for the simulation of vortex flows, and in particular for bluff body flows, since

the pioneering simulation of flows past a two-dimensional (2D) cylinder in [2]. Three-dimensional

(3D) simulations followed this work [3–5]. In all these works, the no-slip condition at the body

surface is imposed through vorticity fluxes. This method relies on an analysis of the relationship

between vorticity fluxes and velocity boundary conditions [4, 6]. Vorticity fluxes are implemented

in vortex methods by means of integral equations [7]. This method is physically appealing but relies

on a delicate tuning of several parameters and remains delicate to implement. Immersed boundary

conditions have been proposed in [4, 8] to simplify the treatment of complex geometry and the com-

putation of velocity from vorticity. Later on, following the work of Angot et al. [9] and Kevlahan

and Ghidaglia [10], a penalization method coupled to the vorticity formulation of the Navier–Stokes

equation was proposed and extended to the two-way interaction of a rigid body and a 3D incom-

pressible fluid in [11]. The method was validated in 3D flows at low Reynolds numbers and was

extended to deforming bodies and applied to find optimal swimming modes of fishes [12–14]. The

work in [15] provides additional 2D validations of the method and illustrates its efficiency in the

context of Graphics Processing Unit (GPU) computing.

*Correspondence to: Iraj Mortazavi, EA-7340-M2N-Modélisation Mathématique et Numérique, Case 2D5000 Conser-
vatoire National des Arts et Métiers, 292 Rue St Martin, 75003 Paris France.
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The purpose of this work is to further illustrate its flexibility by focusing on the case of two

bi-dimensional complex flows where the combined use of vortex and penalization proves to be

efficient: the flow around a vertical axis turbine (VAT), on the one hand, and the flow past a semi-

circular obstacle made of a porous layer surrounding a rigid core, on the second hand. In the first

case, we discuss the different flow patterns and frequencies corresponding to moderate and high

Reynolds numbers. In the second case, we study the influence of the porous layer on the wake

strength and on the drag value. We also provide validation studies, which allow to determine the

numerical parameters needed to provide the desired accuracy on these applications.

This paper is organized as follows. In Section 2, we describe the vortex penalization model and

its implementation in a vortex particle method. In particular, we indicate how the body forces are

computed in such a model. In Section 3, we provide convergence studies of the method with respect

to the penalization parameter and the grid size, and we validate the method on the benchmark test

of the flow past a 2D circular cylinder at various Reynolds numbers. In Section 4, we apply the

method to the case of a rotating turbine blade, and Section 5 is devoted to the analysis of the flow

around a semi-circular cylinder with a porous coating, where the characteristics of the flows are

analyzed from the point of view of flow control. Finally, Section 6 summarizes our results and draws

some conclusions.

2. NUMERICAL ALGORITHM

2.1. Vorticity formulation and remeshed particle method

The dynamics of an incompressible flow without external force fields is governed by the incom-

pressible Navier–Stokes equations

r � u D 0 in D; (1)

@u

@t
C .u � r/u D �rp C 1

Re
�u in D; (2)

where D is the computational domain, and Re is the Reynolds number.

Taking the curl of Equation (2) and using Equation (1), we obtain the Helmholtz or the vorticity

transport equation for the vorticity ! D r � u

@!

@t
C .u � r/! � .! � r/u D 1

Re
�! in D: (3)

This equation has to be coupled to the system giving the velocity in terms of the vorticity. It is

convenient to use the Helmholtz decomposition

u D r � C r': (4)

The stream function  and potential ' satisfy the following systems in D

�� D !; r � D 0; �' D 0; (5)

complemented with appropriate boundary conditions. The vorticity transport equation does not

explicitly contain the pressure term, but the pressure can be recovered from the velocity field by

integrating the following Poisson equation:

�p D �r � .u � r/u; in D; (6)

which is derived as the divergence of Equation (2).

The previous equations are approximated using a remeshed vortex particle method [2, 6, 16]. In

this approach, the vorticity is carried by particles. Particles follow the trajectories associated with

the velocity field. Simultaneously, the vorticity carried by the particles is updated to account for

vortex stretching and diffusion. Particle remeshing is used to overcome accuracy loss due to local

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
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distortion of the flow map [2]. In that case, particles are remeshed through interpolation on a regular

mesh at each time step. This grid is used to compute the velocity through a Poisson solver. Details

of the algorithm are given in the sequel.

In incompressible flows, the unique sources of the vorticity are boundaries. It is therefore impor-

tant to capture in an accurate way vorticity boundary conditions. In classical implementations of

vortex methods, the no-slip boundary condition is satisfied through the creation of vortex elements

[16–18] or by updating particle strength to account for vorticity fluxes at the boundary [2, 4, 7].

The no-through flow boundary conditions are implemented together with the Poisson equation to

determine stream functions and potential in (5).

These methods involve several parameters to enforce the no-slip conditions at the boundaries: a

more straightforward alternative to these techniques can be derived from the penalization method.

2.2. Vortex penalization method

2.2.1. Penalization in velocity formulation. In this section, we show how the penalization method

can be used successfully to model the flow of an incompressible fluid around an obstacle. In the

penalization technique, the system is considered as a single flow, subject to the Navier–Stokes

equation with a penalization term that enforces continuity at the solid–fluid interface and rigid

motion inside the solid. The main advantage of this method is that it needs the mesh neither to fit the

boundaries nor to specify no-slip boundary conditions. In addition, it allows to compute the pressure

as a continuous field on the whole domain including the solids and the lift and drag coefficients by

integrating the penalization term inside the solid bodies [19].

In a porous medium, the velocity u is given by the Darcy law

u D � k

�ˆ
rp; (7)

where p is the pressure, k is the intrinsic permeability, � is the dynamic viscosity of the fluid, and

ˆ is the porosity of the medium. On the other hand, assuming that the Boussinesq hypothesis is

satisfied for the fluid saturating the porous medium, we obtain the Brinkman equation that includes

the diffusion inside the solid and is only valid when the porosity coefficient is close to 1. Here, we

set this coefficient equal to 1 and take the hypothesis of the viscosity equivalence for both Darcy

and diffusive terms [20, 21]

rp D � �

k
u C ��u: (8)

Complementing the Brinkman equation with the inertial terms and the Dupuit–Forchheimer relation

[21], we finally obtain the modified Forchheimer–Navier–Stokes equation [22, 23]

� @t u C � .u � r/u C rp D � �

k
u C ��u; (9)

where � is the density of the fluid.

Then, using the following usual substitutions including the mean velocity of the fluid u and the

size of the body H

u D u
0

u I x D x0 H I t D t 0
H

u
I p D p0�juj2; (10)

we obtain the penalized non-dimensional Navier–Stokes equations or Brinkman–Navier–Stokes

equations for the unknowns .u0; p0/ denoted .u; p/ for the sake of simplicity

@t u C .u � r/u � 1

Re
�u C u

K
C rp D 0 in DT D D � .0; T /; (11)

r � u D 0 in DT : (12)
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This system of equations exactly corresponds to the penalization of Equations (1) and (2), where

K D �ku

�Hˆ
represents the non-dimensional coefficient of permeability of the medium, and Re D

�uH
�

is the Reynolds number based on H , the height of the body, and D, the full domain including

the solid body. This model is able to represent the two media as follows. The zone variation is

realized changing the penalization coefficient that defines the permeability of each region. In the

fluid, the permeability coefficient goes to infinity, the penalization term vanishes, and we solve the

non-dimensional Navier–Stokes equations. In the solid body, the permeability coefficient goes to 0,

and it has been shown in [9] that solving these equations corresponds to solve Darcy’s law in the

solid, and that the velocity is proportional to K. One can thus write K D 1
�
�S , where �S denotes

the characteristic function of S , and � is a penalization parameter satisfying � � 1. For numerical

simulations, we typically set � > 108. If the full domain including the solid body is defined as

D D F [ S , one finally obtains the following penalized Navier–Stokes equations:

@t u C .u � r/u � 1

Re
�u C ��S u C rp D 0 in D; (13)

r � u D 0 in D: (14)

In addition, as the pressure is computed inside the solid body, it is shown in [19] that one can

compute the drag and lift forces by integrating the penalization term on the volume of the body

F D 1

Re

Z

S

�u dx �
Z

S

rp dx �
Z

D

��S u dx: (15)

2.2.2. Penalization in vorticity formulation and implementation with a vortex method. We first

show how to extend the penalization method to the vorticity formulation of the Navier-Stokes

equations.

By differentiation of the velocity-based penalization Equation (13), we obtain the following non-

dimensional [10, 11] vorticity–penalization equation:

@!

@t
C .u � r/! � .! � r/u D 1

Re
�!C r � Œ� �S .us � u/�: (16)

In the aforementioned equation, we have generalized the boundary value problem to allow for a

rigid body motion of the obstacle S with velocity us , where us is the rigid body velocity, and �S

is the characteristic function of the solid. This system has to be complemented by the usual system

giving the velocity in terms of the vorticity

r � u D 0 in D; r � u D ! in D; (17)

and appropriate boundary conditions on the walls �D .

We describe here how the vorticity Equation (16) is discretized in a vortex method. For simplic-

ity, we assume that the computational domain, including the solid body, is covered by a uniform

Cartesian grid with mesh size h.

Equation (16) is split in two sub-steps. At each time step, one successively solves the following

equations:

@!

@t
D r � .� �S .us � u// ; (18)

@!

@t
C .u � r/! � .! � r/u D 1

Re
�!: (19)

We set tn D n�t , where �t is the time step. If u
n;!n denote the velocity and vorticity values

on the grid at time tn, following [11], the resolution of Equation (18) is performed using a Euler

implicit scheme, which yields
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Q!nC1 D r �
�

u
n C ��t�S u

n
s

1C ��t�S

�

: (20)

The right-hand side mentioned earlier is evaluated by centered finite differences on the grid.

To solve the advection–stretching–diffusion Equation (19), we proceed as follows. Particles are

initialized on grid points where vorticity value is above a given threshold (typically 10�5). If x
n
p;!

n
p

denote the locations (grid points) and vorticity of particles (!n
p D Q!nC1.xp)), Equation (19) is

firstly handled by solving the following system of Ordinary Differential Equation (ODEs) [6]

²

dxp=dt D up;

d!p=dt D Œrup�!p:
(21)

This system is typically solved using a second-order Runge–Kutta time stepping. Let us denote by

x
nC1
p ; Q!nC1

p the locations and strengths of the particle at the end of the time step. Particles are then

remeshed on the original grid points by interpolation, with the formula

!nC1
p D

X

p

Q!nC1
p ƒ

 

x
n
p � x

nC1
p

h

!

: (22)

In this study, the function ƒ in the aforementioned formula is obtained by tensor product of a

piecewise cubic third-order interpolation kernel, the so-calledM 0
4 kernel originally proposed in [24]

is as follows:

ƒ.x/ D

8

ˆ

<

ˆ

:

0 if jxj > 2
1
2
.2 � jxj/2.1 � jxj/ if 1 6 jxj 6 2

1 � 5x2

2
C 3jxj3

2
ifjxj 6 1

(23)

We would like to point out here that remeshing schemes based on linear interpolation kernels are in

general not consistent for unsteady flow velocities. This is demonstrated in [25]. On the contrary,

the M 0
4 scheme is shown in [26] to have the minimal smoothness required for consistency.

The same kernel is also used to interpolate grid velocity values onto particles in the time-stepping

scheme to solve (21).

After remeshing, vorticity values are known on the grid, and the remaining diffusion equation is

implicitly solved either with a grid-based Poisson solver or with a Fourier method. Grid values for

the vorticity are now available at time tnC1. Velocity values are in turn obtained from vorticity grid

values by solving systems (4) and (5) with a classical grid-based Poisson solver or using a Fourier

method, and a new cycle of iterations can start.

One of the main features of particle methods is that it does not have a Courant Friedrichs Lewy

(CFL) restriction on the time step�t . It is indeed shown in [26] that a remeshed particle method for

a transport equation with velocity u is stable under the condition

�t 6
C

kruk1

; (24)

where C is a constant that only needs to be smaller than 1.

2.3. Force calculation

Assume a flow in R
N around a bounded body S with velocity and vorticity vanishing at infinity

and having a prescribed value ub on the body. The formula (15) is based on the velocity–pressure

formulation of the penalization method. It assumes that the velocity is of the order of K inside the

body. In a vorticity formulation, however, there is no direct control of the velocity in the body. In

practice, one observes that the velocity in the body is small but larger than K. This can be seen in

Figure 2 (left). In that case, we found that accurate computations of forces could not be achieved
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using the formula (15) and we instead used force evaluations in terms of vorticity distributions

around the body.

The force F exerted by this flow on the body is given by the following formula:

F D � d

dt

Z

S 0

u dx; (25)

where S 0 denotes the domain outside S . Integration by parts allows to express this force in terms of

the vorticity, with N denoting the space dimension

F D � 1

N � 1
d

dt

Z

S 0

x �! dx � 1

N � 1
d

dt

I

@S

x � .n � u/d s; (26)

where the first integral is the linear hydrodynamical impulse, and the second integral is the bound

vorticity [27]. For an impulsively started obstacle at early times, the vorticity remains essen-

tially attached to the body, and this formula can be used by taking a computational domain large

enough to contain the vorticity support. When vorticity shedding occurs, this is no longer possible.

Alternatively, one may use the Navier–Stokes equations and the expression (25) to obtain

F D ��
Z

@S

! � n d s C
Z

@S

pn d s: (27)

In the case of a 2D circular cylinder of radius R, this yields the following formula [2]:

F D �R

�Z 2�

0

!
�!
e� d� �

Z 2�

0

@!

@n

�!
e� d�

�

: (28)

This expression assumes that vorticity vanishes at infinity, which in practice is always the case, and

allows to distinguish friction (in the first integral) and pressure drag (in the second integral).

For a detached bluff body flow, this formula can be used as long as vorticity and its normal

derivatives are accurately captured at the boundary. However, the penalization method just described

is derived from a method, which is only first order for the velocity. It therefore does not capture

vorticity values and fluxes at the boundary with enough accuracy to give reliable force evaluation

through (28) with reasonable grid sizes. It is therefore necessary to use a method that does not

involve integrals of the physical quantities on the volume of the body. The technique chosen here

combines time derivatives, volumes integral of the vorticity momentum—like in Formula (26)—and

vorticity boundary values as well as fluxes on a surface away from the body, where these quantities

are accurately computed. We follow the approach proposed in [28] and rewrite the force according

to the momentum equation as follows:

F D � d

dt

Z

V

u dx C
Z

†

n �  dx; (29)

where V is a domain containing S , † denotes its boundary, and

 D1

2
juj2I � 1

N � 1u � .x �!/C 1

N � 1! � .x � u/

� 1

N � 1

��

x � @u

@t

�

I � x � @u

@t

�

C 1

N � 1 Œx � .r � T /I � x.r � T /�C T :
(30)

In the aforementioned equation, T denotes the stress tensor

T D �.ru C ru
t/; (31)

where � is the viscosity. For the sake of simplicity, we develop this formula in the 2D case where

the computational box D and the volume control V are two nested rectangles. We use the notations
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Figure 1. Computational domain D and control volume V .

given in Figure 1. We denote the velocity by u D .u; v/t. The streamwise and vertical components

of the force can then be written computed as follows:

Fx D � d

dt

Z

V

u.1 � �S / dxdy

C
Z A2

A1

�

uv C v!y � y @u
@t

C 1

Re

�

2
@2u

@x2
C @2u

@y2
C @2v

@x@y

�

y � 1

Re

�

@u

@y
C @v

@x

��

dx

C
Z A3

A2

�

1

2
.v2 � u2/ � u!y � y @v

@t
C 1

Re

�

2
@2v

@y2
C @2v

@x2
C @2u

@x@y

�

y C 2

Re

�

@u

@x

��

dy

C
Z A4

A3

�

�uv � v!y C y
@u

@t
� 1

Re

�

2
@2u

@x2
C @2u

@y2
C @2v

@x@y

�

y C 1

Re

�

@u

@y
C @v

@x

��

dx

C
Z A1

A4

�

�1
2
.v2 � u2/C u!y C y

@v

@t
� 1

Re

�

2
@2v

@y2
C @2v

@x2
C @2u

@x@y

�

y � 2

Re

�

@u

@x

��

dy

and

Fy D � d

dt

Z

V

v.1 � �S / dxdy

C
Z A2

A1

�

1

2
.v2 � u2/ � v!x C x

@u

@t
� 1

Re

�

2
@2u

@x2
C @2u

@y2
C @2v

@x@y

�

x � 2

Re

�

@v

@y

��

dx

C
Z A3

A2

�

�uv C u!x C x
@v

@t
� 1

Re

�

2
@2v

@y2
C @2v

@x2
C @2u

@x@y

�

x C 1

Re

�

@v

@x
C @u

@y

��

dy

C
Z A4

A3

�

�1
2
.v2 � u2/C v!x � x @u

@t
C 1

Re

�

2
@2u

@x2
C @2u

@y2
C @2v

@x@y

�

x C 2

Re

�

@v

@y

��

dx

C
Z A1

A4

�

uv � u!x � x @v
@t

C 1

Re

�

2
@2v

@y2
C @2v

@x2
C @2u

@x@y

�

x � 1

Re

�

@v

@x
C @u

@y

��

dy:

For a 2D viscous flow past a circular obstacle of diameter d with free stream velocity u1, drag

and lift coefficients are expressed by the following formulas:

CD D 2Fx

�u2
1d

; CL D 2Fy

�u2
1d

: (32)
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3. VALIDATION FOR FLOW PAST A TWO-DIMENSIONAL CIRCULAR CYLINDER

The vortex penalization has been validated in 2D and 3D fluid structure interaction problems at low

Reynolds numbers [11], in the context of multi-resolution [29] and in GPU implementations for 2D

flows [15]. To evaluate the accuracy of the method, in particular with respect to the value of the

penalization parameter, we consider here validations on the classical benchmark of the flow around

a 2D circular cylinder for a wide range of Reynolds numbers.

There is an important literature about the classical benchmark of the 2D circular cylinder. This

benchmark is covered by an important literature. A thorough survey of this subject can be found in

Williamson (1996) [1].

Vortex methods using vorticity flux boundary conditions have allowed to obtain reference results

for a wide range of Reynolds numbers [2]. Recently, the penalization–vortex method has been

implemented on GPU processor. The accuracy and performance of this implementation against tra-

ditional CPU implementations have been tested on this benchmark in an explicit formulation of the

penalization. We use here the same benchmark to illustrate the efficiency of the implicit formulation

(Equation (20)).

3.1. Numerical setup and flow conditions

The computational domain and the geometrical setup are shown in Figure 1, whereD is a rectangle

delimited by its boundaries �D. The non-dimensional diameter d of the circular cylinder is equal to

1, and the body is centered at the origin. The whole computational domain is covered by a uniform

Cartesian grid.

In this section, periodic boundary conditions on the box boundary �D were prescribed for system

(17). A correction of the velocity field was performed at each time step in order to satisfy free stream

velocity u1 D .u1; 0/ D .1; 0/ imposed at the inlet. In all cases, the size of the computational box

was chosen large enough so that the effect of these boundary conditions was found to be negligible.

3.2. Convergence studies

First, we consider the case of an impulsively started cylinder flow with Re D 550 and study the

convergence of the method with respect to the penalization parameter and the grid size. The left

picture of Figure 2 shows the mean velocity profiles inside the cylinder, averaged over the time

window T D Œ0; 3�. The results corresponding to the implicit penalization scheme for three values

of � are compared with the profile obtained with the explicit formulation for a mesh size h D 0:005.

The explicit formulation of (18) requires a maximum value of � D 1=�t to guarantee stability.

Figure 2. Left picture: mean velocity magnitude profiles in a section across the center of the cylinder, at
x D 0, obtained with implicit penalization (� D 103; 106; 109) and explicit penalization (� D 1=�t) at
Re D 550. Right picture: grid-refinement study for the axial velocity at T D 3 on a cross section at x D 1:5

behind the cylinder.
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One can see from this experiment that, to obtain small values of the velocity inside the body, it is

necessary to use larger value of � and therefore to implement the implicit scheme (20). As already

mentioned, one can also notice that velocity values inside the body remain in all cases larger than

1=�. Unlike for the velocity–pressure formulation, indeed, in the vorticity formulation, there is no

direct relationship between the velocity in the body and the parameter �.

To have a more precise idea of the sensitivity of the results to the value of the penalization param-

eter, a �-convergence study is carried out at Re D 550 with h D 0:005 and�t D 0:0025. The value

of � ranges from 1 to 106, with � D 108 as reference case (solid case). We evaluate the L1, L2, and

L1 norms of the error e.y/ in the mean velocity magnitude profile Njuj (at x D 0) with respect to

the reference case

e.y/L1 D
Z ymax

ymin

ˇ

ˇ

ˇ

Njuj�D108.y/ � Njuj.y/
ˇ

ˇ

ˇ
dy; (33)

e.y/L2 D
�Z ymax

ymin

ˇ

ˇ

ˇ

Njuj�D108.y/ � Njuj.y/
ˇ

ˇ

ˇ

2

dy

�1=2

; (34)

e.y/L1 D sup
y2Œymin;ymax�

ˇ

ˇ

ˇ

Njuj�D108.y/ � Njuj.y/
ˇ

ˇ

ˇ
: (35)

As Figure 3(a) shows, the numerical error decreases as O.��1=2/ when � 6 102 and as O.��1/

when � > 102. The same study was performed at Re D 100 with a smaller grid size and time step,

respectively, equal to h D 0:0025 and �t D 0:001. The results are given in Figure 3(b) and show

that the error behaves as O.��1=2/ when � 6 104 and O.��1/ when � > 104. These convergence

rates are in agreement with the numerical results found out in [9] where it is stated that to increase

� to high values (� > 106), a mesh refinement is necessary. Moreover, these numerical results are

slightly better compared with the theoretical result given in [9], attesting that the upper bound on

the global L1 error of the penalization is ku� � uk 6 C��1=2. Furthermore, we can see in this

figure that the circular cylinder reaches the solid state from � D 104, where e.y/ 6 10�4. Thus,

a permeable medium can be defined by setting the �-values between 1 and 103, with very low

permeability for the latter one.

Finally, the right picture of Figure 2 shows a grid-refinement study performed at Re D 550 for a

section located in the wake at x D 1:5 and a penalization parameter � D 1010 in the implicit for-

mulation. It depicts the instantaneous velocity magnitude at time T D 3 for different grid sizes and
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Figure 3. �-convergence study for flow past a circular cylinder at Re D 550 with h D 0:005 and �t D
0:0025 (a) and at Re D 100 with h D 0:0025 and�t D 0:001 (b). The errors eL1 , eL1 , and eL2 are plotted

against � values.
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indicates that for this flow, one can consider that convergence is reached for h 6 0:005. Additional

validations are given in the next section.

3.3. Flow analysis and validations

The first part of the study is related to the low Reynolds number analysis where the viscous effects

are predominant. Following [8], the adimensional time step �t is determined by the condition

�t=.h2 Re/ � O.1/. Various tests have been carried out by increasing the blockage ratio 1=Ly ,

where Ly denotes the height of the computational box, as shown in Figure 1. The size of the com-

putational domain was chosen such that the effects of the boundaries on the shedding frequencies

were negligible. Moreover, a careful convergence study with respect to the domain size has been

performed in [4] for flow past a 2D circular cylinder using vortex methods. This study shows a first-

order convergence for the lift coefficient and Strouhal number and third-order convergence for the

drag coefficient. It demonstrates that a domain extending to about 6 cylinder diameters downstream

is sufficient to provide reliable flow diagnostics. The subsequent simulations have been performed

in a computational box with dimensions Œ�7:5; 25� � Œ�7:5; 7:5� with 3250 � 1500 grid points.

This corresponds to a mesh size h D 0:01. The penalization was introduced using the implicit for-

mulation (20), and the penalization parameter was set to � D 1010. For Re < Recrit D 49, the flow

regime is laminar, and the solution is steady and stable [1].

For larger Reynolds numbers, the flow regime is still laminar, but the steady solution becomes

unstable (Re > Recrit). On the left-hand side picture of Figure 4, the amplitude A! of the fluctuation

of the vorticity on a monitoring point P D .2:5; 0:5/ is plotted for various Reynolds numbers. For a

flow regime close to the bifurcation point Recrit (Re < 60), the wake instabilities grow very slowly,

so the oscillation study is started at Re D 60. Nevertheless, the exact critical Reynolds number is

obtained with a linear extrapolation of the amplification factor curve. The right-hand side picture of

Figure 4 shows the Strouhal number (given by the shedding frequency) as a function of the Reynolds

number, obtained in our calculations and in the experimental work [1]. An estimate of the mean

relative error between the two curves yields N� D 1
N

X

N

jStref � St j � 0:6%, where N denotes the

number of points on each curve (i.e., N D 13).

The evaluation of forces has been carried out using the momentum equation (29). The mean

values and the amplitudes of the fluctuations of drag and lift coefficients for flows at Re D 100
and Re D 200 are computed and given in Table I. These results are very close to experimental and

numerical data collected by Russell and Jane Wang [30] and Braza et al. [31].

To address a transitional case, we focus now on an impulsively started flow at Re D 550 and

compare our results to those of Koumoutsakos and Leonard [2] and Ploumhans and Winckelmans

[8]. The time evolution of the drag coefficient is reported in Figure 5(a). In our computations, the grid

convergence in a computational domain Œ�4; 8� � Œ�5; 5� is achieved with parameters h D 0:005,

Figure 4. Amplification factor A! curve (left). Strouhal–Reynolds curve (right).
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Table I. Comparison of drag coefficient, lift coefficient, and Strouhal number for flow past a
circular cylinder at Re D 100 and Re D 200.

Re D 100 Re D 200

Authors NcD NcL St NcD NcL St

Braza et al. [31] 1.36 ˙ 0.015 0 ˙ 0.25 0.160 1.40 ˙ 0.050 0 ˙ 0.75 0.190
Russel and Wang [30] 1.43 ˙ 0.009 0 ˙ 0.322 0.172 1.45 ˙ 0.036 0 ˙ 0.63 0.201
Present method 1.40 ˙ 0.010 0 ˙ 0.32 0.165 1.44 ˙ 0.05 0 ˙ 0.75 0.200

Figure 5. Drag evolution for Re D 550 (a), Re D 1000 (b), Re D 3000 (c), and Re D 9500 (d). Comparisons
of present method (solid red line) with Koumoutsakos and Leonard [2] (dashed line). Solid black line are

results from Ploumhans and Winckelmans [8] in (a), (b), (c) and from Rasmussen et al. [29] in (d).

�t D 0:005, and � D 108. The various results are in excellent agreement. Figure 6(a) depicts

the vorticity isocontours, which are very similar to the vorticity field presented by Ploumhans and

Winckelmans [8], where h D 6:03 � 10�3.

The next simulation was performed at Re D 1000. At this regime, advection effects become

predominant in the flow field. The boundary layer thickness decreases, requiring a finer grid. The

mesh size is consequently set to h D 0:0025 in a computational domain Œ�4; 8� � Œ�5; 5�, and

the time step is set to �t D 0:003. The non-dimensional time evolution of the drag coefficient is

given in Figure 5(b) and compared with the result in [2]. Table II shows the comparison of mean

drag coefficient, amplitude fluctuation of lift coefficient, and Strouhal number with other studies

[32, 33] for long time simulations. All these comparisons confirm an excellent agreement between

our results and the reference results in the literature.

For Re D 3000, the flow is unstable, and the shedding generates complex vortex pairings [1]. In

this case, grid convergence was obtained in our method for � D 108, h D 0:0025, and�t D 0:0025.

Figure 5(c) shows again a very good agreement in the drag history between our results and those in

[8] and [2]. In [8], h is about 0.002. Vortex contours in Figure 6(b) confirm this agreement.

The last simulation addresses the flow around the impulsively started cylinder at Re D 9500. Let

us emphasize that a 2D validation study at such a regime makes sense because we only consider

here the impulsive start of the flow, before the onset of 3D instabilities. In order to capture small
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Figure 6. Comparison of vorticity isocontours for the impulsively started cylinder between the present
method (left columns) and Ploumhans and Winckelmans [8] (right columns) at (a) T D 1, 3, 5 at Re D 550

and (b) T D 1, 2, 3 at Re D 3000.

Table II. Comparison of mean drag coefficient, mean lift coefficient,
and Strouhal number for flow past a circular cylinder at Re D 1000.

Re D 1000

Authors NcD NcL St

Apte et al. [32] 1.50 0 ˙ 1.36 0.238
Mittal et al. [33] 1.48 ˙ 0.21 0 ˙ 1.65 0.250
Present method 1.51 ˙ 0.23 0 ˙ 1.54 0.245

Table III. Justification of the choice of mesh size h based on the boundary
layer thickness ı, for the circular cylinder validation study.

Boundary layer Chosen mesh Number of mesh cells
Re thickness (ı) size (h) in boundary layer

550 � 0.043 0.005 8.6
1000 � 0.032 0.0025 12.8
3000 � 0.018 0.0025 7.2
9500 � 0.010 0.00125 8

spatial structures and the thin boundary layer, the grid size was reduced to the value h D 0:00125 in

the same computational domain as the one used in the previous cases. The time step was set to 0.002

and � D 108. The comparison of our results to those obtained by Rasmussen et al. [29] as well as

Koumoutsakos and Leonard [2] is reported in Figure 5(d). In [29], a multilevel vortex method was

used with a minimal grid resolution corresponding to hmin D 1=1024. The discrepancy observed in

Figure 5(d) at early times of the drag history indicates that the penalization method has difficulties

to establish the strong initial vortex sheet on the body of the cylinder. For later times, our results are

in excellent agreement with [2, 29].

To conclude this section, Table III is given to confirm that the choice of the grid resolution h at

each flow regime is appropriate to capture the boundary layer thickness, expressed by ı � D=
p
Re.

The validation study just performed for the 2D circular cylinder benchmark enables us to deter-

mine the appropriate grid resolutions and time steps needed to obtain accurate results in the more

challenging cases that will be considered in the following.
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4. APPLICATION TO FLOW PAST A MOVING TWO-DIMENSIONAL

VERTICAL AXIS TURBINE

In this section, our goal is to take advantage of the flexibility of the vortex penalization method to

handle moving bodies. Here, we apply this technique to the 2D flow past a VAT.

The main problem encountered with the aerodynamics of a VAT architecture turbine is the com-

plex unsteady flow phenomena occurring during its working cycle. For each revolution, the blades

undergo a highly unsteady relative motion with large variation of incidence and absolute value of the

relative velocity. This complexity in the flow motion is mainly characterized by flow detachment,

vortex shedding, dynamic stall, and turbulence.

The study of the turbulent flow past VAT has been addressed recently by some authors [34–36];

however, the basic characteristics of the turbulent wake for such a kind of flow remains essentially

an open issue.

Cottet et al. [37] and van Rees et al. [38] provide validation studies of remeshed vortex methods

against reference spectral methods in 3D laminar and turbulent flows. These studies give confidence

that remeshed vortex methods, combined with penalization methods, can be efficient and flexible

tools to handle VAT flows.

The VAT is rotating at a given velocity � and is immersed in a stream with a uniform far

field velocity u1. The blade radius and the airfoil chord are denoted by R and c, respectively

(Figure 7(a)).

The motion of a solid obstacle can be described with the vortex–penalization method as follows

[11]. S D S.t/ is a moving multi-connected solid region. If one denotes by � a level set function,

which is negative inside S and positive outside, the characteristic function of S is defined by � D
H.�/, where H.�/ is a suitable step function. Moreover, in a rigid body motion, the level set function

has to satisfy

@�

@t
C .us � r/ � D 0: (36)

The aforementioned equation enables to evaluate the body trajectory. Equation (36) can be inter-

preted as a material derivative D�=Dt D 0, and the movement of the blade can be integrated using

a Lagrangian method. Figure 7(b) shows some levels of the function � defining the airfoil on a

Cartesian equispaced grid.

The blade section used in this VAT is a symmetrical Kármán–Trefftz airfoil with a slightly

smoothed trailing edge. The frame of reference is set on the rotation axis of the turbine, and the

computational domain is D D Œ�6; 6� � Œ�3:5; 3:5� with 3001 � 1751 grid points (correspond-

ing to h D 0:004) and the penalization parameter � D 1010. The Poisson equation is solved using

Figure 7. (a) Geometrical setup of VAT. (b) Distance function � isocontours, the dashed rectangle †� is the
support of �.
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a fourth-order finite differences-based solver, provided by the Fishpack library [39]. The bound-

ary conditions prescribed on the stream function  are the following: on the upstream/downstream

boundaries, a Neumann condition is imposed, and on the horizontal boundaries, a Dirichlet condi-

tion enforces the flow mass rate through the domain. The Reynolds number for a VAT can be defined

choosing the blade section chord c as reference length and the maximum relative velocity u
max
rel

as

reference velocity, where this velocity is given by u
max
rel

D ju1jCj�Rj. For a realistic simulation of

a medium/small wind or water turbine, it is located in the range of 104–106. The flow is transitional

and is dominated by convective phenomena.

Figure 8. Isovorticity lines of the wake past the VAT at Re D 1000 (a) and at Re D 10; 000 (b). Snapshots,
respectively, at times T D 3:8, 11:4, 18:9, and 26:5 s and T D 0:38, 1:14, 1:89, and 2:65 s.
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In this section, two values of the Reynolds numbers, Re D 1000 and Re D 10; 000, are consid-

ered. This bench study mainly aims to highlight the great capability of the present method to supply

realistic results for moving bodies with unfitted boundaries, and the grid resolution handled here is

convenient to confirm the qualitative physical behavior of computations.

For the Reynolds number Re D 1000, a wind turbine with a blade section chord c D 0:2m, radius

R D 0:3 m, rotating speed � D 0:185 rad/s, and immersed in a stream with u1 D 0:025 m/s is

considered (where �air D 1:6 10�5 m2=s at 20ıC). For this Reynolds number, which corresponds to

a low transitional flow with viscous effects, the time step is taken as�t D 0:001. A higher Reynolds

number for a wind turbine operating at low wind speed is studied by considering this VAT geometry

with the working conditions � D 1:85 rad/s and u1 D 0:25 m/s. The corresponding Reynolds

number is Re D 10; 000, and the integration time step is chosen to be �t D 0:0002. In Figure 8(a)

and 8(b), instantaneous vorticity isolines for different rotating times of the blades at Re D 1000

and Re D 10; 000 are, respectively, plotted. The varying incidence of the velocity occurring at each

blade generates separation and vortex shedding; as the figures show, the flow is highly unsteady,

and the blade strongly interacts with the wake. The flow for Re D 1000 generates an almost regular

Von-Kármán-like wake with large structures. By contrast, the vortex shedding for the Re D 10; 000

becomes very quickly unsteady where small high-frequency vortical structures interact with each

other before being transported downstream.

A complementary description of the flow around the turbine is given by the averaged-in-time

streamlines for the absolute flow field shown in Figure 9(a) and 9(b), for a wake at Re D 1000 and

Re D 10; 000. The isolines are displayed in the relative frame of reference, which is centered on

the turbine axis and moves jointly with the blades. For the lower Reynolds number Re D 1000, the

average is computed for a simulation time of �650 s, which corresponds to �19 loops of the blade.

As Figure 9(a) shows, for this flow, the recirculation zones (one for each blade) are concentrated

between the rotation axis and the inner surface of the blade. For the higher Reynolds number Re D
10; 000, the mean flow is computed for a simulation time of �65 s, which still corresponds to �19

cycles. In this case, for each blade, three recirculating areas can be identified, as in Figure 9(b): two

zones are close to the airfoil (outer and inner surfaces), and the third region is the average in time of

the wake generated from the trailing edge of each blade due to complex vortex interactions.

Finally, we study the time evolution of the enstrophy � and the number of vortex particles in order

to better analyze the properties of these two flow regimes. The enstrophy is a quantity that measures

the dissipation of energy in terms of kinetic energy. In a 2D flow field, the enstrophy is given by

Z D
R

D
j!j2d� , where D is the computational domain. In Figure 10(a) and 10(b), the compari-

son between the time history of the enstrophy and the number of particles is shown for Re D 1000

Figure 9. Averaged-in-time streamlines for the VAT at Re D 1000 (a) and at Re D 10; 000 (b). The isolines
of the absolute flow field are represented in the relative frame of reference.
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Figure 10. Time history of the dimensionless enstrophy Z (blue) and the number of vortex particles (red)
for Re D 1000 (a) and Re D 10; 000 (b). The axis of the abscissas represents the number of the cycles

performed by the turbine.

Figure 11. Frequency spectrum of the enstrophy signal computed for Re D 1000 (a) and Re D 10; 000 (b).
The horizontal axis reports the discrete frequency !i divided by the angular velocity � of the turbine.

and Re D 10; 000, respectively. As Figure 10(a) shows, the amplitude of the oscillations remains

quite small compared with the Re D 10; 000 regime (Figure 10(b)), where the frequency of the

shedding appears through large oscillations. The figures show the high correlation between the time

evolution of the enstrophy and the number of particles. In addition, one can observe a characteristic

frequency, roughly corresponding to 10 rotations of the blades, for which large vortices are shed out-

side the computational domain. Further computations would be needed to confirm and understand

this phenomenon.

In the present cases, the flow regime is characterized by unsteady separations generated by the

periodical interaction of the wake with the blades. For Re D 1000, we notice that the princi-

pal vortex shedding frequency roughly corresponds to 2�, which is twice the angular velocity of

the two-bladed VAT. For Re D 10; 000, different shedding frequencies can be distinguished from

the rotational frequency of the blade. The investigation on the shedding frequencies is meaningful

because it allows to relate the interaction of the vortex wake with the structure of the turbine. If

some vortex shedding frequencies match the proper frequencies of the turbine, the structure can res-

onate with a self-sustained motion, and the turbine is liable to aeroelastic phenomena. To evaluate

the principal frequencies of vortex shedding, we performed a discrete Fourier analysis of the enstro-

phy signal. In Figure 11(a) and 11(b), the spectra of the enstrophy versus the frequency of the signal

are presented, where Aenstrophy is the amplitude of the enstrophy, and !i=� is the non-dimensional
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discrete frequency of the signal. The spectra do not report the mean value corresponding to the first

coefficient i D 0 of the Fourier series. To avoid the effect of the initial transient stage, the Fourier

analysis was applied on the signals after the first three cycles of the turbine.

In Figure 11(a), the shedding principal harmonic at two times the angular velocity of the turbine is

confirmed: the wake interacts with a blade two times for each cycle of the turbine. Further couplings

with the principal frequency can be identified at 4, 6, and 8. Some high energy contributions are

visible at frequencies lower than 2. A reason may be that the flow is not fully developed and did not

achieve a statistical steady state yet.

In Figure 11(b), the spectrum exhibits shedding frequencies at two and four times the angu-

lar velocity. The enstrophy signal is noisy and characterized by random peaks at low frequency

(Figure 10(b)).

Following [40], because the turbulent dissipation rate is equal to the turbulent kinetic energy

production, the ratios of the Kolmogorov scale to the largest scales are determined readily by means

of the approximation � � U 3

L
, and the results are as follows: � �

�

�3L
U 3

�
1
4

, �� �
�

�L
U 3

�
1
2

, and

u� D �
��

. Finally, the Kolmogorov scales for the cases at Re D 1000 and Re D 10; 000 are,

respectively, � D 1:1� 10�3 m, u� D 1:4� 10�2 m
s

, and �� D 7:8� 10�2 s and � D 2:0� 10�4 m,

u� D 8:0 � 10�2 m
s

, and �� D 2:5 � 10�3 s.

Higher couplings with the principal rotational frequency are not visible in the spectrum, because

the energy is transferred from the large geometrical scale to the Kolmogorov scale. The large ener-

getic contribution occurring at frequencies lower than 2 probably means that the flow is not yet

fully developed.

5. EXTENSION TO SOLID–POROUS–FLUID MEDIA AND FLOW CONTROL

This section is devoted to the study of flows in solid–porous–fluid media. It illustrates the efficiency

of the vortex penalization method to handle problems where the physical properties or boundary

conditions vary in the body.

5.1. Modeling and numerical setup

The penalization method has been used to model the porous–fluid–solid problems with primitive

pressure–velocity formulations [20, 23, 41]. This work is dedicated to the extension of this approach

to the vorticity equations and to different configurations. We consider a solid body surrounded by

a porous layer and immersed in an incompressible fluid. In such a system, one can identify five

Figure 12. Velocity profile in the vicinity of a porous medium (left). Computational domain for flow control
past semi-circular cylinder (right)
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different flow regimes corresponding to different regions in the fluid. The first region is the bound-

ary layer inside the porous medium, close to the solid wall. This region is very thin compared with

the second region, which is characterized by the homogeneous porous flow with Darcy velocity

(regions numbered 1 and 2 in Figure 12 (left)). In the vicinity of the porous–fluid interface, two

transient layers can be recognized (numbered 3 and 4 in Figure 12 (left)). The first one corresponds

to the porous layer where the velocity increases to reach a value ui at the interface and the sec-

ond one to the fluid boundary layer leading to the free external flow. The size of the fluid boundary

layer is determined by u0 � ui where u0 denotes the velocity of the main fluid flow (numbered 5

in Figure 12 (left)). The goal is thus to compute the flow simultaneously in the porous medium,

the fluid region, and at the interface between the two media. Several approaches have already been

proposed to handle this problem. The first one, which is mainly used to model flows past a solid

with permeable walls [42, 43], avoids to solve the porous flow by enforcing appropriate porous–

fluid boundary conditions [44]. This method neglects the physics of the porous medium and does

not allow to have an overall view of the problem. The second approach considers that the porous

flow has to be accurately computed and solves the governing equations in each region by coupling

the Darcy equations and the Navier–Stokes equations through an appropriate condition at the inter-

face [45, 46]. This approach is very delicate to handle especially because of the requirement of this

appropriate boundary condition. The method presented here, based on the vortex–penalization tech-

nique, considerably simplifies the task because a unique equation is used for the whole domain and

enables to accurately model each of the different regions by varying the value of the dimensionless

penalization factor �. In two dimensions, the penalized vorticity equation reads as follows:

@!

@t
C .u:r/! D 1

Re
�! C r � Œ� �S .us � u/�: (37)

We recall that � essentially depends, in the inverse proportion, on the physical intrinsic perme-

ability of the medium k, which directly derives from the Darcy law (Equation (7)). Varying the value

of � thus directly characterizes the different media.

Modeling the physics of three different regions enables one to deal with engineering problems

involving porous media. In the following, this approach is validated for a simple but informative pas-

sive flow control problem: the solid–porous–fluid configuration is applied to cover a semi-circular

cylinder geometry with a porous coating. The porous coating is applied on the obstacle external sur-

face in order to modify the vorticity generation of the boundary layer and the vortex shedding. The

presence of a porous medium at the solid–fluid interface indeed imposes a kind of mixed boundary

condition intermediate between the no-slip and the slip one on the solid boundary [47]. As a result,

the shear forces are reduced, and the flow dynamics is smoothed [20, 23, 41, 48]. This control tech-

nique, which allows to keep the obstacle geometry unchanged, is expected to reduce drag forces

and vortex-induced vibrations, thereby improving the aerodynamic properties of the obstacle. The

semi-circular cylinder can be considered as a simplified section of an outside rear-view mirror of

a vehicle. The mirrors, because of their spanwise location, indeed generate a non-negligible wake,

which interferes with the vehicle sides. This provides a good motivation to perform flow control

past such obstacles. Moreover, as it was shown in [49, 50], a flow past a square back obstacle is

not dominated by longitudinal vortical structures, therefore, a preliminary 2D study can be useful to

supply information on general trends for a control.

In the following, the semi-circular cylinder has a total dimensionless diameter of d D 1 including

a porous layer of thickness � . The backward face of the obstacle is centered at the point .0; 0/

(Figure 12 (right)). In the sequel, we will consider flows both at transitional (Re D 550) and highly

transitional (Re D 3000) regimes.

5.2. Validation and convergence studies for flow past a solid semi-circular cylinder

Compared with the circular cylinder considered in the previous section, the semi-circular cylinder

presents singular points, which make its simulation more challenging. In order to verify the accuracy

of the method in the case of flow past a solid semi-circular cylinder, we proceed like in Section 3.

We first compare the results obtained using the present method with the ones of the literature, for
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different Reynolds numbers. Second, we present the convergence of the method with respect to the

penalization parameter and the grid size.

5.2.1. Validation. The benchmark of incompressible flow past a semi-circular cylinder is not a clas-

sical one, and only few references already exist on this subject. Nevertheless, we aim at least to

compare our results to numerical and experimental ones. To do so, we, respectively, consider the

works of Farhadi et al. [51] and Boisaubert and Texier [52]. The flow analysis presented hereafter is

based on the near-wake length measurement, the Strouhal number, and the drag and lift coefficients.

The Reynolds number ranges between 100 and 300 in this study.

As can be seen in Table IV, the results obtained at Re D 100 and Re D 300 show a good

agreement with the numerical values given by [51]. A more detailed comparison is performed at

Re D 200, and the related results are reported in Figure 13. As regards drag and lift coefficients, one

can say according to Figure 13(a) that our results coincide very well with those of Farhadi et al. [51]

because we achieve NcD D 1:85˙ 0:15, NcL D 0˙ 0:53, and St D 0:230 against NcD D 1:85˙ 0:12,

NcL D 0 ˙ 0:50, and St D 0:215 in [51]. Figure 13(b) gives a comparison of the normalized

near-wake length L with the numerical results of Farhadi et al. [51] and the experimental data of

Boisaubert and Texier [52]. The near-wake length is defined as the x-coordinate of the point located

on the centreline in the x-direction, where the streamwise component of the velocity vanishes. As

can be seen in the figure, the values obtained with the present method greatly coincide with the

numerical and experimental reference results.

5.2.2. Convergence studies. In this section, we present convergence studies of the vortex–

penalization method for the flow past a solid semi-circular cylinder at Re D 550 and Re D 3000.

We first focus on the convergence of the present method with respect to the penalization parameter

�. The way this convergence study is carried out is exactly the same as presented in Section 3.2.

Table IV. Comparison of mean drag coefficient and
Strouhal number for flow past a semi-circular cylin-

der at Re D 100 and Re D 300.

Re D 100 Re D 300

Authors NcD St NcD St

Farhadi et al. [51] 1.73 0.180 1.955 0.22
Present method 1.70 0.192 1.90 0.24

Figure 13. (a) Drag and lift evolution for flow past a semi-circular cylinder at Re D 200. (b) Normalized
near-wake length L=d of a semi-circular cylinder at Re D 200: comparison with numerical results [51]

(green triangles) and experimental data [52] (black squares).
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Figure 14. �-convergence study for flow past a semi-circular cylinder: the errors eL1 , eL1 , and eL2 are
plotted against � values at Re D 550 (a) and Re D 3000 (b).

Table V. Convergence study for flow past a semi-
circular cylinder at Re D 550 and Re D 3000.
NcD and NZ, respectively, denote the mean values

of drag coefficient and enstrophy.

Re D 550 Re D 3000

Grid NcD NZ NcD NZ

h D 0:01 1.49 122 — —
h D 0:005 1.91 158 1.89 313
h D 0:0025 1.98 161 1.94 292
h D 0:00125 — — 1.96 280

As Figure 14 shows, the semi-circular cylinder reaches the solid state from � D 105, where

e.y/ 6 10�4, for both regimes. A permeable area can thus be defined with �-values lower than 104.

In the upcoming control study, we will vary the penalization parameter until 103 inside the added

porous layer in order to model a permeable medium.

We now turn to a grid convergence study. It is performed on three grid levels. For Re D 550, we

consider three mesh sizes as follows: h D 0:01, h D 0:005, and h D 0:0025 in the computational

domain D D Œ�4; 8� � Œ�5; 5�. For Re D 3000, as the boundary layer is thinner, we perform

the convergence study with three finer mesh sizes, respectively, h D 0:005, h D 0:0025, and

h D 0:00125. The simulations are carried out in a smaller domainD D Œ�2:5; 5�� Œ�3; 3� in order

to reduce the computational cost induced by the finest grid. The mean drag and enstrophy values

are reported in Table V. At Re D 550, on the basis of these results, one can consider that the grid

convergence is achieved for h D 0:005 with �t D 0:0025. At Re D 3000, grid convergence is

obtained with h D 0:0025 and h D 0:00125, which lead us to choose h D 0:0025 and �t D 0:002

for the upcoming simulations. Let us emphasize the interest of the vortex methods, which enable

here to handle a highly transitional regime using a relatively large time step compared with classical

Eulerian methods.

5.3. Parametric study with respect to the penalization parameter �

In this section, we study the influence of the porous layer permeability on the flow behavior and

the efficiency of such a passive control. This parametric study is performed at Re D 550 and Re D
3000 with different values of the porous permeability inside the layer, ranging from � D 0:125

(very high permeability) to 103 (very low permeability). The results are compared with the one
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Figure 15. (left) Solid/uncontrolled case, (center) porous case, (right) fluid case.

Table VI. Reduction effects in terms of mean drag force, mean enstrophy, and
Strouhal number brought by the different layer permeabilities in comparison

with the uncontrolled case at Re D 550.

Re D 550

Cases NFx NZ St

Uncontrolled case 0.957 158.4 0.248
Porous case � D 1000 0.957 (�0%) 154.0 (�3%) 0.248 (C0%)
Porous case � D 100 0.968 (C1:1%) 143.3 (�10%) 0.248 (C0%)
Porous case � D 10 0.970 (C1:4%) 114.4 (�28%) 0.252 (C1:6%)
Porous case � D 5 0.893 (�7%) 100.6 (�36%) 0.257 (C4%)
Porous case � D 2:5 0.788 (�19%) 93.7 (�41%) 0.268 (C8%)
Porous case � D 1 0.695 (�27%) 97.5 (�38%) 0.284 (C15%)
Porous case � D 0:5 0.664 (�31%) 101.9 (�36%) 0.291 (C17%)
Porous case � D 0:25 0.648 (�32%) 105.5 (�33%) 0.296 (C19%)
Porous case � D 0:125 0.643 (�33%) 107.7 (�32%) 0.298 (C20%)
Fluid case 0.640 110.9 0.300

corresponding to the solid (� D 108) and fluid (� D 0) cases. In the first place, the thickness of the

coating is set to 10% of the diameter: � D 0:1 (Figure 15) for all the cases. According to the grid

convergence performed in the previous section (Table V), the numerical simulations are performed

on a 2400 � 2000 grid (corresponding to h D 0:005) for Re D 550 and on a 4800 � 4000 grid

(corresponding to h D 0:0025) for Re D 3000 in a computational domain D D Œ�4; 8� � Œ�5; 5�
(Figure 12 (right)).

In order to analyze the effects of our control approach, we compare global flow quantities like the

drag force (Fx), computed according to the momentum equation (29), the enstrophy (Z) allowing

to measure the dissipation effects in the flow as well as the delay of transition to turbulence, and the

Strouhal number (St ). Note that in this study, we consider drag forces instead of drag coefficients

because the CD formula (32) involves the diameter d of the obstacle, which is not clearly defined

because of the porous coating.

The results of the parametric study performed at Re D 550 are given in Table VI. Concerning

the Strouhal number St , one can notice that it continuously increases as the � value decreases. The

presence of a permeable layer around the obstacle indeed enables to raise the shedding frequency,

and in the limit � ! 0, one tends to the flow dynamics of the fluid case, which is characterized by

smaller vortices swirling at higher frequency (Figure 16(a)). Regarding NFx , Table VI shows that,

as expected, the drag reduces as the controlled case tends to the fluid case. Nevertheless, one can

observe a slight increase of the drag force for intermediate values of �, namely, � D 100 and

� D 10. In fact, this range of permeability values is responsible for a high resistance of the flow

inside the layer inducing higher friction forces at the interface and thus a higher total drag. The

quantitative results reported in Table VI are also highlighted in Figures 17 and 18, respectively,

depicting the mean velocity and mean vorticity fields. As already emphasized in the literature [48,

50], the main source of drag forces for bluff bodies with square back is the low-pressure recirculation
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Figure 16. Instantaneous vorticity fields for flow past a semi-circular cylinder at Re D 550 (a) and Re D
3000 (b). The vortex shedding of the two controlled cases (� D 10 and � D 1, with � D 0:1) is compared

with one of the uncontrolled and fluid cases (reduced obstacle).

zone in the near wake of the vertical wall. With � D 1, the near-wake structures are smaller, and the

back recirculation zone is drastically reduced (Figure 18). Moreover, the mean velocity of the wake

clearly diminishes (Figure 17), and the structure of the global and near wake resembles one of the

fluid cases. This feature explains the important drag reduction observed in Table VI for � D 1 (-

27%) and in general for small values of �. On the contrary, the flow behavior obtained with � D 10

looks very similar to one of the uncontrolled cases with an important transversal extent of the wake

(Figure 18) and high velocities in the flow compared with the uncontrolled case (Figure 17). This

confirms the results given in Table VI and allows us to conclude that this value of � is not suitable

at this regime to achieve drag reduction. However, with � D 10, we obtain an important reduction

of the enstrophy, which implies an efficient wake regularization and thus a delay in flow transition.

This observation leads us to the analysis of control efficiency in terms of enstrophy, for which we

observe a more complex behavior. Indeed, as can be read in Table VI, the enstrophy decreases with

� to reach an optimal value, for � D 2:5 (�41% compared with uncontrolled case). Below this �

value, the enstrophy increases again to finally reach the value corresponding the reduced obstacle

(fluid case). Therefore, when � 6 10, then NZ� < NZfluid, which demonstrates the non-monotonic
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Figure 17. Isolines of mean velocity magnitude for the flow past a semi-circular cylinder at Re D 550.

Figure 18. Zoom of the mean vorticity fields and isolines for the flow past a semi-circular cylinder at
Re D 550.

behavior of the enstrophy, in the range of permeabilities taken into account in this parametric study

(for all values of � in ¹0:125; 1000º; NZ� < NZsolid). Figure 19(a) summarizes these observations

made from Table VI and shows the evolution of the mean drag force and the mean enstrophy with

respect to the � parameter.
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Figure 19. Effects of various layer permeabilities on the mean drag force NFx (red curves) and the mean
enstrophy NZ (blue curves) for flow past a semi-circular cylinder at Re D 550 (a) and Re D 3000 (b)

with � D 0:1.

Table VII. Reduction effects in terms of mean drag force, mean enstrophy, and
Strouhal number brought by the different layer permeabilities in comparison with

the uncontrolled case at Re D 3000.

Re D 3000

Cases NFx NZ St

Uncontrolled case 0.926 334.2 0.238
Porous case � D 1000 0.936 (C1%) 325.8 (�2:5%) 0.236 (�0:84%)
Porous case � D 100 0.873 (�6%) 270.0 (�19%) 0.211 (�11%)
Porous case � D 10 1.054 (C14%) 248.8 (�26%) 0.246 (C4%)
Porous case � D 5 1.048 (C13%) 211.9 (�37%) 0.282 (C19:5%)
Porous case � D 2:5 0.933 (C0:76%) 187.7 (�44%) 0.295 (C25%)
Porous case � D 1 0.870 (�6%) 236.7 (�29%) 0.313 (C33%)
Porous case � D 0:5 0.869 (�6%) 261.6 (�22%) 0.323 (C37%)
Porous case � D 0:25 0.838 (�9:5%) 302.3 (�9:5%) 0.321 (C36%)
Porous case � D 0:125 0.869 (�6%) 300.9 (�10%) 0.328 (C39%)
Fluid case 0.880 319.3 0.331

At Re D 3000, the evolution of the Strouhal number as a function of � is similar to the one

observed at Re D 550: the more permeable the added layer is, the higher the shedding frequency

is. This behavior is represented by the vorticity fields of Figure 16(b), where one can clearly see the

benefits of the porous coating, which enables to go from a chaotic wake with large eddies of strong

intensity (uncontrolled case) to an axisymmetric Von Kármán street composed of numerous small

vortices, similar to one of the fluid cases (controlled case with � D 1). On the other hand, the results

obtained in terms of mean drag force and mean enstrophy are also comparable with those obtained

at Re D 550, with a more pronounced behavior. Concerning the drag force, we indeed notice in

Table VII and Figure 19(b) that intermediate permeabilities (� � 10) completely deteriorate the

performances. On the contrary, below � D 5, the drag reduction is enhanced. This assessment is

confirmed by Figures 20 and 21 showing in a case of a very permeable layer (� D 1) a symmetric,

thin and regular wake as well as low velocity gradients and low vorticity values in the vicinity of the

detachment points and the recirculation zone. Regarding enstrophy, similarly as in the Re D 550

study, we identify an optimum � value, still equal to 2.5, for which the enstrophy reaches a global

minimum value leading to a reduction of 44% (Table VII and Figure 19(b)). In a general way, this

non-monotonic behavior of the enstrophy proves that the regularization effects reported here are not

due to a change of the Reynolds number, because we have for instance NZ�D2:5 < NZ�D1 < NZfluid,
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Figure 20. Isolines of mean velocity magnitude for the flow past a semi-circular cylinder at Re D 3000.

Figure 21. Zoom of the mean vorticity fields and isolines for the flow past a semi-circular cylinder at Re D
3000.
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Figure 22. Zoom of the instantaneous vorticity fields and isolines at T D 80 in the vicinity of the solid
interface at Re D 3000 for the two following cases: the fluid case (left) and the controlled case with � D 1

and � D 0:1 (right).

whereas Re�D2:5 > Re�D1 > Refluid. In fact, the introduction of a porous layer generates Kelvin–

Helmoltz instabilities at the solid–porous interface. These instabilities, depicted in Figure 22 at

Re D 3000 for the � D 1 test case, for example, change the shear forces at the interface and

therefore modify the vortex shedding mechanism and the global flow dynamics. The presence of

such instabilities explains in particular the qualitative and quantitative differences between the fluid

case and the very permeable cases.

Finally, the most important observation that emerges from this parametric study is the difference

of behavior between the enstrophy and the drag evolution. We indeed highlighted the systematic

enstrophy reduction in the presence of a porous coating, regardless of its permeability, whereas some

� values were found to be responsible for a non-negligible drag increase, especially at Re D 3000.

This is directly due to the way these two quantities are evaluated. The enstrophy quantifies the

energy dissipation of the whole system, it is therefore evaluated in the entire domain. Thus, the lam-

inar velocities caused by the presence of the permeable layer and appearing in the vicinity of the

detachment points lead to a delay in transition to turbulence and directly impact the transport of

the vorticity, which is regularized. On the contrary, the drag force is evaluated on the walls of the

obstacle or in the vicinity of the body (Section 2.3) and is directly linked to the vorticity generation.

Therefore, the high friction phenomenon caused by some permeabilities (namely, intermediate per-

meabilities) and implying a resistance of the flow in the front part of the obstacle is directly reported

in the drag diagnostic and in the very near-wake analysis. The � D 10 test case at Re D 3000 clearly

illustrates these statements: one can indeed notice the beneficial effects of the permeable coating on

the wake, which becomes axisymmetric (Figure 16(b)) and does not show high velocity gradients

anymore (Figure 20). As a consequence, we achieve a reduction of enstrophy (Table VII). On the

opposite, the effects on the very near-wake and on the drag in particular are clearly not beneficial

(Table VII) as can be seen in Figure 21. The case � D 10 shows important recirculation zones in

the rear back of the solid, responsible for a pressure decrease and thus for a drag growth. Therefore,

the drag forces are more sensitive to the permeability values.

To conclude this �-parametric study, we can assert that the control should be implemented with

high permeability coefficients (� 6 2:5) in order to combine both significant drag reduction and

regularization of the wake.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
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Table VIII. Effects of the porous layer thickness � on the control efficiency
at Re D 550 (top part) and Re D 3000 (bottom part). The two controlled
cases considered in this study are the porous case with � D 10 and the one

with � D 1.

NFx NZ St

Re D 550
Uncontrolled case 0.957 158.4 0.248

� D 0:1
Porous case � D 10 0.970 (C1:4%) 114.4 (�28%) 0.252 (C1:6%)
Porous case � D 1 0.695 (�27%) 97.5 (�38%) 0.284 (C15%)

� D 0:05
Porous case � D 10 0.914 (�4:5%) 123.5 (�22%) 0.253 (C2%)
Porous case � D 1 0.774 (�19%) 123.7 (�22%) 0.269 (C8:5%)

� D 0:025
Porous case � D 10 0.879 (�8%) 134.5 (�15%) 0.254 (C2:5%)
Porous case � D 1 0.821 (�14%) 139.3 (�12%) 0.260 (C5%)

Re D 3000
uncontrolled case 0.926 334.2 0.238

� D 0:1
Porous case � D 10 1.054 (C14%) 248.8 (�26%) 0.246 (C4%)
Porous case � D 1 0.870 (�6%) 236.7 (�29%) 0.313 (C33%)

� D 0:05
Porous case � D 10 0.979 (C6%) 253.7 (�24%) 0.225 (�5:5%)
Porous case � D 1 0.999 (C8%) 285.2 (�15%) 0.290 (C22%)

� D 0:025
Porous case � D 10 1.018 (C10%) 283.7 (�15%) 0.251 (C6%)
Porous case � D 1 1.011 (C9%) 318.4 (�5%) 0.278 (C17%)

5.4. Influence of the layer thickness � on the flow control efficiency

In the previous section, the effects of the control were studied for different permeabilities using a

constant layer thickness � D 0:1. In this section, the effect of the thickness is investigated, and

a special focus is made on thin layers in order to reduce the use of porous materials and to find

out a compromise between practical engineering constraints and control efficiency. The same cases

(Figure 15) are now considered with the thickness of the layer set to � D 5%d D 0:05 and � D
2:5%d D 0:025. Table VIII reports the control performances in terms of global flow quantities,

obtained for two controlled cases, � D 10 and � D 1, with � D 0:05 and � D 0:025. Generally,

as expected, for both regimes (Re D 550 and Re D 3000), a slight decrease of control efficiency is

observed when � diminishes. Nevertheless, at Re D 3000, one can observe a change of trend. We

indeed achieve a drag increase for both controlled cases (� D 1, � D 10), even if the enstrophy

reduction is still maintained. Thus, to achieve a significant drag reduction, it becomes necessary

to think about the position of the permeable areas around the obstacle in order to reduce the high

resistance currently experienced by the flow only in the front part of the layer. This question is the

purpose of a companion paper [53], where it is in particular shown that an efficient solution consists

in locating the permeable zones only on top and bottom of the body, in the vicinity of the flow

detachment points.

6. CONCLUSION

In this paper, a method combining penalization, vorticity formulation, and particle discretization

was described and applied to complex fluid–solid configurations. The penalization approach greatly

simplifies the implementation of vortex particle methods to handle the no-slip boundary conditions.

It enables to consider the governing equations in the whole computational domain and enables the

use of simple Cartesian grids and fast Poisson solvers to compute velocity fields. After a detailed

validation on the circular cylinder benchmark, the first application to moderate and high Reynolds

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
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flows around a moving VAT was presented. The results showed the efficiency of this method to

realistically model flows past moving obstacles. The second application illustrated the capability of

the method to handle solid–fluid–porous media. The distinction between the three different media is

indeed performed by varying the value of the penalization parameter without prescribing a boundary

condition at the solid boundary or at the porous–fluid interface. An application to passive flow

control past a semi-circular cylinder was performed at transitional and highly transitional regimes,

consisting in adding a porous sheath on the obstacle surface in order to smooth the flow dynamics.

The presence of a porous layer at the solid–fluid interface is responsible for a decrease of the shear

forces and the vorticity generation of the boundary layer, leading to significant wake stabilization

and drag reduction.
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ABSTRACT

In this paper, the passive control of flow past a semi-circular cylinder is investigated. This control is achieved by

adding a porous medium between the solid obstacle and the incompressible fluid in order to reduce drag forces and

regularize the flow. A vortex-penalization method is chosen to easily model the flow in the different media. Several

configurations of the porous layer are investigated and parametric studies are performed in order to determine the

most efficient passive flow control devices. This control study can be considered as a first step to propose efficient

strategies to regularize the flow around a side-view mirror.

Nomenclature

CD drag coefficient

D computational domain

F , S fluid domain and solid domain

FD drag force

Re Reynolds number

Z enstrophy

d non-dimensional diameter

h reference mesh size

k intrinsic permeability

lre f height of the obstacle

ure f reference velocity

u = (u,v) velocity field

us body rigid motion

ū mean velocity magnitude

u∞ free stream velocity

ΓD computational domain boundaries

∆t time step

Φ porosity

λ penalization parameter

µ dynamic viscosity

ν kinematic viscosity

ρ density of the fluid
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τ porous layer thickness

χS characteristic function

ω vorticity field

1 Introduction

On a ground vehicle, the outside mirrors, due to their spanwise position, indeed generate a non-negligible wake which

interferes with the flow past car sides. They are responsible of up to 10% of the total vehicle drag but they only represent

0.5% of the total projected surface, which accounts for a good motivation to perform flow control past these obstacles. This

work is devoted to the control of flow past a two-dimensional semi-circular cylinder which can be considered as a simplified

section of a side-view mirror. As it was shown in [1, 2], a flow past a square back obstacle is not dominated by longitudinal

three-dimensional vortical structures, therefore a preliminary two-dimensional study can be useful to supply information and

general trends for a further control study in three dimensions around a hemisphere. The aim is to use a control device easy

to set up, low cost and allowing to keep the geometry unchanged. As active control devices can be hardly implemented in

such a case, an efficient passive strategy seems to be a good alternative. A suitable solution has already been proposed by

Bruneau and Mortazavi in [3–7]. It consists in adding a porous sheath on the obstacle surface in order to reduce the vorticity

generation of the boundary layer. The presence of a porous medium at the solid-fluid interface indeed imposes a kind of

mixed boundary condition intermediate between the no-slip and the slip one on the solid boundary [8]. As a result, the

shear forces are decreased and the flow dynamics is smoothed. Consequently, the problem we have to solve involves three

different media, namely the solid obstacle, the porous layer and the fluid. An easy way to tackle it is to use the penalization

method [9]. This method is based on a unique model, the Brinkman-Navier-Stokes equations, which are obtained by adding

in the Navier-Stokes equations a penalization term, depending on the intrinsic permeability. Three values of this coefficient

represent the three different media. This method can be easily implemented since it enables to consider the governing

equations in the whole computational domain. Moreover it does not require to prescribe a boundary condition at the solid

boundary or a condition at the porous-fluid interface. The penalization method has been recently implemented in vortex

methods to deal with fluid-structure interaction problems [10–12]. It was extended to deforming bodies and applied to find

optimal swimming modes of fishes [13,14]. In the present work, we consider a two-dimensional viscous and incompressible

flow past a semi-circular cylinder. We also introduce some porous coatings on the obstacle in order to manipulate the flow.

The Brinkman-Vorticity Transport Equations are solved using remeshed vortex methods [15–17] which are characterized by

their efficiency and robustness at high Reynolds numbers since they allow to focus the computational task on the rotational

zones and to solve the flow equations in a fast Lagrangian way.

In the following we first describe the methodology and show some validations and convergence studies. Then we present

the results of two-dimensional passive flow control for several devices differing from each other in terms of the permeability,

the thickness and the geometrical configuration of the added porous layer. A careful comparison is carried out between

controlled and uncontrolled flows at transitional (Re = 550) and highly transitional regime (Re = 3000).

2 Vorticity Formulation And Vortex Methods

The dynamics of an incompressible flow is governed by the incompressible Navier-Stokes equations :

∇.u = 0 in D (1)

∂u

∂t
+(u ·∇)u = −∇p+

1

Re
∆u in D, (2)

where D is the computational domain, u the velocity and Re the Reynolds number. In this work, flow simulations are based

on particle methods. The fluid particles which are displaced by convection and diffusion are characterized by their position

and their vorticity. The vorticity transport is expressed by the Helmholtz equation (or Vorticity Transport Equation), obtained

taking the curl of the incompressible Navier-Stokes equations (Eqn. 2) and given in 2D by :

∂ω

∂t
+u.∇ω =

1

Re
∆ω in D, (3)

where ω denotes the vorticity. The Poisson equation

∇2u =−∇×ω, (4)
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obtained from continuity equation (Eqn. 1), enables to recover velocity field once the vorticity field is known. The previous

equations are approximated using a Vortex method [15, 18]. These methods are very robust and low-cost to simulate high

Reynolds number recirculating flows since the computationel task is mainly focused on vortical structures (see for example

[19, 20]). In this kind of approach, the VTE equation (Eqn. 3) is solved using a two-fractional step (or viscous splitting)

method. It relies on approximating separately the diffusion and convection terms at each time step. The convective part is

solved using a ”Vortex-In-Cell (VIC)” method (see e.g. [15] and [21] for its application to active flow control) with a semi-

Lagrangian resolution. In this fractional step a convective velocity is associated to each finite vortex element through a high

order interpolation procedure, and the displacement is achieved using a Runge-Kutta method. In order to avoid Lagrangian

distortion, particles are then remeshed on the original grid using the same interpolation kernel as the one used previously to

interpolate grid velocity values onto the particles. Finally, for computational efficiency and accuracy, diffusion and Poisson

equation are solved on the grid using Fast Fourier Transforms (FFT).

3 Vortex Penalization Method in Vorticity Formulation

Before all, we show how the penalization method can be used successfully to model the flow of an incompressible fluid

around an obstacle [9]. In the penalization technique the system is considered as a single flow, subject to the Navier-Stokes

equation with a penalization term that enforces continuity at the solid-fluid interface and rigid motion inside the solid. In this

work, the penalization term is expressed using vorticity formulation. The main interest of the penalized vorticity formulation

is that it replaces the usual vorticity creation algorithm in order to satisfy the no-slip boundary condition for vortex methods.

This new technique avoids the convergence difficulties due to the particle creation on the solid boundaries (see [10] and [17]).

We solve simultaneously the Brinkman equations in the solid and the Navier-Stokes equations in the fluid, considering whole

the domain as a porous medium with zero (solid) or infinite permeabilities (fluid). Thus, defining the Reynolds number as

Re = ure f lre f /ν, the non-dimensional penalized vorticity equation (or Brinkman-Navier-Stokes equation) reads

∂ω

∂t
+(u.∇)ω =

1

Re
∆ω+∇× [λ χS(us −u)], (5)

where χS denotes the characteristic function that yields 0 in the fluid and 1 in the solid, us indicates the rigid body velocity

which is zero in all this work since the body is fixed and λ = µΦ lre f /ρk ure f is the non-dimensional penalization parameter,

in inverse proportion to the permeability of the medium (with k the intrinsic permeability, µ the viscosity, Φ the porosity of

the porous material, lre f the height of the obstacle, ρ the density and ure f the reference velocity). The main advantage of this

method is that it needs neither the mesh to fit the boundaries nor to specify no-slip boundary conditions. In addition it allows

to compute the pressure as a continuous field on the whole domain including the solids.

The zone variation is realized changing the penalization coefficient that defines the permeability of each region. Numer-

ically, the fluid is considered as a porous medium with a very high permeability (λ = 0) and the bodies are considered as

porous media with a very small permeability (λ = 108).

To discretize the penalized vorticity equation (Eqn. 5) in a vortex method, the equation is split in substeps. At each time

step, one successively solves the unsteady penalization-convection-diffusion equations:

∂ω

∂t
= ∇×(λ χS(us −u)) (6)

∂ω

∂t
+(u ·∇)ω = 0 (7)

∂ω

∂t
=

1

Re
∆ω. (8)

To solve Eq. 6 we use an implicit scheme ( [10]) and we set:

ω̃
n+1 = ∇×

[
un +λ∆tχSus

n

1+λ∆tχS

]
. (9)

where ∆t is the time step. The right hand side above is evaluated by second order centered finite differences.

At this stage, grid vorticity above a certain cut-off is used to create particles in grid point surrounding cells and Eq. 7

is solved by a classical vortex-in-cell method [15]. Particles are pushed with a RK4 time-stepping and are then remeshed

on the original grid using the third order interpolation kernel M′
4 [22]. Then, diffusion (Eq. 8) and Poisson equation (Eq.

213



uD

u i

u0

x

y

2

1

3

4

5

Solid body

Porous medium

Fluid domain

Fig. 1. Velocity profile in the vicinity of a porous medium.

4) are solved on the grid using FFT-based evaluations as described in [23]. Grid values for vorticity and velocity are now

available for time tn+1 and a new cycle of iterations can start. Moreover, the no-slip boundary conditions are naturally

satisfied penalizing the vorticity transport equations.

This hybrid vortex penalization method has already been successfully used to simulate high Reynolds flow regimes past

bluff bodies [12, 24].

4 Vortex Penalization Method for Solid-Porous-Fluid Media

This section is devoted to the study of flows in solid-porous-fluid media and aims to highlight the efficiency of the vortex

penalization method to solve such problems. For three different solid, porous and fluid media configurations, it is of great

importance to clearly understand the flow behavior at the fluid-porous interface in order to model the physics correctly. As

described in [6], we can consider five different flow regions from the solid to the free flow in the fluid. The first one is

the boundary layer inside the porous medium, close to the solid wall. This one is very thin compared to the second region

which is characterized by the homogeneous porous flow with Darcy velocity (numbers 1 and 2 in Fig. 1). In the vicinity

of the porous-fluid interface, two transient layers can be recognized (numbers 3 and 4 in Fig. 1). The first one corresponds

to the increase of the porous layer velocity reaching ui value at the interface and the second one to the fluid boundary layer

standing from the interface to the free flow. The fluid boundary layer growth is then determined by u0 −ui where u0 denotes

the velocity of the main fluid flow (number 5 in Fig. 1). The aim is thus to find out a way to solve the flow both in the

porous medium, the fluid region and at the interface between the two media. Several approaches have already been proposed

to handle this problem like avoiding to solve the porous flow enforcing appropriate porous-fluid boundary conditions [25] or

solving the governing equations of each region coupling Darcy equations and Navier-Stokes equations with a right treatment

at the interface [26, 27]. Nevertheless, these two approaches present some drawbacks since the first one neglects the porous

medium physics and does not permit to have overall view of the problem and the second one is particularly difficult to handle

especially because of the interface problem. The method presented here, based on the vortex-penalization technique, appears

as a suitable alternative since it involves a unique equation (Eq. 5) for the whole domain and ensures an accurate modeling

of each of the different regions thanks to the dimensionless penalization factor λ. Here, λ is expressed as λ = µΦ lre f /ρk ure f

where lre f ,ρ,ure f = 1 in this study and the porosity Φ is close to 1 as imposed by Brinkman equations [28]. Therefore λ
essentially depends, in the inverse proportion, on the intrinsic permeability k of the medium. Varying the λ value directly

defines the different media according to the following equation obtained using implicit Euler scheme for the penalization

velocity discretization:

ũn+1 =
un

1+λ∆tχS

. (10)

Indeed, in the fluid, the intrinsic permeability coefficient k goes to infinity, thus the fluid can be considered numerically

as a porous media with a very high permeability. We set λ = 0 in this region. According to Eq. 10, the velocity in the

fluid is not penalized (ũn+1 = un) and since λ = 0, the penalization term vanishes in Eq. 5, and we naturally recover the

Vorticity Transport Equation (Eq. 3). On the contrary, the solid has a permeability coefficient k which goes to zero, it can

be consequently modeled setting the penalization parameter λ to a very high value. In this study λ equals 108 in the solid,

which vanishes the flow velocity in this region according to Eq. 10 (ũn+1 → 0) .
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It has been proved in [9] that solving Eq. 5 with such a value of λ was equivalent to solve Darcy’s law in the solid.

Furthermore, setting the λ parameter to an intermediate value, reasonably chosen between these two extreme values (λ = 0

and λ = 108), would model a porous medium in which the flow has a Darcy velocity uD (Fig. 1). For example λ = 1000

corresponds to a very low permeable medium and λ = 1 represents a very high permeability. The variation of λ corresponds

to the variation of k that specifies the intrinsic porous material permeability. The accuracy and efficiency of the penalization

method come from its capability to take into account these variations of λ and to capture the induced steep velocity variations

at the different interfaces with a minimum number of discretization points.

5 Validation and grid convergence study

In order to verify the accuracy of the method, we present in this section a validation study of the computational method

employed in this work. First we consider flows past semi-circular and circular cylinders at different regimes, and we compare

the results with the ones of the literature. Secondly we present a grid convergence study for flow past a semi-circular

cylinder, the obstacle of interest in this work. Each simulation presented in the following is performed considering the same

geometrical setup: the obstacle under study has a dimensionless diameter of d = 1 and its center (in the case of a circular

cylinder) or its back wall (in the case of a semi-circular cylinder) is located at (x,y) = (0,0) in the computational domain

D. The whole domain is meshed by an equispaced Cartesian orthogonal grid. As we use FFT-based evaluations to solve

diffusion and Poisson equations, periodic boundary conditions are considered on the box walls and a correction of velocity

is performed at each time step in order to satisfy the free stream velocity u∞ = (ure f ,0) = (1,0) imposed at the inlet.

5.1 Validation for flow past a circular and a semi-circular cylinder

The first part of this validation study deals with incompressible flow past a semi-circular cylinder.We compare our results

to numerical and experimental results of Farhadi et al. [29] and Boisaubert and Texier [30]. The flow analysis presented

hereafter are based on the near-wake length measurement, the Strouhal number St (given by the shedding frequency) and the

drag and lift coefficients, expressed by:

CD =
2FD

ρu2
re f d

, CL =
2FL

ρu2
re f d

. (11)

where the drag and lift forces, respectively noted FD and FL, are computed according to the momentum equation given by

Noca et al. in [31]. The Reynolds number ranges between 100 and 300 in this study.

As can be seen in Table 1, the results obtained at Re = 100 and Re = 300 show a good agreement with the numerical

values given by [29]. A more detailed comparison is performed at Re = 200 and the related results are reported in Fig.

2. Concerning in particular drag and lift coefficients, one can see from the left picture in this figure that our results coin-

cide very well with those of [29]. Indeed we find c̄D = 1.85± 0.15, c̄L = 0± 0.53 and St = 0.230 to be compared with

c̄D = 1.85± 0.12, c̄L = 0± 0.50 and St = 0.215 in [29]. The right hand side picture of Fig. 2 gives a comparison of the

normalized near-wake length L with the numerical results of [29] and the experimental data of [30]. The near-wake length is

defined as the x-coordinate of the point located on the centerline in the x-direction where the streamwise component of the

velocity vanishes. Again, our results agree rather well with the literature.

We complete this validation study by investigating the circular cylinder benchmark for which references addressing

higher Reynolds numbers can be found in the literature. The Reynolds numbers considered in this part are the one we

selected to perform the passive control study, that is to say Re = 550 (transitional regime) and Re = 3000 (highly transitional

regime). The early-time evolution of the drag coefficient for both regime is reported in Fig. 3 and one can see that the results

are in excellent agreement with the considered references.

Re = 100 Re = 300

Authors c̄D St c̄D St

Farhadi et al. [29] 1.73 0.180 1.955 0.22

Present method 1.70 0.192 1.90 0.24

Table 1. Comparison of mean drag coefficient (c̄D) and Strouhal number (St ) for flow past a semi-circular cylinder at Re=100 and Re=300.
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5.2 Grid convergence

We perform herein a grid convergence study of the vortex penalization method for flow past a solid semi-circular cylinder

at Re = 550 and Re = 3000. This grid convergence is carried out on three grid levels. For Re = 550 the three consecutive

mesh sizes are: h = 0.01, h = 0.005 and h = 0.0025 in the computational domain D = [−4, 8]× [−5, 5]. For Re = 3000,

as the boundary layer is thinner, we perform the convergence study with three finer mesh sizes, respectively h = 0.005,

h = 0.0025 and h = 0.00125. The simulations are carried out in a smaller domain D = [−2.5, 5]× [−3, 3] in order to

reduce the computational cost induced by the finest grid. The results reported in Table 2, give the mean values of drag and

enstrophy. For Re = 550, the results on the two finest consecutive grids are very close (Table 2). We can consider that the

grid convergence is achieved and the adopted grid size for the further flow control simulations is h = 0.005 with ∆t = 0.0025.

For Re = 3000 the grid convergence is achieved with h = 0.0025 and h = 0.00125. The corresponding studies will thus be

performed using h = 0.0025 as the grid size and ∆t = 0.002 as the time step. Let us emphasize the interest of the vortex

methods which enables here to handle a highly transitional regime using a relatively large time step compared to classical

Eulerian methods.
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Re = 550 Re = 3000

Grid c̄D Z̄ c̄D Z̄

h = 0.01 1.49 122 - -

h = 0.005 1.91 158 1.89 313

h = 0.0025 1.98 161 1.94 292

h = 0.00125 - - 1.96 280

Table 2. Grid convergence study for flow past a semi-circular cylinder at Re=550 and Re=3000 through the mean values of drag coefficient

(c̄D) and enstrophy (Z̄).

6 Passive control

In this work, the vortex penalization method is applied to passive flow control around a two-dimensional semi-circular

cylinder. The control is achieved covering this obstacle with a porous coating. The expected effect of a porous medium at

the solid-fluid interface is to modify the vorticity generation of the boundary layer and the vortex shedding, and therefore to

reduce drag forces and vortex induced vibrations improving the aerodynamic properties of the obstacle.

The subsequent flow control simulations are performed at transitional (Re = 550) and highly transitional regime (Re =
3000). As at these two regimes the flow is not turbulent, Direct Numerical Simulations (DNS) are performed to numerically

solve Eq. 5. The semi-circular cylinder has a total dimensionless diameter of d = 1 including a porous layer of thickness τ,

whose back wall is centered at (x,y) = (0, 0) in the computational domain D = [−4, 8]× [−5, 5] depicted in Fig. 4.

In order to analyze the effects of the control approach we will compare velocity, vorticity and pressure fields as well as

global flow quantities like the drag force (Fx) and the enstrophy (Z) which measures the dissipation effects in the flow and

defined by Z =
∫

D |ω|2 dx. Note that in this study we will consider the drag force instead of the drag coefficient since the

computation formula of the latter involves the diameter d of the obstacle which includes the porous layer.

-4

-2
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2

4

-4 -2 0 2 4 6 8

y

x

u

D

d

D

y

x

Fig. 4. Computational domain used for passive flow control.

6.1 Parametric study on penalization parameter λ for homogeneous porous layer

This section relies on the influence of the added porous layer permeability on the flow control behaviour and the effi-

ciency of such a passive control. We perform a parametric study at Re = 550 and Re = 3000 considering four consecutive

values of λ inside the porous coating, namely λ = 1 (high permeability), 10, 102, 103 (low permeability) and compare the

results to the fluid case (λ = 0) and the uncontrolled case. The fluid case means a semi-cylinder including a porous layer

with permeability λ = 0, which corresponds to a smaller semi-cylinder with diameter d−2τ. In this section, the thickness of

the layer is set to τ = 10%d = 0.1 for each case (Fig. 5).

As can be seen in Fig. 6, which represents dimensionless time history of global flow quantities at Re = 550, setting

λ = 1 inside the layer clearly appears as the best solution in terms of flow regularization. Indeed, the mean value of drag
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force (Fig. 6 (left)) reaches for λ = 1 an optimum value close to the one of the fluid case, showing a drag reduction of 27%

compared to uncontrolled case. For all the other values of porous λ, the drag reduction effects are nearly nonexistent. Results

of enstrophy evolution (Fig. 6 (right)) show a progressive reduction of the dissipation and the delay to transition with the

decrease of λ values. Moreover, we note that the result with λ = 1 is even better than the one of fluid case and represents an

improvement of nearly 40% compared to uncontrolled case.

At Re = 3000 the best solution for global flow regularization is also achieved setting λ = 1 inside the porous coating.

This configuration leads to a drag and enstrophy reduction of respectively 6% and 30% compared to the uncontrolled case

and one can see on Fig. 7 the important decrease of the signals amplitude. In terms of control effects, the main difference

one can notice here in comparison to the parameter study performed at Re = 550 concerns the flow behaviour observed

when λ = 10 inside the layer. Contrary to the other λ values, the flow field obtained with the latter is non-periodic (Fig.

7). This flow irregularity impacts the mean drag value, which is increased of about 15% compared to the uncontrolled case.

We can summarize that except for a very permeable porous layer (λ = 1), a porous coating covering the whole face of the

semi-cylinder is not a convenient tool to reduce the drag. It is only useful to regularize the wake. The problem seems due to

the separation point that is located inside the porous medium.
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6.2 Influence of the porous layer configuration on flow control efficiency

This section aims to determine control devices which are both efficient in terms of flow regularization and easy to set

up in terms of manufacturing constraints. According to the parametric study presented in the previous section, setting the λ
function to 1 in the surrounding sheath enables important flow reduction effects. Nevertheless, this configuration turns out to

be industrially difficult to implement because of the very high permeability of the added layer. On the contrary, intermediate

permeabilities obtained fixing λ = 10 inside the porous interface are easier to handle but show quite poor improvements in

terms of flow control, as reported in the parametric study. Taking into account these observations, we propose to compare

the six test cases depicted in Fig. 8. Case 0 refers to the uncontrolled case, cases 1 and 2 correspond to homogeneous layer

cases where λ respectively equals 1 and 10, and cases 3 to 5 refer to heterogeneous cases where the porous layer is split in

two regions with different permeabilities. The simulations were performed taking the same numerical parameters as the one

used for the parametric study. In a first place, the thickness of the layer is kept to 10%d = 0.1. The asymptotic mean values

of global flow quantities and the time averaged vorticity, velocity and pressure fields are respectively given for each case in

Table 3, and Figures 9 to 14.

First of all, the results reported here give further information concerning cases 1 and 2. They confirm that case 2 is

not competitive as it increases the drag for Re = 550 and Re = 3000 compared to uncontrolled case (Table 3). They also

highlight the efficiency of case 1 which induces a significant reduction of drag force (−27% and −6%) and enstrophy (−38%

and −29%). These quantitative results are confirmed by the mean vorticity and velocity fields showing the smoothing of

wake dynamics generated by the presence of the highly permeable layer. Indeed, the near wake structures are smaller and

the back recirculation zone is sharply reduced (Figs. 9 and 12), implying an increase of downstream pressure (Figs. 11 and

14) and thus a reduction of drag forces. Finally, the vortices swirl with lower velocity and for Re = 3000 the mean wake

becomes axisymmetric (Fig 10 and 13).

Let us now focus on the heterogeneous devices. For both regime, the case 3 shows benefits which are very comparable

to those of case 1. We note that the only difference with case 2 is the presence of highly permeable poles in the layer. This

change allows an eddy detachment from the wall with larger shedding structures, diminishing the back wall recirculation

zone (Figs. 9 and 12) and a drastic increase of downstream near wall pressure for the Re = 550 regime (Fig. 11). The case 3

also enables to significantly regularize the flow in the wake with lower velocities, using highly permeable material introduced

in both edges of the body (Figs. 10 and 13). Nevertheless, the mix of high and intermediate permeabilities induces difficulties

to industrially build such a coating and has no practical interest.

The cases 4 and 5 are more interesting for industrial applications. For these cases, the front part of the coating is no

more permeable, but completely solid and porous layers are only placed in the two edge parts of the obstacle, which makes

the practical implementation much more easier. Here, for both Reynolds numbers 550 and 3000, the enstrophy and the drag

force undergo a tremendous decrease except for the case 5 at Re = 3000 where the drag force drop is limited to 7% because

of the lower permeability of the porous layer (Table 3). Figures 9 to 14 confirm these results. They show a significant

reduction of the mean velocity of the flow in the near and far wake (Figs. 10 and 13) as well as the decrease of the crosswise

dimension of the two counter-rotating vortical structures at the back of the obstacle (Figs. 9 and 12). Also, the near wall

pressure values (Figs. 11 and 14), especially for the case 4, are sensibly diminished which is in agreement with drag results.

These results emphasize the importance of the positions of the permeable zones that should be chosen considering the flow

separation phenomenon as it preferably should not occur inside the porous material. Finally, test case 5, made of intermediate

permeabilities on both edges of the body, corresponds to a more realistic device compared to the case 4 with very permeable

edges. It can be considered as a suitable and affordable device for flow control.

6.3 Influence of the porous layer thickness τ on flow control efficiency

In the previous sections, the control effects were studied for different configurations using a constant porous layer

thickness τ = 10%d. In this section, the effect of the thickness for different configurations will be investigated, and a special
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Re = 550 Re = 3000

τ = 10%d Fx Enstrophy Fx Enstrophy

case 0 (uncontrolled case) 0.957 158.4 0.926 334.2

case 1 0.695 (-27%) 97.5 (-38%) 0.870 (-6%) 236.7 (-29%)

case 2 0.970 (+1.4%) 114.4 (-28%) 1.054 (+14%) 248.8 (-26%)

case 3 0.668 (-30%) 87.4 (-45%) 0.922 (-0.4%) 223.2 (-33%)

case 4 0.551 (-40%) 110.2 (-30%) 0.737 (-20%) 270.6 (-19%)

case 5 0.738 (-23%) 125.2 (-21%) 0.860 (-7%) 281.3 (-16%)

Table 3. Reduction effects brought by the different porous layer configurations in comparison to the uncontrolled case at Re=550 and

Re=3000 with τ = 10%d.
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Fig. 12. Zoom of the mean vorticity fields and isolines for the flow past a semi-circular cylinder at Re=3000 with τ = 10%d.

focus will be made for thin layers in order to reduce the use of porous materials and to find out a compromise between

practical constraints and control efficiency. The same test cases (Fig. 5) are now considered setting the thickness of the layer

to τ = 5%d = 0.05 and to τ = 2.5%d = 0.025. Table 4 and 5 respectively report the control performances in terms of mean

global flow quantities, obtained for each case with τ = 5%d and τ = 2.5%d.

For both regimes Re = 550 and Re = 3000, when comparing Tables 3, 4 and 5, a slight decrease of control effects is

observed. This can be explained looking at the mean profiles of the streamwise component of the velocity, u at x = −0.05

plotted in Figures 16 and 18. These profiles show higher acceleration of the flow field inside the layer when its thickness

drops, inducing higher velocity gradients in the vicinity of the solid-porous-fluid interface and make the vortex shedding

occurring earlier, resulting in a little reduction of beneficial effects. Nevertheless, the decrease of drag and enstrophy remains

important for thinner porous layers, which enables to consider them as interesting passive control devices. Also, as shown

in Figure 15, a direct correlation between the drag reduction and the back wall pressure forces is noticeable at Re = 550:

when drag drops the back wall pressure rises. This fact is more unstable for the Re = 3000 as the flow is highly transitional

(figure 17). Furthermore, for the later flow regime, decreasing the layer thickness in cases 1, 2 and 3 deteriorate the drag

performances as the flow velocity slows down inside the thin layer around the body and the skin friction effects increase the

drag forces.

Now let focus on cases 4 and 5. One can observe in Tables 3, 4, 5 that case 4 remains the best control device in terms

of drag reduction, regardless of the coating thickness and Reynolds number. As discussed in the previous section, this is

due to the fact that the front part of the obstacle is completely solid and that highly permeable zones are precisely located

in the vicinity of the boundary layer separation point where the shedding starts. On one hand this configuration enables to

efficiently decrease the shedding velocity of the flow damped by porous edges (see Figures 16 and 18), on the other hand it

prevents from the negative effect of porous coatings implemented in the front part of the semi-cylinder. For both cases 4 and

5, Figs. 16 and 18 show for all thicknesses a uniform and relatively low acceleration of the flow field inside the layer. As

the case 5 is the most practical benchmark (more than all other cases as the porous materials with moderate permeability and

edge locations are easier to handle for the manufacturing of a real device), its control efficiency is important to be studied

221



| u |

case 0

case 1

case 2

1.6

1.2

0.8

0.4

0.0

Fig. 13. Fields and isolines of mean velocity magnitude for the flow past a semi-circular cylinder at Re=3000 with τ = 10%d.

case 0

case 1

case 2

cas

cas

case 5

0.12
0
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for all thicknesses: the control efficiency of case 5 is inversely proportional to the porous layer thickness τ. Indeed, in Tables

3, 4 and 5 one can clearly see that with τ = 2.5%d the drag reduction achieved with case 5, leads to −15% for Re = 550

and −10.5% for Re = 3000. This promising assessment seems to be due to the fact that the flow resistance inside a thin

porous layer is less than a thick layer but the shedding is still well tuned thanks to the position of porous coatings in the body

corners.
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Re = 550 Re = 3000

τ = 5%d Fx Enstrophy Fx Enstrophy

case 0 (uncontrolled case) 0.957 158.4 0.926 334.2

case 1 0.774 (-19%) 123.7 (-22%) 0.999 (+8%) 285.2 (-15%)

case 2 0.914 (-4%) 123.5 (-22%) 0.979 (+6%) 253.7 (-24%)

case 3 0.751 (-22%) 110.4 (-30%) 0.947 (+2%) 247.6 (-26%)

case 4 0.618 (-35%) 127.6 (-19%) 0.819 (-12%) 326.2 (-2%)

case 5 0.753 (-21%) 135.4 (-15%) 0.847 (-8.5%) 312.3 (-6.5%)

Table 4. Reduction effects brought by the different porous layer configurations in comparison to the uncontrolled case at Re=550 and

Re=3000 with τ = 5%d.

Re = 550 Re = 3000

τ = 2.5%d Fx Enstrophy Fx Enstrophy

case 0 (uncontrolled case) 0.957 158.4 0.926 334.2

case 1 0.821 (-14%) 139.3 (-12%) 1.011 (+9%) 318.4 (-5%)

case 2 0.879 (-8%) 134.5 (-15%) 1.018 (+10%) 283.7 (-15%)

case 3 0.824 (-14%) 129.6 (-18%) 0.929 (+0.4%) 271.1 (-19%)

case 4 0.768 (-20%) 140.2 (-11%) 0.806 (-13%) 331.4 (-0.8%)

case 5 0.810 (-15%) 143.4 (-10%) 0.828 (-10.5%) 320.6 (-4%)

Table 5. Reduction effects brought by the different porous layer configurations in comparison to the uncontrolled case at Re=550 and

Re=3000 with τ = 2.5%d.
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Fig. 15. Mean pressure profiles at the rear end of the body with a) τ = 10%d, b) τ = 5%d and c) τ = 2.5%d at Re=550.
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Re=3000 (cf Fig. 16 d) for profiles location.)
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7 CONCLUSION

In this work a passive control technique with porous coatings was implemented around a semi-circular cylinder in

order to regularize flow and reduce drag forces for laminar and transitional flows. The direct numerical simulations were

performed using vortex-penalization method which allows to compute simultaneously the three fluid-porous-solid media. In

the numerical study, the effect of the porous layer permeability on the control results was first analyzed. Highly permeable

media were more efficient, as expected. Then, several configurations of porous devices were compared. The results showed

that introducing porous layers only at the top and bottom of the solid body permits to better manipulate the vortex shedding

and to achieve relevant control performances. A further study on the influence of the porous layer thickness on the control

efficiency was performed. It showed that a thin layer with intermediate permeability, introduced in both edges of the back

wall, generates a significant drag reduction. As the ultimate target of this work is the drag reduction related to side mirrors,

this type of configuration would be easy to implement industrially and at low cost, since it only consists in adding an

intermediate-porous ring on the edge wall of the mirror. Although the present work needs to be complemented by three-

dimensional studies to confirm the quantitative control trends that were observed in the 2D experiments, it thus opens

interesting perspectives towards efficient drag control devices.
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Conception et mise en oeuvre d’une méthode vortex hybride
avec pénalisation pour des écoulements en milieux solides-fluides-
poreux : application au contrôle passif d’écoulements

Résumé :
Dans cette thèse nous mettons en œuvre une méthode vortex hybride pénalisée (HVP) afin de
simuler des écoulements incompressibles autour de corps non profilés dans des milieux complexes
solides-fluides-poreux. Avec cette approche particulaire hybride, le phénomène de convection est
modélisé à l’aide d’une méthode vortex afin de bénéficier du caractère peu diffusif et naturel des
méthodes particulaires. Un remaillage des particules est alors réalisé systématiquement sur une
grille cartésienne sous-jacente afin d’éviter les phénomènes de distorsion. D’autre part, les effets
diffusifs et d’étirement ainsi que le calcul de la vitesse sont traités sur la grille cartésienne, à
l’aide de schémas eulériens. Le traitement des conditions de bords aux parois de l’obstacle est
effectué à l’aide d’une technique de pénalisation, particulièrement bien adaptée au traitement
de milieux solides-fluides-poreux.

Cette méthode HVP est appliquée au contrôle passif d’écoulement. Cette étude de contrôle
est effectuée respectivement en 2D et en 3D autour d’un demi-cylindre et d’un hémisphère par
l’ajout d’un revêtement poreux à la surface de l’obstacle. La présence de cette couche poreuse
modifiant la nature des conditions aux interfaces, permet de régulariser l’écoulement global et
de diminuer la traînée aérodynamique de l’obstacle contrôlé. A travers des études paramétriques
sur la perméabilité, l’épaisseur et la position du revêtement poreux, ce travail vise à identifier des
dispositifs de contrôles efficaces pour des écoulements autour d’obstacles comme des rétroviseurs
automobiles.

Mots clés : Méthode vortex hybride, méthode de pénalisation, contrôle passif d’écoulements,
milieux poreux.

Conception and implementation of a hybrid vortex penalization
method for solid-fluid-porous media: application to the passive
control of incompressible flows

Abstract :
In this work we use a hybrid vortex penalization method (HVP) to simulate incompressible
flows past bluff bodies in complex solid-fluid-porous media. In this hybrid particle approach,
the advection phenomenon is modeled through a vortex method in order to benefit from the
natural description of the flow supplied by particle methods and their low numerical diffusion
features. A particle remeshing is performed systematically on an underlying Cartesian grid in
order to prevent distortion phenomena. On the other hand, the viscous and stretching effects as
well as the velocity calculation are discretized on the mesh through Eulerian schemes. Finally,
the treatment of boundary conditions is handled with a penalization method that is well suited
for the treatment of solid-fluid-porous media.

The HVP method is applied to passive flow control. This flow control study is realized past
a 2D semi-circular cylinder and a 3D hemisphere by adding a porous layer on the surface of the
body. The presence of such porous layer modifies the characteristics of the conditions at the
interfaces and leads to a regularization of the wake and to a decrease of the aerodynamic drag
of the controlled obstacle. Through parametric studies on the permeability, the thickness and
the position of the porous coating, this works aims to identify efficient control devices for flows
around obstacles like the rear-view mirrors of a ground vehicle.

Keywords : Hybrid vortex method, penalization method, passive flow control, porous media.
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