3,923 research outputs found

    Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics

    Full text link
    This article serves as a summary outlining the mathematical entropy analysis of the ideal magnetohydrodynamic (MHD) equations. We select the ideal MHD equations as they are particularly useful for mathematically modeling a wide variety of magnetized fluids. In order to be self-contained we first motivate the physical properties of a magnetic fluid and how it should behave under the laws of thermodynamics. Next, we introduce a mathematical model built from hyperbolic partial differential equations (PDEs) that translate physical laws into mathematical equations. After an overview of the continuous analysis, we thoroughly describe the derivation of a numerical approximation of the ideal MHD system that remains consistent to the continuous thermodynamic principles. The derivation of the method and the theorems contained within serve as the bulk of the review article. We demonstrate that the derived numerical approximation retains the correct entropic properties of the continuous model and show its applicability to a variety of standard numerical test cases for MHD schemes. We close with our conclusions and a brief discussion on future work in the area of entropy consistent numerical methods and the modeling of plasmas

    Very High Order \PNM Schemes on Unstructured Meshes for the Resistive Relativistic MHD Equations

    Full text link
    In this paper we propose the first better than second order accurate method in space and time for the numerical solution of the resistive relativistic magnetohydrodynamics (RRMHD) equations on unstructured meshes in multiple space dimensions. The nonlinear system under consideration is purely hyperbolic and contains a source term, the one for the evolution of the electric field, that becomes stiff for low values of the resistivity. For the spatial discretization we propose to use high order \PNM schemes as introduced in \cite{Dumbser2008} for hyperbolic conservation laws and a high order accurate unsplit time discretization is achieved using the element-local space-time discontinuous Galerkin approach proposed in \cite{DumbserEnauxToro} for one-dimensional balance laws with stiff source terms. The divergence free character of the magnetic field is accounted for through the divergence cleaning procedure of Dedner et al. \cite{Dedneretal}. To validate our high order method we first solve some numerical test cases for which exact analytical reference solutions are known and we also show numerical convergence studies in the stiff limit of the RRMHD equations using \PNM schemes from third to fifth order of accuracy in space and time. We also present some applications with shock waves such as a classical shock tube problem with different values for the conductivity as well as a relativistic MHD rotor problem and the relativistic equivalent of the Orszag-Tang vortex problem. We have verified that the proposed method can handle equally well the resistive regime and the stiff limit of ideal relativistic MHD. For these reasons it provides a powerful tool for relativistic astrophysical simulations involving the appearance of magnetic reconnection.Comment: 24 pages, 6 figures, submitted to JC

    Affordable, Entropy Conserving and Entropy Stable Flux Functions for the Ideal MHD Equations

    Full text link
    In this work, we design an entropy stable, finite volume approximation for the ideal magnetohydrodynamics (MHD) equations. The method is novel as we design an affordable analytical expression of the numerical interface flux function that discretely preserves the entropy of the system. To guarantee the discrete conservation of entropy requires the addition of a particular source term to the ideal MHD system. Exact entropy conserving schemes cannot dissipate energy at shocks, thus to compute accurate solutions to problems that may develop shocks, we determine a dissipation term to guarantee entropy stability for the numerical scheme. Numerical tests are performed to demonstrate the theoretical findings of entropy conservation and robustness.Comment: arXiv admin note: substantial text overlap with arXiv:1509.06902; text overlap with arXiv:1007.2606 by other author

    A Constrained Transport Method for the Solution of the Resistive Relativistic MHD Equations

    Get PDF
    We describe a novel Godunov-type numerical method for solving the equations of resistive relativistic magnetohydrodynamics. In the proposed approach, the spatial components of both magnetic and electric fields are located at zone interfaces and are evolved using the constrained transport formalism. Direct application of Stokes' theorem to Faraday's and Ampere's laws ensures that the resulting discretization is divergence-free for the magnetic field and charge-conserving for the electric field. Hydrodynamic variables retain, instead, the usual zone-centred representation commonly adopted in finite-volume schemes. Temporal discretization is based on Runge-Kutta implicit-explicit (IMEX) schemes in order to resolve the temporal scale disparity introduced by the stiff source term in Ampere's law. The implicit step is accomplished by means of an improved and more efficient Newton-Broyden multidimensional root-finding algorithm. The explicit step relies on a multidimensional Riemann solver to compute the line-averaged electric and magnetic fields at zone edges and it employs a one-dimensional Riemann solver at zone interfaces to update zone-centred hydrodynamic quantities. For the latter, we introduce a five-wave solver based on the frozen limit of the relaxation system whereby the solution to the Riemann problem can be decomposed into an outer Maxwell solver and an inner hydrodynamic solver. A number of numerical benchmarks demonstrate that our method is superior in stability and robustness to the more popular charge-conserving divergence cleaning approach where both primary electric and magnetic fields are zone-centered. In addition, the employment of a less diffusive Riemann solver noticeably improves the accuracy of the computations.Comment: 25 pages, 14 figure

    An Unstaggered Constrained Transport Method for the 3D Ideal Magnetohydrodynamic Equations

    Full text link
    Numerical methods for solving the ideal magnetohydrodynamic (MHD) equations in more than one space dimension must either confront the challenge of controlling errors in the discrete divergence of the magnetic field, or else be faced with nonlinear numerical instabilities. One approach for controlling the discrete divergence is through a so-called constrained transport method, which is based on first predicting a magnetic field through a standard finite volume solver, and then correcting this field through the appropriate use of a magnetic vector potential. In this work we develop a constrained transport method for the 3D ideal MHD equations that is based on a high-resolution wave propagation scheme. Our proposed scheme is the 3D extension of the 2D scheme developed by Rossmanith [SIAM J. Sci. Comp. 28, 1766 (2006)], and is based on the high-resolution wave propagation method of Langseth and LeVeque [J. Comp. Phys. 165, 126 (2000)]. In particular, in our extension we take great care to maintain the three most important properties of the 2D scheme: (1) all quantities, including all components of the magnetic field and magnetic potential, are treated as cell-centered; (2) we develop a high-resolution wave propagation scheme for evolving the magnetic potential; and (3) we develop a wave limiting approach that is applied during the vector potential evolution, which controls unphysical oscillations in the magnetic field. One of the key numerical difficulties that is novel to 3D is that the transport equation that must be solved for the magnetic vector potential is only weakly hyperbolic. In presenting our numerical algorithm we describe how to numerically handle this problem of weak hyperbolicity, as well as how to choose an appropriate gauge condition. The resulting scheme is applied to several numerical test cases.Comment: 46 pages, 12 figure

    An Entropy Stable Nodal Discontinuous Galerkin Method for the Two Dimensional Shallow Water Equations on Unstructured Curvilinear Meshes with Discontinuous Bathymetry

    Full text link
    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the nonlinear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretisation exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretisation of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem
    corecore