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Abstract Computer vision community has extensively researched the area of
human motion analysis, which primarily focuses on pose estimation, activity
recognition, pose or gesture recognition and so on. However, for many appli-
cations like monitoring of functional rehabilitation of patients with musculo-
skeletal or physical impairments, the requirement is to comparatively evaluate
human motion. In this survey, we capture important literature on vision-based
monitoring and physical rehabilitation that focuses on comparative evaluation
of human motion during past two decades and discuss state of current research
in this area. Unlike other reviews in this area, which are written from clini-
cal objective, this article presents research in this area from computer vision
application perspective. We propose our own taxonomy of computer vision-
based rehabilitation and assessment researches which are further divided into
sub-categories to capture novelties of each research. The review discusses the
challenges of this domain due to wide ranging human motion abnormalities
and difficulty in automatically assessing those abnormalities. Finally, sugges-
tions on future direction of research are offered.
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1 Introduction

Computer Vision (CV)-based human motion modelling and analysis has been
extensively researched by the community. But, most of the research can be
categorised into pose estimation [160], human-object interaction [63, 98], ac-
tivity/gesture recognition [31,65,113] or human-human interaction [53]. How-
ever, comparative analysis of human motion has received relatively less at-
tention from the community. Comparative analysis of human motion is neces-
sary for application areas like automated rehabilitation and/or assessment of
stroke, Spinal Cord Injury (SCI), Parkinson’s Disease (PD) or patients with
other physical impairments. Patient’s recovering from such impairments un-
dergo extensive physical rehabilitation and are assessed by Clinicians (Physi-
cians, Physiotherapists or Occupational Therapists) that require patients to
spend time with their carer(s). The process is both expensive, labour-
intensive, time-consuming and subjected to human error. Statis-
tics shows that informal care for rehabilitation is the reason behind
27% of the whole treatment cost. In case of stroke patients, this
amounted to around 2.42 billion pounds a year in UK in 2016 [130].
Moreover, such assessments may suffer from inaccuracies as visual
progress reporting scheme is prone to inconsistent perception. In-
accuracies may also arise from the subjectivity of these behavioral
and clinical assessments [96]. In addition, integration of assessment
based on kinematic parameters can be more robust and accurate
as compared to visual assessment by clinicians alone [17]. Body-worn
sensors or marker-based systems are expensive and can be very intrusive to a
patient’s day to day activities. Marker-less vision-based human motion mod-
elling and subsequent comparison has the potential to provide home-based,
inexpensive and unobtrusive monitoring. It also has potential applications in
sports including, but not limited to diving and figure skating.

1.1 Scope of this review

This review includes relevant articles from last 20 years that is representative
of research in the domain of vision-based physical rehabilitation and assess-
ment. We have focused on articles where the data captured using CV methods
has been used for comparative analysis i.e., where intelligent processing is
involved. The article also included articles on virtual rehabilitation and seri-
ous games involving vision-based sensor. In virtual rehabilitation although the
role of CV is largely limited to tracking, we have focused on articles having
a secondary ‘learning’ objective. Activity recognition methods specific to re-
habilitation exercises have been also included. Research not set in a clinical
scenario but aimed towards assessment of physical impairments have been also
covered. Existing research suggest that accurate body joint position estimation
is vital for vision-based rehabilitation and assessment. However, human pose
estimation has been extensively researched and covered in several surveys and
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reviews [118,160]. Similarly, human activity recognition also, has been widely
explored by the CV community and covered in several surveys [65,113]. Thus,
this review does not aim to cover joint position estimation or human activ-
ity recognition methods. Also, it does not include inertial or other non-vision
sensor-based research.

2 Domain characteristics

Fig. 1 A very high level illustration of general logical flow for a vision based physically
impaired patient assessment system

There are many aspects to a vision-based research including but
not limited to raw data, feature extraction, feature representation,
feature comparison, statistical and stochastic modelling (DL). How-
ever, the general flow of a research in the domain of vision-based
rehabilitation and monitoring can be broadly illustrated by the Fig.
1. The illustration highlights important characteristics of this domain. It in-
cludes, a vision-based sensor such as monocular RGB or depth camera for
sensing the data. A low-level feature such as human joint positions. A fea-
ture encoding and representation method such as group of joint positions
or combination of human kinematic parameters. Then, the encoded features
are compared through simple graphical and statistical techniques or through
intelligent algorithms. Finally, assessment is done in the form of kinematic
parameter comparisons, pose recognition, automated clinical scoring, impair-
ment classification and others. Rehabilitation systems usually have an exercise
program and provide feedback. These characteristics can be broadly de-
scribed in three major parts: primary data, feature extraction and
representation, and feature comparison. For application of CV to re-
habilitation and assessment of physically impaired persons, we focus
on the above mentioned aspects. The domain characteristics w.r.t
these aspects are discussed next.
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2.1 Physical impairment data

In many other vision-based human motion modelling applications including,
but not limited to human pose estimation and activity recognition, large-scale
datasets are publicly available. Thus, collecting data is often outside the scope
of research. But, for research in physical impairment domain, authors have
often collected their own data. Human movements are multidimensional and
so are its abnormalities. Musculo-skeletal impairments are exhibited differ-
ently in different patients over a period of time. Multitude of factors such as
impairment involved, extent of injury, area affected, physiological character-
istics and care provided lead to hugely varying manifestation of impairments
across patients. This is in addition to the wide range of motion capabilities of
human beings. Clinicians have specific tests and exercises designed for reha-
bilitation and assessment of different types of motor abnormalities. Therefore,
researchers are also required to run specific experiment to capture data for
the assessment of specific musculo-skeletal impairments. Thus, most authors
have captured data catering to specific situations corresponding to their ob-
jective. Due to difficulty in accessing patients, ethical issues and other such
issues, data is difficult to acquire and the datasets are often small. Researchers
have used alternative strategies such as normal persons acting like patients,
use of noise to create varied data and others. In this domain, there are a very
few publicly available datasets (table 7) and even these are very small when
compared to datasets available for other CV applications areas (e.g., image
recognition, human activity recognition). In this article, we highlight the tar-
get abnormality, area of body affected and the corresponding data collected
for each article reviewed.

2.2 Feature extraction and representation

The ultimate goal of musculo-skeletal patient monitoring is to provide an au-
tomated assessment. To assess the progress in physical rehabilitation in case
of physically impaired persons, clinicians rely on physical characteristics such
as extent of elbow flexion, shoulder abduction, speed of motion and others.
To determine such characteristics researchers have almost exclusively relied on
estimation of human body joint positions as primary low-level features. For
automated assessment, it is often required to compare a patient’s execution
of Activities of Daily Living (ADL) or rehabilitation exercises with a regular
healthy execution. Here also, the objective is to compare sequence of joint po-
sitions. For normal activity recognition, researchers use image-based features
including VLAD [58], Bag of Visual Words (BoVW) [109], Dense trajecto-
ries [148] and others. These features incorporate valuable information such
as context, optical flow and so on, which are not available when only joint
positions are used as low-level features. So far, researchers have mostly used
Kinect [161] for obtaining 3D joint positions which has its limitations as ex-
plained in [152]. Deep Convolutional Neural Networks (DCNN) have been very
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successful in 2D human pose estimation [20,50] and more recently, these net-
works are used for 3D pose estimation with much higher accuracy [107, 157].
But research in this domain is yet to fully explore the DCNN-based pose es-
timation.

Various kinematic features such as joint angle trajectory, relative joint po-
sition, speed and acceleration are used for establishing clinical condition of
patients. Thus, joint position estimations have been encoded in various differ-
ent forms for feature representation. Such encoding often comprises of simple
human body kinematic features such as relative angles, velocities, body centric
coordinates and others [127, 128]. This is useful when a specific type of im-
pairment is in consideration. For example, for discriminating pathological gait,
knee angle, step distance and other such parameters are considered. Another
approach is to quantify the difference between patient activity and a perfect
template consisting of regular healthy activity. For this, researches have used
statistical representations such as Hidden Markov Model (HMM) [138] or Dy-
namic Time Warping (DTW) [11,121]. The main aim of feature representation
is to select and encode joint positions in a manner that improves the discrim-
inatory power of comparative algorithms with regards to the given clinical
condition.

2.3 Feature Comparison

One of the major goals of research in vision-based physical rehabilitation and
monitoring is to provide an automated clinical assessment of a musculo-skeletal
patient’s physical condition. For many CV applications such as object detec-
tion or activity recognition the objective is well-defined (e.g., classification).
However, for assessment of patients the goal varies widely and often depends
on the clinical requirements. The requirements vary from, statistical analysis
to methods for automatically establishing clinical scores such as Fugl-Meyer
Assessment (FMA) [59], Unified PD Rating Scale (UPDRS) [103] and others.
For some cases simple presentation and comparison of joint angle trajectories
is enough, but for other cases such as automated clinical scoring, advanced
comparison algorithms are often required. It needs to be emphasized that
researchers have mostly relied only on joint positions as low-level features.
Thus, rich vision-based feature representations (e.g., BoVW, MBH) that can
provide contextual information are not available. Therefore, it is essential to
develop techniques for comparative analysis of features based only on joint
positions. Such comparisons can be done in many ways including, but not
limited to simple graphical analysis, statistical analysis, sequence comparison,
classification and regression. Methods such as graphical comparison are often
simple and may not require large datasets. On the other hand, establishing
automated clinical scoring requires advanced algorithms and large datasets to
work reliably. As explained earlier, obtaining large-scale dataset for each type
of abnormal motion is difficult. Therefore, the main challenge in this area is
to maximize the applicability of advanced algorithms with limited data.
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3 Surveys and Taxonomies

3.1 Surveys

Author References Journal Comments

Zhou et al.
2004 [164]

184 Biomedical Signal Processing
and Control

Highlights tracking methods

Webster et al.
2014 [152]

96 Journal of Neuroengineering
and Rehabilitation

Focused on Kinect-based
research, elderly care and
stroke rehabilitation

Hondori et al.
2014 [96]

105 Journal of Medical Engineer-
ing

Focuses on Kinect-based re-
search and highlights impact
of Kinect

Da Gama et
al. 2015 [40]

66 Games for health journal Focuses on Kinect-based re-
search

Sathyanarayana
et al.
2018 [119]

192 Journal of Ambient Intelli-
gence and Humanized Com-
puting

Patient monitoring and algo-
rithms

Ahad et al.
2019 [2]

79 CVPR workshop Action understanding for as-
sistive healthcare

Table 1: Existing reviews and surveys on vision-based physical rehabilitation and
assessment research

Table 1 lists surveys and reviews aimed towards vision-based physical rehabil-
itation and assessment. Zhou et al. [164] surveyed human motion tracking for
rehabilitation. It focuses mainly on various vision and sensor based tracking
systems. It further discusses home-based and robot-aided rehabilitation sys-
tems. The article doesn’t describe algorithms used for comparative evaluation
or abnormal activity detection.

Webster and Celik [152] reviewed Kinect-based research and focused on for-
mulation of rehabilitation exercises for monitoring. The authors discuss elderly
care and stroke rehabilitation methods. Within elderly care, fall detection, fall
risk reduction and Kinect-based gaming are discussed. Articles under stroke
rehabilitation is categorised into evaluation of Kinect, rehabilitation methods
and Kinect gaming. Similarly, Da Gama et al. [40] also reviewed Kinect based
researches. The focus of this review is on formulation of rehabilitation experi-
ments, subsequent monitoring of progress and analysis of various comparison
techniques. Most of these techniques rely on basic methods including average
angle flexion, Euclidean distance, mean error, correlation coefficient and oth-
ers. The authors present taxonomy in terms of ‘Evaluative’, ‘Applicability’,
‘Validation’ and ‘Improvement’ category. The taxonomy is based on clinical
perspective. Both [152] and [40] review articles from a clinical perspective
where clinical progress made by patients is a major focus. Sathyanarayana et
al. [119] reviewed articles from CV perspective and highlighted vision algo-
rithms. Their taxonomy is based on clinical application and articles include
areas such as ADL recognition or fall detection which does not always include
abnormal or impaired physical motion. Moreover, the review does not include
articles after 2014.
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In the current study, existing research has been reviewed from CV applica-
tion perspective. We highlight the musculo-skeletal impairment, visual sensor,
feature extraction and comparison algorithms for each reviewed article. The
discussion focuses on algorithms used for discriminating and assessing physi-
cally impaired activity in comparison to regular healthy activity.

3.2 Taxonomy

In this article we develop our own taxonomy, which is necessitated due to the
lack of reviews in this area form a CV application perspective. The review
both categorises and tabulates the articles for highlighting different aspects.
As discussed in Sec. 2, it focuses on the following three character-
istics: 1) data collection, 2) feature extraction and representation,
and 3) feature comparison. Thus, the articles reviewed are tabulated to
address these aspects. The columns headed Target and Dataset highlight
the kind of impairment, area of body affected and briefly summarises the data
collected. The columns headed Sensor/Data and Feature summarises the
types of sensor data, feature extracted from the sensor and feature represen-
tation or encoding algorithm. We have also listed any non-vision hardware
used along with vision sensors. The last column having heading Objective
summarises the comparison method and the objective from the application
perspective. Most of the reviews on other areas of vision-based research have
focused on categorising the discussion in terms of algorithms or techniques
used. Articles reviewed often have common goals such as activity recognition,
pose estimation and they also use common datasets. Thus a readily available
and fair comparison between the methods used can be drawn. But, due to the
wide ranging goal of researches in vision-based rehabilitation domain, authors
have used very different data, features and comparison methods. Thus, it is
very difficult to categorise each research in terms of methods or algorithms
used and compare them. Instead, we propose our taxonomy based on end user
application. However, discussion on each of application types have been fur-
ther broken in paragraphs based on similarity of methods used. The Author
column in each Table also indicates the sub-category an article is
placed into. Primarily applications are placed into two major categories, re-
habilitation and assessment. These can be further sub-categorised as listed
below:

1. Rehabilitation: Automated rehabilitation system
(a) Virtual rehabilitation
(b) Direct rehabilitation

2. Assessment: Point in time assessment
(a) Comparison
(b) Categorisation
(c) Scoring
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3.2.1 Rehabilitation

In rehabilitation systems, the primary goal is to provide an automated home
or in clinic system for patients to undergo physical therapy, gesture therapy or
other rehabilitation exercises. Such a system guides patients to perform their
rehabilitation tasks. Rehabilitation may be fully automated and/or clinician
mediated. Research in this category normally aim to improve the patient’s
physical condition. Most of the research in this category are of the type Vir-
tual Rehabilitation. In virtual rehabilitation, a patient’s performance in
a virtual world is assessed rather than directly assessing patient’s physical
performance. This includes avatar performing tasks in virtual world and the
use of serious games for rehabilitation. Here, subjects are required to perform
activities in a virtual world through real world movements. In Direct Re-
habilitation systems, users are guided by a web-based interface to perform
rehabilitation exercises, while their movements are directly tracked through
vision-based sensor. In this case, physical performance of patient is measured
instead of their avatar’s performance or their ability to complete tasks in vir-
tual world. Patient assessment may be inbuilt or may require clinicians.

3.2.2 Assessment

In assessment applications, the goal is to provide a point in time assessment
of a patient’s quality of motion linked to one or more body parts. There is
no rehabilitation system involved. Assessment may be carried out in a clinical
or non-clinical setting. Assessment application can be further categorised into
three types and based on the way a user would receive the end output. The
first type is Comparison where a patient’s data (e.g., kinematic parameters)
are extracted for comparison but there is no decisive automated scoring sys-
tem available. In such applications, there may be statistical comparison like
Analysis of Variance (ANOVA) or simple graphical comparison of kinematics
represented by trajectories of an ideal vs a patient’s joint angle or position
in time. Second, we have Categorisation type applications, which are more
decisive, where the main goal is classification. Movements may be classified as
correct-incorrect or may be classified into a few types of abnormalities. This
includes both gesture/posture and activity recognition. In the third Scoring
type applications, a decisive score is attached to patient movements to assess
their quality of motion. This can be clinical scoring such as FMA [59] or author-
proposed scoring. The score maybe for assessing the quality of movement or
quantify the differences from an ideal motion. Next, we review various articles
published in the domain of monitoring and rehabilitation of musculo-skeletal
patients according to the taxonomy developed. We, present all the articles in
tabular format and discuss more relevant articles in details.

4 Virtual Rehabilitation
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Author Target Dataset Sensor/data Feature Objective

Sucar et al.
2008 [132]
(NS)

Stroke, upper
limbs

1 patient,
6 therapy
sessions

RGB camera/
skin colour

Colour based
hand trajec-
tory

Gesture ther-
apy through
hand tracking

Sucar et al.
2010 [133]
(NS)

Stroke, upper
limbs, face

42 stroke pa-
tients, 21 ther-
apy sessions

RGB camera,
pressure grip-
per/ colour
ball, hand
pressure

Hand trajec-
tory based on
colour ball
detection

Gesture ther-
apy through
hand track-
ing and face
detection

Cameirão et
al. 2010 [19]
(NS,S)

Stroke, upper
limbs

10 control sub-
jects, 12 pa-
tients, virtual
tasks therapy

RGB camera,
finger tracking
gloves/color
marker, finger
positions

lower arm and
finger based
kinematic
parameters

ANOVA anal-
ysis based
patient assess-
ment

Aviles et al.
2011 [7] (NS)

Stroke, upper
limbs

4 healthy sub-
jects, 3 min
sessions

RGB camera,
pressure grip-
per/ colour
ball, hand
pressure

Hand trajec-
tory based on
colour ball
detection

Assessment
based on
POMDP

Schönauer et
al. 2011 [122]
(S)

Chronic pain,
whole body

6 patients, 4 to
6 game ther-
apy sessions

Kinect,
iotracker
[111]/skeleton
data

FAAST [134]
gesture, skele-
ton trajectory

Comparison
of Kinect
and marker
based skeleton
tracking

Kurillo et al.
2011 [76] (NS)

Stepping in
place

12 healthy
individu-
als, stepping
exercise

RGB-D cam-
era

segmentation
algorithm
based hip
angle

correspondence
algorithm,
variance anal-
ysis

Da Gama et
al. 2012 [39]
(S)

General reha-
bilitation, up-
per limb

50 correct,
60 wrong
movement

Kinect/ skele-
ton data

Shoulder and
elbow angles

Correct Move-
ment Recogni-
tion and visual
guidance

Chang et al.
2012 [25] (S)

SCI, shoulder
movements

2 subjects, 1
healthy, 1 pa-
tient

Kinect, Op-
tiTrack/
OpenNI skele-
ton

Right hand,
elbow and
shoulder
trajectory

Trajectory
compari-
son between
Kinect and
OptiTrack

Fern’ndez-
Baena et al.
2012 [52] (S)

Knee rehabili-
tation

1 subject,
9395 frames

Kinect, Vi-
con/ NITE
skeleton

Joint angle
trajectory

Comparison
of ROM, ME,
and MER

Antón et al.
2013 [3] (S)

General re-
habilitation,
whole body

5 subjects, 80
recordings

Kinect/ skele-
ton data

Body posture
in frames

Posture recog-
nition of 3D
avatar

Parry et al.
2014 [106]
(NS,S)

Burn injury,
upper limbs
rehabilitation

30 children
video data

8 camera
3d motion
analysis sys-
tem/skeleton
data

shoulder el-
bow angles,
elevation time

Assessment
of ROM,
ANOVA anal-
ysis

Adams et al.
2015 [1] (S,A)

Stroke, upper
limb

14 impaired
arm stroke
patients

Kinect/
Kinect SDK

Joint angle,
rate and
acceleration

Proposes
VOTA metrics
for clinical
assessment

Pei et al. 2016
[108] (S)

Stroke, whole
body rehabili-
tation

3 healthy
adults, 7 ex-
ercises, 20
repetitions

Kinect/ skele-
ton data

Joint angle
comparison

Joint angle
statistical
analysis

Desai et al.
2016 [41] (S)

Stroke, whole
body rehabili-
tation

10 healthy
subjects

Kinect/skeleton
data

Joint angle
based skeleton
model

Skeleton
model based
game
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Avola et al.
2018 [8] (S,A)

PD, whole
body

20 healthy,
therapy
session, 3
rehabilitation
exercises

Kinect, LMC,
HMD/ Skele-
ton data

Kinect:
position,
speed, angle,
LMC: pinch
strength, fin-
gertip speed;
3 whole body
rehabilitation
exercises

LSTM for pro-
viding impair-
ment scoring

Table 2: Virtual rehabilitation: systems where users perform activities in virtual
world for completing rehabilitation tasks. NS: Non-skeleton based; S: Skeleton-
based; A: Automated Assessment

The objective in virtual reality and serious games-based rehabilitation appli-
cation is to provide a set of virtual tasks that will require the user to perform
therapeutic gestures, rehabilitative or cognitive exercises (Table 2). The move-
ment of the user in the real world is tracked through devices like Kinect, or
other sensors that can accurately reproduce an user’s movement in the virtual
world, often through an avatar. In virtual rehabilitation systems role of CV
is largely limited to tracking. In this survey, we have focused on works with
secondary objective related to CV such as gesture, pose recognition or simple
graphical comparison of trajectories of the concerned body joint angle. The
discussion is split into, non-skeleton, skeleton-based and automated assessment
systems.

4.1 Non-skeleton based

Virtual rehabilitation existed before skeleton tracking became feasible. Early
research in this area used indirect methods for tracking human limb move-
ments such as colour detection, object detection and others. In 2008, Sucar et
al. [132] used skin colour to track hands for gesture therapy. Colour markers-
based skeleton tracking has been used as a cheap alternative to inertial sensor
tracking. Sucar et al. [133], developed rehabilitation system for hand move-
ment of stroke patients. A total of 42 patients went through the rehabilitation
program. A green ball attached to a hand gripper is used for tracking as shown
in Fig. 2. Participants are required to move their arm through a simulated en-
vironment. Stroke patients often compensate reduced hand movement through
trunk. This trunk compensation is observed through face tracking. Face detec-
tion and tracking is implemented using Haar Cascade classifiers [147]. Authors
have also attempted to use their own skeleton tracking algorithms for rehabil-
itation in virtual reality [101].

Non-skeleton based methods are inherently limited in ability due to lack
of joint positions. Mostly, such methods are able to track either one joint such
as an arm [132]. This can be sometimes compensated by using vision-based
feature extraction methods such as body tracking from silhouette [83, 100].
In [100], depth information has been used in a RANSAC-based plane fitting
method to discriminate the subject plane from background. This, combined
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Fig. 2 An example of virtual rehabilitation where performance in the virtual world is
considered for assessment. Here, hand is tracked indirectly through the green ball [133].

with morphological operations enabled the users to select the human silhou-
ette. In virtual rehabilitation, since most of the assessment is done to achieve
the objective of completing the game, there is little scope for further statis-
tical or other algorithmic comparison. However, to tackle complex decision
processes, algorithms such as Partially Observable Markov’s Decision Process
(POMDP) can be applied as in [7].

4.2 Skeleton-based

With the introduction of Microsoft Kinect in 2010, skeleton tracking became
feasible and readily accessible. Chang et al. [25] used Kinect to measure joint
position and angle trajectories in their proposed game for shoulder rehabilita-
tion. Each participant was required to perform 6 different shoulder exercises
which were quantified as correct or wrong by OpenNI middleware. The au-
thors also compared Kinect skeletal data with OptiTrack for establishing the
ground truth. Fern et al. [52] used several common exercises of hip, knees
and shoulders in form of a serious game called rehabtimals. Joint rotation
data over time was used to calculate kinematic metrics such as Range of Mo-
tion (ROM), Mean Error (ME) and Mean Error Relative (MER) in ROM.
Da Gama et al. [39] used joint angles calculated from Kinect skeleton data to
detect correct exercise posture. A total of 3 physiotherapists, 4 adults and 3
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elderly subjects were used to evaluate the prototype. The system was able to
recognize the correct movements 100% of the time under controlled conditions.

Here, most authors have used their own small datasets and thus, it is
difficult to ascertain their generalisability. Owing to availability of skeleton
positions, kinematic parameters have been used for performing statistical com-
parisons like ANOVA analysis. Small datasets are not sufficient for the appli-
cation of Deep Learning (DL) algorithms but other algorithms such as HMM,
DTW could have been used for comparing temporal sequences. Joint angle
comparison is good for posture recognition. However, time sequence compar-
ison algorithms are essential for comparing joint angle and/or joint position
trajectories.

4.3 Automated assessment

Some virtual rehabilitation systems also have an integrated automated as-
sessment. Adams et al. [1] proposed to assess upper limbs motor function
through practice of ADL in virtual reality. Motor function metrics, such as du-
ration, normalized speed, Movement Arrest Period Ratio (MAPR) obtained
from skeletal tracking via Kinect were used to calculate Wolf Motor Func-
tion Test (WMFT) [154]. This score was co-related to the proposed Virtual
Occupational Therapy Assistant (VOTA) metrics and it was found that the
proposed metrics can be used to assess patient’s ability to perform ADL. With
their affected arm, 14 hemiparetic stroke patients were asked to participate in
a virtual meal preparation activity. The results indicated satisfactory corre-
lation between proposed VOTA metrics and the standard WMFT metrics.
VRehab [8] used Long Short-Term Memory (LSTM) networks for estimating
the degree of patient impairment. For evaluation, 20 healthy subjects were
filmed using Kinect and Leap Motion Controller (LMC). Kinect was used to
provide joint positions, angles and speeds as features while LMC provided
pinch strength, average speed of fingertips. Three different LSTM networks
were trained for regressing impairment scores for three different exercises. The
trial included 5 patients who were scored by the system and 5 physiothera-
pists. The proposed system provided score was shown to be very close to the
average score by physiotherapists.

5 Direct rehabilitation systems

Author Target Dataset Raw data Feature Objective

Ghali et al.
2003 [57] (V)

Stroke, upper
limbs

1 stroke pa-
tient

RGB cam-
era/colour

colour based
object trajec-
tory, colour
histogram

Object recog-
nition, Event
detection for
text feedback
to patient

Tao et al. 2004
[139] (M)

Stroke, upper
limbs

Target reach-
ing motion

RGB Cam-
era, Qual-
isys/Colour
marker

Joint angles
trajectory

Statistical
comparison
with Qualisys
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Zariffa et al.
2011 [159] (V)

Neurological
injury of palm

10 healthy
subjects, 3
types of grip

2 RGB cam-
eras

Hu invariant
and contour
signature ex-
tracted from
background
subtraction

Grip clas-
sification
through KNN

Huang et al.
2011 [67] (V)

Cerebral palsy
and muscle at-
rophy, upper
limbs

4 patient sub-
jects

Kinect/ Skele-
ton data

Joint angles
based posture

Correct ex-
ercise count
through
posture recog-
nition

Chang et al.
2011 [26] (V)

Cerebral palsy
and muscle at-
rophy, upper
limbs

2 patients, 34
days therapy

Kinerehab [67] Joint angles
based posture

Correct ex-
ercise count
through
posture recog-
nition

Frisoli et al.
2012 [55] (M)

Hemiparesis
stroke, upper
limb

3 healthy
subjects, 4
chronic stroke
patients

BCI,
Robotic arm,
Kinect, Eye
tracker/Skeleton
data

SURF feature,
Eye-gaze dis-
tance, 3D ob-
ject maps

Robot arm
aided reha-
bilitation,
SVM based
BCI signal
classification,
Lucas-Kanade
object track-
ing

Chang et al.
2013 [27] (V)

Cerebral
palsy, upper
limbs

2 patients 25
days therapy

Kinect/ SDK
skeleton

Joint angles
based posture

Correct ex-
ercise count
through
posture recog-
nition

Lin et al. 2013
[89] (V)

Tai-Chi upper
limb rehabili-
tation exercise

2 patients
with bone
motor impair-
ment

Kinect/ skele-
ton data

Normalized
skeleton tra-
jectory from
subject and
database

Grading
of posture
through mean
error

Exell et al.
2013 [49] (M)

Stroke, arm
rehabilitation

3 patients,
18 therapy
sessions

Kinect, stim-
ulation
glove/SDK
skeleton

Joint angle
trajectory

Graphical
comparison
of Joint angle
trajectory

Galeano et al.
2014 [56] (M)

Balance train-
ing system

6 healthy sub-
jects

Kinect,
Wii bal-
ance board/
skeleton data

Mediolateral
and antero-
posterior
sways

Rehab
through FES,
provide feed-
back through
posturography

Su et al. 2014
[131] (V)

General shoul-
der rehabilita-
tion exercises

320 vectors
for training,
6 subjects for
testing

Kinect/ skele-
ton data

Euclidean
joint distance
based DTW
vector

Neural Fuzzy
system for
performance
evaluation

Benettazzo et
al. 2015 [15]
(V)

Shoulder reha-
bilitation ex-
ercises

10 partic-
ipants, 2
exercises

Kinect/
OpenNI skele-
ton

Joint position
Euclidean Dis-
tance from ref-
erence

Audio feed-
back and ANN
based posture
recognition

Devanne et al.
2018 [42] (M)

Low back pain
rehabilitation

1 patient, 1
clinician, 3 ex-
ercises

2 arm hu-
manoid robot,
Kinect/ skele-
ton

GP-LVM
based mod-
elling space

Model clin-
ician move-
ment adapted
to patient

Devanne et al.
2018 [43] (V)

General reha-
bilitation

5 over 60 sub-
jects

Kinect/ skele-
ton

GMM, Rie-
mannian
manifolds

Classification
by temporal
segmentation
analysis

Baptista et al.
[10] (V)

Stroke, lower,
upper limbs

10 healthy
subjects, two
sessions

Kinect/ Depth
image based
skeleton [125]

Joint angle
comparison,
Euclidean
distance

Real time
feedback
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Schez-
Sobrino et
al. 2019 [121]
(V)

Stroke, upper
limbs

1 patient,
rehabilitation
exercises

Kinect/ Skele-
ton data

OE-DTW
[141]

Classification
by time series
comparison

Table 3: Physical rehabilitation: Instead of virtual performance subject’s physi-
cal movements are tracked for guiding or assessing rehabilitation. V:Pure vision-
based; M: Multi-Modal

In direct rehabilitation systems, there is usually an exercise regimen prescribed
for patients and the purpose is to demonstrate their functional improvement.
Patients may be guided through a web-based interface for performing tasks
similar to virtual rehabilitation type applications. However, unlike virtual re-
habilitation, a subject’s physical performance in the physical world is consid-
ered for further assessment or feedback. The discussion can be split into two
parts: First, where CV sensor is exclusively used to obtain primary data and
second, where non-vision systems such as assistive robots are used.

5.1 Pure vision-based

Ghali et al. [57] used object detection techniques for tracking hand movement.
A camera was placed above kitchen platform and movement and orientation of
objects was used as a measure to track the hand movement. Sequence of hand
movement is used to determine whether an activity such as ‘making coffee’ is
successfully completed. Kinect does not track finger joint positions. Zariffa et
al. [159] used Hu invariant and contour signature extracted from background
subtraction as features for classification of hand grip variations. Two cameras,
one for top view and one for side view, were used to film 10 subjects against
a standard background. Several types of grips fundamental to ADL such as
lateral key grip were filmed. KNN was employed for classification.

Fig. 3 An instance of a direct rehabilitation systems where a patient’s performance is
directly assessed through joint position tracking. In [89], Tai-Chi exercise pose is compared
to a standard pose and feedback is provided.
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The Kinect SDK provides advanced information such as kinematics and
gesture recognition. Authors have used this to count the number of times cor-
rect posture was attained as a measure of rehabilitation progress [26, 27, 67].
Lin et al. [89] used 10 standing and 18 seated Tai-Chi regimen as rehabilita-
tion exercises. Rehabilitation poses of two patients were compared to a perfect
execution of Tai-Chi, for measuring progress over time. Patients were rehabili-
tated and monitored in two phases. First, with physiotherapists and then with
video and Kinect. Posture attained by patients were compared through ME
with target posture and subsequently graded. Feedback was provided to the
user as shown in Fig. 3. Each time the system’s assessment was compared to
that of a physiotherapist for validation.

Su et al. [131] proposed a fully independent Kinect Enabled Home Rehabil-
itation (KEHR) system. The system provided four functions, 1) rehabilitation
management software system, 2) reference exercises, 3) recording exercises per-
formed at home using Kinect and 4) evaluation of performance. Performance
was compared through DTW and Fuzzy Logic. Four different subjects were
asked to perform different types of shoulder rehabilitation exercises in a con-
trolled environment. Assessment was provided in form of messages like “right
hand: good”, “left hand: bad”, “too slow” etc. Physicians and the KEHR sys-
tem agreed 80% of the time.

5.2 Multi-Modal

In multi-modal applications, CV sensors (e.g, Kinect) are combined with other
assistive technologies including, but not limited to assistive robots and elec-
trical stimulation. Normally, the patients using the rehabilitation systems are
guided via visual animation or clinicians. Galeano [56] used Functional Electro-
Stimulation (FES) for assistance while providing visual feedback through pos-
turography on skeletal data. Frisoli et al. [55] introduced a gaze independent,
wearable Brain-Computer Interface (BCI) driven robotic exo-skeleton for up-
per limb rehabilitation in stroke patients. The first objective was to select real
world object by estimating eye-gaze through a vision-based eye tracking sys-
tem. Speeded Up Robust Features (SURF) [14] was used for object matching
and Lucas-Kanade tracking algorithm [91] was applied to track objects using
depth data from Kinect. Second objective was to assist patient arm movement
for moving real world objects. To achieve this, signal from the BCI was fed to
a Support Vector Machines (SVM) classifier to ascertain if subject intended
to move his or her arm. Then, the signal was used to actuate robotic-arm. De-
vanne et al. [42] proposed a humanoid robot guidance system for rehabilitation
from lower back pain. A Gaussian Process Based Latent Variable Model (GP-
LVM) has been used to model exercise movements from a clinician. It then
models the clinician’s activity according to patient morphology to guide the
rehabilitating patient.

In [26,27,67], the goal is to count correct postures by calculating the joint
angles. This fails to tell us how close the patient is to getting the posture
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correct. A slightly better way is to compare joint angle trajectories as in [49]
or grading of error through ME as done by [88]. To judge if an exercise is
executed correctly it is also essential to qualify the starting posture as correct
[15], which is not the case in approaches mentioned above. These approaches
are mostly primitive and lack analysis of the whole temporal sequence. Later
approaches have taken advantage of time-sequence comparison algorithms such
as DTW or variants of it like Open-ended DTW (OE-DTW) [121]. These
have been combined with various grading methods for better understanding
of patient’s state. Clinicians mostly use their experience to judge a patient’s
state without taking into account kinematic parameters. Therefore, it may
be beneficial to use kinematic parameters as training data and use clinician’s
score as labels to build a model that can present a true representative of
clinicians. In automated rehabilitation, it is not always feasible to be guided
via screen interface. In such scenarios, other assistive technologies like BCI and
human motion imitating robots are very useful [51]. For assistive robots, it is
important to work according to patient’s morphology as demonstrated by [42].
The authors also show us very good implementation of latent model needed to
transfer low dimensional latent space to high dimensional robot space through
the probabilistic model GP-LVM.

6 Comparison

Author Target Dataset Raw data Feature Objective

Goffredo et al.
2009 [60] (S)

Sit to stand 5 subjects and
5 healthy el-
derly

Joints marked
in first RGB
frame

Tracking
by Gauss-
Laguerre
transform
algorithm

Discriminatory
analysis be-
tween young
and old

Leu et al. 2011
[83] (K)

Gait abnor-
mality

20 healthy, 10
patients

2 RGB camera
system

skeleton ex-
traction from
silhouette

Knee angle
based gait
comparison

Stone et al.
2012 [129] (K)

Older adults,
Gait abnor-
mality

5 persons, 3
weeks walks in
4 homes

Kinect, Vi-
con/ skeleton
data

gait param-
eters: speed,
stride time
and length

Graphical
analysis

Scherer et al.
2012 [120] (K)

Stroke, brain
activity

3 healthy
subjects, hand
closing and
opening

Kinect, EEG/
NITE Skele-
ton data

Hand posture,
EEG signals

Assessing
(sub)cortical
reorganiza-
tion for hand
movement

González et al.
2013 [61] (S)

Balance as-
sessment

2 healthy sub-
jects, 42 pos-
tures

Kinect,
Wii bal-
ance board/
OpenNI skele-
ton

Center of
position,
statistically
equivalent
serial chain

Visual com-
parison of
Center of
Mass

Kurillo et al.
2013 [77] (K)

General upper
limb reachable
workspace

10 healthy
subjects, 1
FHSD patient

Kinect/
skeleton infor-
mation

Joint position,
angle, ROM

ANOVA
analysis,
statistical
comparison
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Wang et al.
2013 [150] (S)

PD, upper and
lower limbs

MSR-3D
dataset [86], 1
healthy, 1 PD
subject

Kinect/ SDK
skeleton

Temporal
skeleton tra-
jectory

Action recog-
nition through
TASS for ex-
tracting clini-
cally relevant
features

Paiement et
al. 2014 [104]
(K)

Gait, knee in-
jury

SPHERE-
Staircase2014
dataset: 48
sequences,
12 healthy, 3
knee-injury
subjects

Kinect/ SDK,
OpenNI skele-
ton data

Joint posi-
tions, veloci-
ties, pairwise
distance,
angles

Abnormal gait
detection from
statistical
modelling

Spasojević et
al. 2015 [128]
(K,D)

PD, Gait,
shoulder

12 PD pa-
tients

Kinect/ skele-
ton data

9 MPIs on
ROM, speed,
rigidity, sym-
metry ratio

SVM, KNN,
MLP based
classification,
LDA

Leightley et
al. 2015 [82]
(S,D)

Young and
adult stan-
dard clinical
tests

54 subjects, 13
rehabilitation
exercises

Kinect/ skele-
ton data

K-means clus-
tered poses
based on
Manhattan
distances

Pose recogni-
tion through
ANN, RF,
GRBM, SVM,
Kinematic
comparison

Han et al.
2015 [64]

FHSD, upper
body ROM

22 patients,
24 healthy
subjects, stan-
dard ROM
tests

Kinect/ skele-
ton data

Normalized
body-centric
3D hand
trajectory

Statistical
comparison

Tao et al. 2016
[138] (S)

Stroke and
Parkinson’s,
gait, sit and
stand

SPHERE
datasets [104]
[138]

Kinect/ SDK,
OpenNI,
skeleton data

Joint posi-
tions, veloci-
ties, pairwise
distance,
angles

HMM model
with dis-
criminative
classifier
based online
assessment

Antunes et al.
2016 [6] (S)

Stroke, Gen-
eral reha-
bilitation
movements

ModifyAction,
Weight&Balance,
SPHERE-
Walking2015
[104] datasets

Kinect/ Skele-
ton data

Normalized
and tempo-
rally aligned
skeleton se-
quence and
standardized
template

Human in-
terpretable
feedback to
better match
standard
template

Vakanski et al.
2016 [144] (D)

General mo-
tion modelling

UTD-MHAD
dataset [28]

Skeleton data DTW aligned
skeleton se-
quence, Mean
log-likelihood

MDNN to pre-
dict mean log-
likelihood as
performance
measure

Natarajan et
al. 2017 [100]
(K)

Gait analysis 20 healthy
and 4 subjects
with walking
issues

RGB-D cam-
era, Mor-
phologically
extracted
skeleton from
silhouette

Gait pa-
rameters,
step-length,
stride-length

Statistical
analysis

Dolatabadi et
al. 2017 [44]
(K)

Stroke, upper
body com-
pensatory
movement

10 healthy, 10
stroke patients

Haptic robot,
Kinect/ SDK2
skeleton data

Joint angle
trajectory

Comparison
based on AUC

Spasojević et
al. 2017 [127]
(K, D)

PD,
Gait,shoulder
and Palm

30 PD pa-
tients, various
stages

Kinect, sen-
sor glove/
skeleton data

25 MPIs based
on Kinematic
parameters

SVM, MLP
and KNN
classification
of disease
stage, LDA
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Baptista et al.
2017 [11] (S)

Physical ac-
tivity assisting
exercises

UTKinect
dataset [156],
stroke pa-
tient balance
simulation

Kinect V2/
skeleton se-
quence

SS-DTW
and TCD
based tempo-
ral sequence
alignment

Visual feed-
back for
corrective
action

Table 4: Comparison type assessment applications: Articles on patient monitoring
applications that provide graphical or statistical comparison of patient action but
do not provide a decisive patient assessment or score. K: Kinematics-based mod-
elling; S: Statistical modelling; D: Deep learning or Stochastic modelling.
EEG: Electroencephalograph

Table 4 summarises articles presenting comparative analysis of kinematic data
obtained from vision sensors. In such systems, there is no rehabilitation pro-
gram designed for patients. These articles are more important with regards to
CV rather than clinical objectives. Authors have drawn comparison ranging
from simple graphical visualisation, statistical techniques to more advanced
Machine Learning (ML) algorithms. This discussion is split into three parts.
First part discusses articles where kinematic data is directly used for compari-
son. Graphical and statistical comparison highlight differences between patient
and healthy subjects’ parameters. Second, applications where ML algorithms
has been used for modelling kinematic data. The third part discusses use of
DL algorithms for comparative analysis of patient motion.

6.1 Kinematics-based modelling

In this type of applications, researches directly use kinematic data for compar-
ison. Before introduction of Kinect, authors have used other computer vision
algorithms to extract skeleton. Leu et al. [83] used two cameras for filming
20 subjects against a standard background. Human silhouette was extracted
through background subtraction and image segmentation. This data was com-
pared to a standard stick figure model for extracting skeleton. For accuracy, the
algorithm was tested against standard sensor-based marker. Simple graphical
comparison showed visible difference between knee angle trajectories of regular
and irregular gait. Natarajan et al. [100] also used their own tracking algorithm
while introducing Reha@Home. The authors argued that detection on lower
extremity joint in Kinect is not accurate enough. Reha@Home used depth
information in combination with morphological operations to extract human
silhouette. Four different subjects with varying conditions such as multiple
sclerosis, were tested in a hospital setting both before and after treatment. The
parameters for gait analysis are hip angle, knee angle, left and right foot step
length and stride length. Performance of the system was evaluated through
comparison with data from electrogoniometer. Graphical trajectories of gait
parameters showed visible difference between be healthy subjects and patients.

The Toronto Rehab Stroke Pose Dataset (TRSP) [44] presents 3D joint
positions consisting of upper arm movements for both stroke patients and
health subjects. Kinect was used for tracking joint positions of 10 healthy sub-
jects and 10 stroke survivors having restricted arm movements. Two experts
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were recruited to annotate the dataset. The dataset was labelled into 3 differ-
ent compensatory movements and one normal movement. Area Under Curve
(AUC) values obtained from joint angle trajectory showed substantial mea-
surable difference between regular healthy and physically impaired patients’
examples.

Fig. 4 Graphical comparison of patients and healthy subjects through kinematic parame-
ters and joint angle trajectories [127].

Graphical and/or statistical comparison has also been used in situations
where patients lack any specific impairment. Spasojevic et al. [128] used four
different body movements and measurements, for discriminating PD patients
from healthy subjects. Gait, Shoulder Abduction Adduction (SAA), Shoul-
der Flexion Extension (SFE) and Hand Boundary Movements (HBM) were
considered for body movements. Speed, rigidity, ROM and symmetry ratio
were used as measurement criteria. These wer combined to create a Movement
Performance Indicator (MPI) vector of size 9. For example, only speed and
rigidity was considered for gait movement. Experiments were conducted on 12
PD patients of stage 1, 2 and 3. Subjects were filmed from front at a distance
of 1.5 meter. Ground truth was provided by physiotherapist. Graphical and
statistical comparison based on kinematic parameters showed visible differ-
ences between patients and healthy subjects. Also, four ML classifiers SVM,
K-Nearest Neighbour (KNN) and Multi-Layer Percepteron (MLP) were used
for classification, among which SVM and MLP performed better. In 2017, Spa-
sojevic et al. [127] added 16 more MPIs to the system described above. Data
from finger tracking through sensory glove was used for 15 MPIs representing
finger flexion, extension, tapping and hand rotation. For gait, another MPI was
added making a vector of total 25 MPIs. Graphical comparison as illustrated
in Fig. 4 showed visible differences between PD and healthy subjects. SVM,
MLP and KNN were used to classify PD patient stages and healthy subjects.
In this article, although ML algorithms have been used for classification, the
research presents elaborate statistical comparison directly based on kinematic
parameters.
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6.2 Statistical modelling

Instead of directly comparing kinematic data, authors have also used ML al-
gorithms for modelling human movement, which is subsequently compared
statistically or graphically. Tao et al. [138] used HMM modelling, for online
quality of motion assessment of gait on stairs, walking on flat surface, sit-
ting and standing. For discriminating skeleton sequences using HMM, entire
sequences has to be fed to a model. This was not possible in case of online
assessment and thus, a variable window approach [99] was adapted to address
the problem. Four different HMM models were used to extract features from
skeleton data to classify abnormalities using SVM.

Wang et al. [150] devised a series of exercises for musculo-skeletal patients
targeting PD patients. Activities include walking, walking with counting and
sit to stand. Again, skeleton information was obtained through Kinect placed
in front of patient and on top of table. Step size, postural swing level, arm
swing level, stepping time were used as criteria to asses a patient’s mobil-
ity level. The paper proposed a Temporal Alignment Spatial Summarisation
(TASS) algorithm to isolate repetitive skeletal movements from video stream
through Skeletal Action Unit. The SAU extracted clinically important kine-
matic parameters like arm swing level and stepping time for evaluation. This
method was evaluated against the standard MSR-Action3D [86] action recog-
nition dataset. For clinical validation, a single PD patient and a healthy subject
were asked to perform walking and sit-to-stand experiment. Data from both
the experiments showed difference between the PD patient and the healthy
subject.

Antunes et al. [6] framed the assessment problem as feedback to be pro-
vided to a skeleton sequence to better match a standard execution sequence
template. The system has been evaluated on three publicly available datasets.
The first, ModifyAction used pairs of actions from UTKinect [156] and MSR-
Action3D [86] dataset. The second dataset was SPHERE-Walking2015 [104]
which contained normal walking and simulated stroke patient walking. The
third dataset, called Weight&Balance was introduced in this paper and it pre-
sented simulated data of stroke affected arm mobility. Data normalization was
used for spatial alignment and DTW was used for temporal alignment. The im-
portance of this research resides in the feedback mechanism that was provided
at each instant for better execution of human action.

Baptista et al. [11] also saw the problem as essentially finding the dif-
ference between two skeleton sequences. This allowed them to use publicly
available UTKinect [156] dataset to address the problem without specifically
using patient or simulated patient data. The authors used Sub-Sequence DTW
(SS-DTW) [97] and TCD [33] algorithms to match user action to a specific
template and provide feedback highlighting deviations from normal execution.
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6.3 Introduction of stochastic methods

The area of vision-based rehabilitation and monitoring has not seen extensive
application of DL methods. This is mainly due to lack of large scale datasets
needed to train DL networks. In 2015, Leightley et al. [82] presented the Kinect
3D Active (K3D) dataset which captured motions based on common clinical
assessments. used to determine altered patient movements. Fifty four subjects
aged 18 to 81 were asked to perform 13 clinical tests including balance, open
and closed eyes, jump, chair stand and others. Owing to the diverse age re-
lated conditions the subjects’ movements varied widely for any given activity.
Several algorithms were used for action classification out of which SVM and
Artificial Neural Network (ANN) achieved the best accuracy. To assess clinical
condition the activities were further analysed in terms of average time taken
to complete an action.

In absence of large-scale publicly available dataset, simulating or generating
data has been also considered. Vakanski et al. [144] trained their Mixture Den-
sity Neural Network (MDNN) on the standard action recognition UTD-MHAD
dataset [28], to model human movement for each action. Mean log-likelihoods
of observed sequences were used as the performance metric for evaluating the
consistency of a subject’s performance. Then, random noise was imparted to
generate deviations from standard action and these deviations were measured.
The proposed model was programmed to be usable with skeleton data captured
through Kinect.

The articles presented above propose exclusive assessment type application
and often do not include any rehabilitation method. They have used more ro-
bust approach for assessment in the sense that authors have compared more
kinematic parameters, used more advanced statistical analysis and have used
bigger datasets. For example, in rehabilitation type applications, many authors
have chosen simple joint angle or joint angle trajectory comparison [49, 67].
In general, authors have used better statistical comparison including Lin-
ear Discriminant Analysis (LDA) [127, 128], TCD [11], likelihood [104, 144],
ANOVA [77]. In comparison type applications, we also see the implementation
of more robust kinematic parameters such as 25 different MPIs in [127, 128],
normalized sequences [64], temporally aligned sequences [6]. As a result, such
applications are able to carry out more complex comparison including gait
analysis and compensatory movements, as opposed to simple gesture or pos-
ture recognition of a single or few joints. We also observe the introduction of
publicly available datasets which paves the way for competitive evaluation of
the proposed models [11, 104, 138]. However, statistical comparison does not
provide a decisive scoring or classification of a patient’s condition. The next
two sections discuss applications that can classify or grade patient’s quality of
motion.
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7 Categorisation

Author Target Dataset Raw data Feature Objective

Cho et al.
2009 [32](R)

PD gait recog-
nition

7 PD, 7
healthy sub-
jects

RGB camera PCA and LDA
from binary
silhouette

MDC based
classification

Taati et al.
2012 [136](S)

Posture com-
pensation

7 healthy sub-
jects simulat-
ing compensa-
tion

Kinect/ skele-
ton data

3D oreintation
of subset of
joint lines

Posture classi-
fication based
on HMM and
SVM

Metcalf et al.
2013 [95](R)

Stroke, hand
rehabilitation

2 hand modes,
76 videos,
1692 frames

Kinect/ depth
data

Contour, kine-
matic hand
model

Hand grip
classification,
joint angle
comparison

Leightley
et al.
2013 [79](S)

General re-
habilitation
activities

20 subjects,
200 activities,
60225 frames

Kinect/ SDK
skeleton data

Position, ve-
locity, energy

Activity
recognition by
PCA-SVM,
RF

Kertész et al.
2013 [71](S)

General re-
habilitation
exercise,
whole body

7 subjects, 8
exercises 654
samples

Asus Xtion/
NITE skeleton
data

skeleton tra-
jectory based
reference
model

SVM, Numer-
ical model
based Posture
recognition

Jun et al. 2013
[69](S)

Knee Os-
teoarthritis

5 healthy sub-
jects, 2 sets *
4 trials

Kinect/ skele-
ton data

Normalized
and PCA re-
duced skeleton
information

Subject clas-
sification
using KNN,
automation
for individ-
ualization
of exercise
regimen

Liu et al. 2013
[90](S)

General reha-
bilitation ex-
ercise, arm

10 subjects,
3200 postures

Kinect/
OpenNI skele-
ton

45 normalized
3D coordi-
nates

Posture recog-
nition, Action
recognition
through SVM

Kargar et al.
2014 [70](S)

Gait severity,
Go and get up
test

12 elderly sub-
jects, 50 sam-
ples

Kinect/ skele-
ton data

Gait features:
step distance,
duration;
skeletal fea-
tures: joint
distance,
angle

Fall risk
classification
through SVM
and BoW

Cary et al.
2014 [24](S)

Stroke, upper
limbs

10 subjects, 5
poses, 5 repe-
titions

Kinect,skelton
information

17D vector, 4
joint angles
and body
inclination
angle

ANN Gesture
recognition

González-
Ortega et al.
2014 [62](R)

Cognitive psy-
chomotor ex-
ercises

10 healthy, 3
frontal lobe in-
jury, 2 demen-
tia, 5 tests, 14
exercises

Kinect/
OpenNI skele-
ton, depth
image

Joint position,
Mean and
Gaussian cur-
vature from
depth image

Skeleton, Face
eye, ears, nose
detection for
posture recog-
nition using
HK classifica-
tion [16]

Palma et al.
2016 [105](S)

General reha-
bilitation ex-
ercises, upper,
lower limbs

14 subjects,
10 exercise,
100 incorrect

Kinect/ Skele-
ton data

Quantized
joint angles

Error recog-
nition using
HMM and
MD-DTW

Capecci et al.
2016 [21](S)

General motor
disabilities,
whole body

19 healthy,
14 patients,
5 Lower back
pain exercises

Kinect V2/
skeleton data

Relative
joint an-
gle, velocity,
constraints

HSMM for
discriminat-
ing improper
execution
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Richter et al.
2107 [115](S)

Errors in hip
abduction

3 patients, 3
scenarios

Kinect/ skele-
ton data

Local and
hierarchical
coordinates
based I-DTW

SVM based er-
ror classifica-
tion, live feed-
back

Leightley
et al.
2017 [81](S)

Motion insta-
bility identifi-
cation

K3D dataset
[82]

Kinect/ skele-
ton data

Joint groups
comprising
body centric
coordinate
positions,
angles

Unstable
motion classi-
fication using
DCNN and
ML algo-
rithms

Richter et al.
2017 [114](R)

Errors in hip
abduction

1 patient Kinect/ skele-
ton data

automatically
determined
class spe-
cific joint
combinations

Weight-based
hip abduction
error classifi-
cation, visual
feedback

Leightley
et al.
2017 [80](R)

Standard
clinical tests,
whole body

K3Da Dataset
[82]

Kinect/ skele-
ton data

group of joint
angle, dis-
tance, body
lean angle

Mobility
classification
through ML
algorithms

Pogrzeba et al.
[112](R)

Stroke, PD,
repetitive
hand move-
ments

10 healthy, 20
patient sub-
jects, drum
beats 122-126
per minutes

Kinect Kinect
SDK/ skeleton
data

PCA re-
duced skeleton
trajecto-
ries, mean,
standard
deviations

Logistic re-
gression based
correct speed,
consistency,
variability
classification

Khan et al.
2018 [72](S)

Infants with
motor disabil-
ities

10 infants,
supine and
prone position
video

Kinect/ RGB,
depth data

size, area,
position of
bounding box
through Body
segmentation

Infant move-
ment clas-
sification
through SVM

Rivas et al.
2018 [116](S)

Stroke patient
engagement

5 patients, 10
sessions, ges-
ture therapy

Camera pres-
sure gripper/
colour marker

Kinematic
features,
grip pressure
features

MSNB classi-
fier for patient
states: anx-
iety, pain,
engagement
and tiredness

Chen et al.
2018 [30](S)

General upper
limb reha-
bilitation
exercises

20 samples,
11134 frames

Kinect/ RGB,
Depth

Skeleton
extraction al-
gorithm, skin
color detec-
tion for face
orientation

DTW based
correct exer-
cise recogni-
tion

Zhi et al. 2018
[163](S)

Stroke, upper
body com-
pensatory
movement

TRSP dataset
[44]

Kinect/ skele-
ton data

Noise reduced
and body cen-
tric joint posi-
tions

Classification
through SVM
and LSTM

Antunes et al.
2018 [5](S)

Senior lower
body fitness

11 young,
10 elderly
subjects, 4
exercises

Kinect/ RGB,
skeleton data

RGB video,
skeleton tra-
jectory

ANN, LSTM
activity
recognition,
Kolmogorov-
Smirnov test

Li et al. 2018
[84](S)

General reha-
bilitation ex-
ercises

UI-PRMD
dataset [145]

Kinect/ skele-
ton data

Scaled and
mean shifted
joint angle
trajectory,
RMS based
soft-labels

Modelling and
evaluation
of movement
through GAN

Table 5: Categorisation type assessment applications: Articles that discriminate pa-
tient movement as correct-incorrect or provide a discrete rating. R: Rule-based;
S: Statistical or Stochastic Algorithms-based. MDC: Minimum distance clas-
sification, MSNB: Multi-Resolution Semi-Naive Bayesian
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In this section, we review articles where the primary goal of the research
is to categorise a patient activity into discrete categories including, but not
limited to correct/incorrect posture and good/bad movement. In contrast to
comparative analysis, articles reviewed in this section are more decisive in
terms of providing patient assessment. Technically, most of the articles in this
section have the goal of posture or action recognition where discrimination is
done between improper and proper execution of activities. But, it also includes
disease severity classifications, determination of a patient’s cognitive abilities
and so on. The discussion is split into two parts: 1) hand-crafted or rule-based
and 2) statistical algorithms based.

7.1 Rule-based

In some cases, final posture is important and simple hand-crafted algorithms
are sufficient for correct posture recognition. Metcalf et al. [95] used depth
frames for measuring hand (finger) kinematics. A Kinect device was placed
80 cm above a table where subjects were filmed. Binary image of palm was
extracted from depth and RGB data. Palm contour was then fitted to a ge-
ometrical kinematic model to determine joint angles. Based on sequence of
joint key-points (finger tip, finger spaces), a grip classification algorithm was
developed. Gonzalez-Ortega et al. [62] used computer vision for assessment of
patient’s cognitive motor abilities. Here, the goal was to see whether a pa-
tient can understand verbal instructions and perform simple motor tasks. A
group of 10 subjects were used to provide healthy reference while 3 subjects
with frontal lobe injury and 2 with dementia were used for rehabilitation using
the proposed system. The subjects were asked to perform 14 different type of
movements such as “touch right eye with right hand” in a controlled environ-
ment. Facial expression was detected by combining skeleton data and depth
image from Kinect with AdaBoost-based face detector. Eyes and nose were
detected using HK classification [16], which is based on curvature obtained
from depth image. In psycho-motor exercises, the final posture is important to
judge whether the subject understood the instructions. The proximity of 3D
hand position to eyes, ear and nose helped in determining successful exercise
execution. The result provided by system was compared with physicians and
overall successful monitoring rate was 96.2%. Leightley et al. [80] used the
K3D dataset [82] for automated human mobility analysis. K-means clustering
was used to create clinically relevant joint groups for each action. The joint
groups containing relevant joint trajectories were classified for recognizing the
action. Discrimination between well-performed and poorly performed action
was done on basis of the standard deviation method proposed in [13].
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7.2 Statistical and Stochastic Algorithms-based

Fig. 5 An example of categorisation type system. Group of joints are used as encoded
features for SVM. Patient’s are classified as mobile or immobile. [80].

Researchers have extensively used advanced Machine learning (ML) algorithms
for categorisation type systems. Taati et al. [136] developed a interactive sys-
tem where subjects interacted with robots for posture correction. Again, skele-
ton data was obtained from a Kinect device placed 90 cm behind the subject
and 60 cm above the subject. Seven healthy subjects were asked to simulate a
series of compensated mobility. Such movements include shoulder hike, trunk
rotation compensation, lean forward and slouch postures. For posture clas-
sification, a combined HMM and SVM-based algorithm was used. An active
learning strategy, which used a combination of manual and automatic labelling,
was employed to label the data for classification. The overall accuracy is 86%.
Palma et al. [105] presented a method for detecting deviations from normal
movements using HMM and Multiple-Dimension DTW (MD-DTW) [140]. The
authors created a dataset of 10 different upper and lower limb movements such
as hip abduction, elbow flexion and so on with 14 healthy subjects. Then, a
cohort of 10 subjects were asked to perform the same movements incorrectly
with specified errors. For analysis, the activities were divided into two parts:
1) The limb moved away from the body and 2) the limb moved towards body.
HMM was found to be more accurate for detecting error in movements when
compared to MD-DTW.
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In recent times, Generative Adversarial Networks (GANs) have been used
to generate synthetic data including but not limited to human faces and hu-
man poses. Li et al. [84] used the UI-PMRD dataset [145] to generate syn-
thetic dataset of incorrect human activities. Four different GANs models were
trained, which included two Deep Convolutional GANs (DCGAN), a Wasser-
stein GAN and a Recurrent GAN. A 1D Convolutional Neural Network (CNN)
was trained as discriminator with the GANs and soft-metric based on abso-
lute differences was used for evaluating the performance of GANs. Modelling
or replicating kinematic data through GAN is a major contribution of this
article, although it aims to classify physical movements.

In categorisation type applications, authors have used techniques ranging
from very basic rule-based classification to state-of-the-art GANs. In [62, 95],
authors have used hand-crafted algorithms to classify patient’s stages which
are very specific conditions whereas in [80], simple standard deviation was
used to classify a patient’s state. It is very difficult to ascertain the gener-
alisability of these applications in abesence of comparison through publicly
available datasets. Authors have extensively used ML algorithms such
as SVM in categorisation type applications [136,163]. As primary data,
authors have mostly used only skeleton data, with exception of [95], who have
used depth data only. Some authors have relied on kinematic parameters as
extracted features [70, 71, 81, 105]. However, others have introduced statisti-
cal techniques for feature extraction. For example, Junet al. [69] used PCA
(Principal Component Analysis) reduced kinematics and Zhi et al. [163] used
noise reduced kinematics. Then, these features have been used for classification
through standard algorithms such as SVM, CNN and LSTM. Use of classifi-
cation algorithms have enabled authors to grade patient’s state rather than
presenting a simple visual, graphical or statistical comparison.

8 Scoring

Author Target Dataset Sensor Feature Objective

Venugopalan
et al.
2013 [146](A)

Brain injury,
upper limbs

16 videos,
6 different
poses, 4 sub-
jects

Kinect/ skele-
ton data

normalized
position,
velocity, accel-
eration

Template
matching and
DTW for
calculating
similarity
score

Hsiao et al.
2013 [66](A)

Stroke, box
and block
test, hand

6 trials, 100
boxes moved

Kinect/
OpenNI depth

Contour,
largest circle
in contour

Hand and box
detection, cal-
culate number
of box trans-
ferred

Cuellar et al.
2014 [38](A)

General re-
habilitation
exercises,
lower and
upper body

10 healthy
subjects, 3
motion and 2
posture hold-
ing exercise

Kinect/ skele-
ton data

Transformed
3D vector
from quater-
nion rotation
of joint angles

Performance
scoring,
Template
based posture
matching,
DTW based
skeleton
sequence
matching
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Khan et al.
2014 [73](C)

PD, rapid fin-
ger tapping

13 Parkinson’s
patient, 387
clips

RGB cam-
era/colour
marker

Motion anal-
ysis of fingers
by motion-
template
gradient algo-
rithm

Severity
classifica-
tion through
SVM based
on UPDRS
attributes

Olesh et al.
[102](A)

Stroke hemi-
paresis, upper
limbs

9 patients, 10
arm move-
ments, 5 to 28
repetitions

Kinect/ skele-
ton data

Joint angle
trajectory

Automated
scoring based
on averaged
temporal
profiles

Wang et al.
2014 [149](C)

Stroke, upper
limbs

24 stroke
patients,
Shoudler
and elbow
movements

Kinect V2/
skeleton data

9 kinematic
parameters
composed
of velocity,
energy and
angle

Automated
clinical scor-
ing (FMA)
through SVR

Dyshel et al.
2015 [46](C)

LID, upper
limb

9 PD with LID
patients 24
recording fol-
lowing AIMS
protocol

Kinect/ SDK
skeleton data

Single Num-
ber deducted
from most
discriminatory
joint motion
segment

Automated
AIMS grading
through soft
SVM based
algorithm

Ciabattoni
et al.
2016 [36](A)

General reha-
bilitation ex-
ercises

6 subjects, 5
exercises

RGB-D cam-
era

quaternion
based posed
distance,
Virtual joint
angles

DTW algo-
rithm based
assessment
scores

Ciabattoni
et al.
2016 [35](A)

Lower back
pain exercises

5 subjects, 5
exercises

RGB-D cam-
era/ skeleton
data

joint angle,
distance, torso
surface

Exercise per-
formance
scoring system
based on fuzzy
logic

Soran et al.
[126](C)

Infants, SMA 15 SMA pa-
tients, 72
minute film

Kinect/
Colour marker

limb trajec-
tory

CNN based
clinical disease
progression
sore

Capecci et al.
[22](C)

General reha-
bilitation ex-
ercises, whole
body

22 healthy, 19
neurological
disability, 5
exercises

Kinect/ skele-
ton data

joint angles,
velocity, con-
straint angles

HSMM and
DTW model
for auto-
mated clinical
scoring

Li et al. 2018
[85](C)

Idiopathic
PD, whole
body

9 PD patients,
134 footage for
4 tasks

RGB camera/
CPM skeleton
data

Subset of joint
positions

Classification
of PD type,
Regression
for clinical
assessment
score

Eichler et al.
2018 [47](C)

Stroke, upper
limb

12 stroke, 10
healthy, FMA
mmovements

2 Kinect V1/
skeleton data

FMA related
kinematic
parameters

Automated
clinical scor-
ing (FMA)
through SVM
and RF

Einarsson
et al.
2018 [48](C)

PD, whole
body

33 healthy, 30
patient’s,

Kinect/ Skele-
ton data

Normalized,
scaled joint
coordinates

Automated
UPDRS scor-
ing based on
Spare Ordinal
classification

Capecci et al.
[23](A)

Stroke, PD,
back-pain
rehabilitation
exercise

44 healthy 34
patients

Kinect / skele-
ton data

joint angles rule, tem-
plate based
algorithm,
Spearman
Correlation
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Liao et al.
2019 [87](A)

General reha-
bilitation ex-
ercises

UI-PRMD
dataset [145]

Kinect/ Skele-
ton data

Auto-encoder
reduced skele-
ton sequence,
GMM log-
likelihood
based per-
formance
metric

Automated
assessment
based on
LSTM re-
gressed scor-
ing

Table 6: Scoring type assessment system: articles that provide a clinical or author
proposed scoring of patient movements. A: Author-proposed scoring; C: Clin-
ical Scoring

In this section, we review articles which aim to provide automated assessment
of a patient’s state. This include both clinical (e.g., FMA, UPDRS) and au-
thor proposed (non-clinical) scoring. For musculo-skeletal diseases, there are
often multitude of factors that describe a patient’s state or condition. Sim-
ple movements such as hip abduction or individual exercises may be classified
into correct or incorrect. But, to describe a patient’s state, clinicians often use
standard scoring systems including FMA, UPDRS and others. Scoring may be
discrete or continuous. In technical terms, authors have used both classifica-
tion and regression for scoring. This discussion can be split into two parts: 1)
author proposed and 2) clinical scoring.

8.1 Author proposed scoring

PReSenS, developed by Cuellar et al. [38] is a rehabilitation exercise systems
where physiotherapists can remotely upload exercise templates to be followed
by patients at home. A complete exercise program was developed consisting of
two major types of exercises, posture holding and motion. Posture was com-
pared to single exercise template whereas, motion was compared by the time
series matching algorithm DTW. Features such as joint angle and joint rota-
tion was used with DTW for action comparison. For experiment, data from 10
healthy participants were collected. They were asked to do diagnostic exercises,
such as arms up, arm extension and flexion, leg-up, flamenco and cross arm.
These exercises are are widely used in physical therapy . All motion signals
were summarised using Piece-Wise Aggregation Approximation for scoring the
performance.

Khan et al. [73] used rapid finger tapping test for clinical evaluation of PD
patients. A total of 387 video footage were used from patients with advanced
PD. Severity was rated by physiotherapist on a scale of 0 to 3. A group of
84 healthy subjects were clinically evaluated in the same way. Subjects were
asked to tap their hands besides their face and above shoulders. For assessment,
first, region of interest was selected as rectangles besides face. Face detection
was achieved by Haar Cascade classifier [147] and motion-template gradient
algorithm [18] was used to detect hand movements. Kinematic parameters for
calculating UPDRS features were extracted and classified using SVM.

A major limitation of many assessment systems is that they require users
to sit in front of camera and perform exercises. It may be difficult for musculo-
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skeletal patients to operate the system and perform exercises in a highly con-
strained setting. Compliance may be poor in such cases for actual patients.
Venugopalan et al. [146] proposed a rehabilitation system for traumatic brain
injury where patients can be monitored in real time. In the experiments, two
Kinect cameras and a near infra-red motion sensor were used to film patients
at home. Real-time patient data from the system was compared with data from
observation in clinical setting to compute similarity score. The score was cal-
culated through template matching based on DTW. For evaluation, 16 videos
were captured which covered six different movements that were performed by
four different volunteers.

Liao et al. [87] proposed a log-likelihood based performance metric to train
their DL framework for assessment of rehabilitation exercises. Low level skele-
ton data was represented through a deep Auto Encoder (AE) network to ini-
tially train a Gaussian mixture model for calculating log-likelihood. Using the
UI-PRMD dataset [145], the authors then trained and compared the perfor-
mances of CNN, RNN and Hierarchical Neural Network (HNN) [45], where
the log-likelihood based performance metric was used as label to regress the
network for predicting deviations from normal actions.

8.2 Clinical scoring

The ultimate goal of any assessment system is to assess the state of a patient in
terms of clinical scoring. This is a very difficult task considering the multitude
of factors involved in assessment. Eichler et al. [47] proposed a two Kinect
camera based system for automated FMA. The two cameras were placed at 45
degree angle with respect to the subject. Temporal synchronization was done
through a network time protocol server. From Kinect skeleton data, kinematic
features relevant to FMA were calculated. The features included sequence
time length, minimum and maximum of each measure, average variance of
each measure, difference between start and end values of each sequence, vari-
ation of average speed and acceleration of each measure. SVM was used for
classification. A cohort of 22 participants took part, including 12 stroke and 10
healthy subjects. The proposed system is able to successfully predict scores on
for the two standard motions “Salute” and “Hand lift”. An ideal automated
FMA system would be able to assess full range of impairments in both upper
and lower extremity.

Performance of patients also vary from time to time during the day. Fol-
lowing the Abnormal Involuntary Movement Scale (AIMS) protocol, Dyshel
et al. [46] recorded 9 PD patients with varying severity of Levodopa-Induced
Dyskinesia (LID). The subjects performed two motor tasks normally used for
UPDRS assessment. After motion segmentation and noise reduction, discrimi-
native features are extracted. For each joint motion, chunks are extracted and
put into distributions represented by two 30-bin histograms. One histogram
represents normal and other represents dyskinetic state. Earth Mover Distance
(EMD) is calculated and 10 motion chunks representing highest discrimination
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Fig. 6 An illustration of scoring type systems. Extracted features from patient are compared
to a pre-trained HSMM for automated clinical scoring [22]. Total score reflect the overall
score of the whole body whereas local score include features that assist clinicians to localise
movement errors. PatA: Patient A

were selected. Each 10 dimensional vector was then reduced to a single number
using one of the three methods: average motion length, average motion speed,
distribution of quantized motion lengths. Soft-margin SVM-based algorithm
was used to calculate AIMS score.

Since the introduction of DeepPose [142] in 2014, CNN-based human pose
estimation has achieved very high accuracy. Li et al. [85] used the well-known
Convolutional Pose Machines (CPM) [153] for extracting skeleton data for
analysing LID. Levodopa is used to treat PD but its prolonged use causes mo-
tor complications (Dyskinesia). The study involved creating a publicly avail-
able dataset involving 9 participants having LID. The skeleton data extracted
using CPM was used to generate 15 kinematic features. These features helped
to score the participants based on the UPDRS.

In above-mentioned articles, authors have relied mostly on skeleton data
obtained from Kinect, with the exception of Li et al. [85] who have used CNN
for pose extraction from RGB data. Authors have not combined RGB and
skeleton data, which may result in improve accuracy. Mostly authors have used
kinematic parameters directly as primary features. In [38] and [36] quaternion-
based pose distance and has been used as primary features. Quaternions can
help in catpuring rotation in 3D and is better than the normally used Eu-
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clidean distance. Liao et al. [87] have used Auto-encoders for dimensionality
reduction of skeleton sequences. In most applications we have seen little appli-
cation of dimensionality reduction techniques applied to kinematic data. On
applications requiring continuous score Support Vector Regression (SVR) and
LSTM has been used. In order to measure similarity score, temporal sequence
matching algorithms such as HMM and DTW has been used. In applications
requiring discrete scoring such as UPDRS, SVM has been mainly used. It re-
mains to be seen how modern DL algorithms would perform classification in
such cases where large-scale datasets are not available.

9 Datasets

Author Impairment Details Sensor/Data

SPHERE-
Staircase2014
[104]

Walking-up
stairs

48 sequences, 12 sub-
jects, normal and abnor-
mal gait

Kinect/ Open NI skele-
ton

SPHERE-
Walking2015
[138]

Walking 40 sequences, 10 sub-
jects, normal and abnor-
mal gait

Kinect/ Kinect SDK,
OpenNI SDK skeleton

SPHERE-
SitStand2015
[138]

Sit to stand 109 sequences, 10 indi-
viduals, restricted knee,
hip, freezing

Kinect/ Kinect SDK,
OpenNI SDK skeleton

TRSP [44] Stroke, com-
pensatory
movement

10 healthy, 10 stroke
4 compensatory move-
ments

Kinect, Haptic robot/
Kinect SDK skeleton

Parkinson’s
pose estima-
tion [85]

PD, LID,
UPDRS as-
sessment
tasks

526 sequence, PD, LID
patients, 4 UPDRS as-
sessment tasks

RGB Camera/
CPM [153] skeleton

UI-PRMD
[145]

General reha-
bilitation ex-
ercises

10 subjects, 10 exercises,
10 repetitions

Kinect Vicon/ Kinect
SDK skeleton

KIMORE
Dataset [23]

Stroke, PD,
back pain
exercises

44 healthy, 34 patient
subjects, 5 exercises 5
repetitions

Kinect/ RGB, depth,
skeleton

AHA-3D
Dataset [5]

Senior lower
body fitness

11 young, 10 elderly sub-
jects, 4 exercises

Kinect/ RGB, depth,
skeleton

Table 7: Publicly available datasets that include physically impaired patient motion

Table 7 summarises publicly available datasets that are captured through
vision-based methods. SPHERE is a series of datasets that presents normal and
physically impaired movements for walking, walking-up stairs and sit to stand
movements. Vakanski et al. [145] introduced the UI-PRMD dataset consisting
of 10 different physical activities commonly performed in physical rehabilita-
tion or therapy scenarios. The dataset provides skeleton data obtained through
Kinect along with joint angles. Mean Square Error (MSE) on joint angles has
been used by authors to calculate variability between each subject, which has
also provided a benchmark for establishing incorrect movements. Unlike other
areas of CV, most of the research is based on relatively small datasets and are
not available publicly.
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10 Discussion

In this section, the methods used in articles reviewed are discussed in terms
of their usage, drawbacks and disadvantages. Research in this area is very
different from objectives like activity recognition where the common goal is
to explore machine learning and pattern recognition techniques to recognise
various activities. Also, often the datasets used to evaluate the models are same
and thus a direct comparison between various methods employed by authors
is useful. However, due to the widely varying goals, datasets used and types
of physical impairments, such comparison in this domain is difficult. Instead,
for the benefit of readers, we chose to compare the general techniques and
algorithms employed to achieve the goals. Following section 2, we split the
discussion into data, feature encoding and feature comparison.

10.1 Physical impairment data

In articles discussed in this review, authors have mostly used Kinect-based
skeleton data. The main advantage is that Kinect provides RGB videos, depth
videos and 3D joint positions as well as posture through a very cheap and easy
to use hardware/software system. Thus, authors from domains other than CV
can take advantage of it. However, Kinect system is not very accurate [152]
and today’s DL-based solution outperforms the Kinect system both in-terms
of 2D [20, 50] and 3D pose estimation [107, 157]. Due to the lack of direct
comparison, it is difficult to gauge the scope of improvement in the articles
reviewed with DL-based methods instead of Kinect. Unlike other areas of CV
application such as activity recognition, authors have not used RGB or depth
data in combination with skeleton information. RGB data lacks the precise
joint positions whereas skeleton data lack information such as optical flow,
curves, edges and others. Modern neural networks are very good at learning
such information. Combining skeleton data with RGB information guides the
DL model to focus on RGB features on the human body. This has lead to
increased accuracy in activity recognition models [12,143] and thus, researches
in this domain can also benefit from the same. Authors have also used colour-
based tracking, including, tracking hand while holding a coloured ball and
skin colour tracking. These methods were in use before the introduction of
Kinect, but some of them are still in use today. They have several limitations
such as tracking only one part of body and are subject to noise, background
interference. It also needs to be noted that Kinect is no longer in production
and researchers will need to switch to other devices such the Orbec Astra [37].
In [37], authors discuss the interchangeability and accuracy of Orbec Astra
and the Kinect device. So it is worth taking the time and effort to switch to
new devices and techniques. Authors have also used other non-vision based
devices such as BCI, LMC which when used with vision-based devices expand
the domain of physical rehabilitation to other areas such as BCI to support
physical rehabilitation [55].
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10.2 Feature encoding

Method Usage Drawbacks Alternatives

colour trajec-
tory

track body
part through
coloured
object

limited skeleton track-
ing, prone to back-
ground interference

skeleton tracking

skeleton tra-
jectory

tracking body
parts

do not quantify physical
characteristics

kinematic parameters

Kinematic pa-
rameters

indicates
physical abil-
ity

very specific to type of
impairment(s)

None

contour signa-
ture

mark hand
boundaries for
grip classifica-
tion

cannot handle noisy,
blurry images

DL based segmentation
[9]

Hu invariant Image bound-
ary descriptor
for grip classi-
fication

cannot handle noisy,
blurry images

DL based segmentation
[9]

AUC For comparing
kinematic tra-
jectories

AUC can be same for
different curves

Statistical analyses, KL
divergence

Performance
metrics (ME,
MER, RMSE,
N-RMSE)

encoding
patient se-
quence error
w.r.t standard
template

over-fitting, difficult to
generalize

learnable encoding
methods

Log likelihood Probabilistic
encoding
of skeleton
sequence

specific formula needed
for calculate likelihood,
non trivial estimation

KL-divergence, Cross
Entropy

SURF encodes local
RGB features

less accurate than SIFT
although faster, clutterd
keypoints

SIFT, ORB

Depth maps body part
segmenta-
tion, skeleton
detection

missing colour, texture,
skeleton information

use with RGB and skele-
ton data

GP-LVM dimensionality
reduction
of skeleton
sequence

assumes independent
distributions, needs
strong prior

PCA, LDA, Autoen-
coders

Gaussian mix-
ture model

Encoding
skeleton se-
quence for
performance
metric

expensive for high di-
mensional data, need to
set number of clusters

Spectral clustering,
Manifold learning

Gauss La-
guerre trans-
form (GLT)

encoding
video squence
in GLT do-
main

needs manual marking
to select area for trans-
form

SIFT, SURF, ORB etc.
for keypoint descriptors

Human body
sillhoute

human body
segmentation

cannot handle noisy,
blurry images

DL based semantic seg-
mentation [9]

Pairwise skele-
ton trajectory

enables rela-
tive trajectory
encoding

overftting, cannot learn
the general trend

learnable encoding
methods

K-means clus-
tering

encoding kine-
matic parame-
ters

No of clusters needs to
be manually set

GMM
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Distances
(Manhattan,
Euclidean)

encoding pa-
tient sequence
distance wrt
standard
template

overftting, cannot learn
the general trend

learnable encoding
methods

PCA reduced
sequence

dimensionality
reduction
of skeleton
sequence

mean and covariance
does not always describe
distribution

LDA, autoencoder

Colour seg-
mentation

track body
part through
coloured
object

prone to background
noise, interference

DL based semantic seg-
mentation [9]

GAN gener-
ated sequences

generation of
artificial data

hard to train and con-
verge

Different types of GANs
[68]

Quaternion se-
quences

represent
orientation
and rotation
of skeleton
sequence in
3D

contains only rotation
but no scaling and
translation

Affine transformation
matrices

Motion tem-
plate gradient

human motion
encoding,
through suc-
cessive frame
sillhoute

pixel based approaches
prone to background
noise

Optical flow based ap-
proaches, graph-cut al-
gorithm

Autoencoder dimensionality
reduction of
sequence

requires more data, not
generally used for di-
mensionality reduction

PCA, LDA

LDA dimensionality
reduction
of skeleton
sequence

needs labelled data, lot
of tunable parameters

PCA, Autoencoders

Table 8: A summary of feature encoding methods used, their drawbacks and alter-
natives that can be used

Table 8 highlights the various feature encoding methods used by authors. It
also outlines their drawbacks and suggests alternatives. Many authors have
used skeleton trajectories or kinematic parameters derived from these trajec-
tories directly as features for comparison. While such parameters are useful
for purposes such as posture recognition, joint mobility determination, these
are highly specific to the physical impairment, thus not generalisable and may
suffer from over-fitting. Instead of encoding kinematic parameters, relationship
between parameters such as performance metrics, distances, pairwise relations
and others, can be used for encoding. Although these methods can produce
better results, they also suffer from the same drawbacks such as inability to
learn, over-fitting and so on. A better alternative would be to learn from the
data instead of comparing kinematic parameters numerically or graphically.
Thus, more recently authors have used techniques including, but not limited
to DTW, HMM and TASS to build temporal models that can help to discrim-
inate differences between patient and ideal pose sequences. Authors have also
attempted to encode feature from RGB videos for goals such as activity recog-
nition. Feature encoding techniques include, Hu moments, colour-based seg-
mentation, motion template gradients and so on. Mostly, these are pixel-based
techniques suffer from noise interference and do not work in case of blurry im-
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ages. Modern alternatives include use of generalised local feature descriptors
such as Scale-Invariant Feature Transform (SIFT), SURF, Oriented FAST and
rotated BRIEF (ORB) or image descriptors such as Bag of Words (BoW),
Histogram of Oriented Gradients (HoG) and others. Modern techniques also
involve DL-based algorithms for semantic segmentation [9] which have pro-
duced state-of-the-art results but again, these require large-scale datasets. In
absence of large datasets, using GANs for modelling artificial patient data can
be very useful as shown by [84]. There are many variants of GANs, each of
which have their own domain of applicability and limitations. In [68], authors
present a quantitative comparisons of various GAN types. Instead of manually
selecting joints for recognizing abnormal motions [80] one can use attention-
mechanism [94] to learn the importance of joints for a particular impairment.

10.3 Feature comparison

Methods Usage Description Benefits Drawbacks

numerical
comparison

numerically comparing
kinematic parameters,
skeleton position

joint move-
ment, posture
comparison

lacks generalization,
lacks statistical signifi-
cance

statistical
comparison

graphical com-
parison

graphically comparing
kinematic parameters,
skeleton sequence

comparison
of normal
vs patient
trajectory

lacks generalization,
lacks statistical signifi-
cance

statistical
analysis
(ANOVA,
Chi-Squared
etc.)

Statistical
analysis

tests to see and compare
different results

comparison of
kinematic pa-
rameters

unable to categorise or
grade patients

time series
comparison
algorithms
such as HMM

POMDP MDP where underlying
process is not directly
observable

virtual game
assessment

Intractable, assumes
convex value functions

Reinforcement
learning

KNN non parametric classifi-
cation algorithm

classification
of kinematic
parameters

need to determine K
value, high computation
cost

SVM

SVM classifies by finding dis-
criminating hyperplanes

classification
of kinematic
parameters

choosing appropri-
ate kernel, memory
intensive

Ensamble, RF
methods, Neu-
ral networks

Neural fuzzy
system

learns fuzzy parameters
with neural networks

build model
based on
clinician expe-
rience instead
of rules

difficult to interpret re-
sults and generalize

ANN stochastic learning net-
works that learns from
examples

classification
of kinematic
parameters

prone to overfitting, not
good with images or se-
quential data

DCNN, LSTM

GRBM RBM that uses binary
latent variables to model
hidden states

pose recogni-
tion

difficult to train with
contrastive divergences,
requires sampling like
GS, MCMC etc.

MRF, CRF,
Autoencoders

MDNN Combination of ANN
and Mixture density
models

classify
through
log-likelihood
based per-
formance
metrics

Number of mixture
modes need to be fixed
manually

various adap-
tations of
MDNN
[92,151,158]
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HMM, HSMM Represents probabil-
ity distributions over
sequences

Discriminate
between pa-
tient and
model skele-
ton sequences

limited by markov prop-
erty, cannot capture
higher order dependen-
cies

CRF,
Bayesian
Networks

DTW, MD-
DTW, SS-
DTW

Measures similarity be-
tween two temporal se-
quences

Calculate
similarity be-
tween patient
and model
skeleton se-
quences

Quadratic complexity,
works with only smaller
templates

HMM

DCNN Networks that learns
grid like topolgy like
images

classifying
poses from
RGB images,
videos

resource consuming, re-
quires big datasets

Capsule Net-
works [117]

MSNB Bayesian classifier vari-
able independence as-
sumption

classification
of kinematic
parameters

needs explicit modelling
of interdependence be-
tween variables

Fuzzy logic,
different types
of SNB [162]

LSTM RNN architecture,
learns temporal se-
quences

learning skele-
ton sequence
features

slow, cannot memorize
long temporal sequences

TCN [78],
ODE Net-
works [29]

Table 9: A summary of feature comparison methods used, their drawbacks and
alternatives that can be used. MRF: Markov Random Fields

In Table 9, various feature encoding methods used by authors is highlighted
along with drawbacks and possible alternatives. Most basic methods used by
researchers are simple numerical and graphical comparison of skeleton tra-
jectories, joint angles or other kinematic parameters. The results are hard to
generalise beyond the examples presented and may lack statistical significance.
A better alternative to use some statistical test such as ANOVA analysis, Chi-
squared tests etc. Graph trajectories can be compared with methods such as
KL-divergence which could provide statistically significant results. In general,
authors have used temporal sequence comparison algorithms like HMM, DTW,
LSTM and their variants such as HSMM (Hidden Semi-Markov Model) MD-
DTW, Incremental DTW (I-DTW), SS-DTW and others. Note that these
algorithms can be used for sequence encoding as well as sequence compari-
son. Some authors have used classification algorithms such as K-means, SVM
to compare encoded sequence generated by HMM or DTW. The same could
also be done with techniques such as Conditional Random Fields (CRF) and
Bayesian networks. Other techniques involve use of generative models such
as Restricted Boltzmann Machine (RBM), Gaussian RBM (GRBM), Semi-
Naive Bayes (SNB) for classification. These have largely been replaced by
DL-based algorithms such as DCNN, LSTM and TCN. To compensate for
lack of datasets, one can also look at learning from single images [155]. When
comparing sequential data with DL, LSTM is the most popular type of archi-
tecture that has been used. But, recently Temporal Convolutional Networks
(TCN) [78] and Ordinary Differential Equation (ODE) networks [29] have
shown very competitive results and these two architectures are being actively
pursued by researchers. DCNNs have been almost exclusively used for process-
ing image and video data but researchers are now exploring the use of capsule
networks [117] for the same.
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11 Conclusion

In this review, we have collected, summarised and analysed major computer
vision-based research in the area of rehabilitation and assessment of patients
having physical impairments. In this article, we present our own taxonomy.
To the best of our knowledge, this is the only article to date, that has cov-
ered the latest advances in this application area, and presented them from
a CV application point of view. It particularly focuses on comparison and
assessment of abnormal human motions. This is especially significant due to
the wide-ranging and hugely varying manifestations of abnormal or impaired
human movements. We have seen simple graphical comparison of joint angle
trajectories to application of complex algorithms such as GANs. The absence
of image, video-based DL algorithms is quite contrasting to other areas such
as pose estimation and action/activity recognition where DL algorithms have
been almost exclusively used. This could be down to unavailability of large-
scale datasets. Also, in this domain, most articles are exclusively focused on
the use of skeletal information as raw data. This means low-level image/video
features and high-level contextual cues (e.g. body-objects interaction) are not
a part of the intelligent processing. Movement information deduced form
skeleton information is sparse in nature, whilst image-based dense
optical flow form video information is richer in contextual informa-
tion. Thus, research in this domain may benefit from meaningful
combination of skeleton and spatio-temporal information linked to
video data. In case of scoring type applications, DL-based scoring may not
be easy to adapt as its often more complicated for patients and clinicians to
understand. More recently, researchers have attempted to fit existing scoring
methods while training DL-based models. CV will play a significant role in
rehabilitation and assessment, which is a sub-field of health and social care.
But owing to several factors such as difficulty in obtaining patient data, ethical
issues and so on, this area is yet to be extensively explored by the CV com-
munity. We conclude the discussion with recommendation for future research:

Datasets: The lack of DL-based methods compared to other ap-
plications of CV could be due to unavailability of large-scale pub-
licly available datasets demonstrating physically impaired patients’
activities. The publicly available datasets mentioned in Table 7 are
relatively small as compared to modern dataset targeting DL. For
example, NTU-RGB dataset [123] targeted towards DL-based ac-
tivity recognition contains 60K samples and is much larger than
the datasets presented in Table 7. Therefore, research in this do-
main needs publicly available large-scale datasets to take advantage
of modern DL methods. Although datasets are indispensable, the
problem can be mitigated to a certain extent by using GANs. Data
Augmentation GAN (DAGAN) has been purpose-built for the aug-
menting data [4]. It is based on conditional GAN and is capable of
generating unseen within-class data samples. This is different to tra-
ditional data augmentation techniques, where images/videos are ro-
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tated or translated to augment the data. Likewise, balancing GANs
can be used to mitigate class imbalance problems [93]. In absence
of real data, authors have recently created fully synthetic data from
GANs. For example, Li et al. [84] generated synthetic data for incor-
rect human activity from four different types of GANs. Frid-Avar et
al. [54] used GAN to create synthetic data for liver-lesion classifica-
tion. Besides GAN, single-shot or few-shots learning has the poten-
tial to learn from small amount of data [135]. These are often pre-
sented as Siamese networks to discriminate or tell deviations from
reference sample [34]. In [34], the authors used a two-stream convo-
lutional Siamese network to for person re-identification. A similar
approach could be adapted for assessing physically impaired persons
where deviation from regular healthy activity could be measured
through a single-shot or few-shot learning.

Statistically significant results: Simple graphical or numerical
comparison of skeleton-trajectory is not suitable to produce statis-
tically significant results. In such cases, authors can use statistical
tests including, but not limited to ANOVA and Chi-Square. How-
ever, such statistical approaches are model-less. These approaches
lack generalisation and are not scalable. Moreover, they are often in-
ferior to the model-based techniques. Venugopalan et al. (2013) and
Liao et al. (2019) show that model-based approaches such as DTW,
Gaussian Mixture Model (GMM) log-likelihood works better than
non-model approaches such as Euclidean distance, Mahalanobis dis-
tance and Cross-Correlation. Thus, instead of directly comparing
kinematic parameters we recommend modelling the data with al-
gorithms including, but not limited to HMM, DTW and TASS.
Moreover, a combination of classification/regression algorithm such
as SVM, Random Forest (RF) are even better than modelling the
data alone. Taati et al. [136] model the data using HMM and use
SVM to classify the data and show that the combination of HMM
and SVM works better than using SVM alone.

Modern DL techniques: Researchers in this domain have begun
to use DL-based techniques such as CNNs and LSTMs. However,
authors have used very basic and obsolete architectures that fail to
demonstrate the true potential of these algorithms. CNNs used by
Zhi et al. [163] and Leightley et al. [81] are very basic in nature. Their
recommendation is to use modern pre-trained CNN architectures
including, but not limited to EfficientNets [137] and NasNet [110].
Authors have introduced TCN [74,78] as an effective and faster al-
ternative to LSTMs. TCN-based networks are suitable for human
activity recognition as demonstrated by Kim et al. [74]. Similarly,
ODENets [29] are being extensively researched for processing of
temporal information. DL is a rapidly evolving field and the intro-
duction of better and efficient techniques is a regular occurrence.
For example, Graph Neural Networks first introduced in [75] has
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been extensively used by authors for recent state-of-the-art activity
recognition models [124] and authors in this domain can potentially
benefit from the same.
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Rodić, and José Santos-Victor. Combined vision and wearable sensors-based system for
movement analysis in rehabilitation. Methods of information in medicine, 56(02):95–
111, 2017.
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