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Abstract: A wide variety of applications like patient monitoring, rehabilitation sensing, sports and 

senior surveillance require a considerable amount of knowledge in recognizing physical activities of 

a person captured using sensors. The goal of human activity recognition is to identify human 

activities from a collection of observations based on the behavior of subjects and the surrounding 

circumstances. Movement is examined in psychology, biomechanics, artificial intelligence and 

neuroscience. To be specific, the availability of pervasive devices and the low cost to record 

movements with machine learning (ML) techniques for the automatic and quantitative analysis of 

movement have resulted in the growth of systems for rehabilitation monitoring, user authentication 

and medical diagnosis. The self-regulated detection of human activities from time-series smartphone 

sensor datasets is a growing study area in intelligent and smart healthcare. Deep learning (DL) 

techniques have shown enhancements compared to conventional ML methods in many fields, which 

include human activity recognition (HAR). This paper presents an improved wolf swarm 

optimization with deep learning based movement analysis and self-regulated human activity 

recognition (IWSODL-MAHAR) technique. The IWSODL-MAHAR method aimed to recognize 

various kinds of human activities. Since high dimensionality poses a major issue in HAR, the IWSO 

algorithm is applied as a dimensionality reduction technique. In addition, the IWSODL-MAHAR 
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technique uses a hybrid DL model for activity recognition. To further improve the recognition 

performance, a Nadam optimizer is applied as a hyperparameter tuning technique. The experimental 

evaluation of the IWSODL-MAHAR approach is assessed on benchmark activity recognition data. 

The experimental outcomes outlined the supremacy of the IWSODL-MAHAR algorithm compared 

to recent models. 

Keywords: human activity recognition; deep learning; healthcare; parameter tuning; dimensionality 

reduction 

Mathematics Subject Classification: 68Q32, 68T40, 90C25, 92D30 

 

1. Introduction  

The goal of human activity recognition (HAR) is to identify activities from a collection of data 

on subject behavior and environmental factors. Computer vision and human-computer interaction 

experts have been working on HAR for the last three decades, proposing several methods and 

techniques for improving the process. The earliest HAR-related work was done in the late 1990s. A 

lot of recent research has been devoted to testing out methods for distinguishing activities of daily 

life (ADLs) from inertial signals. The widespread use of mobile devices with inertial sensors and the 

falling cost of hardware are the key causes of this. Smart homes, surveillance, healthcare and other 

application contexts can all benefit from the use of smartphones that can acquire and process signals. 

The advancement of new systems with assistive and medical techniques to create an appropriate 

environment (provide living conditions via the environment) or provide long-term care shows that 

research workers are exploring the living standard of elder people and their individuality [1]. HAR is 

an innovative technology that could identify human activities via computer systems and sensors. A 

HAR system is complicated and could monitor individual situations and provide effective devices in 

case of an emergency [2]. Activity represents a behavior that comprises a set of activities done by 

interacting with one another or one individual. Providing appropriate and accurate data regarding the 

activity is the major computation task in the HAR technique [3]. With the increased development of 

neural networks, computing and machine learning algorithms, HAR based on wearable sensors 

becomes widespread in different areas involving medical services, smart homes, healthcare for old 

age people [4], mechanization in industry, enlightening human interface with computers, security 

systems, robot monitoring system, monitoring athlete training and rehabilitation systems. It is 

categorized into 3 classes in data acquisition: wearable sensors, external sensors (non-wearable) and 

an incorporation of the 2 abovementioned classes [5]. 

Due to the advancement in machine learning and context-aware technologies, researchers have 

employed distinct techniques for HAR using data gathered from smartphones [6]. Smartphones have 

become more popular for HAR because of three reasons. The first is the ubiquitous nature of this 

smaller device that is utilized by almost everybody. The next is the efficiency and reliability of the 

data procurement, and finally, less restriction is considered with respect to privacy concerns. Thus, 

many kinds of research were introduced through distinct artificial intelligence (AI) technologies [7]. 

Lately, deep learning (DL) has revolutionized conventional machine learning (ML) and brought 

about enhanced performance in various domains involving object detection, image recognition, 

natural language processing and speech recognition. 
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DL has enhanced the robustness and performance of HAR, which speeds up its application and 

adoption to a wider variety of wearable sensor-based applications [8]. There exist two major reasons 

why DL is robust for a variety of applications. First, the DL method is skilled at directly learning 

strong features from raw information for certain uses, while the feature needs to be manually 

engineered or extracted in a conventional ML technique that generally needs a large amount of 

human effort and proficient domain knowledge [9]. Deep neural networks (DNN) could effectively 

learn representative features from raw signals with smaller domain knowledge. Any neural network 

architecture, mathematically speaking, seeks to identify any mathematical function y= f(x) that can 

map attributes(x) to output (y) [10]. DL has witnessed considerable development in HAR-based 

applications due to this expressive power.  

This paper presents an improved wolf swarm optimization with deep learning based movement 

analysis and self-regulated human activity recognition (IWSODL-MAHAR) method. The 

IWSODL-MAHAR approach aimed to recognize various kinds of human activities. The IWSO 

algorithm is applied as a dimensionality reduction technique. In addition, the IWSODL-MAHAR 

technique uses a hybrid DL model for activity recognition. To further improve the recognition 

performance, a Nadam optimizer is applied as a hyperparameter tuning technique. The experimental 

evaluation of the IWSODL-MAHAR technique is performed with benchmark activity recognition 

datasets. 

Hassan et al. [11] introduced a mobile device inertial sensor-related methodology for HAR. In 

this study, efficient features will be first mined from the raw datasets. The features involve 

autoregressive coefficients, mean, median and so on. To make them more robust, the features are 

processed by linear discriminant analysis (LDA) and kernel principal component analysis (KPCA). 

At last, the features will be trained with deep belief networks (DBN) for effective activity 

recognition. In [12], a method for HAR utilizing DL was modeled related to stepped frequency 

continuous wave (SFCW) radar. To be specific, SFCW radar was mainly employed for generating 2 

types of characteristic representation domains, as they are range maps in the range domain and 

multiple frequencies of spectrograms in the time–frequency domain. After that, a particular DL 

network, which includes a sparse auto encoders (AE) and multiple parallel deep convolutional neural 

network (DCNN), was modeled for extracting and fusing such features linked with human actions 

from range maps and multifrequency spectrograms. 

In [13], the authors focused on the DL-enhanced HAR in Internet of healthcare things (IoHT) 

atmospheres. A semi-supervised DL structure was devised and framed for precise HAR which 

effectively employs and examines the weakly labeled sensor datasets for training the classifier 

learning method. An intellectual autolabeling technique related to deep Q-network (DQN) can be 

formulated with new modeled distance-oriented reward rules, to better solve the issue of 

inadequately labeled samples that enhances the learning efficiency in Internet of things (IoT) 

platforms. Gumaei et al. [14] introduced a potential multi-sensor-oriented structure for HAR utilizing 

a hybrid DL method, which integrates the gated recurrent unit (GRU) and a simple recurrent unit 

(SRU) of NN. The authors employ deep SRUs for processing a series of multimodal input datasets 

by utilizing the ability of their internal memory states. Chen et al. [15] introduced an innovative DL 

related method, that is, attention oriented BLSTM (ABLSTM), for passive HAR utilizing WiFi 

channel state information (CSI) signals. From raw sequential CSI readings, representative features in 

two directions were learned using the BLSTM. The authors use an attention system for assigning 

different weights for every learned feature. 
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Thakur et al. [16] proposed a DL-related method for activity recognition with smartphone 

sensor dataset, that is, gyroscope dataset and accelerometer. Long short-term memory networks 

(LSTM), convolutional neural network (CNN), and auto encoders (AE) possess complementary 

modeling capabilities, as LSTMs are adept at temporal modeling, CNNs are suitable for automated 

feature extraction and AEs were employed for dimensionality reduction. Wan et al. [17] presented a 

smartphone inertial accelerometer-oriented structure for HAR. Whenever the participants do 

day-to-day activities, the smartphone will collect the sensory data series, derive the high-efficiency 

features from the original datasets and acquire physical behavior data of users by utilizing multiple 

three-axis accelerometers. Moreover, a real-time human activity classifier technique relies upon a 

CNN that was modeled, which leverages CNNs for local feature extracting purposes. 

2. Materials and methods 

In this paper, an automated IWSODL-MAHAR algorithm has been modeled for movement and 

action detection. The major intention of the IWSODL-MAHAR technique is to recognize various 

kinds of human activities. At the primary level, the activity data is preprocessed to transform it into a 

meaningful format. Next, the dimensionality reduction process is carried out using the IWSO 

algorithm. Finally, the hybrid DL model is applied to the activity recognition process.  

2.1. Data preprocessing 

In this study, the activity data is primarily preprocessed to transform it into a meaningful 

format. The standard scalar approach is used to remove the mean and scale the data into unit 

variance. The major concept behind the standard scalar approach is that it converts the data so that 

the distribution holds an average value of 0 and a standard deviation of 1. For multivariate data, the 

preprocessing occurs feature-wise (in other words, independently for every column of data). For a 

provided data distribution, every individual value in the dataset has the mean value deducted and is 

divided by the standard deviation of the entire dataset. 

2.2. Dimensionality reduction process 

To reduce the high dimensionality of data, the IWSO algorithm is utilized in this work. The 

IWSO technique is an optimum search method developed for simulating prey allocation, wolves’ 

division of labor and cooperative hunting [18,19]. It has the features of fast convergence and global 

search. In comparison to WSO, the improvement of IWSO has been demonstrated in the following. In 

roaming behavior, we present the wolf detection updating rule and design a “coarse to fine” roaming 

model. The fundamental concept is shown in the following: In the ℎ direction around wolf detective 

𝑖, if the function value in the ℎ direction is small when compared to the main function values of wolf 

detective 𝑖, then it is likely that there will be a maximum value near the wolf detective 𝑖, and the tour 

was reduced.  

𝑥𝑖𝑑
𝑝

= 𝑥𝑖𝑑 + (1 −
𝑘

𝑘 max 
+ 𝜂) ×  sin (2𝜋 ×

𝑝

𝑙𝑖
+ 𝛩) × 𝑠𝑡𝑒𝑝𝑎

𝑑 ,    (1) 

In Eq (1), 𝑝 refers to the direction, 𝑑 denotes the dimension, 𝑠𝑡𝑒𝑝𝑎 represent the walking step 
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length, 𝑘 shows the iteration count, and 𝜂 ∈ (−0.1,0.1), 𝛩 ∈ (0, 𝑝/𝑙𝑖), ℎ ∈ [4,7] are integers. In 

comparison to the conventional WSO, the IWSO has the following features: IWSO technique has strong 

global search capability and escapes from local optima; the proposal of siege radius improves the local 

development capability and quantifies the algorithm to escape from the local optima; in the solution of 

2D functions, the calculation accurateness and convergence speed of IWSO were high; in the solution of 

calculation speed, the multidimensional complex function, the convergence speed and calculation 

accuracy of IWSO were more efficient. Figure 1 illustrates the steps involved in IWSO technique. 

 

Figure 1. The steps taken in IWSO. 

The computation step was shown below: 

Step 1: Initialization.  

As per the reverse bidirectional chaotic update approach, the maximal count of iterations 

𝑘 max , number 𝑁 of artificial wolves, distance determination factors 𝜔, maximal number of walks 

Tmax, wolf group spatial position X, update scale factor 𝛽 and step factor 𝑆 are initialized.  

Step 2: Wandering behavior.  

The artificial wolf with large main function value was chosen as the head wolf, and the 

remaining artificial wolves were considered detective wolves and walk based on Eq. (1) unless the 

𝑌𝑖 objective function value of 𝑖-𝑡ℎ wolf detective was larger than 𝑌𝐿𝑒𝑎𝑑 main function value of 

leading wolves 

Step 3: Summoning behavior.  

The Alpha Wolf was named, and Detective Wolves quickly rushed to Alpha Wolf as follows: 

𝑥𝑖𝑑
𝑘+1 = 𝑥𝑖𝑑

𝑘+1 + 𝑆𝑡𝑒𝑝𝑏
𝑑 ×

𝑔𝑑
𝑘−𝑥𝑖𝑑

𝑘

|𝑔𝑑
𝑘−𝑥𝑖𝑑

𝑘 |
        (2) 

When the 𝑌𝑖 function values of 𝑖𝑡ℎ wolf are greater than the 𝑌𝑙𝑒𝑎𝑑 function value of the head 
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wolf, return to the end of Step 2; when 𝑌𝑖 function values of 𝑖-𝑡ℎ wolve is lesser than function 

value 𝑌𝑙𝑒𝑎𝑑 of head wolve, the 𝑖-𝑡ℎ wolf detective continue to attack unless it enters siege region, 

viz., distance 𝐿𝑖 among 𝑖-𝑡ℎ wolf detective and head, wolf is lesser than or equivalent to 𝐿𝑙𝑒𝑎𝑑, 

and return to Step 4.  

Step 4: Siege behaviour.  

The location of the head wolves is considered the prey location, and wolves contributing in the 

siege would besiege the prey. 

Step 5: Wolves update.  

The objective function value of the optimum wolf produced in these iterations is compared to 

the main function values of head wolves in the preceding iteration. Define the number 𝑅 of artificial 

wolves with a small value of the main function to be removed based on the updating scale factor 𝛽. 

When 𝑡 is lesser than 𝑡max, the wolf group would be upgraded based on the subsequent equation 

and integrated with reverse learning; then, the wolf group would be upgraded based on the reverse 

double chaos strategy: 

𝑥𝑖𝑑 = 𝑔𝑑 . [ sin (𝛾) + 1],        (3) 

where ∈ (−0.1,0.1). 

Step 6: Judgment ended.  

Decide whether the head wolf's objective function has fulfilled the requirement of 

computational performance, or the process obtains the maximal amount of iterations 𝑘 max. Then, 

the output is the location of the head wolf, that is, the objective function value, or else, return to Step 

2. 

The fitness function (FF) employed in the presented technique was modeled to maintain a 

balance between the classifier accuracy (max) gained through these selected features and the number 

of selected features in all solutions (min). Eq (4) signifies the FF to assess solutions. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛾𝑅(𝐷) + 𝛽
|𝑅|

|𝐶|
        (4) 

where 𝛾𝑅(𝐷) signifies the classifier error rate of a given classifier was exploited here. 𝛼 and 𝛽 

were 2 parameters equivalent to the significance of classification quality and subset length ,

|𝐶| denotes total number of features in the dataset, |𝑅| indicates cardinality of the selected subset 

𝛽 = 1 − 𝛼. 

The IWSO algorithm involves three types of wolves: alpha, beta and omega. The alpha wolf is 

the best solution found so far, the beta wolf is the second-best solution, and the omega wolf is the 

third-best solution. The algorithm starts with a random population of wolves and iteratively improves 

the solutions by following the hunting behavior of wolves. 

Algorithm 1: IWSO algorithm Pseudo-code  

Initialize population of wolves 

Calculate fitness of each wolf 

Set global best wolf as the wolf with the highest fitness 

repeat until termination criteria are met: 

    for each wolf: 

        Determine the three neighboring wolves: alpha, beta and delta 

        Generate a new position for the wolf using the formula: 
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            new_position = current_position + (alpha_position - (A * D)) * r1 

                                + (beta_position - (B * D)) * r2 

                                + (delta_position - (C * D)) * r3 

        Compute the new position's suitability. 

        If the new position is better than the current position, update the wolf's position and  

                                                                       fitness 

        If the new position is the best among all wolves, update the global best position 

    Update the values of A, B, C and D for the next iteration 

Return the best wolf and its fitness 

2.3. Activity recognition process 

For activity recognition, the IWSODL-MAHAR technique makes use of a hybrid DL model. In this 

work, a hybrid form of bidirectional long short-term memory (BLSTM) and enhanced recurrent neural 

network (ERNN) is developed to correctly label the features of the input datasets [20–22]. In the 

presented method, the features were passed initially to the BLSTM layer and later to the ERNN layer for 

precisely mapping the features to the accurate label. The BLSTM network makes use of forward and 

backward passes for learning the feature, while the ERNN makes use of feedback from context layer for 

accurately predicting labels. BLSTM is a kind of recurrent NN (RNN) with 2 LSTM units collectively 

compiled in distinct directions. The forward and backward layers of LSTM process the feature in forward 

and backward directions. These features are an enhancement of the conventional LSTM for preserving 

the previous and upcoming datasets. As well, this might assist in better understanding the context of 

classifying brain tumors. The LSTM unit encompasses forget, input, output and hidden gates in cell state, 

and the computation of LSTM forward units is defined as follows: 

𝜁𝑡 = 𝜎(�⃗⃗� 𝜁[ћ⃗ 𝑡−1𝑥 𝑥𝑡] + 𝛽 𝜁)         (5) 

𝜂𝑡 = 𝜎(�⃗⃗� n[ћ⃗ 𝑡−1𝑥 t] + 𝛽 𝜂)         (6) 

𝑜 t = 𝜎(�⃗⃗� 𝑜[ћ⃗ 𝑡−1𝑥 𝑡] + 𝛽 𝑜)          (7) 

𝜉 t = tanh (�⃗⃗� 𝜉[ћ⃗ 𝑡−1, 𝑥 ] + 𝛽 𝜉)         (8) 

�⃗� t = 𝜁 t ⊗ �⃗� 𝑡−1 ⊕ 𝜂 t ⊗ 𝜉 𝑡         (9) 

ћ⃗ t = 𝑜 t ⊗ tanh(�⃗� t)           (10) 

Now, 𝜁𝑡 represents forget gate outcome; 𝜂𝑡 specifies input gate outcome; 0𝑡 shows the total 

resultant of output gate; 𝜉𝑡 refers to the candidate cell states output; 𝛩𝑡 signifies the cell state 

output; ћ𝑡  characterizes the hidden state outcome; 𝜎  means the sigmoid activation function 

and tanh activation functions; ћ𝑡−1 stands for the prior hidden state outcome; 𝜒𝑡 denotes the input; 

𝜔𝜁 , 𝜔𝜂 , 𝜔𝑜 and 𝜔𝜉 symbolize the weight vectors of forgetting, input, output and cell state gates; 
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𝛽𝜁 , 𝛽𝜂 , 𝛽0 and 𝛽𝜉  indicate the bias vectors of corresponding gates; and 𝛩𝑡−1 is represents the 

outcome of earlier cell state. The computation is also considered for LSTM units in the backward 

direction. The total resultant of the hidden state in a backward direction is provided in the following 

expression: 

ћ⃖⃗𝑡 = 𝑓(𝜒𝑡𝛩𝑡−1𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )          (11) 

The output of Bi‐LSTM layer was transferred to the ERNN layer for appropriately labeling the 

feature. The major reason for the hybridization of BLSTM with the ERNN was to improve the 

classification performance. This can be accomplished by increasing the amount of data available for 

the NN in the training stage. The ERNN layer encompasses output, input and hidden components for 

classification and feature extraction. The input layer directly sends the input towards the hidden layer 

(HL), and the HL is accountable to derive features from input. One of the main advantages of the 

hybrid method is that the discriminatory nature of the method will be increased. Thus, the model can 

recognize the differences among the features and label them accordingly. The HL of ERNN is 

defined by Eq (12): 

𝐴𝑡 = 𝑓ℎ(𝜛ℎ𝑥𝑡 + 𝑣ℎ𝐴𝑡−1 + 𝛽ℎ)       (12) 

Now, 𝐴𝑡 represents the output of HL, 𝑓𝜆 indicates activation function, 𝜒𝑡 denotes the input to 

ERNN, 𝜛𝜆 and 𝑣𝜆 represent the weight matrix, and 𝛽𝜆 represents bias vector. The ERNN method 

encompasses a context layer including self‐connected feedback for providing previous data. The 

context layer is defined below: 

𝑐𝑡−1
𝑙 = 𝐴𝑡

𝑗
           (13) 

In Eq (13), 𝑐𝑡−1
1  indicates the output of 𝑙-𝑡ℎ context layer. 𝐴𝑡

𝑗
 represents output of the 𝑗𝑡ℎ 

HL, and it is evaluated as follows: 

𝑂𝑡 = 𝑓0(𝜛𝑂[𝜆𝑡] + 𝛽0)         (14) 

In Eq (14), 𝑓0 denotes activation function of the output layer, 𝜛𝑂 indicates weight values of 

the output layer, and 𝛽0 indicates bias vector of the output layer. The output from the FC layer was 

given to the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥  layer in which probability is allocated to all classes. The probability 

dominance might assist in deciding the accurate class for the input feature. 

To adjust the hyperparameter values of the hybrid DL model, the Nadam optimizer is employed 

in this work. The Nadam optimizer tries to join Nesterov accelerated adaptive moment prediction 

with the Adam optimizer [23,24]. The advantage of this technique is that the used adaptive moment 

prediction helps to accomplish a very accurate stage in the gradient direction by updating module 

variables including the momentum stage before the gradient computation [25,26]. The upgrade rule 

of Nadam is formulated as 

𝑤𝑡 = 𝑤𝑡−1 − 𝛼 ×
𝑚𝑡

√�̂�𝑡+𝜀
,       (15) 

where 
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𝑚𝑡 = (1 − 𝛽1,𝑡)�̂�𝑡 + 𝛽1,𝑡+1�̂�𝑡 , 

�̂�𝑡 =
𝑚𝑡

1−∏ 𝛽1𝑖
𝑡+1
𝑖=1

,           (16) 

�̂�𝑡 =
𝑔𝑡

1 − ∏ 𝛽1𝑖
𝑡+1
𝑖=1

. 

3. Results 

In this section, the activity recognition of the IWSODL-MAHAR method is tested by utilizing 

the UCI HAR dataset [27]. It is a balanced dataset which comprises 10299 samples with six class 

labels as portrayed in Table 1. The sample images are shown in Figure 2. 

Table 1. Dataset details.  

UCI HAR 

Label Class No. of Instances 

0 Walking 1722 

1 Moving upward  1444 

2 Moving downward 1506 

3 Sitting  1877 

4 Standing  1808 

5 Lying  1942 

Total No. of Instances 10299 

 

Figure 2. Sample images. 
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The confusion matrices of the IWSODL-MAHAR model are shown in Figure 3. The figure 

represents that the IWSODL-MAHAR method has gained effectual recognition of human activities 

under all aspects. 

 

Figure 3. Confusion matrix of IWSODL-MAHAR system (a-b) TR and TS databases of 

60:40 and (c-d) TR and TS databases of 70:30. 

Table 2 exhibits the overall activity recognition outcome of the IWSODL-MAHAR model with 

60% of Training (TR) databases and 40% of Testing (TS) databases. In Figure 4, the overall HAR 

outcome of the IWSODL-MAHAR method on 60% of TR database is given. The experimental 

values demonstrated that the IWSODL-MAHAR model identified all activities. It is observable that 

the IWSODL-MAHAR model attained average 𝑎𝑐𝑐𝑢𝑦 of 99.47%, 𝑠𝑒𝑛𝑠𝑦 of 98.40%, 𝑠𝑝𝑒𝑐𝑦 of 

99.68%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 98.39%, receiver operating characteristic (ROC) 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒  of 99.04% and 

Matthews correlation coefficient (MCC) of 98.07%.  
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Table 2. HAR analysis of IWSODL-MAHAR system under 60:40 of TR/TS databases.  

Labels Accuracy Sensitivity Specificity F-Score ROC Score MCC 

Training Phase (60%) 

0 99.43 98.27 99.67 98.32 98.97 97.98 

1 99.51 98.18 99.75 98.39 98.97 98.11 

2 99.56 98.58 99.72 98.40 99.15 98.15 

3 99.40 98.64 99.55 98.21 99.10 97.86 

4 99.24 97.60 99.62 97.98 98.61 97.51 

5 99.64 99.14 99.76 99.05 99.45 98.83 

Average 99.47 98.40 99.68 98.39 99.04 98.07 

Testing Phase (40%) 

0 99.15 96.61 99.65 97.40 98.13 96.90 

1 99.42 97.70 99.72 98.02 98.71 97.68 

2 99.64 98.40 99.83 98.66 99.11 98.45 

3 99.49 99.33 99.53 98.60 99.43 98.30 

4 99.25 97.69 99.59 97.89 98.64 97.43 

5 99.42 99.11 99.49 98.48 99.30 98.13 

Average 99.39 98.14 99.63 98.18 98.89 97.81 

 

Figure 4. Average analysis of IWSODL-MAHAR system under 60% of TR database. 

In Figure 5, an overall HAR outcome of the IWSODL-MAHAR approach on 40% of TS 

databases is given. The experimental values exhibited that the IWSODL-MAHAR system has 

identified all activities. It can be apparent that the IWSODL-MAHAR system has reached average 

𝑎𝑐𝑐𝑢𝑦 of 99.39%, 𝑠𝑒𝑛𝑠𝑦 of 98.14%, 𝑠𝑝𝑒𝑐𝑦 of 99.63%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.18%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 of 98.89% 

and MCC of 97.81%. 
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Figure 5. Average analysis of IWSODL-MAHAR system under 40% of TS database. 

Table 3 displays the overall activity recognition outcome of the IWSODL-MAHAR approach 

on 70% of TR and 30% of TS databases. In Figure 6, an overall HAR outcome of the 

IWSODL-MAHAR approach on 70% of TR databases is given. It can be obvious that the 

IWSODL-MAHAR system has accomplished average 𝑎𝑐𝑐𝑢𝑦 of 99.55%, 𝑠𝑒𝑛𝑠𝑦 of 98.59%, 𝑠𝑝𝑒𝑐𝑦 

of 99.73%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.60%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 of 99.16% and MCC of 98.33%.  

Table 3. HAR analysis of IWSODL-MAHAR system under 70:30 of TR/TS databases.  

Labels Accuracy Sensitivity Specificity F-Score ROC Score MCC 

Training Phase (70%) 

0 99.54 98.75 99.70 98.63 99.23 98.35 

1 99.40 98.32 99.59 98.00 98.96 97.65 

2 99.49 97.82 99.74 98.07 98.78 97.78 

3 99.68 98.71 99.88 99.07 99.30 98.88 

4 99.64 98.87 99.81 99.02 99.34 98.80 

5 99.53 99.07 99.64 98.79 99.36 98.50 

Average 99.55 98.59 99.73 98.60 99.16 98.33 

Testing Phase (30%) 

0 99.68 98.85 99.84 99.04 99.35 98.85 

1 99.61 98.72 99.77 98.72 99.25 98.49 

2 99.42 97.07 99.81 97.95 98.44 97.62 

3 99.39 98.70 99.53 98.25 99.12 97.87 

4 99.71 99.30 99.80 99.22 99.55 99.04 

5 99.74 99.63 99.76 99.26 99.70 99.11 

Average 99.59 98.71 99.75 98.74 99.23 98.50 
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Figure 6. Average analysis of IWSODL-MAHAR system under 70% of TR database. 

In Figure 7, an overall HAR outcome of the IWSODL-MAHAR system on 30% of TS database 

is given. The experimental values exhibited that IWSODL-MAHAR algorithm has identified all 

activities. It can be apparent that the IWSODL-MAHAR algorithm has achieved average 𝑎𝑐𝑐𝑢𝑦 of 

99.59%, 𝑠𝑒𝑛𝑠𝑦 of 98.71%, 𝑠𝑝𝑒𝑐𝑦 of 99.75%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.74%, 𝑅𝑂𝐶𝑠𝑐𝑜𝑟𝑒 of 99.23% and MCC 

of 98.50%. 

 

Figure 7. Average analysis of IWSODL-MAHAR system under 30% of TS database. 
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4. Discussions 

The IWSODL-MAHAR algorithm's training accuracy (TACC) and validation accuracy (VACC) 

are assessed using HAR performance in Figure 8. The figure shows that the IWSODL-MAHAR 

algorithm performed better at maximum TACC and VACC values. The IWSODL-MAHAR 

algorithm has evidently produced better VACC results. 

In Figure 9, the IWSODL-MAHAR system's training loss (TLS) and validation loss (VLS) are 

evaluated in relation to HAR performance. The graphic shows that the IWSODL-MAHAR algorithm 

performed better with low TLS and VLS values. The IWSODL-MAHAR system has produced less 

favorable VLS outcomes, as may be seen. 

Figure 10 details an evident precision-recall analysis of the IWSODL-MAHAR system in the test 

database. The IWSODL-MAHAR approach produced higher precision recall values in many classes, 

as shown by the figure. Finally, the detailed comparative analysis of the IWSODL-MAHAR with 

recent methods is given in Table 4. Figure 11 offers a comparative 𝑎𝑐𝑐𝑢𝑦  study of the 

IWSODL-MAHAR. The results implied the enhanced performance of the IWSODL-MAHAR model. 

Based on𝑎𝑐𝑐𝑢𝑦, the IWSODL-MAHAR has reached an improved value of 99.59%. Contrastingly, the 

CNN [28], ensemble AE [29], Support Vector Machine (SVM) [30], ConvAE-LSTM [31], RelieF and 

hybrid gradient based optimizer- grey wolf optimizer feature selection (GBO-GWO) models have 

reported reduced 𝑎𝑐𝑐𝑢𝑦 of 96.88%, 80.80%, 91.12%, and 98.67%. 96.71%, and 98.52%, respectively. 

 

Figure 8. TACC and VACC analysis of IWSODL-MAHAR system. 
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Figure 9. TLS and VLS analysis of IWSODL-MAHAR system.  

 

Figure 10. Precision-recall analysis of IWSODL-MAHAR system. 
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Figure 11. 𝑨𝒄𝒄𝒖𝒚 analysis of IWSODL-MAHAR system with other approaches.  

Table 4. IWSODL-MAHAR system comparison with alternative methods. 

Methods Accuracy Sensitivity Specificity 

IWSODL-MAHAR 99.59 98.71 99.75 

CNN Model 96.88 97.64 98.19 

Ensemble of AE Model 80.80 81.36 82.00 

SVM Model 91.12 91.75 92.38 

ConvAE-LSTM 98.67 98.27 98.91 

ReliefF Model 96.71 97.49 98.14 

Hybrid GBO-GWO 98.52 97.90 98.11 

Figure 12 provides a comparative 𝑠𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 analysis of the IWSODL-MAHAR technique. 

The outcomes showed the higher performance of the IWSODL-MAHAR approach. With respect to 

𝑠𝑒𝑛𝑠𝑦, the IWSODL-MAHAR system has gained an enhanced value of 98.71%. Contrastingly, the CNN, 

ensemble AE, SVM, ConvAE-LSTM, RelieF and hybrid GBO-GWO methods have reported minimal 

𝑠𝑒𝑛𝑠𝑦 of 97.64%, 81.36%, 91.75%, 98.27%, 97.49%, and 97.90%, respectively.  

Along with that, in terms of 𝑠𝑝𝑒𝑐𝑦, the IWSODL-MAHAR has reached an improved value of 

99.75%. Contrastingly, the CNN, ensemble AE, SVM, ConvAE-LSTM, RelieF and hybrid 

GBO-GWO approaches have reported minimal 𝑠𝑝𝑒𝑐𝑦 of 98.19%, 82%, 92.38%, 98.91%, 98.14% 

and 98.11%, respectively. The improved performance of the IWSODL-MAHAR technique over 

other current models was highlighted by these results. 
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Figure 12. 𝑆𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 analysis of IWSODL-MAHAR system with other approaches. 

5. Conclusions 

In this paper, an automated IWSODL-MAHAR method has been presented for movement and 

action detection. The major intention of the IWSODL-MAHAR algorithm is to recognize various 

kinds of human activities. Initially, data preprocessing is performed to make the input activity data a 

compatible format for the activity recognition process. In addition, the IWSO algorithm is applied as 

a dimensionality reduction technique. For activity recognition, the IWSODL-MAHAR technique has 

employed a Nadam optimizer with a hybrid DL model. The Nadam optimizer is applied as a 

hyperparameter tuning technique to boost the classifier results. The experimental evaluation of the 

IWSODL-MAHAR approach is assessed on benchmark activity recognition datasets. The 

experimental outcomes outlined the supremacy of the IWSODL-MAHAR methodology compared to 

recent models. In the future, an ensemble of DL oriented fusion methods will be designed to boost 

the recognition performance.  
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