INAF

ISTITUTO MNAZIOMNALE

Ol ASTROFISICA

MATICHMAL INSTITLITE
FOR ASTROFHYSICS

Publication Year 2019

Acceptance in OA@INAF |2020-12-30T10:32:01Z

Title A Constrained Transport Method for the Solution of the Resistive Relativistic MHD
Equations

Authors Mignone, A.; Mattia, G.; BODO, Gianluigi; Del Zanna, L.

DOI 10.1093/mnras/stz1015

Handle http://hdl.handle.net/20.500.12386/29339

Journal MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY

Number 486




MNRAS 000, 1-24 (2019) Preprint 20 November 2020 Compiled using MNRAS IATEX style file v3.0

A Constrained Transport Method for the Solution of the
Resistive Relativistic MHD Equations

A. Mignone!?*, G. Mattia®, G. Bodo?, and L. Del Zanna*?

U Dipartimento di Fisica, Universita di Torino, via P. Giuria 1, I-10125 Torino, Italy

INAF, Osservatorio Astronomico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese, Italy

Mazx Planck Institute for Astronomy and IMPRS — University of Heidelberg, Konigstuhl 17, D-69117, Heidelberg Germany
Dipartimento di Fisica e Astronomia, Universita di Firenze e INFN — Sez. di Firenze, via G. Sansone 1, 1-50019 Sesto F.no, Italy

2
3
4
5 INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 1-50125 Firenze, Italy

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

We describe a novel Godunov-type numerical method for solving the equations of resistive relativistic magnetohy-
drodynamics. In the proposed approach, the spatial components of both magnetic and electric fields are located at
zone interfaces and are evolved using the constrained transport formalism. Direct application of Stokes’ theorem to
Faraday’s and Ampere’s laws ensures that the resulting discretization is divergence-free for the magnetic field and
charge-conserving for the electric field. Hydrodynamic variables retain, instead, the usual zone-centred representa-
tion commonly adopted in finite-volume schemes. Temporal discretization is based on Runge-Kutta implicit-explicit
(IMEX) schemes in order to resolve the temporal scale disparity introduced by the stiff source term in Ampere’s law.
The implicit step is accomplished by means of an improved and more efficient Newton-Broyden multidimensional
root-finding algorithm. The explicit step relies on a multidimensional Riemann solver to compute the line-averaged
electric and magnetic fields at zone edges and it employs a one-dimensional Riemann solver at zone interfaces to up-
date zone-centred hydrodynamic quantities. For the latter, we introduce a five-wave solver based on the frozen limit
of the relaxation system whereby the solution to the Riemann problem can be decomposed into an outer Maxwell
solver and an inner hydrodynamic solver. A number of numerical benchmarks demonstrate that our method is su-
perior in stability and robustness to the more popular charge-conserving divergence cleaning approach where both
primary electric and magnetic fields are zone-centered. In addition, the employment of a less diffusive Riemann solver
noticeably improves the accuracy of the computations.

Key words: methods: numerical — relativistic processes — MHD — shock waves

1 INTRODUCTION et al. 2018) and important progresses have been reached in
establishing robust and accurate numerical schemes for solv-
ing the ideal RMHD equations (see e.g. Komissarov 1999;
Balsara 2001; Del Zanna et al. 2003; Mignone & Bodo 2006;
Gammie et al. 2003; Giacomazzo & Rezzolla 2006; Del Zanna
et al. 2007; Mignone et al. 2009). In typical astrophysical con-
ditions, resistivity is very low and the ideal limit is very well
suited for describing processes that occur on dynamical time
scales.

The study of the dynamics of relativistic plasmas is of ut-
most relevance for the interpretation of the phenomenology of
high energy astrophysical sources. The ideal Magnetohydro-
dynamic (MHD) approximation, where dissipative processes
are neglected, well describes the large scale dynamics of a
plasma and it has been extended to the relativistic regime by
Lichnerowicz (1967) and Anile (2005). Over the last decade,
the ideal relativistic MHD (RMHD) approach has been used
for describing the dynamics of objects like relativistic out-
flows and jets both from Active Galactic Nuclei (AGN) and
gamma ray burst (GRB), accretion flows and pulsar wind
nebulae (PWN) by means of numerical simulations (see e.g.

However, the flow evolution may lead to the formation of
localized region of large gradients (e.g. current sheets) where
resistivity cannot be any longer neglected since its role be-
comes essential in the energy and momentum balance. Pro-

McKinney & Blandford 2009; Mimica et al. 2009; Mignone
et al. 2010; McKinney et al. 2012; Mukherjee et al. 2013;
Mizuno et al. 2015; Tchekhovskoy & Bromberg 2016; Olmi
et al. 2016; Rossi et al. 2017; Bromberg et al. 2018; Bugli
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cesses like magnetic reconnection can be very important for
converting magnetic energy in other forms and may play a
fundamental role for interpreting the phenomenology of high
energy astrophysical objects and their description requires
the treatment of resistive effects.

The derivation of a consistent relativistic theory of non-
ideal hydrodynamics and MHD has been achieved by sev-
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eral authors (Lichnerowicz 1967; Israel 1976; Stewart 1977;
Carter 1991; Anile 2005) and in particular the equations of
resistive relativistic MHD have been derived in a relatively
simple form. More recently several authors have discussed
schemes for the numerical solution of such system of equa-
tions and have presented actual implementations (see, e.g.
Komissarov 2007; Dumbser & Zanotti 2009; Palenzuela et al.
2009; Takamoto & Inoue 2011; Bucciantini & Del Zanna 2013;
Dionysopoulou et al. 2013; Mizuno 2013; Miranda-Aranguren
et al. 2018).

From the numerical point of view, the solution of the resis-
tive RMHD equations is more challenging than approaching
their ideal counterpart as it draws on two main issues. First,
the resistive RMHD equations are hyperbolic with a stiff re-
laxation term which accounts for the large difference between
the dynamical and the diffusive time scales posing very strict
constraints on the time step used for time-explicit calcula-
tions. One possibility for overcoming this problem is offered
by implicit-explicit Runge-Kutta schemes (IMEX) (Pareschi
& Russo 2005). Such an approach represents a very effec-
tive solution to the problem, by combining the simplicity of
an explicit treatment of the flux avoiding the time-step re-
strictions due to the stiffness. IMEX schemes for the resis-
tive RMHD have been implemented and tested by several
of the previously mentioned authors (e.g. Palenzuela et al.
2009; Bucciantini & Del Zanna 2013; Dionysopoulou et al.
2013; Miranda-Aranguren et al. 2018), showing that they are
very well suited for such system of equations. The second
issue is related to the solenoidal condition and charge con-
servation. From an analytical point of view, both are direct
consequences of Maxwell’s equations; at the discrete level,
however, this does no longer hold because of the numerical
errors introduced by the underlying algorithm. More specif-
ically, the numerical counterparts of the divergence and the
curl operator do not ensure that V-(V x A) =0, where A is
any vector field. As a consequence, for the magnetic field, the
constraint V-B =0 may not be maintained during the evolu-
tion while, for the electric field, it is the condition V-E =g¢
that is not respected (when E and ¢ are evolved through
Ampere’s law and the charge conservation equation, respec-
tively). This problem turns out to be particularly severe in
shock-capturing schemes, where the stencils used during the
reconstruction routines and the related accuracy may vary
along the different directions, with the consequence that nu-
merical partial derivatives do not commute (Londrillo & del
Zanna 2004).

Most of the previously mentioned investigators have de-
vised numerical schemes based on a divergence cleaning ap-
proach whereby one solves a modified system of conservation
laws where Faraday’s and Ampere’s law are coupled to gener-
alized Lagrange multipliers (GLM, Munz et al. 2000; Dedner
et al. 2002; Mignone & Tzeferacos 2010). Divergence errors
are convected out of the computational domain at the maxi-
mum characteristic speed and damped at the same time. The
GLM approach offers ease of implementation since fluid vari-
ables and electromagnetic field retain a zone-centered rep-
resentation. Conversely, in the constrained transport (CT)
method originally introduced by Evans & Hawley (1988) (see
also Balsara & Spicer 1999; Londrillo & del Zanna 2004, in the
context of Godunov-type MHD schemes), the magnetic field
has a staggered representation whereby the different com-
ponents live on the face they are normal to. The numerical
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representation of the divergence and curl operators ensures
that the condition V- (V x E) =0 is verified at discrete level,
thus maintaining V-B = 0 to machine accuracy during the
evolution. This approach has been used by Bucciantini & Del
Zanna (2013) (see also Del Zanna et al. 2014, for a genuinely
third-order scheme), in the context of resistive RMHD, to
evolve the magnetic field while still keeping a zone-centered
discretization for the electric field.

In the present work, we extend the constrained transport
formalism also to the electric field and follow an approach
similar to that outlined in Balsara et al. (2016), in the con-
text of the two-fluid equations. There, an alternative stag-
gered collocation for the electric field has been introduced
that is both compatible with a Godunov scheme and gives
an update of the Ampére’s law consistent with Gauss’s law.
In the proposed method, the primary electric and magnetic
field variables share the same staggered representation and
are thus represented by their surface averages. Hydrodynamic
quantities retain instead the usual zone-centered collocation
and are interpreted as volume averages. The resistive RMHD
equation solver has been implemented as part of the PLUTO
code for astrophysical gas dynamics (Mignone et al. 2007)
and includes both the standard GLM schemes as well as the
newly proposed CT scheme.

The paper is structured as follows. In Section 2 we review
the fundamental equations of resistive RMHD, starting from
their covariant form. In Section 3 the new constrained trans-
port formulation is presented while our five-wave resistive
RMHD Riemann solver is derived in Section 4. Numerical
benchmarks are presented in Section 5 and conclusions are
finally drawn in Section 6.

2 EQUATIONS

In the present section we describe the equations for resistive
relativistic MHD, first in general covariant form and later
specialized to a Minkowski flat spacetime, separating time
and space components and derivatives as needed for practi-
cal implementation in a numerical scheme. In the following
we will adopt physical units where ¢ = 4w = 1, a signature
(—1,4+1,+1,41), guv will be the metric tensor, and V the co-
variant derivative associated to the metric. We will use Greek
letters for covariant four-dimensional components and Latin
letters for spatial three-dimensional ones.

2.1 Covariant formalism

The equations of relativistic MHD are composed by a first
couple of conservation laws, one for baryon number (or equiv-
alently mass, assuming a single fluid with particles of given
rest mass) and one for total momentum-energy conservation:

Vulput) =0, VuTg" =0, (1)

where p is the rest mass density, u* the fluid four-velocity,
and T the total (matter and fields) stress-energy tensor.

The second couple is that of Maxwell’s equations
VuFH =—J¥, VF* =0, (2)

where F*V is the Faraday electromagnetic (EM) tensor, F**Y
its dual, and J* the four-current density, which, due to the



A Constrained Transport Method for the Solution of the Resistive Relativistic MHD Equations 3

anti-symmetric property, satisfies the condition
Vudh =0 ®3)
of electric charge conservation. Let us now split the total

stress-energy tensor into the gas and electromagnetic field
(EM) components, for which we have

VuTEY = =V Ty = —Ju F*, (4)
where the last term is the Lorentz force acting on the charged
fluid.

We then decompose our quantities according to u*. In the
case of an ideal fluid, the matter contribution to the energy-

momentum tensor is simply provided by ideal hydrodynamics
as

1Y = (e+puru’ + pgh”, (5)

where € = Tg’Wuuuv is the gas energy density, and p is the
kinetic pressure. The EM tensor and its dual can be expressed
as

FHY = yte¥ — ¥ et + efVA¥p, e,
F*HY = yHpY —yVpH — 8“”'%,114,(7 (6)
where e#V2¥ is the Levi-Civita pseudo-tensor, and where the
vectors

et =F*Vu,, b =F*Vy, = %S”MKF,IKMV, (7)

are the electric and magnetic fields measured in the fluid rest
frame. Given these definitions, the field component of the
stress-energy tensor can be written as

T]élIJI/:(€2+b2)u”uv—|—%(ez—l-bz)gyv—e“ev—b“bv. (8)
The four-current can be also split according to
JH = qout + j*, (9)

where go = —J"u is the proper electric charge density and
J* the conduction current density. We show in Appendix A
that the rest-frame charge density can be expressed in terms
of the comoving fields and the kinematic vorticity (see Eq.
A5). We also point out that even in the ideal limit (n — 0)
the rest-frame charge does not vanish but it can be expressed
as qo = —b* @y, where @y is the kinematic vorticity.

Projecting the momentum-energy conservation law Eq. (4)
across the flow yields the equation of motion

(€4 p)u’Vyuy +Vyup+uyu'Vyp = qoey + euv,l,(j"blu", (10)

in which the right hand side is the Lorentz force, whereas the
energy equation is obtained by projecting along the flow, so
that

M“Vus—l—(s—l-p)V”u“ :jue“, (11)

where Joule heating acts as an energy source. We clearly need
some sort of Ohm’s law to close the system and to specify the
heating term.

In the literature three possibilities are most commonly
adopted:

(i) ideal plasma — the mobility of charge carriers is so high
that the comoving electric field must vanish in order to pre-
vent huge currents. Therefore Ohm’s law is

et =0, (12)

and only the source-less Maxwell equation is needed to be
solved (for b*);

(ii) resistive plasma — we assume an isotropic tensor of
electric conductivity, so that Ohm’s law is simply

et =mnjt, (13)

where 7 is the (scalar) resistivity coefficient, and Joule heat-
ing retains the usual form 1?;

(iii) dynamo-chiral resistive plasma — in addition to resis-
tive dissipative effects, mean-field dynamo or chiral magnetic
effects (CME) may be at work in the plasma, leading to an
additional current component along the magnetic field and
to magnetic field amplification. In Del Zanna & Bucciantini
(2018) the following covariant form of Ohm’s law was pro-
posed

j* = opet + opb*, (14)

where subscripts have been added to distinguish the Ohmic
and dynamo/chiral effects, coupling to e and b*, respec-
tively. For op = 0 we retrieve the previous case, where o =
1/ is the conduction coefficient.

From now on only the second option will be discussed, leaving
the implementation of the dynamo/chiral case to a future
work.

2.2 The equations for a flat spacetime

The equations are now rewritten for a flat Minkowski space-
time, that is for special resistive RMHD. We are going to
separate time and space components and from now on we
will use boldface notation and Latin indices for spatial vec-
tors. The fluid four-velocity is now written as

uk = (y,u), (15)
where ¥ = v/1+u? is the Lorentz factor and v =u/y is the
usual three-velocity. The four-current is now split as

T =(q.d), (16)

where ¢ is the charge density (now measured in the labora-
tory frame), and J the usual three-current. The EM fields are
derived from the Faraday tensor and its dual as

e! = (u-E,YE+uxB), (17)
b =(u-B,yB—uxE), (18)
in which E and B are the electric and magnetic field measured
in the laboratory frame.

The set of resistive relativistic equations arising from the

time and space split of the covariant Egs. (1) and (2) are, in
vectorial form,

aD

W—Q—V-(DV):O,

Jm

S5 +V-(wau+pl+T)=0,

&

2 aV.m= 19
5, FV-m=0, (19)
JB

§+V><E70,

oE

el v/ —

ot xB I,

where | is the identity matrix and the fluid conserved variables
are the density D = py as measured in the laboratory frame,

MNRAS 000, 1-24 (2019)
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the total momentum density m = wyu+E x B, and the total
energy density

(g:WYZ—P-F'PEM. (20)

In the expressions above, w = €+ p is the specific enthalpy and
Pem = (E2 + B?)/2 denotes the EM energy density. Finally,

T=-EE-BB+1(E2+B%) (21)

is the Maxwell’s stress tensor. The remaining Maxwell’s equa-
tions give the constraints

V.B=0, V-E=g, (22)

and the charge and current densities are also bound to satisfy
the conservation equation

dq

—4+V-J=0, 23

Ey J (23)
which directly follows from Eq. (3).

These quantities both enter in Ohm’s law, Eq. (13), here
rewritten in terms of spatial vectors alone. From its time
component one can derive the ggy term, so that the Ohm’s
law for the spatial current becomes

J:% }’E-‘FUXB—(E'U)V]_"un (24)

where ¢ = V-E from Gauss’ law, so that the current is deter-
mined once the fluid velocity and the electromagnetic fields
are known, for a given value of the resistivity 1. In the ideal
MHD limit, n — 0, the condition E+v xB =0 is retrieved
(here E can be considered a secondary variable with respect
to v and B, to be derived by the above condition), whereas
in the resistive limit, 7 — oo, we have J = gv, and the charge
density g satisfies a continuity equation.

For numerical purposes, we use more compact notations
and rewrite the system in quasi-conservative form as
au 1 1
— =-V-FU)+S.+=SU) =RU)+ =SU), (25)
at n n
where U = (D, m;, &, B;, E;)T is the full array of conserved quan-
tities, F is the flux tensor

pu;
WU;iU +p5ij +T,'j

F= m; , (26)

sijkEk

—glikp,,
where €% is the three-dimensional Levi-Civita symbol. The
source term is non-zero only in the Ampere’s law and it con-
tains the current density J (Eq. 24) which we split, for com-
putational purposes, into a stiff (J) and non-stiff (gv) contri-
bution. The source terms S and S, in Eq. (25) take thus the
form

s (W) e () o

In Mignone et al. (2018) it has been shown that the sys-
tem of hyperbolic PDE given by (25) admits 10 propagating
modes which are easily recognized in the limits of small or
large conductivities. In the 1 — oo limit, matter and electro-
magnetic fields decouple and solution modes approach pairs
of light and acoustic waves as well as a number of purely
damped (non-propagating) modes. In the 1 — 0 (ideal) limit,

MNRAS 000, 1-24 (2019)

N 1
’ Ezjj.k%“ Bz,z’,j.k+%
Uik, B il
» =
a z,t+517,k
N\/ X
Oy \/\4\
@ \‘\'\N
X
,,,,,,,,,,,,,,,,,,,, 3

Figure 1. Positioning of hydrodynamical variable (. in green)
and electromagnetic fields (Ef and By, red and blue respectively)
inside a computational zone (i, j,k).

modes of propagation coincide with a pair of fast magne-
tosonic, a pair of slow and Alfvén modes, as expected. The
contact mode is always present and it is unaffected by the
conductivity.

3 DESCRIPTION OF THE CT-IMEX SCHEME
3.1 Notations and General Formalism

We adopt a Cartesian coordinate system with unit vectors
2y = (1,0,0), &, = (0,1,0) and &, = (0,0,1) uniformly dis-
cretized into a regular mesh with coordinate spacing Ax, Ay
and Az. Computational zones are centered at (x;,yj,zx) and
delimited by the six interfaces orthogonal to the coordinate
axis aligned, respectively, with (xii% Vs 2k), (%, Vel z) and

(%> ¥j» 2y 1)-

Primary zone-centered flow variables include density, mo-
mentum and energy and are stored by their volume averages
inside the zone and labeled as U, = (D, m, £), where the ¢
subscript is a shorthand notation for (i, j,k).

Conversely, electric and magnetic fields share the same
staggered representation and are understood as surface-
averaged quantities located at cell interfaces, as shown in
Fig. 1. We denote them as Ey,B; where the f subscript tags
the different face-centered electric and magnetic field compo-
nents, e.g.,

B, » Bx‘iJr 3.Jok
By = Byf = By,i.j-%%,k ) (28)
By, Beijirs

and likewise for the face-centered electric field Ef. The sub-
scripts xy, yr and zf identify the different component as well
as their staggered location inside the control volume, i.e.,
xp = (x,i+ %,j,k), yp= i+ %,k) and zf = (z,4,/,k+ %)
Within the CT approach, it also convenient to define the lo-
cation of cell edges by introducing the “e” subscript, i.e., x, =
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(x,i7j+%7k+%),yez(y,H—%,Lk—I—%) andzgz(z,i+%,j+%7k).
Our formulation draws on the two fluid approach of Bal-
sara et al. (2016) and assumes a staggered representation
for both the electric and magnetic field. Zone-centered vari-
ables are updated using the standard finite volume approach.
Staggered quantities are updated using a discrete version of
Stokes’ theorem.

Choosing a staggered representation for E may seem un-
usual and somehow not consistent with the ideal limit, where
E = —v x B is not a continuous quantity across an interface.
However, this choice is consistent with a frozen Riemann
solver where (in absence of source terms) the Ampere’s law
retains the same form as the induction equation thus leading,
for a 1D problem, to the E, = const assumption.

In the following we will make frequent use of the backward
difference operators A, A, and A, defined as

AQc =0 — Oc—s,
AO=0c— chéy (29)
A Qc Oc— chézy

where Q can be any flow quantity. The A operators can be
equivalently applied to face-centered or edge-centered values.

In a similar fashion, we also introduce the face-to-center
average operators which, to second-order, read

Qx +Qx I

(Qy),=—"—F"—
) +Qf7a.

(0,),= 22 w
(0 +Qz e

<sz> =— .

3.2 IMEX Runge-Kutta Time Stepping

A major challenge when dealing with the numerical solution
of Eq. (25) is the presence of a stiff source term in Am-
pere’s law. Owing to small resistivities typical of astrophysical
plasma, this equation may easily become stiff and, for an al-
most ideal plasma (very small 1), it cannot be solved through
an explicit method in a computationally efficient way as the
stiff time scale would impose prohibitively small time steps.
In order to overcome the time step restriction, we rely on the
strong-stability-preserving (SSP) IMplicit-EXplicit (IMEX)
Runge-Kutta method, introduced by Pareschi & Russo (2005)
and already employed in the context of the resistive RMHD
equations by several authors, as cited in the introduction. Ap-
plying the IMEX formalism to the original conservation law
(25), the resulting time-stepping scheme is explicit in R(U)
and implicit in the stiff source term S(U)/n.

We employ the 2" order IMEX-SSP2(2,2,2) scheme which,
when applied to the system (25), consists of the following
three stages,

U a2 s
n

U =y + AR + % [(1 —2a)SW +a5<2)] (31)

L] :uu% (RW+R®) +2AT; [s1+5@]

where a=1—1/+/2 and the array U = (D, m, £, B, E) contains

zone-centered as well as face-centered conserved quantities.
The arrays R(U) = -V -F(U)+S,(U) and S(U) defined in the
previous section embed, respectively, the explicit and implicit
contributions. It is important to realize that the first and sec-
ond stage of the previous time-marching scheme are (locally)
implicit as the source term is evaluated at the same interme-
diate stage as the left hand side. This step involves therefore
an implicit update of the electric field which, in our case, is
located at zone faces. This is discussed in Section 3.5.

Without loss of generality, we write the single integration
stage s of a SSP Runge-Kutta-IMEX scheme by separately
working out the zone-centered variables U, = (D, m, £). from
the staggered fields By, E as

s—1
U =y — A Zlag,, (V F)( 7 (32)
B _ Y (vep)” 33
;=B pgﬁ”’( % )f (33)
Eﬁf) I+ At Zlayp (VxB— qv ZaspJf (34)
=

where d;;, and a;p are the IMEX coefficients relative to the
explicit and implicit temporal discretization (see the Butcher
tableau’s available from tables II, III and IV in Pareschi &
Russo 2005), respectively. The tensor F incorporates the flux
components of the hydrodynamical variables only (columns
1-5 of Eq. 26).

At the implementation level, a generic IMEX stage can be
decomposed into a sequence of explicit and implicit steps,
that is, by first evolving Equs. (32)—(34) without the last
source term in Ampere’s law to some intermediate value and
then by solving for the implicit source term alone. The ex-
plicit and implicit steps are described in the next two sections.

3.3 Recovery of Primitive Variables

Although the primary set to be evolved in time is that of con-
served variables (., E; and By), primitive variables defined
by V= (p,u,p,E,B) are required at any stage of the IMEX
time stepping. The conversion from primitive to conservative
variables poses no difficulty, but the inverse transformation
cannot be written in closed analytical form and must be re-
covered numerically. Here we adopt the approach of Dumbser
& Zanotti (2009) in which the problem is reduced to the so-
lution of a quartic function in the Lorentz factor,

(c1 - c%) 7 +2C21_2173

Cc, D C C+ (35)

-2t = 292py ST

+ ( 2 l—vl F2> 72 F] Y+ 1_,2 )
where C; = (m—E x B)? and C, = (€ — Pgm) are, respectively,

the square of the hydrodynamical momentum and the energy.
In the expressions above we have assumed an ideal equation
of state,

w=p+Tip, (36)

where I't =T'/(I' —
ratio.

1) and I is the (constant) specific heat

MNRAS 000, 1-24 (2019)
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As shown in the appendix of Zenitani et al. (2009), physi-
cally consistent solutions correspond to the larger of the two
real roots of the previous quartic function. We solve the quar-
tic function using a combination of brackets, bisection and
Newton-Raphson method. Once the Lorentz factor is found,
the remaining primitive variables can be computed as:

2
PZQ, p:f; p‘)/2 'PEM, v m EXBZ, (37)
Y iy —1 (p+T1p)y
where the second one is obtained from the energy equation
(20) while Pgy - the EM energy density - has been defined
after Eq. (20).

A distinct inversion scheme (used, for instance, by
Dionysopoulou et al. 2013) consists of subtracting the electro-
magnetic contributions from momentum and energy densities
and then resorting to a standard relativistic hydro inversion
scheme to find the pressure. This can easily achieved using,
e.g., the approach outlined by Mignone et al. (2005) which is
also valid for different equations of state.

3.4 Explicit Step

We now describe the spatial discretization adopted for the
evolution of the zone-centered and staggered variables during
the explicit stage of an IMEX stage (Eqns 32-34 without the
last term in Ampere’s law).

8.4.1 Ezxplicit Update of Zone-Centered Quantities

In the finite volume approach, Eq. (32) is naturally inter-
preted as an integral relation relating the change of a volume-
averaged conserved quantity to its surface-averaged flux in-
tegral across the cell boundary. The discrete form of the di-
vergence operator is thus computed using fluid and electro-
magnetic quantities available at the p-th stage of the time-
marching scheme:
AT Ay};ff AT
Ax Ay + Az

(V-F)P) = (38)
where the A’s are the backward difference operators defined in
Eq. (29). Here the different 7* are the hydrodynamic compo-
nents of the flux computed with a one-dimensional Riemann
solver applied at cell interfaces between left and right states
at the (p)-th stage. To second-order accuracy, a midpoint
quadrature rule suffices so that, e.g.,

iy = Friem (V5 VR ). (39)

where V)%f and fo are the one-sided limit values of the piece-
wise polynomial reconstruction from within the two neigh-
bor zones adjacent to the interface (higher than second-order
finite-volume schemes requires more quadrature points, see,
for instance, in Balsara et al. 2016). The reconstruction is
carried out on the set of primitive variables V (rather than
U) as it is known to produce less oscillatory results. For a
second-order reconstruction one has, e.g.,

5)( Vc 6x Vc+éx
2 2

Vi =Ve+ . VR =Vere, - (40)

where 6,), are limited slopes in the x-direction. A widespread
choice, which will also be used by default in the present work,
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is the van Leer (or harmonic mean) limiter:

0 if (AVe)(AVeqe,) <0
Ve = X s 41
e 20V (AiVera) otherwise . (4D
(AXVC) + (AXVC+éx)
A slightly more compressive option is given by
AVe+AVeye
8Ve =mm (“fx“ 2mm(A,V, AXVH@X)) (42)

where mm(-,-) is the minmod limiter. Eq. (42) is known as
the monotonized central (MC) limiter.

A popular choice for solving the Riemann problem at cell
interfaces in the context of Res-RMHD is the Lax-Friedrichs
(LF) scheme, where the fastest characteristic speed is chosen
to be the speed of light,

Fe(VE) +Fx(V) - U —ug,
2 2

One-dimensional flux functions in the y- and z-directions are
computed in a similar fashion. Despite its simplicity, the LF
scheme (43) can lead to excessive smearing of discontinuous
waves as only the two outermost (light) waves are retained in
the Riemann fan. For this reason we derive, in section 4, an
improved five-wave solver designed to capture the light waves
as well as the intermediate acoustic modes, including the con-
tact discontinuity. Our approach is similar to the Harten-Lax-
van Leer contact wave (HLLC) Riemann solver recently pro-
posed in the appendix of Miranda-Aranguren et al. (2018).

Fi= (43)

8.4.2 Explicit Update of Face-Centered Quantities

In the constrained-transport method, Eq. (33) and (34) are
understood as surface-averaged relations so that a discrete
version of Stokes’ theorem can be applied. This leads to
the appearance of edge-centered values (or line-averaged in-
tegrals) of the electric and magnetic fields, that is, E, =
(Ex,,Ey,.E;,) and B, = (By,,By,,B;,). Exact integration over
the control volume surfaces yields

(VxE) v (LyEZ - LZE;”) 2
f Ay Az /,,

AE;  AELN
- (T T )@ (44)
AE;  AE;
+( XY, _ Y xe) éZ
Ax Ay 2

while, for the Ampere’s law we have similarly:

ABY AB;
(VXB*QV)ECP):< 7 yff(qvx)*) ey

Ay Az X
ABr  AB L\,
< A Ax *(qu)) 2y (45)

Vr
(A8 S5y
z z

Ax Ay 2
The A operators are again defined in Eq. (29).

The edge-centered electric and magnetic fields are tagged
with a star and are obtained by using a two-dimensional Rie-
mann solver at the (p)-th stage of integration. These upwind
flux functions result indeed from a four-state representation
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(i,j+1) (+1,j+1)
\ t /)
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Figure 2. Top view of the four zones abutting the z-edge (intersec-
tion of squares) showing a schematic representation of the recon-
struction steps needed to compute the line-averaged z-component
of the electric field in the 2D Riemann solver. The third dimension
has been collapsed for the sake of clarity. Red and blue arrows
indicate, respectively, the direction of the reconstruction for the
electric and magnetic field, starting from the primary location of
the variable (represented by a dot).

since two surfaces of discontinuity intersect at a zone edge so
that modes of Riemann fans coming from different directions
overlap (see, for instance, Del Zanna et al. 2003; Londrillo
& del Zanna 2004; Balsara et al. 2016). Since the Maxwell’s
equations are linear and involve propagation of light waves (in
the frozen limit approach used here), a proper combination of
upwind numerical fluxes along the corresponding orthogonal
coordinates leads to the single-valued numerical flux out of
these four-states. For the z-components one has, for instance,

1
Ef = o [EH+EER 4 ER+ ERR]
1 R L
“2Byte, "Byite) (46)
1 R L
+§(By,+%éx73y/+%éx)’

and likewise for the z-component of the edge-centered mag-
netic field,

B = 5 [BH+ B BRE 4 B

1
1 R L

+§(EX,’+%€V 7E)Cf+%@y) (47)
1 g L

7§(Eyf+%élf y,v+%éx)'

The four terms with a double superscript in square bracket
denote reconstructed values of the z-components of the elec-
tric and magnetic fields from the face centers (where they are
primarily defined) to the zone edge z.. This is schematically
illustrated in Fig. 2 where a top view of the four zones inter-
secting at an edge (represented by the central point common
to all squares) is shown. The first and second superscript re-
fer to the state lying to the left (L) or to the right (R) of the

edge with respect to the x- and y-direction, respectively. For
a second-order reconstruction one may use, e.g.,

8.E 8,E
LL xEz Z
Eze:<Ezf>z+< 2f> +< 2f>
Zz Z
8Ez 1z 8E-, 1o
RL wEzpte, 2o
Ez« = <EZf+?,u >Z - < zf > + < 2f >
Z Z

where the (-), is the arithmetic average operator in the z-
direction, see Eq. (30).

The x- and y-components of the staggered magnetic field,
on the other hand, are continuous at x- and y-faces and the
dissipative terms in Eq. (46) come from two independent wave
fans involving jumps in the transverse directions. The same
arguments hold for the x- and y-components of the staggered
electric field when evaluating the dissipative terms in Eq.
(47). Flux functions located at x- and y-edges are obtained
similarly by cyclic index permutation.

The last term in square brackets in Eq. (45) is a non-stiff
source responsible for passive charge advection and it is dis-
cretized, for reasons that will be clear in the following section,
using an upwind selection rule. We have explored two differ-
ent options, giving essentially very similar results. In the first
one, slightly more diffusive, a simple Rusanov Lax-Friedrichs
solver may be employed:

L R U A
(qu)x/ = 2 - 2 )

and similarly for at the y- and z-interfaces. Alternatively, one
could select the upwind direction by looking at the sign of the
density flux Fx?[p ], computed during the evolution of zone-

centered variables (Section 3.4.1):

(49)

g\t el e pelp)
(D)x, E it FP>o
(qvx)?: (50)
' g\R _xp o P
(B)Xfo,[ T R

where D = yp is the laboratory density.

The choice of an upwind rule ensures that the charge, com-
puted as the discrete divergence of the electric field, remains
oscillation-free (see the discussion at the end of Section 3.5
and 3.6).

3.5 Implicit Step

During the implicit step one has to deal with

E® :Rgs—l)_% YE+uxB—(E-u)v (S), (51)

where 6t = azAt, RS’” contains only explicit terms, B®) is
also computed explicitly, while the electric field E and four-
velocity u = yv must be determined. Eq. (51) holds at any
location inside the computational zone and has to be solved
iteratively by adjusting primitive variables (p, v and p) while
leaving laboratory density, momentum, energy and magnetic
field unchanged. In the proposed CT formalism, a major com-
plication now arises since the primary electric field variable is
located at zone faces while conserved variables retain a zone-
centered representation. An implicit update would have now
to be carried at the three different zone faces, thus requiring
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simultaneous reconstructions from neighboring cells with the
unwanted effect of making the algorithm non-local anymore.

This complication could be overcome if one notices that the
implicit relation (51) is linear in the electric field and could
be easily inverted if the velocity field u at the next level is
known. This suggests that one could first solve the implicit
step using the cell-centered electric field and then reconstruct
the resulting velocity field at the faces. Then Eq. (51) could
be readily solved for the staggered electric field yielding

nRY™Y 5t [uxB— (E-u)v]

1+ yot
where now the velocity has been reconstructed using the val-
ues obtained during the cell-center implicit step and we have
dropped the superscript (s) for ease of notations. The (E-u)
term (which contains also the transverse components of E)
can be rewritten by taking the scalar product of Eq. (51)
with u:

E= , (52)

Rgsf 1) u
yn+6r
Equation (52) together with (53) now directly gives the stag-
gered components of E at the chosen interface once the val-
ues of velocity and magnetic fields are available at the same
location. The interface values of u and B can be obtained
by interpolating the cell-centered four-velocity and staggered
magnetic fields at the same location. However, both u and the
transverse components of B will, in general, be discontinuous
at a given interface.

In order to overcome this problem, we have examined two
different options. In the first one, a single-value of velocity
and magnetic field can be simply obtained by taking, e.g.,
the arithmetic average of the left and right states adjoining
the interface. Then Eq. (52) can be readily solved for the
staggered electric field. In the second option, Eq. (52) could
be solved separately for the left and right states thus yielding
two different values of the staggered electric field, E? and

(E-u)=7n (53)

EIJS. A single-valued electric field can then be obtained by
some averaging procedure and, although in principle several
options are possible to produce a single-valued electric field,
the rationale for choosing one average versus another is better
understood by inspecting at the resulting discretization of the
charge (Section 3.6). Here we choose the simple arithmetic
average
L R
Ep= EfizEf ; (54)
which from Eq. (51) allows the (stiff part of the) current to
be expressed as
JL . FR

I = Jf;‘]f. (55)
As it will be later shown in Section 3.6, this choice is equiva-
lent to a conservative update of the charge in which the inter-
face fluxes are computed by means of a local Rusanov Lax-
Friedrichs Riemann solver. The amount of dissipation is in-
troduced by the upwind discretization of the non-stiff source
term gv (see the discussion at the end of Section 3.4.2). Al-
though both options have been implemented in the code and
no substantial difference has been found, we use the second
options throughout this work.

The implicit solver for the cell-centered electric field is the
subject of next sub-section.
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8.5.1 A Newton-Broyden Scheme for Cell-Center Implicit
Update

We propose a novel method to solve Eq. (51) at the cell cen-
ter based on a multidimensional Newton-Broyden root-finder
scheme. Our method exploits conservation of momentum, en-
ergy and density through the iterative cycle so that, instead
of solving directly Eq. (51), we search for the roots of

f(u) =m— [Dh(u)u—i— E(u) xB| =0, (56)

where the specific enthalpy 2 =w/p and the electric field are
functions of the four-velocity while m = m®, D=D6) and
B =B®) are known quantities at the beginning of the implicit
step. Equation (56) gives a nonlinear system of equations
in the four-velocity since E = E(u) through Eq. (52) while
h = h(u) through the energy equation (20). It simply states
that the momentum must not change during the implicit up-
date. We use the four velocity (rather than the electric field)
as the independent variable as it offers the advantage that
conservative to primitive inversion can be avoided during the
cycle.
The Newton-Brodyen method can be sketched as follows:

(i) At the beginning of the step, compute the electric field
at zone centers by simple arithmetic average of the face value,

es-Eg=(e;-E),, (57)
where d = x,y,z. Also, provide a suitable guess of the four-

velocity!. The iteration counter is set to k =0;

(ii) Using the current value of u®) obtain the improved
values of the cell-centered electric field using Eq. (52) as well
as pressure and enthalpy using Eq. (37);

(iii) Compute f¥) = f(u(*):

£K) —m — [Dh(u)u+E(u) xB (K). (58)

Note that the laboratory density, magnetic field and total
energy cannot change during this step.

(iv) Using the Jacobian, J = df/du, obtain an improved
guess of the four-velocity through

(D = () (J09) ), (59)
where

— Dh(ws, D 0w (EW xB),

sz* Dh(u)5,] Du; auj auj R (60)

and an explicit derivation is presented in Appendix B.

(v) Exit from the iteration cycle if the error is less than
some prescribed accuracy [f¥)| < &, otherwise we go back to
step (ii) and let kK — x+1.

Note that conversion from conservative to primitive vari-
ables is not required at each cycle since the primitive variables

' We employ the four velocity uy at the current time level if

n/At > 1; otherwise we use the four-velocity obtained from the
ideal RMHD equations
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are automatically updated. For standard applications, our al-
gorithm converges in 2 —5 iterations with a relative tolerance
of 10711,

3.6 Charge Conservation

In the CT approach, the charge is not an independent variable
(as it is the case for the GLM), but it is directly obtained from
the divergence of the electric field,

MEy | AEy, A

4e=(V-Ee="37 10 T

(61)
The charge density is thus collocated at the cell center and
it is conserved by construction. In order to see this, let us
take the discrete divergence of Ampere’s law (Eq. 34) at any
integration stage. Since CT schemes automatically fulfill the
condition V-V x =0 at the discrete level, one finds

s—1 N
qgs) =gl —AV- (Z dsp(qv*)(S) + Z aspj(s>> . (62)
p=1 p=1

c

The previous relation shows that the charge density obeys a
conservative equation by construction.

We now show that when the choices given by Eq. (55) and
Eq. (50) are applied to Ampere’s law, one obtains a stable and
oscillation-free equivalent discretization for the charge evolu-
tion. For simplicity we restrict our attention to the 1% order
IMEX scheme which, using our standard notations, reads

) = Er-ajl
n+1 n | n (1) * (63)
Effl = E}+M(VxBY) A [Jf +(qv)fi|

By taking the divergence of the last expression and using Eq.
(55) and Eq. (50) one finds

n+1 n Ax :f AyJ;f AZJZ*/’
e =q.— At Ax + Ay + Az (64)

and using Eq. (49), for instance, one finds that

(40 + v ) (5 + v )"

2 (65)

x
fo =

n,R n,L
o qX/ - CIx_,c
2

is a Rusanov Lax-Friedrichs numerical flux.

3.7 Summary of the CT Method

Hereafter we summarize the main steps followed by our IMEX
SSP2-CT scheme in order to ease up the implementation of
the different computational tasks.

n

(i) At the beginning of integration, we start with U, Ef
and B? as our primary fields. Set s = 1.

(ii) Average the primary staggered fields (E and B) to zone
centers, using Eq. (30). Perform the IMEX implicit update
at zone centers to obtain EE“‘) and primitive hydrodynamic
variables V(S), as described in Section 3.5.1.

(iii) Using ES‘” and u£s>, achieve the implicit step on the
staggered electric field as well, as detailed in Section 3.5. This

yields Eﬁf).

(iv) Compute interface Godunov fluxes and the multidi-
mensional line-averaged electric and magnetic fields to obtain
the divergence and curl operators contained in the predictor
step (s =2) of the IMEX scheme, that is, Eqns (32, 33, 34)
for s = 2. Also, compute the explicit source terms needed for
this stage and add all terms up to obtain the explicit contri-

butions needed for Uc(z), B;z) and Ej,z).
(v) Repeat the implicit steps (ii) and (iii) with s =2 to

achieve UL@ E;z) .

(vi) Perform the final corrector stage as in step (iv) and
obtain the solution at the next time level n+ 1.

4 THE MHLLC RIEMANN SOLVER

Within the IMEX formalism, the solution to the Riemann
problem can be obtained under the frozen limit condition
(infinite resistivity) by ignoring the effect of the stiff source
term in Ampere’s law on the characteristic wave propagation.
In this limit, the current-density is J = ¢gv and the momentum
and energy equations in (19) can be rewritten as

%(wyzv)—o—V(wyzvv-i-lp) = g(E+vxB) .
PP AV-Y) = avE.

Thus the coupling between EM and hydrodynamic fields re-
sults only from a non-zero charge density. At the linear level
Mignone et al. (2018) have shown that, in this regime, the
characteristic structure of the resistive RMHD equations en-
tails a pair of acoustic modes and a pair of light waves. The
contribution of the charge, being a second-order (nonlinear)
term, is neglected in the dispersion relation. In addition, as-
suming that the presence of the source term on the right
hand side of Eq. (66) does not change the Rankine-Hugoniot
conditions (a similar inference has been done by Miranda-
Aranguren et al. 2018), we can consider Maxwell’s and hy-
drodynamic equations to be decoupled during the solution of
the Riemann problem.

Our approach therefore is based on the direct combination
of two Riemann solvers: one for the outermost EM waves
across which only transverse components of electric and mag-
netic fields can change, and a second one across the sound
waves where only hydrodynamical variables have non-trivial
jumps. We shall refer to the former and the latter as the
outer and the inner Riemann solver, respectively. Across the
outermost EM waves, jump conditions for E and B follow
directly from Maxwell’s equations. The presence of the out-
ermost waves modifies total momentum and energy so that
conservative variables behind the discontinuities serve as in-
put left and right states to the inner Riemann problem for
which any any relativistic hydrodynamic solver may be em-
ployed. Here we choose to rely on relativistic HLLC scheme
of Mignone & Bodo (2005).
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Figure 3. Schematic representation of the Riemann fan assumed
by the MHLLC solver. The outermost waves (A = —A_ =1) are
EM (light) waves while A; and Az are pairs of acoustic waves.
The central mode (A*) represents a contact discontinuity. Jumps
in EM fields are denoted by different shades of orange while jumps
of hydrodynamic variables are marked by different shades of blue.

Across each wave A the jump conditions
AU —U) =F—F (67)

must be satisfied for any pair of states U, and U; and cor-
responding flux functions F; and F,.. The Riemann fan com-
prises five waves and its structure is schematically depicted
in Fig. 3. For a discontinuity propagating in the n (=1,2,3)
direction, our state and flux functions are more conveniently
written by separating hydrodynamical from EM terms as

D Dv,
0i+Si Qivn+ POin+ Tin
U= &+Pem |, F= On+Sp (68)
B; EinkE
E; —Eink B

where T is the Maxwell stress tensor (Eq. 21) while
Qi=wrvi, &=wy'—p, Si=(ExB) (69)

are the hydrodynamic momentum, energy and the EM Poynt-
ing vector, respectively.

Owing to its structure, we label our Riemann solver as
“MHLLC”, where “M” denotes the outer Maxwell solver
while “HLLC” stands for the inner the Harten-Lax-van Leer-
Contact approximate Riemann solver originally introduced
by Toro et al. (1994) in the context of the classical equa-
tions of gas-dynamics. The HLLC scheme improves over the
traditional HLL method (Harten et al. 1983; Einfeldt et al.
1991) by restoring the contact wave in the solution. We point
out that, although devised from different assumptions, our
method of solution ends up being similar to the version of the
HLLC solver reported in the appendix of Miranda-Aranguren
et al. (2018). The outer and inner solvers are described in the
next two sections.

4.1 Outer Solver

The jump conditions (67) must hold across the leftmost wave
(A_ = —1) between states Uy and Uy and, likewise, across the
rightmost wave (14 = 1) between Ug and Ug. In the frozen
limit, EM fields can be discontinuous across the outermost
waves but do not experience further jumps across the inner
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waves Az, and Ag. For this reason we set E; = E; =E; = Ex
(and similarly for B). Specializing to the x-direction and solv-
ing Maxwell’s jump conditions for the transverse components
yields

- By;+B, E.r—E
B, = y,.L > YR + z,R 5 z,L
E _ Bz,L + Bz,R Ey,R - Ey.L

= 22

(70)

5~ EBEuwtEr Br—BL

4 2 2

~ E.1+FE B,r—B
E, = zL 5 R + R 5 L

Normal components By and Ey are continuous at the interface
and do not experience any jump.

With the above definitions, the continuity equation is triv-
ially fulfilled since both density and fluid velocity are contin-
uous across A+. Likewise, it can also be verified that the jump
conditions (67) of the momentum and energy equations are
also automatically satisfied. In particular, by combining the
jump conditions of the x-component of the momentum and
energy, one consistently finds

(SXL - gx) = 7(Pem7L - 75em)
(SXR - Sx) = +(,Pem7R - 75em)

where Pen is the electromagnetic pressure.

(71)

4.2 Inner Solver

As discussed before, the frozen limit allows us to employ any
hydrodynamic relativistic solver inside the inner fan. In order
to capture the three-wave pattern characterizing the actual
solution, our method of choice is based on the approximate
HLLC solver of Mignone & Bodo (2005). Writing explicitly
the jump conditions across A;, and Ag in the x-direction (sim-
ilar results are obtained by index permutation) and taking
advantage of the fact that EM fields do not experience any
jump inside the inner fan, one finds

/ls(WS—W;) :7:[3—7'{§ (72)
where S =L,R and W = (D, Qx, 0y, 0;,&p), H = (Dvx, Qv+
P, Oyvx, Ozvx, Ox) are the subset of U and F containing only
hydrodynamical quantities. Notice that, by virtue of Eq. (71),
EM quantities have disappeared from the jump conditions
and that the tilde sign can be dropped since since hydrody-
namical variables are continuous across the outer waves, that
is, WL,R =W g and 7:[5 =Hg for S=L,R.

The system of equations (72) is thus identical to Eq. [16]
of Mignone & Bodo (2005) and can be solved likewise by
imposing continuity of pressure and normal velocity across
the contact wave, p* = pj = pj and 1* = v)*C,L =i . To this
purpose, we introduce the average state and flux

AWr — MWL +H, — Hr

il _ e (73)
and
M ARHp — A Hg + AL Ar(Wr — W) (74)

A —Ar ’
which allow us to rewrite the jump conditions (72) across A,
and Ag equivalently as

AsWM — W) = HM — (75)
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where, again, § = L,R. Imposing the momentum-energy
relation Qy = (&, + p)vx and combining the energy and
x—component of the momentum jump conditions (75) leads
to a quadratic equation for A*:

hll *\2 hil hil * hil
Hwﬁl)‘(mku+”wﬂl +Wip, =0 (76)

where [.] denote a specific component of the array. Eq. (76)
has one physical admissible solution given by the negative
branch. Once A* is obtained, gas pressure in the star region
is obtained from the momentum-energy equations as

* hill % /hll
pT=Hg)—A Mg, (77)

The hydrodyamic contribution to the interface flux is then
given by

Hr if A2>0
'HL+AL(WZ*WL) if AL <0< A*
W= (78)
HR—O—)LR(W;S—WR) if A*<0<Ag
Hr if ;LR <0.

The total flux is finally given by the sum of the hydro and
EM contributions, the later being computed with the outer
solver:

0
) 2+ Tin
fxf = 0 + 1| Sa (79)
6 N
g EinkEy
—&nBy

where n labels the direction of propagation of the disconti-
nuity (x in our example). Finally, the wave speed estimate
for the fastest and slowest speeds A; and Ag is done as in
Mignone & Bodo (2005).

5 NUMERICAL BENCHMARKS

We now present a number of standard numerical benchmarks
aiming at verifying and assessing the robustness, accuracy
and computational performance of our resistive CT relativis-
tic scheme. Unless otherwise stated, test calculations will be
carried out using the ideal equation of state (36) with ' =4/3,
the MHLLC Riemann solver and the van Leer limiter (41).

Since the maximum characteristic velocity is equal to the
speed of light, the time step is easily determined by the rela-
tion

—1
04} (0% [04]
At = CyNgim | — +—+ — 80
adlm(AX+Ay+AZ) ) ( )
where C, is the Courant number, Nyjy, is the number of spa-
tial dimensions and @, =1 if Ng, > m and o, = 0 other-
wise. We set the default Courant number to C, = 0.4 for two-
dimensional problems and C, = 0.25 for three-dimensional
ones.

5.1 Telegraph Equation

In the first test we consider the propagation of light waves in
presence of finite value of conductivity. Specifically, we want

to solve the Maxwell’s equation in the fluid rest frame,

%—?«I»VXE = 0

e (81)
— —-VxB = -oE.

ot

Solutions of Eq. (81) also satisfy the telegraph equation which
is obtained upon differentiating the previous system with re-
spect to time,

2

%+c%’f = V’B

‘92—E+08—E = VXE-V -
or2 at K

The system of Maxwell’s equation (81) admits plane wave
solutions with wavenumber k£ and frequency @ tied by the
dispersion relation

. G 2
w:—ziiu, where W=A/k?—— (83)
which, as noted in Mignone et al. (2018), is also the dispersion
relation for the telegraph equation. Eq. (83) admits propagat-
ing modes when o < 2|k|. From the eigenvector of the system
(81), we obtain the exact solution for a single mode,

B. = Bie °*cos¢(x,1)
(84)

E, = Blefm/z[%COS(p(x,l)—O—Esin(p(x,l),

2k

where ¢(x,7) = kx — ut, while B; is the initial perturbation
amplitude. For o # 0, Eq. (84) describes the propagation
of monochromatic damped light waves with phase speed
vy = pt/k and thus with dispersive character. Damping is sup-
pressed in the limit 6 — 0 (and thus vy — 1) where we recover
the classical non-dispersive light wave propagation.

For numerical purposes we consider here an inclined wave
front by rotating the 1D solution around the z-axis by an an-
gle a. The wavevector has orientation k = k,(1,tan ¢,0), where
ky =2m/L, while tanot = L, /Ly. The computational domain is
Ly=1, Ly =1/2 so that tanat =2. Eq. (84) with B; =1 and
¢ (x,0) =k-x is used to initialize the electric and magnetic field
inside the computational box. Three dimensional vectors are
then rotated according to

cosoy —sina 0
{E,BY =| sina cosa 0
0 0 1

{E,B} (85)

where a prime indicates quantities in the rotated frame. In-
stead of solving just Maxwell’s equation, we solve the full set
of the resistive RMHD equations by prescribing a large fluid
inertia (p = 10'?) so that the fluid velocities become negli-
gible and Maxwell’s equations decouple from the remaining
conservation laws. Periodic boundary conditions are imposed
everywhere.

Numerical results are shown in Fig. 4 for the CT (cir-
cles) and GLM (plus signs) schemes using different values of
o =1,10,20, corresponding to green, blue and red coloured
lines. Computed profiles for B, are compared against the ex-
act solution after one period T =2m/u in the top left panel of
Fig. 4 at the resolution of 64 x 32 grid zones. Corresponding
errors in L1 norm are plotted, as a function of the resolution
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Figure 4. Telegraph equation test. Top left panel: One-dimensional horizontal profiles (at y = Ay/2) of B, using different values of the
conductivity o = 1,10,20 corresponding to green, blue and red lines. The black line gives the exact solution after one period while results
obtained with the CT and GLM schemes are shown using circles and plus signs. Top right panel: L1 norm errors of the B, as functions
of the resolution. Bottom panels: L1 norm errors for the normal component of the electric field (left) and maximum value of the charge

(right) as functions of the resolution.

Ny =16,32,...,256 (Ny = N, /2), in the top right panel indicat-
ing that CT and GLM yields very similar results.

Although similar errors are produced in the z component of
magnetic field, results show significant differences by inspect-
ing the normal component of the electric field. Note that no
charge should be produced during the evolution since Ey - the
normal component of the electric field in the unrotated frame
- should vanish identically. Nevertheless, propagation along
an oblique direction (which is not the main diagonal) does
not lead to perfect cancellation of multidimensional terms
so that a non-solenoidal component of the current is gener-
ated at the truncation level of the scheme. This best illus-
trated in the bottom panels of Fig. 4 where we plot the L1
norm errors of E, (bottom left) and the maximum value of
the charge (bottom right). Our CT method yields, overall,
more uniform convergence with resolution when compared to
GLM and the discrepancy between the two schemes worsen
for larger values of o. While the charge remains below 107°
with the CT scheme, the GLM appears to produce spurious
divergence with poor convergence rates. At the largest con-
ductivity (o =20, red lines), for instance, the two methods
differ by over 3 orders of magnitude.
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5.2 Rotated Shock-Tube

The shock-tube problem is a standard numerical benchmark
consisting of an initial discontinuity separating two constant
states. Here we adopt a configuration similar to the one
presented in Palenzuela et al. (2009); Dionysopoulou et al.
(2013); Miranda-Aranguren et al. (2018) and assign 1D left
and right states as

( 1,1, %) for
11 1
(g’ﬁ’_i) for x>0,
while By = By = 0 and the electric field is computed from the
ideal condition, E = —v x B. The ideal EoS (36) with ' =2 is
used.

We consider two variants of the problem. In the first
one, the standard configuration with zero initial velocity is
adopted: the electric field evolves by remaining perpendicu-
lar to the both the velocity and the magnetic field and the
current density has a non-vanishing component only in the
y-direction. No charge is therefore produced during the evo-
lution since Ey =0 holds at any time. In the second variant,
we prescribe an initial velocity vy = 0.2 everywhere so that

the initial electric field presents a discontinuity at the origin
and the charge is therefore g(x) = —v,(B.r —B;) 6(x).

x <0,

(pvpoZ) = (86)
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Figure 5. Results for the 2D rotated shock tube problem at t = 1/v1+tan?@. The y component of the magnetic field (in the original
unrotated frame) is plotted in the top-left panel for selected values of the n as reported in the legend. In the top-right panel we plot
the L1-norm errors of the normal component of electric field for the GLM and CT schemes as a function of 1. In the bottom panels we
show the normal component of E as well as the charge (red symbols, divided by 100) for the second variant of the problem (left) and the
maximum value of the charge as a function of the grid resolution (right). Results obtained with the CT and GLM schemes are shown

using circles and crosses.

We rotate the initial condition by an angle o = atan(1/2)
around the z axis. The computational domain is defined
by a rectangular box of width [—1/2,1/2] in the x-direction
while in the transverse direction we have y € [-r/2,r/2] where
r = N, /Nx. Zero-gradient boundary conditions hold at the
rightmost and leftmost sides of the box, whereas for any flow
variables Q at the lower and upper boundaries we impose the
translational invariance Q(i, j) = Q(iF 1, j£2). Vectors are ro-
tated accordingly as in the previous section.

In the first variant of this test, we set Ny =400, N, = 8 and
stop computations at t =0.4/v/1 + tan? & using different values
of the resistivity in the range 1 = 10% to 1 =102 one decade
apart. The z-component of the magnetic field (unchanged un-
der rotation) is plotted in the upper left panel of Fig. 5 for the
same values of 1 also considered by Palenzuela et al. (2009).
In the top right panel of the same figure we plot the error
(in L1 norm) of the normal component of the electric field
E, = Excosa + Eysin o obtained with our CT schemes as well
as with the GLM scheme for the entire range of values of 7.
While the errors are similar for the two schemes, integration
with the GLM scheme was not possible for values of 1 below
1073 due to numerical instabilities. Errors increase sharply
at around n ~ 10~ as the solution becomes progressively

steeper and the scheme accuracy asymptotically reduces by
one order of magnitude. For smaller values of 1, numerical
resistivity becomes comparable and no difference can be no-
ticed at this resolution.

In the second variant of this test, the resistivity has been
fixed to a large value (n = 10°) and a jump in the trans-
verse velocity component is also present. A non-zero delta-
spike charge appears since the normal component of E is
now discontinuous. Both E, and the charge are advected at
the local fluid velocity as shown in the bottom left panel
of Fig. 5 where a closeup view in the range x € [0.1,0.2] is
plotted. Our CT method yields a sharper representation of
the discontinuity and the value of the charge is twice the
value obtained with GLM (the exact value being infinitely
large). Last, in the bottom-right panel, we show the maxi-
mum value of the charge density for different grid resolutions
Ny = 100,200,400, 800, 1600.

5.3 Magnetized Blast Wave

The magnetized blast wave problem consists of a cylindrical
(in 2D) or spherical (in 3D) explosion propagating in a uni-
form magnetized medium. It is mainly used to test the ability

MNRAS 000, 1-24 (2019)



14  A. Mignone

0.40

0.27

0.13

0.00

0.04 3.50

0.00 1.00

0.04

0.03

0.02

0.01

0.00

4.0 T T T T T

Figure 6. Cylindrical explosion at t =4 using n = 107%. Upper panels show, from left to right, the x component of magnetic field, gas

pressure and Lorentz factor computed using the CT scheme and the MHLLC Riemann solver. In the lower panels we plot the corresponding
profiles along the y axis (for By and pg) or the x axis (for the Lorentz factor). Results obtained with the CT and GLM schemes are shown

using circles and x symbols.

of the scheme in handling oblique shock waves propagating
in strongly magnetized environments as well as the fidelity
in preserving the symmetric/antisymmetric properties of the
solution. Potential flaws in the numerical scheme may easily
lead to unphysical densities or pressures if the divergence-free
condition is not properly controlled and the scheme does not
introduce adequate dissipation across oblique discontinuous
features (see, for instance, Mignone & Bodo 2006; Mignone
& Tzeferacos 2010, and references therein).

5.8.1 Cylindrical Blast Wave

Two-dimensional versions of this problem have been con-
sidered by previous investigators, e.g., Komissarov (2007);
Palenzuela et al. (2009); Mizuno (2013); Dionysopoulou et al.
(2013); Miranda-Aranguren et al. (2018). Computations are
carried out inside the Cartesian square x,y € [—6,6] filled with
uniform density and pressure p = p = 1073 for the exception of
a small circular region, for r < 0.8, where density and pressure
take the values p = 1072 and p = 1. Here r = y/x2 +y2 is the
cylindrical radius. For 0.8 <r <1 continuity with the external
environment is imposed through an exponential decay. Ve-
locity and electric field are initialized to zero, while the mag-
netic field is oriented along the x-direction B = (0.1,0,0) (this
is the configuration adopted by Komissarov 2007; Miranda-
Aranguren et al. 2018). Computations have been performed
using Ny X Ny = 200 x 200 grid zones and the system is evolved
until t = 4. Zero-gradient boundary conditions have been im-
posed on all sides.

MNRAS 000, 1-24 (2019)

Results obtained with the CT algorithm are shown in the
top panels of Fig. 6 where we display two-dimensional maps
of the normal component of magnetic field, gas pressure and
Lorentz factor. The explosion produces a fast forward shock
that propagates (nearly) radially leaving behind a reverse
shock that delimits the inner region where expansion takes
place radially. Magnetic field lines pile up in the y-direction
building up a shell of higher magnetic pressure. The gas
moves preferably in the x-direction where it achieves a higher
Lorentz factor (Ymax =~ 3.62). Electric field and current have
a non-vanishing component only in the z-direction and no
charge is produced as V-J =0 trivially holds. We have checked
our results with the GLM scheme and found no apprecia-
ble differences, as confirmed by the one-dimensional profiles
along the x- and y-directions in the corresponding bottom
panels.

The computational overhead brought by the CT scheme,
which is intrinsically multidimensional, is partially balanced
out by the lower number of variables to be evolved (14 vs 11).
For this particular 2D configuration, for instance, we found
that our CT method is approximately ~ 5% more expensive
than the GLM scheme.

5.8.2 Spherical Blast Wave

The three-dimensional version of this problem has been for-
merly examined by Komissarov (2007); Dionysopoulou et al.
(2013) by extending the previous configuration to a square
Cartesian box x,y,z € [—6,6] with initial conditions identical
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Figure 7. Spherical explosion at t = 4 using 7 = 107® and the CT scheme. The upper panels show, from left to right, 2D slices in the
xy plane of By, gas pressure p, and its 1D profile along the z axis. In the bottom panels we show 2D slices of the charge, Lorentz factor

together with its one-dimensional cuts of along the z axis.

to the 2D case but with r = 1/x% +y2 + 72 now being the spher-
ical radius. Parameters are the same as for the cylindrical
explosion. In particular, note that our initial magnetic field
is B=10.1¢, and thus twice the value used by Dionysopoulou
et al. (2013). The same configuration is used in the original
work by Komissarov (2007) although we adopt here a much
smaller value of resistivity, n = 107°.

Fig. 7 shows 2D slices of the solution in the xy plane at
t =4 obtained with the CT scheme at the resolution of 2003
grid zones. The solution is qualitatively similar to the 2D
case although a few differences are worth noticing. The inner
region is delimited by a stronger reverse shock (Ymax =~ 5.5)
and encloses a stronger rarefaction wave when compared to
the 2D case where gas pressure reaches much smaller values,
min(p) ~ 4 x 107, The plasma is accelerated mostly in the
x-direction to larger Lorentz factor, Yy~ 5.5, when compared
to the 2D case (y = 3.5). Another crucial difference is the
local production of non-zero charge which was absent from
the 2D case: this reveals an important difference between the
stability and robustness of the two methods. Although both
CT and GLM conserve charge up to machine accuracy (~
10~13 is the total integrated charge for the two methods), our
CT method runs without any problem whereas GLM failed
already for values of the resistivity smaller than 10~2 (unless
the time-step is lowered) owing to large-amplitude oscillations
in the charge.

The relative computational cost between CT and GLM is
larger in 3D than in 2D and, in our implementation, it reaches
approximately 15% for this particular case. This owes to the
increased operation count which, in the 3D staggered method,
accounts not only for the spatial dimensionality but also for
the additional spatial reconstructions required by the multi-
dimensional Riemann solver.

5.4 Stationary Charged Vortex

We propose, for the first time to the extent of our knowl-
edge, a new exact equilibrium solution of the fully Res-RMHD
equations. The solution is best described by adopting cylin-
drical coordinates (r, ¢,z) and consists of a rotating flow
with uniform density embedded in a vertical magnetic field
B = (0,0,B;). In the ideal limit, this gives rise to a purely
radial electric field, E = (E,,0,0) with E, = —vyB;. Assuming
purely radial dependence, the only non-trivial equations are
the radial component of the momentum equation together
with the ¢-component of Ampere’s law:

op wrh?
(af -— ¢) — gE, +qvyB. (87)
9B,
a; =—qVy, (88)

where g = 0,(rE,)/r is the charge and we have used the fact
J=1(0,9v4,0). The appearance of a charge is a consequence of
the fact that we now have a radial electric field generated by
a rotating flow (see, e.g., the review by Spruit 2013). Using
the ideal electric field condition, E, +vyB; = 0, the right hand
side of Eq. (87) vanishes identically and the previous sys-
tem of equations is rearranged as two independent ordinary
differential equations, that is,

dap WVZV%)

EI (89)
oH? 2
o =5 (90)

where, using the same formalism already presented by Bodo
et al. (2013, 2016), we have introduced H>(r) = B2(r) — EZ(r).
The H?(r) function can be chosen arbitrarily provided the
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Figure 8. Numerical results of the charged vortex problem. Top left panel: L1 norm errors of the charge as functions of the resistivity
using CT (circles) and GLM methods (X-symbols) with 2567 zones (integration with GLM was not possible for n < 1073). Bottom left
panel: L1 norm errors of the gas pressure as functions of the resolution. The dotted lines gives the expected 2™-order scaling. Central
panels: we show 10 equally-spaced contour levels of [E| (chosen as (qo/2)r/(r7 + 1.0), where ri = 1...9) overlaid on the coloured maps of
pressure at f = 5. Resistivity is set to 1 = 1073, top and bottom panels corresponds to CT and GLM integrations with 2562 zones. Right
panels: 1D horizontal cuts at y =0 of charge and E, at t =3 obtained with CT (blue line with blue circles) and GLM (red line with X

symbols).

following conditions are met: i) H?(r) > 0, which guarantees
that velocity remain subluminal and ii) dH?*(r)/dr(r =0) >0
which ensures that Er2 > 0. The equality sign holds at r=0
where the electric field must vanish. A simple solution that
satisfies the previous requisites is
a@ 1
4 241
where g is the charge at » =0. Using Eq. (91), E, can be
found by differentiating H>(r) with respect to r (equation
90), B; and vy follow from Eq. (91) and the ideal condition
while gas pressure can be obtained by solving the differential
equation (89). The final result is:
_q T
2241

(21—
241
N Y
2 (r2+1)2—q(%/4 (92)

4rt+4—q5 m( +ﬂ)
P+ 1)(E—qd) PO

H*(r)=BI-E}=1

(91)

r

P

P:—ITI

g— 2
P12

where I'l =T/(I'—1). We set density to unity while py =0.1
gives the pressure at infinity. Charge is set to gg = 0.7. Notice
that the previous solution is also an exact solution of the

MNRAS 000, 1-24 (2019)

ideal RMHD equations and that, using Eq. (A8), the rest-
frame charge can be written as go = —(V xv)-B at r=0.

We carry out computations on the two-dimensional Carte-
sian square x,y € [—10, 10] using a uniform resolution of Ny x Ny,
zones and evolve the system until # = 5. Boundary values are
held fixed to the equilibrium solution throughout the inte-
gration. Note that the equilibrium condition (92) does not
depend on the resistivity and numerical solutions carried out
with different values of 1 depend solely on the stability of
the algorithm used for this particular problem. This has been
verified for a wide range of the resistivity parameter, namely,
n € [103,1078] using a grid resolution Ny = Ny = 256. Errors in
L1 norm for the charge are plotted in the top left panel of Fig.
8 as a function of 1. Our results confirm that the CT scheme
remains stable for any value of the resistivity parameter in the
chosen range. In contrast, results obtained with GLM scheme
give good agreement only for large values of 1 while numeri-
cal instabilities is exhibited for n < 1073, In the bottom left
panel, we plot the errors (in L1 norm) of gas pressure as func-
tion of the resolution (Ny =Ny = 32,64,128,256,512) showing
second-order convergence for both CT and GLM schemes.
Here 1 =1 and 1 = 1072 have been used for the computa-
tions.

Numerical results for 1 = 1073, which at the resolution of
256 zones sets the verge of stability for GLM, can be analyzed
in the central panels of Fig. 8 where we show coloured maps
of pressure overlaid with iso-contour levels of the electric field
magnitude (top and bottom). Large oscillations are found in
proximity of the coordinates origin with the GLM scheme
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(bottom central panel). These large overshoots can also be
recognized in the 1D horizontal cuts of charge g and E, shown,
respectively, in the top and bottom right panels using both
CT (blue circles) and GLM (red X symbol) at r = 3. Note
that the exact solution for the y-component of the electric
field should vanish for y =0 but large-amplitude oscillations
are clearly visible with GLM. We point out that an increase
in the resolution - which is accompanied by a reduction of the
time step - extends the stability of the GLM method to lower
values of the resistivity. This result is consistent with the
large errors introduced by the stiffness of the charge evolution
equation.

5.5 Tearing Mode

In the next example, we investigate the linear growth of the
ideal tearing mode in a Harris-like current sheet, following
the work of Del Zanna et al. (2016) and Miranda-Aranguren
et al. (2018). The initial configuration consists of an initially
static (v =0) and uniform plasma with constant density and
pressure value, py and pg. The initial magnetic field satisfies
the force-free condition

B =B, [tanh (2) &y + sech (g) ez] , (93)

where a is the current sheet thickness. Useful parameters are
the magnetization ¥ = Bg/po, the plasma beta f = 2p0/BZ,
the Alfvén velocity v, = Bo/4 /B(2)+wo = By/ /B%—O—po +4po
(for an ideal gas law with adiabatic index I' =4/3), and the
Lundquist number S =v,L/n > 1, where L is a typical spa-
tial scale and 1 the resistivity. The electric field is initially
zero everywhere. According to the MHD works by Pucci &
Velli (2014); Landi et al. (2015), when extremely thin cur-
rent sheets are considered the tearing mode ceases to be a
slow process (with growth rate Yy o< 571/2) and reconnec-
tion occurs instead on the ideal Alfvénic time 7, = L/v,. The
threshold is provided by the critical (inverse) aspect ratio

a=5"'L, (94)

for which, in the asymptotic limit of large S but indepen-
dently on the actual value of S, yry ~ 0.6v,/L. In the rela-
tivistic regime, where v, — ¢ = 1, this so-called ideal tearing
instability thus becomes a very efficient process.

In order to trigger the instability we perturb the initial
configuration with a single-mode magnetic field equal to

cos(ky)
6B = eBjsech (g) smk(iky) tanh (f) (95)
a a
0

where € = 1074 is the initial perturbation amplitude and k
the wave number. For computational purposes, we initialize
the magnetic field in the x —y plane using the z-component
of the vector potential

A; = —By [alog <c0sh 2) — %sin(ky) sech (Z)] , (96)

which ensures an initial divergence-free discretization of B at
the beginning. Following Del Zanna et al. (2016), we use for
thistest L=By=YX=f =1, hence py =1, pg =0.5, v, =0.5 and
§=10°, so that a=0.01 and 1 =5 x 10~7. The theory predicts,

Table 1. Growth rates for the tearing mode instability measured
from the simulations. Twelve cases are shown corresponding to
three different grid resolutions (left column) and to different com-
bination of divergence control schemes (GLM and CT) and Rie-
mann solvers (LF and MHLLC).

GLM CcT
Resolution LF MHLLC LF MHLLC
512 %128 0.49 0.31 0.47 0.32
1024 x 256 0.36 0.31 0.36 0.31
2048 x 512 0.28 0.30 0.28 0.30

for the ideal tearing mode, a wave number for the fastest
growing mode of kmax = 1.48'/0 = 14, providing ypm ~ 0.3.
However, probably due to the diffusion of the initial force-free
field or to compressible effects, Del Zanna et al. (2016) found
a maximum in the dispersion relation curve for k = 12 and
¥rm = 0.27, hence, also following Miranda-Aranguren et al.
(2018), we will adopt k = 12 as the standard test value for
the wave vector.

We perform computations on the rectangular domain x €
[—20a,+20a] = [-0.2,+0.2] and y € [0,27/k] = [0,0.5236], us-
ing free outflow conditions at the x boundaries and periodic-
ity along y. For the sake of comparison, we have repeated
calculations using our CT implementation as well as the
GLM scheme with different grid resolutions corresponding to
Ny X Ny/4 zones with Ny = 512,1024,2048. The monotonized
central limiter was used for these computations. We note that
GLM requires, for stability, a smaller CFL number C, = 0.2,
whereas computations with CT are carried at twice this value,
C,=04.

In the left panels of Fig. 9 we show horizontal cuts of the x-
components of magnetic field and velocity at t = 10 using CT
(solid lines) and GLM (dashed lines) at the chosen grid size
using different colors. At the resolutions of Nx = 1024,2048
the profiles well approximate the eigenfunctions given by Del
Zanna et al. (2016) (see their Figure 1). Overall, the CT
scheme performs similarly to the GLM method albeit with
slightly reduced numerical dissipation and better convergence
with resolution.

Perturbations are expected to grow exponentially as Qj o
€™ and we have measured the numerical growth rate by con-
sidering, as suggested by Miranda-Aranguren et al. (2018),
the integral of the x-component of magnetic field (squared),

f@)= %log (/Bﬁ(z)ds) . (97)

Plots of f(r) are shown in the central panels of Fig. (9) for the
LF (top) and the MHLLC (bottom) Riemann solvers. Our re-
sults indicate that increasing the resolution leads to smaller
growth rates, in agreement with the previous findings. How-
ever, two distinct phases can be discerned using the MHLLC
solver: a steeper growth for + <6 —8 followed by a softer one
for t 2 6 — 8, the actual value depending on the resolution.
The behavior remains unaltered when switching from CT to
GLM and it is not observed by Del Zanna et al. (2016) and
Miranda-Aranguren et al. (2018) who used 5-th or higher-
order reconstructions. For our second-order scheme, instead,
we attribute this behavior to compressible effects enhanced
by the resolution of density jumps, probably triggering spu-
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Figure 10. Colored distributions of the charge density obtained with the GLM (top) and CT (bottom) schemes at r = 10 for N, = 1024.
Both solutions have been generated with the LF Riemann solver.

tion, the MHLLC Riemann solver yields larger growth rates
than LF and converges to the actual value (yry = 0.30).

rious modes that grow faster in the early stage of evolution.
For this reason, the growth rates are computed as the slope
obtained by the linear fit of Eq. (97) versus time over the
interval 6 <t < 12 and reported in Table 1. Results with the
MHLLC solver show better convergence rates with resolu-
tion when compared to the more diffusive LF scheme (only
few percent with resolution doubling). At the largest resolu-

It is also instructive to compare the charge evolution ob-
tained with the GLM and CT methods, as shown in the right
panels of Fig. 9 where we plot the maximum value of the
charge versus time. With the GLM scheme, a systematic ex-
cess of charge is produced which is noticeably reduced by
doubling the resolution (approximately one order of magni-
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tude with the LF solver). Fluctuations with the CT scheme
are much less affected by the grid size and are restrained
within a factor of 2. Finally we show, in Fig. 10, the charge
density distribution obtained with the GLM and CT schemes
at t = 10 by narrowing the view down to the x-axis. With the
CT method, charge density is mostly concentrated around
the current sheet and the solution appears to be well-behaved
and oscillation-free. On the contrary, with the GLM scheme,
charge distribution spreads out on the sides and the solu-
tion develops large overshoots as well as spurious oscillations
which appear to have numerical origin.

5.6 Kelvin-Helmholtz Flow

As a test application, we consider the evolution of a double
shear layer as already presented, in the context of resistive
relativistic flows by Mizuno (2013) and in the ideal case by
Mignone et al. (2009); Beckwith & Stone (2011). The initial
condition consists of a background (double) shear layer with
non-uniform density distribution,

vy = vgptanh ¢ (y)
1+tanh ¢ (y) 1 —tanh ¢ (y) (98)
p= h P,
2 2
where ¢(y) = (|y| —1/2)/a. The background flow is then per-
turbed by

vy = sign(y)Agvsn sin(27'cx)eiﬂ?(y)z“z/o‘2 . (99)

Following Mizuno (2013) we take the velocity of the shear
layer to be vg, = 1/2 with thickness a = 1072 and the density
contrast p, = 1, p; = 1072, The parameters in the last equa-
tions, o = 10~! and Ap = 0.1, characterize the perturbation
cutoff height and amplitude. The magnetic field is initially
constant and uniform with a poloidal (By) and toroidal (B,
out of the plane) components parameterized by

B— (m 0, \/m) , (100)

where y, =0.01 and y; = 1 are magnetization parameters.

The Cartesian box used for the integration of the resistive
RMHD equations is defined by x € [—1/2,1/2], y € [-1,1] using
different values of the conductivity, o =1/n = 0,10, 102,103
and 10°. We perform computations using the MHLLC solver
and the MC limiter (42) until # = 15 with the nominal reso-
lution of 256 x 512 grid zones. Computations with the CT
scheme remained stable at the nominal Courant number
(C, =0.4) for any value of the conductivity while numeri-
cal instabilities occurred at large o’s with the GLM scheme
unless the CFL number was lowered to 0.1.

The growth rates, computed as Av, = (max(v,) —min(vy))/2,
are shown in the top left panel of Fig. 11 for selected values
of the conductivity. Our measured growth rates favourably
compare to those of Mizuno (2013), indicating that different
values of the conductivity have a negligible impact on the
growth of the instability. The ¢ =0 case (purple dashed-triple
dotted line), which in the work by Mizuno (2013) yielded a
smaller growth rate, did not make particular difference in our
case. In all likelihood, this discrepancy can be attributed to
the choice of the Riemann solver as it can be inferred from
the bottom left panel of Fig. 11, where GLM and CT schemes
are compared using the LF (red) and MHLLC (blue) solvers.
Switching from the former to the latter leads to a larger

growth rate which become closer to the high-conductivity
case (black dotted line). In the top right panel, we plot the
poloidal field amplification which is enhanced with increasing
conductivity in accordance with Mizuno (2013). However, our
five-wave solver leads to a steeper poloidal field amplification
when compared to the scheme of Mizuno (2013) and to an
earlier start of the saturation phase (r ~4 instead of t =5,
see Figure 11 of Mizuno 2013). A resolution study, shown
in the bottom right panel of Fig. 11 for ¢ = 10, confirms
that the MHLLC solver yields larger growth rates and faster
convergence when compared to the simpler LF scheme (simi-
lar results were found with the HLLD Riemann solver in the
Kelvin-Helmbholtz test presented by Mignone et al. 2009).
The time evolution is shown in Fig. 12 for the CT scheme
with ¢ = 107 at three different snapshots, t = 3,7 (left and
middle panels) and ¢ = 10 (right panel). Top and bottom pan-
els show, respectively, coloured distributions of density and

the poloidal to toroidal magnetic field ratio (y/B%+ B3/B;).

The linear phase is followed by vortex formation and the tran-
sition to the nonlinear regime during which the mixing layer
enlarges and magnetic field becomes amplified and stretched
into filamentary structures. Note also the formation of the
intermediate vortex which does not appear when using the
LF Riemann solver.

Computations with the CT scheme required approximately
5% more time than the GLM case. The same result was estab-
lished for the 2D Blast wave test problem, see section 5.3.1.

5.6.1 Extension to Three-Dimensions

We extend the previous configuration to three-dimensions by
choosing (as in Beckwith & Stone 2011) the computational
domain x,z € [-1/2,1/2] and y € [—1,1], using a uniform grid
of 256 x 512 x 256 zones. We employ the same initial condition
with the exception of the z-component of velocity which is
now prescribed as in Eq. (99) with the sin() function replaced
by a random number distribution in the range [—1,1]. In order
to assess the robustness of our algorithm we employ the most
stringent value of ¢ = 10° using the CT scheme with the
MHLLC and the LF solvers. The system is evolved until ¢ =
30.

The growth rates, computed again as Avy = (max(vy) —
min(vy)/2, are plotted in the top panel of Fig. 13 for the two
Riemann solvers. In analogy to the 2D case, we observe a
faster growth and an earlier transition to the nonlinear regime
when the MHLLC solver is employed.

The nonlinear evolution is illustrated in Fig. 14 through a
series of volume rendering of density (top) and poloidal to
toroidal magnetic field (bottom) at t = 10,20 and ¢ = 30. The
large-scale motion remains confined along the initial shear
direction and sheet-like thin structures, where most of the
magnetic field energy is trapped, characterize the turbulent
state. These rounded slabs remain roughly parallel to the
z-direction although significant medium-scale structures de-
velop in this direction for 7 2 20 around the shear layer.

In order to quantify the numerical diffusion of the two dif-
ferent solvers (which affects the amount of turbulent struc-
ture), we evaluate the spectral energy density as

Plk) = [ 1Z: k) Pdyez, (101)

where Zy(ky,y,z) is the one-dimensional fast Fourier trans-
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Figure 11. Growth rate and poloidal field amplification for the resistive Kelvin-Helmholtz test problem. Top left panel: measured growth
rate as a function of time using selected values of conductivity (reported in the legend) at the resolution of 256 x 512 grid zones. Top right
panel: poloidal field amplification as a function of time. Bottom left panel: growth rate at ¢ =0 comparing different schemes (CT and
GLM with circles and cross symbols) and Riemann solvers (MHLLC and LF with red and blue lines, respectively). The dotted line gives
the growth rate at 512 x 1024 zones and 6 = 10°. Bottom right panel: growth rate as function of the resolution comparing MHLLC with

LF solvers (CT only).

form of the density taken across the x dimension. Likewise,
we construct P(ky) and P(k;) by index permutation of (101).
The spectral densities across the three directions are plotted
in the bottom panel of Fig. 13 for the MHLLC (blue lines)
and the LF (red lines) solvers using solid, dashed and dashed-
dotted lines corresponding, respectively, to P(ky), P(ky) and
P(k;). Overall we see that power spectra in the MHLLC case
are systematically larger by ~ 2 orders of magnitudes (at
large wavenumbers) in the x- and y-directions when com-
pared to the LF case. While most small-scale power resides
in these two directions, the same trend is also observed in
turbulent structures across the z-direction which make a sig-
nificant contribution at large-moderate wavelengths. Our re-
sults favourably compare to those of Beckwith & Stone (2011)
where the HLLD and HLL solvers have been compared on the
same test problem.

While simulations with the GLM scheme could not be
completed for such a small value of the resistivity (if not
by considerably lowering the Courant number), the results
presented in this section demonstrates the our CT scheme
is remarkably more stable and robust also in the three-
dimensional case. The computational performance of our CT
method yielded a ~ 13% additional overhead when compared
to the same calculation with GLM method (with lower value
of ¢). A comparable performance was obtained in the 3D
Blast wave problem, §5.3.2.
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6 SUMMARY

In this work we have presented a new second-order Godunov-
type constrained transport method for the solution of the re-
sistive relativistic MHD equations in the context of IMplicit-
EXplicit (IMEX) Runge-Kutta methods. Our method follows
the work of Balsara et al. (2016) and sets the primary com-
ponents of electric and magnetic fields at zone interfaces. A
discrete version of Stoke’s theorem is employed for the evo-
lution of the electromagnetic fields while hydrodynamic vari-
ables are instead located at the zone-center and are treated
in the usual finite-volume sense.

During the explicit stages of the IMEX time-stepping, nu-
merical fluxes needed for the update of electromagnetic fields
are obtained by applying a two-dimensional Maxwell solver at
zone edges while a standard one-dimensional Riemann solver
is used at zone interfaces to advance zone-centered hydro-
dynamic variables. This introduces proper upwinding and
it ensures that Faraday’s law for the the magnetic field is
advanced in a divergence-free fashion while the ensuing dis-
cretization for the electric field conserves charge to machine
precision. When dealing with the stiff source term, a solution
approach for the implicit update of staggered electric field at
zone faces that retains the point-local character has been de-
veloped. This has been shown to be formally equivalent to a
conservative scheme in which charge is upwinded using a local
Lax-Friedrichs flux. The proposed method of discretization is
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Figure 12. Time evolution of the Kelvin-Helmholtz problem for ¢ = 103 using the CT scheme and the MHLLC Riemann solver. Coloured
distribution maps of density (top panels) and poloidal to toroidal magnetic field ratio at time r = 3,7 and 10. Magnetic field lines are

overlaid.

consistent with Ampere’s law from which charge conservation
directly follows at the continuous level.

In addition, we have also introduced a new Riemann solver
based on the frozen condition of the underlying hyperbolic
system of conservation laws with stiff relaxation source terms.
Owing to the weak coupling between Maxwell’s and hydro-
dynamics equations inherent in this limit, the solution to the
Riemann problem can be approached by the combination of
an outer solver for the EM waves and an inner solver for
resolving hydrodynamic waves. Our composite MHLLC Rie-
mann solver (where “M” denotes the outer Maxwell while
HLLC is the Harten-Lax-van Leer of Mignone & Bodo (2005)
applied to the hydrodynamic equations) has reduced numeri-
cal diffusion when compared to the traditional Lax-Friedrichs
(or HLL) solver and it shares a solution procedure analogous

to the one outlined in the appendix of Miranda-Aranguren
et al. (2018).

An extensive suite of two- and three-dimensional numerical
benchmarks with some new analytical solutions has been used
to assess the performance of the newly proposed CT method.
A direct comparison with the widespread GLM scheme of
Palenzuela et al. (2009), that employs a conservative cell-
centered discretization, reveals that our CT scheme gives
comparable (albeit less diffusive) results for moderate or large
resistivities although its benefits are more evident in the ideal
limit - small value of the resistivity - in problems where a net
charge is produced. In this regime, we have found that our CT
scheme is markedly more robust than the GLM method which
instead fails when the time step becomes smaller than the re-
sistivity owing to large spurious oscillations in the charge.
We argue that this may result from the (unstable) explicit
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Figure 13. Growth rate as a function of time (top) and power
spectra at t =15 (bottom) for the 3D Kelvin-Helmholtz instability.
Blue and red lines correspond to the MHLLC and LF cases. In the
bottom panel, integrated power spectra in the x, y and z directions
are plotted using solid, dashed and dashed-dotted line style.

discretization of the charge equation used in the standard
GLM formalism, where the divergence of the current intro-
duces stiffness. In support of this, we point out that variants
of the GLM scheme in which the charge is not an evolution-
ary equation and it is computed directly from the divergence
of the electric fields (e.g. Dionysopoulou et al. 2013) do not
seem to suffer from this behavior although more investigation
is certainly needed. Similar conclusions can be drawn for the
CT scheme of Bucciantini & Del Zanna (2013), in which the
electric field retain a zone-centered representation.

Finally, we point out that spurious (local) charge produc-
tion may occur at the numerical level in both schemes, ow-
ing to discretization errors introduced when taking the diver-
gence of the current. Most likely, these issues can be ame-
liorated by introducing schemes with spatial order of accu-
racy greater than two. Higher-order reconstruction (such as
WENO or PPM) can be easily accommodated for in our for-
mulation although we postpone genuinely third (or higher)
finite volume schemes to forthcoming works.
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Figure 14. Volume rendering of the density (top) and poloidal to toroidal magnetic field (bottom) for the three-dimensional Kelvin-
Helmholtz instability at r = 10,20 and ¢ = 30. The conductivity is 6 = 10° and the MHLLC solver has been employed.
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APPENDIX A: ON THE REST FRAME
CHARGE DENSITY

We illustrate here the relationship between the vorticity of
the flow and the charge density, using the covariant formal-
ism. The kinematic vorticity four-vector is defined as (Rez-
zolla & Zanotti 2013)

ot = E“MKVHMV Uy = S”V)'Kauuv Uy, (A1)

where clearly w*uy = 0. Thanks to this definition, the covari-
ant derivative of the fluid velocity can be split as

Vuuy = —ugay + %Euv;ma)/lu’(, (A2)
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where a* = (uYVy)u* is the acceleration, normal to u* too.
Using the definitions of the comoving electromagnetic fields
in Eq. (7) we derive the following relation

F*YVyuy = etay +bH oy (A3)

Let us now take the divergence of the comoving electric field.
Using Maxwell’s equations we write

Vet =V (F*Yuy) = —JHuy + FRYV gy, (A4)

hence, recalling the definition of the comoving charge density
qo, we find

qo =Vyet —etay — b ay, (A5)

which differs from the usual Gauss’ law.

The above equation provides a link between the evolution
of the comoving charge and the electromagnetic fields. Notice
that in the ideal limit (or for small values of the resistivity)
the terms with the (comoving) electric field e* =1 j* are neg-
ligible compared to the one with the magnetic field. Hence in
this case we find the simple relation

qo0 = —b”wu, (AG)

providing ¢qo directly and involving the kinematic vorticity
and the magnetic field alone. The above scalar product is a
relativistic invariant, therefore it is convenient to calculate it
in the comoving frame of the fluid, that is, for a flat spacetime
metric

W =(1,0), o"=(0,0), b*=(0,B), (A7)

where @ =V x u is the vorticity three-vector (recall that the
velocity vanishes but not its spatial derivatives). The comov-
ing charge density then becomes, in this case

qo = -B-m. (AS)

APPENDIX B: JACOBIAN OF THE
IMEX-NEWTON METHOD

In order to apply the Newton-Broyden scheme during the
implicit stage of our SSP-IMEX scheme, the Jacobian (60)
must be computed:

Oh(u)  JEk(u)
Uj auj Eiki auj

Jij:—D Bl—Dh(u)S,-j. (Bl)
where & is the Levi-Civita symbol.

For the ideal equation of state (36) the gradient of the
specific enthalpy 4 =w/p is obtained as:

oh Ty (dp p
Tlli*B(Tuiﬂ-?uz s (B2)

while the gradient of the pressure is obtained by differentiat-
ing the second in (37) while keeping & and B constant:

Du; OE?
(Zuirlp-i- y + 614,) . (B3)

o1
814,' B Fl’}/z—l

The second term on the right hand side of Eq. (B1) involves
derivatives of the electric field. Using Eqns. (52) and (53), we
split them as the sum of three terms:

E=naRS Y+ HEK, (B4)
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where
o — 1
n+ o6ty
H=74Z{5I(UXB) (B5)
K= (SmRSJ) .u> u
ny+ ot

We proceed by first computing the derivatives of ./ which is
a scalar function:

0. Uu;
= —a?6t— . B
o ot v (B6)
Next we differentiate H:
oH; x4
L= —8t(uxB);=— — 8.4/ €; By, (B7)
du;j u;

To obtain the derivatives of the last term (K) in Eq. (B5)
we first define the quantity
Rgsfl) u

together with its derivatives,

27 Ry nu R
du;  yn+6t vy yn+6t

so that the gradient of K with respect to velocity is calculated
as

dK; o 29

- = unotP —— +uinore/ =— + 61‘]‘7']8%2/9.
duj duj u;

Putting all toegther, the derivatives of the electric field are
finally given by

8E,- _ R(s71>aﬂ 8Hi aK,-

()Mj - e Tuj+z9uj (9uj'

(B10)

(B11)
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the author.



