15 research outputs found

    A discontinuous Galerkin method for a new class of Green-Naghdi equations on simplicial unstructured meshes

    Get PDF
    In this paper, we introduce a discontinuous Finite Element formulation on simplicial unstructured meshes for the study of free surface flows based on the fully nonlinear and weakly dispersive Green-Naghdi equations. Working with a new class of asymptotically equivalent equations, which have a simplified analytical structure, we consider a decoupling strategy: we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects and we show that this source term can be computed through the resolution of scalar elliptic second-order sub-problems. The assets of the proposed discrete formulation are: (i) the handling of arbitrary unstructured simplicial meshes, (ii) an arbitrary order of approximation in space, (iii) the exact preservation of the motionless steady states, (iv) the preservation of the water height positivity, (v) a simple way to enhance any numerical code based on the nonlinear shallow water equations. The resulting numerical model is validated through several benchmarks involving nonlinear wave transformations and run-up over complex topographies

    Combined Hybridizable Discontinuous Galerkin (HDG) and Runge-Kutta Discontinuous Galerkin (RK-DG) formulations for Green-Naghdi equations on unstructured meshes

    Get PDF
    In this paper, we introduce some new high-order discrete formulations on general unstructured meshes, especially designed for the study of irrotational free surface flows based on partial differential equations belonging to the family of fully nonlinear and weakly dispersive shallow water equations. Working with a recent family of optimized asymptotically equivalent equations, we benefit from the simplified analytical structure of the linear dispersive operators to conveniently reformulate the models as the classical nonlin-ear shallow water equations supplemented with several algebraic source terms, which globally account for the non-hydrostatic effects through the introduction of auxiliary coupling variables. High-order discrete approximations of the main flow variables are obtained with a RK-DG method, while the trace of the auxiliary variables are approximated on the mesh skeleton through the resolution of second-order linear elliptic sub-problems with high-order HDG formulations. The combined use of hybrid unknowns and local post-processing significantly helps to reduce the number of globally coupled unknowns in comparison with previous approaches. The proposed formulation is then extended to a more complex family of three parameters enhanced Green-Naghdi equations. The resulting numerical models are validated through several benchmarks involving nonlinear waves transformations and propagation over varying topographies, showing good convergence properties and very good agreements with several sets of experimental data

    A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system

    Full text link
    A new modified Galerkin / Finite Element Method is proposed for the numerical solution of the fully nonlinear shallow water wave equations. The new numerical method allows the use of low-order Lagrange finite element spaces, despite the fact that the system contains third order spatial partial derivatives for the depth averaged velocity of the fluid. After studying the efficacy and the conservation properties of the new numerical method, we proceed with the validation of the new numerical model and boundary conditions by comparing the numerical solutions with laboratory experiments and with available theoretical asymptotic results

    A Kinematic Conservation Law in Free Surface Flow

    Full text link
    The Green-Naghdi system is used to model highly nonlinear weakly dispersive waves propagating at the surface of a shallow layer of a perfect fluid. The system has three associated conservation laws which describe the conservation of mass, momentum, and energy due to the surface wave motion. In addition, the system features a fourth conservation law which is the main focus of this note. It is shown how this fourth conservation law can be interpreted in terms of a concrete kinematic quantity connected to the evolution of the tangent velocity at the free surface. The equation for the tangent velocity is first derived for the full Euler equations in both two and three dimensional flows, and in both cases, it gives rise to an approximate balance law in the Green-Naghdi theory which turns out to be identical to the fourth conservation law for this system.Comment: 15 pages, 1 figur

    Vertically averaged and moment equations: new derivation, efficient numerical solution and comparison with other physical approximations for modeling non-hydrostatic free surface flows

    Get PDF
    Efficient modeling of flow physics is a prerequisite for a reliable computation of free-surface environmental flows. Non-hydrostatic flows are often present in shallow water environments, making the task challenging. In this work, we use the method of weighted residuals for modeling non-hydrostatic free surface flows in a depth-averaged framework. In particular, we focus on the Vertically Averaged and Moment (VAM) equations model. First, a new derivation of the model is presented using expansions of the field variables in sigma-coordinates with Legendre polynomials basis. Second, an efficient two-step numerical scheme is proposed: the first step corresponds to solving the hyperbolic part with a second-order path-conservative PVM scheme. Then, in a second step, non-hydrostatic terms are corrected by solving a linear Poisson-like system using an iterative method, thereby resulting in an accurate and efficient algorithm. The computational effort is similar to the one required for the well-known Serre-Green-Naghdi (SGN) system, while the results are largely improved. Finally, the physical aspects of the model are compared to the SGN system and a multilayer model, demonstrating that VAM is comparable in physical accuracy to a two-layer model.Funding for open access charge: Universidad de Málaga/CBUA. This work is partially supported by projects RTI2018-096064-B-C2(1-2), PID2020-114688RB-I00, and PID2022-137637NB-C21 funded by Ministry of Science, Innovation and Universities MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”. F. Cantero-Chinchilla was partially supported by the grant IJC2020-042646-I, funded by CIN/AEI/10.13039/501100011033 and by the European Union “NextGenerationEU/PRTR”, through the Spanish Ministry of Science, Innovation and Universities Juan de la Cierva program 2020.

    A discontinuous Galerkin approach for conservative modelling of fully nonlinear and weakly dispersive wave transformations

    Get PDF
    This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modelling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model

    Low dispersion finite volume/element discretization of the enhanced Green-Naghdi equations for wave propagation, breaking and runup on unstructured meshes

    Get PDF
    International audienceWe study a hybrid approach combining a FV and FE method to solve a fully nonlinear and weakly-dispersive depth averaged wave propagation model. The FV method is used to solve the underlying hyperbolic shallow water system, while a standard P 1 finite element method is used to solve the elliptic system associated to the dispersive correction. We study the impact of several numerical aspects: the impact of the reconstruction used in the hyperbolic phase; the representation of the FV data in the FE method used in the elliptic phase and their impact on the theoretical accuracy of the method; the well-posedness of the overall method. For the first element we proposed a systematic implementation of an iterative reconstruction providing on arbitrary meshes up to third order solutions, full second order first derivatives, as well as a consistent approximation of the second derivatives. These properties are exploited to improve the assembly of the elliptic solver, showing dramatic improvement of the finale accuracy, if the FV representation is correctly accounted for. Concerning the elliptic step, the original problem is usually better suited for an approximation in H(div) spaces. However, it has been shown that perturbed problems involving similar operators with a small Laplace perturbation are well behaved in H 1. We show, based on both heuristic and strong numerical evidence, that numerical dissipation plays a major role in stabilizing the coupled method, and not only providing convergent results, but also providing the expected convergence rates. Finally, the full mode, coupling a wave breaking closure previously developed by the authors, is thoroughly tested on standard benchmarks using unstructured grids with sizes comparable or coarser than those usually proposed in literature
    corecore