679 research outputs found

    Data-driven robotic manipulation of cloth-like deformable objects : the present, challenges and future prospects

    Get PDF
    Manipulating cloth-like deformable objects (CDOs) is a long-standing problem in the robotics community. CDOs are flexible (non-rigid) objects that do not show a detectable level of compression strength while two points on the article are pushed towards each other and include objects such as ropes (1D), fabrics (2D) and bags (3D). In general, CDOs’ many degrees of freedom (DoF) introduce severe self-occlusion and complex state–action dynamics as significant obstacles to perception and manipulation systems. These challenges exacerbate existing issues of modern robotic control methods such as imitation learning (IL) and reinforcement learning (RL). This review focuses on the application details of data-driven control methods on four major task families in this domain: cloth shaping, knot tying/untying, dressing and bag manipulation. Furthermore, we identify specific inductive biases in these four domains that present challenges for more general IL and RL algorithms.Publisher PDFPeer reviewe

    Technology enablers for the implementation of Industry 4.0 to traditional manufacturing sectors: A review

    Get PDF
    The traditional manufacturing sectors (footwear, textiles and clothing, furniture and toys, among others) are based on small and medium enterprises with limited capacity on investing in modern production technologies. Although these sectors rely heavily on product customization and short manufacturing cycles, they are still not able to take full advantage of the fourth industrial revolution. Industry 4.0 surfaced to address the current challenges of shorter product life-cycles, highly customized products and stiff global competition. The new manufacturing paradigm supports the development of modular factory structures within a computerized Internet of Things environment. With Industry 4.0, rigid planning and production processes can be revolutionized. However, the computerization of manufacturing has a high degree of complexity and its implementation tends to be expensive, which goes against the reality of SMEs that power the traditional sectors. This paper reviews the main scientific-technological advances that have been developed in recent years in traditional sectors with the aim of facilitating the transition to the new industry standard.This research was supported by the Spanish Research Agency (AEI) and the European Regional Development Fund (ERDF) under the project CloudDriver4Industry TIN2017-89266-R

    Assembly Line

    Get PDF
    An assembly line is a manufacturing process in which parts are added to a product in a sequential manner using optimally planned logistics to create a finished product in the fastest possible way. It is a flow-oriented production system where the productive units performing the operations, referred to as stations, are aligned in a serial manner. The present edited book is a collection of 12 chapters written by experts and well-known professionals of the field. The volume is organized in three parts according to the last research works in assembly line subject. The first part of the book is devoted to the assembly line balancing problem. It includes chapters dealing with different problems of ALBP. In the second part of the book some optimization problems in assembly line structure are considered. In many situations there are several contradictory goals that have to be satisfied simultaneously. The third part of the book deals with testing problems in assembly line. This section gives an overview on new trends, techniques and methodologies for testing the quality of a product at the end of the assembling line

    Bimanual Interaction with Clothes. Topology, Geometry, and Policy Representations in Robots

    Get PDF
    Twardon L. Bimanual Interaction with Clothes. Topology, Geometry, and Policy Representations in Robots. Bielefeld: Universität Bielefeld; 2019.If anthropomorphic robots are to assist people with activities of daily living, they must be able to handle all kinds of everyday objects, including highly deformable ones such as garments. The present thesis begins with a detailed problem analysis of robotic interaction with and perception of clothes. We show that handling items of clothing is very challenging due to their complex dynamics and the vast number of degrees of freedom. As a result of our analysis, we obtain a topological, geometric, and functional description of garments that supports the development of reduced object and task representations. One of the key findings is that the boundary components, which typically correspond with the openings, characterize garments well, both in terms of their topology and their inherent purpose, namely dressing. We present a polygon-based and an interactive method for identifying boundary components using RGB-D vision with application to grasping. Moreover, we propose Active Boundary Component Models (ABCMs), a constraint-based framework for tracking garment openings with point clouds. It is often difficult to maintain an accurate representation of the objects involved in contact-rich interaction tasks such as dressing assistance. Therefore, our policy optimization approach to putting a knit cap on a styrofoam head avoids modeling the details of the garment and its deformations. The experimental results suggest that a heuristic performance measure that takes into account the amount of contact established between the two objects is suitable for the task

    Robotic system for garment perception and manipulation

    Get PDF
    Mención Internacional en el título de doctorGarments are a key element of people’s daily lives, as many domestic tasks -such as laundry-, revolve around them. Performing such tasks, generally dull and repetitive, implies devoting many hours of unpaid labor to them, that could be freed through automation. But automation of such tasks has been traditionally hard due to the deformable nature of garments, that creates additional challenges to the already existing when performing object perception and manipulation. This thesis presents a Robotic System for Garment Perception and Manipulation that intends to address these challenges. The laundry pipeline as defined in this work is composed by four independent -but sequential- tasks: hanging, unfolding, ironing and folding. The aim of this work is the automation of this pipeline through a robotic system able to work on domestic environments as a robot household companion. Laundry starts by washing the garments, that then need to be dried, frequently by hanging them. As hanging is a complex task requiring bimanipulation skills and dexterity, a simplified approach is followed in this work as a starting point, by using a deep convolutional neural network and a custom synthetic dataset to study if a robot can predict whether a garment will hang or not when dropped over a hanger, as a first step towards a more complex controller. After the garment is dry, it has to be unfolded to ease recognition of its garment category for the next steps. The presented model-less unfolding method uses only color and depth information from the garment to determine the grasp and release points of an unfolding action, that is repeated iteratively until the garment is fully spread. Before storage, wrinkles have to be removed from the garment. For that purpose, a novel ironing method is proposed, that uses a custom wrinkle descriptor to locate the most prominent wrinkles and generate a suitable ironing plan. The method does not require a precise control of the light conditions of the scene, and is able to iron using unmodified ironing tools through a force-feedback-based controller. Finally, the last step is to fold the garment to store it. One key aspect when folding is to perform the folding operation in a precise manner, as errors will accumulate when several folds are required. A neural folding controller is proposed that uses visual feedback of the current garment shape, extracted through a deep neural network trained with synthetic data, to accurately perform a fold. All the methods presented to solve each of the laundry pipeline tasks have been validated experimentally on different robotic platforms, including a full-body humanoid robot.La ropa es un elemento clave en la vida diaria de las personas, no sólo a la hora de vestir, sino debido también a que muchas de las tareas domésticas que una persona debe realizar diariamente, como hacer la colada, requieren interactuar con ellas. Estas tareas, a menudo tediosas y repetitivas, obligan a invertir una gran cantidad de horas de trabajo no remunerado en su realización, las cuales podrían reducirse a través de su automatización. Sin embargo, automatizar dichas tareas ha sido tradicionalmente un reto, debido a la naturaleza deformable de las prendas, que supone una dificultad añadida a las ya existentes al llevar a cabo percepción y manipulación de objetos a través de robots. Esta tesis presenta un sistema robótico orientado a la percepción y manipulación de prendas, que pretende resolver dichos retos. La colada es una tarea doméstica compuesta de varias subtareas que se llevan a cabo de manera secuencial. En este trabajo, se definen dichas subtareas como: tender, desdoblar, planchar y doblar. El objetivo de este trabajo es automatizar estas tareas a través de un sistema robótico capaz de trabajar en entornos domésticos, convirtiéndose en un asistente robótico doméstico. La colada comienza lavando las prendas, las cuales han de ser posteriormente secadas, generalmente tendiéndolas al aire libre, para poder realizar el resto de subtareas con ellas. Tender la ropa es una tarea compleja, que requiere de bimanipulación y una gran destreza al manipular la prenda. Por ello, en este trabajo se ha optado por abordar una versión simplicada de la tarea de tendido, como punto de partida para llevar a cabo investigaciones más avanzadas en el futuro. A través de una red neuronal convolucional profunda y un conjunto de datos de entrenamiento sintéticos, se ha llevado a cabo un estudio sobre la capacidad de predecir el resultado de dejar caer una prenda sobre un tendedero por parte de un robot. Este estudio, que sirve como primer paso hacia un controlador más avanzado, ha resultado en un modelo capaz de predecir si la prenda se quedará tendida o no a partir de una imagen de profundidad de la misma en la posición en la que se dejará caer. Una vez las prendas están secas, y para facilitar su reconocimiento por parte del robot de cara a realizar las siguientes tareas, la prenda debe ser desdoblada. El método propuesto en este trabajo para realizar el desdoble no requiere de un modelo previo de la prenda, y utiliza únicamente información de profundidad y color, obtenida mediante un sensor RGB-D, para calcular los puntos de agarre y soltado de una acción de desdoble. Este proceso es iterativo, y se repite hasta que la prenda se encuentra totalmente desdoblada. Antes de almacenar la prenda, se deben eliminar las posibles arrugas que hayan surgido en el proceso de lavado y secado. Para ello, se propone un nuevo algoritmo de planchado, que utiliza un descriptor de arrugas desarrollado en este trabajo para localizar las arrugas más prominentes y generar un plan de planchado acorde a las condiciones de la prenda. A diferencia de otros métodos existentes, este método puede aplicarse en un entorno doméstico, ya que no requiere de un contol preciso de las condiciones de iluminación. Además, es capaz de usar las mismas herramientas de planchado que usaría una persona sin necesidad de realizar modificaciones a las mismas, a través de un controlador que usa realimentación de fuerza para aplicar una presión constante durante el planchado. El último paso al hacer la colada es doblar la prenda para almacenarla. Un aspecto importante al doblar prendas es ejecutar cada uno de los dobleces necesarios con precisión, ya que cada error o desfase cometido en un doblez se acumula cuando la secuencia de doblado está formada por varios dobleces consecutivos. Para llevar a cabo estos dobleces con la precisión requerida, se propone un controlador basado en una red neuronal, que utiliza realimentación visual de la forma de la prenda durante cada operación de doblado. Esta realimentación es obtenida a través de una red neuronal profunda entrenada con un conjunto de entrenamiento sintético, que permite estimar la forma en 3D de la parte a doblar a través de una imagen monocular de la misma. Todos los métodos descritos en esta tesis han sido validados experimentalmente con éxito en diversas plataformas robóticas, incluyendo un robot humanoide.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Abderrahmane Kheddar.- Secretario: Ramón Ignacio Barber Castaño.- Vocal: Karinne Ramírez-Amar

    NON-RIGID BODY MECHANICAL PROPERTY RECOVERY FROM IMAGES AND VIDEOS

    Get PDF
    Material property has great importance in surgical simulation and virtual reality. The mechanical properties of the human soft tissue are critical to characterize the tissue deformation of each patient. Studies have shown that the tissue stiffness described by the tissue properties may indicate abnormal pathological process. The (recovered) elasticity parameters can assist surgeons to perform better pre-op surgical planning and enable medical robots to carry out personalized surgical procedures. Traditional elasticity parameters estimation methods rely largely on known external forces measured by special devices and strain field estimated by landmarks on the deformable bodies. Or they are limited to mechanical property estimation for quasi-static deformation. For virtual reality applications such as virtual try-on, garment material capturing is of equal significance as the geometry reconstruction. In this thesis, I present novel approaches for automatically estimating the material properties of soft bodies from images or from a video capturing the motion of the deformable body. I use a coupled simulation-optimization-identification framework to deform one soft body at its original, non-deformed state to match the deformed geometry of the same object in its deformed state. The optimal set of material parameters is thereby determined by minimizing the error metric function. This method can simultaneously recover the elasticity parameters of multiple regions of soft bodies using Finite Element Method-based simulation (of either linear or nonlinear materials undergoing large deformation) and particle-swarm optimization methods. I demonstrate the effectiveness of this approach on real-time interaction with virtual organs in patient-specific surgical simulation, using parameters acquired from low-resolution medical images. With the recovered elasticity parameters and the age of the prostate cancer patients as features, I build a cancer grading and staging classifier. The classifier achieves up to 91% for predicting cancer T-Stage and 88% for predicting Gleason score. To recover the mechanical properties of soft bodies from a video, I propose a method which couples statistical graphical model with FEM simulation. Using this method, I can recover the material properties of a soft ball from a high-speed camera video that captures the motion of the ball. Furthermore, I extend the material recovery framework to fabric material identification. I propose a novel method for garment material extraction from a single-view image and a learning based cloth material recovery method from a video recording the motion of the cloth. Most recent garment capturing techniques rely on acquiring multiple views of clothing, which may not always be readily available, especially in the case of pre-existing photographs from the web. As an alternative, I propose a method that can compute a 3D model of a human body and its outfit from a single photograph with little human interaction. My proposed learning-based cloth material type recovery method exploits simulated data-set and deep neural network. I demonstrate the effectiveness of my algorithms by re-purposing the reconstructed garments for virtual try-on, garment transfer, and cloth animation on digital characters. With the recovered mechanical properties, one can construct a virtual world with soft objects exhibiting real-world behaviors.Doctor of Philosoph

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    Design, development and characterisation of piezoresistive and capacitive polymeric pressure sensors for use in compression hosiery

    Get PDF
    The work in this thesis was focused in developing a flexible and cost-effective pressure sensor capable of detecting pressure variations within the low working range (0-6kPa) of compression hosiery. For this cause, both piezoresistive and capacitive pressure sensors were developed and characterised, utilising conductive and non-conductive polymeric elements to sense compressive loads. In the first case, the developed piezoresistive sensor is composed of a conductive filler - polymer composite, with a force-dependent conductivity, encapsulated in between a structured and unstructured configuration of electrodes. Initially, as the sensing element of the sensor a multi-walled carbon nanotubes-polydimethylsiloxane (MWCNT-PDMS) composite was tested. A fabrication process is also proposed for developing the MWCNT-PDMS composite which involves a series of successive direct ultrasonications and shear mixing in order to disperse the two constituents of the composite, with the use of an organic solvent. Developing the composite over a range of different filler concentrations revealed a sharp step-like conductivity behaviour, typical amongst percolating composites. The MWCNT-PDMS sensor exhibited a positive piezoresistive response when subjected to compression, which was substantially enhanced when structured electrode layers were utilised. A Quantum Tunnelling Composite (QTC) material was also tested as the sensing material, which displays a large negative piezoresistive response when deformed. The QTC pressure sensor exhibited an improved performance, which was similarly significantly increased when a structured electrode was employed. In the second case, a parallel-plate capacitive pressure sensor was developed and characterised, which successfully provided a pressure sensitivity within the working range of compression hosiery. The sensor employs an ultra-thin PDMS blend film, with tuneable Young’s modulus, as the dielectric medium of the capacitor, bonded in between two rigid copper-coated glass layers. A casting process is also presented, involving the use of a sacrificial mould, in order to pattern the polymeric film with a micro-pillar structure to assist the deformation of the medium under compressive loads. The performance of the sensor with regards to the polymeric film thickness, structure and mechanical softness was explored. Overall, the combination of an ultra-thin dielectric medium with a very low Young’s modulus and a microstructured surface resulted in a capacitive pressure sensor with a good performance within the desired pressure regime

    NASA Tech Briefs, October 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical' Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences
    corecore