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ABSTRACT 

Forward Looking Infrared (FLIR) systems are commonly used in military 

applications for the purposes of detecting and recognising moving or stationary 

objects. FLIR imagery is particularly effective in low visibility environments and 

can provide additional information which would not be available in visible band 

images. The disadvantages of FLIR imagery are that it tends to be extremely noisy, 

low contrast, and cluttered due to manufacturing limitations and environmental 

constraints. Contemporary research has mainly focused on applying detection and 

recognition techniques directly to FLIR image sequences. However, compared with 

visible band images, FLIR imagery has much poorer quality which results in greater 

difficulty in detecting and recognising objects. This thesis describes the development 

of techniques to improve the quality of FLIR imagery prior to performing detection 

and recognition, with the aim of improving object detection and recognition 

performance. Super resolution and image mosaicing techniques have been employed 

for high-resolution assessment of individual areas and high-level situational 

awareness of large areas respectively. Both super resolution and image mosaicing 

rely heavily on accurate image registration hence an image registration system with 

sub-pixel accuracy has been developed especially for FLIR imagery. This image 

registration technique aligns imagery efficiently and accurately in spite of the 

inherent limitations of FLIR images. Then, a robust and efficient super resolution 

method has been adopted to enhance the image resolution and a mosaicing method 

based on the super resolution method used to enlarge the field of view of the image. 

In addition, cloud effects have been considered and a segmentation scheme 

developed to deal with cloud cover on FLIR imagery. 
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1.1 Scope and Motivation 

Object detection is a technology in computer vision and image processing concerned 

with detecting instances of objects of a certain class in images and videos. It has 

wide applications in various fields. Most notably, this technology is widely used in 

the military to help locate and recognise targets. The challenges posed by these 

applications have led to a large volume of research contributions in this field, which 

have been mainly focussed on processing visible band imagery. 

Forward-looking Infrared (FLIR) imaging is one of the most popular technologies to 

obtain images in dark and low visibility environments. In military surveillance, FLIR 

imaging systems can normally be mounted on airborne platforms to acquire ground 

information. However, due to limitations in the manufacturing process, infrared (IR) 

sensors/cameras produce images with a low signal-to-noise ratio (SNR) and their 

sensor arrays have inconsistent sensitivities from pixel to pixel. In addition, as the 

FLIR imaging is based on the objects' temperature, it is very low contrast and easily 

cluttered. 

Compared with visible band images, FLIR images have much poorer quality which 

makes detection tasks harder to accomplish. Instabilities are also introduced when 

FLIR devices are mounted on mobile platforms such as aircraft, which also adds the 

problem that objects on the ground appear relatively small, whose size may only 

cover a few pixels and as a result different ground features and coverings can add 

difficulties to the detection task. 
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1.2 Objectives and Methodology 

Contemporary research has mainly focused on applying detection and recognition 

techniques directly to FLIR image sequences. However, compared with visible band 

images, FLIR imagery has much poorer quality which results in greater difficulty in 

detecting and recognising objects. 

The objective of this thesis is to develop techniques to improve the quality of FLIR 

imagery prior to performing detection and recognition in order to improve object 

detection and recognition performance. As both super resolution and image 

mosaicing rely heavily on accurate image registration to align images, an image 

registration system with sub-pixel accuracy needed to be developed to be used on 

FLIR imagery. Following this, a robust and efficient super resolution method had to 

be adopted to enhance image resolution and a mosaicing method based on the super 

resolution method to enlarge the field of view. Super resolution and image mosaicing 

techniques have been employed for high-resolution assessment of individual areas, 

and high-level situational awareness of large areas respectively. 

The Matlab programming environment has been chosen for testing and developing 

the algorithms used in this thesis as it allows quick insights and fast proto typing. 
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1.3 Main Contributions 

There are three main contributions in this thesis. First, a sulrpixel accuracy image 

registration system has been developed for FLIR imagery. This registration system 

combines the Fourier registration method and maximum cross correlation method to 

achieve sub-pixel accuracy. The Fourier registration method is used for large 

movement and is robust and efficient for FLIR imagery. The maximum cross 

correlation method is used to adjust residual alignment. 

Second, a fast super-resolved mosaicing technique has been developed specifically 

for FLIR imagery to enhance image resolution and expand the field of view of the 

Image. 

Thirdly, a segmentation method has been developed especially for use in imagery 

with cloud cover. This method can segment the transparent and semi-transparent 

parts of the image, which can then be further processed, whilst discarding the parts of 

the image that cannot be used. 
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1.4 Structure of the Thesis 

This thesis is composed of the following chapters: 

• Chapter 2 presents background information on infrared imaging systems and 

describes the development of simulated infrared imagery in different 

environments. 

• Chapter 3 describes some image processing techniques which can be used for 

pre-processing and consequently improving the quality of infrared imagery, so as 

to remove noise, improve contrast and better enable feature identification. 

• Chapter 4 examines the image registration algorithms on FLIR image sequence 

and develops a sub-pixel registration system for FLIR images in the presence of 

large amounts of noise and cloud. Then super resolution algorithms are 

investigated and a robust super resolution method is applied to FLIR images. 

• Chapter 5 describes the effect of clouds on FLIR imagery. Both situations that 

are with clouds and without clouds are considered. Then a super-resolved 

mosaicing method is employed to generate a high resolution panoramic image 

from a sequence of low resolution FLIR images. 

• Chapter 6 gives an overview of the main issues and research regarding small 

object detection and serves as an introduction to the potential applications 

provided by this research. 

• Chapter 7 provides a thorough discussion of conclusions and future work leading 

on from this research. 
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1.5 Publications 
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Chapter 2 Infrared 
Imaging Systems and 
Simulation 
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2.1 Introduction 

Although imaging systems were fIrst developed using only visible light, the use of 

the wider electromagnetic spectrum makes it possible to capture a wider variety of 

images. One of the most useful imaging systems uses infrared light (also known as 

thermal imaging), and has been widely used in many different fIelds. Infrared 

imaging systems operate on the principle that all objects emit infrared energy as a 

function of their temperature. An infrared imaging system collects infrared radiation 

from objects in the scene and then creates an electronic image, where the brightness 

of an object is related to its temperature. Infrared images tend to be monochromatic 

because wavelengths outside the normal visible spectrum do not map uniformly into 

the system of colour vision used by humans. Compared to imaging systems that use 

only visible light, the main advantage of an infrared imaging system is that it can be 

used in dark conditions without needing to enhance ambient visible light. 

Infrared imaging systems have a broad range of applications, including navigation, 

night security and medical imaging, as well as military applications such as 

reconnaissance and surveillance. The most challenging environments and most 

demanding requirements tend to be found in military applications, and this is the 

main context of this research. The military is interested in detecting, recognising and 

identifying targets at long distances, an application which requires high-resolution, 

low-noise sensors. Modem military applications that use infrared imaging utilise 

various wavelengths ranging from mid-wave infrared to very long wave infrared (Li, 

Liu and Tidron, 1998). 

This chapter gives basic background information on infrared emission and detection 

methodologies, before then describing the formation of synthetic Forward Looking 

Infrared (FLIR) imagery and the generation of targets which are used as test imagery 

in later chapters. 
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2.2 Infrared Imaging 

2.2.1 Infrared Bands 

Visible band imaging systems are most familiar to us since our human eyes are good 

imagers in the visible band of the electromagnetic spectrum. The infrared waveband 

extends from wavelengths ofO. 74~lm to I mm while visible band is from wave lengths 

ofO.35Mm to 74~lm , as shown in Figure 2.1. 
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Figure 2.1 Division of the whole electromagnetic spectrum (Ibarra-Castanedo, 2005) 

The infrared portion of the electromagnetic spectrum can be split into severa l 

wavebands. The near infrared (NIR) band is around 0.74 - 1.0~lm ; the infrared 

radiation of short-wavelength (SWlR) has a wavelength of up to 3.0Mm : the 

wavelengths between 3.0 - 5.0Mm are mid-wave infrared (MWIR); long-wave is 8.0 

- 14Mm; and wave lengths up to 1000 Mm are termed very long-wave infrared 

(VLWIR). 
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As atmospheric constituents do not absorb evenly, the infrared waveband is not a 

uniform region. Therefore, among the infrared bands, the waveba nd between 5.0 -

8.0~Lm and a small band of 4.0 - 4.2~Lm are very strongly absorbed by the atmosphere. 

This is because when electromagnetic radiation travels through the atmosphere, it 

may be absorbed or scattered by constituent particles and the overall effect of this is 

to remove energy from the radiation. The dominant factor in atmospheric absorption 

is water vapour, followed by carbon dioxide and then ozone (Kirill, 1969). 
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Figure 2.2 Blackbody emissive power spectrum (Pan and Atungulu, 2011) 

The difference between the infrared bands and the visible band can also be assessed 

by the thermal emission. A black-body is an idealised physical object that absorbs all 

incident electromagnetic radiation that falls on it. Because of this perfect absorptivity 

at all wavelengths, a black-body is also the best possible emitter of thermal radiation. 

The temperature of a black-body determines the radiation that is emitted; the black-

body radiation curve is shown in Figure 2.2. The dotted line in Figure 2.2 

demonstrates the relationship between the source temperature and the peak 

wavelength. In reality, an object will absorb and emit certain wavelengths more or 

less strongly depending on the structure of the material. 
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Spectral radiance can be used to measure the amount of radiation such as light or 

radiant heat that passes through or is emitted from a particular area. At a given 

temperature, the spectral radiance J(A,T) of electromagnetic radiation at all 

wavelengths emitted in the normal direction from a black body can be calculated by 

Planck's formula: 

(2-1) 

where A IS the wavelength, h = 6.626x 10-34 Js IS Planck's constant, 

c=2.998xl08 ms-1 is the speed of light and kB =1.381xlO-23 JK-1 is Boltzmann's 

constant. By integrating J over the solid angle subtended by the imager optical 

aperture and over the projected area of the source and the wavelength interval to 

which the camera is sensitive, one obtains the total radiated power received by the 

detector before such attenuating factors as optical transmission and atmospheric 

losses are taken into account (Ralph and Bernhardt, 2002). 

Lower temperature objects emit a negligible amount of visible light. However, using 

the infrared spectrum, objects too cold to emit visible light can still be seen to radiate 

in the infrared. Both visible and infrared radiative emission is temperature dependant; 

hotter objects will radiate more electromagnetic energy than cooler ones. 

Thennal imaging sensors are traditionally built to operate in specific bands. The 

selection of wave band depends on the application, for example MWIR is mainly 

used for hot and humid environments, whereas for cold and dusty environments the 

L WIR band is preferred. 
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2.2.2 Infrared Imaging Systems 

The basic structure of an imager consists of an optical system (lenses), photosensitive 

sensors and electronic read-out circuits. A block diagram of a Charge Couple Device 

(CCD) camera system for visible band detection is shown in Figure 2.3. The front 

end optical sub-system focuses incident radiation onto the focal plane of the sensor. 

Subsequently the sensor, an array of photo-detector elements, converts the incident 

radiation into an electrical signal. The AGC (Automatic Gain Control) element 

automatically changes the gain of the camera according to the amount of light in the 

scene. The gain is set as a compromise between necessary sensitivity in low 

illuminated areas and the attempt to avoid saturation of bright areas in the scene. The 

high-pass filter in the camera compensates for a decrease in high frequencies in the 

optics signal. The output is processed by a set of read-out electronics that process the 

signal and controls the gain and bias of the detectors. The signal can then be passed 

by these read-out circuits to an analogue-to-digital converter, which digitises the 

signal to a [mite number of bits for further processing or storage (Sonka et aI. , 2008). 
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Figure 2.3 Illustration of a CCD camera system 
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Infrared imaging systems generally have the same structure as a visible band imager 

as shown in Figure 2.3. However, they have more specialised requirements in terms 

of the material for optics and the detector read out circuit. More detailed explanations 

will be given in subsequent sections. 
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2.2.2.1 Infrared Optics 

The optical system has a direct effect on the perfonnance of an imaging system. A 

well designed optical system can provide a good response which can then be 

converted into a better electronic response. The design of camera optical systems can 

be quite complex and usually involves the use of several different lenses to control 

chromatic aberrations, coma and distortion (Holst and Lomheim, 2007). 

Chromatic aberration is a type of distortion caused by the differing refractive indices 

of varying wavelengths of light, refractive index decreases with increasing 

wavelength (Gross et ai., 2007). Chromatic aberration is resolved by the use of a lens 

system that focuses all wavelengths to the same convergence point. Coma aberration 

is an optical effect caused by imperfections in the lens or other components, and 

causes off-axis point sources to appear distorted. In optical systems imaging a wide 

spectral range, coma can be a function of wavelength, in which case it is a fonn of 

chromatic aberration (Zappe, 2010). 

Infrared optical systems are more expenSIve than those used for visible light 

applications due to the fact that conventional optics are not suitable for the role. 

Infrared imaging systems require the material of the lens to be very transmissive in 

the infrared band. The available optical materials for infrared systems vary according 

to their intended waveband application. For example, Ge (Gennanium), ZnS (Zinc 

Sulphide), ZnSe (Zinc Selenide), AMTIR-1 (Amorphous Material Transmitting 

Infrared Radiation) are used for the 8.0 - 12.01lm band; while Germanium, ZnS and 

Si (silicon) are used for 3.0 - 5.01lm waveband (Singh, 2009). 

Another consideration in infrared systems is aperture size. In most visible light 

applications, aperture size is not a restriction because the wavelength of visible light 

is relatively small with respect to the optics; however the situation is different in 

infrared. In infrared applications, the effect of aperture size varies between 

13 
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wavelengths, which have larger effects in the near infrared region than far infrared 

(Ralph and Bernhardt, 2002). 

The angular resolution of a camera is restricted by the size of the aperture and the 

available magnification of the optics. The angular resolution of a circular lens can be 

determined by the Rayleigh criterion: 

tJ.8 = 1.22A / D (2-2) 

where J8 is the angular resolution in radians, A is the wavelength of light, and D is 

the diameter of the lens' aperture. 

In the infrared waveband, the resolution of a camera is frequently limited by the size 

of the aperture, because it is difficult to make large optical elements from materials 

suitable for infrared (Mooney and Sheperd, 1996). Resolving small objects at long 

range requires a narrow field of view because there are only a fixed number of 

detector pixels on a sensor; therefore, according to the Rayleigh criterion, it is 

desirable to have a larger aperture. 

In military applications MWIR and LWIR are the most common types of waveband 

detectors used (Maurer et aI., 2009). The biggest difference between these systems is 

the size of the detector apparatus. This is because spatial image resolution is a 

function of pixel pitch and field of view, and longer wavelengths such as in LWIR, 

have a larger diffraction spot size. This is compensated for by matching the spot size 

to the pixel pitch, if it were not, it would lead to images appearing blurry. This means 

that the physical size of the LWIR pixels needs to be larger, along with the associated 

optics. As a consequence, MWIR is often preferred because it allows higher 

resolution for a given aperture size and means detectors are easier to build and 

cameras are smaller. Infrared images tend to suffer from low contrast due to the fact 

that objects in a scene tend to be of similar temperature; therefore the intensity of 

infrared emission is similar and it is a small difference on a large background signal. 
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2.2.2.2 Infrared Sensors 

Visible imaging systems use the same silicon technology for sensors and read-out 

circuits, which enables a high degree of component integration and less noise 

introduced by the read-out process. By contrast, infrared imaging systems are more 

complex as they use different materials for photo-detectors and read-out circuits and 

consequently it is necessary to distinguish between the two. 

Although a range of infrared detector technologies have been developed, the two of 

most interest in contemporary systems are semiconductor bandgap detectors and 

newer quantum well detectors (Li et aI., 1998, Kopp, n.d.). 

Bandgap detectors are made of semiconductor materials which require a photon to 

have a certain wavelength or energy to dislodge an electron from the crystalline 

lattice of the material and produce a measurable electrical effect (Kopp, n.d.). To 

detect infrared radiation, narrow band-gaps among materials are required. 

CdHgTe/Cadmium Mercury Telluride (CMT) is an example of a bandgap detector 

used in most early imaging systems, and is especially used in long wave applications 

(Tidrow and Dyer, 2001). CMT detectors have high quantum efficiency (the number 

of electrons generated for every incident photon), typically around 75-80%, and are 

fast in operation (Galileo, 2007; Smith, 1995). The disadvantages of CMT detectors 

are that they have a limited uniformity caused by defect related dark current, and 

they are also difficult to fabricate and integrate into focal plane arrays, such as CCDs 

(Tidrow and Dye, 2001). As a consequence, in current devices CMT has to be 

fabricated separately from the silicon read-out circuits and then bonded to the silicon 

circuits using indium 'bumps' which leads to dead/saturated circuit pixels. Indium 

Antimonide (InS b) is much easier to fabricate than CdHgTe, but it is limited to 

midwave infrared applications. Platinum Silicide (PtSi) is an example of another 

material used, specifically for shortwave infrared detector systems (Abraham et aI., 

1988). Most current applications will use one of these three materials. 
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The new Quantum Well Imaging Photodetectors (QWIP) are quite different from 

previous technology and offer some advantages over bandgap detectors. In QWIP, a 

well-shaped microscopic hole is created in a semiconductor materiaL typically a 

Gallium Arsenide (GaAs) alloy. If a photon of suitable energy falls into the well, 

electrons can be dislodged; otherwise the electron will be trapped in the well. The 

mass production of QWIPs means they are potentially much cheaper, especially as 

they are already widely used in radio-frequency chips in mobile phones, wireless 

networks and radar (Kopp, n.d.). In terms of disadvantages, QWIPs suffer from 

excess dark current which is a strong function of operating temperature. To keep the 

dark current low and prevent saturating the storage of each pixel during the stare 

time, the QWIP normally needs to be cooled to around 60-65K, depending on the 

peak wavelength. Although QWIPs represent the new frontier in infrared imaging 

systems, they are relatively inefficient compared to established bandgap detectors. 

The quantum efficiency is normally around 5-10% (Galileo, 2007). This means that 

QWIPs require longer stare times to get a useful signal in the pixel capacitor. 

Both CMT and QWIP detectors have potentially desirable characteristics and 

capabilities for infrared detectors. CMT is more applicable where there is a 

requirement for very high sensitivity, relatively high operating temperatures and high 

speed, whereas QWIP is more suitable where very large format, high uniformity, 

very long wavelength, and low temperature operation are required (Li, et. a~ 1998). 

2.2.2.3 Read-out Circuits 

In visible light imaging there are two main types of semiconductor sensor used, 

namely charge couple devices (CCD) and complementary metal oxide semiconductor 

(CMOS). Although the two types of technology were developed at around the same 

time, charge couple device technology matured at a faster rate and consequently 

became more widely used. 
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The basic functions of a CCD sensor are charge collection, charge transfer and the 

conversion of charge into a measurable voltage. After a photon is absorbed by the 

photo-detector, an electron-hole pair is created. In a CCD sensor, every pixel's charge 

is transferred through just one output node to be converted to a voltage, buffered, and 

sent off-chip as an analogue signal. A CCD sensor can be considered to contain a 

two-dimensional array of pixels linked together. All of the pixel area can be devoted 

to light capture (McCann and Scott, 2005, Sonka et aI., 2008). 

In a CMOS sensor, each pixel has its own charge-to-voltage conversion, and the 

sensor often includes amplifiers, noise-correction and digitisation circuits. These 

other functions increase design complexity and reduce the area available for light 

capture. However, the chip can be built to require less off-chip circuitry for basic 

operation (Sonka et aI., 2008). 

There are different advantages and disadvantages for CCD and CMOS sensors in 

capturing images depending on the application. Some advantages of a CCD sensor 

over CMOS are that it does not obscure a large photoconductive area on the chip. 

Second, it can be used for detector arrays with many pixels enabling it to have a 

larger fill factor than CMOS. Moreover, the exposure time of all pixels is uniform 

and is independent of readout time (McCann and Scott, 2005). 

However, CMOS technology has the advantage of allowing for far more 

sophisticated storage, multiplexing and other manipulation including random pixel 

access and reading out sub-images, or combining pixels to form lower resolution 

images, but it requires a larger area on the silicon chip. It is not possible to allow 

random access to pixels in CCD systems because all of the pixels are linked together. 

(Ralph & Bernhardt, 2002). Further advantages of CMOS are that they can operate at 

very high speed and have lower power consumption and inexpensive fabrication 

(Siegwart & Nourbakhsh, 2004). 
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2.2.3 Noise in Infrared Imaging Systems 

Two terms can be used to describe variation in arrays and sensors, namely non

uniformity and spatial noise (Mooney and Sheperd, 1996). Non-uniformity describes 

the variation in the time averaged output of the detectors in an infrared focal plane 

array, and spatial noise refers to the post compensation noise observed in an infrared 

Image. 

The term non-uniformity is usually used to describe the focal plane arrays. The non

uniformity of the detector array is widely recognised as the main factor in limiting 

infrared sensor performance (Mooney and Sheperd, 1996). As mentioned previously, 

in standard bandgap semiconductive system, the infrared photo-detector material has 

to be fabricated separately from the silicon read-out circuits and then bonded to the 

silicon circuits using indium 'bumps'. This process has difficulties when aligning a 

large number of indium bumps in the appropriate position on the read-out circuits, 

especially for large arrays. 

Non-uniformity can be generated by poor connections between photo-detector and 

read-out circuits, and can be due to inconsistencies in photo detector response due to 

manufacturing tolerances. This non-uniformity is a major problem in nearly all 

infrared imaging systems; however the development of digital processing allows a 

wide range of non-uniformity correction techniques which can improve image 

quality. The usual way to deal with non-uniformity is to use a uniform blackbody 

source to fmd the response at each pixel and then scale the response to see whether 

there is a difference in a particular pixel (Ralph & Bernhardt, 2002). Although non

uniformity correction can dramatically enhance infrared camera performance, 

operational constraints and cost of a particular application often limit the degree of 

non-uniformity correction. 
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Spatial noise is caused by random variations of camera operating conditions and 

unexpectedly changing environments. Fixed pattern noise, also known as salt and 

pepper noise, is a type of spatial noise that is frequently present in infrared images. 

Noise in an infrared imaging system is usually characterised in terms of a few simple 

parameters. The noise equivalent temperature difference (NETD) is the oldest and 

most widely used measure of the ability of a system to discriminate small signals in 

noise. The simplest and most commonly used defInition follows: the NETD is the 

blackbody target-to-background temperature difference in a standard test pattern 

which produces a peak-signal to rms-noise ratio (SNR) of one at the output of a 

reference electronic fIlter when the system views the test pattern (Lloyd, 1975). It 

describes the noise because it combines a range of different noise sources into a 

single parameter. For a high-performance infrared imaging system, an NETD around 

0.05 K is fairly typical (Ralph & Bernhardt, 2002). Other terms used to characterise 

the degree of non-uniformity and spatial noise are fIxed pattern noise, synthetic 

pattern noise, residual non-uniformity, residual spatial noise and uniformity. 

There are a large number of noise sources in infrared imaging systems and they 

appear in nearly every component of the system. The sources of noise can be divided 

into scintillation effects, due to the discrete nature of the electrons; optical distortion, 

detector and circuit non-uniformities; and quantisation effects from the digitisation 0 f 

the output. Although the origins of the noise sources are different, they all appear as 

variations in the image intensity and prevent the formulation of a clear image (Holst 

& Lornheirn, 2007). 
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2.2.4 Forward Looking Infrared (FLIR) Images 

Forward Looking Infrared (FLIR) imaging systems are one of the most widely used 

high quality infrared application used at present. FLIR systems are often used on 

satellites, naval vessels, fIxed-wing aircraft, helicopters and armoured fIghting 

vehicles since they can detect objects through smoke, fog, haze and other 

atmospheric obscurants better than visible light cameras. The term "forward looking" 

was initially used to distinguish FLIR systems from sideways tracking infrared 

systems. However, nowadays the term is used for most kinds of military infrared 

imaging system. 

A complication associated with FLIR infrared systems is that they tend to be 

mounted on a moving platform; consequently there are aerodynamic issues which 

normally require the constituent optical components be small and robust. Moreover, 

under difficult circumstances FLIR imagery may have abrupt discontinuities in 

motion. There is another problem tend to occur in FLIR images, the object edges and 

comers of the images tend to be smoothed out, leading to a reduction in distinct 

features due to the fIlter built in the camera. 

Moving objects are often much brighter than the background as a result of 

environmental heating effects such as friction with air and engine combustion. (Sterel 

and Aggarwal, 1999). However, there are also large amount of noise among some of 

them are bright saturated noise which can make the images cluttered. When the size 

of object is small, the noise can cause false alarm in the object detection process. 

Due to the inherent limitations of infrared images, as well as the added operational 

aspects of FLIR systems, improving this type of imagery using signal processing is 

very challenging. 

20 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

2.3 Simulated Imagery 

2.3.1 Infrared Imaging System Simulations 

Simulated infrared imagery was formed so as to form a basis upon which the 

algorithms developed in this thesis could be applied and tested with the aim of 

improving the quality of the FLIR images. A basic simulated infrared imaging system 

model was utilised which was based on an existing physics-based camera model, 

more detail of the model can be found in the paper by Ralph et al. (2005). It used 

high resolution satellite imagery to initially create a ground scene then, so as to 

provide the correct statistical variation; the images were modified to include the 

standard types of noise and distortion present in real infrared cameras, such as 

dead/saturated pixels, non-uniform pixel responses and automatic gain-offset 

correction. 

Whilst this camera model is not fully realistic, it does embody most of the limitations 

of real infrared cameras and provides a source of image data allowing PC-based 

closed-loop simulations of aircraft camera systems. Infrared image sequences were 

generated by the simulated camera mounted on a simulated moving and/or vibrating 

platform representing an aircraft mounted camera. The standard camera was taken to 

be a downward-looking, mid-wave IR camera with a 256x256 pixel focal plane array, 

a 16 degree field of view, 25-50 Hz frame rate and a Noise Equivalent Temperature 

Difference (NETD) of 0.5K. The speed and direction of the moving platform could 

be controlled to generate imagery for different requirements. However, camera 

parameters could be varied as required. Figure 2.4 shows two background images 

with a suburban and urban scene respectively. They are used for generating simulated 

FLIR imagery. Figure 2.5 shows the simulated infrared images after processing by 

the simulation algorithms. The simulated infrared images are contaminated by a large 

amount of noise, representing real infrared images. 
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(a) 

(b) 

Figure 2.4 High resolution satellite images used for generating simulated FLIR imagery: (a) 

suburban image (b) urban image (http://uuu.mindtel.com/2006/0307.jalalabadimapsl) 
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(a) 

(b) 

Figure 2.5 Examples of simulated infrared images (2S6x2S6): (a) with urban background and 

(b) with rural background. 
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(a) 

(b) 

Figure 2.6 Examples of simulated FLIR images: (a) simulated infrared image with noise and (b) 

simulated infrared image after median ftItering 
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This camera model also contains a built-in function for a median filter, which 

removes dead/saturated pixels from the infrared image. Normally, this median filter 

is only applied to the dead or saturated pixels otherwise the whole image would be 

blurred. The effect of the median filter can be observed in Figure 2.6. 

2.3.3 Simulated Target Generation 

A target area is typically identified as a region of the image brighter than the 

background since in military applications the targets are generally hot objects. In the 

simulation, the size and initial position of the target can be set in the program and its 

movement also can be set separately from the camera movement by its own motion 

algorithms. 

o 
2-111 
3 III 4= III 5= III 6= III III -.1 

Figure 2.7 An example of tri-bar target (Leachtenauer and Driggers, 2001). 

Target acquisition is generally concerned with the detection of points of interest 

(POls) and subsequent recognition and identification. The ability to detect and 

recognise an object in monochrome can be set by the Johnson criterion. These 

criteria sets up the relationship between the ability of human observers to resolve bar 

targets (one black bar and one white bar equate to one cycle) through an imaging 

device and their ability to perform the tasks of detection, recognition and 
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identification of military vehicles through the same optical sensor (Howe, 1993). 

Figure 2.7 shows an example of a tri-bar resolution target (Leachtenauer and 

Driggers, 2001). The Johnso n criteria are described as follows : 

I . Detection (with 50% probability) = observer able to resolve I bar 

2. Recognition (with 50% probability) = observer able to resolve 3 bars 

3. Identification (with 50% probability) = observer able to resoh'e 5 bars 

The simulated small bright object is combined in the background scene as seen in 

Figure 2.8. The object is a square three bar target with a bar length of a = 5-10 metres 

and a bar width of al5 and in some cases an additional bar is added to ensure that the 

target bars are linked as seen in Figure 2.8. When the simulated air platform mo ves at 

a certain speed, the attitude of camera model changes at a certain or random degree 

with the bright object moving at a certain speed and direction. Consequently, the 

generated imagery can be considered to represent a moving camera tracking a 

moving object. 

Figure 2.8 Synthetic infrared image with a three bar object 
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2.3.4 Synthetic FLIR Imagery with Clouds 

As well as being low contrast and noisy, another challenge ofFLIR imagery is due to 

cloud occlusions. Clouds tend to obscure ground features and reduce contrast on 

regions that are cloud-free. In order to simulate this situation, a cloud model has been 

applied to generate clouds on the synthetic FLIR imagery. The cloud model is 

generated based on a statistical infrared clutter model proposed by Itakura et. al 

(1974). Since the colour of the cloud in the image is determined by the cloud 

temperature, it can appear brighter or darker than the background image. When the 

temperature of cloud is higher than the ground, it appears brighter in the image. 

When the temperature of cloud is lower than the ground, it appears darker. However, 

the shape and the thickness of the cloud will remain the same. This cloud model 

generates white cloud with random shape and thickness. It provides a relatively 

realistic simulation of the clouds. 

Clouds are generated based on a random set of the two-dimensional pulses whose 

amplitude and width follow Gaussian and Poisson statistics, respectively: 

l 
( ~\2l 1 ~ p(n) = -J J exp - 2 

2na- 2a 
(2-3) 

p(r) = a exp( - ar) (2-4) 

where n is the radiance of a certain point on the x-y plane, n is the mean value of 11, 

a 2 is the variance of n, r is the interval length between two adjacent points on the :r-

y plane, and a is the reciprocal of the average pulse width. 
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The cloud models are then inserted into the previously discus ed camera model a a 

three-dimensional structure at a defmed height above the ground plane . By varying 

the he ight of the clouds relative to the ground and the aircraft /imager. the effect of 

parallax on the ego-motion can be assessed. The stat istical properties specified in the 

model can be used to control the amount and density of the cloud co\'er. The 

parameters have been selected to represent about 2-4 Oktas of stratus clouds - more 

cloud cover than this makes it very difficult to track an object on the ground for long 

enough to use super-resolution techniques. The images produced in this way are 

relatively realistic , as shown in Figure 2.9 (b) and embody many of the infrared 

properties of real clouds. 

(a) (b) 

Figure 2.9 Examples of simulated infrared images : (a) scene without cloud cover, (b) the same 

scene with cloud cover. 
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2.4 Summary 

The use of the infrared portion of the electromagnetic spectrum is advantageous in 

certain applications because it allows to display features in the environment either 

not easily observed using visible light systems or totally dark. Despite this, there are 

certain limitations related to infrared imaging technology, such as relative low 

resolution and much noisier than visible band image. Infrared systems also tend to be 

more complex and expensive due to material constraints in building systems capable 

of detecting infrared scenes. Image processing techniques can be used to post process 

and consequently improve the quality of infrared imagery, so as to remove noise, 

improve contrast and better enable feature identification. 

In this research, a means of generating synthetic infrared imagery from a simulated 

aircraft mounted FLIR camera was used, combined with target generation and a 

cloud occlusion model. This enabled the formation of simulated infrared images that 

could subsequently be processed so as to test algorithms aimed at improving the 

quality and usability of infrared images. 
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Chapter 3 Image 
Pre-Processing and 
Registration 
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3.1 Introduction 

The previous chapter has given a description of how current infrared camera/image 

systems work and introduced a simulated camera model for generating synthetic 

infrared imagery. This chapter will present some pre-processing methods for infrared 

images and review a fundamental image processing technique - image registration 

which is essential for aligning images in a sequence. Some pre-processing methods 

are necessary for infrared images as they have very low contrast and are noisy. 

Pre-processing methods including contrast enhancement, dead or saturated pixel 

removal and detection of previously pre-processed imagery will be presented in 

Sections 3.2, 3.3 and 3.4 respectively. The source of the difference between images, 

geometric transformation models and interpolation will be illustrated in Section 3.5. 

A review of the state of the art in image registration techniques will be discussed in 

section 3.6. 

3.2 Contrast Enhancement 

One of the previously mentioned disadvantages of FLIR images is that they tend to 

be low contrast. Here contrast enhancement method based on thresholding has been 

proposed. This method enables to view the real infrared images more obvious by 

increasing the displayed contrast between image brightness levels. This contrast 

enhancement method was performed on the infrared images by setting thresho lding 

using the standard deviation. Since the real infrared images are so low contrast and it 

is very difficult to see the features, this simple contrast enhancement method is aimed 

to improve the visibility of the image in order to give a general view of the image. 

Therefore, it is used after all the other processing methods and it can give a better 

view of the image for human eyes. 
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This contrast enhancement is applied by using standard deviation to eliminate the 

extremely high or extremely low pixel values in the real infrared image. Standard 

deviation is a common measure of statistical dispersion, which measures how values 

are spread out in a data set. The standard deviation of a random variable X is defmed 

as: 

(3-1) 

where E(X) is the expected value of X . 

The square root of the sample variance of a set of N values is the sample standard 

deviation (Kenney and Keeping, 1962): 

(3-2) 

where x is the mean value of X 

For nonnally distributed variables, about 68% of the values are within 1 standard 

deviation of the mean, about 95% of the values are within two standard deviations 

and about 99.7% lie within 3 standard deviations (Taylor, 1997). Diagram of standard 

deviation is shown diagrammatically in Figure 3.1. After obtaining a standard 

deviation of the intensities of all the pixels on the image, the threshold for enhancing 

the image can be decided. The threshold can be set as 2 to 3 times the standard 

deviation. In this project, 2.5 times the standard deviation has been chosen as the 

thresho ld for enhancing the real image. 
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In this investigation, a sequence of 256x256 pixel real infrared images has been used 

for contrast enhancement testing. The algorithm for enhancing the image is as 

follows: 

1. For each pixel intensity value Xi' calclliate the difference X, - x between Xi and 

the mean x 

2. Calculate the standard deviation CJ of the whole image 

3. Set the low threshold as x - 2.5CJ and set the high threshold as x + 2.5a 

4. If the pixel value is above the high threshold, set the value for that pixel to 

x + 2.5CJ 

5. If the pixel is below the low threshold, set the value for that pixel to x - 2.5CJ 

6. If the pixel is within the high and lott, threshold boundaries, then its value 

remains unchanged 
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An example of an original infrared image prior to enhancement is sho'vvn in Figure 

3.2 (a). The features in the image are very di fficult to reso lve due to the poor 

contrast. After processing this image using the standard deviation algorithm, the 

contrast enhanced image is shown in Figure 3.2(b). The fea tures in the enhanced 

image are easier to see and detail not visible in the original image is now apparent. 

(a) 

(b) 

Figure 3.2 Example of contrast enhancement on a 256x256 infrared image: (a) infrared image 

prior to contrast enhancement; (b) infrared image after contrast enhancement 
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Figure 3.3 Histogram of the real FLIR images before enhancement and after enhancement: (a) 

histogram prior to contrast enhancement; (b) histogram after contrast enhancement 

35 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

The histograms of the real FLIR image before and after enhancement have been 

shown as Figure 3.3. Along the vertical axis it the intensity value of the pixeL and 

along the horizontal axis is the number of the pixels in the image have the same 

intensity value. As shown in Figure 3.3(a), the intensity values of the image pixel 

have been relatively intense between intensity value 340 and 370. However, there are 

a few scattered out side this band and it is the reason the original real image have 

very low contrast to see. Therefore, after enhancement by thresho lding the scattered 

intensity values, the histogram in Figure 3.3(b) shows that the intensity value have 

been more intense compared with the histogram shown in Figure 3.3(a). 

3.3 Dead/Saturated Pixel Removal 

Dead or saturated pixels are a common type of noise in infrared images caused by 

defects in the detector pixel array. The dead/saturated pixels in infrared images can 

be removed by applying a median filter. 

Median-filter-based methods are one of the most popular approaches for 

dead/saturated noise reduction in image processing. This uses a non-linear 

smoothing method which replaces the current point in the image by the median of the 

brightness of the neighbouring pixels (Sonka et aI., 2008). An example illustrating a 

3x3 median filter is shown in Fig. 3.4. 

The filter algorithm screens questionable pixels, that is, those with very high or very 

low values. The median value is then found by first sorting the pixel values into 

order and then replacing the suspected dead/saturated pixel with the median value. A 

disadvantage is that only a small amount of the total information available is used, as 

effectively this technique simply duplicates a neighbouring pixel value. (Miller, 

1994). 

36 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

--
45 78 93 --- --. ----

45 78 93 

67 36 56 67 36 56 

19 98 12 
19 98 12 

--- ------- -.. --- ---

Figure 3.4 An example of illustrating a 3x3 median filter 
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Some infrared camera systems have a built-in median filter function to remove 

dead/saturated pixels automatically. Normally in these camera systems, the median 

filter is applied to the dead/saturated pixels only, rather than the whole image so as to 

avoid blurring thin lines, sharp comers and edges. 

3.3.1 Synthetic Dead/Saturated Image Processing 

So as to assess the effect of the median filter in dealing with dead or saturated pixels 

in infrared images, synthetic images were created with this noise simulated. The 

median filter algorithm was then applied and the images compared. 

A synthetic infrared image with dead/saturated pixel noise is shown in Figure 3.5(a). 

The result of applying the median filter algorithm to the dead/saturated pixels is 

shown in Figure 3.5(b). It can be seen that the median filter was effective in 

removing the dead/saturated pixels from the image and consequently accounting for 

the simulated sensor defects. This improves visual inspection by observers but does 

not add any extra information to the image. 
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(a) (b) 

Figure 3.5 Examples of synthetic infrared images: (a) Infrared image with dead/saturated pixels, 

(b) infrared image after processing by a median filter. 

3.4 Detection of Pre-processing 

The built in median filter function of some cameras ensures unages are more 

acceptable to human observers, but replaces dead or saturated pixels with 

information that is not a true representation of the defective pixel. Due to this effect, 

the application of a median filter to an image can cause problems in subsequent 

processing, such as when utilising the super resolution technique. 

The super resolution technique needs to make use of all of the image pixels and 

subsequently an error occurs when the value of a processed pixel is not its true va lue . 

Real infrared imagery is normally generated with a log, providing further 

information. However, it is quite common that the real image data provided by 

industry is lack of the log information. If the dead/saturated pixels are included in 

this information, it is relatively easy to identify processed pixels and exclude them 

from further processing. However, if there is a lack of this information, it can be very 

difficult to identify which pixel has been pre-processed by the median filter and 
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consequently subsequent post-processing by such things as the super-resolution 

algorithm is not possible. To detennine the pre-processed pixels, a novel detection 

algorithm has been proposed and tested on both synthetic and real imagery. 

The basic idea of the detection algorithm is based on reversing the process of the 

median filter. If a pixel is dead or saturated, there must be at least two identical pixels 

in the filter patch equal to the median value after applying the median filter. The 

proposed algorithm applies a filter the same size as the median filter to the whole 

image to fmd out whether the centre pixel value is the same as any other pixel in the 

patch and is equal to the median value. This is then applied to each frame in a 

sequence of moving frames. If the intensity value of the centre pixel is the same as 

the median value and more than one other pixel value in each frame of the sequence, 

then it is a pre-processed dead/saturated pixel. However, the size of median filter 

used may be unknown. Therefore, several filters with different sizes can be tested to 

determine the right size of the filter. 

The algorithm for the basic detection algorithm is shown as follows: 

1. For eachframe, apply a nxnfilter patch on the whole image (n = 7,9,11 .. .) 

2. If the pixel intensity value is the same as any other pixel and the median value in 

the filter patch, save its corresponding location to a new dummy image 

3. Go to new frame. If in the newframe, the pixel does not satisfy condition 2 while 

it is satisfied in the previous frame, update the dummy image to change the value 

to zero 

4. Update dummy image and update the detected pixel numbers through the 'rrhole 

sequence of images. Then plot the frame numbers of the detected pixels 
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3.4.1 Pixel Detection on Synthetic Imagery 

The detection algorithm was first tested on synthetic imagery which had not been 

pre-processed with the median filter. An example of a frame of the non processed 

infrared image used in this test is sho wn in Figure 3.6(a) . The detection algorithm 

was then applied in 7x7, 9 x9 and ll x ll patch filters, shown in Figure 3.6(b) , (c) and 

(d) respectively. 
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Figure 3.6 (a) An example of synthetic infrared frame without pre-processing, (b) pixel detection 

result with 7x 7 median filter, (c) pixel detection result with 9x 9 median flIter, (d) pixel detection 

result with ll x ll median filter. 
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The results of testing the non pre-processed imagery with the detection algorithm 

show that no pixels were detected as being pre-processed, which is the expected 

result. The next stage took a synthetic image that had been pre-processed with a 

median fIlter to remove dead/saturated pixels. Figure 3.7(a) shows one frame of the 

pre-processed infrared image. The detection algorithm was then applied to the image 

with three different patch filter sizes, 7x7, 9x9 and 11 x 11. The results of the 

detection algorithm are shown in Figures 3.7(b), (d) and (e). 

Figure 3.7(b), the results for the 7x7 patch size, shows that the algorithm detected a 

number of pre-processed pixels, this not only shows that this image has been pre

processed but that the 7x7 patch filter size is the correct one. There are in total 741 

pre-processed pixels were detected in Figure 3.7(b). The pixels detected as pre

processed are shown in the dummy image in Figure 3.7(c). 

The results for the 9x9 and 11 x 11 patch sizes do not detect any pre-processed pixels 

because the patch size for those was not correct. This can be seen in Figures 3. 7( d) 

and (e). 
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Figure 3.7 (a) An example of a synthetic infra red frame wi th pre-processing, (b) pixel detection 

result with 7x 7 median fUter, (c) detected dead/saturated p ixel on dummy image (d) pi xel 

detection result with 9 x9 median fUter, (e) pixel detection result with J/ xll median filter. 
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Overall, the results of detecting the synthetic infrared imagery with and without pre

processing were distinctive. For the synthetic infrared imagery without pre

processing, the test results show zero detected pixels after certain frames, whereas 

with correct patch size, the test results with pre-processing by the median filter show 

a positive number of detected pixels. Therefore, for synthetic images with pre

processing, the processed pixels can be identified and their locations can be indicated 

on the dummy image. 

3.4.2 Pixel Detection on Real Infrared Imagery 

After testing the detection algorithm on synthetic infrared images, it was applied to 

real infrared imagery without and with pre-processing. The infrared imagery without 

pre-processing has been tested first. Figure 3.8(a) shows one frame of real infrared 

imagery, which has not been pre-processed by the median filter and consequently 

still contains dead/saturated pixels. The median filter detection algorithm was applied 

to the image sequence and the results shown in Figure 3.8(b), (c) and (d) for different 

patch filter sizes. 
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Figure 3.8 (a) An example of real infrared frame without pre-processing, (b) pixel detection 

result with 7x 7 median filter, (c) pixel detection result with 9x9 median ftJter, (d) pixel detection 

result with II x II median filter. 

After applying the median filter detection algorithm with different patch sizes, a ll the 

fInal numbers of detected pixels are zero. This confrrms that this infrared image has 

not been pre-processed by the median filter which is just like the tests on synthetic 

Imagery. 

Next the infrared imagery with pre-processing has been tested. Figure 3.9(a) shows 

one frame of real infrared imagery, which has been pre-processed by the median 

fIlter. The median filter detection algorithm was applied to the real imagery and the 

results shown in Figure 3.9(b) , (c) and (d) for different patch fi lter sizes, 7x7, 9 x9 

and 11 x II. 
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Figure 3.9 (a) An example of real infrared frame with pre-processing, (b) pixel detection result 

with 7x 7 median filter, (c) enlarged pixel detection result with 7x 7 median fi lter, (d) detected 

dead/saturated pixel on dummy image, (e) pixel detection resul t with 9 x 9 median filter, (f) pixel 

detection result with 11 x 11 median filter. 
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Figure 3.9(b), the results for the 7x7 patch size, shows that the algorithm detected a 

number of pre-processed pixels in the real images. This not only shows that this 

image has been pre-processed but that the 7 x 7 patch filter size is the correct one. As 

the fmal number of the detected pre-processed pixels is relatively small in Figure 3.S 

(b), the end of the figure has been enlarged as shown in Figure 3.9 (c). The pixels 

detected as pre-processed are shown in the dummy image in Figure 3.9 (d). The 

results for the 9 x9 and 11 x 11 patch sizes do not detect any pre-processed pixels 

because the patch size for those was not correct. This can be seen in Figures 3.9 (e) 

and (t). 

In the detection results, the fmal number of detected pixels is zero for the 9x9 and 

11 x 11 median filters except for 7x7 median filter. The final number of detected 

pixels by 7x7 median filter is IS which indicates that the real infrared imagery has 

been pre-processed. 

3.5 Overview of Image Registration 

In the last few sections, some pre-processing tasks have been perfonned in order to 

render the resulting infrared images more suitable for the further processing. Next, a 

fundamental technique for aligning moving image sequences will be discussed. This 

is a requirement for FLIR images so as to account for the moving camera and 

changes in background. 

Image registration is a basic imaging process of matching two or more images taken 

at different times, or from different viewpoints, or from different sensors. It is a 

process of aligning the pixels in one image to the corresponding pixels of a second 

image, fmding the optimal transformation between images. 

Image registration has applications m a number of different unage processmg 
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research areas, including computer vis ion and pattern recognition, medical image 

analysis and remotely sensed data processing (Zitova and Flusser, 2003). Preci e 

image registration is a fundamental requirement for many image proces ing ta ks 

such as generating a high resolution image from a sequence of images, fusing two or 

more images into a composite one that reveals information not easily accessible 

within individual images, or detecting a change between in1ages by comparing image 

differences. 

For image registration processing, it is necessary to fmd an appropriate mathematica l 

transformation model relating pixel coordinates in one image to pixel coordinated in 

another. Then, the correct alignments of various pairs of images can be estimated . A 

representation of transformations of rotation ¢ , and t , and t .. translations between 

input image and reference images is shown in Figure 3. 10. The origin is the centre of 

the template image. This coordinate system will be used throughout the thesis. 

Template image 

y 

I 
I 

I 

~ 
I 

I 

I v 

Input image 

x 

Figure 3.10 An example of transformations between input image and template images rotation 

e and translations ( , and t y 
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3.5.1 Differences between Images 

There are two main differences to consider when registering images in sequences, the 

fIrst is caused by changes in camera position and the second is caused by such factors 

as lighting changes and differences between sensors. 

Changes caused by camera position and pose cause the images to be spatially 

misaligned, which includes relative translations, rotation, scale, and other geometric 

transformations in relation to each other. These are considered as spatial differences. 

In practice, changing the orientation or parameters of the imaging sensor can lead to 

spatial transformations. 

The second type of difference, which is attributed to factors such as lighting changes, 

using different types of sensors, using similar sensors but with different sensor 

parameters, object movement, or scene changes cannot be modelled by a spatial 

transform alone. This type of difference is therefore considered to be a non-spatial 

difference. 

The independent movement of objects within the scene can cause changes between 

images. There are generally three scenarios that lead to occlusions: part of a fmite 

image moves out of the image frame, new data enters the image frame of a fmite 

image, or an obstruction comes between the imaging sensor and the object being 

imaged. These non-spatial differences cannot be removed by registration and in fact 

make registration more difficult since there is no longer an exact match between the 

two images, even after the application of a spatial transformation. Consequently, 

non-spatial differences make it more difficult to achieve the accurate registration 0 f 

the images. 

For FLIR imaging, spatial transformations are common due to the camera being 

mounted on a moving platform. It is also possible that a scale change can occur due 
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to variation in distance between sensor and scene. In FLIR imaging, changes in scene 

lighting are not a large issue compared to visible band imaging, however changes in 

background temperature do introduce non-spatial issues which affect the brightness 

ofFLIR images. This situation tends not to occur in short timescales. In practice, real 

FLIR images can be collected at different times of day, leading to temperature 

differences causing variations in image brightness. 

Some issues related specifically to registration of airborne FLIR imaging 

applications are clouds and moving objects. Clouds cause occlusions between the 

detector and the background, whereas independently moving objects cause 

differences in the background between frames in an image sequence. 

After aligning the differences caused by the movement of the camera, removing the 

occlusions and reducing noise, the differences between the changes of the images can 

be preserved for detection purposes. 

3.5.2 Image Registration Processes 

When applying image registration techniques on a pair of images, one of the images, 

known as the template image, is kept unchanged and is used as a reference. The other 

image, known as the sensed image, is registered with respect to this template image. 

The parameters for the transformation are detennined by fmding how to map the 

sensed image to the template image. The key stage in image registration is to fmd the 

geometric transformations between images in a sequence. 

Given two images II and 12 , where II(x,y) and I2(x,y) represent their respective 

intensity values, the transfonnation between II and 12 can be expressed as: 
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(3 -3) 

where T is a 2D spatia l coordinate transfo rmation matrix and g represents aID 

intensity or radiometric transformation (Brown 1992). The pixel (XI' .vI ) in 11 is 

mapped to a new position (X 2' yJ in 12 as : 

(3-4) 

The transformation matrix between the template image and sensed image can be 

calculated by mapping the co -ordinate of the sensed image pixe l to the point in the 

template image . An illustration of the whole region with spatial transformations 

based on point to point is shown in Figure 3.11. 

T 
I 

y 

X 

(XI' YI ) 

---,> 

Figure 3.11 An illustration of the whole region transformation 

There are different image registration methods that can be used depending on the 

differences in images and imaging conditions. Generally, the image registration can 

be div ided as feature-based and intensity-based. The process of feature-ba ed image 

rea istra tion can be considered as a selection of these four step : feature selection: o 

feature matching ; transformation model estimation; and image transformation and 
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brightness interpolation (Zitova and Flusser, 2003). For intensity-based unage 

registration method, the image intensity is used to fmd the correspondence. 

In feature selection, a feature is a salient or distinctive object which can be manually 

or automatically detected. These features, also known as control points, can be 

represented by distinctive points, line endings and the centres of gravity of regions. If 

features are detected, then the correspondence between the features can be 

established, and consequently the transformation between images can be found by a 

similarity metric. 

The transformation can be made in a forward or backward way. The forward 

registration requires all of the transformation to be registered every time a new image 

is obtained. In backward method, the registered image data is represented using the 

same coordinate system as the template image. Therefore, the backward approach is 

normally used as it is simpler to implement (Zitova and Flusser, 2003). 

The parameters of transformation model estimation are computed either by the 

established correspondence between features or directly by image intensity. Then, the 

sensed image is transformed by the transformation estimation. After transformation, 

the coordinate of output point does not need be integer as the output position does 

not necessarily match the digital grid (pixellated image points). To fmd the point in 

the digital raster which matches the transformed point and determine its brightness 

value, the brightness is usually computed as an interpolation of the brightness of 

several points in the neighbourhood. The fmal output image is the registered image. 

3.5.3 Transformation Models 

Image transformation models are the most commonly used mathematical ways to 

describe image registration. The simplest and most used general geometric 
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transformations are rigid, affme and projective (Brown, 1992). These transformations 

can be categorised based on the geometric transforms for planar surface elements as 

translation, rotation, scaling, stretching, and shearing as shown in Figure 3.12 . 
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Figure 3.12 Basic 2D planar transformations 
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Translations and rotation are caused by different orientation of the imaging sensor 

while scaling is the effect of a change in aspect ratio. Sensor distortion or different 

viewing angles may cause stretching or shearing (Chalermwat, 1999). 

3.5.3.1 Rigid Transformation 

Rigid transformation generally occurs by the movement of the camera. Rigid 

transformation is composed of a combination of a rotation, a translation and a scale 

change. The rigid transformation can be expressed mathematically as follows: 

(3-5) 
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where (xpyJ point in the template image, (x2 ,yJ are corresponding points after 

transformation, t x' t yare the shifts along X and Y axis, sand e are scale factor and 

rotation angle respectively. 

3.5.3.2 Affine Transformation 

Affme transformations are more general than rigid transformation. Affme 

transformations are linear in the sense that they map parallel lines onto parallel lines. 

An affme transformation is composed of a rigid transformation, a shear, and an 

aspect-ratio change (Le Moigne et aI., 2002). Shear is generally caused by the 

distortion of the lenses of the imaging system. Shear is a distortion that acts either 

along the x-axis, Shearx or along the y-axis, Sheary and can be represented as: 

Shear, = (~ ~), Shear, =G ~J (3-6) 

A shear in the x/y axis transforms the x/y coordinate into a linear combination of both 

x and y coordinates. Aspect ratio is defmed as the numerical ratio of image width to 

height (Le Moigne et aI., 2002). The general 2D affme transformation can be 

expressed as (Brown, 1992): 

(3-7) 

h ( ) porn' t m reference image, (X2' Y2) are corresponding po ints after were x"y, 

transformation, the a terms are constants. 
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3.5.3.3 Projective Transformation 

Projective transformation is more general and accounts for the distortion which 

occurs when a 3D scene is projected onto a 2D plane. It maps straight lines onto 

straight lines and can be represented as follows (Brown, 1992): 

x = al\xp +a12 y p +a13 
I 

a31 x p + a32 y p + a33 

(3-8) 

(3-9) 

where (x p' Y p) is a point in the template image, (Xi' yJ are corresponding points 

after transformation, the a terms are constants. 

For airborne FLIR imagery, images are captured from a moving platform and the 

aircraft is so high above the ground that any terrain effects are negligible. Based on 

this fact, the ground can be considered as approximately flat. Consequently, a two

dimensional affme or projective transformation is enough to be used to describe the 

transformation between frames. 

3.5.4 Brightness Interpolation 

After transformation, the registered image is allocated on non-integer co-ordinates. 

Therefore, brightness interpolation is needed to determine the integer values on the 

integer grid for each pixel value in the registered image. Interpolation is performed 

by an interpolation kernel on the registered image. Generally, the simpler the 

interpolation the greater is the loss in geometric and photometric accuracy (Milan et 

aI., 2008). Parker et al. (1983) and Lehmann et aI. (1999) have given a detailed 

investigation and comparison of interpolation methods for 2D images. There are 
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three main interpolation methods: nearest neighbour, bilinear and bi-cubic 

(Abramowitz and Stegun, 1972). 

3.5.4.1 Nearest Neighbour Interpolation 

Nearest-neighbourhood interpolation assigns to the point (x, y) the brightness value 

of the nearest point in the discrete raster, which is illustrated in Figure 3.13. The 

output pixel is assigned the value of the pixel that the point falls within. No other 

pixels are considered. The position error of the nearest-neighbourhood interpolation 

is at most half a pixel; the error can be perceptible on objects with straight-line 

boundaries that may appear step-like after the transformation, as shown in Figure 

3.14. 
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Figure 3.13 Nearest neighbourhood interpolation. (The discrete raster of the original image is 

depicted by the solid line, dashed lines show the how the inverse planar transformation maps the 

raster of the output image onto the input image) (Milan et al., 2008) 
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Figure 3.14 Nearest neighbour interpolation causing stepping at straight line boundaries (Zitova 

and Flusser, 2003) 

3.5.4.2 Bilinear Interpolation 

In bilinear interpolation the output pixel value of point (x,y) is a we ighted average of 

pixels in the nearest 2-by-2 neighbourhood and assumes that the brightness fu nctio n 

is linear. Fig. 3.15 shows the illustration of bilinear interpolation. 
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Figure 3.15 Bilinear interpolation. (The discrete raster of the original image is depicted by the 

solid line and the dashed lines show the how the inverse plana r transformatio n maps th e r a te r 

of the output image into the input image) (Milan et al ., 2008) 
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Given location (x, y) and assuming u is the integer part of x and v is the integer 

part of y, the intensity at (x, y) is estimated from the intensities at (ll, v) , (ll + 1, v), 

(u ,v+ l) , (u+l,v+l). This intensity at (x ,y) is computed from the linear 

interpolation as follows (Abramowitz and Stegun, 1972, Milan et a1. , 2008) : 

where 

¥V;" l' = (ll + 1- x Xv + 1- y), 

Wu+1,\ = (x -ll X V + 1- y), 

Wu .1'+1 = (ll + 1- x Xy - v), 

¥V;, +I,I'+1 = (x -ll Xy - v). 

Bilinear interpolation can cause blurring and a small decrease in resolution due to its 

averaging nature. The problem of step-like straight boundaries evident in nearest 

neighbour interpolation is reduced. An example of bilinear interpolation is 

demonstrated in Fig. 3.16. 

Figure 3.16 Bilinear interpolation with reduced stepping at straight line boundaries compared to 

nearest neighbour interpolation (Zitova and Flusser, 2003) 
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3.5.4.3 Bi-Cubic Interpolation 

Bi-cubic interpolation impro ves the model of the brightness function by 

approximating it locally by a bi-cubic polynomjal surface. Sixteen neighbouring 

points are used for interpolation, and the output pixel va lue is a weighted average of 

pixels in the nearest 4-by-4 neighbourhood. Bi-cubic interpolation does not suffer 

from the step-like boundary problem of nearest-neighbourhood interpo lation, and 

copes with linear interpolation blurring relatively we ll and consequently preserves 

fme details in the image well. It is often used in raster displays that enable zooming 

with respect to an arbitrary point, and example of an image processed w ith bi-cubic 

interpolation is shown in Figure 3.17. 

Figure 3.17 Bi-cubic interpolation (Zitova and Flusser, 2003). 

3.5.4.4 Other Methods of Interpolation 

Apart from the most common interpolation methods mentioned above, there are 

various other interpolation methods such as sine functions , quadratic, Lagrange and 

Gaussion kernels (Lehmann et a1. , 1999). The sine function is the optimal 

interpolation technique but is hard to implement due to its infmite extent of sine 

function. Cubic interpolation is more suitable when the geometric transformation 

invo lves a sigruficant enlargement of the sensed image. 
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The high order methods such as Lagrange and Gaussian kernels have more complex 

computations. Overall there is a trade-off between accuracy and computational 

complexity, in practice the bilinear interpolation method appears to be the more 

commonly used approach in general cases(Zitova and Flusser, 2003). 

3.6 Reviews on Image Registration Techniques 

Image registration has developed rapidly during the last few decades. A large amount 

of research has been done on automatic registration techniques. Most literature on 

image registration techniques has studied on visible images and medical images 

(Brown 1992, Maintz and Viergever, 1998, Zitova and Flusser, 2003). There are a 

few papers about registering visible image with infrared image which is considered 

as multimodal registration (Bulanon et al., 2009, Bilodeau et al., 2011). However, 

very few articles are about image registration on FLIR imagery specifically. Due to 

the different characteristics of FLIR imagery, those algorithms that performed well 

on visible band image and medical images may not be suitable for FLIR imagery. A 

general review of various image registration methods will provide a basic idea of 

suitable registration algorithm for FLIR images. 

Image registration methods can be categorised with respect to various criteria such as 

spatial domain or frequency domain, area or features based, local or global, 

interactive, semi-automatic or automatic, and monomodal or multimodal. Here, 

image registration methods are categorised as area-based and feature-based methods 

(Fonseca and Manjunath, 1996, Maintz and Viergever, 1998, Zitova and Flusser, 

2003, Haralick and Shapiro, 1993 and Pratt, 1991). 
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3.6.1 Area Based Methods 

The group of area-based matching techniques is the most widely used method due to 

its relatively simplicity. Area-based registration methods achieve registration by 

maximising a similarity measure based on the intensity values of the two images. 

Consequently, they are generally sensitive to the intensity changes, noise disturbance, 

varying illumination or different sensor types (Zitova and Flusser, 2003). 

The advantage of area-based methods is that very accurate registration can be 

achieved since all of the available data is used; however this is at the cost of very 

high computational complexity. Classic area-based methods can be generally divided 

into three groups: correlation based methods; Fourier transform based methods; 

mutual information based methods. 

3.6.1.1 Correlation-based Methods 

Anuta (1969) proposed a technique for registering a pair of images. By forming a 

cross correlation measure between the images, the location of the sensed image can 

be determined by the maximum correlation value. This method is also known as the 

correlation coefficient. 

1.---------------N----------------~ 

Figure 3.18 Cross correlation search and window areas (Anuta, 1969) 
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When applying this technique in two dimensions, with 11 (x, y) and I ( ) 
2 x,y 

representing two discrete images to be registered, the cross correlation measure is 

defmed as (Anuta, 1969): 

(3-11) 

where (x,y) are indices in a J x K point window area W that is located within 

M x N point search area S as shown in Figure 3.17. 

The correlation function C{tx' tJ must be computed for all of the search area to 

determine the maximum value. When the correlation value is a maximum, the two 

overlapped images will be matched since the similarity between the template image 

and the other image will be a maximum. There are two basic problems with this 

simple correlation measure. One is that the maxima of the cross correlation function 

may be very broad which makes it difficult to detect the peak and the other is that 

image noise may mask the peak correlation. Pratt (1974) has extended the basic 

concept of cross correlation by involving linear spatial pre-processing of images 

before applying the cross correlation. This method measures the cross correlation 

between the images after they convo Ive with a spatial filter. The reason to using the 

spatial filter is to maximise the correlation peak ratio, so as to sharpen the detected 

correlation peak which improves the detection ability of image misalignment. The 

deficiency of this method is that it requires a great amount of computation. 

Later on, Lewis (1995) described a normalised cross correlation (Nee) method 

between an image and a template to overcome a few drawbacks of the basic cross 

correlation method, such as the range of cross correlation being dependent on both 
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the size of the template image, and the template and sensed image amplitudes. 

Correlation is normalised to avoid contributions from local image intensities. The 

normalised cross correlation (NCC) method can be expressed as (Lewis, 1995): 

J K 

I I [II (x,y)-,ul ][12 (x -ll,y - v)- ,u2] 
C(ll, v) = j=1 k=1 

{[tt II2 (x,y)- PI r {tt I22 (x-U,y-v)- p, n i 

(3-12) 

where (x, y) are indices in a J x K point window area W that is located within 

M x N point search area S, ,ul is the mean value of image 11 and ,u2 is the mean 

value of image 12 . 

Normalised cross correlation measures similarity by computing global statistics such 

as mean and variance, and it performs well if the two images are similar in nature 

with an underlying linear relationship between the image intensities (Cole-Rhodes et 

aI., 2003). There are generally a few drawbacks ofNCC. Firstly, NCC is sensitive to 

noise in the images as it makes use of all the intensity value of the images. Secondly, 

NCC method is mainly used for images misaligned with small rigid or affme 

transformations due to the fact that the computational costs increase quickly with the 

growth of the number of transformations (Brown, 1992). Thirdly, for the 

measurement to be reliable the displacement has to be greater than the mean error of 

the image to be registered (Debella-Gilolow and Kaaba, 2011). Fourthly, the 

precision of NCC is limited to one pixel. However, when NCC is used combined 

with optimisation method, it can achieve sub-pixel accuracy (Cole-Rhodes et ai., 

2003). 

Sarvaiya et al. (2009) describe medical image registration by template matching 

based on Normalized Cross-Correlation (NCC) using Cauchy-Schwartz inequality. 
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The algorithm does the template matching and uses the Cauchy-Schwartz's inequality 

to simplify the procedure. The template matching experiments were only conducted 

on one greyscale brain image. According to their results, although maximum cross 

correlation value of image with noise is not as high as the value of image without 

noise, it still can be used for matching. 

The main disadvantage of cross correlation methods is that they lack computational 

efficiency. A sequential similarity detection algorithm (SSDA) related to cross 

correlation was proposed by Bamea and Silverman (1972). This method uses a 

sequential search approach and a computationally simpler distance measure than the 

cross correlation. It accumulates the sum of absolute differences of the image 

intensity values as follows: 

E(tx,tJ= I~]Il(x,Y)-I2(x-tT,y-ty~ (3-13) 
x y 

It then applies a threshold criterion. If the accumulated sum exceeds the gIven 

threshold, the candidate pair of windows from the template and sensed image is 

rejected and the next pair is tested. In comparison with cross correlation methods, 

this method is much simpler computationally since it only computes the absolute 

differences between the pixels in the two images. Although the sequential methods 

improve the efficiency of the similarity measure and search, it is likely to be less 

accurate than the cross correlation method. 

3.6.1.2 Fourier based Methods 

Fourier methods are frequently preferred over correlation-based methods when there 

is a need to accelerate the computational speed. Instead of representing the problem 

in the spatial domain, the Fourier transform represents the image in the frequency 

domain. It can be computed efficiently for images, especially for large images. using 
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the two-dimensional Fast Fourier Transform (FFT). 

The primary idea of the Fourier method is based on its shift property. The Fourier 

transform of the correlation of two images is the product of the Fourier transform of 

one image and the complex conjugate of the Fourier transform of the other (Brown, 

1992). This is an alternative way to compute the correlation between images. Given 

two images II and 12 which differ only by a displacement (t x' ty ): 

12 (x, y) = II (x - t x' Y - t y ) (3-14) 

their corresponding Fourier transforms, F; and F; are: 

(3-15) 

The cross-power spectrum of the two images are defmed as: 

(3-16) 

where F* is the complex conjugate of F, the phase of cross-power spectrum is 

equivalent to the phase difference between images. This method is also called phase 

correlation method (Brown, 1992). 

The Fourier method searches for the optimal match in the frequency domain. They 

are specifically well suited for images with low frequency or frequency-dependent 

noise, while they are not suitable for images with frequency-independent noise or 

more general transformations (Zitova and Flusser, 2003). Although the Fourier 

method can only be used for images with translations, it can be extended to handle 
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images which have been both shifted and rotated with respect to each other. 

If the images are transformed into a polar or a log-polar Fourier grid, rotations and 

scaling can be reduced to translations in these representations and can easily be 

estimated by using the phase correlation algorithm. Several papers have discussed 

various methods for translation with rotation or scaling by the Fourier method based 

on translation-invariant theory (De Castro and Morandi, 1987, Reddy and Chatterji, 

1996, McGuire, 1998, Vandewalle et al., 2006, Kim et al., 2008). 

De Castro and Morandi (1987) proposed a method based on FFT for both translations 

and rotations. They present a two-step process to ftrst determine the angle of rotation 

and then determine the translational shift. Rotation is invariant to the Fourier 

transform which means that the rotated angle of an image is the same rotated angle of 

the Fourier transform of that image. If the angle is unknown, the phase of the cross-

power spectrum is computed as a function of the rotation angle ¢ and the equation 

can be simplified by using polar coordinates (r,e). Consider two images are related 

by rotation only. After resampling the images into polar coordinates, the template and 

sensed image can be expressed in polar coordinates as 

11 (r,e) == 11 (rcose,rsin e) (3-17) 

I~ (r,e)== 12 (rcose,rsin e) (3-18) 

The relationship between two images in po lar coordinates can be expressed as 

I 2 (r, e - ¢ ) == I I (r, e ) (3-19) 

65 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

In Fourier domain, the phase correlation can be expressed as 

G(r, e ,¢ ) = ~ (r, e )F2: (r, e - ¢ ) 
I~ (r, e )F2 (r, e - ¢ ~ 

(3-20) 

When at the true angle of rotation, the effect of rotation can be removed from the 

sensed image. Then G should only indicate the value that is expected for the sensed 

image which has only been translated. Therefore, by searching the angle ¢ which is 

the closest to maximum value, the rotation angle can be determined. Their results on 

synthetic and real 2D visible digital image show that the algorithm is robust to 

correlated noise and time varying illuminations. 

Reddy and ChatteIji (1996) have discussed an extension of phase correlation 

technique to cover translation, rotation and scaling. When without considering scale 

changes, the rotation can be represented in polar coordinates as a translational 

displacement. If (x, y) in image II is scaled to (:';) in image I, and with rotation 

angle ¢, by transforming images to Fourier domain and in polar representation are 

related by 

~ (r,e)= F2 (rl a,e -¢) (3-21) 

Then by converting into logarithm scale, the scaling can be reduced to a translational 

movement: 

F2 (Iogr,e)= ~ (logr-Ioga,e -¢) (3-22) 

where log is based on natural logarithm base. Reddy and ChatteIji (1996) also have 
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tested the method on different set images with different amount of noise. The 

matching for translation and rotation is quite accurate in the presence of noise. 

However, it is not as accurate for scale change. 

These polar-log transform methods operate on the translation-invariant Fourier space 

fIrst, and then convert to polar-logarithmic coordinates so that rotation and scale 

effects appear as translational shifts along orthogonal e and logr axes. In polar-log 

space, the normalised correlation coefficient of II and 12 as a function of shift along 

these axes is maximised at the coordinate (- ¢, -10 g a). The disadvantage 0 f these 

methods is that by using discrete images instead of continuous ones, some sampling 

errors occur between the two images and resampling the Fourier magnitudes on the 

polar-log grid reduces the accuracy of the estimation of rotation and scaling. To 

enhance accuracy, a few papers introduced new sampling schemes and algorithms 

which reduce the inaccuracies introduced by resampling the magnitude of the FT on 

the polar-log grid (Keller et aI., 2005, Pan et aI., 2009, Tzimiropoulos et aI., 2010). 

Tzimiropoulos et ai. (2010) proposed a robust correlation-based scheme which 

operates in the Fourier domain for the estimation of translations, rotations and 

scalings (up to 6 factors) in real face images. They fIrst replaced image functions 

with complex gray-level edge maps and then compute the standard Cartesian FFT. 

The next step was to resample the Cartesian FFT on the log-polar grid by using 

binlinear interpolation. To perform robust correlation, they replace phase correlation 

with normalised gradient-based correlation schemes (NGC) (Argyriou and Vlachos, 

2004). They estimated the rotation and scaling using NGC in the log-polar Fourier 

domain. Their results showed that their method provides a fast and robust framework 

for scale-invariant image registration. 

Compared with other area-based methods, Fourier based methods are robust to noise 

and time varying illumination disturbances. Also they have a low computational 

67 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

complexity and take a fixed period of time in registering any images. In comparison, 

other area-based methods generally have high computational costs and the time used 

in registering two images with spatial methods is unpredictable, depending on the 

images to be registered. The Fourier methods are easy to implement and parallelise. 

They can be used for generating an initial value for nonlinear optimisation based 

spatial registration methods. 

3.6.1.3 Mutual Information based Methods 

In recent times, Mutual Information (MI) has become a popular similarity metric for 

image registration, especially useful for registering images obtained from different 

sensors in medical imaging or remote sensing since they are very robust (Zitova and 

Flusser, 2003, Zibaeifard M. and Rahmati, 2006, Wells III et aI., 1996, Maes et aI., 

1997, Thevenaz P. and Unser M., 2000). 

The MI method originates from information theory. MI methods can be considered as 

a similarity measure, because the maximum value will indicate the best match 

between a reference image and a sensed image. MI measures redundancy between 

two images by looking at their intensity distributions and represents a measure of the 

relative entropy. For two images II and 12 , the defmition of the mutual information 

MI{I2,12) of these two image is as (Gao et aI., 2008): 

(3-23 ) 

with H{IJ and H{IJ being the entropy of II and 12, respectively. and H(IJJ 

their joint entropy. For image registration, the entropies are calculated by the 

probability distributions is defined as: 
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H{!J= -LPI, (a)logplJ (a) 
ae/l 

(3-24) 

H(IJ= -LPI
2 
(b)logpl

2 
(b) 

bel2 

(3-25) 

H(I"IJ = - L L PI
I
/

2 
(a,b )log PlrIl (a, b) 

ae/l be/2 

(3-26) 

where a and b are the intensity values in image II and 12 respectively, PI
I 

(a) and 

PI2 (b) are the marginal probability distributions of each image which is the 

probability of one event, ignoring any information about the other event. P (a b) is 
11/2 ' 

the joint probability of II and 12 , Therefore, the MI is defmed with probability 

functions as (Cole-Rhodes et aI., 2003): 

(3-27) 

The maximisation of mutual information technique (MMI) was fIrst introduced by 

Viola and Wells (1997) which has overcome a lot of problems with the registration of 

multimodal imagery. It has been used in remote sensing by several authors (Chen et 

aI., 2003, Cole-Rhodes et aI., 2003). 

Cole-Rhodes et ai. (2003) have merged mutual information with an optimisation 

scheme and applied the registration of remotely sensed imagery. By searching for the 

maximum of the mutual information measure, the best match between two images 

can be found. To speed up the computation of the similarity measure (MI), they 

decomposed the input images by a multi-resolution wavelet decomposition which 

generates images from coarse to fme resolution. Their study is limited to images only 

69 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

misaligned by rotation and translation. They compared Nee methods with mutual 

information method by their sharpness at peak values which indicate MI method has 

a sharper optimum peak than Nee method. However, this is based on the condition 

that images have been decomposed into multi-resolution levels rather than alianina 
~ := 

the original image with template image. 

Bao and Ralph (2007) have also examined the use of MI and Nee methods. The 

experiments are conducted on infrared images with noise. They applied both MI and 

Nee methods directly on the imagery without using multi-resolution methods. 

According to their results, they Nee method is more robust that MI method in the 

presence of noise due to the MI methods have a high sensitivity to errors in the 

image scaling parameter. 

Registration based on mutual information is robust and data-independent and could 

be used for monomodality and multi-modality images. However, MI methods are 

like other area-based methods, they require high computation time. In order to speed 

up the registration process, Zibaeifard and Rahmati (2006) used a multi-resolution 

approach on medical images which constructs a pyramid of low to high resolution 

images fIrst and then performs a search from a small number of discrete pixels at 

coarse level to fIner level. An initial value can be obtained by searching low 

resolution image in a relatively short time. They have improved the method of 

sample selection which tried to fInd a suitable subset of image samples depending on 

the complexity of the regions. 

3.6.2 Feature based Methods 

Goshtasby et al. (1986) have proposed a sub-pixel accuracy image registration 

method by extracting closed-boundary regions from digital images. They have 

discussed registration between day-visual and infrared digital unages with 
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translational, rotational and scaling differences. The centres of gravity of the closed 

boundary regions are taken as control points. They have designed a method to refme 

the region boundaries so that optimally similar corresponding regions are obtained. 

This step enables determination of centres of gravity of corresponding regions. Then, 

correspondence is established between control points and registration parameters are 

determined by a least squares error criterion which estimates the transformation 

parameters by minimizing the sum of squared errors. 

Hrka' c and Kalafati' c (2007) presented an approach to muItimodal image registration 

between infrared and visual images taken from the same viewpoint. Their method is 

based on mapping clouds of points extracted by a comer detector applied to both 

images. The Harris comer detector is chosen which describes the intensity structure 

of the local neighborhood for each image pixel (Harris and Stephens, 1988). Then 

they have adopted two strategies to reduce the false comer points. One is based on 

the assumption that the images were taken from the same viewpoint so that the 

corresponding comers in both images should not be too far away. The other is that 

the point pairs are at least have certain distance away from each other in each image. 

Hausdorff distance was used to measure the similarity between the images (Vincent, 

and Laganiere, 2002). Their method uses a small number of parameters which has 

better results on a wide range of images. However, the comer detection affects the 

misalignment heavily which needs to be improved by adding more characteristics to 

comers. 

Yang (2001) has proposed an algorithm for SAR and FLIR image registration. The 

feature based method was chosen due to the poor correlation between FLIR and SAR 

images which are from different sensors. A two-steps algorithm was used. The initial 

registration used the available sensor truth information to derive a transformation that 

maps FLIR images points into the SAR image coordinate. The feature points were 

extracted by a constant false alarm rate detector. The second stage involved using a 

generalised Hough transform to complete the registration process. As the generalised 
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Hough transform is robust to clutter feature points, this algorithm has a certain 

tolerance to false alarm. 

In comparison to area-based methods, feature-based methods are more suitable for 

situations when illumination changes are expected or multisensory analysis is 

expected because they work on the extracted features rather than work directly on the 

image intensity values (Bevilacqua and Azzari, 2007). However, feature-based 

methods are more sensitive to noise and the features appeared in one image maynot 

appeared in the others. 

3.7 Summary 

This chapter has demonstrated some pre-processing methods for FLIR imagery and 

given a review of existing image registration methods. Due to the limitations of the 

environmental factors and hardware conditions for infrared imaging systems, the 

infrared images are very noisy, relatively low contrast and contain dead/saturated 

pixels which are caused by bad connections between the photo-detectors and the 

read-out circuits. A contrast enhancement method has been used for improving the 

intensity distribution of infrared images in section 3.2 and section 3.3 has described 

the median filter which is used to remove the dead/saturated pixels. To fmd the pre

processed pixels, a detection algorithm has been proposed in section 3.4. Section 3.5 

has presented the basic information of image registration methods including the 

sources of difference, geometric transformation models, image registration process 

and interpolations. 

Section 3.6 has gIven a detailed survey of various existing Image registration 

techniques. These included the two main categories: feature-based and area-based. 

The former are based on extracting the features from images such point, edges. lines, 

curves or regions. Since the FLIR images have very low contrast and \'ery noisy, 
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feature-based methods appears less accurate. Area-based methods are generally more 

reliable than feature-based method due to the fact that they make use of the whole 

image. Various area-based methods have been investigated. 

The area of image registration techniques is vast and can not be explained in full 

within a single chapter. Moreover, developments in the field are exceedingly rapid 

and it is almost impossible to keep abreast of all novelties. The presentation of the 

theoretical background and the algorithm survey sections of this chapter endeayoured 

to give a comprehensive view of the field what is sought to be solved and how. This 

chapter has reviews the image registration methods as many aspects as possible, in 

the best representative way. From each category or subcategory, the most innoyative 

and diverse techniques were described in greater detail. A certain bias was also given 

towards the description of methods which either relate directly to the contributory 

part of the thesis or aid its understanding. 

The aim of this thesis is to develop an automatic detection system on FLIR images. 

To detect small targets in infrared imagery successfully, a number of different pre

detection techniques such as image registration, super resolution and image 

mosaicing techniques will be described in the following two chapters. 
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Chapter 4 Accurate 
Registration and Robust 
Super Resolution 
Reconstruction 
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4.1 Introduction 

One of the main applications of FLIR systems is in the use of airborne cameras to 

detect ground objects from imagery of ground features. The effectiveness of FLIR 

systems is limited by image resolution caused by factors such as the fmite size of the 

infrared focal plane, the optics of the camera and motion blur. 

The Super Resolution (SR) technique is a method of increasing the amount of 

information available to higher level processing algorithms. This technique allows a 

high resolution image to be reconstructed from a series of low resolution images 

based on the premise that each image only has sub-pixel movement. By making use 

of this sub-pixel information a high resolution image can be formed. 

The primary factor that controls the quality of the super-resolved image is the 

accuracy of registration of the low resolution frames. In the previous chapter an full 

review has been given on image registration techniques. Registration of FLIR 

imagery is more challenging than that of visible band images due to the fact that 

FLIR images have extremely low signal to noise ratios (SNR) and can only provide 

limited information for performing image registration. Furthermore, FLIR images are 

more easily cluttered by non-target objects (such as background noise) and the 

brightness can also be suppressed by the clouds due to flying above clouds. An image 

registration technique for FLIR images needs to consider all of these issues. 

This chapter will present an automatic sub-pixel image registration method for low 

contrast FLIR imagery in the presence of noise in the section 4.2. Following this, in 

Section 4.3 an effective and robust super resolution algorithm has been proposed for 

FLIR images. Finally, a summary will be given in Section 4.4. An overview of the 

super resolution image reconstruction algorithm is shown as Figure 4.1. 
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Input low 
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~ 
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algorithm 

Figure 4.1 An overview of the super resolution image reconstruction algorithm 

Output high 
resolution 
Image 

4.2 Accurate Image Registration on FLIR Imagery 

The accuracy of image registration has a direct influence on the effectiveness of 

super resolution algorithms and requires sub-pixe l accuracy. In se lecting an 

appropriate registration algorithm, there are certain factors that need to be considered: 

the type of transformation between images, whether the images have sa lient features , 

and what distortions are present in the images. 

As real FLIR imagery has very low contrast and is contaminated by a large amount 

of noise, feature-based registration methods are generally inappropriate because very 

few features are presented constantly in a sequence of images. Therefore in this 

project, feature-based registration algorithms have been excluded from the candidate 

registration algorithms for FLIR imagery and area-based methods are mainly 

considered here. 
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In FLIR imagery, image movement is mainly induced by camera movement and 

vibration of the moving platform. As the imagery is generally taken at certain altitude, 

a small change in height can be ignored with respect to the total. Therefore, it is 

generally a rigid transformation without any significant scale change for straight 

downward rather than forward or backward looking cameras. 

The difficulties in aligning FLIR imagery can be caused by various sources. There 

are situations when cloud occludes the background in the images or when the images 

are taken at different times and temperature differences introduce variation between 

frame intensities. 

As well as image motion caused by camera movement, moving objects in the scene 

also introduce motion factors. These types of object are described as Independently 

Moving Objects (lMOs) (Strehl and Aggarwal, 2000). In the context of airborne 

imagery, moving ground objects appear relatively small and consequently the 

background of the scene will cover most of the image. This means that the dominant 

motion will be the displacement of the background caused by the observer motion 

(ego-motion). In this context, independently moving objects can be understood to be 

objects whose motion violates the dominant motion model. Image registration 

techniques can be used to remove the dominant ego-motion movement and leave the 

IMOs which can be detected by later processing. 

Most image registration methods are based on a frame-to-reference modeL which 

means each frame is aligned to the same reference image. This is generally not 

suitable in FLIR applications because if the sequences are very long, latter frames do 

not have enough overlapped area or do not overlap at all with the reference image. 

Therefore, a suitable image registration system for FLIR imagery needs to be 

designed so as to register images without reference to a fixed template. 
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The most optimum technique for FLIR image registration is one which utilises the 

entire image, can handle large displacements and is robust against object motion and 

glo bal alignment. 

In this research, an automatic image registration method has been developed. This is 

a specific implementation of the general registration techniques discussed in the 

previous chapter. This technique uses two stages of algorithm; the initial stage uses 

Fourier registration to align images with large translations and rotations. Fourier 

registration is computationally efficient and robust to noise. Subsequently, a 

normalised cross correlation registration method with a stochastic gradient search is 

applied to adjust the image to sub-pixel accuracy. This automatic image registration 

method has been tested both on synthetic and real images with various backgrounds 

and occlusions. Examples of FLIR image sequences with and without cloud are 

shown in Figure 4.2. The generation of synthetic images has been described in 

chapter 2. 
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(a) 

(b) 

Figure 4.2 Examples of synthetic FLIR image sequences: (a) Kandarhar image sequences 

without cloud occlusion, (b) Kandarhar image sequences with synthetic cloud occlusion. 
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4.2.1 Gross Estimation Method 

4.2.1.1 Pre-filtering 

Since FLIR images are often contaminated by noise, pre-processing is necessary to 

reduce its effect. Since noise contributes high spatial frequencies in an image it can 

be removed by use of a smoothing filter. Gaussian filters are a class of linear 

smoothing filters with weights chosen according to the shape of a Gaussian function. 

Gaussian smoothing reduces higher spatial frequencies more than the lower spatial 

frequencies and is a very good filter for removing noise drawn from a normal 

distribution. The discrete Gaussian function in two dimensions is: 

G( x} = 2 exp _ x ; 1 {2+ 2} 
2ncy 20" 

= ~ exp{- x:}x ~ exp{- y:} 
2 nO" 0" 2ncy 0" 

(4-1) 

= G(x}x G(y} 

where the Gaussian spread parameter CY determines the width. 

A large CY implies a wider Gaussian filter and greater smoothing. There are several 

reasons to choose a Gaussian filter as the pre-filter. Firstly, the Gaussian filter is 

rotationally symmetric, which means that the amount of smoothing performed by the 

filter will be the same in all directions. Second, the smoothed image by the Gaussian 

filter will not be corrupted by contributions from unwanted high-frequency signals, 

while most desirable signals will be retained. In addition, large a Gaussian filter can 

be implemented very efficiently since a two dimensional Gaussian can be operated 

by convolving the image with a one-dimensional Gaussian and then convolving the 

result with the same one-dimensional filter oriented orthogonally to the Gaussian 

used in the first stage. 
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The Fourier transform assumes that an image is cyclic, which means that the fIrst 

image row follows the last image row and the fIrst image column is a continuation of 

the last image column. Therefore, if image intensities near the top and bottom or near 

the left and right image borders are different, direct computation of image smoothing 

using may be more accurate and faster than computation by the FFT algorithm 

(Goshtasby,2005). 

4.2.1.2 Fourier Method 

The 2D Fourier transform for a digital image f can be defmed as (Artken, G, 1985, 

Sonk et. aI, 2008): 

1 M-1N-l [_(Xll V1')] F(u,1')=-LLf(x,y)exp -27rJ M+-N ' 
MN x=Oy=O 

(4-2) 

u = 0,1, ... , M - 1, v = 0,1, ... , N -1. OJ = 2JTJ 

The Fourier transform of an image f(x,y) is a complex function and each function 

has a real part R(OJ" OJ y) and an imaginary part J(w x' w J at each frequency (w x' OJ y ) 

of the frequency spectrum: 

F(OJx,OJy)=R(OJx'wy)+ jJ(wx,OJJ 

= \F(OJ x' OJy ~ exp[j¢(w x' OJ J], j = r-i (4-3) 

where \F(OJx,OJy~ is the magnitude or amplitude of the Fourier transform and where 

\¢(OJx,OJy~ is the phase angle. 

Fourier registration estimates the motion parameters between the template image and 
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other images in the frequency domain. Motion can be described as a function of three 

parameters: horizontal and vertical shifts, t x and t y' and a planar rotation angle ¢ . 

Assume 11 (x, y) and its shifted and rotated version I 2 (x, y): 

(4-4) 

wIth rotatIon matrIX R = . . . . [cos¢ - sin ¢] 
sin¢ cos¢ 

A frequency domain approach enables estimation of the horizontal and vertical shifts, 

and the planar rotation separately. 

4.2.1.2.1 Translation Registration 

The translation registration is based on the shift theorem of the Fourier transform. 

Given two images 11 and 12 which differ only by a displacement (tx,tJ: 

12 (x,y) = 11 (x-tx,y-t y ), (4-5) 

Their corresponding Fourier transforms F;. and F2 IS: 

(4-6) 

Therefore, the phase difference is directly related to their displacement which is 

given by: exp{- j(cvxtx +cv/y)}. 
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The cross-power spectrum of two images is defmed as: 

(4-7) 

where p* is the complex conjugate of F, the phase of cross-power spectrum IS 

equivalent to the phase difference between images. 

The Fourier method searches for the optimal match according to information in the 

frequency domain. A flowchart of the local Fourier registration method for 

translational registration is shown in Figure 4.3. To register the input image with the 

template image, a Gaussian filter has first been applied to both. Then, after both 

images have been transformed into the frequency domain, the cross-power spectrum 

between the images can be calculated. By searching for the maximum cross spectrum 

value after inverse transform, the shift between images can be found and the 

transformation matrix parameters can be determined. There are two functions in the 

Matlab image processing tool box that can be used to transform the images. The 

function maketform is used to create geometric transformation structures and 

imtransform is used to apply the 2D spatial transformation to the input image. 

Experiments using the Fourier registration method have been conducted on synthetic 

imagery with and without cloud. The shift registration results are shown in Figure 4.4 

and 4.5. 
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Input 
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Gaussian 
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Fourier 
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Calculating cross power spectrum 
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after inverse transform 

Determine parameters of spatial 
transformation using 'maketform' with 

the transform matrix 

'tform' structure 

'imtransform' 

Aligned image 

Figure 4.3 Flowchart of local Fourier registration process for translations 
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Reference image 

Input image Input image after registration 

(a) 

(b) 

Figure 4.4 Example of shift registration images: (a) synthetic image registration without cloud 

(b) registered image overlapped with the reference image. 
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Reference image 

Input image Input image after registration 

Figure 4.5 Image shift registration on image sequences with cloud cover 

4.2.1.2.2 Rotation Registration 

Rotation registration is based on the rotation invariant theory. When there are pure 

translations present between two images, phase correlation has a maximum peak, and 

the corresponding location gives the translation parameters (t \ ,t, ) (Vandewa lle, et 

aI., 2006). 

Suppose the two images I1(x,y) and 12 (x,y) to be regis tered involve both 

translation and rotation, with the angle o f rotation being ¢ between them. their 

transforms are related by: 
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I 2 (x,y)=exp{- j2n{xtx + ytJ}II(xcos~+ ysin~,-xsin~+ ycos~) (4-8) 

When 12 (x, y) is rotated by ~, there will be only translation left between the images, 

and the phase correlation with II (x,y) should give a maximum peak. So by rotating 

12 (x,y) by 0.01 degree each time and computing the correlation peak for that angle, 

when there is a highest peak value, that angle is the rotation angle. The range of 

rotation is set between -10 degrees to + 1 0 degrees to reduce the computational 

complexity, and is based on the fact that the camera on the moving platform does not 

rotate more than this range. The experimental results on imagery with rotational 

movement are shown in Figure 4.6. 
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Reference image 

Input image Input image after registration 

(a) 

Reference image 

Input image Input image after registration 

(b) 

Figure 4.6 Examples of rotation registration between frames: (a) image sequences "ithout cloud , 

(b) image sequences with cloud 
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4.2.1.2 Global Image Registration 

Generally, the image alignment requires a consistent appearance between two images. 

When registering a sequence of images, the registration between two successive 

frames can be considered as local registration and the registration of the \\'hole 

sequences to the same coordinate system can be considered as global registration. 

Among a sequence of images, one image can be chosen as the template image and all 

the other images can be aligned with this template image if they have some 

overlapped area. However, for the alignment of long image sequences, when there is 

no overlapping area between the template image and some of the other frames, or the 

overlapping area is less than 50% of the image content, it is impossible to select a 

fixed template image for all the other frames because not all of them have spatial 

overlap with the template image. A solution for this dilemma is to fmd global 

transformations of the image sequences. 

Global registration approaches align groups of frames by considering both their 

spatial and temporal contiguity. Global alignment is generally achieved by fmding all 

the transformations from local alignments of adjacent images, then converting the 

transformations into a global transformation. An illustration of global registration is 

shown in Figure 4.7, where T is the transformation matrix between the fIrst and last 

image and is obtained by combining all five transformations between adjacent frames 

(Winkelman and Patras, 2004). 
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T1 

T 

Figure 4.7 An illustration of global registration 

The transformation function of each local pair of images is adjusted to a globa l 

registration by combining the present transformation with the global transformation. 

A flowchart of a global Fourier registration process is shown in Figure 4 .8 . The 

registration has been conducted between neighboured frames, and each registration 

generates a Matlab structure tform by maketform. These local t form structures 

can be combined to generate agio bal t f o rm structure, which ca n be used fo r 

registering the input images with the template image. By combining the transfo rms, 

the error in registration tends to accumulate, whereas reg istering back to the fIrst 

frames tends to generate a smaller error- it is a conflict between having a larger 

common overlap area to do the registration and reducing the accumulation error. 
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Figure 4.8 Flowchart of global Fourier registration process 
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Global registration can reduce the error that occurs durino the f" 
c process 0 registration 

with the same template image. Figure 4.9 shows an example of image hift 

registration error on llllage . h I sequences Wit c oud cover by aligning to the same 

reference image. 

Reference image 

Input image Input image after registration 

Figure 4.9 An example of image shift registration error on image sequences with cloud cover by 

aligning to the same template image 

Figure 4.10 shows the registered shifts by global Fourier registration method and the 

same template Fourier registration method. Figure 4.10 (a) is the result for image 

sequences without clouds by the same template Fourier registration between the 

input image and the template image; Figure 4.10 (b) is the result for image sequence 

without clouds by global registration; Figure 4.10 (c) is the re ult for image 

sequences with clouds by the same template Fourier registration; while Figur 4.10 
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(d) is the result for image sequences with clouds by global registration. By 

comparmg each graph in Figure 4.10, it is clear that same template Fourier 

registration method generates more errors in the situation with cloud cover. 
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Figure 4.10 Registered shifts between each frame and first frame by Fourier registration method: 

(a) result for image sequences without clouds by the same template Fourier registration, (b) 

result for image sequences without clouds by global registration, (c) result for image sequences 

with clouds by the same template Fourier registration, (d) result for image sequences with 

clouds by global registration. 

So as to test the accuracy of the image registration methods, Fourier translations 

registration has been tested on 53 sets (30 frames each) of Kandarhar image 

sequences, with and without cloud. By comparing known data with the 

transformation data obtained by registration, the average error of registration can be 
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obtained, as shown in Figure 4.11 . Either for image without or with cloud, the global 

Fourier registration has shown its accuracy and robust since there is no error over 

pixel size according to the results. However, for the same template registration 

method, there are large scale errors especially after frame 16 due to the fact that there 

is not enough overlapped area between the current frame and template frame . 

45r.=====~====~==~~----~----~~--~ 
*' Kan without cloud 

40 C Kan with cloud 
*' Kan without cloud Initial 

35 C Kan with cloud Initial 

30 
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•• .• • I I • • • •••• I. 

20 25 30 

Figure 4.11 Average error of Fourier registration on Kandarhar images 

Figure 4.12 and Figure 4.13 show the experimental results of global Fourier 

registration on synthetic translated and rotated images with and without cloud cover. 

Both sets of experimental results show a good performance of global Fourier 

registration method. 
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Figure 4.12 An example of image registration on FLIR images with rotation and translation 
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Figure 4.13 An example of mage registration with rotation and translations in presence of cloud 
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4.2.2 Sub-Pixel Estimation Methods 

The sub-pixel registration estimation is achieved by the combination of Fourier 

method and cross correlation method. A flow chart of proposed method is shown in 

Figure 4.14. The next step in the registration task is to eliminate the residua l 

registration error following Fourier registration. A normalised cross correlation 

method combined with a stochastic gradient search has been adopted to reach sub-

pixel accuracy. 

FLIR image sequences 

~ 

Fourier registration method 

~ 

Cross correlation method 

~ 

Registered image with 
sup-pixel accuracy 

Figure 4.14 A flow chart of sub-pixel estimation method 

4.2.2.1 Normalised Cross Correlation Method 

For a template image I I and sensed image 12 , the two dimensional normalised eros 

correlation function measures the similarity for each translation (Brown, 1992): 
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= Lx L y (II (x,y)- PI
1 
XI2 (x-tx ,y - ty)- PI2 ) 

~LxLy (I2 (x-tx,y -ty)- PIc r LxLy (II (x,y)- PI1 r (4-9) 

If the template matches the image exactly, except for an intensity scale factor, at a 

translation of (x, y), the cross correlation will have its peak at C(t x' ty ). Therefore, it 

is possible to fmd the degree of similarity between the images by computing Cover 

all possible translations. 

4.2.2.2 Stochastic Search Method 

To fmd the transformation that maXImIses the value of the cross correlation, a 

stochastic gradient search method is employed here. This is because after the Fourier 

method has been applied to correct for gross shifts, the residual movement of images 

is relatively small. This search method uses a set of arbitrary control points to defme 

a two-dimensional affme or projective transformation. The control points are chosen 

to be distributed around the images to be registered - to give a large baseline for the 

geometric transformation to be found - but they do not correspond to features within 

the image itself. 

The number of control points determines the dimensionality of the search space: 

three points for a projective transform give a six-dimensional search space. The 

stochastic search algorithm selects a random direction in the search space (selecting 

random perturbations to the x/y co-ordinates of the control points) and calculates the 

gradient of the cross-correlation function along this direction. The algorithm then 
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steps in the direction where the gradient is positive, hopefully towards a global 

maximum. The size of the step is proportional to the estimate ofthe gradient, thereby 

increasing the rate of convergence to the maximum. In this case, the fact that the 

gross shift required for image registration has already been found using the Fourier 

transform method, means that the convergence to a local (rather than global) 

maximum is unlikely, and in practice turns out to be the case for the scenarios 

studied here. 

The experimental results of cross correlation registration are shown as Figure 4.15. 

By comparing the Figure 4.15 (a) and Figure 4.15(b), the cloud cover does not have 

too much effect on the cross correlation method. 
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Reference image 

Input image Input image after CC registration 

(a) 

Reference image 

Input image Input image after CC registration 

(b) 

Figure 4.15 Examples of cross correlation registration: (a) registration between frames nitbout 

cloud (b) registration between frames with cloud 
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4.3 Super Resolution Techniques 

4.3.1 Basic Theory 

High resolution images are often required in applications such as remote sensing. 

military and medical imaging because they provide additional detail that may be 

critical in accurately analysing the information. 

Current CCD technology has almost reached its limit in achieving high resolution, 

and the cost of high resolution cameras is relatively high (Chaudhuri, 2002). A 

potentially good alternative is to enhance the spatial resolution of images using 

signal processing techniques to obtain a high resolution (HR) image (or sequence) 

from multiple low resolution (LR) images (Park et aI., 2003). An illustration of super 

resolution reconstruction from low resolution sequences is shown in Figure 4.16. 

L--------T--------~ 

I ~---~-------------l------------~----------------~-------------: I _ I 

Figure 4.16 Super-resolution reconstructions from a low resolution image sequence (Borman 

and Stevenson, 1998). 

Image super-resolution is the process of reconstructing a high-resolution image from 

a single image or a sequence of noisy, low-resolution image frames of the same scene 

but with sub-pixel shifts. If the images were only shifted by integer amounts, then 

each image would contain the same intensity values at the same spatial locations and 

consequently there would be no new information that can be used. In this case a 

simple interpolation scheme (bilinear, cubic spline, etc.) can be used to increase 
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resolution. Interpolation methods are normally used to increase the size of a sinale 
e 

image (Schoenberg, 1969, Unser et aI., 1995). Interpolation method can be used to 

fmd an interpolated value between pixels in one image. However, the values that 

obtained from the up-sampled image tend to blur edges because they try to impose a 

continuous transition model onto regions of different intensity. It is the same when 

using just average over a number of images and the image tend to be blurry. 

If the images have sub-pixel shifts, each image contains different information and the 

new information contained in each low-resolution image can be exploited to obtain a 

high-resolution image. 

4.3.1.1 Mathematical Formula for Super Resolution 

The super resolution reconstruction problem can be analysed by formulating an 

observation model that relates the original high resolution image to the observed low 

resolution images. Consider the desired high resolution image of size L
J 
N

J 
x L2N2 

written in lexicographical notation as the vector x = [Xi' x 2 ,.··, X NY' where 

N = LJNJ X L2N 2 • x is the ideal un-degraded image that is sampled at or above the 

Nyquist rate from a continuous scene, which is assumed to be band-limited. 

The size of each low resolution image can be considered NJ x N2 with LJ and L2 

representing the down-sampling factors in the observation model for the horizontal 

and vertical directions respectively. The kth low resolution image is denoted in 

I · hi t t' L - Y y]r for k = 1,2" ", p and eXlcograp c no a Ion as Yk = LYk,P k,2'''' k,m , 

The high resolution image x is considered to remain constant during the acquisition 
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of the multiple low resolution images, except for any motion and degradation 

allowed by the model. Therefore, the observed lo w resolution images result from. 
'-' 

warping, blurring and sub-sampling operators performed on the high reso lution 

image x and each low reso lution image is corrupted by additive noise. A block 

diagram for the observation model is illustrated in Figure 4.17 . 

Desired HR Image x kth Warped HR Image Xk 

. Sampling 1 Warping 1 Blur Down Sampling 
Continuous 

Scene Continuous to . - Optical Blur -1 . ~ 
.. Discrete Without .. - Tran s~atlon _ Motion Blur Undersampling 

AliaSing - Rotation . Etc. . (L, . LiJ . • 
- Sensor PSF, Etc. I 

kth Observed 

LR Image Yk 
~ 

NOise (nk) 

Figure 4.17 Observation model relating LR images to HR images (Park et aI., 2003) 

The observation model can be expressed mathematically as (Elad and Feuer, 1997, 

Rajan and Chaudhuri, 2001): 

(4-1 0) 

and n
k 

represents a lexicographica lly ordered noise vector. 

The warping matrix M k may contain global or local translations , rotations etc. The 

warping factor can be registered by the use of registration techniques to sub-pixe l 

accuracy, which has been discussed in Section 4.2. Blurring may be caused by the 

optical system (out of focus, aberration etc) , relative motion between the imaging 

system and the original scene, and the point spread function (PSF) of the 10\\' 

resolution sensor (Park et aI. , 2003) . In super resolution reconstruction, the [mitene ' 
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of a physical dimension in low resolution sensors is an important factor that affects 

blur. The low resolution sensor PSF is usually modelled as a spatial averaging 

operator and the characteristic of the blur is assumed to be known in most cases. The 

sub-sampling matrix D generates aliased low resolution images from the warped and 

blurred high resolution image. 

Most super resolution image reconstruction methods consist of three stages: 

registration, interpolation and restoration. At the registration stage, the relative shifts 

between low resolution frames needs to be estimated with fractional pixel accuracy. 

In terms of super resolution theory, accurate image registration is a very important 

factor. Since the shifts between low resolution images are arbitrary, the registered 

high resolution image will not always match up to a uniformly spaced high resolution 

grid. Therefore, interpolation is necessary to obtain a uniformly spaced high 

resolution image from a non-uniformly spaced composite of low resolution images. 

Finally, image restoration is applied to the un-sampled image to remove blurring and 

noise (Park et aI., 2003). The general process of the super resolution algorithms is 

illustrated in Figure 4.18. 
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LR Images 

Image Registration 

t I HRGrid 

11 LRGrid 

Reconstruction 

t I HRGrid 

! I LRGrid 

Figure 4.18: An illustration of super resolution reconstruction 
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4.3.2 Robust Super Resolution Reconstruction on FLIR 

Images 

In most applications, high resolution imagery is more desirable because the hioher 
o 

pixel density provides more useful information. As FLIR images tend to be 

contaminated by large amounts of noise and are relatively low contrast, detection of 

small objects is more difficult without post-processing. Super resolution techniques 

can process this type of noisy image and improve the quality of FLIR imagery so as 

to improve the detection of small objects. 

4.3.2.1 Robust Super Resolution Reconstruction 

The super resolution reconstruction idea was fIrst presented by Tsay and Huang 

(1984). They used a frequency domain approach to demonstrate the ability to 

reconstruct one improved resolution image from several down sampled noise-free 

versions of it. Similar frequency domain methods, including a simple version of the 

above idea applied to noisy and blurred images have also been developed (Park et aI., 

2003). Frequency based methods have the advantage of being theoretical simple and 

low computational complexity but are generally difficult to implement in spatially 

varying degradation models in the frequency domain reconstruction formulation and 

limited ability fro inclusion of spatial domain a-prior knowledge for regularization 

(Borman and Stevenson, 1998). 

The linear spatial domain observation model can accommodate global and non

global motion, optical blur, motion blur, spatially varying PSF (Borman and 

Stevenson, 1998). The three main tools used for image restoration theory in the 

spatial domain are the maximum likelihood (ML) estimator, the maximum a 

posteriori (MAP) probability and the set theoretic approach using projection onto 

convex sets (POeS). Maximum a posteriori and projection onto convex sets 
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algorithms have been the dominant approaches to image super-resolution during the 

1990's (Borman, Stevenson, 1998) with recent research focusing mostly on 

computationally efficient algorithms (Park et al., 2003). 

The overlap between the input images can be used to increase the resolution of the 

FLIR images by super resolution methods. Existing super resolution algorithms solve 

a very large optimization problem and thus are computationally costly. There is a 

trend research in super resolution which aims to find effective and fast methods. 

Farsiu et al. (2004) have proposed a fast and robust multi-frame super resolution 

algorithm. They used L J norm minimisation and robust regularisation based on a 

bilateral prior to deal with different data and noise models, with experiments 

conducted based on visual band LR blurred images. This was developed to 

reconstruct high resolution images from low resolution images contaminated with 

non-Gaussian noise. Existing estimation models generally assume a Gaussian noise 

profile and so can be less effective when the assumptions made on data and noise 

models do not faithfully relate to the image type. In that case, it is possible that a 

suboptimal estimation method may produce better and more stable results, since it is 

less sensitive to modelling and data errors. The L J norm minimisation is based on the 

maximum likelihood method and is robust to non-Gaussian noise. Regularisation is 

used to de-blur the higher resolution image. 

FLIR imagery is not only contaminated by a large amount of non-Gaussian noise, but 

also has very low contrast. A super resolution reconstruction method should have the 

essential properties of robustness to outliers and fast implementation. Blurring has 

not been considered here as there is no explicit optical blurring in the simulated 

infrared imagery. This simplification does not necessarily limit the performance of 

the techniques described here because the distortion due to the photon shot noise and 

non-uniformities in the imager are assumed to be larger than the effect of blurring. 
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Also, the experiment nature of infrared cameras means that optical blur is minimised 

and motion blur is small as long as camera motion is relatively small from frame to 

frame. 

A popular family of estimator is the ML-type (M -estimators) (Huber, 1981). Super 

resolution can be modelled by these estimators: 

(4-11 ) 

where p is a measure of the distance between the model and measurements. 

Considering this model with nOIse, a least-square approach results in the ML 

estimate. The least squares formulation is achieved when p is the LI norm of 

residual: 

(4-12) 

The next step is to reconstruct a high resolution image from a sequence of FLIR 

images. After aligning by global shift estimation (Fourier method), the FLIR images 

are up-sampled by a factor of two in the horizontal and the vertical directions in each 

frame. Subsequently, the normalised cross correlation method can be applied to 

achieve sub-pixel accuracy. Finally, the super resolution algorithm can be applied to 

the aligned images. To fmd the high resolution image x, an LI estimator has been 

used for the minimization problem: 

(4-13 ) 
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The gradient of the cost in (4-l3) is: 

( 4-14) 

M{ Dr copIes the values from low resolution grid to the high reso lution grid by 

proper shifting and zero padding, DMk copies a set of pixels in high resolution grid 

back on the low resolution grid. Neither of these two operations changes the pixel 

values. Therefore, the gradient of cost is the aggregation of the effects of all LR 

frames. When DMkx is larger than Yk' the s ign should be -1 , when DJl
k
x is smaller 

than Yk' the sign should be + 1 and when DMkx is equal to .1'k ' the sign should be zero . 

The zero gradient of cost indicates that there are equal numbers of the minus and 

positive signs. It means each element of X sho uld be the media n va lue of 

corresponding elements in the low resolution frames. This method has significant 

benefits in terms of the computational cost. A flowchart giving an overv iew of super 

resolution reconstruction is shown in Figure 4.19. 

FUR LR Images 

Fourier registration 

Cross corre lation 
registration 

Super resolution 
reconstruction 

FUR HR Image 

Figure 4.19 An overview of flowchart super resolution reconstruction 

109 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

4.3.2.2 SR Performance 

A principal aim of this research is to develop algorithms which wo rk on rea l FUR 

image sequences. However, on several occasions throughout this and later chapter 

synthetically generated test sequences w ill be used. This has two benefit s over using 

only real data. First, comparisons can be made between the known ground-truth 

image and the estimated super-reso lution image. Second, factors of the image mode l 

which affect the super-resolution estimate can be contro lled and investigated in 

isolation. Such factors include the accuracy of registration, accuracy of the po int-

spread function, and level of observation noise. 

The super resolution reconstruction method has been tested on FUR images with and 

without dead/saturated pixels and is shown in Figure 4.20 and Figure 4 .21 

respectively. The high reso lution FLIR image was reconstructed from 25 low 

resolution FLIR frames. 

(a) (b) 

Figure 4.20 An example of the super resolution algorithm dealing with noisy images (a) th e 

upsized noisy low resolution image and (b) the super-resolved image by using noisy \on 

resolution images. 
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(a) (b) 

Figure 4.21 Example of (a) One of the low resolution frames and (b) High resolution image 

formed by 25 low resolution images. 

The super resolution algorithm was also tested on FUR imagery with differe nt 

background scenes. The super-resolved image for each set was reconstructed from 15 

frames of 256 by 256 low resolution images from different imagery sets. The orig inal 

high resolution and low resolution images were generated by the same image mode l, 

except that the image size was different. Figure 4.22 (c) , (f), (i) , (I) are the super 

resolved images that the most obvious improvement is around the target area. 
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(a) (b) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (1 ) 

Figure 4.22 Four sets of different imagery with super-resolved results. (a = Pro), (d = Kan), (g = 

Jal), U = Tri) are original simulated high resolution images, (b),(e), (h), (k) are the corre pondin
o 

low resolution images, (c), (t), (i), (I) are corresponding the super-resolved image. 
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The improvement in the super-resolved images is apparent but still qualitative. 

Quantitative image improvement is often best illustrated using standard performance 

metrics, such a cross-correlation or Peak Signal-to-Noise Ratio (PSNR) for the 

unprocessed low resolution images and the super-resolved image. The performance 

analysis of the super-resolved images is determined by their similarity to the true 

high resolution image. There are two different measure approaches employed in this 

case to compare the results: the Peak Signal-to-Noise Ratio (PSNR) and the 

Correlation Coefficient (CC) (Chui C. K., 1987 and Wang et al., 2004) 

The PSNR method is a commonly used image quality measure because of its low 

complexity. The value of PSNR is high if the similarity of the images is high. The 

PSNR is good measure for the reconstructed result of the same image. The Root

Mean-Squared-Error (RMSE) between two imagesf(x, y) and g(x, y) is: 

1 M N 2 

RMSE= MN~~[f(x,y)-g(x,y)] 

Then the PSNR is defmed as: 

P 
PSNR = 20 x logIo --

RMSE 

( 4-15) 

( 4-16) 

where RSME is the Root-Mean-Square-Error between the original high resolution 

image and the super-resolved image and P is the maximum pixel value which is 255 

for grey level image. 

The Correlation Coefficient is the same as the method of cross correlation used for 

cross correlation image registration and it is used to measure the similarity between 

two images. If the maximum absolute value of CC is 1, it indicates a perfect match. 
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The cross correlation values between the fIrst two low resolution images in the 

sequence with sub-pixel shifts after Fourier registration are shown in Table 4.1. It 

indicates that the order of correlation values from high to low are: Pro, Kan, Jal and 

Tri. 

Table 4.1 The correlation values of low resolution 

images with sub-pixel shift 

Imagery Sets CC 
Pro 0.9730 
Kan 0.9563 
Jal 0.9482 
Tri 0.9122 

To evaluate the effects of the super resolution algorithm, the PSNR and CC are used 

for measuring the improvement of the ground truth. For low resolution images, the 

PSNR and CC values are calculated between original simulated high resolution 

image and resized low resolution (LR) image. To estimate super resolution images, 

the PSNR and CC values are calculated between original high resolution image and 

super-resolved (SR) image. The results are shown in Table 4.2. Both PSNR and CC 

values show positive results, indicating that the image quality is improved after super 

resolution was applied. 

Table 4.2 The PSNR and correlation values for robust 

super resolution algorithm 

Imagery PSNR PSNR CC CC 
Sets (LR) (SR) (LR) (SR) 
Pro 74.6733 76.0446 0.9547 0.9656 
Kan 71.3585 72.4816 0.9391 0.9527 
Jal 68.5857 69.8355 0.9020 0.9241 
Tri 73.1878 76.8338 0.8634 0.8992 

Another way to understand these results is to compute the increase between the 

similarity value for the low resolution image and the super-resolved image, as shown 

in Table 4.3. There are some differences between the PSNR and CC methods 

between different imagery sets. 
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Table 4.3 The increase values of PS~R and 

correlation value increase 

Imagery Difference(~) 

Sets PSNR CC 
Pro +1.3713 +0.0109 
Kan +1.1231 +0.0l36 
Jal +1.2498 +0.0221 
Tri +3.646 +0.0358 

For the CC method, it shows that the image Tri is the most improved followed by Jal, 

Kan and then Pro. The lower the correlation values between the low resolution 

frames and the original images the larger the improvement can be. Looking at the 

PSNR results, the Tri image is the most improved image (as the CC method also 

indicates), followed by the Pro image, and then the Jal and Kan images. This also 

shows that the simpler background images show greatest improvement in the 

similarity measure from the application of the super-resolution algorithm. 

4.4 Summary 

The ability to fonn a high resolution image from a series of low resolution images is 

desirable in a variety of military and medical applications. A novel accurate image 

registration technique, designed specifically for FLIR imagery, suitable for use with 

the super resolution algorithm has been proposed. 

The novelty of this technique is twofold: firstly, this type of image registration 

technique has never previously adapted for use with FLIR imagery; second, the 

combination of Fourier transfonn for coarse image registration followed by 

nonnalised cross correlation method for sub-pixel accuracy allows a higher degree of 

registration accuracy for lower computational cost when compared to normalised 

cross correlation alone. 
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This technique has been designed for use with and without the presence of cloud 

cover. By combining the Fourier registration method with the normalised cross 

correlation method, the proposed registration method is automatic, robust to outliers, 

and is accurate to a sub-pixel leveL 

Next, a robust and effective super resolution algorithm, designed to be effective with 

FL~R imagery has been proposed. This enhances the resolution of the normally low 

resolution FLIR images. The L
J 

norm method has been proved to be robust to 

outliers and computationally inexpensive for FLIR imagery. 

In next chapter, super resolution algorithms will be applied and enhanced so as to 

deal with occlusions caused by cloud cover and to reconstruct a broad view of the 

scene. 
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Chapter 5 Cloud Effects 
and Super Resolved 
Mosaicing on FLIR 
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5.1 Introduction 

The aim of this thesis is to develop a suite of algorithms to automatically detect small 

objects from cluttered and noisy FLIR imagery. As discussed in chapter 4. when 

FLIR images are not occluded by clouds, it is relatively easy to reconstruct images 

by making use of the super resolution algorithm. However, this ideal situation is rare 

since most of the time FLIR images are covered by certain amount of cloud cover: 

this adds to the problem of detecting objects that are completely or partially occluded. 

Bright clouds can suppress the contrast of the image background and semI

transparent ones can generate multiple ego-motion flow vectors. The ground is the 

'background' to the image because the clouds are in the foreground. It is possible to 

remove most of the effects of cloud cover by processing a sequence of imagery. 

In this chapter, an implementation of super resolution has been experimented on 

FLIR imagery with cloud cover fIrst and then an image mosaicing method has been 

employed to expand the fIeld of view of the FLIR images. A segmentation method is 

employed based on optical flow, which is utilised to segment cloud occlusion from 

the image. An super resolved mosaicing method is presented in this chapter. This 

method can effectively increase the fIeld of view of a camera by allowing several 

views of the same scene to be combined into a single high resolution image. It 

enables object detection be carried out on a large scale of the scene. 
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5.2 Super Resolution Technique on FLIR Imagery 

with Cloud 

A robust and effective super resolution algorithm has been fully described in chapter 

4 and has been tested on synthetic FLIR imagery without the presence of cloud . In 

this section, the application of the super resolution technique on FUR imagery with 

cloud will be considered. 

5.2.1 The Effect of Clouds on FLIR Imagery 

To achieve super resolution on FLIR imagery with cloud as shown in Figure 5.1, 

there are three main areas that need be considered: the regions co mplete ly occ luded 

by clouds; areas with coverage by partial or semi-transparent cloud; the areas without 

cloud occlusion. For the regions with full clouds, they can be removed because there 

is no information that can be obtained about the groundlbackground. For the areas 

with coverage by partial or semi-transparent cloud, they can be processed by u ing 

contrast enhancement to extract information. For the areas without cloud occlu ion, 

they can be maintained for further super-resolution processing. Therefore, these three 

types of regions need to be segmented at first . 

Figure 5.1 A frame of FLIR imagery with cloud 
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5.2.2 Cloud Segmentation 

Cloud separation of these regIOns requires an effective segmentation method to 

segment the different regions of the image. The main goal of image segmentation is 

to divide an image into parts that have a strong correlation with objects or areas 

contained in the image (Sonka M. et aI., 2008). The segmentation of cloud cover 

cannot be considered as conventional object segmentation because the cloud does not 

have clear boundary and its edges become transparent so as to blend in to the 

background features. For this reason, simple segmentation based on the intensity 

difference can not be applied. 

However, the FLIR imagery is obtained from above cloud which has its o\vn 

movement that is different from the background movement. By searching for the 

movement of clouds, its position can be determined. A common means of 

determining object movement is the optical flow technique. Optical flow is the 

distribution of apparent velocities of the movement of features (intensity 

distributions) in an image (Hom and Schunk, 1981). Optical flow takes into account 

the relative motion of the viewer and objects in the field of view, and segmentation 

can be achieved because different regions of the same object should have consistent 

flow vectors. By considering the differences in optical flow vectors different regions 

can be segmented. 

The algorithms used for extracting the optical flow vectors can be classified into 

gradient-based and feature-based methods. Gradient-based method is adopted here 

which is based on the same reason for image registration method. Gradient-based 

techniques rely on the spatial-temporal differential equation describing the motion 

(Kearney et aI., 1987). This can be described mathematically by considering two 

grey level images of an object, l(x + d'(, y + dy, t + dt) = lex, y, t). The optical flow 

brightness constraint equation is as: 
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I::> I::> 

where 
dx dy 

u =- and v=-. 
dt dt 

a1 a1 81 
-u+-v+- = o ax ay at (5- 1) 

For each pixel, a velocity vector indicates the speed of the pixel moving across the 

image and the direction of its motion. In this research, a block matching algorithm 

has been employed to obtain the optical flow vector. The image with cloud is di\1ded 

into overlapping square patches, each approximately 32 X 32 pixels in size. The 

reason that each block is overlaid with its neighboring blocks is to make the most of 

the information in the image. The blocks are registered using the Fourier reg istration 

technique described in Chapter 4; the grid of points produces an optical flow field . 

The optical flow-fields for a cloud covered image are shown in Figure 5.2. 

Figure 5.2 Optical flow image 

The Fourier registration method registers each block with the correspo nding bloc k 

from the previous frame . Registration provides the shi ft information in x and y 

directions for each block in each of the images. This allows the ve loc it y 0 f ea h pi. eI 

to be estimated based on the sequential shifts of the surrounding block . The ero --

power spectrum of the Fourier transform can be used to indicate the degr e of the 

reoistration between blocks in adjacent images . For the fully clouded part and the 
I::> 
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background, there is no difference in registration - one will provide registration 

based on the cloud structures (if there are any) and one will register the ground 

features - however the phase correlation from the semi-transparent part will be 

suppressed by the cloud. 

By drawing the correlation image - a plot of the phase correlation value for each 

block - the semi-transparent part can be selected by thresholding the phase 

correlation values. From Figure 5.3, it can be seen that the optical flow vectors 

change direction around the edge of the cloud. At the interface between the two flow 

fields, the flow vectors change because of the different flow fields for the clouds and 

the ground. The lower peak correlation values in this region correspond to the fact 

that the semi-transparent regions contain multiple flow fields and the correlation for 

each is suppressed because of the presence of the other. The area, corresponding to 

the lower correlation value which indicates the semi-transparent cloud area, can be 

segmented. 

As shown in the Figure 5.3, (a) and (b) are a FLIR image without cloud and with 

cloud cover. Figure 5.3 (c) shows the semi-transparent areas which displayed as red 

areas. Figure 5.3 (d), (e) and (f) are semi-transparent areas, fully clouded parts and 

without cloud region respectively. 
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(a) (b) 

(c) (d) 

( e) (f) 

Figure 5.3 Examples of a segmented image for cases with cloud cover: (a) original simulated 

FLIR image without cloud, (b) original simula ted FLIR image with cloud, (c) higWighted part 

are the semi-transparent cloud areas, (d) segmen ted semi-transparent areas, (e) segmented full~ 

clouded parts, and (1) segregated tra nspa rent/semi-transparent part of image 
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5.2.3 Super Resolution Reconstruction on FLIR Imagery 

with Clouds 

The aim of image reconstruction is to recover the desired image from the clouds and 

enhance the resolution of the image by combining sequential frames. For the semi

transparent cloud areas the background is suppressed, giving features lower relatiye 

contrast, but there is still some background information that can be extracted from 

the image. Therefore, a contrast enhancement method has been employed here to 

enhance the semi-transparent area and therefore increase the amount of information 

available. 

For the area fully covered by cloud, no background information can be extracted, so 

it is discarded. For the non-cloud background, this area is kept to be used in 

enhancing the [mal image resolution. A block diagram of proposed SR reconstruction 

algorithm is shown as Figure 5.4. 

Current Frame Reference Frame 

Fourier Registration 

Optical Flow Segmentation 

High Resolution Frame 

, I 'thm in presence of clouds 
Figure 5.4 Block diagram of proposed SR reconstruction a gon 
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5.2.3.1 Enhancement 

A contrast enhancement method has been implemented to impro\'e the \'isibility of 

partially occluded regions. Contrast stretching improves the contrast in an image by 

stretching the actual range of intensity values it contains to span a desired range of 

values. It differs from the more sophisticated histogram equalization in that it can 

only apply a linear scaling function to the image pixel values. This results in less 

harsh enhancement than histogram equalization. 

In contrast stretching, it is necessary to specify the upper and lower pixel \'alue limits 

over which the image is to be normalized. The lower value is the minimum pixel 

intensity of that image while upper value is the maximum pixel intensity. For a 

normal 8-bit grey-level image, the lower and upper limits might be 0 and 255. For 

FLIR images the range is narrower as it is fundamentally low contrast. The aim of 

the enhancement algorithm is to enhance the semi-transparent cloud area with 

contrast stretching to reduce the effect of the partial cloud. Given the lower and 

upper limits - a and b - of a normal contrast image, and the lower and upper limits - c 

and d - of a low contrast image respectively, each pixel is scaled using following 

function: 

p =(p -c -- +a {b-a) 
out In d-c 

(5-2) 

Where Pout is the output pixel value and Pin is the input pixel value. Values below 0 

are set to 0 and values above 255 are set to 255. The results of histogram 

enhancement is shown as Figure 5.5. 
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Figure 5.5 Histogram of semi-transparent areas (a) histogram fo r originaJ clea r cloud part, (b) 

histogram for original semi-transparent areas, (c) histogram for enhanced emi-tran pare nt 

areas. 
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The semi-transparent areas as shown in Figure 5 6 ( ) 
. a were enhanced by contra r 

stretching method. Figure 5. 6 (b) is the result after contrast enhancement and Figure 

5.6 (c) is the cloud part with enhanced semi-transparent areas . 

(a) (b) 

(c) 

Figure 5.6 Contrast stretching result (a) original semi-transparent areas, (b) enhanced semi-

transparent areas, (c) the cloud part with enhanced semi-transparent areas 

The super-resolution reconstruction has been applied on the background image on ly 

at present. A composite image using the background and the partially cloudy region 

can be constructed, but the added infonnation around the target doe not currently 

offer a significant improvement in resolution over such a small area . Figure 5. (b) 

shows the improvement in resolution derived from a sequenc of fi\ 'e image ' . ha\'mg 

segmented the cloudy areas using the Fourier regi tratiofl pha e c rrelation 
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techniques described above. The background images were aligned and a sequence of 

expanded image patches with small targets was generated. Then, the higher 

resolution image was produced by the efficient and robust super-resolution method 

described in Chapter 4 and shown in Figure 5.7 (b). It can be seen that the target area 

has been enhanced by the super-resolution compared with the target in original image. 

It can provide more information and higher resolution data around the target for 

further processing, such as target detection and tracking. 

128 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

(a) 

(b) 

Figure 5.7 Super resolution reconstruction result: (a) the target area in original image before 

super resolution, (b) the target ar ea after super resolution. 
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5.3 Super Resolved Mosaicing Method on FLIR 

Imagery 

To effectively detect objects in a wider area, image mosaicing and super resolution 

methods can be employed to expand the field of view of the image and enhance the 

image resolution. In this section, a complete system for super resolved mosaicing of 

a sequence ofFLIR images with some overlap between every two successive images 

will be presented. 

5.3.1 Image Mosaicing Theory 

In recent years, image mosaicing synthesis has received substantial attention in both 

research literatures as well as in the form of commercial applications. A mosaic is a 

compound image built through properly composing (aligning) a high number of 

frames and transforming them onto a common reference plane according to some 

geometric model (Azzari et aI., 2005). Mosaicing technique enables to display the 

information of multiple frames in a single panoramic image as shown in Figure 5.8. 

1 3 

2 

5 

4 

6 7 

Figure 5.8 An example of creating a mosaicing image from seven overlapping images 
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Image mosaicing technique enables the creation of larger virtual field of vie\v of 

camera preserving the original resolution and without introducing undesirable lens 

deformation. The [mal mosaicing image is often constructed from a sequence of 

many images. Similar to super resolution technique, image registration is a primary 

part of image mosaicing method and accordingly the mosaicing method can be 

categorized as feature-based methods (Niranjan et aI., 2007) and featureless methods 

by the registration method ((Gouripeddi and Alapati, 2006). As discussed in Chapter 

4, global registration method has been proposed to align image accurately. 

After registering a sequence of images, the [mal mosaicing image can be produced 

by stitching all registered images together. This involves selecting a [mal 

compositing surface (flat, cylindrical, sphericaL etc.) and view (reference image). It 

also involves selecting which pixels contribute to the [mal composite and hot to 

optimally blend these pixels to minimize the visible seams, blur and ghosting 

(Szeliski, 2006). Many factors affect the quality of image mosaics, including image 

alignment, lens distortion, pixel intensity difference among frames, and perspectives 

of each frame. There is a long history of study on how to create good quality mosaics. 

If only a few images are stitched together, a natural approach is to select one of the 

images as the reference and to then warp all of the other images into the reference 

coordinate system. The resulting composite is called a flat panorama, since the 

projection onto the [mal surface is still a perspective projection, and hence straight 

lines remain straight. In the case of short range sensors, a flat representation can not 

be maintained without excessively stretching pixels near the border of the image for 

large fields of view. In practice, flat panoramas start to look severely distorted once 

the field of view exceeds 90 0 or so. The usual choice for compositing larger 

panoramas is to use a cylindrical or spherical. However, since the FUR imagery is 

taken from a very long range, the images obtained are maintain on a flat surface. 

Therefore, a flat surface is generally selected to create a FLIR mosaicing image. 
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There are two main approaches to stitch image together in the literature, assuming 

that the images have already been aligned. Optimal seam algorithms search for a 

curve in the overlap region on which the differences between II' 12 are minimal 

(Milgram, 1975, Davis, 1998, Efros and Freeman, 2001). Then each image is copied 

to the corresponding side of the seam. In case the difference between I I on the 
I' 2 

curve is zero, no seam gradients are produced in the mosaic image I . HowewL the 

seam is visible when there is no such curve, for example, when there is a global 

intensity difference between the images. In addition, optimal seam methods are less 

appropriate when thin strips are taken from the input images, as in the case of 

manifold mosaicing (Peleg et aI., 2000). 

The other approach minimizes seam artefacts by smoothing the transition between 

images. In Feathering or alpha blending, the mosaic image I is a weighted 

combination of the input images II' 12 , The weighting coefficient (alpha mask) 

varies spatially as a function of the distance from the seam. The task of blending is to 

determine the value of a mosaic pixel based on pixels from all warped images. One 

type of image blending methods creates a mosaic image based on a weighted sum of 

warped frame pixels. The well known a blending rule is a basic method used for 

blending frames into a [mal mosaicing image, according to Equation (5-3) (Azzari et 

aI., 2005), 

B'i:.t = (1- a )Bx,I_1 + aIx,( (5-3) 

where I_represents a pixel at time t and at position x = (x,y). 1):,1 is the predicted 
x,1 

background value for that pixel and a E [0,1]. Generally, the \'alue of a is selected 

by experimental evidences. When a = 0.5 The simplest weighting function is a flat 

function that weighs all pixels equally when a = 0.5. Image blending by the flat 

weighting function could lead to visible edges or seams along image boundaries. To 
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reduce seams, a linear ramp weighting function can be used across the boundary 

region of two adjacent images. A similar technique (feathering algorithm) was 

proposed by Shum and Szeliski (1997) to reduce seams. The other blending method 

is to select the median value of the among the image sequences at each pixel. This 

type of blending algorithm requires the image alignment is accurate enough; 

otherwise it is easy to blur the [mal mosaic image. 

5.3.2 Super Resolved Mosaicing Method 

With limited optical zoom capability restricted by the system's hardware 

configuration, SR algorithms provide a pronusmg solution with no additional 

hardware requirements. Mosaicing techniques can create a panorama image from a 

sequence of high resolution images. Combining SR algorithm and mosaicing 

technique together, a super-resolved mosaicing method can be employed to generate 

a high resolution panorama image. 

There are several steps involved in super-resolved mosalcmg, such as image 

registration, super resolution and image mosaicing. Image registration aligns the 

images onto the same coordinate system and super resolution increase the resolution 

of the image. After the image has been registered and the resolution has been 

enhanced, the mosaiced image can be produced. The proposed super-resolved image 

mosaicing algorithm described here both builds a panoramic image and upgrades the 

image resolution. 

5.3.3 Super Resolved Mosaicing Experiments 

It has been shown in Chapter 4 that the globally consistent registration works well on 

FLIR imagery sequences. For the clear FLIR imagery, the images can be stitching 

together without considering cloud occlusions. However, when the FUR imagery is 
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covered by the cloud and the cloud cover is shifted for different frame. They have to 

be considered differently from the image without cloud cover. The proposed super 

resolved mosaicing method has been tested on both FLIR images \vithout cloud and 

with cloud. 

5.3.3.1 Super Resolved Mosaicing on Images without Cloud 

To test mosaicing method on image without cloud cover, there are two sets of FLIR 

imagery each contained 20 frames have been used. One set is the FLIR imagery with 

only translational movement and the other is with both translational and rotational 

movement. 

The results of super resolved mosaicing images from two sets of FUR imagery are 

displayed as Figure 5.9. Figure 5.9 (a) is high resolution mosaiced image from 20 

low resolution FLIR images without cloud and only with translational movement. 

Figure 5.9 (b) is the high resolution mosaiced image from 20 low resolution FUR 

images without cloud and with translational and rotational movement. 

Both results have shown that the super resolved mosaicing method has successfully 

increased the image resolution and enlarge the field of view of the original low 

resolution images. 
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(a) 

(b) 

Figure 5.9 (a) Super resolved mosaicing result of 20 low resolution FUR images wi thout cloud 

(without rota tion), (b) Super resolved mosaicing result of 20 LR FUR image without cloud 

(with rotate a ngle 2 degree for each frames) 
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5.3.3.2 Super Resolved Mosaicing on Images with Cloud 

As shown in Figure 5.10, the clouds are scattered over the images and moved in each 

frame in the sequence. In order to test super resolved mosaicing method on FUR 

imagery with cloud, there are two ways can be applied. As proposed in Chapter 4, 

super resolved method has been applied only on the segmented clear part of FUR 

imagery. It is applicable on a short sequence of image when all segmented clear 

frame have large enough overlapped area to register. However, when dealing with a 

large amount of frames, it is difficult to register all the segmented frames. Therefore, 

it has been considered to apply the super resolved mosaicing method directly on the 

translated and rotated low resolution FLIR imagery with cloud. 

The results of super resolved mosaicing images from two sets of FLIR imagery are 

displayed as Figure 5.9. Figure 5.9 (a) is high resolution mosaiced image from 20 

low resolution FLIR images without cloud and only with translational movement. 

Figure 5.9 (b) is the high resolution mosaiced image from 20 low resolution FUR 

images without cloud and with translational and rotational movement. 

As show in Figure 5.10, the result indicates that the proposed super resolved 

mosaicing method can successfully generate the super-resolved mosaiced image in 

the presence of the cloud cover. This method is robust to the cloud cover and can 

effectively remove most of the cloud cover from the image. 
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(a) 

(b) 

Figure 5.10 (a)An example of the frames in the low resolution image equence "ith cloud, (b) 

the mosaicing results from a sequence of FUR images \\ith cloud (Rotate angle 2 deg) 
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5.4 Summary 

This chapter has described the development of a combined super resolution and 

mosaicing method which builds upon the techniques discussed in Chapter 4. It has 

been designed specifically for use on noisy and low contrast FLIR imagery. 

The proposed super resolved mosaicing method has the novelty of adapting a 

combination of techniques more commonly used on visible band imagery for use in 

FLIR. Super resolution allows the assessment of a specific area by increasing image 

resolution, whereas mosaicing is used to develop situational awareness at a less 

specific level. By forming a high resolution image using super resolution in the first 

instance, image mosaicing is more effective in allowing a more accurate situational 

awareness. 

Images with and without cloud cover have been considered. Images with could 

cover are more complex to process due to the requirement to consider the movement 

and occlusion caused by the cloud. Two methods to overcome these challenges have 

been investigated. A segmentation method based on optical flow has been proposed, 

with the intention of segmenting the cloud by using its movement, whilst leaving the 

transparent and semi-transparent areas to allow further processing. The second 

technique involved applying the super resolved mosaicing method directly to images 

with cloud cover and was found to have a smoothing effect over the frames. 

Overall, it has been shown that super resolved mosaicing can be applied to images 

with and without cloud cover, to enhance resolution in the first instance, which then 

improves situational awareness following image mosaicing. 
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Chapter 6 Review of 
Object Detection 
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6.1 Introduction 

Object detection has played a crucial role in computer vision in the past decades. The 

goal of object detection is to determine the regions that are highly likely to contain 

objects of interest. Given an object class of interest T (the target) and an image J, 

object detection is the process of detecting and locating the occurrences of T in J 

(Zhang et aI., 2005). The most common approach for object detection is to use the 

information in a single frame. On the other hand, some object detection methods 

make use of the temporal information computed from a sequence of frames to reduce 

the number of false detections (Alper et aI., 2006). This temporal information is 

usually in the form of frame differencing, which highlights changing regions in 

consecutive frames. 

For FLIR imagery, the target is normally buried in the noise or cluttered background. 

Many approaches have been proposed for object detection in cluttered images. These 

algorithms can generally be categorized into two classes: global appearance-based 

approaches and component-based approaches. Global appearance-based approaches 

take an object as a unit and perform classification on features generated from the 

entire object (Zhang et aI., 2005). Component-based methods treat an object as a 

collection of parts. These methods first extract some object components, and then 

detect objects by using geometric information (Zhang et aI., 2005). As the objects to 

be detected are small in size, possibly smaller than the noise that is presented in the 

imagery, there are several global-based methods can be used for this problem. 

6.2 Reviews of Detection Algorithms 

The term object detection here refers to the detection of small objects in large images. 

This could include both object classification and object localisation. Object 

classification refers to the task of discriminating between images of different kinds of 
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objects, where each image contains only one of the objects of interest. Object 

localisation refers to the task of identifying the positions of all objects of interest in 

large image. The object detection problem is crucial step for some image processing 

tasks such as automatic target recognition and automatic object recognition. In this 

part, a general literature review has been carried on image thresholding. image 

differencing and background modelling which might be used in the future project. 

6.2.1 Image Thresholding 

Object detection can be considered a segmentation process which aims to segment 

the stationary or moving object from the image. Segmentation is the process of 

separating objects from background. Therefore, image thresholding can be 

considered as a basic detection algorithm. 

In application where specify grey values of regions are not important, a picture can 

be segmented into "object" and "background" by simple choose a threshold in 

brightness. The region above the threshold is object and all below the threshold as 

background. There are several ways to choose thresholds, ranging from the trivially 

simple to the very sophisticated. As the sophistication of the technique increases, 

performance improves but at the cost of increased computational complexity. A 

single threshold is almost never appropriate for an entire scene. It is always the local 

contrast between object and background that contains the relevant information. When 

a single threshold cannot provide sufficient performance, the local thresholds have to 

be chosen. The most common approach is called block thresholding, in which the 

picture is partitioned into rectangular blocks and different thresholds are used in each 

block. Typical block size can be 32x32 or 64x64 for a S12xS12 images. The block is 

fIrst analyzed and a threshold is chosen, then that block of image can be used for 

further analysis. 
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6.2.2 Image Differencing 

Image differencing has been proposed as another efficient ways for object detection. 

It is an image processing technique that can be used to determine chanaes between c 

images. The difference between two images is calculated by fmding the difference 

between each pixel in each image, and generating an image based on the result. For 

this technique to work, the two images must fIrst be aligned so that corresponding 

points coincide, and their photometric values must be made compatible, either by 

careful calibration, or by post-processing. The complexity of the pre-processmg 

needed before differencing varies with the type of image. 

Hsieh et al. (2006) proposed a method for detection of small object with low contrast. 

As noise which means dead and saturated pixels presented in small objects images 

usually drastically affects the detection performance because it is difficult to 

distinguish noise from small object, they proposed a novel noise removal technique 

(Hsieh et al., 2006). According to their method, the difference image of the two 

images hand h+l is defmed as 

(6-1) 

An optimal threshold value can be determined to discriminate the background clutter 

from foreground objects by assuming that noise pixels possess relatively low 

difference values, and the noise is assumed to be randomly distributed in the 

background and statistically independent. So it can be defmed that 

f(x,y) = s(x,y)+ n(x,y) (6-2) 

where f(x,y) is the observed value in a 2-D image, s(x,y) is the real signal, and 
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n(x, y) is the noise signal. Mostly, noise can be assumed to be zero-mean Gaussian 

distribution with variance (J2 • As the noise pixels in two contiguous images f and 

h+1 are both captured from a video camera, there are two properties of the noise can 

be obtained: the number of noise pixels must be larger than that of targets and the 

noise should be much more scattered than the objects. The noise model for images 

It and It+1 is assumed to be a Gaussian distribution, characterized by two 

independent random variables XI and X 2' Finally, Hsieh et a1. got the conclusion 

that the number of non-zero neighbours surrounding a specific pixel (x,.-v) is attained 

via the following equation: 

(6-3) 

where N is the neighbourhood of pixel (x, y). 
x,Y 

N ext, the function that counts the pixel number having the same number of 

neighbours is defmed as 

M(s,t) = I{(x,y~(x,y) E D,S(x,y) = s,d(x,y) = t] (6-4) 

and s is the number of non-zero neighbours of the pixel, D is the difference image. 

So a histogram can be obtained according to the following formula: 

k 

H(t)= LM(s,t), t = L 2, 3, .... 
(6-5) 

s=O 

number of noise neighbours. The threshold \'alue T in 
where k is the maximal 

determining noise and non-noise pixels is set up to be the argument corresponding to 
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the maximum absolute value in a differentiating histogram H{t). The following 

formula summarizes the procedure: 

T = arg(max aH(t )J 
t>O at (6-6) 

This image differencing algorithm can get good results on the difference image with 

noise. But in some cases if the contrast of the objects is too low. the objects' contours 

may not be successfully extracted. 

6.2.3 Background Modelling 

Object detection can be achieved by building a representation of the scene called the 

background model and then fmding deviations from the model for each incoming 

frame (Alper et aI., 2006). The process sometimes is referred to as background 

subtraction. Background subtraction is widely used as a basis of motion detection 

from image sequences. In traditional background detection algorithms, the pixel 

values of the current frame are compared with the corresponding pixel values of the 

fIxed reference background image (Ji et aI., 2006). With this approach it is possible 

to detect new objects in the scene even if they suddenly stop moving and detect 

objects removed from the scene. A simple background model usually assumes that 

the background pixels are static over time. The foreground objects can then be 

obtained by subtracting the current frame from the background image. It is simple, 

but extremely sensitive to changes in dynamic scenes derived from lighting and 

extraneous events etc. Therefore, it is highly dependent on a good background mode I 

to reduce the influence of these changes, as part of environmental modelling (Hu et 

ai., 2004). 

Many works have been proposed in the literature as a solution to an efficient and 
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reliable background subtraction. As far as back 1970s Wren et a1. (1997) modelled 

the colour of each pixel, J(x, y), with a single 3D (Y, U, and V colour space) 

Gaussian, 

J(x,y)~ N(u(x,y),~(x,y)) (6-7) 

The model parameters, the mean ,u(x, y) and the covariance ~ Cr, y), were learned 

from colour observations in consecutive frames. Once the background is derived for 

every pixel (x, y) in the input frame, the likelihood of its colour coming from 

N(,u(x, y), ~(x, y)) is computed, and the pixels that deviate from the background 

model are labelled as the foreground pixels. This work by Wren et al is one of the 

earliest works related to background modelling. Mittal and Huttenlocher (2000) have 

created a model of the wide field of view that can be used to distinguish between the 

static background and the moving objects, or foreground. They modelled the scene 

using a mixture model for each of the pixel locations in the mosaic. The probability 

of a pixel belonging to a particular Gaussian is proportional to the weight ascribed to 

that Gaussian. The probability of a pixel having an intensity value x which belongs to 

a particular Gaussian j can be simplified as 

K 

p(X = x) = LOJ jp(X = xiJ = j) (6-8) 
j=! 

This scheme is useful in modeling multi-modal backgrounds and scene changes as 

well as modelling transient moving objects. Cho and Kim (:W05) proposed a 

statistical background mosaic model have some advantages especially in the case of 

surveillance systems in which the camera moves with a regular pattern. To reduce 

accumulated errors, they estimated the global motion (GM) between the current 

image and the estimated background mosaic which contain no objects instead of the 
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previous image. After GM compensation, they assume a generally spatio-temporal 

statistics of the background model 

(6-9) 

[X(x,y,t)- m(x,y,t -1)] - N(O,~J) (6-10) 

where X(x,y,t) is the extracted feature from the current image which uses the 

intensity and gradient at the same time. The disadvantage of this algorithm is that 

misdetection errors may be accumulated and propagated through the whole sequence 

as the background mosaic is updated after each one detection cycle. As the nonnal 

background subtraction is extremely sensitive to illuminations changes, EI Maadi and 

Maldague (2007) proposed a novel dynamic background subtraction technique which 

takes into account variations in speed of scene illumination. They combined edge 

detection with a binary foreground image computed with a dynamic threshold which 

led an improved segmentation quality with higher robustness. Their approach is 

based on an effective background subtraction method: the current frame is subtracted 

from the scene's estimated background image and the result is thresholded providing 

foreground objects: 

IFrame i (x, y) - Bg(x, y ~ > Th (6-11 ) 

where Frame
i 
(x, y) is the current frame at time i, Bg i (x, y) is the estimated 

background images at the same time i, and Th is the threshold value which is applied 

to generate a binary image of the objects of interest. They use a temporal low-pass 

filter to update the estimated background image as: 
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(6-12) 

where a is a learning rate set by the user. With a constant value ofa the gradual , ..... 

illumination changes can be taken into account but it fails when subject to suddenly 

quick and strong variations in illumination. To overcome these problems, they use an 

adaptive gain-threshold based upon the illumination history which can control and 

adjust the gain-threshold combination dynamically according to the speed of the 

illumination change. 

In summary, there are many new algorithms related to object detection have been 

proposed in the last six years, image differencing, background modelling are among 

the most popular methods. Although most state-of-the-art objects detection methods 

for fIxed cameras use background subtraction methods to detect regions of interest, 

they can provide a good starting point for a moving camera scene. There are 

gradually more and more new algorithms dealing with moving cameras and 

illumination changes are developed which can be applied in the future project. 
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Chapter 7 Conclusions 
and Future Work 

148 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

7.1 Thesis Summary 

The work presented in this thesis has been concerned with enhancing FLIR image 

quality so as to improve object identification and detection accuracy. This has 

applications in several different fields, particularly in the military environment. 

FLIR images are low contrast and suffer from high noise levels, which presents 

challenges for small object detection and identification. These issues stem from the 

inherent limitations of the FLIR system and so image processing is the main means 

of improving image quality. 

Previous work has considered the super resolution method to be an effective means 

of increasing the resolution of low resolution images. However, a robust and fast 

method is required for use on FLIR imagery. In Chapter 4, a sub-pixel image 

registration method was proposed. This sub-pixel registration method is a 

combination of the Fourier registration and cross correlation methods enabling sub-

pixel accuracy whilst being computationally efficient. Accurate sub-pixel image 

registration then allowed super resolution to be applied more effectively to 

reconstruct a high resolution image from the sequence ofFLIR images. 

The image mosaicing method is widely used to expand the field of view from a 

sequence of images allowing more objects to be detected in a single process. The 

FLIR super-resolved mosaicing method developed in this thesis can not only expand 

the field of view but also increase the resolution of images. This method has been 

designed to be especially suitable for FLIR imagery and is robust to outliers and so 

can improve the quality of the image and therefore improve detection performance. 
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7.2 Directions for Future Work 

In this thesis , investigations have been carried out on four research area lffiage 

registration, super resolution, mosaicing and object detection algorithms. 

Compared to conventional image detection algorithms, the key point in thi the i' 

was to enhance image quality so as to improve the performance of subsequent 

detection algorithms . A system, summarised in Figure 7.1 , has been des igned in 

previous chapters to increase the resolution and expand the field of view of FUR 

images. In future work, different detection algorithms could be app lied so as to 

evaluate the ability of this research to improve automatic detection function . 

FUR Camera Image Sequences Image Registration 

Super resolved mosaicing Projection 

Figure 7.1 A system for improving the performance of detection algorithms 

This thesis focused on the detection of static objects. This system could be expanded 

for moving object detection. An issue that arises in scenes with moving object i that 

since the moving object translates with respect to the background, a mo aic 

. . h . m' the sequence is not possible. Standard compo ' iting 
consIstent WIt every unage 

d bl ed ima ge in mO\'ing 
techniques blend all availab le information and pro uce a Uff.... ~ 
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regions. Although a theoretically correct mosaic is not possible when objects in the 

scene are moving, a typical user is only interested in a plausible reconstruction. 

Further investigation could be carried out on the errors in motion estimation so as to 

improve accuracy and reliability. Estimation of image transformation parameters can 

be biased by moving objects because moving objects in the image indicate a 

transformation different than the transformation due to the camera movement. 

151 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

REFERENCES 

ABIDI B. R., ARAGAM N. R., YAO Y., ABIDI M. A., 2008, Survey and Analysis of 

Multimodal Sensor Planning and Integration for Wide Area Surveillance ACM , 

Comput. Surv., Vol. 41, No. 1., pp. 1-36. 

Abraham B. N., Arecchi T. F., Lugiato A. L., 1988, Instabilities and chaos ill 

quantum optics II, North Atlantic Treaty Organization. Physics, Vol. 177. 

Abramowitz, M. and Stegun, I. A., 1972, Interpolation. §25.2 in Handbook of 

Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th 

printing. New York: Dover, pp. 878-882. 

Anon., 2002, AN03: Guide to image quality and pixel correction methods, Rad-icon 

Imaging Corp, pp 1-4. 

(http://www.rad-icon.comJpdf/Radicon AN03.pdf#search=%22AN03%22) 

Adiv 0., 1985, Determining three-dimensional motion and structure from optical 

flow generated by sever! moving objects, IEEE Trans Pattern Anal Mach Intell 

7(4):384-400. 

Alam M.S., Bognar J.G, Hardie R.C., and Yasuda BJ., 2000, Infrared image 

registration and high-resolution reconstruction using multiple translationally shifted 

aliased video frames, IEEE Trans. Instrum. Meas., vol. 49, pp. 915-923. 

Alper Y., Omar 1., Mubarak S., 2006, Object tracking: A survey, ACM Computing 

Surveys, vol. 38(4). 

Anuta PF., 1969, Digital registration of multispectral "ideo imagery, Soc. Photo-

152 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Optical Instrum. Engs. Journal, vol. 7, pp. 168-175. 

Arikell, G., 1985, Development of the Fourier Integral, Fourier Transforms-

Inversion Theorem and Fourier Transform of Derivatives, § 15.~-15.'+ in 

Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press. pp. 79'+-

810. 

Argyriou, v., Vlachos, T., 2004, Using gradient correlation for sub-pixel motion 

estimation of video sequences, IEEE International Conference on Acoustics, Speech, 

and Signal Processing Proceedings. vol.3, pp. iii - 329-332. 

Azzari, P., Di Stefano, L., Bevilacqua, A., 2005, An effective real-time mosaicing 

algorithm apt to detect motion through background subtraction using a PTZ camera, 

IEEE Conference on Advanced Video and Signal Based Surveillance, 2005, pp. 511 

- 516. 

Barnea D. I., Silverman H. F, 1972, A class of algorithms for fast digital image 

registration, IEEE transactions on computers, vol. c-21, NO.2, pp. 179-186. 

Bates IR. and Gregory W. D., 2000, Voice & data communications handbook, 

McGraw-Hill Osborne Media.; 3 Sub edition, pp. 170-171 

Bevilacqua A. and Azzari P., 2007, A Fast and Reliable Image Mosaicing Technique 

with Application to Wide Area Motion Detection, Image Analysis and Recognition, 

Lecture Notes in Computer Science, Volume 463312007, pp. 501-512. 

B 'l d GA T b' A Monn' F 2011 Visible and infrared image registration 
10 eau, . ., ora 1,., " , 

. . ~ d' a s Image & Vision Computing. \'01. using trajectones and compOSIte loregroun Iffiaoe, 

29, Issue 1, pp.41-50. 

153 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Borman S., Stevenson R., 1998, Spatial Resolution Enhancement of Low-Resolution 

Image Sequences A Comprehensive Review with Directions for Future Research, 

Brown L. G., 1992, A survey of image registration techniques, ACM computing 

surveys (CSUR), vol. 24, Issue4, pp. 325-376. 

Bulanon, D.M., Burks, T.F., Alchanatis, v., 2009, Image fusion of visible and thermal 

images for fruit detection, Biosystems Engineering, Vol. 103, Issue 1, pp.12-22. 

Bums N. R., Butavicius M., Sunde J., Hanton K., 2010, Super-resolution of Infrared 

Images: Does it Improve Operator Object Detection Performance?, Journal of 

Computing & Information Technology 

Calafiore 0. C., 2000, Outliers robustness in multivariate orthogonal regression, 

IEEE Trans. Syst., Man. Cybern., vol. 30, no. 6, pp. 674-679. 

Capel D. and Zissserman A., 1998, Automated mosaicing with super-resolution zoom. 

In proceedings of the conference on computer vision and pattern recognition, Santa 

Barbara, pp. 885-891. 

Castleman K.R., 1996, Digital Image Processing, Prentice-HalL Englewood Cliffs, 

NJ, pp 161-163, 187-188,200. 

Chalermwat P., 1999, High performance automatic image registration for remote 

sensing, Thesis, George Mason University. 

Cho J. H., Kim S. D., 2005, Object detection using multi-resolution mosaic in image 

sequences, Signal Processing: Image Communication, v 20, n 3, pp. 233-253. 

Chaudhuri S., 2002, Super-Resolution Imaging, Springer US, Electronic resource. 

154 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Heidelberg: Springer-Verlag GmbH, pp.73-105. 

Chen H., Varshney P. K., and Arora M. K., 2003, Performance of mutual information 

similarity measure for registration of multitemporal remote sensing images, IEEE 

Trans. Geosci. Remote Sens., vol. 41, no. 11, pp. 2445-2454. 

Chui C. K., 1987, Wavelets: A Mathematical Tool for Signal Analysis, Society for 

Industrial & Applied Mathematics, U.S., pp. 179-180. 

Cole-Rhodes, A.A., Johnson, K.L., LeMoigne and J., Zavorin, I., 2003, 

Multiresolution registration of remote sensing imagery by optimization of mutual 

information using a stochastic gradient, Image Processing, IEEE Transactions on 

Image Processing, Vol. 12, No. 12, pp. 1495 - 1511. 

Dani P. and Chaudhuri S., 1995, Automated assembling of images: Image montage 

preparation, Pattern Recognition 28, pp. 431-445. 

De Castro E. and Morandi C., 1987, Registration of translated and rotated images 

using fmite Fourier transforms, IEEE Transactions on Pattern Analysis and Machine 

Intelligence archive, Vol. 9, Issue 5, pp. 700-703. 

Debella-Gilolow M., and K~Uiba A., 2011, Sub-pixel precision image matching for 

measuring surface displacements on mass movements using normalized cross

correlation, Remote Sensing of Environment, Vol. 115, Issue 1, pp. 130-142 

Driggers R. G., Richard H. v., 2000, Analysis of Sampled Imaging Systems, SPIE 

Press, ppI48-149. 

Driggers R., Sept 2003, Encyclopedia of Optical Engineering: Vol 2, Taylor <.\: 

Francis Inc, pp 1466. 

155 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Dvornichenko VN., Bounds on (Deterministic) correlation function with application 

to registration, IEEE trans. Pattern Anal. Machine Intell., vo1.5, no.2, pp. 206-213, 

1983. 

El Maadi A., Maldague X., 2007, Outdoor infrared video surveillance: A novel 

dynamic technique for the subtraction of a changing background of IR images. 

Infrared Physics and Technology, vol. 49, n 3, SPEC. ISS., pp. 261-265. 

Elad M. and Feuer A., 1997, Restoration of a single superresolution image from 

several blurred, noisy, and undersampled measured images,IEEE Trans. Image 

Processing, vol. 6 , no. 12, pp. 1646-1658. 

Farsiu S., Robinson D., Elad M. , and Milanfar P., 2004, Advances and challenges in 

super resolution, the International Journal ofImaging Systems and Technology. 

Fisher R. B., Dawson-Howe K., Fitzgibbon A., Robertson c., Trucco E., Dictionary 

of computer vision and image processing, John Wiley & Sona, Ltd, pp58. 

Fonseca L.M.G., Manjunath B.S., 1996, Registration techniques for multisensory 

remotely sensed imagery, Photogrammetric Engineering and remote sensing 62, pp. 

1049-1056. 

Foroosh H. and Hoge W. S., 2003, Motion information in the phase domain, in Video 

registration, M. Shah and Kumar R. (EDs), Kluwer Academic publishers, Boston. 

MA36-71. 

Galileo S., 2007, Long wave 2D MeT Detectors: An overview of LW detector 

techno 10 gies, pp 1-4. 

156 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Gao, Z., Gu, B., Lin, J., 2008, Monomodal image registration using mutual 

information based methods, Image and Vision Computing; vol. 26 (2), pp.164-173 

Gonzalez R. C., Woods R. E., 2006, Digital Image Processing (3rd Edition), 

Prentice-Hall, Inc. Upper Saddle River, NJ, USA. 

Goshtasby, A., Stockman, G. c., Page, C. V, 1986, A region-based approach to 

digital image registration with subpixel accuracy, IEEE Transactions on Geoscience 

and Remote Sensing, vol. GE-24, 1986, pp. 390-399. 

Goshtasby A., 1995, Egde detection by curve fitting, Image and Vision Computing, 

Vol. 13(3), pp. 169-177. 

Goshtasby A., 2005, 2-D and 3-D image registration for medical, remote sensing, and 

industrial applications, Hoboken, NJ : J. Wiley & Sons. 

Gouripeddi P. R., Alapati M., 2006, A Novel Still Image Mosaicing System Using 

Featureless Registration, Binary Check Stitching and Minimal Blending, Image 

processmg, computer VISIon and pattern recognition, IPCV'06, CISST 

INTERNATIONAL CONFERENCE, pp. 1:223-229. 

Gross H., Zligge H., Peschka M., and Blechinger F .. 2007, Handbook of Optical 

Systems: Aberration Theory and Correction of Optical Systems vol. 3. 

Halliday D. and Rensnick R., Physics, 1978, 3
rd 

edn (new york: Wiley), pp.1035. 

Haralick R. and Shapiro L., 1993, Computer and Robot Vision, Addison-\\'esley. 

Reading, MA. 

~ II 

H 
. C J St h M 1988 A combined comer and edge detector. In: Proc. -l 

arrIS, .. , ep ens,., , 

157 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Alvey Vision Conferences, pp. 147-151. 

Henini M., Razeghi M., Manijeh M. R., 2002, Handbook of Infra-red Detection 

Technologies, Elsevier Science & Technology, pp38-39. 

Hsieh EY., Han C.C., Wu N.S., Chuang T.e., Fan K.e., 2006, A novel approach to 

the detection of small objects with low contrast, Signal Processing. v 86(1), pp71-83. 

Holst G. C. and Lomheim T. S., 2007, CMOS/CCD Sensors and Camera Systems. 

Winter Park, FL. and Bellingham, WA: JCD Publishing and SPIE Optical 

Engineering Press, pp 191. 

Hom B. and Schunk B., 1981, Determing Optical Flow, Artificial Intelligence 17(1-

3), pp.185-203. 

Hough P. v. C., 1962 Method and means for recognizing complex patterns, U.S. 

Patent 3, 069,654. 

Howe D. J., 1993, The Infrared and Electro-Optical Systems Handbook, 

Environmental Research Institute of Michigan and The Society of Photo-Optical 

Instrumentation Engineers, Volume 4, page 92. 

Hrka'c T., Kalafati'c Z., and KrapacJ, 2007. Infrared-Visual Image Registration 

Based on Comers and Hausdorff Distance, Proceeding SCIA'07 Proceedings 0 f the 

15th Scandinavian conference on Image analysis. 

Hu W., Tan T., Wang L., Maybank S., 2004, A survey on visual surveillance of object 

motion and behaviors, IEEE Transactions on Systems, Man and Cybernetics Part C: 

Applications and Reviews, v 34( 3), pp. 334-352. 

158 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Huang T. S. and Tsay R. Y, 1984, Multiple frame image restoration and registration, 

in Advances in Computer Vision and Image Processing, vol. 1, T. S. Huang, Ed. 

Greenwich, CT: JA!, pp. 317-339. 

Huber P. J., 1981, Robust Statistics. New York: Wiley. 

Ibarra-Castanedo C., 2005, Quantitative subsurface defect evaluation by pulsed 

phase thermography: depth retrieval with the phase, Ph. D. thesis, Laval University, 

pp. 128. 

Available at : http://www.theses.ulaval.ca/200S/23016/23016.pdf 

[Accessed 2 December 2009]. 

Irani M., Anadan P., 1998, A unified approach to moving object detection in 2D and 

3D scenes. IEEE Trans Pattern Anal Mach Inte1l20(6):577-580. 

Itakura Y, Tsutsumi S., Takagi T., 1974, Statistical Properties of the Background 

Noise for the Atmospheric Windows in the Intermediate Infrared Region, Infrared 

Physics, Vol. 14, ppI7-29. 

Jahne B., 1997, Digital image processmg: concepts, algorithms and scientific 

application, 4th edition, Springer. 

Ji X.P., Wei Z., Feng Y, 2006, Effective vehicle detection technique for traffic 

surveillance systems, Journal of Visual Communication and Image Representation, 

vol. 17(3), June, Real-Time Imaging, pp. 647-658. 

Kearney J.K., Thompson W.B., Boley D.L., 1987, Optical flow estimation: an error 

analysis of gradient based methods with local optimization, IEEE Trans. On Pattern 

Analysis and Machine Intelligence, vol.9, No.2, pp. 229-244. 

159 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Keller, Y., Averbuch, A., Israeli, M., 2005, Pseudopolar-based estimation of larue e 

translations, rotations, and scalings in images, IEEE Transactions on Image 

Processing, Vol. 14 (1), pp. 12-22. 

Kenney, J. F. and Keeping, E. S, 1962, The Standard Deviation and Calculation of 

the Standard Deviation, §6.5-6.6 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, 

NJ: Van Nostrand, pp. 77-80. 

Kim B. K., Kim S. J., Choi S. J., 2008, Fourier Based Image Registration for Sub

Pixel Using Pyramid Edge Detection and Line Fitting, Intelligent Networks and 

Intelligent Systems, International Workshop, pp. 535-538. 

Kirill I. K., 1969, Radiation in the atmosphere, International geophysics senes, 

Academic Press, Vol. 12, pp. 189. 

Klein S., Pluim J. P. W., Staring M., Viergever M. A., 2009, Adaptive Stochastic 

Gradient Descent Optimisation for Image Registration, International Journal of 

Computer Vision, Vol. 81, Issue 3, pp. 227-239. 

Kopp C., n.d., Thermal imaging sensors, Defence Today NCW 101 Series Articles 

part 6, pp. 53. 

Available at: www.ausairpower.netINCW-lOl-6.pdf 

[Accessed 5 September 2009]. 

Krapels K., Driggers R. G., Murrill S., Schuler J., Thielke M., and Young S. S., 2004. 

Superresolution performance for undersampled imagers,in Defense and Securit y 

Symposium (Formerly Aero Sense) , Proc. SPIE 5407, pp.139-149. 

Le Moigne J., Campbell W.J., Cromp R.F., 2002, An automated parallel image 

registration technique based 0 the correlation of ,,"ayelet features. Geoscience and 

160 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Remote Sensing, IEEE Transactions, Vol. 40, No.8, pp. 1849 -1864. 

Leachtenauer J. C., Driggers R. G., 2001, Surveillance and reconnaissance imaoino e e 

systems: modeling and performance Prediction, pp. 163-164. 

Lee J.R., Kim Y.S., Lee D., Kang D., and Ra lB., 2010, Robust CCD and IR image 

registration using gradient-based statistical information, IEEE signal processing 

letters, Vol. 17, No.4, pp. 347-350. 

Leese J. A., Novak S. G., Clark B. B., 1971, An automatic technique for obtaining 

cloud motion from geosynchronous satellite data using cross correlation. A. Applied 

Meteorology, Vol. 10, pp. 110-132. 

Lehmann T. M., Gonner c., Spitzer K., 1999, Survey: interpolation methods in 

medical image processing, IEEE Transactions on Medical Imaging 18, pp.l 049-1 075. 

Lewis l P., 1995, Fast Template Matching, Vision Interface 95 Canadian Image 

Processing and Pattern Recognition Society, pp. 120-123. 

Li Q., Sata 1. and Murakami Y., 2007, Efficient stochastic gradient search for 

automatic image registration, Int J simul model 6(2), pp.114-123. 

Li S.S., Liu R. C. and Tidron M. Z., 1998, Long Wavelength Infrared Detectors and 

Arrays, Physics and Applications, Boston, Mass, pp. 1-11. 

Liu R., 2009, Eigentargets versus kernel eigentargets: detection of infrared point 

targets using linear and nonlinear subspace algorithms, Springer Science + Business 

Media, Journal of Infrared, Millimeter and Terahertz Waves, Vol. 30, No.3, pp 278-

293. 

Lloyd l M., 1975, Thermal Imaging Systems, Springer, 1st edition, pp.166-183. 

161 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Lucas B. D., Kanade T., 1981, An Iterative Image Registration Technique with an 

Application to Stereo Vision, proceedings of imaging understanding workshop, pp. 

121-130. 

Maes F., Collignon A., Vandermeulen D., Marchal G., and Suetens P., 1997. 

Multimodality image registration by maximization of mutual information, IEEE 

Trans. Med. Imag., vol. 16. 

Maintz J. B. A. and Viergever A. M., 1998, A Survey of Medical Image Registration, 

Medicallmage Analysis, Vol. 2, pp. 1-37. 

Manduchi R. and Mian G. A., 1993, Accuracy Analysis for Correlation-Based Image 

Registration Algorithms, Circuits and Systems, , ISCAS '93, 1993 IEEE International 

Symposium, vol.1, pp. 834 - 837. 

Mather P. M., 2004, Computer processing of remotely sensed images: an introduction 

(3rd edition), John Wiley & Sons, pp9-10. 

Maurer T., Wilson D.L., Smith S.R., Deaver D.M., Flug E.A., and Nguyen O.T., 

2009, Search and detection comparing midwave and longwave infrared, Optical 

Engineering,vol. 48(11), SPIE, 116401. 

McAndrew A., 2004, Introduction to digital image processing with matlab, Course 

Technology, pp 143-183. 

M C H S tt D M 2
005 Process imaging for automatic control, CRC Press, 1 

c ann ., co ." , 

edition, pp.47. 

G
. M 1998, An image registration technique for recovering rotation, scale 

Mc urre ., 
162 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

and translation parameters, NEC Tech. Report. 

-Mikolajczyk K., Schmid C., 2004, Scale & Affme Invariant Interest Point Detectors , 
International Journal of Computer Vision 60( 1), pp. 63-86 

Miller J. L., 1994, Principles of Infrared Technology: a practical guide to the state of 

the art, New York: Van Nostrand Reinhold. 

Mittal A., Huttenlocher D., 2000, Scene modeling for wide area surveillance and 

image synthesis, Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition, v 2, pp. 160-167. 

Modersitzki J., 2004, Numerical methods for image registration, Oxford: Oxford 

University Press. 

Mooney J.M., Shepherd F.D., 1996, Characterizing IR FPA nonuniformity and IR 

camera spatial noise, Infrared Physics and Technology 37, pp 595-606. 

Niranjan, S. Gupta, G Mukerjee, A. Gupta, S., 2007, Efficient Registration of Aerial 

Image Sequences Without Camera Priors, Computer Vision - ACCV 2007, 

Volume 484412007, Springer Berlin I Heidelberg, pages 394-403. 

Pan W., Qin K., and Chen Y, 2009, An Adaptable-Multilayer Fractional Fourier 

Transform Approach for Image Registration, IEEE Trans. Pattern Analysis and 

Machine Intelligence, vol. 31, no. 3, pp. 400-413. 

Pan Z. and Atungulu G. G., 2011, Basic Laws of Radiative Heat Transfer, Infrared 

Heating For Food and Agriculture Processing, Available at: 

http://www.ceramicx.comlenlinfrared-heat. 

163 



Super Resolved Mosaicing in Fonvard Looking Infrared Imagery 

Park C. S. Park K. M Kang G M 2003 S l" , ., ", ,uper-reso utlOn unage reconstruction: a 

technical overview, Signal Processing Magazine IEEE Vol 20(3) ')1- 36 ' ,. . pp. - . 

Parker lA., Kenyon R.Y., Troxel D.E., 1983, Comparision of interpolating methods 

for image resampling, IEEE Trans. Med. Imag., vol. 2, no.l, pp. 31-39. 

Peleg S., 1981, Elimination of seams from photomosaics, Proc. Conf. Pattern 

Recognition and Image Processing, pp. 426-429. 

Peleg S., Rousso B., Rav-Acha A., and Zomet A., 2000, Mosaicing on adaptive 

manifolds. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(10):1144-

1154. 

Pratt W. K., 1974, Correlation Techniques of Image Registration, IEEE Transactions 

on Aerospace and Electronic Systems, Vol. AES-I0 Issue 3, pp. 353-358. 

Pratt WK., 1991, Digital Image Processing, Wiley, New York, NY. 

Rajan D. and Chaudhuri S., 2001, Simultaneous estimation of super-resolved 

intensity and depth maps from low resolution defocused observations of a scene, in 

Proc. IEEE int. Conf. Computer Vision, Vancouver, Canada, pp. 113-118. 

Ralph J. F., Bernhardt M., 2002, Smart Imaging in the Infrared, Contemp. Phys., vol. 

43, pp. 259-272. 

Ralph, l F., Smith, M. 1., Heather, 1. P., 2005, Motion-based detection, identification. 

and tracking for missile warning system applications, PROCEEDINGS of SPIE THE 

INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 5809:53-64. 

R dd S B d Ch tt .. B N 1996, An FFT-Based Technique for Translation. e y . . an a e1Jl . ., 

164 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Rotation, and Scale-Invariant Image Registration, IEEE TRANSACTIO);S 0); 

IMAGE PROCESSING, VOL. 5, NO.8, pp. 1266-1271. 

Rosenfeld A., Kak A. C., 1982, Digital picture processing, Academic Press, 1\ew 

York, 2nd ed. 

Rybicki, G. B., Lightman, A. P., 1979, Radiative Processes in Astrophysics. Ne\v 

York: John Wiley & Sons. 

Roshni V.S., Revathy K., 2008, Using mutual information and cross correlation as 

metrics for registration of images, Journal of theoretical and applied information 

technology, Vol. 4, Issue 6, pp. 474-481. 

Sarvaiya, J.N.; Patnaik, S.; Bombaywala, S., 2009, Image Registration by Template 

Matching Using Normalized Cross-Correlation, International Conference on 

Advances in Computing, Control, & Telecommunication Technologies, pp. 819-822. 

Sawhney H. S. and Kumar R., 1999, True Multi-Image Alignment and its Application 

to Mosaicing and Lens Distortion Correction, IEEE transactions on Pattern Analysis 

and Machine Intelligence, Vol. 21(3), 235-243. 

Schoenberg I.J., 1969, Cardinal interpolation and spline functions, Jounal of Approx. 

Theory, vol. 2, pp. 167-206. 

Shum H. and Szeliski R., 1997, Creating full video panaromic image mosaics and 

environmental maps, Proc. SIGGRAPH, pp. 251-258. 

Shum H.-y' and Szeliski R., 2000, Construction of panoramic mosaics with global 

and local alignment, International Journal of Computer Vision, Vol. 36(2), ppIOI-l30. 

165 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Siegwart R., Nourbakhsh 1., 2004, Introduction to autonomous mobile robots. \lIT 

Press, pp. 118-122. 

Singh 1., 2009, Design of infrared optical system, ICOP 2009-lntemational 

Conference on Optics and Photonics, India. 

Smith B. C., 1995, Fundamentals of Fourier Transform Infrared Spectroscopy, Taylor 

& Francis Ltd, pp44-46. 

Snyder W. E., Qi H., Machine vision, 2004, Cambridge: Cambridge University Press, 

pp.298-309. 

Sonka M., Hlavac V. and Boyle R., 2008, Image processing analysis, and machine 

vision 3
rd 

edition, Cole Publishing Company. 

Sterel A. and Aggarwal J.K., 1999, Detection moving objects in airborne forward 

looking infrared sequences, IEEE Workshop on Computer Vision Beyond the Visible 

Spectrum: Methods and Applications, pp.3. 

Stewart V.C., 1999, Robust parameter estimation in computer vision, Society for 

Industrial and Applied Mathematics, Vol. 4, Issue 3, pp. 513 - 537. 

Stone, H.S., Orchard, M.T., Ee-Chien Chang, Martucc~ S.A., 2001, A fast direct 

Fourier-based algorithm for subpixel registration of images, IEEE Transactions on 

Geoscience and Remote Sensing, Vol. 39(10), pp. 2235 - 2243. 

Strehl A., Aggarwal J.K., 2000, MODEEP: a motion-based object detection and pose 

estimation method for airborne FLIR sequences, Machine Vision and Applications. 

Vol. 11, No.6, pp. 267-276. 

166 



Super Resolved Mosaicing in Forward Looking Infrared Imaaerv e • 

Strehl A., Aggarwal lK., 2000, MODEEP: a motion-based object detection and pose 

estimation method for airborne FLIR sequences, machine vision and applications, 

vol.ll, No.6, pp 267-276. 

Szeliski, R., 2006, Image alignment and stitching: a tutorial, Handbook of 

mathematical models in computer vision, Springer, pp273-292. 

Szeliski R. and Coughlan J., 1997, Spline-Based Image Registration, International 

Journal of Computer Vision, 22(3), pp 199-218. 

Taylor J. R., 1997, Introduction to Error Analysis: The Study of Uncertainties in 

Physical Measurements, University Science Books, U.S., Ed. 2nd, pp.102-103. 

Thevenaz P. and Unser M., 2000, Optimization of mutual information for multi-

resolution image registration, IEEE Trans. Image Processing, vol. 9, pp.2083-2099. 

Tian Q. and Buhns M.N., Algorithms for subpixel registration, Computer Vision. 

Graphic and Image Processing, 35, pp. 220-233, 1986. 

Tidrow M.Z., Dyer W.R., 2001, Infrared sensors for ballistic missile defense, 

Infrared Physics & Technology 42, p333-336. 

Tzimiropoulos, G., Argyriou, v., Zafeiriou, S., Stathaki, T., 2010, Robust FFT-Based 

Scale-Invariant Image IEEE Transactions on Registration with Image Gradients, 

Pattern Analysis and Machine Intelligence, Vol. 32 (10), pp. 1889-1906 

Unser M., Aldroubi A., and Eden M., 1995, Enlargement or reduction of digital 

images with minimum loss of information, IEEE Trans. Image Processing. \'01. .t. no. 

3, pp. 247-258. 

167 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Vandewalle P., SUsstrunk S., and Vetterli M .. 2006, A Frequency Domain Approach 

to Registration of Aliased Images with Application to Super-resolution, ECRASIP 

Journal on Applied Signal Processing, Vol. 2006. 

Vincent, E., Laganiere, R., 2002, An empirical study of some feature matchina 
e 

strategies. Proc. Com. Vision Interface, Calgary, Canada, pp. 139-145. 

Viola P., Wells W.M., 1997, Alignment by maximization of mutual information. 

International Journal of Computer Vision, vol. 24, pp.137-154. 

Wang W.H. and Chen YC., 1997, Image registration by control points pairing using 

the invariant properties of line segments. Pattern Recognition Letters 18, pp. 269-281. 

Wang Z., Bovik A. , Sheikh H., and Simoncelli E .. 2004, Image quality assessment: 

From error visibility to structural similarity, IEEE Trans. Image Processing, pp. 1-14. 

Weisstein E. W., 2010, Standard Deviation, From MathWorld, A Wolfram Web 

Resource. Available at: http://mathworld. wolfram.comlStandardDeviation.html 

[Accessed 5 Jan 2010] 

Wells III W. M., Viola P., Atsumi H., Nakajima S., and Kikinis R., 1996, Multi-modal 

volume registration by maximization of mutual information, Med. Imag. Anal., vol. 1, 

pp.35-51. 

Winkelman E, Patras I., 2004, Online globally consistent mosalcmg usmg an 

efficient representation, 2004 IEEE international conference on systems, man and 

cybernetics, pp. 3116-3121. 

Wren C. R., Azarbayejani A., Darrell T., Pentland A. P., 1997. pfmder: real-time 

tracking of the human body, IEEE Transactions on Pattern Analysis and \1achine 

168 



Super Resolved Mosaicing in Forward Looking Infrared Imagery 

Intelligence, v 19(7), pp. 780-785. 

Yang C., 2001, Registration of SAR and FLIR images for ATR applications, Proc. 

SPIE of Signal Processing, Sensor Fusion, and Target Recognition X, Ivan Kadar, 

Vol. 4380, pp. 127-134. 

Young S. S. and Driggers G. R., 2006, Superresolution image reconstruction from a 

sequence of aliased imagery, Applied optics, Optical society of America, Vo1.45. No. 

21, pp. 5073-5085. (very good one) 

Zappe R., 2010, Fundamentals of Micro-Optics, University of Freiburg, Gennany. 

Zhang H.M., Gao W., Chen X., Zhao D., 2005, Learning informative features for 

spatial histogram-based object detection, Proceedings of the International Joint 

Conference on Neural Networks, v 3, Proceedings of the International Joint 

Conference on Neural Networks, IJCNN 2005, pp. 1806-1811. 

Zhang Z., Blum R. S., 2001, A hybrid image registration technique for a digital 

camera image fusion application, Information Fusion, Vol. 2, No.2, pp. 135-149. 

Zibaeifard M., Rahmati M., 2006, An Improved Multi-Stage Method for Medical 

Image Registration Based on Mutual Information, Proceedings of the international 

conference on computer and communication engineering, pp. 27-32. 

Zitova B., Flusser J., 2003, Image registration methods: a survey, Image and vision 

computing 21, pp. 977-1000. 

------------------------------------
169 


	569440_0001
	569440_0002
	569440_0003
	569440_0004
	569440_0005
	569440_0006
	569440_0007
	569440_0008
	569440_0009
	569440_0010
	569440_0011
	569440_0012
	569440_0013
	569440_0014
	569440_0015
	569440_0016
	569440_0017
	569440_0018
	569440_0019
	569440_0020
	569440_0021
	569440_0022
	569440_0023
	569440_0024
	569440_0025
	569440_0026
	569440_0027
	569440_0028
	569440_0029
	569440_0030
	569440_0031
	569440_0032
	569440_0033
	569440_0034
	569440_0035
	569440_0036
	569440_0037
	569440_0038
	569440_0039
	569440_0040
	569440_0041
	569440_0042
	569440_0043
	569440_0044
	569440_0045
	569440_0046
	569440_0047
	569440_0048
	569440_0049
	569440_0050
	569440_0051
	569440_0052
	569440_0053
	569440_0054
	569440_0055
	569440_0056
	569440_0057
	569440_0058
	569440_0059
	569440_0060
	569440_0061
	569440_0062
	569440_0063
	569440_0064
	569440_0065
	569440_0066
	569440_0067
	569440_0068
	569440_0069
	569440_0070
	569440_0071
	569440_0072
	569440_0073
	569440_0074
	569440_0075
	569440_0076
	569440_0077
	569440_0078
	569440_0079
	569440_0080
	569440_0081
	569440_0082
	569440_0083
	569440_0084
	569440_0085
	569440_0086
	569440_0087
	569440_0088
	569440_0089
	569440_0090
	569440_0091
	569440_0092
	569440_0093
	569440_0094
	569440_0095
	569440_0096
	569440_0097
	569440_0098
	569440_0099
	569440_0100
	569440_0101
	569440_0102
	569440_0103
	569440_0104
	569440_0105
	569440_0106
	569440_0107
	569440_0108
	569440_0109
	569440_0110
	569440_0111
	569440_0112
	569440_0113
	569440_0114
	569440_0115
	569440_0116
	569440_0117
	569440_0118
	569440_0119
	569440_0120
	569440_0121
	569440_0122
	569440_0123
	569440_0124
	569440_0125
	569440_0126
	569440_0127
	569440_0128
	569440_0129
	569440_0130
	569440_0131
	569440_0132
	569440_0133
	569440_0134
	569440_0135
	569440_0136
	569440_0137
	569440_0138
	569440_0139
	569440_0140
	569440_0141
	569440_0142
	569440_0143
	569440_0144
	569440_0145
	569440_0146
	569440_0147
	569440_0148
	569440_0149
	569440_0150
	569440_0151
	569440_0152
	569440_0153
	569440_0154
	569440_0155
	569440_0156
	569440_0157
	569440_0158
	569440_0159
	569440_0160
	569440_0161
	569440_0162
	569440_0163
	569440_0164
	569440_0165
	569440_0166
	569440_0167
	569440_0168
	569440_0169
	569440_0170
	569440_0171
	569440_0172
	569440_0173
	569440_0174
	569440_0175
	569440_0176
	569440_0177
	569440_0178
	569440_0179
	569440_0180
	569440_0181

