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Abstract—The recognition of human activity is a challenging
topic for machine learning. We present an analysis of Support
Vector Machines (SVM) and Random Forests (RF) in their ability
to accurately classify Kinect kinematic activities. Twenty par-
ticipants were captured using the Microsoft Kinect performing
ten physical rehabilitation activities. We extracted the kinematic
location, velocity and energy of the skeletal joints at each frame
of the activity to form a feature vector. Principle Component
Analysis (PCA) was applied as a pre-processing step to reduce
dimensionality and identify significant features amongst activity
classes. SVM and RF are then trained on the PCA feature space
to assess classification performance; we undertook an incremental
increase in the dataset size. We analyse the classification accuracy,
model training and classification time quantitatively at each
incremental increase. The experimental results demonstrate that
RF outperformed SVM in classification rate for six out of the ten
activities. Although SVM has performance advantages in training
time, RF would be more suited to real-time activity classification
due to its low classification time and high classification accuracy
when using eight to ten participants in the training set.

Index Terms—Kinect, Machine Learning, Random Forests,
Support Vector Machines.

I. INTRODUCTION

Robust interpretation and classification of human activity is
an active research area which has received wide attention in
recent years, with applications in surveillance, healthcare, and
gaming [1]. There has been a long-standing interest in vision-
based human motion and activity recognition for human-
computer interaction (HCI). The Microsoft Kinect (Kinect) is a
low-cost peripheral accessory intended for use with the Xbox
360 gaming console. The Kinect allows for real-time body
detection and tracking of human activities and gestures. By
incorporating infra-red and RGB camera technology, the un-
derlying body detection algorithms create a three-dimensional
(3D) depth map of the area in front of the device, randomised
decision forest algorithms are then used to automatically detect
and determine anatomical joints on the body of the user and
stream the 3D coordinate location for each joint [2].

The innovation of the Kinect enables real-time HCI through
recognition of user’s gestures and body movements to, for
example, control a character or gameplay elements. However,
despite advances in vision-based HCI, the main constraint is
machine understanding of the gesture, action and behavioural
context, which still remains an open and ambitious problem to

solve. Motivated by current limitations, we are focused on the
promising application of the Kinect for assessment of physical
rehabilitation activities for full-body tracking and gestured-
based detection by an intelligent HCI system [3], [4].

In this study, we use kinematic data obtained from the
Kinect, in particular vertical location, velocity and energy of
skeletal joints at each frame to provide a detailed analysis of
two popular machine learning algorithms (MLA). SVM [5]
and RF [6] are assessed with how accurately they classify
unseen test data. To our knowledge, no other paper has sought
to compare MLA’s in the context of Kinect kinematics. We
seek to provide analysis on the average classification accuracy,
model training and classification time to determine which is
suitable for classification of Kinect kinematic data.

The remainder of this paper is organised in the following
way: Section II, review of related work on activity recognition
with Kinect. Section III, outline of the methods, dataset and
discussion of MLA’s. Section IV, presents experimental results
on the recognition of human activity. Finally, we discuss and
conclude our results in Section V and VI.

II. RELATED WORK

Human pose, action and activity recognition has been ex-
tensively studied in the literature; we refer the reader to recent
surveys for a detailed summary, [1], [7], [8]. The availability
of low-cost depth cameras such as the Kinect and advances
in motion tracking technology have created a high demand
on adapting current and developing new techniques for real-
time HCI vision-based activity recognition. In the field of
activity tracking and recognition there are a limited number of
studies that sought to exploit Kinect skeletal output for body
tracking, posture analysis and action recognition. Clark et al.
[9] undertook a review of the Kinect body tracking algorithms
for posture control. The study compared Kinect with a VICON
marker-based tracking system for joint accuracy. The authors
concluded the potential use of the Kinect in posture analysis
due to its high degree of joint accuracy.

Bhattacharya et al. [10] analysed SVM and Decisions Trees
(DT) for how they perform in detecting and classify gestures
used in aircraft marshalling. The study found that SVM
outperformed DT, though the authors noted that DT were
susceptible to participant anatomical differences whereas SVM

978-1-4799-0652-9/13/$31.00 c©2013 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288373763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


was participant independent and not affected by differences
in body posture. Additionally, Zhang et al. [11] presented
a method for utilising kinematic output to recognise and
segment the time-sequential postures of a golf swing. By
transforming kinematic output to a symbol sequence through
vector quantisation enabled a SVM GMM-KL kernel to score
and classify golf swings accurately.

Lately, Patsadu et al. [12] performed a comparison of several
popular MLA’s to assess the performance in predicting human
falling motions. The authors found that backpropagation neural
network exceeded all other classifiers, with SVM second in
predicting three activities, namely, sitting down, lying down
and standing on a small training and testing dataset. However,
closer inspection of this prior work reveals several important
biases that may have affected the conclusions. Firstly, the
study compared performance of the MLA’s on a limited set
of activities, which are distinctively different to one another.
Secondly, the limited size of the dataset fails to factor in
anatomical differences when scaled. Finally, the Kinect is not
designed to capture lying down poses, leading to unpredictable
inference of joints depending on the subject and activity [2].

SVM and RF are popular classifiers used in a number
of domains, however in the field of 3D activity recognition,
RF has had limited use ([1], [7], [13]). In other domains
several studies have sought to investigate the performance
differences in classification by SVM and RF. Nitze et al. [14]
sought to provide a comparison for crop type classification
(for agriculture) by use of image representations of different
crop fields. Where as, Statnikov et al. [15] sought to compare
for microarray-based cancer diagnosis and prediction based
on gene profiling. Finally, Tang et al. [16] assessed for spam
detection based on IP addresses. SVM was deemed by two
of the studies ([14], [15]) to be the most accurate with its
predictions, with one study finding RF more applicable [16].
A theme apparent in many comparisons is that SVM was more
accurate due to it being less sensitive to the choice of input
parameters than RF.

In the context of our own research, we build upon the
shortcomings of Patsadu et al. [12] and the limited use of RF
to determine which classifier, SVM or RF, performs reliably
in classifying physical rehabilitation activities based on Kinect
3D kinematics. We believe that by introducing a larger dataset
and increasing the number activities performed we can reliably
attain which classifier is the most suited for our domain.

III. METHODS

In this section, we present our method in the following
sub-sections: introduction to SVM and RF, dataset, PCA and
kinematic reduction technique and model training.

A. Support Vector Machines

Based on statistical learning theory, SVM is a supervised
learning classifier [5]. An SVM produces a model that rep-
resents the training data by learning the optimum separating
hyperplane between classes; these hyperplanes are defined as
the support vectors and symbolise each class.

A kernel is utilised by an SVM to minimise both the
empirical risk and the model complexity. In this study, we
use the radial basis function (RBF) kernel, which non-linearly
maps samples into a higher dimensional space, the RBF can
control the relationship between class labels and attributes
when they are non-linear [17]. RBF can be defined as

K(xi, yi) = exp(−γ||xi − yi||2), γ > 0 (1)

where x and y are the training and label respectively, γ is the
kernel parameter. Parameter C is a user-defined parameter that
controls the trade-off between model complexity and empirical
error in SVM. In addition, the parameter γ determines the
shape of the separating hyperplane in the RBF kernel.

When the trained SVM model is provided with data for
classification, it is able to determine the best fit in relation
to the support vectors leading to predicted categorisation of
the data. The software used to implement SVM is libSVM
Toolbox for Matlab [18] with the RBF kernel.

B. Random Forests

RF is a classifier consisting of multiple decision trees
constructed by supervised learning of a training set [6]. An
RF model is constructed by using the bootstrap method to
randomly generate ntree of decision trees which are each
provided with randomly selected samples of the training input
and then all decision trees are combined into a decision forest.
For each bootstrap, a random mtry (default 3) sample of the
training data is used which determines the size of an unpruned
classification tree.

When an RF model is provided with data for classification,
the model predicts a corresponding class based on the voting
of all trees, where the class with the greatest number of votes
is selected [6]. RF only requires one parameter, ntree, which
sets the number of decision trees to grow. The software used
to implement RF was randomForest Toolbox for Matlab [19].

C. Activities and Data Collection

The dataset used in this study was acquired by Kinect and
Kinect for Windows Software Development Kit [20]. The
application obtained the 3D coordinates of 20 body joints,
namely: feet, ankles, knees, hips, torso, shoulders, elbows,
wrists, hands and head at a rate of 30 fps, where: x extends
from the left to right, y indicates vertical position and z
extends in the direction in which the Kinect is facing.

The Kinect (tilt 0 degrees) was placed on a tripod at a height
of 0.7 meters (m) with the participant standing 2m from the
device in a defined movement area of 0.5m ×0.5m. Partici-
pants were asked to perform activities periodically within the
defined movement area for a 10 second period directly facing
the Kinect. These activities were chosen to reflect activities
of daily living as well as movements a person would perform
when undertaking a physical rehabilitation program. Activities
were performed periodically to characterise temporal varia-
tions. Participants were asked to assume a neutral standing
pose at the start and end of the activity, in which they stood



still with legs fully extended and arms extended and relaxed
by the side of the body. The aim was to ensure consistency
between the training and testing datasets and, to limit the
anatomical variance between the participants. A group of
twenty participants (12 men, 8 women) performed a set of
ten activities, resulting in the capture of 200 activities with a
total of 60,225 frames.

The activities performed were as follows; Jumping: arms
by the side and feet together jumping approximately 10cm off
the ground; Arm Movement: arms extended along the frontal
plane moving to a side-by-side position; Pickup Object: from
a standing position bending down to pick up an object off the
floor with the right hand; Squats: arms by the side, bending
down so that gluteals approximately 10cm off the ground;
Walking: walking on the spot, with feet raised approximately
5cm. Jogging: jogging on the spot, with feet raised approxi-
mately 8cm; Bending to Toes: from a neutral standing position,
bending over and keeping the legs and upper spine as straight
as possible, the arms were extended until the toes have been
touched; Standing to Seated: neutral standing position, bend
knees and sit on a stool located behind; Upper Body Twist:
both arms raised vertically in front of the torso and twist from
left to right; Arm Stretch: with both feet flat on the floor raise
both arms vertically as high as possible.

D. Kinematic Reduction and Pre-Processing
The dataset was visually checked to ensure correct recording

of the 3D position data for each activity; a row vector
of 20 body-joint coordinates represents each frame. Each
activity captured is aligned to the “hip-centre” joint to cre-
ate a coordinate system relative to the “hip-centre” of the
first frame. Where the original coordinate Pn,i(x, y, z) of
the nth joint at the ith frame is subtracted by “hip-centre”,
Phipcentre,1(x, y, z) of the first frame, as defined by

A = {P*n,i(x, y, z)|n = 1, . . . , 20, i = 1, . . . , I}
P*n,i(x, y, z) = Pn,i(x, y, z)− Phipcentre,1(x, y, z) (2)

where A is (60×I) matrix of the “hip-centre” aligned activity
with total frames I , P* is the aligned joint position.

Location, velocity and energy are representative kinematic
features. They are used to represent the dynamic variation of
each activity in our study. The vertical location and kinematic
properties are discriminative compared to horizontal left to
right and forward to backwards directions. To reduce the
dimensionality of the activity feature vector, y-position (y), y-
velocity (vy) and energy (e) are extracted to form the activity
feature vector Fn,i of the nth joint at the ith frame. We
compute the velocity and energy for each joint position as
follows

Fn,i = {(yn,i, vy(n,i), en,i)|vy(n,i) = yn,i − yn,i−5,

en,i = (v2x(n,i) + v2y(n,i) + v2z(n,i))} (3)

where yn,i is the aligned y in P*n,i , as shown in Eq.2,
energy is determined as a sum of energy in x, y, z of each

joint. The velocity vy and energy (e) are calculated over the
period of 5 frames (i−5) to provide increased tolerance for the
measurement error presented by the Kinect.

Principle Component Analysis (PCA) was applied to the
aligned dataset at each λ participant to reduce dimensionality
of the aligned activity feature vector F by projecting the
data into a lower-dimensional space. Transposing to low-
dimensional feature space provides a number of benefits, such
as reduced computational complexity, stabilisation of data
noise and improved accuracy. In this study, the variance has
been set as 98%, meaning we keep the dimensions (eigen-
vectors) that contain 98% of the variance for the projected
datasets. The projected dataset is defined in the following way

T = {(Fn,i, la)|n = 1, . . . , N, i = 1, . . . , I, la = 1, . . . , L}
(4)

where Fn,i is the projected activity feature vector defined in
Eq. 3 for the nth joint at the ith frame and la is the class label
for each activity (e.g. Jumping class: 1, Walking class: 2).

E. Training

In order to assess classification accuracy, model training and
classification time, the dataset was randomly split into two sub-
sets, ten participants formed the training set and the remaining
formed the testing set. With each experiment introducing
another participant (denoted by λ) from the training set until
all the participants were used. By training the classifiers in this
way, the study was able to determine the suitable number of
participants for training to achieve a stable classification rate.

TABLE I
OPTIMUM PARAMETERS FOR MODEL TRAINING FROM λ

λ participants/ 2 4 6 8 10
Parameter SVM

C 28 28 32 28 30
γ 8 8 8 6 6

RF
ntree 400 700 800 800 800

To ensure optimal performance of each classifiers, parame-
ter optimisation was performed as demonstrated in Table I.

For C and γ in SVM, the selection was undertaken accord-
ing to the cross-validation method [17]. To perform cross-
validation, the training set was segregated into two subsets
of equal size. Then the classifier was trained on one subset
(training data) and accuracy is tested with the introduction of
the second subset. The optimisation process was repeated for
each of the possible parameter in exponential steps for both
C and γ between 10−4 to 105 and 10−6 to 103 respectively.

In RF, ntree represents the number of trees to be generated
requires optimisation. To perform optimisation, the range
of trees has been tested with incremental increases of 100
between 100 up to 1000 trees. The optimised number of
trees required for each experiment are shown in Table I. The
experiment results suggest a consistent number of 800 ntree
was sufficient for training.



IV. EXPERIMENTAL RESULTS FOR RECOGNITION

In this section, we present our experimental results. The
proposed method has been implemented in Matlab 2012a on
a workstation with an IntelCore i7 processor and 8GB RAM.

A. Classification Accuracy

Our first experiment illustrated the benefits of using the
reduced feature space of PCA to train the classifiers. We
compare the classification accuracy versus not applying PCA,
our experimental results are demonstrated in Fig. 1. The
standard procedure for calculating classification accuracy is
by assessing the number of correctly classified frames versus
the total number of frames in the activity. Furthermore, clas-
sification accuracy was calculated as the average over all ten
activities from each of the testing participants. We observe
that by using 6 to 10 participants in the training dataset, use
of PCA improved classification accuracy considerably, where
1 to 5 participants were used each classifier achieved similar
low classification rate. All results presented hereafter are with
PCA applied.
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Fig. 1. Average activity classification rate for SVM and RF trained from an
increasing number of λ)

We demonstrate in Fig. 2 the standard deviation (SD) at
each incremental λ) increase. The standard procedure for
calculating SD was the deviation of the average classification
accuracy for each participant’s activities. Observing Fig. 2,
the deviation of error reduced, represented by an error bar,
considerably for both SVM and RF, between participants 1 to
10 from, 24.03, 22.7 to 8.98, 7.07 respectively.

Initial findings demonstrate that classification accuracy im-
proved and error reduced when the number of participants
in the training set was incrementally increased, levelling off
between 8 to 10 participants (Fig. 1 & Fig. 2). Table IV
summarises classification accuracy for each activity from
our proposed method. As demonstrated, there is a variation
between SVM and RF with the number of training participants
affecting average classification accuracy. RF exhibited the
highest average overall accuracy with 85.17%, outperforming
SVM, which obtained 83.05%. With SVM and RF, increasing

the number of training participants improved classification ac-
curacy considerably, with both having a similar linear increase
in accuracy for 6 to 10 participants.
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Fig. 2. Activity classification and its standard deviation for classifiers trained
from λ

The classification accuracy of several activities fluctuated
due to the number of training participants used and the
classifier. We observed in Table IV, using two, four and six
training participants resulted in low accuracy across the range
of activities, the use of eight and ten training participants saw
a significant improvement and levelling in accuracy across the
range of activities.

The most notable class confusion was observed amongst
Walking, Jogging, Upper Body Twist and Arm Movement with
misclassification present in Pickup Object.

Due to anatomical similarities between Upper Body Twist
and Arm Movement, class confusion was observed, both SVM
and RF over classifying Upper Body Twist. As observed in
Table IV, classification accuracy between the aforementioned
activities, there is a difference for two, four and six training
participants. SVM and RF use a probability technique to
determine the class of each frame, Fig. 3 demonstrates the
class probability for Arm Movement. We observe (Fig. 3) that
RF and SVM both experience confusion at different points in
the activity sequence for Arm Movement, this inconsistency
is observed throughout the study. However, for eight and ten
training participants the classifiers stabilised and provided cor-
rect classification, with SVM producing the highest accuracy
from all results for Arm Movement with 92.25%.

Further confusion between Walking and Jogging was en-
countered due to the similarity in limb rotation and movement.
As observed in Table IV, classification accuracy for the
aforementioned activities with SVM and RF had a notable
difference in classification rate and confusion. For each λ
increase SVM struggled to classify Walking correctly, with an
over confidence in Jogging observed. In addition, RF observed
a similar over confidence in Jogging, however for both SVM
and RF when ten training participants were used, we observed
a harmonising of both Walking and Jogging.

Finally, the Pickup Object activity suffered consistent mis-



classification throughout our experiments. Due to the similarity
and overlap of posture with a number of other activities,
we observed misclassification for two, four and six training
participants. Furthermore, even for eight and ten training par-
ticipants classification accuracy for SVM and RF was below
the average classification accuracy, with misclassification not
being reduced with increase in the training set.
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Fig. 3. An example class estimate for SVM and RF by a participant
performing Arm Movement. Expected class is 2

To conclude, RF provided the highest average classification
accuracy for each λ increase in dataset size when compared
with SVM. Conversely, SVM provided improved classification
results for a few activities, namely, Arm Movements, Pickup
Object, Standing to Seated and Upper Body Twist, with Arm
Movements seeing a 7.02% improvement on the result when
compared to RF.

B. Model Training and Classification Time

TABLE II
MODEL TRAINING TIME FOR MODELS TRAINED FROM λ

λ participants/ 2 4 6 8 10
Classifier Training time [Sec]
SVM 2.381 14.69 30.39 42.24 55.96
RF 5.08 19.35 49.06 79.21 123.17

SVM overall, λ increase was the quickest to train, while
RF took considerably longer to train, as demonstrated in
Table II. The training time for each classifier was affected by
the number of training participants and parameters selected
(Table I). Parameter optimisation time was not factored into
model training time. With the increase of training participants,
we observed the training of the classifiers becomes more
complex; consequently the training time of the classifiers tends
to increase exponentially.

Average classification time was significantly reduced to
millisecond predictions, compared with training time, with
on average RF performing faster than SVM as demonstrated
in Table III. SVM, as with training, predicting classification
was computationally more expensive than RF, however the

TABLE III
CLASSIFICATION TIME FOR MODELS TRAINED FROM λ

λ participants/ 2 4 6 8 10
Classifier Classification time [Sec]
SVM 0.036 0.07 0.114 0.146 0.179
RF 0.007 0.022 0.031 0.034 0.037

duration for classification is directly linked to the ntree, C, γ.
The average classification time of each activity also increased
with the introduction of new participants, albeit on a lower
scale (100 up to 300 milliseconds) as demonstrated in Table
III. Classification times were calculated by the average of the
ten testing participants and on all activities.

V. DISCUSSION

In this study, we analysed SVM and RF on their ability to
predict and correctly classify physical rehabilitation activities.
The study found that by using 8 to 10 participants in the
training set stable classification accuracy for both SVM and
RF was achieved. In addition, results presented in this paper
illustrate that RF offers performance advantages compared
to SVM in the classification of activities based on our 3D
kinematic dataset. As in [10], we also note that there has to
be an understanding of the anatomical differences between
training and testing participants which could influence the
result if no prior normalisation is undertaken.

We have found that normalising with the “hip-centre” joint
of the first frame, before computing yn,i, vy(n,i), en,i and
applying PCA reduces anatomical differences and aids in im-
proved classification accuracy (Fig. 1 & Table III). In addition,
the computed yn,i, vy(n,i), en,i is high-dimensional, containing
twenty body joints and while SVM and RF are capable of
handling high-dimensional data, feature space reduction by
PCA has aided in providing higher accuracy results, improved
model training and classification times.

The results reveal that both SVM and RF are suited towards
classification of kinematics, although RF was capable of classi-
fication significantly faster than SVM. RF was computationally
more expensive when training, with a considerable difference
versus SVM. RF struggled to detect continuous movement
such as Arm Movement resulting in a high misclassification
rate (Fig. 3), if misclassification of continuous movement can
be overcome it could potentially increase accuracy.

The average SD for achieved accuracies reduced as further
training participants were introduced (Fig. 2), suggesting har-
monisation between the training and testing datasets. Finally,
we have found that parameter selection, both in terms of C,
γ for SVM and ntree for RF has an impact on training and
classification time due to the introduction of computational
complexity (Table I, Table II). For SVM, C affected the num-
ber of support vectors, leading to an increase in classification
time, whereas RF, ntree increased model training times when
a high number of decision trees needed generating.

The Kinect has sensitivity of joint rotation, with the Kinect
designed to detect activities of a participant who is standing
face forward to the Kinect, large rotation could prove difficult



TABLE IV
AVERAGE CLASSIFICATION ACCURACY PER ACTIVITY FOR λ FOR RF AND SVM

λ / 2 4 6 8 10
Overall Accuracy [%] SVM RF SVM RF SVM RF SVM RF SVM RF

Jumping 19.23 36.19 41.97 55.22 60.14 69.49 76.56 85.24 85.07 86.45
Arms Movement 41.03 48.64 66.42 68.64 62.67 73.93 80.5 85.76 92.25 85.23

Pickup Object 36.64 55.79 39.61 58.47 58.25 57.93 74.85 79.71 78.47 76.24
Squats 29.45 26.88 34.36 46.08 57.92 55.09 78.86 85.92 82.22 84.03

Walking 8 13.37 40.96 54.99 59.75 68.1 74.16 84.3 79.59 86.65
Jogging 42.2 61.16 73.08 78.81 70.48 79.12 78.41 87.42 80.95 85.84

Bending to Toes 49.35 42.48 64.84 63.61 67.37 71 77.59 86.02 81.13 85.86
Standing to Seated 46.86 41.97 59.03 59.75 64.25 69.19 76.57 83.09 85.15 84.58
Upper Body Twist 74.33 78.18 82.02 79.77 80.13 81.62 81.58 84.09 87.71 87.55

Arm Stretch 54.64 61.03 55.18 66.17 80.06 85.04 90.03 91.02 89.16 89.32
Average [%]: 40.17 46.57 55.75 63.15 64.09 69.38 78.1 85.09 83.05 85.17

to detect. Classification between the range of activities was
reliable, even rotation and subtle posture changes between
similar activities of Walking and Jogging could be classified
accurately. The Standing to Seated activity presented a further
challenge, due to occlusion of the chair and natural limb move-
ment, yet both classifiers were capable of achieving acceptable
classification results. Nevertheless, misclassification was an
issue for a number of activities that have similar movements,
with both classifiers finding it difficult to classify individual
frames without any information about past frames. In our
study, we found that by increasing the number of participants
enabled an enhanced representative tolerance of the variations
in anatomical joints and resulted in stable classification results.

VI. CONCLUSION

In this paper, we introduce SVM and RF to classify human
activities by use of projected Kinect kinematic data. We utilise
PCA to reduce the dimensionality, demonstrating the potential
improvement to classification accuracy. We show that even
with a small training set the classification results produced by
incrementally increasing the number of participants results in
steady increase classification accuracy. We conclude that with
eight and ten training participants, the classifiers produces a
steady average classification results of 80% and greater.

Our study has demonstrated that transposing Kinect kine-
matics to a lower-dimensional space and training the classifiers
on 8 to 10 participants that both SVM and RF can be reliable
for accurate classification. Between them, RF was overall more
accurate, but more expensive in terms of model training, while
SVM was more expensive in terms of classification rate per-
formance. Finally, the results revealed that RF would be suited
to our domain, with a three-fold increase in classification
rate when compared with SVM. To conclude, our study has
presented a number of potential uses for using RF with the
Kinect and 3D output for use in real-time classification of
activities and gestures related to physical rehabilitation.
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