174,215 research outputs found

    Human activity recognition for physical rehabilitation

    Get PDF
    The recognition of human activity is a challenging topic for machine learning. We present an analysis of Support Vector Machines (SVM) and Random Forests (RF) in their ability to accurately classify Kinect kinematic activities. Twenty participants were captured using the Microsoft Kinect performing ten physical rehabilitation activities. We extracted the kinematic location, velocity and energy of the skeletal joints at each frame of the activity to form a feature vector. Principle Component Analysis (PCA) was applied as a pre-processing step to reduce dimensionality and identify significant features amongst activity classes. SVM and RF are then trained on the PCA feature space to assess classification performance; we undertook an incremental increase in the dataset size.We analyse the classification accuracy, model training and classification time quantitatively at each incremental increase. The experimental results demonstrate that RF outperformed SVM in classification rate for six out of the ten activities. Although SVM has performance advantages in training time, RF would be more suited to real-time activity classification due to its low classification time and high classification accuracy when using eight to ten participants in the training set. © 2013 IEEE

    Human Activity Recognition for Physical Rehabilitation

    Get PDF
    The recognition of human activity is a challenging topic for machine learning. We present an analysis of Support Vector Machines (SVM) and Random Forests (RF) in their ability to accurately classify Kinect kinematic activities. Twenty participants were captured using the Microsoft Kinect performing ten physical rehabilitation activities. We extracted the kinematic location, velocity and energy of the skeletal joints at each frame of the activity to form a feature vector. Principle Component Analysis (PCA) was applied as a pre-processing step to reduce dimensionality and identify significant features amongst activity classes. SVM and RF are then trained on the PCA feature space to assess classification performance; we undertook an incremental increase in the dataset size.We analyse the classification accuracy, model training and classification time quantitatively at each incremental increase. The experimental results demonstrate that RF outperformed SVM in classification rate for six out of the ten activities. Although SVM has performance advantages in training time, RF would be more suited to real-time activity classification due to its low classification time and high classification accuracy when using eight to ten participants in the training set. © 2013 IEEE

    A review of computer vision-based approaches for physical rehabilitation and assessment

    Get PDF
    The computer vision community has extensively researched the area of human motion analysis, which primarily focuses on pose estimation, activity recognition, pose or gesture recognition and so on. However for many applications, like monitoring of functional rehabilitation of patients with musculo skeletal or physical impairments, the requirement is to comparatively evaluate human motion. In this survey, we capture important literature on vision-based monitoring and physical rehabilitation that focuses on comparative evaluation of human motion during the past two decades and discuss the state of current research in this area. Unlike other reviews in this area, which are written from a clinical objective, this article presents research in this area from a computer vision application perspective. We propose our own taxonomy of computer vision-based rehabilitation and assessment research which are further divided into sub-categories to capture novelties of each research. The review discusses the challenges of this domain due to the wide ranging human motion abnormalities and difficulty in automatically assessing those abnormalities. Finally, suggestions on the future direction of research are offered

    Performance Comparisson Human Activity Recognition using Simple Linear Method

    Get PDF
    Human activity recognition (HAR) with daily activities have become leading problems in human physical analysis. HAR with wide application in several areas of human physical analysis were increased along with several machine learning methods. This topic such as fall detection, medical rehabilitation or other smart appliance in physical analysis application has increase degree of life. Smart wearable devices with inertial sensor accelerometer and gyroscope were popular sensor for physical analysis. The previous research used this sensor with a various position in the human body part. Activities can classify in three class, static activity (SA), transition activity (TA), and dynamic activity (DA). Activity from complexity in activities can be separated in low and high complexity based on daily activity. Daily activity pattern has the same shape and patterns with gathering sensor. Dataset used in this paper have acquired from 30 volunteers. Seven basic machine learning algorithm Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, Gradient Boosted and K-Nearest Neighbor. Confusion activities were solved with a simple linear method. The purposed method Logistic Regression achieves 98% accuracy same as SVM with linear kernel, with same result hyperparameter tuning for both methods have the same accuracy. LR and SVC its better used in SA and DA without TA in each recognizing

    Human activity recognition for static and dynamic activity using convolutional neural network

    Get PDF
    Evaluated activity as a detail of the human physical movement has become a leading subject for researchers. Activity recognition application is utilized in several areas, such as living, health, game, medical, rehabilitation, and other smart home system applications. An accelerometer was popular sensors to recognize the activity, as well as a gyroscope, which can be embedded in a smartphone. Signal was generated from the accelerometer as a time-series data is an actual approach like a human actifvity pattern. Motion data have acquired in 30 volunteers. Dynamic actives (walking, walking upstairs, walking downstairs) as DA and static actives (laying, standing, sitting) as SA were collected from volunteers. SA and DA it's a challenging problem with the different signal patterns, SA signals coincide between activities but with a clear threshold, otherwise the DA signal is clearly distributed but with an adjacent upper threshold. The proposed network structure achieves a significant performance with the best overall accuracy of 97%. The result indicated the ability of the model for human activity recognition purposes

    Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using Smartwatches

    Full text link
    Assessing the physical condition in rehabilitation scenarios is a challenging problem, since it involves Human Activity Recognition (HAR) and kinematic analysis methods. In addition, the difficulties increase in unconstrained rehabilitation scenarios, which are much closer to the real use cases. In particular, our aim is to design an upper-limb assessment pipeline for stroke patients using smartwatches. We focus on the HAR task, as it is the first part of the assessing pipeline. Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale, which are performed in both constrained and unconstrained scenarios. In addition to the application protocol and dataset, we propose two detection and classification baseline methods. We believe that the proposed framework, dataset and baseline results will serve to foster this research field

    Improved wolf swarm optimization with deep-learning-based movement analysis and self-regulated human activity recognition

    Get PDF
    A wide variety of applications like patient monitoring, rehabilitation sensing, sports and senior surveillance require a considerable amount of knowledge in recognizing physical activities of a person captured using sensors. The goal of human activity recognition is to identify human activities from a collection of observations based on the behavior of subjects and the surrounding circumstances. Movement is examined in psychology, biomechanics, artificial intelligence and neuroscience. To be specific, the availability of pervasive devices and the low cost to record movements with machine learning (ML) techniques for the automatic and quantitative analysis of movement have resulted in the growth of systems for rehabilitation monitoring, user authentication and medical diagnosis. The self-regulated detection of human activities from time-series smartphone sensor datasets is a growing study area in intelligent and smart healthcare. Deep learning (DL) techniques have shown enhancements compared to conventional ML methods in many fields, which include human activity recognition (HAR). This paper presents an improved wolf swarm optimization with deep learning based movement analysis and self-regulated human activity recognition (IWSODL-MAHAR) technique. The IWSODL-MAHAR method aimed to recognize various kinds of human activities. Since high dimensionality poses a major issue in HAR, the IWSO algorithm is applied as a dimensionality reduction technique. In addition, the IWSODL-MAHAR technique uses a hybrid DL model for activity recognition. To further improve the recognition performance, a Nadam optimizer is applied as a hyperparameter tuning technique. The experimental evaluation of the IWSODL-MAHAR approach is assessed on benchmark activity recognition data. The experimental outcomes outlined the supremacy of the IWSODL-MAHAR algorithm compared to recent models

    A Hybrid Hierarchical Framework for Gym Physical Activity Recognition and Measurement Using Wearable Sensors

    Get PDF
    Due to the many beneficial effects on physical and mental health and strong association with many fitness and rehabilitation programs, physical activity (PA) recognition has been considered as a key paradigm for internet of things (IoT) healthcare. Traditional PA recognition techniques focus on repeated aerobic exercises or stationary PA. As a crucial indicator in human health, it covers a range of bodily movement from aerobics to anaerobic that may all bring health benefits. However, existing PA recognition approaches are mostly designed for specific scenarios and often lack extensibility for application in other areas, thereby limiting their usefulness. In this paper, we attempt to detect more gym physical activities (GPAs) in addition to traditional PA using acceleration, A two layer recognition framework is proposed that can classify aerobic, sedentary and free weight activities, count repetitions and sets for the free weight exercises, and in the meantime, measure quantities of repetitions and sets for free weight activities. In the first layer, a one-class SVM (OC-SVM) is applied to coarsely classify free weight and non-free weight activities. In the second layer, a neural network (NN) is utilized for aerobic and sedentary activities recognition; a hidden Markov model (HMM) is to provide a further classification in free weight activities. The performance of the framework was tested on 10 healthy subjects (age: 30 ± 5; BMI: 25 ± 5.5 kg/ and compared with some typical classifiers. The results indicate the proposed framework has better performance in recognizing and measuring GPAs than other approaches. The potential of this framework can be potentially extended in supporting more types of PA recognition in complex applications

    Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist

    No full text
    In this paper we present a method for recognising three fundamental movements of the human arm (reach and retrieve, lift cup to mouth, rotation of the arm) by determining the orientation of a tri-axial accelerometer located near the wrist. Our objective is to detect the occurrence of such movements performed with the impaired arm of a stroke patient during normal daily activities as a means to assess their rehabilitation. The method relies on accurately mapping transitions of predefined, standard orientations of the accelerometer to corresponding elementary arm movements. To evaluate the technique, kinematic data was collected from four healthy subjects and four stroke patients as they performed a number of activities involved in a representative activity of daily living, 'making-a-cup-of-tea'. Our experimental results show that the proposed method can independently recognise all three of the elementary upper limb movements investigated with accuracies in the range 91–99% for healthy subjects and 70–85% for stroke patients

    Chronic-Pain Protective Behavior Detection with Deep Learning

    Get PDF
    In chronic pain rehabilitation, physiotherapists adapt physical activity to patients' performance based on their expression of protective behavior, gradually exposing them to feared but harmless and essential everyday activities. As rehabilitation moves outside the clinic, technology should automatically detect such behavior to provide similar support. Previous works have shown the feasibility of automatic protective behavior detection (PBD) within a specific activity. In this paper, we investigate the use of deep learning for PBD across activity types, using wearable motion capture and surface electromyography data collected from healthy participants and people with chronic pain. We approach the problem by continuously detecting protective behavior within an activity rather than estimating its overall presence. The best performance reaches mean F1 score of 0.82 with leave-one-subject-out cross validation. When protective behavior is modelled per activity type, performance is mean F1 score of 0.77 for bend-down, 0.81 for one-leg-stand, 0.72 for sit-to-stand, 0.83 for stand-to-sit, and 0.67 for reach-forward. This performance reaches excellent level of agreement with the average experts' rating performance suggesting potential for personalized chronic pain management at home. We analyze various parameters characterizing our approach to understand how the results could generalize to other PBD datasets and different levels of ground truth granularity.Comment: 24 pages, 12 figures, 7 tables. Accepted by ACM Transactions on Computing for Healthcar
    corecore