45,174 research outputs found

    Physico-chemical factors and bacteria in fish ponds

    Get PDF
    Analyses of pond water and mud samples show that nitrifying bacteria (including ammonifying bacteria, nitrite bacteria, nitrobacteria and denitrifying bacteria) are in general closely correlated with various physico-chemical factors, ammonifying bacteria are mainly correlated with dissolved oxygen; denitrifying bacteria are inversely correlated with phosphorus; nitrite bacteria are closely correlated with nitrites, nitrobacteria are inversely correlated with ammoniac nitrogen. The nitrifying bacteria are more closely correlated with heterotrophic bacteria. Nitrobacteria are inversely correlated with anaerobic heterotrophic bacteria. The correlation is quite weak between all the nitrite bacteria which indicates that the nitrite bacteria have a controlling and regulating function in water quality and there is no interdependence as each plays a role of its own. The paper also discusses how the superficial soil (pond mud down to 3.5 cm deep) and different layers of the mud affect the biomass of bacteria. The study shows that the top superficial layer (down to 1.5 cm deep) is the major area for decomposing and converting organic matter

    Bacterial nitrate assimilation: gene distribution and regulation

    Get PDF
    In the context of the global nitrogen cycle, the importance of inorganic nitrate for the nutrition and growth of marine and freshwater autotrophic phytoplankton has long been recognized. In contrast, the utilization of nitrate by heterotrophic bacteria has historically received less attention because the primary role of these organisms has classically been considered to be the decomposition and mineralization of dissolved and particulate organic nitrogen. In the pre-genome sequence era, it was known that some, but not all, heterotrophic bacteria were capable of growth on nitrate as a sole nitrogen source. However, examination of currently available prokaryotic genome sequences suggests that assimilatory nitrate reductase (Nas) systems are widespread phylogenetically in bacterial and archaeal heterotrophs. Until now, regulation of nitrate assimilation has been mainly studied in cyanobacteria. In contrast, in heterotrophic bacterial strains, the study of nitrate assimilation regulation has been limited to Rhodobacter capsulatus, Klebsiella oxytoca, Azotobacter vinelandii and Bacillus subtilis. In Gram-negative bacteria, the nas genes are subjected to dual control: ammonia repression by the general nitrogen regulatory (Ntr) system and specific nitrate or nitrite induction. The Ntr system is widely distributed in bacteria, whereas the nitrate/nitrite-specific control is variable depending on the organism

    Growth of Heterotrophic Bacteria in Sea Water Contaminated with Rinso Detergent

    Full text link
    This research was conducted in March-April 2017 at Marine Microbiology Laboratory, Faculty of Fisheries and Marine University of Riau. The purpose of this study is to determine the different concentration of detergent (0 ml/L, 1.5 ml/L, 3 ml/L, 4.5 ml/L, 6 ml/L) in different observation time (0, 5, 10, 15, 20) on the growth of heterotrophic bacteria in sea water. Completely randomized design was used in this experimental method. The results showed that bacterial growth of all treated samples decreased on the 5th day of incubation. However, the population began to increase on the 10th day of incubation. The count of maximum bacterial growth was 1.46 x 109 found in the 4.5 ml/L treated detergent, and the lowest growth was 3.73 x 107 in the 1.5 ml/L treated detergent. Statistical analysis (ANOVA) showed that the concentrations in different observation times on the growth of heterotrophic bacteria showed significant effect and the value was (P <0.005)

    Variable phosphorus uptake rates and allocation across microbial groups in the oligotrophic Gulf of Mexico

    Get PDF
    Microbial uptake of dissolved phosphorus (P) is an important lever in controlling both microbial production and the fate and cycling of marine P. We investigated the relative role of heterotrophic bacteria and phytoplankton in P cycling by measuring the P uptake rates of individual microbial groups (heterotrophic bacteria and the phytoplankton groups Synechococcus, Prochlorococcus, and picoeukaryotic phytoplankton) in the P-depleted Gulf of Mexico. Phosphorus uptake rates were measured using incubations with radiolabeled phosphate and adenosine triphosphate coupled with cell sorting flow cytometry. We found that heterotrophic bacteria were the dominant consumers of P on both a biomass basis and a population basis. Biovolume normalized heterotrophic bacteria P uptake rate per cell (amol P μm-3 hr-1) was roughly an order of magnitude greater than phytoplankton uptake rates, and heterotrophic bacteria were responsible for generally greater than 50% of total picoplankton P uptake. We hypothesized that this variation in uptake rates reflects variation in cellular P allocation strategies, and found that, indeed, the fraction of cellular P uptake utilized for phospholipid production was significantly higher in heterotrophic bacteria compared to cyanobacterial phytoplankton. These findings indicate that heterotrophic bacteria have a uniquely P-oriented physiology and play a dominant role in cycling dissolved P

    The health significance of heterotrophic bacteria in drinking water

    Get PDF
    Tap water is not sterile; it contains organisms which grow in water distribution systems or inside taps and their fittings. The absence of known pathogenic bacteria is assured by the absence of the indicator organisms but concerns have been raised in the past few years that drinking water fulfilling the standards laid down in the EC Directive ECC 80/778 may still cause disease. These concerns have arisen from several sources: the fact that a cause has been identified in only half of all suspected waterborne outbreaks of disease; reports have suggested that heterotrophic bacteria possessing single pathogenic mechanisms such as haemolysin may cause disease; reports of heterotrophic organisms causing water contact diseases in hospitals. These concerns led to a reappraisal of the pathogenic potential of heteretrophic bacteria, by carrying out an extensive literature search and review commissioned by the UK Water Research Company. This research identified many papers showing an association between drinking water and heterotrophic bacteria but only very few reports of suspected waterborne disease associated with the heterotrophs. The organisms demonstrating potential to cause disease were species of Aeromonas and Yersinia, but typing of organisms identified in patients and isolated from the water revealed very few similarities. The potential of Aeromonas and Yersinia to cause waterborne disease is thought to be very low and the Communicable Disease Surveillance Centre database of laboratory infections due to these two genera of organisms was analysed to produce population-related incidences for each health region in England and Wales. Additionally a laboratory questionnaire revealed different levels of ascertainment of these two organisms in different laboratories of the Public Health Laboratory Service

    Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates)

    Get PDF
    To examine the grazing effects of copepod-dominated mesozooplankton on heterotrophic microbial communities, four mesocosm experiments using gradients of zooplankton abundance were carried out at a coastal marine site. The responses of different protist groups (nanoflagellates, ciliates) and bacterioplankton in terms of abundance and additionally, for bacteria, diversity, production, and exoenzymatic activity, were monitored during 1 week of incubation. Independent of the initial experimental abiotic conditions and the dominating copepod species, zooplankton caused order-of-magnitude changes in microbial functional groups in a clear community-wide four-link trophic cascade. The strongest predatory effects were observed for protist concentrations, thus generating inverse relationships between mesozooplankton and ciliates and between ciliates and nanoplankton. Copepod grazing effects propagated even further, not only reducing the abundance, production, and hydrolytic activity of bacterioplankton but also increasing bacterial diversity. The overall strength of this trophic cascade was dampened with respect to bacterial numbers, but more pronounced with respect to bacterial diversity and activity. High predation pressure by heterotrophic nanoflagellates, realized at the highest copepod abundance, was probably the underlying mechanism for these structural changes in the bacterial assemblages. Our results thus suggest a mechanism by which changes in higher trophic levels of marine plankton indirectly affect prokaryotic assemblages and microbially mediated ecosystem functions

    Microfouling of Manganese-oxidizing microorganisms in Rameswaram Coastal Waters.

    Get PDF
    Manganese oxidizing marine microorganisms was studied from the coupons of PVC, Titanium, Brass, Copper and Stainless Steel were immersed one meter below water surface, using wooden rafts. The metal coupons, Brass, Titanium and Brass were exposed for a period of six months (October 2005 to March 2006). The PVC and SS were suspended in the sea for two months (February and March 2006). Sea water samples were also collected from the study area using water sampler to estimate the physiochemical and nutrients were analyzed. The population of HB and MHB on PVC was registered as 3.62 x 107 CFU/cm2 and 2.87 x 107 CFU/cm2, respectively while on Stainless Steel the population density of HB and MHB was recorded as 3.79 x 105 CFU/cm2 and 1.34 x 105 CFU/cm2. The PVC and titanium coupons were recorded relatively higher values comparing with other coupons, and it may be due to the non-toxic nature of the substratum. Brass also recorded higher bacterial population density compared to copper. The least population density observed in copper coupons could be due to it toxic nature. The generic composition of heterotrophic bacterial strains isolated from biofilm samples, both Gram-positive and Gram-negative groups were noted on all the materials studied. The notable thing was that Gram-positive group was fond to be dominant. The genera identified under Gram-positive were Bacillus sp., Staphylococcus sp. and Micrococcus sp. and the Gram-negative strains identified as Pseudomonas sp., Salmonella sp., Vibrio sp. and Proteus sp. Among the five types of coupons tested PVC exhibited highest Mn value of 5543 mg/g. Bacterial slim samples generated on the exposed coupons were scrapped and characterized by Bergey’s method.

&#xa
    • …
    corecore