
 

Abstract—Due to the many beneficial effects on physical and 

mental health and strong association with many fitness and 

rehabilitation programs, physical activity (PA) recognition has 

been considered as a key paradigm for internet of things (IoT) 

healthcare. Traditional PA recognition techniques focus on 

repeated aerobic exercises or stationary PA. As a crucial indicator 

in human health, it covers a range of bodily movement from 

aerobics to anaerobic that may all bring health benefits. However, 

existing PA recognition approaches are mostly designed for 

specific scenarios and often lack extensibility for application in 

other areas, thereby limiting their usefulness. In this paper, we 

attempt to detect more gym physical activities (GPAs) in addition 

to traditional PA using acceleration, A two layer recognition 

framework is proposed that can classify aerobic, sedentary and 

free weight activities, count repetitions and sets for the free weight 

exercises, and in the meantime, measure quantities of repetitions 

and sets for free weight activities. In the first layer, a one-class 

SVM (OC-SVM) is applied to coarsely classify free weight and 

non-free weight activities. In the second layer, a neural network 

(NN) is utilized for aerobic and sedentary activities recognition; a 

hidden Markov model (HMM) is to provide a further classification 

in free weight activities. The performance of the framework was 

tested on 10 healthy subjects (age: 30 ± 5; BMI: 25 ± 5.5 kg/𝐦𝟐; 

body fat: 20.5 ± 5.4), and compared with some typical classifiers. 

The results indicate the proposed framework has better 

performance in recognizing and measuring GPAs than other 

approaches. The potential of this framework can be potentially 

extended in supporting more types of PA recognition in complex 

applications.   

 
Index Terms— Internet of things, physical activity recognition, 

free weight training, wearable sensors 

I. INTRODUCTION 

ccording to WHO, physical activity (PA) is defined as any 

bodily movement produced by skeletal muscles that 

requires energy expenditure. Physical inactivity has been 

identified as the fourth leading risk factor for global mortality 

causing an estimated 3.2 million deaths globally[1]. Thus doing 

regular physical exercise has become extremely significant for 

human healthcare. The applications of recognizing PA can 

promote a healthier lifestyle and potentially provide substantial 

reduction in healthcare costs. A number of studies over the last 

few decades have focused on the research of delivering accurate 

and robust PA recognition solutions with wearable 

devices/sensors (e.g. accelerometers and gyroscopes) [2]–[5]. 

Traditional PA recognition techniques have more focal points 

on the exercises of repetitive movement such as walking, 

running and cycling, etc. or static actions such as standing, 

sitting and lying[3], [6]–[8]. In clinical and rehabilitation fields, 

work has been carried out on methods for transitional activity 

detections such as stand-to-sit, sit-to-lie, etc. [9][10][11]. Also, 

in recent years, customer PA tracking devices/apps have been 

released in the fitness market [12]–[15]. Unfortunately, tracking 

and detecting weight training is mostly excluded in the existing 

studies/products. The American Heart Association (AHA) [16], 

the American College of Sport Medicine (ACSM) [17] and the 

American Association for Cardiovascular and Pulmonary 

Rehabilitation (AACVPR) [18] have declared that weight 

training has been considered an important modality for human 

healthcare and developed guidelines for various groups from 

elderly people, patients with chronic diseases to healthy 

sedentary and physically active adults [19]. Furthermore, a 

survey has shown [20] that an increasing number of people 

become gym members in recent years with fitness membership 

hitting nine million in UK alone last year (approximately 14% 

of the population). The significance of aerobic exercises and 

weight training are generally approved both in medical 

communities and public societies. Moreover, automatically 

tracking and recording each workout provides systematic 

support to increase the repetitions progressively which is 

especially essential for frequent weight trainees, as manually 

recording is not only time consuming and tedious but would 

affect one’s exercising schedule.  

During the last decade, nevertheless, sensing and monitoring 

weight training has only contributed a limited amount of 

research [21]–[23]. The reason is that first compared with 

routine physical activities especially like walking and sitting, 

weight training is less frequently performed by each person each 

single day. Second, there is a massive variety of training 

activities as well as various measures of performance which is a 

tedious task to select and collect. More importantly, the 

separation of sets of free weight exercise from non-free weight 

activity is an important issue since the duration of the activity of 

each set is short and the states of activity are continuously 

changing, while a whole exercise commonly consists of three to 

five sets with non-free weight activities in between. In other 

words, such activity is composed of several atomic activities 

such as sitting, lying, lifting, standing, thus makes it more 

difficult to identify. These composite activities cause traditional 

standalone machine learning methods to fail to identify patterns 

efficiently and accurately. Due to the diversity and complexity 
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of PA in weight training, the accuracy and performance of these 

devices with using traditional PA recognition and classification 

approaches are relatively low. Thus, tedious and time-

consuming manual recording is still widely used in gym 

environment. One essential issue leading this phenomenon is 

that the majority of PA recognition and monitoring approaches 

lack of extensibilities and scalabilities. The workflow of these 

studies is much identical by following steps from data collection, 

feature selections to algorithms training. There has been some 

trade-off between recognition accuracy and types of PA. The 

approaches designing for certain cases have limited extension 

and scalability in supporting more types of PA in other cases. It 

lacks of some general methodologies potentially integrating 

existing PA works into an extendable and scalable framework 

with less effort in supporting more activities and different 

applications. 

In this work, we attempt to target at this issue by design a 

hybrid hierarchical gym physical activity (GPA) recognition 

and measurement framework (GPARMF) aiming at re-

constructing two main specific-sensor based PA methods into 

an effective hybrid solution for general gym physical activity 

(GPA) recognition and measurement. The framework involves 

more GPA category recognitions and implements sets and 

repetitions counts for each weight training activity using two 

wearable sensors. Due to the training machine limitations, we 

only consider free weights with barbells and dumbbells, as it is 

regarded as the most effective strength training way for 

healthcare and muscle mass[24]. The framework is composed 

of two layers. In the first layer, a one-class support vector 

machine (OC-SVM) classifier is applied to separate free weight 

(i.e., bench press, deadlifts or squats) and non-free weight 

activities (i.e., walking, running or sitting). In the second layer, 

a hidden Markov model (HMM) is utilized to provide a fine 

grained classification in free weight activities, using a neural 

network (NN) for classifying non-free weight. In contrast to 

existing studies that either simply recognize aerobic exercises 

and static postures [3], [6]–[8] or merely focus on weight 

training activities [21]–[23], this work covers all three 

categories of physical activities with extensibility and 

scalability to integrate more PA types for example from simple 

PA (i.e., repetitive movements: walking or running) to complex 

PA (time-series-based changing PA: anaerobic exercises or free 

weights). Additionally, by achieving high recognition accuracy, 

almost all studies classify weight training activity with only one 

set signals data in a controlled environment while in practice, 

people typically perform different activities between sets within 

a whole weight training programme. Thus, our training data 

samples are collected from 10 healthy subjects by each exercise 

rather than each set in which the former contains much more 

uncertain activity combinations that haven’t been resolved to 

date.  

To summarize, this paper has the following contributions: 

 A novel two-layer sensor fusion based physical activity 

recognition framework GPARMF, is proposed for 

effectively recognizing and classifying free weight and 

non-free weight gym physical activities. This framework is 

capable of accurately separating and recognizing free 

weight and non-free weight GPAs.  

 During GPARMF, an OC-SVM classifier is designed to 

coarsely classify free weight and non-free weight exercises. 

Also, a neural network (NN) model is utilized for aerobic 

and sedentary activities recognition; a hidden Markov 

model (HMM) is to provide a further classification in free 

weight activities.  

 A throughout experimental evaluation on practical gym 

environment with heterogeneous devices is carried out. 

Intensities of free weight exercises are measured through 

counting repetitions and sets with normalized. The results 

show that the proposed framework has better performance 

in recognizing and measuring GPAs than other standalone 

approaches 

The paper organized as follows: Section II presents the latest 

work on physical activity and free weight activity recognition. 

Section III describes our gym physical activity recognition 

framework and data processing algorithms. Section IV gives 

details of our implementation of the framework, and 

conclusions and further work are presented in Section V. 

II. RELATED WORK 

Many PA recognition approaches and systems using 

acceleration information have been explored during the last few 

decades for healthcare use. Essential points rely on machine 

learning classifications such as neural networks (NN) [25][26], 

support vector machines (SVM)[27][28] and decision trees 

(DT) [29][30], etc. These studies are dedicated to tracking 

human routine physical activities like aerobic exercises (i.e., 

walking, running, cycling, etc.), and sedentary activities (i.e., 

sitting, lying, etc.). Weight training especially free weight 

activity recognition using wearable sensors, as a new physical 

activity tracking field, has limited research. Chang et al. [31] is 

the pioneer in the last decade to use tri-axial accelerometers to 

recognize weight training exercises. The study not only tracked 

repetition numbers but also compared HMM and naïve Bayes 

on nine exercises showing that recognition accuracy of HMM 

is over 90%, outperforming naïve Bayes. Later on, Pernek et al. 

[32] evaluated upper body exercise recognition accuracy with 

SVM using different numbers and placement of sensors, 

features, sliding window and classifiers and concluded that a 

two second window length with 50% overlap yields the highest 

exercise recognition. Hausberger et al. [33] assessed three 

single time-series approaches, namely dynamic time wrapping 

(DTW), HMM and SVM, applied on seven weight training 

exercises and concluded DTW provided the highest accuracy 

with over 99% recognition. DTW also shows satisfying results 

in the study [34] with only a mobile phone as the sole sensing 

device. The platform is able to classify free weight activities, 

set and repetition counts and provide feedback to the user. 

    The studies above achieve outstanding experimental results 

in diverse approaches and functionalities, including some 

extraordinary recognition results and thorough user demands 

[33][34].  However, they are all conducted in a controlled 

environment, which means each activity is predefined with only 

one pattern. Additionally, most work uses repetitions of signal 

datasets that cut out from the whole free weight activity or only 

count repetition numbers. Yet there are more diverse 

performances within one activity especially among sets in free 
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weight exercises. Thus segmenting free weight from non-free 

weight within uncontrolled environments is a problem that has 

not been explored to date. To cope with this problem, we built 

a two-layer framework to recognize and measure GPAs, shown 

in fig.1. In the first layer, we attempt OC-SVM [35] which 

adapts a traditional binary SVM to a one class situation to set 

apart non-free weight and free weight activities. The algorithm 

has been widely applied in anomaly detections  [36] and 

unbalanced labelling data [37]. We adopt this due to the 

unbalanced training samples of the two classes in realistic 

scenarios. 

    DTW is a template-based dynamic programming matching 

technique for efficiently matching two time-series signals. 

However, when it comes to different patterns of activity with 

transient free weight activity within all sets and other activities 

that may take a longer time and contain more uncertainties, it 

needs a large number of templates for a variety of patterns and 

also fails to match undefined templates. Hence, in the second 

layer of our framework, another time-series approach, HMM, is 

presented to resolve the free weight activity recognition issue. 

HMM is a probabilistic sequence model that describes a process 

of mapping a sequence of observations to a sequence of hidden 

states. It has been successfully applied in speech recognition 

[38], gesture recognition [39] and activity recognition [40], etc. 

We chose HMM because it is a spatio-temporal model that is 

capable of handling undefined patterns which is suited to a 

variety of free weight performances. HMM requires high 

computational expense and large number of training samples, 

thus to balance the feasibility and efficiency, neural networks 

(NN) have been designed to recognize non-free weight 

activities in this layer. Whilst the NN is not able to detect free 

weight from all GPAs, it gives the best performance in 

classifying traditional physical activity types [25][26]. 

Subsequently, GPA measurement approaches with wearable 

sensors of accelerometers are also offered in GPARMF through 

counting the numbers of sets and repetitions for free weight 

exercises. 

III. PROPOSED FRAMEWORK 

The GPARMF consists of two recognition steps: preliminary 

classification and fine-grained classification, as shown in fig.3. 

Acceleration data are firstly collected from the sensing layer 

before features are extracted and selected through time and 

frequency domains. OC-SVM is exploited to roughly 

distinguish free weight and non-free weight activities. In the 

second classification step, HMM is used to classify free weight 

exercises and NN is used to classify aerobic activity and static 

postures to obtain the concrete activity results. The repetitions 

and sets are also measured in the framework through given 

thresholds and heartbeat fluctuations.  The whole procedure is 

presented in Fig.1. 

A. Data Collection 

The goal of our data collection is to implement gym physical 

activity recognition and intensity measures of free weight 

activities based on realistic data in natural training conditions. 

A total of 10 healthy subjects (7 males, 3 females; age: 30 ± 5; 

BMI: 25 ± 5.5 kg/ m^2; body fat: 20.5±5.4) took part in the data 

collection process. Four of the subjects are professional trainees 

that have continuously trained for 2 to 5 years. Others are 

untrained people engaging in sedentary desk jobs. 
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Fig.1 flow chart of GPARMF 

 

 
 

Fig.2. a subject performs free weight activities with ECG attached 
 

The subjects were asked to place two Shimmer3 wireless 

wearable sensors [41] on wrist and chest respectively, shown in 

fig.3. As reported in the study [7] that the chest is closer to the 

centre of body mass and thus is an ideal measurement position 

especially for sedentary activities, whilst the heartbeat also can 

be obtained. Arm movements play an important role in most 

physical activities, thus we select a sensor put on the wrist to 

increase recognizer accuracy.  The sensor sampling rates are 

50Hz which is higher than basic requirements (20Hz is  

sufficient to infer ambulation activities [42]). Yet considering 

the short duration of each set of free weight exercise and heart 

rate, we decided to use 50Hz for data collection. The sensors 

were connected and the signals were stored on an Android 

mobile phone (Nexus 6P) via Bluetooth.   

    Furthermore, rather than controlled lab settings, the dataset 
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are collected in the user’s real training environment (i.e., gym), 

so each free weight set is in terms of a RM (repetition 

maximum) principle which is the most weight a subject can lift  
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Fig.3 proposed gym physical activity recognition approach (ACC-accelerometer, ECG- Electrocardiogram; LVQ: learning vector quantization; HMM-hidden 

Markov model) 

 

TABLE 1. TYPICAL GYM PHYSICAL ACTIVITIES IN CATEGORIES 

Activity 

class 

Activity name  Activity 

category 

Muscle 

groups 

Posture 

A1 Bench press Free weight Chest Lying 

A2 Squats Free weight Legs Standing 

A3 Lunges Free weight Legs Standing 

A4 Bend-over 
rows 

Free weight Back Standing 

A5 Deadlifts Free weight Back Standing 

A6 Good morning Free weight Back Standing 

A7 Shrugs Free weight Shoulders Standing 

A8 Front raises Free weight Shoulders Standing 

A9 Overhead 
extensions 

Free weight Triceps Lying 

A10 Curls Free weight Biceps Standing 

A11 Walking Aerobic None Standing 

A12 Jogging Aerobic None Standing 

A13 Running Aerobic None Standing 

A14 Cycling Aerobic None Sitting 

A15 Ascending Aerobic None Standing 

A16 Rowing Aerobic None Sitting 

A17 Sitting Sedentary None Sitting 

A18 Standing Sedentary None Standing 

A19 Lying Sedentary None Lying 

 

for a defined number of exercise movements, so that it truly 

reflects the heartrate change and duration of the free weight 

exercises. Each subject first performed six types of  aerobics 

(walking, jogging, running, cycling, ascending, and rowing) 

and three types of static postures (sitting, standing, and lying) 

for 5 minutes each and repeated three times. And then does ten 

types of typical and important free weight movements selected 

for the human main muscle groups: chest, legs, back, shoulders, 

triceps and biceps, as presented in table 1. Each free weight 

activity was performed as the intensity of light (8-12 RM), 

Medium (6-8 RM), high (4-6 RM) and extremely high (2-4 

RM)[43], and repeated three times, so 12 sets in total per 

subject.  

B. Data Processing 

The goal of our data collection is to implement gym physical 

activity recognition and intensity measures of free weight 

activities based on realistic data in natural training conditions. 

A total of 10 healthy subjects (7 males, 3 females; age: 30 ± 5; 

BMI: 25 ± 5.5 kg/ m^2; body fat: 20.5±5.4) took part in the data 

collection process. Four of the subjects are professional trainees 

that have continuously trained for 2 to 5 years.  

1) Pre-processing 

In the preprocessing stage, we first apply a straightforward 

metric called signal magnitude vector (SMV) that directly 

processes acceleration signals from three axes  x(𝑖), 𝑦(𝑖), 𝑧(𝑖) 

respectively, shown in Eq. (1), which provides a measurement 

of the degree of activity intensity. We then smooth the metrics 

through Savitzky Golay filters [44]. Fig. 4(a) shows three-axis 

raw signals of six types of aerobic exercise. Fig.4 (b) shows raw 

signals of deadlifts, squats and bench press. Fig. 4(b) shows a 

whole period of standing curl activity after SVM and smoothing 

processing.  

SMV = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2    (1) 

2) Feature extraction and selection 

Feature extraction is a crucial procedure for GPA recognition 

since any classification method can be appropriately selected if 

the features are robust. Time domain and frequency domain 

features are extracted from each accelerometer axis, and R 

waves are extracted from ECG for heartrate calculation. The 

extracted features are presented in table 2. 

    ECG is exploited to measure one’s heart rate for sets 

tracking. As free weight activities are normally performed 

within a very short time, an individual’s heartbeat would 
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dramatically fluctuate during this period. When one set 

finished, he/she may have a break and prepare for the next set. 

During the break time, one would perform different activities, 

such as walking, standing, sitting, etc. Detecting and 

distinguishing short time activities within such a large random 

activity with motion sensors is a difficult task. However, there 

is an inevitable relation between intensity and heartbeat, and an 

individual’s heart rate undergoes regular changes when 

performing the activities. During and a short time after the 

activity, heartbeat will be dramatically increased, and tends to 

be stable during the break regardless of types of movement. As 

such, we adopt ECG for sets calculation. The ECG signals are 

firstly detrended and filtered, then we find R wave peaks which 

are used to calculate heartbeat every minute in terms of Eq. (2) 

 

𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡(𝑖) =
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒×60

𝑅_𝑤𝑎𝑣𝑒 (𝑖+1) − 𝑅_𝑤𝑎𝑣𝑒 (𝑖)
  (2) 

 

TABLE 2. FEATURE EXTRACTION CATEGORY AND EXTRACTED FEATURES FOR 

FINE GRAINED CLASSIFICATIONS 

Category Extracted features 

Time domain 

Mean, standard deviation (SD), covariance, variance, min, 

max, correlation, root mean square (RMS), signal 

magnitude vector (SMV) 

Frequency 

domain FFT energy, entropy 

Biometrical 

domain  R wave 

  

C. Preliminary classification with OC-SVM model 

As free weight exercises are instant and intensive compared 

with other physical activities such as walking and sitting, the 

first step in the framework is to distinguish free weights from 

non-free weight activities. This is a typical issue of binary 

classification if the non-free weight activities are denoted as 

positive samples, and the free weights are negative samples. 

However, there are only small portions of free weight activity 

volumes within our GPA dataset owing to the fact that our data 

collections are from real training scenarios, in which rest 

periods between sets vary from 30 seconds to five minutes 

depending on training levels. Normally, it takes 2.5 to three 

minutes to recover from a set of intense exercise [45]. On the 

contrary, the weight training period of a set is around one 

minute or less. Also when mixed with other activities free 

weight samples are difficult to capture for binary classification. 

Therefore, OC-SVM is designed in the first level of GPARMF. 

We use support vector domain description (SVDD) such as that 

proposed by Tax et al. [35] to separate non-free weight and free 

weight activities. Instead of a conventional OC-SVM that finds 

a hyperplane to separates target samples from the origin using 

maximum separation, our algorithm maps all target samples 

which are non-free weight activity features into high 

dimensional feature space through a radial basis function (RBF) 

kernel function and computes the surface of a minimal 

hypersphere with all positive samples. The outliers are the 

regions with densities lower than the given threshold is then 

classified as free weight activities. Fig.6 shows a hypersphere 

of two datasets. The dots inside the circle are target samples, 

and the dots falling outside the circle are outliers.  

 

 

 

 
(a) 

 
(b) 

Fig.4.Raw tri-axial accelerometer data of free weight activities on the wrist 

(top to bottom: bench press, deadlift and squats) 

 

 
Fig.5 three sets of standing curl 
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(a)                                     (b) 

Fig.6 (a) the hyperplane separates with maximum margin target samples from 

the origin by mapping all targets of dots to the upper side of the hyperplane 

and dots in outliers to the lower side. (b) Support vector domain description 
(SVDD) which the target samples are surrounded by hypersphere. 

 

Let 𝐴𝑛𝑤 = {𝑎𝑛𝑤1, 𝑎𝑛𝑤2 ⋯ 𝑎𝑛𝑤𝑚 , 𝑚 ∈ 𝑅}  as non-free weight 

positive samples, and x as the centre of hypersphere, R as the 

radius, so the optimal form that involves positive samples is: 

min (𝑅2 +
1

𝑣𝑙
∑ 𝜉𝑖)

𝑙
𝑖=1     (3) 

Subject to: 

‖𝜙(𝑎𝑛𝑤𝑖) − 𝑥‖ ≤ 𝑅2 + 𝜉𝑖 (𝜉𝑖 ≥ 0; 𝑖 ∈ 𝑚)   (4) 

Where 𝑎𝑛𝑤𝑚  is the 𝑖𝑡ℎ  non-free weight training pattern, m is 

the total number of training patterns, and 𝜉 = [𝜉1, ⋯ , 𝜉𝑖] is the 

vector of the slack variables, which is to optimize the function 

margin to be convergent.  

    In the GPARMF, we assume that frequency of arm swings is 

slower in performing free weight than non-free weight 

activities. And arm movements are presented the way of up and 

down in most of free weights, while they are back and forth in 

aerobics and static or irregular movements in sedentary 

situations. Hence to differentiate the two classes, the interval of 

signal peaks, height of peaks and variance are adopted to set the 

threshold, and we have the following rules:  

𝑖𝑓 𝑓𝑖(𝑥) > 𝑦, 𝑡ℎ𝑒𝑛 𝑥 ∈ {𝑓𝑟𝑒𝑒 𝑤𝑒𝑖𝑔ℎ𝑡}; 

𝑖𝑓𝑓𝑖(𝑥) < 𝑦, 𝑡ℎ𝑒𝑛 𝑥 ∈ {𝑛𝑜𝑛 − 𝑓𝑟𝑒𝑒 𝑤𝑒𝑖𝑔ℎ𝑡}   (5) 

Where 𝑓𝑖(𝑥)  is the SVM decision function and y is the 

threshold defined by Eq. (6) 

𝑦 = 𝑑𝑖 + 𝑚𝑖 + 𝑣𝑖        (6) 

 

Where 𝑑𝑖, 𝑚𝑖 and 𝑣𝑖 are the distance between peaks, height 

of peaks and variance computed from all decision function 

values in terms of Gaussian distribution.  

D.  Free weight classification with HMM 

A free weight activity is composed of different postures and 

activities in orders. For example, when an individual performs 

the activity bench press, he/she would first lie to the bench, and 

then lift and hold the barbell, next to press, and repeat pressing, 

after that, put back the barbell and keep laying or sitting up. 

(Described as a series activities: lie->hold barbell->press->... 

(Repeat pressing)-> put back barbell->sit to rest->…). To build 

the recognizer, there are two stages: 1) the training stage, and 2) 

the recognizing stage. 

1) Training stage 

In this stage, representing the combination of postures and 

activities with a series of sequences means it is essential to use a 

HMM approach. As a HMM is a collection of finite states 

connected by transitions, let 𝜆 = (𝐴, 𝐵, 𝜋)  be a free weight 

activity recognition model, as it is shown in fig.7, where A is the 

matrix of activity state transitional possibilities, denoted as 𝐴 =

{𝐴𝑖,𝑗}, where 𝐴𝑖,𝑗 is the activity state transition from state i to 

state j. B is the matrix of emission possibilities, denoted as 𝐵 =
{𝐵𝑖,𝑗}. And 𝜋 is the vector of the initial probabilities state n. 

Observation sequence O = {𝑂1, 𝑂2 ⋯ , 𝑂𝑡} is the input 

observation state from accelerometer’s signals at time t. And 

hidden state is denoted as 𝐼 = (𝑖1, 𝑖2, ⋯ 𝑖𝑡), the set of time is 𝑇 =
(𝑡1, 𝑡2, ⋯ 𝑡𝑚).   

 

Training a HMM is the procedure of maximizing the 

probability of the observation sequence 𝑃(𝑂|𝜆), where 

 

𝑃(𝑂|𝜆) = ∑ 𝑃(𝑂|𝐼, 𝜆)𝑃(𝐼|𝜆)𝐼    (7) 

 

And then Baum-Welch algorithm is employed for building a 

free weight activity HMM. Let (𝑂, 𝐼) =

(𝑜1, 𝑜2, ⋯ , 𝑜𝑡 , 𝑖1, 𝑖2, ⋯ 𝑖𝑡) be all states, 𝜆̂ = (𝐴̂, 𝐵̂, 𝜋̂) be the re-

estimation from 𝜆 = (𝐴, 𝐵, 𝜋), so to obtain the maximum log-

likelihood, we have 

 

𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝑙𝑜𝑔𝑃(𝑂, 𝐼; 𝜆)𝑃(𝐼|𝑂; 𝜆̂)𝑖∈𝐼 =

𝑎𝑟𝑔𝑚𝑎𝑥 ∑ log 𝑃(𝑂, 𝐼; 𝜆) 𝑃(𝐼, 𝑂; 𝜆̂) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐿̂(𝜆, 𝜆̂)𝑖𝜖𝐼   

      (8) 

Where 

𝑃(𝑁, 𝑂; 𝜆) = ∏ (𝜋𝑖1
𝐵𝑖1

(𝑂1) ∏ 𝐴𝑖𝑡−1𝑖𝑡
(𝑂𝑡)𝐵𝑖𝑡

(𝑂𝑡)𝑇
𝑡=2 )𝑖=1   

       (9) 

And Eq. (8) and Eq. (9) give 

 

𝐿(𝜆, 𝜆̂) = ∑ 𝑙𝑜𝑔𝜋𝑖1
𝑃(𝐼, 𝑂; 𝜆̂)𝑖∈𝐼 +

∑ ∑ 𝑙𝑜𝑔𝐴𝑖𝑡−1𝑖𝑡
𝑇
𝑡=2 𝑃(𝐼, 𝑂; 𝜆̂) +𝑖𝜖𝐼

∑ ∑ 𝑙𝑜𝑔𝐵𝑖𝑡−1𝑖𝑡
𝑇
𝑡=2 𝑃(𝐼, 𝑂; 𝜆̂)𝑖𝜖𝐼         (10) 

 

After applying Lagrange multipliers, the three factors in the 

model are:  

 

𝜋𝑗 = ∑ 𝑃(𝑖1 = 𝑖|𝑂; 𝜆̂)𝐼
𝑖=1      (11) 

𝐴𝑗 =
∑ 𝑃(𝑖𝑡−1=𝑗|𝜆̂)𝑇

𝑡=2

∑ 𝑃(𝑖𝑡−1=𝑗|𝜆̂)𝑇
𝑡=2

     (12) 

 

𝐵𝑗 =
∑ 𝑃(𝑖𝑡=𝑗|𝜆̂)𝐼(𝑖𝑡=𝑗)𝑇

𝑡=1

∑ 𝑃(𝑖𝑡=𝑗|𝜆̂)𝑇
𝑡=1

     (13) 

 

Since a HMM training only receives discrete variables, the 

features need to be quantified into observation symbols. To 

improve the reliability and accuracy of the training, all samples 
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in our dataset are labelled, which are also represented as fixed 

length within each time window, hence a learning vector 

quantization (LVQ) neural network [46] is adopted for the 

continuous observation densities. A HMM model of free weight 

activity consists of a range of atomic activities which are 

labelled as subclass for LVQ training, and then the extracted 

features are input as training vectors for assigning to individual 

classes.  

    Due to the complexity of free weight exercises, in order to 

improve its performance, we use both wrist and chest 

accelerometers to assess them. The results are derived from two 

sensor fusion, each of which is given a weight, and the final 

fusion will be a summation of the sensor’s Gaussian 

distributions based on each atomic activity, and one sensor 

dominates in both. For example, in the activity bench press, the 

chest sensor in the first atomic activity (lying) is assigned a 

larger weight (say 0.9), and in the second atomic activity 

(holding barbell), wrist sensor is initialized a larger weight than 

chest sensor, as it is an arm movement. Likewise, in the next 

movement (pressing), the wrist sensor is also a larger weight. As 

such, the combination from two sensors with discriminant 

weight during the HMM training procedure can provide more 

accurate outcome than a single one. The training procedure is 

presented in fig.7.    

 

Sensors

S1 S2 Sn…...

Chest Wrist Chest Wrist Chest Wrist

Sensors Sensors

A23 An-1,nA12

…...

A11 A22 Ann

 
Fig.7 HMM structure in GPARMF 

 

2) Recognizing stage 

In the recognizing phase, the free weight activities are 

embedded in a range of input streams. Finding the start and end 

points is the key issue. The Viterbi algorithm is used in this 

phrase to find the most likely observation sequence at time t 

defined as Eq. (14) 

 

𝛿𝑡(𝑖) = 𝑚𝑎𝑥𝑃(𝑖𝑡 = 𝑖, 𝑖𝑡−1, ⋯ 𝑖1, 𝑜𝑡 , ⋯ 𝑜1|𝜆)   (14) 

 

As such, we can find the most optimal possibility and classify 

it in the corresponding activity class. 

IV. EXPERIMENTAL EVALUATION 

A. GPA preliminary classification 

We first evaluate OC-SVM performance in GPARMF. The 

threshold is set from three features which are peaks of distance, 

variance and mean whose distribution is presented in fig.8. The 

classification result is shown in fig.9, where the blue part is non-

free weight activity features and hollow circle dots falling 

outside the circle are free weight activity features. The 

classification accuracy is up to 85% in this layer. 

 
Fig.8 distribution of features of interval of peaks (pink), height of peaks (green) 

and variance (red) from tri-axial accelerometers of GPAs 

 

 
Fig.9 distribution of free weight and non-free weight activities using OC-

SVM  

 

B. GPA fine-grained classification 

After separating free weight and non-free weight classes, we 

first evaluate nine non-free weight activities (6 aerobics and 3 

static states) with a NN. In order to match the activity patterns, 

data sets are segmented as results in consecutively activated 

sensors on the subject’s body. Such data sets are broken down 

with temporal series using a time window. In the GPARMF, the 

sliding windows are segmented into a fixed temporal length of 

one second with 50% overlapping.  

Due to the large number of features, dimensionality is very 

high with redundant information that may cause high 

computational complexity for the next classification procedure. 

Thus, we select some features using a typical dimension 

reduction approach principal component analysis (PCA) which 

reduces data dimensionality by projecting a dataset onto a lower 

dimensional space but keeping the most information within the 

datasets. In our implementation, the dimension is reduced from 

to 1 × 88 to 1 × 36 for each window size after using PCA.  
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Three layers (input, hidden and output layer) feedforward 

NNs are explored for the aerobic and sedentary activities 

classification. To build three NN models, we only make use of 

feature vectors from accelerometer data of wrist as input layers, 

18 neurons assigned within the hidden layer and 9 neurons in 

output layer in terms of aerobic and sedentary activities listed 

in table 1. The accuracy of the NN model is evaluated by 10-

fold cross-validation. The classification results are compared 

with decision tree (DT), k-nearest neighbors (KNN) and hidden 

Markov model (HMM) and shows that the neural network gives 

the best performance as shown in the orange line in fig.10. The 

precision in NN in A1 to A9 are 95.2% on average.  

 
Fig.10 Comparison of accuracy of four recognizers in non-free weight 

activities with only wrist accelerometer (NN: neural network; DT: decision 
tree; KNN: k-nearest neighbors; HMM: hidden Markov model) 

 

C. GPA measurements 

(1) Free weight repetition calculation 

A rep (or repetition) is a single movement of any exercise. 

We tracking the number of reps by finding peaks of the 

accelerometer signal in each activity set. To do so, we need to 

1) smooth the raw accelerometer data; 2) standardise the axis 

value; 3) define the threshold in each set’s signal including 

minimum height of the peak and distance between two peaks.  

We use vertical and horizontal thresholds to define the peaks. 

With the majority of sets’ data we collected, the peaks are at 

least 20% higher than start point vertically, and distance 

between two peaks is 1000 millisecond minimum. Results are 

shown in fig.11, where (a) is deadlift peaks and (b) is squat 

peaks marked in green solid circle dots.  

(2) Free weight intensity and set calculation 

Four intensity levels (low, medium, high, extremely high) are 

measured with Shimmer ECG electrons when the subject is 

performing a deadlift. To calculate heartrate per minute, finding 

out the R-R interval is essential. The threshold is set through the 

minimum distance of two peaks and minimum height of 

smoothed and detrended signals. Fig.12 (a) presents the R-R 

intervals in triangle dots. And fig.12 (b) shows the heartrate 

changing states when doing free weight exercises. As we can 

see, in low and medium intensity, the activity is performed 

longer and the subject’s heartrate increases slowly. The 

heartrate is up to 128 beat/min in low intensity at 10s point, 

while it is 148 beat/min at 10s. However, in the activities of 

high and extremely high intensity, the heartrate increase 

dramatically and reach to highest point at 7s and 5s respectively 

in the first set. With the heartrate changing status during the 

activity, as such, it is also clear that the subject has done two 

sets in this case shown in the fig.12 (b). 

 
         (a) 

 
(b) 

(c) 
Fig. 11 one set of a free weight activity repetition calculates (a) deadlift 

numbers; (b) squat numbers; (c) bench press numbers 

 

TABLE 3 CLASSIFICATION RESULTS IN GPARMF 
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Class A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 

Precision 97.0 94.2 99.1 96.9 88.6 96.6 98.2 96.7 95.3 89.6 90.2 89.6 90.4 82.6 82.4 88.4 82.6 92.4 91.4 

Recall 95.2 98.6 91.7 95.1 94.2 98.6 97.0 95.2 91.2 80.5 88.5 82.4 88.2 81.2 78.8 82.5 82.8 90.5 93.0 

F-

Measure 

96.1 96.3 95.3 96.0 91.3 97.6 96.5 92.2 92.6 88.6 92.2 88.6 91.2 89.8 80.5 88.6 76.5 88.8 86.2 

TABLE 4  COMPARISON OF PRECISION (P), RECALL (R) AND F-MEASURE (FM) OF DIFFERENT CLASSIFIERS IN FREE WEIGHT TRAINING RECOGNITION   (DTW: 
DYNAMIC TIME WRAPPING; NN: NERUAL NETWORK; GMM: GAUSSIAN MIXTURE MODEL; HMM: HIDDEN MARKOV MODEL)

Classifier A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 

DTW P: 66.3 

R: 70.5 
FM: 72.4 

P: 70.6 

R: 71.5 
FM: 80.4 

P: 80.6 

R: 80.5 
FM: 78.6 

P: 80.5 

R: 82.2 
FM: 85.3 

P: 70.5 

R: 77.3 
FM: 78.5 

P: 74.3 

R: 79.5 
FM: 76.4 

P: 81.2 

R: 80.1 
FM: 85.7 

P: 75.4 

R: 81.5 
FM: 79.0 

P: 85.4 

R: 81.2 
FM: 82.5 

P: 81.3 

R: 76.5 
FM: 85.0 

NN P: 81.3 

R: 85.5 

FM: 80.2 

P: 85.3 

R: 88.5 

FM: 90.3 

P: 81.4 

R: 75.5 

FM: 78.3 

P: 85.9 

R: 88.8 

FM: 86.7 

P: 75.4 

R: 77.5 

FM: 80.6 

P: 69.8 

R: 71.2 

FM: 77.4 

P: 75.6 

R: 78.9 

FM: 80.5 

P: 71.3 

R: 74.0 

FM: 70.8 

P: 80.2 

R: 81.5 

FM: 74.9 

P: 82.4 

R: 85.5 

FM: 86.7 

GMM + HMM P: 72.5 

R: 75.2 

FM: 75.8 

P: 75.4 

R: 79.4 

FM: 75.6 

P: 83.5 

R: 82.4 

FM: 88.9 

P: 91.5 

R: 90.6 

FM: 89.8 

P: 80.6 

R: 80.5 

FM: 85.6 

P: 79.4 

R: 80.8 

FM: 82.2 

P: 85.4 

R: 82.3 

FM: 80.6 

P: 78.3 

R: 79.4 

FM: 80.5 

P: 88.7 

R: 90.8 

FM: 92.0 

P: 89.8 

R: 91.2 

FM: 85.6 

LVQ + HMM P: 89.6 
R: 80.5 

FM: 88.6 

P: 90.2 
R: 88.5 

FM: 92.2 

P: 89.6 
R: 82.4 

FM: 88.6 

P: 90.4 
R: 88.2 

FM: 91.2 

P: 82.6 
R: 81.2 

FM: 79.8 

P: 82.4 
R: 88.8 

FM: 80.5 

P: 88.4 
R: 82.5 

FM: 88.6 

P: 82.6 
R: 82.8 

FM: 76.5 

P: 92.4 
R: 90.5 

FM: 88.8 

P: 91.4 
R: 93.0 

FM: 86.2 

 
(a) 
 

 
(b) 

 

Fig.12 Heartrate per minute using ECG (a) finding R-R intervals; (b) two sets 

of a free weight activity with low intensity (8-12RM) in blue line, medium 
intensity (6-8 RM) in red line, high intensity (4-6 RM) in green line and 

extremely high intensity (2-4 RM) in purple line. 

V. CONCLUSION 

Regular doing GPA is essential for human healthcare. There 

are a number of studies that contribute to the field physical 

activity recognition and monitoring. However, there are still a 

large range of activity types have not been explored. In this 

work, with accelerometers and ECG, we build a gym physical 

activity recognition and measurement framework (GPARMF) 

that is capable of classifying 19 gym physical activities 

including free weights, aerobic and sedentary activities. The 

framework is divided into two layers based on the non-free 

weight boundary. A one-class support vector machine (OC-

SVM) is applied in the first layer to separate free weight and 

non-free weight activities in light of a given threshold, and in 

the second layer, a neural network (NN) and hidden Markov 

model (HMM) is adopted to classify non-free weight and free 

weight activities respectively. In addition, learning vector 

quantization (LVQ) is used to quantize feature vectors for 

continuous input to the HMM, which gives the better 

performance than a conventional Gaussian mixture model 

(GMM) and other classifiers. Furthermore, GPARMF, based on 

the repetition maximum (RM) principle, evaluates intensity of 

free weight exercises with changing heartrate within a user’s 

natural environment. It is also capable of calculating repetitions 

and sets for each free weight exercise. In the next stage, we 

intend to collect more subject data and further improve the 

accuracy of the framework and evaluate more GPAs including 

further types of free weight exercises.  
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