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A massively parallel GPU-accelerated model for analysis of fully
nonlinear free surface waves

A. P. Engsig-Karup*,†, Morten G. Madsen and Stefan L. Glimberg

Department of Informatics and Mathematical Modeling, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

SUMMARY

We implement and evaluate a massively parallel and scalable algorithm based on a multigrid preconditioned
Defect Correction method for the simulation of fully nonlinear free surface flows. The simulations are based
on a potential model that describes wave propagation over uneven bottoms in three space dimensions and
is useful for fast analysis and prediction purposes in coastal and offshore engineering. A dedicated numer-
ical model based on the proposed algorithm is executed in parallel by utilizing affordable modern special
purpose graphics processing unit (GPU). The model is based on a low-storage flexible-order accurate finite
difference method that is known to be efficient and scalable on a CPU core (single thread). To achieve paral-
lel performance of the relatively complex numerical model, we investigate a new trend in high-performance
computing where many-core GPUs are utilized as high-throughput co-processors to the CPU. We describe
and demonstrate how this approach makes it possible to do fast desktop computations for large nonlinear
wave problems in numerical wave tanks (NWTs) with close to 50/100 million total grid points in dou-
ble/single precision with 4 GB global device memory available. A new code base has been developed in
C++ and compute unified device architecture C and is found to improve the runtime more than an order in
magnitude in double precision arithmetic for the same accuracy over an existing CPU (single thread) Fortran
90 code when executed on a single modern GPU. These significant improvements are achieved by carefully
implementing the algorithm to minimize data-transfer and take advantage of the massive multi-threading
capability of the GPU device. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation

In coastal engineering, wave models are used by engineers for the design of human made struc-
tures and predictive purposes for estimating flow kinematics and loads. For practical applications
in coastal engineering, non-dispersive shallow water models and weakly dispersive boussinesq-type
are in widespread use because software based on such models are relatively easily made, both effi-
cient and robust. In offshore and ocean engineering, these models are less attractive because they fail
to accurately account for dispersive properties of wave propagation at intermediate or deep waters
because of the analytical simplifications introduced in the derivation procedures. Although, full
potential flow theory in three space dimensions is a useful modeling basis in both shallow and deep
waters, it seems to be still widely believed in the community of practitioners that this modeling basis
is “far too heavy” [1] and “it is well known that full methods in 3D are slow” [2] and “Although
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FAST FULLY NONLINEAR FREE SURFACE MODELING 21

developing a three-dimensional numerical model from the Laplace equation is straightforward, it
has little use in coastal engineering practice (as a result of its exorbitant memory requirements
which limit its application to very small domains” [3] compared with the above-mentioned widely
used alternatives.

With recent developments in a finite difference algorithm for solving nonlinear free surface poten-
tial flow problems in three space dimensions [4,5] efficiently together with improvements in modern
hardware, we seek to demonstrate that it is now possible to significantly reduce the barriers for
practical use of full potential flow theory as the modeling basis for efficient solution of coastal and
offshore engineering problems. Our strategy is to do proof-of-concept by utilizing modern graph-
ics processing units (GPUs) for massively parallel computation using a heterogenous CPU-GPU
hardware setup that constitutes what can be considered as an affordable standard consumer desktop
environment.

Algorithms that map well to parallel programming models for current GPUs can potentially be
utilized for significant acceleration of applications for three main reasons, namely, high on-chip
bandwidth, many cores suitable for data processing in parallel and effective latency hiding through
massive multi-threading capability. The utilization of GPUs in coastal engineering is (still) not in
widespread use, however, with the current trends and progression speed in new developments of
hardware for scientific computations, one might be tempted to predict a change in the near future,
because many application within coastal engineering should map well to GPUs, for example, models
based on the long wave assumptions such as shallow water and Boussinesq-type applications dis-
cretized using explicit algorithms. In addition, the scalable parallel programming model developed
for GPUs will likely also be applicable for future multi-core CPUs as discussed by [6].

1.2. Background

Coastal and offshore engineering problems are in general very compute-intensive and as of today,
the solution of problems at very large scales are not as common (e.g., see [1]) despite that massive
parallel computing has long been considered an important technology (e.g., see [7, 8]). Thus, a key
challenge is to port existing code, analyze, improve and redesign algorithms to fully utilize available
hardware resources to maximize computational throughput.

Computational hardware are being continuously improved every year and will continue to do so
for many decades to come. However, with new trends in high-performance computing where typi-
cally multi-core and many-core technologies are available in standard consumer hardware, we have
entered a new era in computation [9]. These developments in computational resources improve the
basis for solving increasingly larger and more complex problems. Soon multi-core CPUs with tens
of cores (consisting of scalar processing units) will be standard and with even more cores in the
future. Mass-produced GPUs already contains hundreds of scalar processing units, and therefore
enable massively parallel computing today.

With the new trends in hardware developments and programming tools for general purpose com-
puting, it is now accepted that it is no longer an option to just wait for faster hardware to get better
performance [10] or to buy a very large and expensive cluster of processing units when the basic
algorithms are not scalable to arbitrary numbers of cores. Many existing codes based on single core
computations need to be entirely rewritten to keep up with the developments in hardware to address
new opportunities for exploiting thousands of processing cores working in parallel. Although new
hardware offers much more computational power in the form of computational parallelism, a key
challenge is still to overcome what is known as the memory wall [11]. The increasing gap existing
between computational versus memory-transfer throughput requires hardware that makes it pos-
sible to hide memory latency and favors algorithmic methods with a low data-transfer relative to
computations (communication costs). For applications that demand high memory bandwidth, it is
possible to use accelerators such as GPUs, CELL processors, and field programmable gate arrays.
In this work, we choose to focus on the use of GPUs because of the software tools made available
for programming such hardware.

Modern GPUs are based on a single-instruction multiple-thread architecture. The use of spe-
cial purpose GPUs for acceleration of general purpose scientific computations have increased,
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significantly, the last few years, and the state-of-the-art is rapidly developing, for example, see
[12–14]. Main reasons for this successful turnaround are that these accelerator devices are designed
as special purpose co-processors for the use with current general purpose CPUs, they are pro-
grammable, mass produced, and therefore offered at affordable prices and already present in many
machines. Furthermore, these compute devices support high computational density operations,
on-chip memory bandwidth is high, hardware support for spawning and switching between
thousands of threads for hiding memory latency and maintaining effective instruction throughput.
The barrier to exploit the hardware has been significantly reduced by the general purpose scal-
able parallel programming models (e.g., see [15]) and frameworks supported and provided by the
hardware vendors, for example, the industry standards OpenCL and DirectCompute, or the vendor-
specific compute unified device architecture (CUDA) by [16, 17], with the latter currently most
widely adopted. These programming interfaces can be used by adding C extensions to existing
code.

1.3. Paper contribution

We are the first to present a massively parallel GPU implementation of a flexible-order finite dif-
ference model for fully nonlinear free surface flow based on direct solution of the Laplace problem
in three space dimensions. The implemented algorithmic strategy has recently been proposed by
[5] and can be considered as a generalization of the multigrid-based strategy first proposed by [18].
We demonstrate that the implemented model enables fast execution and analysis on heterogenous
CPU–GPU hardware systems, for example, in standard desktop consumer hardware. We present a
basic performance analysis and results hereof and discuss when the proposed wave model can be
used for real-time analysis.

1.4. Paper organization

The paper is organized as follows. Following [4], we present the governing equations in Section 2
and summarize the numerical methods for discretization, hereof, in Section 3. In Section 4, we pro-
pose to use the low-storage, efficient, and scalable algorithm developed by [5] for massively parallel
computations for the solution of the governing equations. In Section 5, we detail a novel mas-
sively parallel implementation for heterogenous CPU–GPU hardware. Section 6 contains a parallel
performance analysis of our implementation.

2. FULLY NONLINEAR FREE SURFACE POTENTIAL FLOW MODEL

A model for fully nonlinear free-surface potential flow above uneven bottoms is described briefly.
The model is derived on assuming that viscous and turbulence effects of the fluid flow can be
neglected and that waves are nonbreaking. These assumptions are reasonable for many applica-
tions in coastal and offshore engineering. In the following, we consider a setup for what is referred
to as a numerical wave tank (NWT).

A Cartesian coordinate system .x,y, ´/ D .x, ´/ is adopted with the xy-plane located at the still
water level and the ´-axis pointing upwards. The still water depth is defined by ´D �h.x/ and the
position of the free surface by ´D �.x, t /. The magnitude of the gravitational acceleration g in the
vertical is assumed constant. Assuming an inviscid fluid and an irrotational flow, the fluid veloc-
ity .u, v,w/ D .r , @´/� is defined by the gradient of a scalar velocity potential �.x, ´, t /, where
r D .@x , @y/ is the horizontal gradient operator and @x denotes partial differentiation with respect
to the x-coordinate.

Following [19], the evolution of the free surface in an Eulerian frame of reference can be
expressed in terms of the kinematic and dynamic boundary conditions in the form

@t� D�r� �r Q� C Qw.1Cr� �r�/, (1a)

@t Q� D�g� �
1
2

�
r Q� �r Q� � Qw2.1Cr� �r�/

�
, (1b)
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FAST FULLY NONLINEAR FREE SURFACE MODELING 23

in terms of the free surface quantities Q� D �.x, �, t / and Qw D @´�j´D� . To find Qw and integrate
these equations forward in time requires solving the Laplace equation in the fluid volume �. A
well-posed Laplace problem is achieved by specifying known Q� at the free surface, together with
kinematic boundary conditions at the vertical sides and at the bottom of the NWT

� D Q�, ´D �, (2a)

r2� C @´´� D 0, �h6 ´ < �, (2b)

n � .r, @´/� D 0, .x, ´/ 2 @� (2c)

where nD .nx ,ny ,n´/ is an outward pointing normal vector to the solid domain boundary surfaces
@�. The free surface is a time-dependent moving boundary with an a priori unknown position prac-
tically resulting in a time-dependent domain. By employing a � -transform in the vertical coordinate
as proposed by [18], the numerical operations can be done in a fixed computational domain. The
following change of variable in the vertical direction is introduced

� �
´C h.x/

d.x, t /
, 06 � 6 1 (3)

where d.x, t / D �.x, t /C h.x/ is the height of the ware column. The fluid domain is mapped to a
time-invariant computational domain where the Laplace problem (2) is expressed in the transformed
coordinate system as

ˆD Q�, � D 1, (4a)

r2ˆCr2�.@�ˆ/C 2r� �r.@�ˆ/C .r� �r� C .@´�/
2/@��ˆD 0, 06 � < 1, (4b)

n � .r, @´�@� /� D 0, .x, �/ 2 @� (4c)

where the scalar velocity function ˆ.x, � , t / D �.x, ´, t / contains all information about the flow
kinematics in the fluid volume. The derivatives of the coordinate � are evaluated as nonlinear
coefficients in (4) and can be expressed as

r� D 1��
d
rh� �

d
r�, (5a)

r2� D 1��
d

�
r2h� r h�r h

d

�
� �
d

�
r2� � r � �r �

d

�
� 1�2�

d2
rh � r� � r �

d
� .rhCr�/ , (5b)

@´� D
1
d

. (5c)

All of these coefficients can be computed explicitly from the known two-dimensional free surface
and bottom positions at given instants of time.

Furthermore, when ˆ is known, the vertical velocity can be determined from

w D @´� D @´�@�ˆ. (6)

3. NUMERICAL METHOD FOR DISCRETIZATION

The solution of the governing equations given in Section 2 and application to several wave problems
have been done using an efficient and fairly optimized single core CPU (single thread) implementa-
tion. For complete analysis and experimental validation of the algorithm and the involved iterative
strategy, we refer to [4,5,20]. The discretization approach based on a flexible-order finite difference
method and is briefly summarized in the following for the setup of a NWT. This approach has been
demonstrated to be robust, efficient, and accurate and thereby enable numerical solution of a broad
range of important practical applications.

A method of lines approach is used for the discretization of the governing equations stated in
Section 2. For the time-integration of the free-surface conditions (1), a classical explicit four-stage,
fourth-order Runge–Kutta (ERK4) scheme is employed as it is not subject to any severe stabil-
ity constraints on the choice of time steps and is straightforward to parallelize. For the spatial
discretization, a free surface grid consisting of .Nx ,Ny/ points is defined along the horizontal
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24 A. P. ENGSIG-KARUP, M. G. MADSEN AND S. L. GLIMBERG

xy-axes at which the free surface variables � and Q� are to be evolved. At the structural bound-
aries of the domain, that is, at the bottom and wall sides, no normal flux conditions (4c) are imposed
using a stencil half-width layer of fictitious ghost points in the horizontal and only one layer below
the bottom.

For the discretization of the transformed Laplace problem (4), N´ points are defined in the verti-
cal direction below each horizontal free surface grid point, which can be arbitrarily spaced between
0 6 � 6 1. Choosing r nearby points in the x-direction, for example, ˛l left-most and ˛r right-
most neighboring values, allows finite difference schemes for the one-dimensional first and second
derivatives in .x,y, �/ to be developed at each of the x,y, and � positions on the grid. A p’th order
accurate approximation for the qth derivative can be expressed in the general form

@qu

@xq

ˇ̌
ˇ
xDxi

D

˛rX
nD�˛l

cxnuiCnCO.�xp/ (7)

with cxi being the finite difference weights determined by the order of differentiation and the compu-
tational grid distances between points in the x-direction. Mixed x� -derivatives and y� -derivatives
can be computed from the one-dimensional stencils by tensor products, for example,

@2u

@x@�

ˇ̌
ˇ
.x,�/D.xi ,�i /

D

˛rX
mD�˛l

�rX
nD��l

cxmc
�
nuiCm,jCnCO.�xp/ (8)

where �l and �r are responsible for indexing the neighboring values in the vertical. This will result
in approximations that are formally order .r � 1/ for centered stencils and .r � q/ for off-centered
stencils with q the order of the derivative. The order of the spatial discretization schemes is kept
flexible to have two convergence strategies available for combinations, namely, h-adaptivity and
p-adaptivity where either the spatial resolution or the order of the scheme is increased, respectively.
The resulting discrete Laplace problem can be stated as a rank n D Nx � Ny � N´ linear system
of equations,

Aˆ D b, (9)

where A is in general a large sparse non-symmetric matrix, ˆ is vector of values for the unknown
scalar velocity potential, and b is a vector accounting for in-homogenous boundary conditions.

4. PARALLEL ALGORITHM

The main goal is to implement a massively parallel and scalable algorithm for solving large non-
linear water wave problems, efficiently, on modern many-core hardware. To achieve this goal, two
choices have to be made, namely, what hardware is to be used and how to implement the algorithm
to utilize the available hardware efficiently.

For algorithms to be useful in practice for large problems, essential requirements are correctness,
robustness, efficiency, and scalability as described by [21,22]. The fully nonlinear free surface wave
problem in three space dimensions can be solved using the recently developed algorithmic approach
summarized in Section 3, which fulfills these fundamental properties. In this work, a main concern
is to maximize the ability to solve large problems, and therefore the storage space requirements of
the algorithm is a determining factor in the choice of suitable methods.

In the recent work of [5], an efficient explicit algorithm based on a low-storage multigrid precon-
ditioned defect correction (DC) method for the solution of the Laplace problem is proposed. This
algorithmic approach is a promising strategy for parallel computations as it is explicit, the memory
requirements are minimal and few global synchronization points are needed.

The free surface problem (1) is essentially one spatial dimension (i.e., O.N´/) smaller than the
Laplace problem (2). Consequently, for large problems, the free surface problem requires much less
effort to advance in time, for example, using ERK4, in comparison with the iterative solution of
the Laplace problem (2). Thus, the computational bottleneck problem is the solution of the linear

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:20–36
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system (9) every time step of the time-integration of the evolution of the free surface problem. This
linear system can be solved efficiently starting from some initial guess ˆŒ0� by a DC method with
iterations given in compact form

ˆŒkC1� DˆŒk�C ıŒk�, ıŒk� DM�1.b�AˆŒk�/, k D 0, 1, 2, ... (10)

where M � A can conceptually be considered as (the action of) a preconditioning matrix respon-
sible for minimizing de-acceleration of convergence over the single-iteration scheme achieved if
M � A. When a full high-order discretization is employed for the discretization of (9) and a
reduced-order multigrid method is employed for determining the correction ıŒk� in the precondi-
tioning step in (10), the resulting method can be perceived as a p-multigrid method and is given in
pseudocode in Algorithm 1.

In this work, we employ a second-order multigrid discretization preconditioning strategy based
on a time-constant discretization of the linearized system matrix (assume � � 0 in (10)) which
was demonstrated to be efficient by [5]. With the resulting DC method based on a two-step recur-
rence combined with the same multigrid preconditioning strategy proposed by [4], the storage
requirements can be kept minimal (see also discussion in Section 5.4). The best precondition-
ing strategy was found to be a multigrid method based on a Red-Black Zebra-Line Gauss–Seidel
(RB-ZL-GS) smoothing strategy combined with semi-coarsening. The multigrid strategy MG-RB-
ZL-GS-1V(1,1) based on a V-cycle with one pre-smoothing and post-smoothing was found to be
efficient for the entire application range from shallow to deep water in the current numerical model.
This is in contrast to point-based smoothing methods that exhibit slow convergence when discrete
anisotropy is high (fx. in shallow water). We, therefore, only consider this strategy in the following.

Algorithm 1 Defect Correction Method for approximate solution of Aˆ D b

1 ChooseˆŒ0� /* initial guess */
2 k D 0
3 repeat
4 r Œk� D b �AˆŒk� /* high-order defect */
5 Solve MıŒk� D 5r Œk� /* preconditioning problem */
6 ˆŒkC1� DˆŒk�C ıŒk� /* defect correction */
7 k D kC 1
8 until (jjr Œk�jj< jjr Œ0�jj � rtol C atol/ and .k < maxiter/;

Geometric multigrid methods are multi-level methods [23] and can be constructed from three
basic components, namely, a fine-to-coarse grid (restriction) operator, a coarse-to-fine (prolonga-
tion) operator, and a smoothing (relaxation) operator. With second-order discretizations employed,
it is sufficient to use tri-linear interpolation for the adjoint grid-transfer operations. The remaining
essential component is the smoother.

For each of the Nx �Ny the free surface grid points, the RB-ZL-GS smoothing strategy requires
solving a small m � m linear system of equations (with m D N´). We employ a discretization of
the transformed Laplace problem with a single layer of fictitious ghost points below the bottom for
imposing kinematic boundary conditions. Then these small linear systems have a general and nearly
tri-diagonal structure of the form

2
66664

b1 c1 0

a2 b2 c2
. . .

. . .
. . .

am�1 bm�1 cm�1
0 em am bm

3
77775

2
66664

x1
x2
x3
...
xm

3
77775
D

2
66664

d1
d2
d3
...
dm

3
77775

(11)

This system can be solved directly using a modified Thomas Algorithm (TA) that takes into
account an extra nonzero coefficient denoted em. This changes the standard TA to a forward
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elimination phase resulting in modified coefficients for the system

c0i D

8̂
<
:̂

c1

b1
, i D 1

ci

bi � c
0
i�1ai

, i D 2, 3, ...,m� 1
(12)

and

d 0i D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

d1

b1
, i D 1

di � d
0
i�1ai

bi � c
0
i�1ai

, i D 2, 3, ...,m� 1

.di � emd
0
i�2/� d

0
i�1.ai � emc

0
i�2/

bi � c
0
i�1.ai � emc

0
i�2/

, i Dm

(13)

The solution can then be obtained by back substitution as

xm D d
0
m, xi D d

0
i � c

0
ixiC1, i Dm� 1,m� 2, ..., 1. (14)

This modified TA is inherently sequential and can be implemented with memory requirements of
complexity 2m. This is possible when we take advantage of the known time-constant sparsity struc-
ture of the small system matrix that results from the discretization in the vertical of the linearized
version of (4).

The analysis of the finite difference model by [4, 20] demonstrates that N´ � 5–10 points in the
vertical are sufficient to achieve satisfactory engineering accuracy levels of, say, less than two per-
cent in wave dispersion and kinematics for typical simulations in costal engineering. This implies
that, for typical simulations, the block systems of the form (11) that arise in Zebra-Line smoothing
operations will be small.

At the coarsest grid level in the multigrid procedure, the number of required smoothing opera-
tions depends on the grid size and should ensure that the accuracy is comparable with the level of
discretization errors to not affect overall convergence rate (e.g., see [24, 25]). To avoid significant
processor idle time that may impact parallel efficiency (cf. Amdahl’s law), our multigrid algorithm
is coarsened to the smallest grid level where there is just enough threads to keep the stream pro-
cessors busy. At this level, we use on the order of 10 smoothing operations to solve the residual
equations approximately.

The solver for the entire problem is compromised by pre-processing, time-integration, and post-
processing steps. For time-integration based on explicit Runge–Kutta methods, the following fun-
damental algorithmic steps for each stage in such ordinary differential equation (ODE) solvers are
performed:

1. Using input for in-homogenous boundary conditions, for example, the current free-surface
state Q�, solve the transformed Laplace problem (4) using a defect correction method
(cf. Algorithm 1).

1b. In step 5 of Algorithm 1, a preconditioning problem needs to be solved.
2. Compute vertical velocity at free surface Qw using (6).
3. From the last free-surface state at previous time step defined in terms of �, Q�, and Qw, advance

solution by evaluating the right hand side function of (1).
4. Repeat from Step 1 until algorithm completes.

The bulk of the work is in Step 3 because this part requires processing data for three space
dimensions. Step 1b solves the defect equation using a geometric multigrid method based on semi-
coarsening to resolve problems related to discrete anisotropy. After every grid transfer and every
sweep with smoothers, the boundary conditions needs to be enforced by explicitly updating fictitious
ghost point layers.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:20–36
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5. PARALLEL IMPLEMENTATION ON HETEROGENOUS CPU–GPU HARDWARE

5.1. Hardware characteristics

In this work, we focus on utilizing many-core GPUs, which on current top end GPU hardware have
theoretical on-chip bandwidth up to 192 GB/s and theoretical peak computational power on the
order of 1.5/0.75 TFlop in single/double precision and equipped with up to 6 GB GDDR5 RAM
for one GPU. Interestingly, these modern GPUs can easily be equipped in a desktop computer and
constitute a powerful co-processing resource for a standard CPU host acting as a task manager. The
CPU is designed for general purpose computations and the GPU for data-parallel computations,
and this combined approach enables a powerful strategy for solving problems more efficiently. If an
algorithm is executed on the CPU and co-processed on the GPU, it is today standard to transfer data
through a standard peripheral component interconnect express (PCIe) �16 Gen2 bus interface with
bandwidth of a most 8 GB/s. Thus, the PCIe link represents a potential bandwidth bottleneck for
applications with excessive data-transfer between host and device. This suggests that algorithms for
standard sparse numerical linear algebra operations (such as those presented in Section 4), which
are typically memory bound (i.e., limited by available memory bandwidth), it can be advantageous
to exploit the high on-chip memory bandwidth on such GPU devices. This also suggests that com-
putationally intensive computations should be kept on the device and that data-transfers should be
minimized to reduce memory latency and optimized with respect to access patterns. Thus, the strat-
egy in this work is to offload all computations and runtime data-transfers to a single GPU to avoid
the bandwidth bottleneck of the slow off-chip bus interface.

5.2. Parallel programming of GPUs

As a starting point for programming GPUs, we choose to use the CUDA C parallel programming
model proposed by Nvidia Corporation (Santa Clara, California, USA). This programming model
is at the time of the work more mature and similar to the OpenCL industry standard developed
by the Khronos Group that may become a future standard model for programming heterogeneous
hardware. The chosen programming model promotes the use and development of massively paral-
lel algorithms for computation and data-processing. It has been developed to ease the development
of general purpose applications that can benefit from parallel execution on Nvidia GPUs only and
requires no graphics knowledge. To fully utilize the GPUs, knowledge about the hardware charac-
teristics and in particular the memory hierarchy are essential. The hardware limits of a given CUDA
architecture is defined in terms of the Compute Capability (CC) version. The programming model
and best practices are described in technical reports by [16, 17] and it is possible to also use micro-
benchmarking of the hardware architecture to provide additional insight to hardware characteristics
for Nvidia GPUs not detailed in public as investigated by [26].

To implement a parallel program on GPUs, the current programming paradigms require that the
programmer decompose the program code into subroutines (tasks) that can be sequentially sched-
uled for execution on accelerator devices by the CPU host. Subroutines that are compiled for and
executed on the GPU are referred to as kernels and should be primarily used for massively data-
parallel (single instruction, multiple data ) tasks. Such kernels require an execution configuration
that defines a virtual grid of threads. Each thread in the grid will process the kernel instructions and
parts of the data, concurrently. The choice of kernel execution configurations is important for over-
all performance and can be differently optimized for different kernels. The optimal configuration is
dependent on the scarce local memory requirements and physical limits of the architecture. Data are
provided for kernels by transferring data from the host to the device memory from which they are
processed by kernels in single program multiple data style. When kernels finish, a new kernel can
be initiated at each stream processor.

5.3. Algorithmic components

The costs of algorithms are fundamentally arithmetic operations (computation) and communication
(data-transfer) requirements. By inspecting the entire proposed parallel algorithm, it is clear that the
main algorithmic components can be classified as

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:20–36
DOI: 10.1002/fld



28 A. P. ENGSIG-KARUP, M. G. MADSEN AND S. L. GLIMBERG

� Sparse matrix-vector (SpMV) operations for both high-order and low-order defect evalua-
tions and multigrid grid transfers.
� Sum reduction (SR) for error norm estimation for use in stopping criterion of the iterative

method.
� Vector addition (VA) that is known as an AXPY operation.
� Thomas algorithm (TA) for solving small sparse linear systems for line smoothing operations

in the multigrid method.

This justifies focussing mainly on optimizing available hardware resources for these types of
components to maximize performance.

There are two components that are not embarrassing parallel, namely, the SR and TA components.
The SR operation can be implemented efficiently with O.n logn/ work complexity as performed
in the library of parallel algorithms called THRUST [27]. The TA operation for each vertical line
solve is implemented using a blocking technique, where the linear system is solved on a per-thread
basis. This maximizes data-parallelism of the entire smoothing operation on a given grid and ensures
global O.n/ scaling of work effort for each global smoothing step. However, with this choice a cur-
rent performance akilles’ heel is that the register usage per thread is maximized and register spilling
to global device memory increases when N´ grows, which makes this kernel strongly memory
bound. This is less of a problem for devices of CC 2.0 (fermi) where L1 caching of global mem-
ory transactions is supported, and 32K 32-bit registers are available (twice the amount available for
devices of CC 1.3 (tesla)).

The SpMVs and the global smoothing step are the two key components that have the highest algo-
rithm complexity. Both SpMV and AXPY components typically have low arithmetic intensity (ratio
of computations to data-transfer) for the operations. This typically results in these kind of algorithms
to be memory-bound rather than compute-bound. Therefore, we focus on optimizing for reduced
data-transfers, ensuring memory coalesced read/write operations, and the use of shared memory
for maximizing performance for our kernel implementation. In practice, each thread is responsible
for one output element and implemented as gather point-wise operations in each of the SpMV and
AXPY operations. In the SpMV operations, we exploit that we know the structure of the sparse
matrix to avoid global assembly of matrices in compact sparse formats. Instead, the entire algorithm
is implemented using matrix-free components to minimize the storage requirements. The matrix-
free implementation is based on computing the set of possible undivided finite difference stencils
on a grid with unity grid increments. This set can, then, be used for all finite difference operations
under appropriate scaling when applied. The set of stencils is stored in the low-latency cached con-
stant memory on the GPU device. This reduces both register pressure and high-latency data-transfer
between streaming processors and global device memory. In the SpMV routines needed for solving
the system (4) iteratively using (10), this implies that all time-dependent coefficients (5) are gen-
erated on the fly in the kernel invocations for both SpMV and smoothing operations that rely on
TA. In order to speed up the SpMV operations used in the multigrid preconditioning step of the DC
method, we have written separate optimized kernels where, for example, the low-order and known
stencils are hard-coded as automatic (register) variables.

To avoid reduced performance due to need for conditional branching in active warps, we exert
flow control by using static branch resolution [12] for updating the boundary points separately from
the interior points using different kernels. For example, in connection with grid-transfer and smooth-
ing operations in the multigrid algorithm, the boundary conditions imposed through fictitious ghost
points are explicitly enforced after each sweep of the kernels for updating the interior points.

5.4. Memory storage

Getting good performance for memory-bound applications, the key concern is to take into account
the data-traffic of the algorithmic components. For implementations on GPUs, we therefore need
to know the details of the memory hierarchy of the architecture. Specific to our implementation
currently for Nvidia GPUs only, we use the global memory with latency close to 500 cycles per
read/write on the device for storage of both solution and intermediate variables. For finite differ-
ence stencils, we use the low-latency read-only constant memory for reducing register pressure. For
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reducing global memory traffic whenever possible, the threads should do coalesced memory trans-
actions and cooperate on a per-thread-block basis through low-latency (scratchpad) shared memory.
The shared interleaved memory provides fast low-latency access when threads in active warps all
access either the same or different memory banks. If this is not the case, the memory requests are
serialized and performance may degrade. On the GPUs, the local memory spaces to each stream
processor are a scarce resource and are shared among threads within active thread blocks scheduled
for execution. Therefore, it is important to first optimize the implemented kernels to take advantage
of the memory hierarchy. Then, good kernel execution configurations should be found that balance
the resource available for each thread and at the same time ensure that the streaming processors can
be fully occupied with computations.

To minimize data-transfer between host and device, we employ a strategy where initial data and
finite difference stencil weights are initially pre-processed on the host and then transferred to the
device for subsequent reuse.

The data needed to solve this three-dimensional Laplace problem (3) is the two-dimensional
free surface quantities �.x,y, t / and Q�.x,y, t / for a given state together with the still-water depth
h.x,y/. The required storage is minimal compared with that of the iterative solver (10). Further-
more, by employing a � -transformation (3) between the physical grid to a regular unity-spaced
computational grid [28], the amount of data storage for the finite difference coefficients of all sten-
cils to be used frequently in the iterative part of the solution process can be stored in the low-latency
cached constant memory. This makes it possible to reduce storage requirements for the minimal set
of stencils coefficients to a small array that easily fit within the 64 KB limit of the constant memory.

For the preconditioned iterative DC method (10), we need to store two fine grid arrays for the
iterates together with intermediate results on the coarser grids for the multigrid preconditioning.
The total storage requirement for the coarse grid levels in multigrid is bounded independently of
the number of grid levels chosen by

P1
kD0

n

sk
D
�
s
s�1

�
n, with s a reduction factor indicating how

aggressively the coarsening strategy is in terms of reducing the grid points for each grid level. For
example, with a coarsening strategy based on simultaneous halving of grid point in the horizon-
tal directions (s D 4) only between grid levels, at most 4

3
n elements are needed for data storage.

Dependent on the spatial resolution employed, typically, semi-coarsening is employed in the hor-
izontal plane until the grid increments are of similar size. Thereafter, standard coarsening is
employed (s D 8).

Results from memory scaling tests are presented in Figure 1 that shows the total amount of global
device memory used as a function of problem size. The test demonstrates linear scaling in both sin-
gle and double precision implementations. Furthermore, it is clear that with 4 GB RAM memory,
it is possible to solve a Laplace problem of size up to close to 50/100 million degrees of freedom
in single/double precision. This makes it possible to solve a system that is approximately 19 times
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Figure 1. Scalability test of measured memory footprint for both single and double precision storage.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:20–36
DOI: 10.1002/fld



30 A. P. ENGSIG-KARUP, M. G. MADSEN AND S. L. GLIMBERG

larger than the large-scale validation test presented by [4] for propagating stream function waves
with 4 GB RAM available.

6. PARALLEL PERFORMANCE ANALYSIS

For the evaluation of parallel performance of the implemented algorithms, we focus on the three
characteristics of the implemented code base: (i) scalability of work effort, (ii) overall efficiency
relative to a fast reference CPU code, and (iii) how well the hardware resources are utilized on
the chosen hardware architecture. The performance analysis is relative to our own reference CPU
implementation (to our knowledge, the best implementation available for single thread execution on
a CPU). Any comparison across hardware is based on achieving the same algorithmic efficiency by
executing the same algorithmic components.

The entire implementation has been subject to verification using the method of manufactured
solutions, our existing CPU implementation and validation through comparison with the experi-
ments due to [29]. As expected, the code was found to have the same performance characteristics
as reported by [4, 5] in terms of accuracy (computed results) and algorithmic efficiency (iteration
counts) when same algorithm and parameters are employed. The remaining issue is the overall
performance of the new massively parallel implementation.

6.1. Test environments

To be able to evaluate the performance of the numerical solution of (1) and (2), we have imple-
mented the parallel algorithm described in Section 4 entirely in C++ using CUDA Toolkit v3.2 and
executed in three different test environments available to us.

Test environment 1 is based on Windows 7 (64 bit) with an Intel(R) Xeon W5590 (Intel Corpo-
ration, Santa Clara, California), 3.33 GHz CPU with 8 MB L2 RAM. The host was tested with a
Quadro FX 5800 processor.
Test environment 2 is based on Windows 7 (64 bit) with an Intel(R) Core(TM) i7 Extreme 9065,
3.2 GHz CPU with 8 MB L2 RAM. The host was tested with a GeForce GTX 480 processor.
Test environment 3 is based on GNU/Linux Ubuntu v10.04.1 with an Intel(R) Core(TM) i7,
2.8 GHz CPU with 8 MB L2 RAM. The host was tested with a C2050 processor. We have mea-
sured the CPU-to-RAM Read/Write bandwidth to an estimated 11.5 GB/s on this work station as
this is critical to the tests of the CPU algorithm used as reference in the performance comparisons.

The CUDA-enabled GPU devices we have used for our tests are listed in Table I. The host and
device was in each case interconnected with a PCIe �16 Gen2 bus interface that has a theoretical
peak performance of 8 GB/s bandwidth, however, with a measured effective (pinned) host-to-device
transfer up to 5.5 GB/s bandwidth. This implies that using non-blocking transfer operations, com-
puted data for the free surface state � and Q� at a given instant of time can be transferred to the host
concurrently with device computations for post-analysis without a performance penalty. For exam-
ple, if we assume that 4 GB RAM is available on the device, a maximum problem of size 50 million
grid points with 6 grid points in the vertical, the surface variables can be transferred in about 0.024 s

Table I. Hardware specifications (by Nvidia) and maximum measured device-to-device bandwidth transfers
for simultaneous Read/Write operations. The C2050 processor bandwidth was measured with ECC on.

Device Quadro FX 5800 GeForce GTX 480 C2050

RAM [GB] 4 1.5 3
Cores 240 480 448
Clock rate [GHz] 1.30 1.40 1.15
Compute capability 1.3 2.0 2.0
Peak bandwidth (measured) [GB/s] 102 (79) 177 (154) 144 (111)
Peak flop count single/double [GFLOP/s] 624/78 1.344/168 1.030/515
Release date Nov 2008 Mar 2010 Mar 2010
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(compare with computational rates given Figure 2(a) if double precision storage is used and half of
that if results are truncated to single precision).

The selected GPUs have some distinct characteristics. The Quadro FX 5800 GPU is a former and
the Geforce GTX 480 a more recent high-end gaming card. The C2050 computing processor is a
high-end GPU dedicated for scientific computations. These GPUs have support for double preci-
sion computations, however, the gaming cards have 1/4th the hardware support for double precision
computations compared with the C2050 processor. The C2050 processor comes with software con-
trolled Error Checking and Correction (ECC) memory (turned on) whereas the consumer cards does
not. With ECC turned off, the on-chip bandwidth could be improved by close to 10%. Also, there
are some noticeable relative differences in the on-chip bandwidths among the GPUs, which will be
critical for application performance for memory bound parts of parallel algorithms. Thus, a direct
comparison between measured CPU-to-RAM and GPU-to-RAM bandwidths suggests that we can
expect 7–13 times relative speedups for these particular test environments. However, the perfor-
mance of a memory bound application is dependent on the memory access patterns of individual
subroutines/kernels.

6.2. On critical kernel optimization and analysis

The overall performance is determined by a few critical kernels in the CPU-GPU code base devel-
oped in this work. Because the kernels are memory bound, it is critical to optimize for coalesced
global memory transfers to minimize latency in order to maximize the effective bandwidth (data
transferred per time unit). To assess the absolute performance of the CPU-GPU code implementa-
tion, we have profiled the code for a large enough problem size where the data-transfer have become
a limiting factor to overall performance, and execution overhead is a minor fraction of total execu-
tion time. According to Figure 2, this happens when the problem size n exceeds approximately 3
million grid points. We profile code execution for a problem that simulates the shoal experiment of
[29] that is a standard case for both code validation and benchmarking.

A single component analysis is carried out for a test with a spatial resolution of .Nx ,Ny,N´/D
.2049, 1025, 6/ on a domain of size .Lx ,Ly/ D .35.0, 3.048/m. We employ a sixth order accurate
discretization and evaluate performance over 10-time steps with each time step 	t D 0.001s. Dur-
ing this test, the transformed Laplace problem is solved using the best CPU (single thread) strategy
DC+MG-ZLGS-V(1,1) with error tolerances set to atol=10�4 and rtol=10�6. A simple break-
down of the computational expenses are given in Table II for the GPU code. In the table, the critical
kernels responsible for close to 71% of total execution time have been highlighted with estimated
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Figure 2. Scalability tests and performance comparisons in double precision arithmetic for Quadro FX 5800
(���), GeForce GTX 480 (�N�), C2050 with ECC (���), and C2050 without ECC (���) versus CPU
(single thread) code (�H�). Sixth order spatial discretization employed. Same algorithm for iterative solver

DC+MG-ZLGS-V(1,1) has been employed on each architecture.
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Table II. Breakdown of performance for CPU-GPU code.

Kernel Operation Time [%] Eff. bandwidth [GB/s] Kernel config.

High-order residual SpMV+VA 46.9 47.4 64 � 1
ZLGS smoother TA 21.2 24.6 16 � 8
Low-order residual SpMV+VA 3.5 51.9 32 � 2
Sum reduction SR 1.6 98.6 128 � 1
Other (aggregate sum) � 28.4 � 8 � 8
Total 100

effective bandwidth achieved for the given kernel execution configurations. The kernel execution
configurations have been determined by a simple brute force auto-tuning strategy where a larger
number of configurations have been tested to find the execution configurations that gives good over-
all performance for a two-dimensional virtual grid of threads. The optimal execution configuration
is problem-dependent, however, we have found that when then problem is sufficiently large, there
are often several execution configurations that result in near-optimal performance, say, within 5%
from the best configuration.

6.3. Benchmarking

We benchmark the complete algorithm described in Sections 3 and 4 implemented for heteroge-
nous CPU-GPU hardware. For benchmarking, we employ spatial discretizations of order 2, 4, and 6
for defect corrections and employ a second-order time-constant MG-RB-ZL-GS-1V(1,1) multigrid
preconditioning strategy in each case. For practical computations, it is advantageous to balance the
discretization parameters with the accuracy needs to best utilize the available resources.

For the performance test, we solve for the propagation of unsteady nonlinear periodic stream
function solutions [30] at shallow depth (parameters for dispersion are kh D 0.5 and nonlinearity
H=LD 30%.H=L/max). To measure overall throughput performance, the choice of test case is not
important as long it is numerically stable during tests.

In the performance tests, we have employed a base configuration .Ny ,N´/ D .7, 6/. In the
x-direction, we have used a resolution up to Nx D 671, 745 points and the wave resolution is
kept fixed close to 32 points per wave (PPW) in any test configuration. The waves propagate along
the x-axis. At the largest resolution, it is possible to resolve a total of 20,995 wave lengths in the
x-direction of this NWT. For the time-integration, we employ ERK4 with a Courant number
Cr D c

�t
�x
� 0.5 that measures the ratio between resolution in time and space.

Scalability tests are presented in Figure 2(a). The absolute timings presented are suitable for com-
parison with performance of other models. A relative performance comparison with the algorithm
executed on the CPU of test environment 3 is presented in Figure 2(b). We find that the implemented
GPU model outperforms the CPU implementation for all problem sizes where n > 2�104 in each test
environment when double precision arithmetic is used. If instead single precision arithmetic is used,
the throughput performance of one iteration of the iterative solver can be improved significantly
because the data-storage for all variables will be halved. As illustrated in Figure 3, the performance
for a single precision solver is improved up to 42% with ECC and 52% without ECC compared with
a double precision solver with ECC (cf. Figure 2(a)). This improvement is achieved for the largest
problem sizes only.

For the best architecture, namely the C2050 processor with ECC on, we have measured the rela-
tive sensitivity to the discretization order of accuracy as presented in Figure 4. These results show
that with the second order discretization as the reference, the throughput performance is increased
with up to 25% when we use a 6th order discretization instead of a 2nd order discretization. Thus, we
conclude that the performance does not change dramatically with changes in the discretization order.
This is attributed to that most kernels in the algorithmic strategy are memory bound and does not
experiences any changes in algorithmic intensity when discretization order changes. The mapped
GPU implementation achieves a speedup up to �40/�49 in double/single precision in comparison
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Figure 3. Speedup in scalability tests for C2050 with ECC for a single versus double precision arithmetic
comparison. Single precision with ECC (���) and without ECC (���). Iterative solver DC+MG-ZLGS-
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Figure 4. Speedup in scalability tests for C2050 with ECC in double precision arithmetic. Discretization
is second order (reference, ���), fourth order (���), and sixth order (�N�). Iterative solver DC+MG-

ZLGS-V(1,1) has been employed.

with the existing efficient and fairly optimized reference CPU (single thread) Fortran 90 double pre-
cision code used by [4, 5]. For computations using ERK4 (with a stage count of four) and average
number of iterations between 5 and 10, we find that the compute time per time step is between 20
and 40 times larger than the throughout performance per iteration measured in Figure 2(a). This
implies that for n D 104, one time step is processed in about 0.04–0.08 s, for n D 105 it takes
0.08–0.16 s, and for n D 106 it takes 0.4–0.8 s of compute time. For example, we estimate that
without taking accuracy into account, this enable throughput performance improvements of close
to one order in magnitude reduction in comparison with the benchmarks collected and reported by
[31] for a few known free surface models. The benchmarks provided in this section can be used to
predict general performance based on chosen discretization parameters.

6.4. Performance prediction

For practical purposes, it can be useful to use the absolute timings presented in Figure 2(a) to predict
how fast we can resolve one wave period of a wave. This can be done with the following simple
relationship

Compute time

Wave period
�

Compute time

Iteration
�

Iterations
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�
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that can be expressed more mathematically (in terms of standard dimensionless quantities)

tcompute.n/

T
�

Compute time

iteration
�K, K �

�
SRK � Iavg

�
�
PPW

Cr
(15)

where K is a parameter defined in terms of the average iteration count for the solution of (9) using
the DC method (10), and SRK is the number of stages in the Runge–Kutta ODE solver employed.
If we assume that we can resolve a wave with an accuracy of less than 2% in dispersion (phase
speed) if we use 10 grid points in the vertical and 10 points per wave length (e.g., see the dispersion
analysis by [5]), then we find that K � 4 � 5 � 10

0.5 D 400. Thus, we need to multiply the absolute
timings given in Figure 2(a) with 400 to estimate how fast we can resolve the propagation of the
such waves in a domain of size n over one wave period within 2% accuracy in dispersion.

For comparison of performance differences between free surface models, for example,
Boussinesq-type and fully nonlinear free surface models, it is fair to examine how fast the solution
can be advanced over a fixed time interval and at the same time satisfy the accuracy requirements
(fx. dispersion accuracy). For the fully nonlinear model presented, the computational bottleneck
problem is the iterative solver. This implies that the estimated timings for this model (fx. Figure 2(a))
is simply divided by N´ to express the timings in terms of the number of free surface points Nx �Ny
instead of total points n.

With achieved improvements in model performance, it is also tempting to ask when real-time
analysis is feasible? This could be of interest to the coastal engineering community, however, also
to other scientific areas, for example, physics-based visualization as in the game industry, ship
simulator systems, real-time modeling for use in forecasting and warning systems, and fast and
inexpensive numerical towing tanks experiments. Using (15), we deduce that real-time analysis is
only made possible for a given problem size n if all resolved waves have wave periods T that fulfills
tcompute.n/ 6 T . Remark, that the resolution of the resolved waves is determined by the accuracy
requirements for a given problem size n with the level of accuracy of the discrete model determined
by the discretization parameters. Furthermore, for many practical purposes, the parameter K is typ-
ically between 150 and 600, that is, varying with a factor of four, it is clear that the main barrier for
real-time analysis is the throughput performance that is ultimately determined by the hardware and
programming effort put into code optimization.

For linear monochromatic waves over a flat seabed, the wave period is defined as T D 2�p
gk tanh.kh/

[32] where k D 2�
l

is the wave number defined in terms of wave length l . Wave periods for steep
nonlinear waves can be determined using stream function theory and are found to be smaller than
those predicted by linear theory for all kh under assumption of constant depth as illustrated in
Figure 5. We therefore conclude that linear theory represents a conservative choice for analysis of
performance for constant kh and Cr for the model according to (15).
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Figure 5. Comparison of wave period between linear and nonlinear stream function waves (H=L D
90%.H=L/max) for a constant depth under assumption of wave length l D 1 m.
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To illustrate how we can estimate if real-time analysis is possible, assume that we want to simulate
linear waves with wave period T D 2 s (fx. relative depth khD 0.33 and wave length l D 1m) over
as large an area as possible. We further assume that we choose discretization parameters such that
a typical K � 400 is achieved. By examining Figure 2(a), it can be deduced that we should expect
to be able to solve problems of size n � 105 with the resolution of the waves fixed. This implies
that faster than real-time analysis is already realistic for many simulations in two-space dimensions,
for example, a NWT where approximately 104 points in the horizontal and 10 points in the vertical
directions are employed to resolve propagating waves. If we can satisfy our accuracy needs with
N´ D 10 and PPW D 50 for primary wave frequency (e.g., see the submerged bar test of [20]) this
implies that numerical experiments is made possible for a long two-dimensional NWT with close to
200 wave lengths of the primary wave resolved. At this resolution, several higher time harmonics
would also be well-resolved, for example, when using spatial discretization of sixth order of accu-
racy. For the submerged bar test, this would be an estimated wave tank of length 480 m on the GPU
that is in contrast to the 30–35 m long NWT typically used for analysis on CPU. However, if we can
accept to be up to a factor �10 slower than real-time in three space dimensions then problems of
size up to n� 2 �106 can be solved enabling even larger problems or better resolution of wave field.

7. CONCLUSIONS

We have carefully implemented and analyzed the performance of a baseline GPU accelerated fully
nonlinear free surface potential flow model using the vendor-specific CUDA programming model.
We have found that the runtime performance in double precision arithmetic could be speedup close
to 40 times in comparison with our efficient CPU (single-thread) implementation based on the same
algorithm. We do not claim that the presented performance results are optimal, however, the per-
formance analysis of the implemented solver shows that fast analysis and desktop computing for
coastal and offshore engineering problems is possible with modern many-core GPU hardware.

We have refrained from utilizing multi-GPUs. The immediate benefit in this choice is that we
avoid transferring data between GPUs and can easier maintain the dataset on a single GPU. To
compensate for this choice, we have focused on minimizing data-storage requirements to be able to
solve as large problems as possible (measured in terms of the total number of grid points that can
be used for the discretization of the discrete Laplace problem). We have, at this stage, focused on
proof-of-concept of the choices of algorithm and technology and in future work, we will focus on
domain decomposition methods for introducing more geometric flexibility into the modeling basis.

To give the work some perspective, we find that it is noticeable that the model is implemented
for use with modern GPUs. These GPUs can easily work in or be moved between existing desktop
computing hardware setups without affecting performance when performance is not limited by the
CPU host characteristics or bus interface. Also, modifying the implemented code to instead execute
via the OpenCL industry standard for better portability across hardware is considered a relatively
small next step because similar syntax and functionality are provided in this standard.

The presented work is a significant step towards real-time analysis at large scales for fully
nonlinear free surface simulations in coastal and offshore engineering problems.
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