
In-Material Processing of High Bandwidth Sensor

Measurements using Modular Neural Networks

by

Dana Hughes

B.S., Colorado State University, 2000

M.S., University of Missouri—Rolla, 2003

M.S., College of Charleston, 2012

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2018

This thesis entitled:
In-Material Processing of High Bandwidth Sensor Measurements using Modular Neural Networks

written by Dana Hughes
has been approved for the Department of Computer Science

Dr. Nikolaus Correll

Dr. Christoffer Heckman

Dr. Sriram Sankaranarayanan

Dr. Richard Han

Dr. Kurt Maute

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

Hughes, Dana (Ph.D., Computer Science)

In-Material Processing of High Bandwidth Sensor Measurements using Modular Neural Networks

Thesis directed by Dr. Nikolaus Correll

Robotic materials are a novel class of materials that tightly integrate sensing, computing,

and actuation into an engineered material or composite to allow the behavior of the material

to be defined algorithmically. Robotic materials are constructed using an embedded network of

computing nodes based on small, inexpensive microcontrollers. Examples of such materials include

morphable airfoils which change shape in response to flight conditions or mission parameters, robotic

skins with rich tactile sensing capabilities that recognize texture or touch gestures, clothing with

tightly integrated sensing to assist with or augment the wearer’s perception of the environment, or

materials with dynamic camouflage capabilities.

In this thesis, I develop a framework for in-material processing which tightly couples modu-

larized deep neural networks and high-bandwidth sensors using a network of embedded, material-

scale components. This framework enables materials to learn multiple desired responses to stimuli,

avoiding the need for accurate modeling of the dynamics of the material and stimuli.

I utilize a modular neural network design consisting of convolutional (CNN) and long short-

term memory (LSTM) layers implemented in each node in the material as a computational approach

for robotic materials. This network architecture allows for nodes in the material to process local

sensor values, maintain local state information, and communicate with nodes in a local neighbor-

hood in the materials. A multiobjective optimization approach is employed to automatically design

the neural network architectures which maximizes the performance of the network while ensuring

hardware budgets, such as memory requirements, are maintained. A communication network de-

sign is also developed to allow network modules to learn a communication protocol that limits

communication to a desired rate, ensuring in-network bandwidth constraints are maintained.

I demonstrate the suitability of this computational model for robotic materials using ex-

iv

amples in several domains. An RF-based e-textile gesture input device capable of distinguishing

between user control gestures is used to control arbitrary external devices. A tire with embedded

piezoelectric sensing capabilites for use in high-performance autonomous vehicles performs state-of-

the-art identification of terrains driven on. Two robotic skins are presented—one which is capable

of detecting and localizing contact, and identifying the texture of the contacting objects; and a

second which assists with avoiding collisions with obstacles and identifies affective touch gestures

performed by a human collaborator. Finally, a distributed approach to human activity recognition

is presented whose activity identification performance is comparable to a centralized approach,

but can be implemented on hardware designed for wearable applications, as opposed to a GPU-

enabled device. The examples shown demonstrate that robotic materials can perform significant

in-material processing; are loosely coupled from a host system, communicating a minimal number

of low-bandwidth events to the host; and can exhibit multifunctional behavior that is analyzed for

safety or performance considerations.

Dedication

This thesis is dedicated to members of my family whose support has been critical to its

completion.

First, to my mother, Nancy Wilkinson, who impressed upon me from a young age the im-

portance of my education, and to my father, Einar Hughes, who was always eager to hear about

my current research.

Second, to my wife Missy Hughes, who was willing to support me during our time in Colorado,

and who probably is the only person who is more excited than I am that this thesis is completed.

Finally, to my son Oliver Hughes. His appearance into this world provided the final push

to complete this thesis, hope that this work provides some small improvement to his world, and

inspiration for our future endeavors.

vi

Acknowledgements

I would like to extend heartfelt thanks to all my mentors who helped me and guided my

research during my time here. To my advisor, Dr. Nikolaus Correll, who has provided me with

valuable guidance for both my research and future career goals. You helped me integrate my re-

search interests into a cohesive thesis and helped me recognize the importance and scope of my

work. As I completed this thesis, you pushed me to apply for and work towards postdoctoral and

faculty positions at the institutions of the highest caliber—your confidence in my abilities has been

inspiring and makes me realize the extent of my capabilities. To Dr. Christoffer Heckman, whose

interest in and support of my research has resulted in a deep understanding of the complexities of

autonomous vehicles, and direct application of my research in this field. To Dr. Sriram Sankara-

narayanan, for his discussions regarding how to most effectively present my work in the future.

Finally, to Drs. Richard Han and Kurt Maute, who have provided guidance and interesting paths

to take my research in the future.

I would also like to thank my colleagues in Dr. Correll’s lab for providing a convivial work

environment. I would like to specifically thank Nicholas Farrow for his help with hardware de-

velopment, and Dr. Halley Profita, for introducing me to the fascinating field of e-Textiles and

wearable computing. I would like to thank my several coauthors—Alon Krauthammer, Sarah

Radzihovsky, John Lammie and Sarah Aguasvivas Manzano—who helped write such high-quality

papers.

vii

Contents

Chapter

1 Introduction 1

1.1 Thesis Overview . 4

1.2 Main Contributions . 4

1.3 Thesis Outline . 5

2 Background 7

2.1 Robotic Materials . 7

2.1.1 Algorithmic Considerations . 8

2.2 Neural Networks and Deep Learning . 9

3 Convolutional Neural Networks for Signal Processing in Materials 13

3.1 Convolutional Neural Network Optimization . 14

3.2 Algorithm Details . 16

3.2.1 Nondominated Genetic Algorithm-II . 16

3.2.2 CNN Representation . 17

3.2.3 Genotype Generation . 18

3.2.4 Crossover . 19

3.2.5 Mutation . 19

3.2.6 Genotype Evaluation . 20

3.3 Experimental Results . 20

viii

3.3.1 MNIST . 21

3.3.2 Terrain Data . 23

3.4 Discussion . 23

4 Single Node Robotic Material Experiments 25

4.1 e-Textile Input Device . 26

4.1.1 Swatch Design . 26

4.1.2 Theory of Operation . 27

4.1.3 Gesture Classification . 28

4.1.4 Experimental Results . 29

4.2 Terrain Sensitive Tire . 30

4.2.1 Data Collection and Preprocessing . 31

4.2.2 Terrain Classification Results . 33

4.3 Proximity Sensitive Skin . 35

4.3.1 Prototype Skin . 36

4.3.2 Algorithmic Approach . 37

4.3.3 Experimental Results . 39

4.4 System-Level Analysis . 43

4.5 Discussion . 46

5 Amorphous Computing for Robotic Materials 49

5.1 Skin Design and Manufacturing . 49

5.2 Skin Operation and Dynamics . 51

5.2.1 Transient Signal Detection . 52

5.2.2 Vibration Propagation . 52

5.3 Algorithmic Approach . 53

5.3.1 Finite State Machine . 53

5.3.2 Contact Localization . 56

ix

5.3.3 Texture Identification . 57

5.4 Experimental Results . 58

5.4.1 Contact Localization . 58

5.4.2 Texture Identification . 58

5.5 Uncertainty Analysis . 60

5.5.1 Localization Uncertainty . 62

5.6 Texture Identification . 62

5.7 Discussion . 63

6 A Modular CNN-LSTM Architecture for Multi-Node Computing in Robotic Materials 65

6.1 Centralized vs. Distributed Machine Learning . 65

6.2 Neural Network Approach for Robotic Materials . 67

6.2.1 Modular CNN-LSTM Model . 68

6.3 Communication Control . 70

6.3.1 Stochastic Gating . 72

6.3.2 Communication Experiment . 74

6.4 Discussion . 78

7 Multi-Node Robotic Material Experiments 81

7.1 Human Activity Recognition . 81

7.2 Opportunity Dataset . 82

7.3 Network Architectures . 83

7.3.1 CNN Architectures . 83

7.3.2 CNN-LSTM Architectures . 84

7.4 Experimental Results . 85

7.4.1 CNN Architectures . 85

7.4.2 CNN-LSTM Architectures . 86

7.4.3 Hardware Implementation . 86

x

7.5 Discussion . 88

8 Conclusion 89

8.1 Future Work . 91

Bibliography 93

xi

Tables

Table

3.1 Available genotype layers and associated parameters. 18

3.2 Parameters used for the NSGA-II algorithm for both experiments. 21

3.3 Accuracy and parameter count of CNNs trained to classify handwritten digits in the

literature. 23

4.1 Effective permittivity, characteristic impedance, and propagation constant of an e-

textile microstrip when touched and untouched. 28

4.2 Confusion matrix of the SwitchBack classifier. 31

4.3 Accuracy and classifier size (number of parameters) for each sensing modality. 34

4.4 Confusion matrix of the classifier trained on indoor and outdoor terrains. 34

4.5 Confusion matrix of the classifier trained on simulated terrains. 35

4.6 Confusion matrix of gestures classified using features from the windowed, full mea-

surement data. 44

5.1 List of textures used for classification experiment. 61

5.2 Confusion Matrix for the Logistic Regression classifier. 61

7.1 Location of sensors used in the Opportunity Dataset. 83

7.2 Mid-level activities to be classified in the Opportunity Dataset 83

7.3 Number of kernels in each layer for the D-CNN-2 model. 84

7.4 Accuracy and F1 score for each of the CNN architectures 86

xii

7.5 Memory and communication requirements for models considered 87

7.6 Accuracy and F1 score for each of the CNN-LSTM architectures. 87

xiii

Figures

Figure

1.1 Example Robotic Materials: robotic skin capable of detecting and localizing contact

and identifying textures (top left, [54]); robotic skin capable for obstacle avoidance

and gesture recognition (top center [60]); assistive garment for sound localization (top

right [108]); amorphous architectural façade (bottom left [16]); morphable beam with

variable stiffness control (bottom right [89]). 2

2.1 Example of convolutional and pooling operations for a 1D convolutional neural network. 10

2.2 Example of convolutional and pooling operations for a 2D convolutional neural network. 11

2.3 Long short-term memory cell . 12

3.1 Nondominated fronts for neural network architectures which are jointly minimizing

classification error and parameter count. The Pareto front consists of blue points;

green, purple, red, and black points indicate additional nondominated fronts. 17

3.2 Network architectures evolved for the MNIST dataset (left), and architectures with

error rates less than 5% (right). Darker blue points indicate individuals from later

generations, red points indicate hand-designed architectures from the literature. . . . 22

3.3 Network architectures evolved for the terrain classification dataset. 24

4.1 Left: e-Textile swatch with reflectometer circuit. Right: Example swipe gesture of

swatch on the forearm of a shirt sleeve. 27

xiv

4.2 Magnitude (left) and phase (right) of reflection coefficient of a quarterwave e-Textile

microstrip stub as a function of contact position. 29

4.3 Characteristic gesture signals for down-swiping, up-swiping, and tapping, for three

configurations of the swatch. 30

4.4 Autonomous vehicle with terrain sensitive tire inset (left). An individual piezoelectric

sensor (center). Location of a single sensor mounted on the interior of the tire (right). 31

4.5 Examples of the indoor and outdoor terrains used for classification experiments, as

well as example sensor signals for each terrain. 32

4.6 Left: Pressure- and proximity-sensitive skin with an 8x8 array of taxels. Right: Skin

mounted on the forearm of a Baxter robot. 37

4.7 Sequence of measurements from tapping (top) and rubbing (bottom). The five frames

in the top show a single tap over 250 ms, the bottom row shows one back- and forth

motion exting over 1s. 40

4.8 Objects used for collision recogntion testing: wooden plate, brick, PVC pipe, wine

glass, plastic chain, foam balls, ball, screwdriver, and 2x2 wooden stick. 40

4.9 Probability of detecting an object as a function of distance to the skin. 41

4.10 Per-frame discrimination accuracy using (a) MSD, and (b) One-Class SVM. (c)

Demonstration of smoothing predictions over a sequence of MSD predictions using

Bayesian updates with a hand (red) or obstacle (blue) approaching. 43

4.11 Classification accuracy of a random forest classifier. 44

4.12 State machine representation of the behavior of the skin with S representing sensor

data. TContact is a fixed value for each sensor, TProx is determined empirically, and

THand and TObstacle are user-defined thresholds. 45

xv

4.13 Results of the Monte Carlo simulations: (a) Probability of classifying objects as a

hand—mean (solid), one standard deviation (dashed) and 1st and 99th percentiles;

(b) Probability of a collision with respect to approaching object velocity, for midlevel

and strict thresholds; (c) Probability of misclassifying hands and obstacles as a

function of threshold. 46

5.1 Amorphous skin mounted on the back of a Baxter robot. 50

5.2 Left: close-up of an individual sensor node. Middle: ten element sensor network,

woben into a neoprene support mesh. Right: sensor node network embedded into

EcoFlexTM silicone rubber. 51

5.3 Amplitude of the vibration intensity due to a vibration motor as a function of dis-

tance between the motor and sensor node. 54

5.4 Finite state machine model of individual sensor nodes. 54

5.5 Propagation of sound to sensor nodes from an arbitrary source location. 56

5.6 Sensor nodes used for localization experiment. 58

5.7 Amplitude of the transient signal for nodes 1 (left), 2 (center), and 3 (right), due to

signal source at various locations in the region of interest. 59

5.8 Residual error of calculated location of contact location. 59

5.9 Textures used for texture identification experiment. 60

5.10 Left: Relative ncertainty of source position as a function of source intensity. Cen-

ter: Relative uncertainty of source position as a function of sensor spacing. Right:

Relative uncertainty of source position as a function of source location. 63

5.11 Accuracy of logistic regression classifier with noisy data. 64

6.1 Comparison between centralized pattern recognition approaches and pattern recog-

nition in sensor networks. 66

xvi

6.2 Robotic material, consisting of discrete elements with local sensing, computing, and

actuation capabilities; a communication network between computing elements; and

a continuous material. Reproduced from [90]. 68

6.3 General approach to implementing a modular CNN-LSTM architecture into local

computing nodes in a robotic material. Local communication is performed between

LSTM layers. 69

6.4 Communication between LSTM layers controlled by a gating network. 71

6.5 Sparse gating cost function (left), and alternative cost function based on Rényi en-

tropy (right) for a range of values for α. 73

6.6 Sparse gating activation rate cost function, with a target activation rate of ρ̂ of 0.25. 75

6.7 Cost function of the output of the LSTM networks (top) and cost of gating (bottom)

of the two network modules as a function of training epochs; each module allowed

to communicate two bits of information. 77

6.8 Accuracy of the digit task (top) and color task (bottom) of the two network modules

as a function of training epochs; each module allowed to communicate two bits of

information. 78

6.9 Cost function of the output of the LSTM networks (top) and cost of gating (bottom)

of the two network modules as a function of training epochs; each module allowed

to communicate two bits of information. 79

6.10 Accuracy of the digit task (top) and color task (bottom) of the two network modules

as a function of training epochs; each module allowed to communicate two bits of

information. 80

7.1 Approaches to human activity recognition. Left: Data from a number of sensors

are aggregated and processed at a central location. Right: Data are processed hi-

erarchically, leading to more and more abstract representations. Note that network

granularity is arbitrary [55]. 82

Chapter 1

Introduction

Robotic materials is a new class of materials that tightly integrates sensing, actuation,

communication and computation elements into engineered composites or materials [91]. Robotic

materials have the potential of creating multi-functional materials whose behaviors can be defined

algorithmically, rather than simply demonstrating a stimuli-response behavior. These materials

are inspired by the functionality of natural systems, such as the camouflage skin of cuttlefish, bird

wings which morph to change flight properties, or multiple sensing modalities present in human

skin. Several examples of such materials have been demonstrated, as shown in Figure 1.1: robotic

skins that perform contact localization and texture identification [53, 54] and gesture recognition

and collision avoidance [60]; an assistive garment localizes sound and directs the wearer’s attention

toward the source [108]; an interactive architectural façade [16]; and variable stiffness beam capable

of changing shape [89, 90].

Several challenges associated with the development of robotic materials have been identified

in recent literature [15, 17, 92]. Processing of high-bandwidth sensor signals is cited as a common

challenge, as well as a motivation for robotic materials: the information collected by a large number

of sensors, multiple sensing modalities, and/or sensors with high sampling rates rapidly exceeds

communication bandwidth when sensor signals are processed by a central system. Regardless of

application, a successful robotic material requires extracting low-bandwidth patterns from local

sensor data, whether to aggregate and communicate directly to a computing sink, or as a part of a

distributed algorithm for controlling local acutators. In many cases, machine learning will need to

2

Figure 1.1: Example Robotic Materials: robotic skin capable of detecting and localizing contact
and identifying textures (top left, [54]); robotic skin capable for obstacle avoidance and gesture
recognition (top center [60]); assistive garment for sound localization (top right [108]); amorphous
architectural façade (bottom left [16]); morphable beam with variable stiffness control (bottom
right [89]).

3

be leveraged to extract desired information, such as determining gesture from spatiotemporal data

in a pressure-sensitive robotic skin [15, 92].

A second challenge to robotic materials is the need to develop distributed computing and

control algorithms to achieve the desired behavior in the material. Inspiration has been drawn

from other domains, such as swarm robotics, amorphous computing, and sensor networks. One

source of inspiration, which is of particular interest for this thesis, is organization and emergent

computing capabilities of neurons in biological systems. From a computating perspective, this

biological motivation has resulted in the development of artificial neural networks, which have been

shown to be effective in a variety of tasks. The advancement of this field from shallow to deep neural

networks over the last decade has resulted in significant progress in several domains, particularly

in machine vision, speech recognition, and natural language processing [82].

Several examples exist in biology where neural organization is exploited to perform significant

processing or control locally. For instance, in vertibrates, stimulation of densely packed optical

nerves on the retina is processed by rapidly generating neural codes in the retina [40], and various

receptive fields in the visual cortex respond to spatial patterns projected on the eye [52]; this neural

architecture is the basis of convolutional neural networks used image processing [36]. The neural

organization in octopi has evolved in such a way that each arm and optic lobe of the octopus

contains the same number of neurons as the central brain; this morphology allows for local sensing

and control in each arm, solving the challenges associated with controlling an appendage with

infinite degrees of freedom [46]. A final example is demonstrated by the tactile capabilities of

the human hand—peripheral neurons on the human fingertip detect the orientation of edges [109],

and generate contact events for the brain which define subgoals of manipulation tasks and triggers

corrective actions when mismatches occur [65].

Deep learning methods have resulted in computational models composed of multiple process-

ing layers, each layer capable of learning more abstract representations of the provided input [82].

Specifically, advances over the last few years have resulted in architectures capable of processing

complex spatial and temporal information [81], able to model and respond to sequential informa-

4

tion [85], as well as learning control policies through reinforcement learning [84]. Given the success

of neural organization in biology, as well as the success of deep neural networks for a variety of per-

ception and control tasks, it is natural to consider deep learning architectures as a computational

basis for robotic materials.

1.1 Thesis Overview

In this thesis, I propose that modularlized deep neural networks consisting of convolutional

and recurrent layers can be effectively integrated into robotic materials as an approach for per-

forming in-material processing of high-bandwidth sensor measurements. This approach allows a

material to extract high-level information from spatiotemporal stimuli using a distributed set of

sensing and computing nodes, with minimal degredation of results when compared to a centralized

approach. In addition, this approach allows for use of a network of small, inexpensive microcon-

trollers, as opposed to expensive computing elements with high-bandwidth communication buses.

Ultimately, I develop a modular CNN-LSTM architecture as a model for performing computation

in robotic materials, and demonstrate the utility of this model.

1.2 Main Contributions

This work demonstrates that deep learning approaches are applicable for processing high-

bandwidth sensor measurements in robotic materials, and are suitable for perception tasks for a

variety of robotic materials. Specifically, modular CNN and CNN-LSTM networks are presented

which allows training and implementing a large, distributed network with identical building blocks

in a scalable way, enabling large-scale robotic materials.

The neural network architectures implemented on each node in a robotic material is con-

strained by limits on computing, memory, and communication bandwidth by the selected micro-

controllers. This thesis provides two approaches to mitigate these issues. First, a multi-objective

optimization algorithm is used to evolve local convolutional neural network (CNN) architectures

which jointly minimize or maximize desired properties of the architecture. The typical objectives

5

involve minimizing the number of network parameters (and thus memory requirements) while max-

imizing the performance (e.g., classification accuracy). Second, an approach to learning sparse

communication protocols between connected nodes is provided, which mitigates the possibility of

exceeding communication bandwidth in a robotic material, and minimizes energy consumption due

to communication.

From an applications perspective, this thesis demonstrates the ability to perform in-material

perception for several tasks, providing components for or advancing perception in several domains.

Robotic skins capable of affective touch recognition and collision avoidance have been developed for

human-robot interaction tasks. A novel e-textile input device and distributed activity recognition

is demonstrated for wearable computing. Finally, a novel terrain sensitive tire has been developed

for autonomous vehicles.

1.3 Thesis Outline

This thesis is the synthesis of my published work associated with robotic materials, and is

broadly organized into three main categories: background and motivation; CNN models, memory

considerations, and examples of robotic materials with a single node; and modular CNN-LSTM

models, communication considerations, and examples of robotic materials with multiple nodes.

Chapter 2 provides a background on both robotic materials and deep learning [56].

Chapters 3 and 4 considers the case where single sensing and computing nodes are used to

enable robotic materials. Chapter 3 introduces and provides motivation for using convolutional

neural network to perform signal processing in the single-node case. Motivation and desired prop-

erties are discussed, and an algorithm for evolving CNN architecture that can be implemented

on material-scale components (i.e., small microcontrollers and MEMS sensors and actuators) is

provided. Chapter 4 discusses three experiments where in-material processing of high-bandwidth

sensing is performed using a single computing node. Finally, this chapter demonstrates how the

features extracted from the CNN architectures can be exploited to perform ancillary functions in

the material, demonstrates a robotic material capable of changing behavior based on context, as

6

well as analyzing the global behavior of the material-host system.

Chapters 5, 6, and 7 considers the case where multiple computing nodes are used in a robotic

material. Chapter 5 describes a multifunctional robotic skin which utilizes knowledge of the dy-

namics of the skin and an amorphous algorithm to perform various tasks—the purpose of this

chapter is to determine the desired properties of a scalable, multi-node processing model, and

to contrast using an amorphous computing model to a modular CNN-LSTM model. Chapter 6

presents the modular CNN-LSTM model, a scalable computing model for use in robotic materials.

A network architecture suitable for learning a communication protocol with limits communication

rate is described—as with the algorithm described in Chapter 3, the communication network aims

to limit communication in the network, ensuring bandwidth limits are not exceeded and minimiz-

ing energy consumption associated with communication. Chapter 7 demonstrates the utility of the

modular CNN-LSTM architecture for multinode robotic material applications, using distributed

human activity recognition as an example [55].

A summary of contributions of this thesis and potential future work is discussed in Chap-

ter 8.

Chapter 2

Background

2.1 Robotic Materials

Robotic materials stems from the growing interest over the last few decades to extend the

functionality of various engineered materials, such as composites, cement-based materials, poly-

mers, and textiles, beyond that of a purely structural material. The ability of creating such mate-

rials has been enabled by several advances in material science, miniaturization of electronics and

microcontrollers, and manufacturing capabilities. From a material science perspective, a class of

materials (referred to in the literature as functional materials or smart materials) has emerged to

describe materials which respond to some external stimuli, such as piezoelectric materials, shape

memory alloys and polymers, and chromic materials. From a manufacturing perspective, microelec-

tromechanical systems (MEMS) have been developed, resulting in a suite of sensors and actuators,

including accelerometers, gyroscopes, pressure sensors, LEDs, ultrasonic transducers, and micro-

phones, which are on the millimeter scale. Microcontrollers and microprocessors have also become

available on a similar scale; combined with the sensing and actuation capabilities of MEMS sen-

sors and functional materials, it is possible to design small nodes capable of performing sensing,

actuation and computation in engineered materials.

The concept of distributed MEMS [7] evolved from fabrications techniques which enable

miniaturization and batch fabrication of sensors and actuators. As the physical size and cost

of sensors and actuators decrease, systems with thousands or millions of units became feasible.

Photolithographic processes provide a means to manufacture mechanical components in MEMS

8

in conjunction with microelectronic components, which provide a means to control the resulting

sensor and actuator arrays. “Smart dust” is a conceptual application for such manufacturing

capabilities [136], where cubic-millimeter modes form the basis of a massively distributed sensor

network.

Programmable matter is a concept based on a similar concept of millimeter-scale units [39].

Small claytronic atoms (catoms) are units which are capable of moving in three dimensions, adhering

to other catoms, communicating with other catoms, and computing state information. Ensembles

of catoms are able to model 3D scenes, creating items of arbitrary shape.

Amorphous computing is a similar concept to programmable matter, though individual el-

ements are influenced by biological cells [2]. One main concept in amorphous computing is that

there is no underlying structure to the individual cells, and communication is not viewed as discrete

events. Rather, messages are diffused throughout the material, and individual cells respond to con-

centrations of received messages. In this way, programs are designed such that state propagates

through the material similar to wave propagation in physics, and based on markers within cells and

local response rules, pattern formation is possible.

2.1.1 Algorithmic Considerations

There are several necessary considerations associated with algorithms implemented in a

robotic material [91]. Algorithms must scale as the material grows in size. As it is desired to

keep the cost of individual nodes to a minimum, algorithms must be able to run on limited com-

puting capabilities and memory of the selected microcontroller. Furthermore, algorithms must be

robust to failure of individual nodes. These considerations have many implications with regard to

the use of machine learning approaches with robotic materials.

Scalability imples that any algorithm cannot have full access to all sensor data or all actuators

in the system. One approach is to ensure that nodes have limited support over the sensors, i.e.,

a learned task relies only on information gathered by nodes in a local neighborhood. For many

applications, it is reasonable to assume that information gathered from a local neighborhood of

9

nodes would be sufficient for the task of interest. For example, detecting the location of the source

of a vibration requires only a small number of sensing nodes [54]. The intensity of vibration due to

an impact decreases as distance increases from the location of impact. Consequently, nodes outside

a sufficiently large enough radius from the source would not detect the impact, and only nodes

within the radius need be used to calculate the location of the impact.

2.2 Neural Networks and Deep Learning

Recent trends in neural networks (i.e., so-called “deep learning” approaches) have demon-

strated several desired properties for processing in robotic materials. From the perspective of

signal processing and perception, convolutional neural networks have been shown to be well suited

for learning suitable features for classificaiton of spatial [78, 81], temporal [81], and spatiotempo-

ral [130, 133] data. Long-term temporal dependencies are readily mapped using recurrent networks,

specifically long short-term memory [48]. Convolutional neural networks generate layers of feature

maps, with nodes in earlier layers activating in response to simple, local features and nodes in

higher layers responding to more abstract concepts (e.g., faces in image recognition) [144]. These

feature maps are learned directly from training data; thus, the features learn to contribute to the

discrimination between different training examples.

From a computational perspective, neural networks have the advantage of being universal

appoximators [51, 50], that is, a feedforward network can approximate a measurable function to a

desired degree of accuracy. Similarly, the computational capabilities of recurrent neural networks

have been explored. Recurrent networks can be constructed to represent arbitrary finite state

machines [99]. Additionally, [120] demonstrates that recurrent networks are equivalent to Turing

machines, and therefore can be used to implement any computable function. While these obser-

vations do not provide information on the size of the networks needed to implement an arbitrary

algorithm, they do demonstrate that neural networks can theoretically be trained to perform an

arbitrary behavior in a robotic material.

10

2.2.0.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are feed-forward networks which utilize a weight shar-

ing scheme to allow a network to learn local features which are invariant to translation and scaling.

This is achieved through the use of convolutional layers, which convolve a set of kernels with an

input to generate a feature map, and pooling layers, which reduces the size of a layer by subsam-

pling small regions of the input. Examples of these operations is shown in Figure 2.1 for a 1D case

and Figure 2.2 for a 2D case. The primary advantage of convolutional networks is the use of weight

sharing: sets of weights are replicated among multiple connections. This allows the network to

detect local features in the input, as well as reducing the total number of paramters in the model.

Additionally, features suitable to a particular task are automatically generated during training,

avoiding the need to hand-engineer features for the task.

Figure 2.1: Example of convolutional and pooling operations for a 1D convolutional neural network.

MAX

ReLU
F1

F2

Sensor Measurements

Recti edConvolved Pooled

t

t t t

2.2.0.2 Recurrent Neural Networks

Generally, feedforward neural networks are not suitable for sequential or time-series data,

due to the fixed input size of the network. When such networks are used for time series data,

windows are typically extracted from measured signals and assumed to be quasi-static in nature.

However, these models are unable to capture effects requiring a significant delay between the input

of the signal and the desired effect. Recurrent neural networks consist of networks which contain

cycles, which are more suitable for sequential or time series models. Recurrent connections allow

the network to mainatin and update an interal state at each step in the sequence, providing a

11

Figure 2.2: Example of convolutional and pooling operations for a 2D convolutional neural network.

0 0 0

0 0 0

1.8 .8

0

0

0

0

0

0

1

.8

.8

Input Image

Kernel 1

Kernel 2

Output 1

Output 2

1 5 4

8 2 1

4 7 3

8 5

8 7

suitable architecture to handle temporal aspects of the signal.

A major limitation to recurrent neural networks is the inability to learn tasks where there

exists a long time delay between the effect from some input signal and the corresponding output.

The network is unable to learn with large time delays due to the nature of backpropagating the

error signal through time during training [47]. Essentially, as the error is propagated backward

through time, it either vanishes or blows up, depending on the recurrent weights. A promising

solution to this problem is to incorporate Long Short Term Memory (LSTM) [48]. A LSTM unit,

shown in Figure 2.3, can store values using a recurrent neuron and perform operations on the value

of this neuron using several gate neurons. These values may then be read, written to, or forgotten,

based on the activation of input, output or forget gates.

2.2.0.3 Notation

For the sake of brevity and consistency, a shorthand notation for the architecture of a network

is used. Each layer is represented as a tuple, with the first element being a letter representing the

layer type (input, I, convolutional, C ; pooling, P ; fully connected, FC ; LSTM, LSTM ; or softmax,

S). For fully connected, LSTM or softmax layers, the second element of the tuple is the number of

units in the layer. For an input layer, the second element represents the dimensionality of the input

to the network, with the last value of the dimensionality representing the number of measurement

12

Figure 2.3: Long short-term memory cell

xt

ht

it ft ot

ct

ht-1

channels of the input. For convolutional layers, the second element is the dimensionality of each

kernel, the third element is the number of kernels, and, if present, the fourth element is the stride.

For a pooling layer, the second and third elements represent the pooling and stride dimensions,

respectively.

As an example, [(I,(30,15,3)),(C,(8,4),5),(P,(2,2),(2,2)),(LSTM,20),(FC,10),(S,3)] represents

a network with input with 3 channels and dimensionality of 30 x 15, followed by a convolutional

layer consisting of 5 kernels with dimensions 8 x 4, followed by a 2 x 2 pooling layer with stride 2

in each dimension, followed by an LSTM layer with 20 LSTM cells, a fully connected layer with 10

neurons, and a softmax layer with 3 neurons. Unless otherwise noted, a rectified linear actuation

function (i.e., ReLU, y = max(0, x)) is applied to the output of each convolutional, fully connected

and LSTM layer, and max-pooling operations are assumed for each pooling layer. Networks were

implemented and trained using TensorFlow [1].

Chapter 3

Convolutional Neural Networks for Signal Processing in Materials

In many applications, the spatial dimensions of a particular robotic material precludes the

need for multiple computing nodes in the material. However, benefits to processing sensor signals

in-material remain, and are specifically useful in certain applications.

Sampling a number of sensors in-material can mitigate the need for high-bandwidth commu-

nication channels to be supplied for each sensor. Relying instead on an embedded microcontroller to

sample and process the signals replaces these communication channels with a single low-bandwidth

channel. As an example, tires with embedded piezoelectric sensors can measure vibrations gen-

erated in the tire due to interaction with the terrain. Transferring signals from the tire to the

chassis of the vehicle, however, requires either a slip ring, or a wireless communication channel

with sufficient bandwidth to transmit the sensor samples. The former approach adds an additional

expensive component to the vehicle, while the latter is limited by the bandwidth capabilities of the

wireless transmitter, and still requires a microcontroller to sample sensors and generate packets for

transmission.

An additional benefit to in-material processing is that the material can then be considered a

modular component to a system as a whole, resulting in a loose coupling between the component

build using the robotic material and the host system employing the component. For instance, one

or more robotic skin patches capable of gesture recogntion can be applied to a variety of robots with

different morphologies. Rather than tightly coupling the sensing capabilities of the skin to the host

robot, a set of individual patches would simply provide the host robot with gesture information

14

when a contact event occured. Adding or removing skin patches, or updating or modifying the

behavior of the skin patches, would be trivial in such a scenario.

The benefits of using convolutional neural networks for processing high-bandwidth sensor

signals—automatically learning local features of interest, reducing model parameters, and invari-

ance to translation and scale—provides motivation for utilizing CNNs as a primary model for

processing in such materials. The primary constraint to such a model stems from the limitations

of program memory on a selected microcontroller, which limits the total number of parameters

available to define the network. Additional constraints may include limits on the responsiveness of

the network, i.e., a maximum acceptable time to process a provided input.

This chapter provides an approach to evolving CNN architectures which jointly optimize

model performance (e.g., maximizing accuracy) and memory requirements (i.e., minimizing pa-

rameter count), using a multiobjective evolutionary algorithm. The efficacy of this approach is

demonstrated with two applications, handwritten digit classification and terrain classification.

3.1 Convolutional Neural Network Optimization

The large number of hyperparameters associated with CNNs (e.g., number of layers, size and

number of kernels, etc.) makes hyperparameter optimization difficult. Grid search [79] is an early

approach which is easily implemented, though infeasible for a large number of hyperparameters.

Random Search [5] has been shown to be a more efficient approach capable of handling a larger num-

ber of hyperparameters. Bayesian optimization [123] updates a Guassian Process model after each

architecture evaluation, and allows for selecting hyperparameters based on expected improvement

or reducing uncertainty. Other approaches using surrogate models for the expected architecture

performance include tree-structred Parzen estimators [6] and sequential model based optimization

(SMBO) methods [64]. A major drawback to these approaches is the need for a fixed number of

hyperparameters; for deep neural networks, this implies a fixed number of layers.

Evolutionary approaches to constructing and training neural networks has been extensively

explored over the last several decades [32]. For a fixed architecture, genetic algorithms can be

15

easily used to learn network parameters, providing an alternative to backpropagation for training.

Various approaches to evolving network architectures have been explored. Architectures can be

directly encoded, such as using genotypes to represent a connection matrix between a fixed number

of neurons [21], or indirectly, such as using genotypes to represent strings in a graph generating

grammar [74]. NeuroEvolution of Augmenting Topologies (NEAT) [124] is of particular interest, as

it is the basis for several recent approaches to evolving CNNs. Starting with a minimal architecture,

new architectures can be evolved through mutation (adding nodes or connections, or disabling

connections), and by performing crossover between two architectures.

While genetic algorithms have been used to evolve both the structure and parameters of shal-

low neural networks, evolutionary approaches to learning deep neural networks have only recently

been explored. The weights of a five-layer neural network are evolved in [22]; the GA-evolved net-

work performed better than networks evolved using backpropagation, and sparsity is encouraged

by mutating weights to zero. Co-evolutionary approaches are explored in [132], creating networks

with similar improvement in performance.

Discovering convolutional neural network architectures has only been recently explored. An

evolutionary approach using only mutation operations is presented in [112]. Using an initial popu-

lation of simple, poorly performing individuals, the approach was able to evolve architectures which

performed competitively with hand-designed architectures on the CIFAR dataset. Two extensions

to the NEAT algorithm, DeepNEAT and CoDeepNEAT, are presented in [93]. DeepNEAT evolves

architectures by forming connections between various layers in an network, as well as evolving the

attributes of each layer. CoDeepNEAT co-evolves small network modules with a blueprint for the

network, encouraging repetitive structure in the resulting architecture. Similarly, the EXACT al-

gorithm [26] generates network architectures by mutating layer connections and parameters. This

approach allows for only convolutional layers, and explores distributing the evaluation of archi-

tectures on volunteer computers. Finally, the EDEN algorithm performs mutation operations on

a feed-forward CNN [27]. The algorithm bounds the number of layers and layer size (number of

filters, units or embeddings) to allow it to run on a single GPU in a reasonable time.

16

3.2 Algorithm Details

This chapter extends the idea of evolving CNN architectures by utilizing an multi-objective

evolutionary algorithm to allow additional attributes (e.g., parameter count) to be included as

design objectives.

3.2.1 Nondominated Genetic Algorithm-II

Genetic algorithms are an optimization technique inspired by biological evolution [139]. Given

a task which requires the minimization (or maximization) of a scalar objective function, a popula-

tion of potential solutions, each encoded as a genotype, is created. The objective of each solution

is calculated. A new population is generated by randomly selecting pairs of individuals, and per-

forming crossover and mutation operations to generate new individuals. This process is repeated

until a suitable solution is found, or a defined number of generations is reached. Selection of indi-

viduals is performed such that superior individuals are selected more often than poor individuals.

Combined with the crossover operation, this selection strategy exploits portions of the genotype

which generate high-quality solutions. The mutation operation ensures that the algorithm doesn’t

converge to a local optimum.

Multiobjective evolutionary algorithsm (MOEAs) extend the concept of genetic algorithms

by finding solutions to problems with multiple objective functions. Rather than finding a single

optimal solution, MOEAs find a set of solutions which are Pareto optimal, that is, a set of solutions

where no individual is dominated by another. For the case where objectives are to be minimized,

an individual, p, is said to dominate another individual, q, if there is no individual objective in q

which is less than the same objective in p, and there exists at least one objective in p which is less

than in q.

We base our approach to finding a family of Pareto-optimal network architectures on the

Nondominated Sorting Genetic Algorithm II (NSGA-II) [25]. This approach has several desirable

advantages over other MOEAs: it is inherently an elistist algorithm, so good solutions are main-

17

tained once found, and diversity is preserved in a population on a nondominated front without the

need for additional parameters.

A core idea to the NSGA-II algorithm is to calculate a set of nondominated fronts at each

iteration. A nondominated front consists of individual which are dominated by individuals in fronts

of lower rank. An example of this is shown in Figure 3.1 for a problem with two objectives. As

opposed to the conventional selection process for genetic algorithms, NSGA-II first generates a

population of children and merges this with the current population. The joint population is then

sort based primarily on the ranking of individuals, followed by local density of individuals within

its front. The next generation is selected from better half of individuals in the joint population.

This has the effect of naturally maintaining elite individuals, ensuring quality solutions are not

discarded.

Figure 3.1: Nondominated fronts for neural network architectures which are jointly minimizing
classification error and parameter count. The Pareto front consists of blue points; green, purple,
red, and black points indicate additional nondominated fronts.

3.2.2 CNN Representation

The convolutional and pooling layers of CNNs have the effect of reducing the dimensionality

of the previous layer. Given an input dimension of i and a kernel or pool width w and stride s, the

18

dimension of the output, o, is given as

o =

⌊
i− w
s

⌋
+ 1 (3.1)

assuming no zero padding [28]. From an implementation standpoint, we assume the width of

a kernel cannot exceed the input dimension.

CNNs are directly encoded on structured, variable length genotypes. Genotypes consist of

a sequence of layers, with the output of layer i being used as the input to layer i + 1. We allow

three types of layers: convolutional, pooling and fully connected. Each layer contains layer-specific

parameters, which are summarized in Table 3.1.

Table 3.1: Available genotype layers and associated parameters.

Layer Type Parameters

Convolutional kernel dimensions, kernel stride, activation function
Pooling pooling dimensions, pooling stride
Fully Connected number of neurons, activation function

The parameters of genotypes are constrained to ensure that the generated CNN is valid—the

dimensions and stride of convolutional and pooling layers cannot take values such that the output

dimensionality of a layer is less than one, as given by Equation 3.1. Furthermore, all convolutional

and pooling layers must preceed any fully connected layers in the network. Finally, we do not allow

two sequential pooling layers, as two such layers could be reduced to a single pooling layer.

3.2.3 Genotype Generation

We generate genotypes by iteratively adding layers to the end of the genotype, starting with

an initial input layer. Convolutional layers are added with a probability p
(g)
conv, a pooling layer is

added after with a probability p
(g)
pool. Convolutional and pooling layers can be added until such a

layer becomes infeasible, i.e., the output dimensionality of the previous layer is one. Fully connected

layers are added after convolutional and pooling layers in a similar manner, with a fully connected

19

layer being added with probability p
(g)
fc .

Parameters for each type of layer are randomly selected from a modified Poisson distribution.

A parameter is assigned a value n with probability

P (n) =
λne−λ

n!
+ nmin (3.2)

where nmin is the minimum value a parameter can take, and λ + nmin the expected value

of n. Selected values which exceed the maximum possible value for a parameter are truncated to

the maximum possible value. We allow separate values for λ and nmin for each parameter. We

use a Poisson distribution to avoid generating genotypes with excessively large kernel or pooling

dimensions or strides.

3.2.4 Crossover

Crossover is performed on two parent genotypes to generate to child genotypes. The output

dimensionality and the minimum input dimensionality of each layer in each parent genotype is

calculated (the minimum input dimensionality of fully connected layers is one). All valid crossover

points (i, j) between the two genotypes are determined, where a crossover point is valid if the output

dimensionality of layer i of the first genotype is smaller than the minimum input dimensionality

of layer j of the second genotype. If a valid crossover point cannot be performed, children are

generated by performing a mutation operation on each parent.

3.2.5 Mutation

Two mutation operations are defined: addition of a layer and modification of a layer. The

addition operation involves inserting a randomly generated layer at a random position in the geno-

type, and modification involves randomizing one of the parameters of a random layer. The same

constraints apply for the addition operation as with generation and crossover operation—layers

cannot be added if it results in two sequential pooling layers, only fully connected or output layers

can follow a fully connected layer, and layer parameters cannot result in an invalid architecture.

20

Added layers are generated in the same manner as during initial genotype generation. Layers

are modified by selecting a parameter at random, and randomly adding or subtracting a random

value selected using the modified Poisson distribution in Equation 3.2. A layer removal mutation

is not provided, as networks are crossover operations are capable of generating architectures with

fewer layers; experiments including a removal operation resulted in biasing architectures towards

shallow architectures.

3.2.6 Genotype Evaluation

As network architectures vary greatly, the number of training epochs required to reach con-

vergence is also likely to vary between architectures. An automated stopping criteria is desired, in

order to ensure that training doesn’t end early for complex networks that require a large number

of training epochs, and excess training epochs are not used for very simple networks that converge

quickly.

An automated stopping criteria is presented in [94], based on identifying steady state in

a signal. The steady-state identification algorithm estimates the variance of a signal using two

approaches. The first variance is calculated as the sum of the squared differences of the data from

the mean, and the second is the sum of the squared differences of successive measurements. When

a signal is at steady state, the ratio of these two values are near unity; a large ratio indicates that

the signal is not at steady state. The algorithm is computationally inexpensive, and requires three

filter parameters.

The stopping criteria is applied to the validation cost calculated after each training epoch.

Training is considered complete when the variance ratio is below 1.5 for 10 training epochs.

3.3 Experimental Results

The proposed algorithm was used to generate CNN architectures for two datasets: MNIST [83],

and data collected from a terrain-sensitive tire (see Chapter 4). The MNIST dataset consists of

60,000 images of hand-written digits, of which 5,000 were removed for a validation set to evaluate

21

individual genotypes. The tire data consists of 24,472 measurements extracted from a tire driving

on four simulated terrains; 20% of this data was retained for validation.

Each experiment used the same set of parameters for the NSGA-II algorithm, which is sum-

marized in Table 3.2. The values of λ and nmin were the same for both generating and mutating

genotypes. pcrossover and pmutate are the rate at which crossover and mutation operations are per-

formed, respectively. If crossover is not performed, mutation is automatically performed to ensure

unique genotypes are generated.

Table 3.2: Parameters used for the NSGA-II algorithm for both experiments.

Population Size 20
Number of Generations 20

p
(g)
conv 0.5

p
(g)
pool 0.5

p
(g)
fc 0.1

pcrossover 0.5
pmutate 0.25

λ - convolution 3
nmin - convolution 2
λ - pooling 0
nmin - pooling 1
λ - fully connected 10
nmin - fully connected 5

3.3.1 MNIST

The first experiment evolved architectures to perform classification of handwritten digits,

using the MNIST dataset. Figure 3.2 shows the accuracy and parameter count of each evolved

individual (in blue). The darkness of each point indicates which generation the individual was

generated—lighter points were generated earlier in the experiment, while later individuals are

darker. Additionally, results of hand-designed architectures in the literature are also presented

as red points, namely LeNet-1, LeNet-4, and LeNet-5 [83], and architectures in Simard et al.,

2003 [121], Ranzato et al., 2007 [110], Cireşan et al., 2012 [12], and Chang and Chen, 2015 [11].

22

Table 3.3 summarizes the accuracy and parameter count of these architectures.

Figure 3.2: Network architectures evolved for the MNIST dataset (left), and architectures with
error rates less than 5% (right). Darker blue points indicate individuals from later generations, red
points indicate hand-designed architectures from the literature.

80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0
Accuracy

0

200000

400000

600000

800000

Nu
m
be
r o

f P
ar
am

et
er
s

LeNet-5

LeNet-1
LeNet-4

Simart et al., 2003

Ranzato et al., 2006

Ciresan et al., 2012

Chang and Chen, 2015

95 96 97 98 99 100
Accuracy

0

50000

100000

150000

200000

250000

Nu
m

be
r o

f P
ar

am
et

er
s

LeNet-5

LeNet-1

LeNet-4

Simart et al., 2003

Ranzato et al., 2006

Comparing the evolved results with the networks in [83], the algorithm presented is able

to generate architectures which are superior in at least one attribute—a network was evolved

that was more accurate than LeNet-4 while requiring fewer parameters (99.08% accuracy, 14,000

parameters), while a network as accurate as LeNet-5 requires ∼33% fewer parameters (99.2%

accuracy, 39,002 parameters). Generally, the high accuracy models require models with a large

number of features, either due to a significant increase in the number of feature maps at one or

more layers [121, 110], using so-called “network in networks” [11] after each convolutional layer, or

by using multiple networks [12]. Additionally, each reference cited augmented the data with some

sort of distortion, which generally improves accuracy by ∼0.2%, while the approach used here was

trained only on the original data.

While the algorithm presented here cannot produce models with comparable accuracy as

the state-of-the-art models [12, 11], it should be noted that the results from the state-of-the-art

models perform nearly perfectly on the MNIST dataset; the model in [12] requires over three

times the number of parameters in [11], with an improvement in accuracy of only 0.01% (i.e.,

one test example). Additionally, the models in these references utilize architectures which cannot

23

Table 3.3: Accuracy and parameter count of CNNs trained to classify handwritten digits in the
literature.

Accuracy Parameter Count

LeNet-1 [83] 98.3% 2,578
LeNet-4 [83] 98.9% 17,000
LeNet-5 [83] 99.2% 60,840
Simard et al., 2003 [121] 99.6% 133,260
Ranzato et al., 2006 [110] 99.61% 146,104
Cireşan et al., 2012 [12] 99.77% 818,650
Chang and Chen, 2015 [11] 99.76% 263,658

be modeled by the algorithm presented here, due to specialized network components (e.g., multi-

column CNNs), or are not likely to be consistently evolved (e.g., network-in-networks). However,

the approach used here does generate superior architectures to those in [83], which contains network

components available to the algorithm presented here.

3.3.2 Terrain Data

The second experiment evolved architectures to classify terrains, using a dataset collected

from a terrain sensitive tire. Figure 3.3 shows the accuracy and parameter count of each evolved

individual. The algorithm evolved several efficient solutions with accuracies near 89%, such as an

architecture with an accuracy of 88.3% and 9,252 parameters, and a slightly more accurate model

with accuracy of 88.7% and 17,518 parameters. Interestingly, the former model achieves the low

parameter count by using a pooling layer as the first layer following the input, hinting that the

dataset could be downsampled without affecting model performance.

3.4 Discussion

The multiobjective optimization algorithm used in this chapter has been demonstrated the

ability to generate CNN architectures which are optimal in a Pareto sense, primarily jointly min-

imizing the objective function and the parameter count of the network. The effectiveness of the

24

Figure 3.3: Network architectures evolved for the terrain classification dataset.

30 40 50 60 70 80 90 100
0

10000

20000

30000

40000

algorithm was demonstrated with two datasets, the MNIST handwritten corpus, and a set of ter-

rain measurements collected by a terrain-sensitive tire. As shown in the MNIST results, networks

can be generated that are as accurate as hand-engineered networks, but with significantly fewer

parameters.

The MNIST dataset has been well studied since its initial publication, and many recent

techniques, such as using a committee of networks, have been employed to increase the classification

accuracy to the current state-of-the-art. The algorithm presented here could possibly be modified

to incorporate such techniques, either by adding new types of layers to the genotype, or by evolving

a connection matrix to allow, for example, skip connections or multi-column CNNs. The goal of

this chapter for this thesis, however, is to provide an automated approach to discoving an efficient

network architecture for the desired task. Additionally, it should be noted that this approach may

be considered optional. A hand-engineered network might be easily developed which performs

sufficiently for the desired task, and whose parameter count is well below the maximum available

for a particular microcontroller.

Chapter 4

Single Node Robotic Material Experiments

The previous chapter provides motivation for performing in-material processing using con-

volutional neural networks for high-bandwidth sensing application, and an approach to generating

network architectures which can be implemented on material-scale microcontrollers. This chapter

provides example applications in three domains for robotic materials: a wearable gesture input

device [61, 62], a smart tire capable of identifying terrain [20], and affective touch recognition and

collision avoidance using robotic skins capable of pressure and proximity sensing [58, 60]. For each

example, a brief background a motivation is provided, followed by the design of the prototype

used and theory of operation (where applicable for each), and experimental results. Performances

using alternative sensing modalities or machine learning are also provided for the skin and tire,

to compare the classification abilities of a robotic material to current approaches available in the

literature. Finally, memory requirements of each model is provided, to show that each model can

be implemented on material-scale hardware. Details of each project can be found in the referenced

papers.

The wearable gesture device and smart tire are both robotic material applications where the

resulting component is decoupled from the remaining system and accessed via wireless communi-

cation, allowing the components to operate independently and be accessed as needed by the host

system. In the case of the wearable gesture device, this involves pairing the component to another

device via Bluetooth, while the smart tire maintains a TCP server, providing terrain estimates

when queried by an arbitrary client.

26

The robotic skin application demonstrates a case where it is desired for the robotic material

to perform multiple functions. The important considerations with this application is ensuring that

a common feature set can be used to suitably perform the desired functions, the material can

autonomously transition between dicrete states of operation, and the material communicates only

events of interest to the host system.

4.1 e-Textile Input Device

An e-textile input device, referred to as “Switchback,” is a device created as an example

robotic material [61, 62]. Like robotic materials, wearable computing devices are often concerned

with tight integration of sensing, computing, and acuation elements with the underlying fabric [107].

Specifically, conductive thread has allowed for creating circuit traces directly on fabric, as well a

creating resistive and capacitive elements, switches, and buttons [38]. Switchback is designed to

detect and identify a set of user touch gestures (here, tapping and bidirectional swiping), and does

not require direct contact with skin to operate, allowing for waterproofing or covering with fabric.

4.1.1 Swatch Design

Switchback, shown in Figure 4.1 combines a simple microwave reflectometer circuit with a

fabric-based microstrip quarter-wave short-circuit stub. The reflectometer circuit requires a one-

sided microwave circuit with a footprint of roughly 10 cm2; the reverse side of the circuit can contain

a microcontroller, power regulation and Bluetooth or WiFi components to process measured signals

and communicate to an external device. The reflectometer circuit consists of a Voltage Controlled

Oscillator (VCO), two directional couplers, a gain-phase detector 1 . The gain-phase detector has

an operating frequency range of 100MHz–2.7GHz.

The e-textile swatch is a microstrip stub consists of a 2-mm layer of iron-on adhesive denim

as a dielectric layer, a ground plane constructed from Rip-Stop conductive metalized nylon fabric,2

1 Analog Devices AD-8302: LF–2.7 GHz RF/IF Gain and Phase Detector

27

and a 6.8 cm x 0.635 cm conductive strip of Rip-Stop conductive fabric. The length of the strip

corresponds to one quarter of the wavelength of a 900MHz RF signal on the microstrip. The con-

ductive strip was shorted at one end using 117 / 17 2-ply conductive thread,3 and an ultraminiature

coax (UMC) line was attached to the other and the ground plane as a measurement port.

Figure 4.1: Left: e-Textile swatch with reflectometer circuit. Right: Example swipe gesture of
swatch on the forearm of a shirt sleeve.

4.1.2 Theory of Operation

The reflectometer circuit measures the reflection coefficient at the measurement port of the

microstrip stub by injecting a 900MHz signal into the measurement port. Some or all of this signal

is reflected back into the circuit. A directional coupler routes the reflected signal into one input of

the gain-phase detector. A second directional coupler routes a small portion of the signal generated

by the VCO into the other input of the gain-phase detector for use as a reference signal. The gain-

phase detector generates two voltages: one related to the ratio of the magnitudes of the reflected

signal, and a second related to the phase difference between the two signals.

2 http://www.sparkfun/products/10056
3 http://www.sparkfun.com/products/retires/8554

28

The reflection coefficient is a function of the input impedance of the microstrip stub, which is

a function of the characteristic impedance, propagation constant, and length of the stub. Covering

the microstrip with a dielectric material changes the effective permittivity of the microstrip line

where touched. This results in a change of the characteristic impedance and propagation constant,

which results in a change of the reflection coefficient. The permittivity of human skin, compared to

free space, is very high (εr 44.5− j18.8) [41], while the permittivity of denim is much lower (εr =

1.67) [118]. Using these two values, the transmission line properties of a microstrip when touched

and untouched can be calculated using a conformal mapping method [128]. Table 4.1 provides the

effective permittivity, characteristic impedance and propagation constant of the microstrip swatch

when untouched and touched by an adult human finger (1.6 cm–2.0 cm in width).

Table 4.1: Effective permittivity, characteristic impedance, and propagation constant of an e-textile
microstrip when touched and untouched.

Fingertip Width εeff Z0(Ω) γ(rad/m)

Untouched 1.50 48.56 0.0 + j23.10
1.6 cm 9.54− j2.57 18.84 + j2.50 7.78 + j58.78
1.8 cm 10.04− j2.62 18.28 + j2.62 8.60 + j60.38
2.0 cm 10.40− j3.23 17.90 + j2.72 9.34 + j61.54

Using the parameters in Table 4.1, the magnitude and phase of reflection coefficient at the

measurement port can be calculated as a function of the position of a finger on the line. These

measurements are given in Figure 4.2, showing a significant change in reflection coefficient as the

finger moves down the line.

4.1.3 Gesture Classification

The reflectometer was sampled at a rate of 30Hz using a development board4 with an Atmel

Mega328P microcontroller, operating at 16MHz with 32kB program memory and 2kB internal

RAM. Gesture classification was performed using a convolutional neural network implemented in

4 Arduino Pro Mini 328: http://www.sparkfun.com/products/11113

29

Figure 4.2: Magnitude (left) and phase (right) of reflection coefficient of a quarterwave e-Textile
microstrip stub as a function of contact position.

0 1 2 3 4 5 6 7

Finger Posit ion (cm)

0.0

0.2

0.4

0.6

0.8

1.0

|�

|

Magnitude

1.6 cm

1.8 cm

2.0 cm

0 1 2 3 4 5 6 7

Finger Posit ion (cm)

0

50

100

150

200

250

300

350

∠

�

(

�

)

Phase

program memory, and a Bluetooth modem5 transmits the final classification to an arbitrary device.

The CNN architecture used to classify gestures was [(I,(50,1)), (C,10,5), (P,4,4), (C,5,3), (FC,12),

(S,3)]; a sigmoid activation function was used in place of a rectified linear activation function.

4.1.4 Experimental Results

A preliminary data set was collected by having a single subject perform three gestures—down-

swiping (moving the finger from the short-end of the stub to the measurement port), up-swiping,

and tapping. Additionally, gestures were collected with the swatch covered with fabric, as well as

embedded in EcoFlex silicone rubber for weatherproofing. Figure 4.3 shows characteristic examples

of each of these gestures, and shows little variation between the three configurations in the gesture

signals.

From the data set, 60 tap gestures, 32 up-swipe gestures and 26 down-swipe gestures were

collected and hand-labeled. The onset and conclusion of each gesture was determined when the

measurement exceeded the baseline (non-contact) voltage. The samples were augmented by adding

uniform noise with a range of 20% of the total measurement range, resulting in a total of 120

5 BlueSMIiRF Silver: https://www.sparkfun.com/products/12577

30

Figure 4.3: Characteristic gesture signals for down-swiping, up-swiping, and tapping, for three
configurations of the swatch.

0 1 2 3 4 5 6 7
� 20

0

20

40

60

80

100

B
a
re

0 1 2 3 4 5 6 7 8
� 20

0

20

40

60

80

100

0 1 2 3 4 5
� 20

0

20

40

60

80

100

0 1 2 3 4 5
� 20

0

20

40

60

80

100

C
lo

th

0 1 2 3 4 5 6 7
� 20

0

20

40

60

80

100

0 1 2 3 4 5 6 7
� 20

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Downswipe

� 20

0

20

40

60

80

100

E
c
o
fl
e
x

0 1 2 3 4 5

Upswipe

� 20

0

20

40

60

80

100

0 1 2 3 4 5

Tap

� 20

0

20

40

60

80

100

samples for each gesture. The CNN was trained and evaluated using 10-fold cross-validation, with

a final overall model accuracy of 96.11%. The confusion matrix of the classifier is given in Table 4.2.

The total number of parameters required for the model is 256, which requires only 1kB of

program memory on a microcontroller to implement using 32-bit values. Consequently, a micro-

controller which is much smaller, less expensive and consumes less power (e.g., AVR ATtiny44)

could be used for this controller.

4.2 Terrain Sensitive Tire

Prototype terrain-sensitive tires were designed for use with “Ninja Car,” a highly agile au-

tonomous vehile, shown in Figure 4.4 (left). The vehicle is designed to map and navigate in unknown

environments, and uses a simulation-in-the-loop model predictive controller to generate control sig-

nals. The physics simulator used by the controller accurately predicts the dynamics of the vehicle,

allowing control signals to be generated for highly agile driving [96]. The ability to determine the

terrain driven on allows more accurate parameters to be used by the physics simulator, improving

31

Table 4.2: Confusion matrix of the SwitchBack classifier.

Predicted
Tap Upswipe Downswipe

A
c
tu

a
l Tap 94.17% 2.50% 3.33%

Upswipe 0.83% 98.33% 0.83%
Downswipe 3.33% 0.83% 95.83%

the performance of the controller.

Figure 4.4: Autonomous vehicle with terrain sensitive tire inset (left). An individual piezoelectric
sensor (center). Location of a single sensor mounted on the interior of the tire (right).

4.2.1 Data Collection and Preprocessing

Two prototype tires were created, and datasets were collected for each. Piezoelectric sensors

(Measurement Specialties, Inc. LDT0-028K) are bonded to the interior surface of the tire using

polyurethane rubber (Smooth-On PMC-780); Figure 4.4 (right) shows the positioning of the sensor

with a portion of the tire cut away. The piezoelectric sensors are sampled using a microcontroller

board attached to the face of the wheel.

4.2.1.1 Indoor and Outdoor Terrains

The first prototype tire created consisted of ten piezoelectric sensors located around the

radius of the tire, ensuring that at least one sensor is located at the point where the tire contacts

32

the ground. These sensors were sampled at a rate of 750Hz using a Teensy 3.2 development board,

with raw data stored locally on a microSD card.

Data was collected while driving on eight different indoor and outdoor terrains: asphale,

brick, carpet, cement (indoor), concrete (outdoor), grass, gravel, and linoleum. Additionally, data

was collected while the car was suspended in the air, as the car is expected to be occasionally

airborne and knowledge of this state is useful for the controller. The car was driven on each terrain

for approximately 20 minutes each, for a total of three hours of driving time. Figure 4.5 shows

images of each terrain, as well as a window of measurements from one of the sensors embedded in

the tire. Measurement data was normalized so that each channel had zero mean and unit standard

deviation. Windows of 100 samples (133.33 ms) were extracted every 50 samples (66.67 ms).

Figure 4.5: Examples of the indoor and outdoor terrains used for classification experiments, as well
as example sensor signals for each terrain.

33

4.2.1.2 Simulated Terrains

A second prototype tire was created with four piezoelectric sensors located around the radius

of the tire. These sensors were sampled at a rate of 2kHz using an ESP32 development board.

This board contains on-chip WiFi and Bluetooth LE components, allowing for data to be collected

wirelessly, as well as sending terrain estimates wirelessly to the vehile. The vehicle was driven on

four simulated terrains with this tire: carpet, foam, grass, and plywood. The car was driven for

ten minutes on each terrain. Windows of 100 ms (200 samples) were extracted every 50 ms, for a

total of 24,472 samples.

4.2.2 Terrain Classification Results

4.2.2.1 Indoor and Outdoor Terrains

A classifier was built to identify terrain from a window of tire msensor measurements using

a CNN with the architecture [(I,(200,10)), (C,20,10), (P,2,2), (C,10,15), (P,2,2), (C,5,20), (P,2,2),

C(3,25), (P,2,2), (FC,15), (S,9)]. The model contained a total of 10,979 parameters.

The accuracy of the CNN classifier, as well as the number of parameters, is provided in

Table 4.3. Additionally, the results available in the literature for vibration-based [137], visual-

based [70], and audio-based [135] are provided for comparison.

Finally, a confusion matrix for the classifier is provided in Table 4.4. Accuracy for each class

if relatively high (near 99%), with a slight decrease from the average for gravel and linoleum.

4.2.2.2 Simulated Terrains

A classifier evolved in Chapter 3 was selected to classifiy the simulated terrain data. The

selected architecture achieved as classificaiton accuracy of 88.7% on the validation data using 17,518

parameters. The CNN architecture used was [(I,(200,4)), (C,23,20,2), (P,2,1), (C,29,19,3), (P,2,1),

(C,1,15), (C,1,24), (C,1,19), (C1,36), (S,4)]. The last four convolutional layers (with kernel width

of 1) create an architecture similar to the “network-in-networks” architecture in [11]. Once trained,

34

Table 4.3: Accuracy and classifier size (number of parameters) for each sensing modality.

Accuracy Model Size

Tire 98.93 ± 0.17 10,979

Valada et al. [135] 97.36 ± 0.12

Weiss et al. [137] — Feature Set 94.71 ± 0.22
Weiss et al. [137] — PSD 93.90 ± 0.37
Weiss et al. [137] — FFT 93.40 ± 0.33
Weiss et al. [137] — Combined 95.11 ± 0.31

Khan et al. [70] — SURF 99.2
Khan et al. [70] — Daisy 79.2
Khan et al. [70] — LBP 96.9
Khan et al. [70] — LTP 98.1
Khan et al. [70] — LATP 97.2

Table 4.4: Confusion matrix of the classifier trained on indoor and outdoor terrains.

Predicted Class
A B C D E F G H I

A 99.82 0.01 0.00 0.01 0.00 0.00 0.07 0.06 0.02
B 0.00 98.99 0.66 0.01 0.07 0.00 0.09 0.07 0.12
C 0.00 0.86 98.87 0.04 0.01 0.00 0.01 0.12 0.09
D 0.00 0.00 0.01 98.78 0.27 0.00 0.27 0.01 0.66
E 0.00 0.03 0.02 0.13 99.65 0.00 0.01 0.08 0.08
F 0.00 0.00 0.02 0.00 0.02 99.95 0.00 0.01 0.00
G 0.03 0.11 0.00 0.31 0.04 0.00 98.46 0.14 0.91
H 0.15 0.13 0.36 0.08 0.34 0.12 0.37 97.56 0.87
I 0.02 0.12 0.09 0.99 0.21 0.00 0.78 0.26 97.53

(A) Air (B) Asphalt (C) Brick (D) Carpet (E) Cement
(F) Concrete (G) Grass (H) Gravel (I) Linoleum

this architecture produces an overall classification accuracy of 88.26%. Table 4.5 show the confusion

matrix for the classifier. Confusion between cement and grass is observed, with a much higher

classification accuracy for foam and wood.

35

Table 4.5: Confusion matrix of the classifier trained on simulated terrains.

Predicted Class
A B C D

(A) Cement 81.63 1.91 13.43 3.03
(B) Foam 2.31 93.32 3.46 0.91
(C) Grass 13.88 2.26 82.34 1.53
(D) Wood 1.80 1.14 1.55 95.03

4.3 Proximity Sensitive Skin

A modular robotic skin with pressure and proximity sensing capabilities was developed to

assist a robot with collision avoidance and tactile interaction with a human companion. Modular

tactile sensitive skin cells have been utilized for full-body tactile sensing, resulting in several ap-

plications in manipulation, exploration, navigation, and human-robot interaction [19, 31, 68, 67].

Using full-body tactile sensing is useful for conveying emotion and intent, which is especially use-

ful given the increase in therapeutic and compantion robots [143, 125, 8, 31], and collaborative

human-robot teams [13].

The main purpose of this experiment is to demonstrate a robotic material capable of per-

forme multiple functions, namely, a robotic skin with the ability to detect approaching objects,

discriminate between an obstacle and the hand of a collaborator, and identify touch gestures. The

approach used to achieve this involves having the skin transition between behavior states based on

a low-dimensional feature vector extracted from individual frames. Communicated events and skin

behavior can then be defined based on the current state of the skin. Additionally, the behavior of

the system as a whole can be analyzed, allowing important attributes to be extracted, such as the

maximum velocity the robot can safely move without inadvertantly colliding with an obstacle.

An interesting interpretation of convolutional neural networks is that each layer represents

feature maps of increasing abstraction. The penultimate layer can be considered a low-dimensional

feature vector summarizing the input to the system. As demonstrated in [111], CNNs trained on one

36

set of images can be effectively utilized to perform classification on other types of images by replacing

the final classification layer with an SVM, and simply training the SVM on the features generated by

the pre-trained CNN. The features generated by CNNs trained to perform classification in robotic

materials can be similarly exploited to generate more complex behavior in the material by using

them as common features for a set of models trained for different tasks.

4.3.1 Prototype Skin

A pressure and proximity sensitive skin patch was created for this investigation, similar to the

pressure sensitive skins described for the affective touch classification task in [67]. Figure 4.6, left,

shows a skin consisting of an 8x8 array of proximity and ambient light sensors (Vishay Semicon-

ductors VCNL4010 6). Each sensor combines an infrared emitter and PIN photodiode to perform

proximity and ambient light measurement. The skin is calable of detecting both the proximity of

an approaching object, as well as the amount of force applied to the skin once the object makes con-

tact. Details on the operation of an individual sensor is given in [104] and [60]. The microcontroller

samples frames of measurements at a rate of 20 Hz.

The skin is embedded in a thin film of PDMS (Dow Corning Sylgard 184), with a final overall

width and height of 10.8 cm x 10.8 cm, and a thickness of 5.0 mm. A collocated microcontroller

(Atmel ATmega2560) samples the sensor array, and performs in-skin processing to allow the skin

to detect and avoid collisions with arbitrary obstacles, recognize whether an approaching object is

an obstacle or a human collaborator, and classify six social touch gestures made by a collaborator,

similar to the affective touch example in Chapter 4.

Calibration and preprocessing of the sensor is performed on the microcontroller. The micro-

controller maintains a “baseline” value for each sensor (the average measurement in the absence

of an object), as well as a “contact” values (the value of the sensor at the point where contact is

made). Sensors values were scaled such that the baseline value and the maximum sensor value were

mapped to values of -1 and 1, respectively.

6 http://www.vishay.com/docs/83462/vcnl4010.pdf

37

Figure 4.6: Left: Pressure- and proximity-sensitive skin with an 8x8 array of taxels. Right: Skin
mounted on the forearm of a Baxter robot.

4.3.2 Algorithmic Approach

The skin is designed to perform three main functions: detect an approaching object, dis-

criminate between an obstacle or hand (from a human collaborator), and identify affective touch

gestures performed on the skin. The skin extracts a set of 15 frame-level features per measurement

frame: mean, standard deviation, median, mode and range of values, as well as geometric moments

up to the 4th order [131]. Gesture-level features were extracted by computing the mean, standard

deviation, median, and range of each frame-level feature in a window of measurements, resulting

in 60 features per frame.

4.3.2.1 Approach Detection

The skin determines an obstacle or hand is approaching whenever any sensor value is above

some threshold of its baseline value in a particular frame. The threshold for sensor i, T
(i)
prox is

calculated such that the false-positive detection rate of the entire skin patch is at 1% or below.

38

This is determined for each sensor by finding the value k such that the following equation is satisfied

T (i)
prox = µ(i) + kσ(i)

s.t. P

(
N⋂
i=1

{s(i) > T (i)
prox}

)
< 0.01

(4.1)

where s(i) is the value of sensor i, and µ(i) and σ(i) are the mean and standard deviation of

the value of sensor i with no object present.

4.3.2.2 Hand / Obstacle Discrimination

Discriminating an approaching object as a hand or obstacle is critical for the performance of

the skin, as it determines if contact should be allowed to be made or avoided. The skin needs to

estimate the class of an object (hand or obstacle) at each frame, and update this estimate as future

frames become available. While possible to train a binary classifier for such a task, this approach

is not ideal. Primarily, the obstacle dataset would need to include all obstacles expected to be in

the environment, the set of which may not be known during training.

The task of distriminating between an obstacle and hand is better suited for novelty de-

tection [87], where a model is trained to identify the likelihood of a measurement belonging to

a particular class. For this skin, this involves training a model on frames collected from gesture

captures before contact is made, and identifying measurements below a certain likelihood as be-

longing to an obstacle. Two approaches to novelty detection were considered: Mahalanobis squared

distance (MSD) [140], and one-class SVMs using Radial Basis Function (RBF) kernels [119].

Both models generate a distance measurement given the frame-level features of a measure-

ment. The frame is identified as a hand or obstacle depending on if this distance falls inside or

outside a given decision boundary. Given a distance measurement, x, and a decision boundary,

DT , the probability that a hand is approaching is

P (H|x) = e−0.693x/DT (4.2)

39

Multiple frames will be available to determine if the approaching object is a hand or obsta-

cle, allowing Bayesian updates of aninitial estimate as each frame is observed. The sequence of

predictions can be treated as Bernoulli process due to the presence of a hand with some probability

distribution θ. The conjugate distribution of θ is simply the Beta distribution,

p(θ;α, β) =
θα−1(1− θ)β−1

B(α, β)
(4.3)

where B(α, β) is the Beta function, and the parameters α and β are calculated from N frames

as the total number of frames classified as a hand or obstacle, respectively. The probability of an

approaching object being a hand, given a history of N frames, is given simply as

P (H|x0 . . . xN) =
α

α+ β
(4.4)

Details of the derivation of this is given in [60].

4.3.2.3 Gesture Classification

Gesture recogntion was performed on the extracted gesture-level features. A random forest

classifier, implemented in Scikit [105], was trained and evaluated using 10-fold cross-valication and

cross-subject validation, providing insight on the behavior of the classifier when presented with

gestures from known and unknown users.

4.3.3 Experimental Results

Gesture data was collected from nine participants; the gestures used matched those used in

the HAART dataset [8]. Each participant performed each gesture for 8 seconds a total of five times.

Examples of two types of gestures are given in Figure 4.7. Additionally, obstacle data was collected

using nine items, shown in Figure 4.8; obstacles were moved over a range of 0.0 cm to ∼5.0 cm over

the skin, varying position and orientation at random.

40

Figure 4.7: Sequence of measurements from tapping (top) and rubbing (bottom). The five frames
in the top show a single tap over 250 ms, the bottom row shows one back- and forth motion exting
over 1s.

Figure 4.8: Objects used for collision recogntion testing: wooden plate, brick, PVC pipe, wine
glass, plastic chain, foam balls, ball, screwdriver, and 2x2 wooden stick.

41

4.3.3.1 Approach Detection

To validate the ability of the skin to detect approaching objects, a set of measurements were

collected where an MDF panel was located parallel to the surface of the skin, and moved between

0.0 cm and 15.0 cm, with measurements at every 0.5 cm increment. The panel was large enough to

fully cover the skin, ensuring each sensor detected it. 500 frames were collected for each position

of the MDF, with an additional 500 frames with no object present for use as a baseline.

Figure 4.9 shows the probability of detecting the approaching panel as a function of distance.

Up to 5 cm, 100% of the frames correctly detected the panel; this dropped to ∼50% at 6.5 cm.

Above ∼11 cm, the panel could not be reliably detected.

Figure 4.9: Probability of detecting an object as a function of distance to the skin.

0 2 4 6 8 10 12 14
Distance (cm)

0

20

40

60

80

100

Pr
ob

ab
ili

ty
 o

f D
et

ec
tio

n
(%

)

42

4.3.3.2 Hand / Obstacle Discrimination

Training frames for hand and obstacle discrimination were extracted from the gesture data by

selecting frames where at least one sensor exceeds Tprox, and no sensor exceeds the contact value.

A total of 17,023 frames were collected from the gesture data; 4,721 frames of obstacle data was

collected from the obstacle dataset. 90% of the gesture frames (15,320 frames) were used to train

a MSD and one-class SVM discriminator; 10% of the gesture frames (1,702 frames) was retained

for evaluation.

Figure 4.10a shows the accuracy of labeling hands and obstacles using an MSD discriminator

with respect to the selected decision boundary. At a boundary of 250, the discrimination accu-

racies are roughly equivalent—hands are correctly identified 91.4% of the time, obstacles 91.8%.

Figure 4.10b show the discimination accuracy of the one-class SVM as a function of ν, a parameter

that provides an upper bound on training error, with a second parameter, γ (the width of the RBF

kernel), set to 5e-8. A value of 0.05 was found to be optimal, providing an accuracy of 93.4% for

hands and 95.6% for obstacles.

Figure 4.10c shows the benefit of performing Bayesian updates on the discrimination esti-

mates. The probability of each individual frame being generated by an approaching hand or obstacle

is given as dashed lines; the probability generated from the Bayesian update is given as solid lines.

Essentially, performing Bayesian updates in this manner has the effect of smoothing individual

probabilities, ensuring that no single frame results in a misidentification of the approaching object.

4.3.3.3 Gesture Classification

Two cases were considered for gesture classification: classifying using features extracted from

an entire 8 second capture, and classifying using 1 second (20 sample) windows drawn from each

capture. Four ranges of measurements were used to generate features. “Full measurements” consists

of features extracted from the full calibrated range of the sensors. “Pressure only” and “proximity

only” consisted of measurements in the pressure or proximity region—measurements above or below

43

0 500 1000 1500 2000 2500

Distance Threshold

0

20

40

60

80

100

A
c
c
u

ra
c
y

 (
%

)

Hands

Obstacles

(a) Mahalanobis Squared Distance

0.0 0.2 0.4 0.6 0.8 1.0

�

0

20

40

60

80

100

A
c
c
u

ra
c
y

 (
%

)

Hands

Obstacles

(b) One-Class SVM

5 10 15 20

Fram e

0

20

40

60

80

100

P
ro

b
a
b
ili

ty
 o

f
H

a
n
d
 (

%
)

Hand

Obstacle

(c) Bayesian Update

Figure 4.10: Per-frame discrimination accuracy using (a) MSD, and (b) One-Class SVM. (c) Demon-
stration of smoothing predictions over a sequence of MSD predictions using Bayesian updates with
a hand (red) or obstacle (blue) approaching.

a sensor’c contact value were ctruncated to the contact value. “Pressure + proximity” concatenated

features from the “pressure only” and “proximity only” data.

Figure 4.11 gives the evaluation of random forest classifiers trained on each set of data

using each evaluation approach (cross-fold validation vs. cross-subject validation; features from

full gestures vs. features from 10 second windows). Using only pressure measurement, accuracy

drops considerably when compared to other cases. Using only proximity data performs only slightly

worse when compared with a classifier trained on the full range of measurements, indiciating the

advantage of incorporating proximity information into measurements for gesture recogntion. Cross-

subject validation performed worse than cross-fold validation; this is to be expected, as cross-subject

validation requires a model to generalize to data from users not previously encountered.

The confusion matrix for the windowed, full measurement dataset using cross-validation is

given in Table 4.6. As with the affective touch example in Chapter 4, most confusion occurs between

tickle and scratch pairs, and rub and stroke pairs.

4.4 System-Level Analysis

The tasks presented in Section 4.3.2 can be organized in such a manner to allow the skin to

transistion between tasks in an appropriate manner. Figure 4.12 shows a state machine capable

44

Figure 4.11: Classification accuracy of a random forest classifier.

Cross Validation
Full Gesture

Cross Validation
Windowed

Cross Subject
Full Gesture

Cross Subject
Windowed

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Model Accuracies
Pressure Only
Proximity Only
Full Measurement
Pressure + Proximity

Table 4.6: Confusion matrix of gestures classified using features from the windowed, full measure-
ment data.

Predicted
a b c d e f g

A
c
tu

a
l

(a) NoTouch 100 0.00 0.00 0.00 0.00 0.00 0.00
(b) Press 0.00 97.8 0.85 0.85 0.12 0.36 0.00
(c) Pat 0.00 0.41 97.4 0.68 0.55 0.82 0.14
(d) Rub 0.00 0.66 2.08 89.1 2.08 4.38 1.75
(e) Scratch 0.00 0.00 0.44 1.33 93.9 1.66 2.65
(f) Stroke 0.00 0.00 1.13 5.13 3.63 88.5 1.63
(g) Tickle 0.00 0.25 0.13 0.75 6.52 0.38 92.0

of governing the behavior of the skin. The skin is Idle until an approaching object is detected

(Section 4.3.2.1). While approaching (Approach), the skin needs to determine if the object is

a hand or obstacle (Section 4.3.2.2). If the object is a hand, the skin should identify (Gesture

Recognition) which gesture is being performed (Section 4.3.3.3). Otherwise, the skin should

45

inform the robot that an obstacle is approaching (Obstacle), so that the robot can alter its

current trajectory. If the skin fails to discriminate between a hand and obstacle prior to contact,

then the system collides (Collision) with the object, which is an undesired state. Whenevery the

skin no longer senses and object, it returns to the Idle state.

Figure 4.12: State machine representation of the behavior of the skin with S representing sensor
data. TContact is a fixed value for each sensor, TProx is determined empirically, and THand and
TObstacle are user-defined thresholds.

Obstacle

Collision

Approach

Idle

Gesture

Recognition

∀S<Tprox

∀S<Tprox

∀S<Tprox

∀S<Tprox

∀S<Tprox

∃S Tprox

∃S T
contact

P(Hand)<TObstacle

P(Hand)>T
Hand

From the experiments, the stochastic properties of the transistion between each state in the

state machine is well understood; it is possible to perform Monte Carlo experiments to determine

the expected probability of collisions, allowing for the tuning of tresholds for identifying a hand or

obstacle, THand and TObstacle, until a suitable margin of safety is achieved.

Figure 4.13a shows the results of 10,000 simulations of discriminating between hands and

obstacles using the MSD discriminator with Bayesian updates. Setting THand to above 80% and

TObstacle to below 30% ensures that a majority of the instances are correctly classified; more liberal

thresholds of 60% and 40% provide faster and more inclusive discrimination, though with a small

percentage of hands misidentified as obstacles in the first few frames.

46

Given THand and TObstacle, it is possible to determine the robustness of the skin to collisions

with respect to the velocity of an approachin hand or obstacle. Figure 4.13b shows the collision

probability with respect to velocity for the 80%/30% threshold, as well as a more strict 90%/20%

threshold, for approach velocities in the range of 0.1 cm/sec to 20 cm/sec. This graph demonstrates

that, for the less strict thresholds, velocities up to ∼2.0 cm/sec are safe, and collision rate increases

to ∼20% at 10 cm/sec. Using a more liberal threshold of 60%/40% results in no collision, regardless

of velocity, though hands were misclassified as obstacles an average of 4.8% of the time.

The probability of misclassifying a hand or obstacle as a function of the two thresholds is

shown in Figure 4.13c. This graph demonstrates that hand threshold can be set as low as 55%,

and obstacle threshold set to 30%, with almost no misclassification of hands or obstacles.

Figure 4.13: Results of the Monte Carlo simulations: (a) Probability of classifying objects as a
hand—mean (solid), one standard deviation (dashed) and 1st and 99th percentiles; (b) Probability
of a collision with respect to approaching object velocity, for midlevel and strict thresholds; (c)
Probability of misclassifying hands and obstacles as a function of threshold.

0 5 10 15 20 25 30 35 40

Num ber of Fram es

0

20

40

60

80

100

P
ro

b
a

b
il
it

y
 o

f
H

a
n

d
 (

%
)

Hand

Obstacle

(a) Bayesian Update

0 2 4 6 8 10
Velocity (cm)

0

20

40

60

80

100

Pr
ob

ab
ili
ty
 o
f C

ol
lis
io
n
(%

)

Hand, Threshold = 0.8
Obstacle, Threshold = 0.3
Hand, Threshold = 0.9
Obstacle, Threshold = 0.2

(b) Collision

50/50 55/45 60/40 65/35 70/30 75/25 80/20
Threshold (% Hand / % Obstacle)

0

10

20

30

40

50

Pr
ob

ab
ili

ty
 o

f M
is

cl
as

si
fic

at
io

n
(%

)

Hand
Obstacle

(c) Misclassification

4.5 Discussion

The examples provided here demonstrate that in-material processing of sensing signal is pos-

sible using CNN models implemented on material-scale microcontrollers. In most cases, the needed

microcontroller is expected to be located on a printed circuit board with additional components,

e.g., the reflectometer circuit on Switchback. In this particular case, the added microcontroller does

47

not require a larger PC board to be incorporated—the microcontroller and related components can

be located on the back side of the reflectometer circuit. Recently released low-cost system-on-a-chip

microcontrollers with incorporated Wi-Fi and Bluetooth capabilities have become available—the

Espressif Systems ESP32 used by the prototype terrain-sensitive tire is an example of such a chip.

The incorporated wireless communication greatly simplifies computing nodes, as additional com-

munication components are not required.

The networks implemented in these examples perform tasks well. Each example material

has been shown to be able to discriminate between several classes of stimuli with accuracies near

or above 90%. With regards to the first prototype tire, the trained model outperformed visual,

vibration and audio based models. This is encouraging, as it implies that the tight coupling of

the sensing with the tire material plays a more imporant role than the methods used to perform

classification.

The ability to incorporate multiple functions is desirable for robotic materials, as this allows

the material to exhibit behavior which is context sensitive. In this chapter, a robotic skin is de-

signed to perform several functions (object detection, hand/obstacle discrimination, and gesture

recognition), as well as adapting the behavoir of the host robot based on environmental conditions.

The functions utilize the same high-level features extracted from individual frames. The dimen-

sionality of this feature set makes adding additional functionality feasible—as the dimensionality

increases, additional model parameters (e.g., for the MSD discriminator) would also increase. A

common feature set with lower dimensionality would allow more functions to be incorporated with-

out exceeding the momory capacity of the microcontroller, when compared with a feature set with

higher dimensionality or multiple feature sets.

A final and significant result from this chapter is the use of the state machine to model

context-sensitive behavior of the skin, as demonstrated by the robotic skin example. The transi-

tion probabilties of the state machine are readily extracted from the properties of the skin (e.g.,

probability of falsely detecting an object), and requires only two user-defined thresholds (THand

and TObstacle). Once provided, this model can be leveraged to perform holistic analysis of the skin-

48

robot system, determining attributes such as safe operation speed, and likelihood of inadvertantly

avoiding contact by a human collaborator.

Chapter 5

Amorphous Computing for Robotic Materials

In general, robotic materials contain multiple nodes distributed in the material. Computation

is performed in each node by processing local sensor signals, and communicating with nodes in a

local neighborhood to determine the material response. Initial perspectives on the computational

aspect of robotic materials consisted of designing local controllers based on a fundamental under-

standing of the underlying material dynamics—material was either described as a set of discrete

lumped element models, or a continuous model described a set of distributed parameters [91]. For

certain applications where the dynamics of the material are well understood, a distributed or amor-

phous algorithm may be relatively simple to derive for perception or control. This chapter describes

an amorphous robotic skin designed to detect and localize contact due to material rubbed against

the skin, and identify the texture of the contacting material, using an fully distributed, amorphous

approach [53, 54]. The purpose of this chapter is to compare an amorphous approach to the modu-

lar CNN-LSTM model described in Chapter 6. Specifically, I identify key behavioral requirements

of individual nodes, advantages and limitations to an amorphous approach, and conditions in which

the modular CNN-LSTM model would be preferred.

5.1 Skin Design and Manufacturing

A large number of robotic skins have been designed with a variety of sensing modalities.

Pressure detection is a primary sensing modality [138, 146, 9, 23, 45, 98, 75, 126]; less common

sensing modalities include shear detection [95], temperature [126], vibration [116], and proximity

50

or “pre-touch” [86]. The skin presented in this chapter is inspired by the Pacinian corpuscles

found in glabrous human skin. The Pacinian corpuscles are mechanoreceptors with a very wide

receptive field that respond to high-frequency vibrations, and are the primary means of perception

of various textures in human skin [66, 4]. The choice to design vibration-sensitive skin is especially

relevent from a robotic materials perspective: propagation of vibrations through the skin allows for

extracting information of interest from a sparse set of sensors, whereas pressure detection requires

a dense array of sensors to detect pressure distribution.

The prototype skin, shown in Figure 5.1, consists of a network of ten sensor nodes embedded

into silicone rubber (EcoflexTM Supersoft 0030). The final dimensions of the skin are 61 cm x 43

cm, with a final thickness of ∼1 cm.

Figure 5.1: Amorphous skin mounted on the back of a Baxter robot.

Each sensor node in the skin contains an Atmel ATxmega128A3U microcontroler, an om-

nidirectional microphone with a sensitivity of -45dB and signal-to-noise ratio of 58dB, and an

amplification circuit. The microcontroller samples the amplified microphone signal at a rate of

1kHz using a 12-bit analog–digital converter, and maintains a circular buffer of 256 samples. The

51

microcontroller contains six hardware serial ports (USART) capable of communicating at a maxi-

mum rate of 115kbps. Figure 5.2, left, shows an individual sensing node.

A network of ten sensor nodes are connected in an equilateral triangular lattice to create a

network, shown in Figure 5.2, center. Connections between nodes consist of four wires for power,

ground, and serial communication. Nodes are spaced 15 cm apart in the network. The network

wires are woven into a neoprene mesh, which is then embedded into silicone rubber. The surface

of the skin is textured by lining the form in which the skin is made with 60-grit aluminum oxide

sandpaper. The textured surface is designed to mimic the surface of the human fingertip: the grit

size of the sandpaper roughly corresponds to the distance of ridges in the fingertip [49].

Figure 5.2: Left: close-up of an individual sensor node. Middle: ten element sensor network,
woben into a neoprene support mesh. Right: sensor node network embedded into EcoFlexTM

silicone rubber.

5.2 Skin Operation and Dynamics

The operation of the skin involves local monitoring of vibrations at each node, which are

generated when the skin is tapped or rubbed. When a node’s circular buffer is filled, the spectrum

of the signal is computed using the Fast Fourier Transform (FFT), resulting in a 128 bin spectral

measurement being generated at a rate of ∼4 Hz.

52

5.2.1 Transient Signal Detection

The skin is expected to operate while attached to a robot, as well as in environments where

background noise is present. To distinguish between these potential sources of vibrations and

signals generated due to contact, it is necessary to maintain an estimate of the background noise

at each node. This is computed in a similar manner to that presented in [88]. Each node maintains

an estimate of the spectrum of the ambient signal, A(f, t), at each time step when the spectrum of

the measured signal, S(f, t) is computed. The ambient signal is updated using slow averaging

A(f, t) = αS(f, t) + (1− α)A(f, t− 1) (5.1)

where α is a smoothing constant representing the rate at which the ambient signal responds

to recent changes in background noise; high values results in an ambient signal sensitive to re-

cent events, while lower values result in an estimation which responds more slowly to changes in

background noise. A value of 0.05 is used as a smoothing constant, as suggested in [88].

Any signal generated due to contact is assumed to generate a momentary increase in the

measured signal at nodes near the source of contact. This transient signal is assumed to be sta-

tistically independent of the ambient signal, so that the measured signal is simply the sum of the

ambient and transient signals. At each time step, the transient spectrum, T (f, t) is extracted from

the signal

T (f, t) = max(S(f, t)−A(f, t), 0) (5.2)

where the max operation simply ensures the transient spectrum is non-negative.

5.2.2 Vibration Propagation

As the skin is of constant thickness, it is trivial to model the propagation of vibrations

through the skin. In practice, the dimensions of the skin will generally be larger in terms of signal

wavelength, and vibration intensity will decrease rapidly as a function of distance. For simplicity,

53

the skin is considered a thin vibrating plate infinite in extent. Under this model, the sound intensity

of a vibration propagating through the skin is given as

I(r, ω) =
I0(F, ω)

r
(5.3)

where I0(F, ω) is the intensity of the vibration due to a source with displacement force F and

frequency ω, and I(r, ω) is the intensity of the signal a distance r from the source. I0 is dependent

on the mechanical properties of the skin (i.e., thickness, density, and rigidity), which are constant

for our skin. Details on the derivation of this equation are available in [54].

This equation is validated by pressing a small vibration motor (1 cm x 2 mm) against the

skin at various distances from a sensor node. The peak energy of the motor vibration occurs at

a frequency of 150 Hz. For each distance, 15 measurements were made. Figure 5.3 shows the

measured signal, as well as the intensity equation given in Equation 5.3 at a frequency of 150 Hz.

The unknown value of I0(F, ω) is determined using a least-square fit of the average measurements

to Equation 5.3. This demonstrates that the propagation model is sufficiently accurate to use for

a localization algorithm.

5.3 Algorithmic Approach

The skin is designed to continually monitor vibrations generated in the skin, and provide

high-level information to the host robot only when events of interest occur. Each node is assumed

to have a unique ID, as well as know its physical location in the skin.

5.3.1 Finite State Machine

Each node is modeled as a finite state machine, as shown in Figure 5.4. The purpose of

modeling node behavior as a state machine is to ensure that every node can operate independently

of other nodes, and thus ensuring global behavior which is robust to individual node failure.

The behavior of each state is detailed below:

54

Figure 5.3: Amplitude of the vibration intensity due to a vibration motor as a function of distance
between the motor and sensor node.

Figure 5.4: Finite state machine model of individual sensor nodes.

• CALIBRATION. When initially powered, nodes begin in the CALIBRATION state.

In this state, the node initializes the signal buffer and allocates memory for the various

spectral windows. Additionally, the initial level of the ambient spectrum is computed using

a number of valid measurement windows. Once calibrated, the node enters the IDLE state.

55

• IDLE. While in the IDLE state, nodes sample the microphone, compute the spectrum of

the signal, and update the ambient and transient spectrums. The node remains in this state

until the the transient spectrum exceeds a predefined threshold at one or more frequencies.

At this time, a signal is considered to be detected, and the node enters the SENSED state.

• SENSED. The purpose of the SENSED state is to ensure that vibrations have propagated

through the skin, and the transient spectrum recorded by nodes capable of detecting the

signal. While in the SENSED state, the node waits for a random amount of time between 5

and 25 milliseconds. This delay ensures that neighboring nodes have time to process their

local measurements, and helps balance communication load in the network by ensuring

that a group of node do not simultaneously attempt communication. Once this delay has

finished, the node enters the SHARE state.

• SHARE. When a node enters the SHARE state, it broadcasts a packet containing its

ID, location and transient spectrum. Additionally, while in this state, the node receives

similar packets from neighboring nodes. A node maintains a table containing its own

information and neighboring information, inserting an entry into the table when a packet

with a previously unseen ID is received. After 50 milliseconds, it is assumed that the node

will have recieved packets from nodes which have detected the vibration. At this point,

the node determines if its total transient energy (i.e., the sum of the transient spectrum)

exceeds that of all other nodes. If so, the node enters the PROCESS state, otherwise, it

returns to the IDLE state.

• PROCESS. In the PROCESS state, a node estimates the contact location (described

in Subsection 5.3.2) as well as the texture of the material making contact (described in

Subsection 5.3.3). Once this information has been calculated, the node broadcasts a packet

containing the estimated contact location and material class, and returns to the IDLE

state.

56

Ensuring each node remains in one of the above states ensures robust and efficient operation

of the skin. As there is no explicit requirement for neighboring nodes to be in a particular state,

a node’s operation is robust to the introduction or failure of neighboring nodes. While in the

IDLE state, nodes ignore packets received by neighboring nodes entering the SHARE state;

thus, the network uses only the nodes which have detected a contact event, automatically limiting

communication of packets to the neighborhood of nodes capable of using such information. Finally,

the SHARE state automatically elects a single node (theoretically, the node physically closest to

the contact location) to perform localization and classification, allowing all other nodes to resume

monitoring the skin for contact events.

5.3.2 Contact Localization

A vibration generated due to contact with the skin will propagate through the skin, and will

be detected by sensor nodes where the sound intensity is sufficiently high. Figure 5.5 illustrates

this with three sensor nodes.

Figure 5.5: Propagation of sound to sensor nodes from an arbitrary source location.

Sound intensity propagates through the skin according to Equation 5.3. One approach to

57

determining the location of the source is to determine the source location, (x, y), which minimizes

the norm of the residuals between the measured sound intensity and that predicted by Equation 5.3.

However, this requires either knowledge of the sound intensity at the source (I0), or including

this as independent variables. Alternatively, this variable can be removed entirely by considering

measurements at pair of nodes. The source location can then be determined by the following

optimization problem

x, y = argmin
x,y

N∑
i=2

∥∥I21 ((x− x1)2 + (y − y1)2
)
− I2i

(
(x− xi)2 + (y − yi)2

)∥∥ (5.4)

where N is the number of sensor nodes that detected the signal. A detailed derivation of this

equation is given in [54]. Using the L2-norm, in the above equation, gradient descent can be used

to determine the location of the source; the mean location of the sensor nodes that detected the

signal is a reasonable choice for the initial guess of (x, y).

5.3.3 Texture Identification

In addition to determining the source location, identifying the texture of the material used

to make contact is also desired. Several machine learning approaches are suitable for this task,

though models with a minimal number of parameters and operations is ideal, given the constraint

of computing resources. One very simple approach is to use logistic regression—given the transient

spectrum, X, the likelihood that the spectrum was produced by texture t is given by

yt(X) = φ

(
b+

∑
N

wiXi

)
(5.5)

where φ is the sigmoid function, Xi is the value of bin i of the transient spectrum, and wi

and b are model parameters learned from a training set.

58

5.4 Experimental Results

5.4.1 Contact Localization

Localization was validated with an experiment involving a 15 cm x 13 cm region of the skin,

shown in Figure 5.6. A vibration motor was placed on a grid with 1 cm intervals, and the intensity

of the vibration signal was measured at the three labeled sensor nodes in the figure. Figure 5.7

shows the intensity of the peak bin of the transient spectrum as a function of source position.

Figure 5.6: Sensor nodes used for localization experiment.

The source position is estimated using Equation 5.4. Figure 5.8 shows the residual error

for each measurement point. The dashed blue triangle represents the region of interest for this

calculation. Outside this area, other nodes are expected to participate in the localization estimates,

likely improving the estimates in these regions. The mean magnitude of the residual is 3.55 cm,

with a standard deviation of 1.96 cm.

5.4.2 Texture Identification

A texture recognition experiment was also performed using 15 textures, as shown in Figure 5.9

and listed in Table 5.1. For each texture, 100 samples were collected by rubbing a sample of each

texture near a sensor node, and recording the transient signal measured my the node. The texture

sample was rubbed within a 3 cm region of the microphone, and the transient spectrum was sampled

every 5 seconds.

59

Figure 5.7: Amplitude of the transient signal for nodes 1 (left), 2 (center), and 3 (right), due to
signal source at various locations in the region of interest.

Figure 5.8: Residual error of calculated location of contact location.

A logistic regression model was trained using the collected dataset, and was assessed using

10-fold cross-validation. The logistic regression model was able to classify textures with an accuracy

of 71.7%. A two-layer neural network was also trained; classification was only slightly better with

a 73.1% accuracy. The confusion matrix for the logistic regression classifier is given in Table 5.2,

demonstrating the classes have similar accuracy. Common confusion between cotton and dense

60

foam, as well as sandpaper and brush, is also observed.

Figure 5.9: Textures used for texture identification experiment.

5.5 Uncertainty Analysis

The dynamic model of the skin allows for uncertainty analysis to be performed, which provides

a means of determining the effect that sensor noise has on localization predictions. Measurements

from each sensor can be modeled with zero-mean Gaussian noise added; Equation 5.3 is then

modified to include this noise

Ii(ω, x, y) =
I0(F, ω)√

(x− xi)2 + (y − yi)2
+N (0, σi) (5.6)

where r is expressed explicitly in terms of the source and sensor node positions. Given a set

61

Table 5.1: List of textures used for classification experiment.

a) Brillo Pad b) Brush c) Cardboard
d) Coarse Wire Mesh e) Cotton f) Dense Foam
g) Fine Wire Mesh h) Plastic i) Sandpaper
j) Silicone Foam k) Skin l) Sponge
m) Terry Cloth n) Textured Silicone o) Wood

Table 5.2: Confusion Matrix for the Logistic Regression classifier.

A B C D E F G H I J K L M N O

A
ct

u
al

C
la

ss

(A) Brillo Pad 89.0 4.0 0.0 1.0 0.0 0.0 0.0 1.0 2.0 0.0 0.0 0.0 1.0 1.0 1.0
(B) Brush 2.0 59.0 4.0 6.0 0.0 3.0 0.0 1.0 9.0 2.0 1.0 3.0 6.0 4.0 0.0
(C) Cardboard 1.0 1.0 77.0 0.0 2.0 2.0 5.0 2.0 1.0 1.0 4.0 3.0 0.0 0.0 1.0
(D) Coarse Wire Mesh 3.0 7.0 3.0 64.0 2.0 2.0 1.0 4.0 2.0 1.0 5.0 2.0 3.0 1.0 0.0
(E) Cotton 0.0 1.0 2.0 1.0 69.0 15.0 0.0 1.0 1.0 0.0 1.0 3.0 2.0 1.0 3.0
(F) Dense Foam 2.0 3.0 3.0 2.0 14.0 54.0 3.0 0.0 4.0 3.0 1.0 3.0 3.0 1.0 4.0
(G) Fine Wire Mesh 2.0 1.0 4.0 2.0 0.0 0.0 80.0 3.0 2.0 0.0 2.0 1.0 2.0 1.0 0.0
(H) Plastic 1.0 3.0 1.0 0.0 3.0 0.0 2.0 78.0 6.0 1.0 4.0 0.0 1.0 0.0 0.0
(I) Sandpaper 1.0 8.0 0.0 6.0 2.0 4.0 0.0 3.0 58.0 1.0 4.0 6.0 3.0 0.0 4.0
(J) Silicone Foam 1.0 1.0 1.0 1.0 2.0 3.0 2.0 0.0 3.0 77.0 1.0 3.0 1.0 4.0 0.0
(K) Skin 0.0 1.0 0.0 3.0 2.0 1.0 2.0 1.0 1.0 1.0 81.0 3.0 2.0 0.0 2.0
(L) Sponge 0.0 3.0 5.0 5.0 4.0 3.0 1.0 1.0 0.0 2.0 3.0 65.0 3.0 2.0 3.0
(M) Terry Cloth 2.0 2.0 6.0 6.0 2.0 4.0 1.0 1.0 2.0 0.0 0.0 4.0 70.0 2.0 3.0
(N) Textured Silcone 2.0 2.0 4.0 4.0 0.0 5.0 1.0 1.0 0.0 5.0 0.0 3.0 3.0 72.0 1.0
(O) Textured Silcone 1.0 3.0 0.0 0.0 1.0 0.0 0.0 2.0 4.0 1.0 0.0 5.0 2.0 5.0 75.0

of N sensor measurements, and the Jacobian matrix of the measured intensities can be calculated

JI(x, y) =


∂I1
∂x

∂I1
∂y

...
...

∂IN
∂x

∂IN
∂y

 (5.7)

The equations for measured intensities treats the source location as independent variables.

The uncertainty in these measurements due to uncertainty of the source location is approximated

using the Jacobian matrix [14]

ΣI ≈ JI(x, y)ΣxyJTI (x, y) (5.8)

where ΣI is the covariance matrix of the sensor measurements, and Σxy is the covariance

62

matrix of the source position. As sensor noise can be assumed to be independent, the covariance

matrix of the sensor measurements will be diagonal. By left- and right-multiplying these equations

by the pseudoinverse of the Jacobian, the covariance of the source position can be expressed as a

function of sensor noise

Σxy ≈
(
JTI (x, y)JI(x, y)

)−1
ΣI
(
JI(x, y)JTI (x, y)

)−1
. (5.9)

5.5.1 Localization Uncertainty

Equation 5.9 allows for analyzing the effect of contact force, sensor spacing and contact

position. Assuming a constant level of sensor noise (i.e., σi), the standard deviation of the position

of the source (i.e., σx, σy) is calculated relative to the sensor noise. These calculates are provided

in Figure 5.10 for the case where three sensor nodes are involved in computing source location.

The effect of source intensity (Figure 5.10, left) shows a power-law relationship between

the source intensity and source position uncertainty. This is to be expected, given the intensity

decreases inversely as a function of distance, r, and the presence of a r3/2 term in the Jacobian.

The effect of sensor spacing is given in Figure 5.10, center. This plot assumes the contact

point is at the center of the triangle defined by the three sensor nodes. This relationship is useful

for determining the node spacing necessary for a desired tactile acuity.

Finally, the effect of the position of the source with respect to the sensor nodes is given in

Figure 5.10, right. The source is moved from the midpoint between two sensors to the third sensor,

as shown in the inset of the figure.

5.6 Texture Identification

The robustness of the logistic regression classifier can also be estimated by determining the

classifier accuracy with Gaussian noise introduced into the test data. Gaussian noise was introduced

with a standard deviation ranging from 0% to 50% of the average energy in each bin in the test

set. Ten noisy data sets were produced in this manner, and the classifier accuracy was evaluated

63

Figure 5.10: Left: Relative ncertainty of source position as a function of source intensity. Center:
Relative uncertainty of source position as a function of sensor spacing. Right: Relative uncertainty
of source position as a function of source location.

for each, shown in Figure 5.11. From Figure 5.3, the standard deviation of the measured signal

reaches approximately 50% of the mean of the signal at 5–7 cm; the expected accuracy of a single

node would be expected to be about 43% in the worse case for the prototype skin. However, at this

point, multiple nodes would be capable of making estimates at this accuracy; it would be possible

to combine predictions from several nodes to increase this accuracy.

5.7 Discussion

The skin presented in this section represents a robotic material with an amorphous algorithm

designed as suggested by [91]: using a strong understanding of the dynamics of the underlying

material, nodes share local state information to estimate the continuous state of the material. This

approach provides several advantages, which are demonstrated in this chapter.

An accurate model of the dynamics of the material allows for a potentially simple approach

to estimating the state of the material—the desired parameters of the material can be estimated by

fitting the dynamics of the material to node observations. A second advantage is that uncertainty

analysis can be applied to determine the robustness of the material to noise in measurements.

However, there are several limitations which make this approach unsuitable to several applications.

First, the dynamics of the material may not be well understood. More importantly, the physical

stimuli experienced by the material may not be easily modeled. For example, modeling affective

64

Figure 5.11: Accuracy of logistic regression classifier with noisy data.

touch gestures is infeasible, given the complexity of gestures.

An additional limitation is signal processing requirements to model the material. In the

example in this chapter, calculation of the spectrum of the signal consumes a significant portion of

the available RAM (∼63%) on the microcontroller, as well as a significant portion of computing time

(15 ms). This leaves few computing resources for additional processing (e.g., complex classification

models).

Chapter 6

A Modular CNN-LSTM Architecture for Multi-Node Computing in Robotic

Materials

This chapter describes a neural network based approach to computation in multinode robotic

materials. A modular CNN-LSTM architecture is presented that extends on the CNN architectures

used in Chapter 4 by adding an LSTM layer after the CNN layers, with an optional fully connected

layer following the LSTM layer.

Communication between nodes is modeled using weighted connections between the output

of the LSTM layer of a node and the input to the LSTM layer of a neighboring node. As with

the single node CNN models, hardware limitations introduce potential constraints associated with

communication—the number of values that can be communicated between nodes must remain

small enough to ensure that communication bandwidth is not exceeded. At a minimum, it may be

desired to limit communication between nodes to lower the amount of energy expended through

communication. An approach to learning a communication protocol that limits the communication

rate is also presented and validated with a simple example.

6.1 Centralized vs. Distributed Machine Learning

A typically machine learning approach assumes the complete input is available to the pattern

recognition model. For an application typical of robotic materials, this would involve collecting

information from all sensors in the material. Features would be extracted from the sensor data,

which would be used as input to the pattern recognition model to generate a desired response, as

66

shown in Figure 6.1, left.

Figure 6.1: Comparison between centralized pattern recognition approaches and pattern recognition
in sensor networks.

Sensor Sensor Sensor Sensor

Feature Extraction

. . .

Pattern Recognition Model

Response

Sensor

Feature

Extraction

Pattern

Recognition

Model

Response

Consensus

Sensor

Feature

Extraction

Pattern

Recognition

Model

Response

Consensus

Sensor

Feature

Extraction

Pattern

Recognition

Model

Response

For robotic materials, this approach becomes infeasible for a variety of reasons. The primary

hinderance is the inability for such an approach to scale. As the number of sensors increases, it

becomes more infeasible to collect data from all sensors in a reasonable amount of time: a microcon-

troller will have a limited number of analog-digital converters to sample analog sensors, and digital

sensors using two-wire communication would be limited by the bandwidth of the communication

channel. Providing the desired response signals to actuators in the material is similarly hindered

by communication limitations. Computing resources would also limit the number of sensors that

can be reasonable processed. The number of features to adequetely summarize sensor values would

need to increase to maintain a sufficient level of performance of the pattern recogntion model (un-

less the mutual information between sensors is exceedingly high, implying that too many sensors

are present in the system), quickly exceeding the computing capacity of the microcontrollers used.

Consequently, such an approach is suitable for robotic materials only when sensing / actuation is

limited to a small set of local sensors / actuators.

An alternative approach, which has been proposed and explored by the sensor network com-

munity, is shown in Figure 6.1. In this approach, features are extracted from local sensor measure-

ments, which is then used by a local pattern recognition model to produce the desired response.

Performing machine learning in this manner was first proposed as a unified approach to sensor

netowrk applicaitons in 2003 [122]. Implementations of this proposed approach has resulted in ap-

67

proaches using distributed Support Vector Machines, mixture models, and probabilistic graphical

models. Support vector machines can leverage kernels which only have local spatial support to

perform regression [43, 71, 72], and sharing kernel weights with neighboring nodes. Training of

SVM models has also been performed in a decentralized manner by merging points describing local

convex hulls of the training data [43, 73, 33]. Mixture models can be generated from sensor data

in a distributed manner through distributed expectation maximization algorithms, which rely on

gossip or consesus protocols to share sufficient statistics of local data [97], or to update local esti-

mates of global model parameters [77, 42, 35]. Finally, inference in Bayesian models is performed

using a belief propagation algorithm to perform global inference while requiring individual nodes

to maintain only a few local random variables [18, 103, 102].

6.2 Neural Network Approach for Robotic Materials

The distributed machine learning approaches described above have been shown to be useful

for several sensor network applications. However, these approach are lack properties which are

desirable for robotic material applications:

• The sensor network applications cited focus on determining the distribution of some low-

dimensional, slow-changing, spatially distributed environmental property: temperature,

population density, distribution of a pollutant, etc. Robotic materials, on the other hand,

will need to respond to stimuli that are high-bandwidth, spatially distributed, and likely to

be rapidly changing: responding to human gait in wearables, affective gesture recognition,

morphing shape or stiffness to adjust to dynamic loads, etc. Robotic material models

will often require a temporal model to continually monitor sensor signals and generate

responses.

• As sensor data in robotic materials are typically high-bandwidth, it is necessary to extract

features prior to performing pattern recogntion. While commonly used classes of features

exist (e.g., statistical moments, autoregressive coefficients, etc.), it would be ideal to gen-

68

erate a minimal set of features specific for the expected sensor data, in order to minimize

memory consumption. Additionally, the feature set generated should require a minimal

amount of computation to perform.

• A pattern recognition model should be able to learn an arbitrary desired response. For

instance, a logistic regression model, while simple, is unable to learn the XOR function [142].

6.2.1 Modular CNN-LSTM Model

Robotic materials tightly integrate a network discrete elements with local sensing, computing

and acutaiton capablilities with an underlying engineered material [90]. Each computing node

sensing local changes in the material due to external stimuli, and can locally modify some property

of the material with local actuation. Communication can occur between neighboring nodes in order

to allow for implementation of a distributed controller to generate desired global behavior. Each

of these aspects is shown in Figure 6.2.

Figure 6.2: Robotic material, consisting of discrete elements with local sensing, computing, and
actuation capabilities; a communication network between computing elements; and a continuous
material. Reproduced from [90].

Implementing neural network models on the computing nodes needs to address the sensing,

communication and actuation capabilities in a robotic material. The proposed modular CNN-

69

LSTM architecture is shown in Figure 6.3. The modules defined by the dashed lines are intended

to be implemented on individual computing nodes in Figure 6.2. Each network module consists

of a multi-layer CNN, an LSTM, and an optional fully connected layer. Local sensing is used as

input to the CNN layer, and actuation is controlled by the output of the fully connected layer. The

LSTM layer combines the output of the CNN and the previous output of neighboring LSTMs. The

structure of a single module is similar to those used in recent approaches for speech recognition [117]

and human activity recogntion [100].

Figure 6.3: General approach to implementing a modular CNN-LSTM architecture into local com-
puting nodes in a robotic material. Local communication is performed between LSTM layers.

Local Actuators

LSTM

Fully

Connected

CNN

Local Actuators

LSTM

Fully

Connected

CNN

Local Actuators

LSTM

Fully

Connected

CNN

Local Sensors Local SensorsLocal Sensors

The three components in the architecture each serve distinct purposes: the CNN layer per-

forms feature extraction and dimensionality reduction, converting raw sensor values to a high-level

abstract representation; the LSTM layer maintains a representation of local state, and updates

state based on local CNN output and neighboring state; and the fully connected layer allows for

nonlinear mapping of local state to actuation values. As this thesis is concerned primarily with

the perception in robotic materials, actuation will include classification and regression tasks—a

host system can extract predictions from the material at arbitrary points, or a central node in

70

a hierarchical system can transmit results to a host system through the network as a separate

operation.

This architecture can be viewed in two separate ways. From a local perspective, individual

computing nodes implement independent neural network models, and information is communicated

between nodes. From a global perspective, the neural network as a whole can be considered as a

single model partitioned across several computing nodes. The former perspective is similar to that

of distributed robotics or sensor networks, while the latter is similar to a distributed deep network,

such as in [24].

6.3 Communication Control

As with memory, communication between nodes in a robotic material is constrained by the

bandwidth of the channel between the nodes, and limiting communication may be desirable in

order to minimize the power requirements of the robotic material. As mentioned in Chapter 6,

communication betweed nodes in a robotic material is modeled as connections between LSTM

layers in each module in the neural network. From this perspective, parsimonious communication

can be achieved in two ways: the dimensionality of the communication connection (i.e., packet

size) can be minimized, or communication can occur sparsely by allowing non-zero activity in the

connection a small percentage of the time (i.e., minimizing communication rate).

Several approaches to implementing communication using local neural network controllers

have been explored in swarm robotics and multi-agent systems. In swarm robotics, communication

has been utilized as weighted connections between nodes in a global neural network, allowing swarms

to learn a global response to external stimuli [101]. Similarly, reinforcement learning has been used

to train a robot swarm to perform desired tasks, given a simplified communication protocol [63].

Communication protocols can be learned directly in deep neural networks: CommNet incorporates

a communication step between hidden layers in a deep neural network to simulate broadcasting

of the mean state of agents at each step [127], which can be trained using backpropagation; deep

reinforcement learning using recurrent neural networks has also been used to learn communication

71

protocols in multi-agent systems [34]. Both of these approaches assume communication can be

performed at each time step.

The approach presented in this chapter assumes that information can be shared between

LSTM layers in neighboring modules. Communication can be controlled using a gating network,

which determines when a communication channel is active. The architecture for this approach is

given in Figure 6.4.

Figure 6.4: Communication between LSTM layers controlled by a gating network.

LSTMi

cij

Gate

Network oG
i

LSTMj

cji

Gate

NetworkoG
j

xi xj

ojoi

cijcji

Module i Module j

^ ^

Each module in Figure 6.4 consists of an LSTM, which receives input xi(t) from previous

layers in the module’s netowrk, and generates output oi(t). At each time step, a communication

packet is generated, cij(t), which is to be sent to module j. The communication packet can be

considered a fully connected layer, whose value is given by

cij(t) = φ
(
W i
LC + biC

)
(6.1)

where W i
LC and biC are connection weights and biases, and φ is an arbitrary activation

function. Additionally, each module contains a Gate Network, which generates an output oiG(t)

based on the output of the LSTM. Nominally, the output of the gate network is a scalar value of

either zero or one, reflecting when the communication channel is off or on. The communication

72

packet is multiplied by the gate output, ĉij(t) = oiG(t)cij(t), which correlates to sending a packet

when the channel is on, and sending zeros when the channel is off.

At each time step, module j incorporates the value on the communication channel at the

previous time step into the input of the LSTM, that is

xjLSTM (t) = xj(t) + ĉij(t− 1) (6.2)

Assuming packets can be assigned continuous values, the network may largely be trained using

backpropagation-through-time (BPTT). However, as the output of the gate network is nominally

assigned a value of either zero or one, an error gradient doesn’t exist for the output of the gate

network, and so parameters from the gate network cannot be trained using BPTT. The approach

to training the gate network relaxes the condition of strictly assigning a value of zero or one to the

gate output by using a sigmoid activation to generate the gate output.

6.3.1 Stochastic Gating

Stochastic Gating involves training the communication network such that communication

is allowed a certain percentage of the time, though specific timing of communication events is

not defined. This involves using a sigmoid activation function to approximate the output of the

gating unit; with sufficiently large positive or negative inputs, the value of the activation function

approaches zero or one. This approach has the advantage of providing a error gradient for the gating

network, allowing both the LSTM layer and the gating network to be trained concurrently using

BPTT. Once trained, the sigmoid unit (i.e., “soft” gating unit) can be replaced with a threshold

unit (i.e., “hard” gating unit), which takes a value of zero or one depending on the sign of the

input.

Optimizing the LSTM network involves minimizing a cost function, J(θ), where θ represents

the assignment of specific values to the paramters of the network. This cost function represent the

error between the desired and true outputs of the LSTM network, given an input. To properly train

the gating network, this cost function needs to be augmented with two cost functions associated

73

with the gating unit—one which encourages the gating unit to values near zero or one, and a

second which controls the rate of activation (i.e., the percentage of time when the gate unit is one).

The first cost function can be any function which approaches zero when the soft gating output

approaches zero or one, and monotonically increases as the value approaches an intermediate value

from either extreme. One such function is given as

JG(oiG|θG) = oiG(1− oiG). (6.3)

Alternatively, considering the gate output a Bernoulli random variable, the Rényi entropy of

the output [113] may also be used

JG(oiG|θG, α) = Hα(oiG) =
1

1− α
(
oiG
)α (

1− oiG
)α

(6.4)

where the order of the entropy, α, controls the slope of the cost. These two cost functions

are shown in Figure 6.5.

Figure 6.5: Sparse gating cost function (left), and alternative cost function based on Rényi entropy
(right) for a range of values for α.

0.0 0.2 0.4 0.6 0.8 1.0
oG

0.00

0.05

0.10

0.15

0.20

0.25

J(o
G
)

0.0 0.2 0.4 0.6 0.8 1.0
oG

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

J(o
G
)

α=1
α=2
α=10
α=∞

A second cost function is required to limit the communication rate between nodes. The

communication rate can be controlled by limiting the activation of each gate to be high a predefined

percentage of time steps. The Kullback-Leibler (KL) divergence of the actual and desired activation

74

rates has been used as penalty function for training sparse autoencoders [80]; a similar penalty

function is used to encourage a desired communication rate. Let ρ be the desired communication

rate (i.e., percentage of time steps where a packet is sent). The true communication rate, ρ̂, of the

network is simply the percentage of time the gate is active

ρ̂ =
1

NT

∑
N

T∑
t=1

oiG(t) (6.5)

where N is the number of training sequences, and T is the duration of each training sequence.

The activation rate cost for the gate is given by

JKL(oiG|θG) = KL(ρ||ρ̂) = ρlog

(
ρ

ρ̂

)
+ (1− ρ)log

(
1− ρ
1− ρ̂

)
(6.6)

This cost function is shown in Figure 6.6. The two summands in the equation are also shown

as dotted lines. While it is possible to use only the second summand as a cost function (which

encourages low activation rates), this may not be ideal, as it could encourage a network to needlessly

sacrifice performance for lower communication rates (i.e., allow J(θ) to be higher to allow for lower

values of JKL). The final cost function can then be added to the initial cost function of the network,

J(θ),

Jcomm(θ) = J(θ) + λ1JG(oiG|θG) + λ2JKL(oiG|θG) (6.7)

where λ1 and λ2 adjust the relative importance of encouraging gate activation to zero or one,

and encouraging communication rate to match the desired rate, respectively. In practice, λ1 and

λ2 can be annealed over several training steps, initially taking a values of zeros and increasing to

the final desired values.

6.3.2 Communication Experiment

To evaluate the capability of the above approache, a network consisting of two communicating

LSTM modules were trained to learn a simplified, multi-step variation of the Color-Digit MNIST

75

Figure 6.6: Sparse gating activation rate cost function, with a target activation rate of ρ̂ of 0.25.

0.0 0.2 0.4 0.6 0.8 1.0
oG

0.0

0.5

1.0

1.5

2.0

2.5

3.0

J K
L(o

G
)

Game [34]. Each module receives a digit value, da ∈ 0 . . . 9, and a colour label, ca ∈ 0, 1. The

modules must learn a two bit output: the parity of the sum of the two digits (i.e, even or odd),

and the colour value assigned to the opposite module. At each time step, each module can send a

1-bit message to the other module.

The network is designed to allow each module to send a single value to the other module

at each time step. The network is trained over ten time steps, and final evaluation is performed

at the last time step. Communication is further constrained by forcing the communicated value

to in the final network to take a value of zero or one; effectively, a single bit of information

can be communicated at each time step. The two outputs of each module are dependent on

information from the other module, and is therefore not expected to perform better than chance

without correctly exchanging information. Each module must communicate at least two bits of

information—its colour label, and the parity of its digit. Additionally, modules must learn to

preprocess portions of its input (determining the parity of its input), and combine that with received

information (the parity of the other module’s digit), to generate the correct output.

In order to succeed, the network must learn a communication protocol that, where each

module must decide which time steps to transmit information, and which order to send each bit;

each module also must learn the communication protocol of the other module.

76

A dataset consisting of all combinations of digits and numbers was created, consisting of a

total of 400 cases. 20% of the dataset was retained for testing purposes.

To validate the sparse gating approach, a network consisting of two LSTM modules was

created. The LSTM layer in each module contained 25 cells. Hidden layers of 10 cells preceeded

and followed the LSTM layer—this is necessary to ensure that parity can be calculated for the input

digit, and combined with the parity received by the other module. A single gated communication

channel was connected between the two modules, allowing each to send a single bit of information

at any time step.

The network was trained over ten time steps, the inputs (digit and color) were available to

each module at each time step, and the final output is used for evaluation. For training, the gate

cost parameters were set to λ1 = 0.8 and λ2 = 0.5. Additionally, the communication packet value

was trained to take values of one or zero in a similar manner to training the gating network. These

values were set to zero for the first 1,000 training epochs, and were linearly annealled over 1,000

epochs for λ1 and 2,000 epochs for λ2. This ensures that network can learn the desired task in a

relaxed case, after which stricter gating is learned.

Two cases were considered: one where each module was allowed to send a bit of information

twice, and one where each module was only allowed to send a single bit of information. The former

case is the minimal number of communication steps to succeed at the task, while the latter case

will not allow both tasks to be performed successfully.

Figure 6.7 shows the training cost for each modules, as well as the activation cost and KL cost

for the gate for each module, for the case where two bits are allowed to be sent by each module. The

cost associated with the output decreases in only a few training epochs, demonstrating that the task

can be easily learned when constraints are not placed on the communication gate. Once the gating

cost is incorporated starting at 1,000 epochs, the output cost becomes unstable, jumping at several

points during training as the network learns to communicate under harder gating constraints.

Figure 6.8 shows the accuracy of each module performing the parity and color tasks. Accuracy

is given for both the case where the gate is allowed a soft activation (a continuum of values from

77

Figure 6.7: Cost function of the output of the LSTM networks (top) and cost of gating (bottom)
of the two network modules as a function of training epochs; each module allowed to communicate
two bits of information.

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

Ou
tp

ut
 C

os
t

Costs - Module A

0 2000 4000 6000 8000 10000
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ga
te

 C
os

t

Activation
KL

0 2000 4000 6000 8000 10000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Costs - Module B

0 2000 4000 6000 8000 10000
Epoch

0.0

0.2

0.4

0.6

0.8
Activation
KL

the output of the sigmoid unit), and a hard activation (assignment to either zero or one). As can be

seen, tasks are readily learned for the case where soft activaiton is allowed, and the more difficult

task of learning to communicate with hard activation requires several more training epochs once

the easier task is learned.

Figure 6.9 shows the training cost for each module when only a single bit is allowed to be sent

by each module. The training cost is slightly more unstable than for the two bit network, though it

still converges to a low final cost. The accuracy of this network is given in Figure 6.10. Unlike the

network capable of sending two bits of information, this network is only able to accurately perform

the color task successfully with hard gating—the parity task achieves an accuracy of 50%, which

is to be expected if no information regarding parity is received by a module.

78

Figure 6.8: Accuracy of the digit task (top) and color task (bottom) of the two network modules
as a function of training epochs; each module allowed to communicate two bits of information.

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

Di
gi

t

Module A

Soft Gating
Hard Gating

0 2000 4000 6000 8000 10000
Epoch

0

20

40

60

80

100

Co
lo

r

Soft Gating
Hard Gating

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

Module B

Soft Gating
Hard Gating

0 2000 4000 6000 8000 10000
Epoch

0

20

40

60

80

100

Soft Gating
Hard Gating

6.4 Discussion

A modular CNN-LSTM is presented as an approach to processing in robotic materials. The

model builds on the CNN models presented in Chatper 3 for the single node case by incorporating

an LSTM layer. This layer can be viewed as representing the internal state of the node, which

can then be used to determine ancillary operations, as with the robotic skin in Chapter 4, or to

determine a communication protocol with neighboring nodes.

Experimental results demonstrate that an effective communication policy can be learned for

the Color-Digit Game where the exact number of bits required is allowed to be shared between

modules, and that reducing the number of communicated bits results in a failure of the task. For

robotic materials, communication will generally consist of a vector of continuous values, rather than

a single bit. The resulting training will likely be simpler, as the information communicated will not

79

Figure 6.9: Cost function of the output of the LSTM networks (top) and cost of gating (bottom)
of the two network modules as a function of training epochs; each module allowed to communicate
two bits of information.

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

Ou
tp

ut
 C

os
t

Costs - Module A

0 2000 4000 6000 8000 10000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ga
te

 C
os

t

Activation
KL

0 2000 4000 6000 8000 10000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Costs - Module B

0 2000 4000 6000 8000 10000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Activation
KL

be forced to take a binary value. As the communicated values will be continuous, there is no need

to encode information in the soft assignment of the gating function, and thus the gating assignment

can be pushed towards binary values without affecting the overall network performance.

80

Figure 6.10: Accuracy of the digit task (top) and color task (bottom) of the two network modules
as a function of training epochs; each module allowed to communicate two bits of information.

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

Di
gi

t

Module A

Soft Gating
Hard Gating

0 2000 4000 6000 8000 10000
Epoch

0

20

40

60

80

100

Co
lo

r

Soft Gating
Hard Gating

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

Module B

Soft Gating
Hard Gating

0 2000 4000 6000 8000 10000
Epoch

0

20

40

60

80

100

Soft Gating
Hard Gating

Chapter 7

Multi-Node Robotic Material Experiments

This chapter presents an application of a modular CNN-LSTM in a robotic material context,

namely human activity recogntion using a suite of wearable sensors located at critical points on

the wearer’s body. The investigation in this chapter uses the largest number of sensor channels

among the applications shown so far, which highlights the utility of using modular CNN and CNN-

LSTM architectures. Additionally, the communication model presented in Chapter 6 is leveraged

to show the ability to limit communication bandwidth in the network without a significant drop in

performance.

7.1 Human Activity Recognition

Human activity recognition is one of several applications which has resulted in the advance-

ment of wearable computing and robotics [134, 106, 145, 141, 100, 55]. Human activity recognition

attempts to identify various levels of activities of the wearer, such as mode of locomotion, tasks

being performed, etc. As with Switchback (Chapter 4), wearable sensors and computing are unique

in that no external measurement device is required, though there is significant constraints on power

and weight to ensure the functionality of the system.

Figure 7.1 compared two approached to performing HAR in a wearable system. A centralize

approach, such as what would be required in the references listed above, assumes all sensors values

are collected and processed in a central location. As the number of sensors increases, however,

communication and processing requirements places a burden on power requirements, ultimately

82

making such an approach unfeasible for extended use. An alternative approach is to process data

in a hierarchical manner, processing sensors at each extremity, and aggregating the results at a

central location.

Figure 7.1: Approaches to human activity recognition. Left: Data from a number of sensors are
aggregated and processed at a central location. Right: Data are processed hierarchically, leading
to more and more abstract representations. Note that network granularity is arbitrary [55].

7.2 Opportunity Dataset

The Opportunity Activity Recognition Dataset [115] is a publically available benchmark

dataset for classifying human activites at several levels, from low-level locomotion (e.g., walking)

to complex, high-level activities (e.g., making a sandwich). Using a set of body-work sensors as

well as object and ambient sensors, data was collected from four users performing six runs of daily

living activities. The body-worn sensors, which are of interest in this chapter, consists of a total of

133 total sensor channels from tri-axial accelerometers and IMUs, as listed in Table 7.1. Sensors

were sampled at a rate of 30 Hz.

The task of interest for this chapter is to identify which of 18 mid-level activities, listed in

Table 7.2, the wearer is performing.

Two datasets were created: one consisting solely of windows of 30 samples (1 second), and

a second consisting of a sequence of 60 windows; the former was used with CNN architectures,

83

Table 7.1: Location of sensors used in the Opportunity Dataset.

Body (19*) Left Arm (38) Right Arm (38) Left Leg (16) Right Leg (22)

Hip Acc Upper Arm Acc Upper Arm Acc Shoe IMU Upper Knee Acc
Back Acc Lower Arm Acc Lower Arm Acc Lower Knee Acc
Back IMU Upper Arm IMU Upper Arm IMU Shoe IMU

Lower Arm IMU Lower Arm IMU
Wrist Acc Wrist Acc
Hand Acc Hand Acc

∗

Numbers in parentheses indicate the total number of attributes (sensor values) per region.

Table 7.2: Mid-level activities to be classified in the Opportunity Dataset

Open Door 1 Open Door 2 Open Drawer 1
Open Drawer 2 Open Drawer 3 Close Door 1
Close Door 2 Close Drawer 1 Close Drawer 2
Close Drawer 3 Open Fridge Close Fridge
Open Dishwasher Close Dishwasher Clean Table
Drink from Cup Toggle Switch Null

while CNN-LSTM architectures were used with the latter. The datasets were split into training,

validation and test sets using an 80%-10%-10% split.

7.3 Network Architectures

7.3.1 CNN Architectures

The CNN architectures were based on those found in [141], which consists of three sets of

convolutional and max-pooling layers, followed by a softmax classifcation. Decentralized versions of

this architecture (without the final softmax layer) were also implemented to perform local processing

of the sensors located on each leg, each arm, and on the body. The output of each CNN was

transmitted to the body node, which performed final classification using a softmax classifier. Details

on the derivation of these architectures is given in [55].

84

7.3.1.1 Centralized CNNs

Two centralized CNN models were used. The first (CNN-1) used the same architecture

as that in [141], namely [(I,(30,133)), (C,5,50), (P,2,2), (C,5,40), (P,2,2), (C,3,20), (P,2,2)]. A

second architecture (CNN-2) reduced the number of kernels used by the first model by 50%. This

reduction in the number of kernels has minimal effect on the final accuracy of the model, though

further reduction greatly reduces the accuracy. The kernel and pooling size and strides remain

unchanged.

7.3.1.2 Distributed CNNs

Two distributed CNN models were developed to compare with the centralized versions. The

first distributed CNN model (D-CNN-1) consists of CNNs in each body region with the same

architecture as the CNN-2 model. A second distributed CNN model (D-CNN-2) estimated an

optimal number of kernels for each layer specific to each region. Table 7.3 summarizes the number

of kernels used in each region.

Table 7.3: Number of kernels in each layer for the D-CNN-2 model.

Layer Body Left Right Left Right
Arm Arm Leg Leg

First 40 40 40 25 25
Second 25 25 20 10 10
Third 10 12 10 4 4

7.3.2 CNN-LSTM Architectures

Thee CNN-LSTM architectures were also explored, based on the CNN-2 and the D-CNN-1

architectures.

85

7.3.2.1 Centralized CNN-LSTM

A centralized CNN-LSTM model (CNN-LSTM-1) was implemented based on the CNN-2

model. For this model, the convolutional and pooling layers are followed by an LSTM layer with

40 units, followed by a softmax classification layer.

7.3.2.2 Distributed CNN-LSTM

A distributed CNN-LSTM model was also implemented based on the D-CNN-1 model (D-

CNN-LSTM-1). For each region of the body, the convolutional and pooling layers are followed by

an LSTM layer with 20 units. The output of the five LSTM layers are then concatenated and used

as input to the softmax classification layer.

7.3.2.3 Distributed CNN-LSTM with Sparse Gating

The final architecture extends the distributed CNN-LSTM model with sparse gating after

each LSTM layer, which is used to control the frequency that each LSTM layer communicates its

output to the final classificaiton layer. The LSTM layers communicate to a central LSTM layer with

50 units. The communication gate are controlled by the gating network described in Chapter 6.

7.4 Experimental Results

7.4.1 CNN Architectures

The classification accuracy and F1 score of the test set was calculated for each subject, and

is summarized in Table 7.4. While the monolithic CNNs provide the highest level of accuracy, the

performance of the D-CNNs is comparable to the monolithic CNNs.

The communication and memory requirements for each architecture was also determined,

and is summarized in Table 7.5. Comparing the accuracy and memory requirements, it can be

seen that there is a minor decrease in accuracy of the D-CNNs (∼2% compared to the CNN-2

architecutre), while the average amount of memory required for each computing node is greatly

86

Table 7.4: Accuracy and F1 score for each of the CNN architectures

CNN-1 CNN-2 D-CNN-1 D-CNN-2

Subject 1
Accuracy 96.38% 94.15% 92.71% 92.77%
F1 0.965 0.945 0.930 0.931

Subject 2
Accuracy 96.39% 93.62% 92.09% 91.69%
F1 0.965 0.938 0.924 0.920

Subject 3
Accuracy 95.92% 93.60% 91.86% 90.94%
F1 0.960 0.938 0.922 0.914

Subject 4
Accuracy 97.15% 92.79% 89.59% 90.74%
F1 0.972 0.931 0.902 0.912

reduced (∼2.25–3.0x reduciton). Additionally, the required number of sensor measurement for

the distributed approaches is much less than for the centralized case, allowing for much quicker

sampling and reduced storage requirements.

7.4.2 CNN-LSTM Architectures

The classification accuracy and F1 score of the three CNN-LSTM approaches were calculated

for each subject, and is summarized in Table 7.6. This table demonstrates that the addition of the

LSTM layer improves results over the equivalent CNN layers, increasing overall accuracy by ∼4%.

The gated version of the distributed CNN-LSTM model was trained with a target communi-

cation rate of 25%. While the reduction in communication does result in a degredation of accuracy,

ranging from ∼1%–2.5%, the gated D-CNN-LSTM architecture still outperforms both the CNN-2

and D-CNN models.

7.4.3 Hardware Implementation

To analyze timing requirements and ensure the resulting distibuted models can perform cor-

rectly when implemented on a set of wearable sensor nodes, the D-CNN-1 model was implemented

87

Table 7.5: Memory and communication requirements for models considered

Model Number of Sensors Number of Parameters Communication Size

CNN-1 133 46,138 0

CNN-2 133 19,978 0

D
-C

N
N

-1

Body 19 6,448 40∗

Left Arm 38 8,103 10
Right Arm 38 8,103 10
Left Leg 16 5,353 10
Right Leg 22 6,103 10
Total 133 34,110 40
Average 26.6 6,822 –

D
-C

N
N

-2

Body 19 10,363 30∗

Left Arm 38 13,811 12
Right Arm 38 12,468 10
Left Leg 16 3,499 4
Right Leg 22 4,249 4
Total 133 44,390 30
Average 26.6 8,878 –

∗ Received from arm and leg nodes.

Table 7.6: Accuracy and F1 score for each of the CNN-LSTM architectures.

Centralized Distributed Gated Distributed
CNN-LSTM CNN-LSTM CNN-LSTM

Subject 1
Accuracy 97.01% 96.05% 94.57%
F1 0.971 0.961 0.946

Subject 2
Accuracy 96.34% 96.32% 95.25%
F1 0.965 0.965 0.954

Subject 3
Accuracy 97.58% 97.06% 94.54%
F1 0.976 0.971 0.948

Subject 4
Accuracy 97.78% 95.64% 94.77%
F1 0.978 0.959 0.949

on five Intel Edison modules. Neural network calcuations were performed using Python and Numpy.

Sensor measurements were simulating by reading data from Run 1 of Subject 1 locally, with no

88

frame overlap. Communication was performed over on-board WiFi using TCP.

The calculation time for the three convolutional / max-pooling layers of each region was

measured for each frame. The mean computing time ranged from 177.48–181.44 ms, with a standard

deviation of 0.119 – 1.28 ms. Final classification with the softmax classifier required a mean

computing time of 0.550 ms, with a standard deviation of 15.92 µs. Communication consisted

of sending 80 byte (20 32-bit floats) to the body node. The mean time to communicate with

the four arm and leg nodes was 62.17 ms, with a standard deviation of 36.15 ms. Given these

values, a window of measurements could be processed in under 250 ms, resulting in an activity

classification rate of approximately 4 Hz, which is sufficiently fast to perform real-time, on-line

classification. Additionally, the communication time may be reduced by using UDP, or by using

wired communication (e.g., USART or I2C).

7.5 Discussion

The experiment discussed in this chapter demonstrate the suitability of using a modular

CNN-LSTM approach for processing in robotic materials. CNN and CNN-LSTM models have

produced state-of-the-art results in human activity recogntion, however, the number of sensing

elements distributed on the wearer, as well as the need for a powerful processor (e.g., GPU on a

smartphone), limits the applicability of using these models in a centralized approach. The human

activity recognition experiment in this chapter demonstrates that a modular approach performed

nearly as well as a centralized approach, but can be implemented on less powerful computing

modules that are specifically designed for wearable applications.

Chapter 8

Conclusion

Robotic materials envisions a suite of novel functional materials which tightly integrates

sensing, computing and actuation within the material to allow the behavior of the material to

be defined algorithmically. Approaches to the computing aspect of robotic materials has drawn

inspiration from a variety of fields, including swarm robotics, amorphous computing, and sensor

networks. This thesis considers the recent advances in neural networks (i.e., deep learning) as a

promising approach to performing in-material processing of high-bandwidth sensing signals present

in robotic materials, and demonstrates the convolutional neural networks (CNN) and modular CNN-

LSTM architectures can learn to perform a desired computation in a robotic material, based on

sensor input. Chapter 6 presents a modular neural network architecture which allows for significant

local processing of sensor measurements using a convolutional network, uses a recurrent layer to

maintain local state information as well as communicate with neighboring nodes.

The primary limitations on the computing capabilities of robotic materials stems from the

necessary use of small and inexpensive microcontrollers to control individual nodes. The memory

capacity of the microcontrollers used in the projects in this thesis are generally on the order of

several dozen to hundreds of kilobytes of program memory, and several to several dozen kilobytes

of RAM. This places a significant limit on the size of neural network which can be implemented on

the microcontroller. This limitation is adressed in Chapter 3, where an approach to evolving CNN

architectures is presented. This approach uses a multiobjective evolutionary algorithm to jointly

minimize the loss function of the networks as well as minimize the number of network parameters

90

in the network. I demonstrate the utility of this approach by evolving networks to recognize

handwritten digits and perform terrain identification from smart tire measurements. The former

experiment produced architectures which either were more accurate or required fewer parameters

than similar simple CNN models. Similarly, high-quality CNN models were evolved to perform

classification on terrain data, resulting in a set of efficient architectures a designer can select from

based on hardware constraints or desired performance. This latter model was used to perform

classification in the terrain-sensitive tire in Chapter 4.

A secondary consideration is the desire to limit communication between nodes. This can

either be to ensure the communication bandwidth in the network is not exceeded, or to simply

limit power consumption due to communication between nodes. In Chapter 6, the modular CNN-

LSTM architecture is modified by incorporating gating networks to control when communication

occurs, using the current state of the LSTM layer as input. This architecture is capable of learning

a communication protocol with a limited communication rate. This is shown by an example task

requiring sending two bits of information from a node to a neighboring node. In practice, com-

munication in a robotic material would likely involve continuous values, rather than discrete bits,

which are more easily trained using backpropagation. The communication model was implemented

in Chapter 7, which demonstrated that reducing the communication rate to 25% of the maximum

rate results in a minimal reduction of overall activity recognition accuracy of ∼1%–2.5%.

While performing classification or regression tasks in-material is an important aspect of this

thesis, such tasks will often need to be considered from a system-level perspective. As noted by

the amorphous algorithm in Chapter 5, one state that a node is in involves determining when

a perceived signal is simply due to ambient conditions, or if further processing is warrented. An

analog approach to this using machine learning techniques is given in Chapter 4 for the robotic skin

experiment: the Approach state uses the features extracted from individual frames to determine

if an obstacle should be simply avoided, or if further processing in the form of gesture recogntion

is warrented.

Finally, this thesis demonstrate the suitability of CNN and modular CNN-LSTM architectures

91

for processing of sensor measurements in robotic materials for a variety of domains. Two examples

are given for wearable computing applications: processing of an input touch gesture is performed in

Chapter 4, and human activity recognition is performed using multiple sensing / computing nodes

in Chapter 7. The benefit to a robotic material approach in this domain as opposed to centralized

processing is primarily due to the reduction in power and weight. While it is not infeasible to

sample and process the touch input measured in Chapter 4 using a more powerful device (e.g.,

smartphone), using a small microcontroller to perform gesture classification requires little power

(e.g., up to ∼ 5–60mW for an ATtiny85) when compare to smartphones (e.g., several hundred

mW in idle state [10]). Similarly, the approach used in Chapter 7 nominally utilizes five Intel

Edison modules, whereas the network in [100] requires the GPU capabilities of a smartphone at

minimum. Experiments with robotic skin, specifically for affective touch recogntion, represents

the second domain where this approach has been applied, and smart tires for autonomous vehicles

represents a third domain. In these two domains, the ability for robotic materials to perform in-

material processing removes a significant amount of sensor query and processing for the host robot

or vehicle, and allows the specific material to be treated as a loosely coupled modular component,

rather than a tightly-integrated component of the robot or vehicle.

8.1 Future Work

Several avenues are available for future work, both for the modular CNN and CNN-LSTM

network architectures developed and the various applications demonstrating this approach. A

primary limitation to the work presented here is that the networks were trained off-line using data

collected by the material. Ideally, training should be performed in-material. A na ive approach

involving backpropagating error signals between nodes in the material would be possible, but could

suffer from slow training times due to the high communication costs and need to synchronize

training throughout the material. A more suitable approach would minimize communication of

error signals between nodes, opting for a majority of training to be performed by a single node.

Such an approach would have the added benefit of allowing a node to learn when not actively

92

processing sensor measurements, such as during the Idle states in the skins in Chapters 4 or 5.

In this thesis, communication delay between nodes is assumed be much smaller than the dura-

tion of one time step in the LSTM layers. Thus, it is assumed that the appropriate communication

packets are available at each update. For faster update rates, communication packets may not be

received when needed, resulting in LSTM layers possibly incorporating stale data. The effects of

such delays on the performance of the material should be explored, as well as potential approaches

to mitigate any negative effects. For example, potential errors could be reduced by incorporating

random delays in packet communication during training.

The examples provided in this thesis involved learning classification or regression tasks for

the material to perform. A more interesting set of tasks, which would incorporate the actuation

elements of a robotic material, would be to learn distributed control policies for the material. One

simple approach would be to learn a distributed policy given some global algorithm as an oracle,

and to simply use the global policy to generate training examples. A more complex approach would

be to perform reinforcement learning in the material, though the memory limitations of individual

nodes would necessitate algorithms which do not require storing experiences (e.g., Deep Q Networks

and variants).

A final point of interest is the application of the modular CNN-LSTM model to swarm

robotics. Recent experiments with simple distributed feed-forward networks have shown that an

emergent group mind can emerge from a collection of swarm robots [101]. The model in this paper

treats connections in the neural network as communication events between roobts in the swarm,

which limits the number of communication steps allowed to the depth of the individual neural

networks. The modular CNN-LSTM model developed in this thesis, however, explicitly defines the

number of communication events allowed, resulting in a shallower (and thus more easily trained)

local neural network architecture.

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy, Thomas F Knight,
Jr., Radhika Nagpal, Erik Rauch, Gerald Jay Sussman, and Ron Weiss. Amorphous comput-
ing. Communications of the ACM, 43(5):74–82, May 2000.

[3] Tugce Balli Altuglu and Kerem Altun. Recognizing touch gestures for social human-robot
interaction. In Proceedings of the 2015 ACM on International Conference on Multimodal
Interaction, pages 407–413. ACM, 2015.

[4] Sliman Bensmäıa and Mark Hollins. Pacinian representations of fine surface texture.
Perception & Psychophysics, 67(5):842–854, 2005.

[5] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[6] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems, pages 2546–
2554, 2011.

[7] Andrew A. Berlin and Kaigham J. Gabriel. Distributed mems: New challenges for computa-
tion. IEEE Computational Science and Engineering, 4(1):12–16, 1997.

[8] Xi Laura Cang, Paul Bucci, Andrew Strang, Jeff Allen, Karon MacLean, and HY Liu. Differ-
ent strokes and different folks: Economical dynamic surface sensing and affect-related touch
recognition. In International Conference on Multimodal Interaction, pages 147–154. ACM,
2015.

[9] Giorgio Cannata, Marco Maggiali, Giorgio Metta, and Giulio Sandini. An embedded artificial
skin for humanoid robots. In IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems, pages 434–438. IEEE, 2008.

94

[10] Aaron Carroll, Gernot Heiser, et al. An analysis of power consumption in a smartphone. In
USENIX Annual Technical Conference, volume 14, pages 21–21. Boston, MA, 2010.

[11] Jia-Ren Chang and Yong-Sheng Chen. Batch-normalized maxout network in network. arXiv
preprint arXiv:1511.02583, 2015.

[12] Dan Ciresan, Alessandro Giusti, Luca M. Gambardella, and Jürgen Schmidhuber. Deep
neural networks segment neuronal membranes in electron microscopy images. In Advances
in Neural Information Processing Systems, pages 2843–2851, 2012.

[13] Andrea Cirillo, Pasquale Cirillo, Giuseppe De Maria, Ciro Natale, and Salvatore Pirozzi. A
distributed tactile sensor for intuitive human-robot interfacing. Journal of Sensors, 2017,
2017.

[14] Anthony A. Clifford. Multivariate Error Analysis: a Handbook of Error Propagation and
Calculation in Many-Parameter Systems. Wiley, 1973.

[15] Nikolaus Correll, Prabal Dutta, Richard Han, and Kristofer Pister. New directions: Wireless
robotic materials. arXiv preprint arXiv:1708.04677, 2017.

[16] Nikolaus Correll, Nicholas Farrow, and Shang Ma. Honeycomb: a platform for computational
robotic materials. In Proceedings of the 7th International Conference on Tangible, Embedded
and Embodied Interaction, pages 419–422. ACM, 2013.

[17] Nikolaus Correll and Christoffer Heckman. Materials that make robots smart. arXiv preprint
arXiv:1711.00537, 2017.

[18] Christopher Crick and Avi Pfeffer. Loopy belief propagation as a basis for communication
in sensor networks. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence, pages 159–166. Morgan Kaufmann Publishers Inc., 2002.

[19] R. S. Dahiya, P. Mittendorfer, M. Valle, G. Cheng, and V. J. Lumelsky. Directions toward
effective utilization of tactile skin: A review. IEEE Sensors Journal, 13(11):4121–4138, 2013.

[20] Christoffer Heckman Dana Hughes and Nikolaus Correll. Terrain sensitive tires for au-
tonomous driving. In Material Robotics Workshop at Robotics: Science and Systems, 2017.

[21] Dipankar Dasgupta and Douglas R. McGregor. Designing application-specific neural net-
works using the structured genetic algorithm. In International Workshop on Combinations
of Genetic Algorithms and Neural Networks, pages 87–96. IEEE, 1992.

[22] Omid E. David and Iddo Greental. Genetic algorithms for evolving deep neural networks. In
Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and
Evolutionary Computation, pages 1451–1452. ACM, 2014.

[23] Richard J. De Souza and Kensall D. Wise. A very high density bulk micromachined capaci-
tive tactile imager. In 1997 International Conference on Solid State Sensors and Actuators,
volume 2, pages 1473–1476. IEEE, 1997.

[24] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew
Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In
Advances in Neural Information Processing Systems, pages 1223–1231, 2012.

95

[25] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[26] Travis Desell. Large scale evolution of convolutional neural networks using volunteer com-
puting. arXiv preprint arXiv:1703.05422, 2017.

[27] Emmanuel Dufourq and Bruce A. Bassett. Eden: Evolutionary deep networks for efficient
machine learning. arXiv preprint arXiv:1709.09161, 2017.

[28] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning.
arXiv preprint arXiv:1603.07285, 2016.

[29] Edmond M. DuPont, Rodney G. Roberts, Majura F. Selekwa, Carl A. Moore, and Emman-
ual G. Collins. Online terrain classification for mobile robots. In ASME 2005 International
Mechanical Engineering Congress and Exposition, pages 1643–1648. American Society of Me-
chanical Engineers, 2005.

[30] Clemens Eppner, Sebastian Höfer, Rico Jonschkowski, Roberto Martin Martin, Arne Siev-
erling, Vincent Wall, and Oliver Brock. Lessons from the amazon picking challenge: Four
aspects of building robotic systems. In Robotics: Science and Systems, 2016.

[31] Anna Flagg and Karon MacLean. Affective touch gesture recognition for a furry zoomorphic
machine. In Proceedings of the 7th International Conference on Tangible, Embedded and
Embodied Interaction, pages 25–32. ACM, 2013.

[32] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from architectures to
learning. Evolutionary Intelligence, 1(1):47–62, 2008.

[33] Kallirroi Flouri, Baltasar Beferull-Lozano, and Panagiotis Tsakalides. Distributed consensus
algorithms for svm training in wireless sensor networks. In Signal Processing Conference,
pages 1–5. IEEE, 2008.

[34] Jakob Foerster, Yannis Assael, Nando de Freitas, and Shimon Whiteson. Learning to com-
municate with deep multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems, pages 2137–2145, 2016.

[35] Pedro A. Forero, Alfonso Cano, and Georgios B. Giannakis. Consensus-based distributed
expectation-maximization algorithm for density estimation and classification using wire-
less sensor networks. In IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 1989–1992. IEEE, 2008.

[36] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition. In Competition and Cooperation in Neural
Nets, pages 267–285. Springer, 1982.

[37] Yona Falinie A Gaus, Temitayo Olugbade, Asim Jan, Rui Qin, Jingxin Liu, Fan Zhang,
Hongying Meng, and Nadia Bianchi-Berthouze. Social touch gesture recognition using random
forest and boosting on distinct feature sets. In Proceedings of the 2015 ACM on International
Conference on Multimodal Interaction, pages 399–406. ACM, 2015.

96

[38] Scott Gilliland, Nicholas Komor, Thad Starner, and Clint Zeagler. The textile interface
swatchbook: Creating graphical user interface-like widgets with conductive embroidery. In
International Symposium on Wearable Computers, pages 1–8. IEEE, 2010.

[39] Seth Copen Goldstein, Jason D. Campbell, and Todd C. Mowry. Programmable matter.
Computer, 38(6):99–101, 2005.

[40] Tim Gollisch and Markus Meister. Rapid neural coding in the retina with relative spike
latencies. Science, 319(5866):1108–1111, 2008.

[41] J. P. Grant, R. N. Clarke, G. T. Symm, and N. M. Spyrou. In vivo dielectric properties of
human skin from 50 mhz to 2.0 ghz. Physics in Medicine & Biology, 33(5):607, 1988.

[42] Dongbing Gu. Distributed em algorithm for gaussian mixtures in sensor networks. IEEE
Transactions on Neural Networks, 19(7):1154–1166, 2008.

[43] Dongbing Gu and Zongyao Wang. Distributed regression over sensor networks: An support
vector machine approach. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3286–3291. IEEE, 2008.

[44] Carlos Guestrin, Peter Bodik, Romain Thibaux, Mark Paskin, and Samuel Madden. Dis-
tributed regression: An efficient framework for modeling sensor network data. In International
Symposium on Information Processing in Sensor Networks, pages 1–10. ACM, 2004.

[45] Jin-Seok Heo, Jong-Ha Chung, and Jung-Ju Lee. Tactile sensor arrays using fiber bragg
grating sensors. Sensors and Actuators A: Physical, 126(2):312–327, 2006.

[46] Binyamin Hochner. How nervous systems evolve in relation to their embodiment: What we
can learn from octopuses and other molluscs. Brain, Behavior and Evolution, 82(1):19–30,
2013.

[47] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies, 2001.

[48] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[49] Sarah B. Holt. Genetics of dermal ridges: The relation between total ridge-count and the
variability of counts from finger to finger. Annals of Human Genetics, 22(4):323–339, 1958.

[50] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257, 1991.

[51] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366, 1989.

[52] David H. Hubel and Torsten N. Wiesel. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of Physiology, 160(1):106–154, 1962.

[53] Dana Hughes and Nikolaus Correll. A soft, amorphous skin that can sense and localize
textures. In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 1844–1851. IEEE, 2014.

97

[54] Dana Hughes and Nikolaus Correll. Texture recognition and localization in amorphous robotic
skin. Bioinspiration & Biomimetics, 10(5):055002, 2015.

[55] Dana Hughes and Nikolaus Correll. Distributed convolutional neural networks for human
activity recognition in wearable robotics. In Distributed Autonomous Robotic Systems, 2016.

[56] Dana Hughes and Nikolaus Correll. Distributed machine learning in materials that couple
sensing, actuation, computation and communication. arXiv preprint arXiv:1606.03508, 2016.

[57] Dana Hughes and Nikolaus Correll. In-material computation of high-bandwidth sensor signals
in robotic skin. In The Robotic Sense of Touch: From Sensing to Understanding Workshop
at IEEE International Conference on Robotics and Automation, 2017.

[58] Dana Hughes, Nicholas Farrow, Halley Profita, and Nikolaus Correll. Detecting and identify-
ing tactile gestures using deep autoencoders, geometric moments and gesture level features.
In Proceedings of the 2015 on International Conference on Multimodal Interaction, pages
415–422. ACM, 2015.

[59] Dana Hughes, Alon Krauthammer, and Nikolaus Correll. Recognizing social touch gestures
using recurrent and convolutional neural networks. In IEEE International Conference on
Robotics and Automation, pages 2315–2321. IEEE, 2017.

[60] Dana Hughes, John Lammie, and Nikolaus Correll. A robotic skin for collision avoidance and
affective touch recognition. IEEE Robotics and Automation Letters, 2018.

[61] Dana Hughes, Halley Profita, and Nikolaus Correll. Switchback: an on-body rf-based gesture
input device. In International Symposium on Wearable Computers, pages 63–66. ACM, 2014.

[62] Dana Hughes, Halley Profita, Sarah Radzihovsky, and Nikolaus Correll. Intelligent rf-based
gesture input devices implemented using e-textiles. Sensors, 17(2):219, 2017.

[63] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. Learning complex swarm be-
haviors by exploiting local communication protocols with deep reinforcement learning. arXiv
preprint arXiv:1709.07224, 2017.

[64] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. LION, 5:507–523, 2011.

[65] Roland S. Johansson and J. Randall Flanagan. Coding and use of tactile signals from the
fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10(5):345, 2009.

[66] Roland S. Johansson and A. B. Vallbo. Tactile sensibility in the human hand: Relative and
absolute densities of four types of mechanoreceptive units in glabrous skin. The Journal of
Physiology, 286(1):283–300, 1979.

[67] Merel M. Jung, Xi Laura Cang, Mannes Poel, and Karon E. MacLean. Touch chal-
lenge’15: Recognizing social touch gestures. In Proceedings of the 2015 ACM on International
Conference on Multimodal Interaction, pages 387–390. ACM, 2015.

[68] Merel M. Jung, Ronald Poppe, Mannes Poel, and Dirk K. J. Heylen. Touching the void–
introducing cost: Corpus of social touch. In Proceedings of the 16th International Conference
on Multimodal Interaction, pages 120–127. ACM, 2014.

98

[69] Daniel Kappler, Franziska Meier, Jan Issac, Jim Mainprice, Cristina Garcia Cifuentes, Manuel
Wüthrich, Vincent Berenz, Stefan Schaal, Nathan Ratliff, and Jeannette Bohg. Real-time
perception meets reactive motion generation. arXiv preprint arXiv:1703.03512, 2017.

[70] Yasir Niaz Khan, Philippe Komma, and Andreas Zell. High resolution visual terrain classifi-
cation for outdoor robots. In IEEE International Conference on Computer Vision Workshops,
pages 1014–1021. IEEE, 2011.

[71] Woojin Kim, Jaemann Park, H. Jin Kim, and Chan Gook Park. A multi-class classification
approach for target localization in wireless sensor networks. Journal of Mechanical Science
and Technology, 28(1):323–329, 2014.

[72] Woojin Kim, Jaemann Park, Jaehyun Yoo, H. Jin Kim, and Chan Gook Park. Target localiza-
tion using ensemble support vector regression in wireless sensor networks. IEEE Transactions
on Cybernetics, 43(4):1189–1198, 2013.

[73] Woojin Kim, Miloš S. Stanković, Karl H. Johansson, and H. Jin Kim. A distributed support
vector machine learning over wireless sensor networks. IEEE Transactions on Cybernetics,
45(11):2599–2611, 2015.

[74] Hiroaki Kitano. Designing neural networks using genetic algorithms with graph generation
system. Complex systems, 4(4):461–476, 1990.

[75] E. S. Kolesar, C. S. Dyson, R. R. Reston, R. C. Fitch, D. G. Ford, and S. D. Nelms. Tac-
tile integrated circuit sensor realized with a piezoelectric polymer. In IEEE International
Conference on Innovative Systems in Silicon, pages 372–381. IEEE, 1996.

[76] David Kortenkamp, Reid Simmons, and Davide Brugali. Robotic systems architectures and
programming. In Springer Handbook of Robotics, pages 283–306. Springer, 2016.

[77] Wojtek Kowalczyk and Nikos Vlassis. Newscast em. In Advances in Neural Information
Processing Systems, pages 713–720, 2005.

[78] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

[79] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An
empirical evaluation of deep architectures on problems with many factors of variation. In
Proceedings of the International Conference on Machine Learning, pages 473–480. ACM,
2007.

[80] Quoc V. Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and Andrew Y.
Ng. On optimization methods for deep learning. In International Conference on Machine
Learning, pages 265–272. Omnipress, 2011.

[81] Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series.
The handbook of Brain Theory and Neural Networks, 3361(10):1995, 1995.

[82] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436,
2015.

99

[83] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[84] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

[85] Zachary C. Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent neural
networks for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[86] Vladimir J. Lumelsky, Michael S. Shur, and Sigurd Wagner. Sensitive skin. IEEE Sensors
Journal, 1(1):41–51, 2001.

[87] Markos Markou and Sameer Singh. Novelty detection: a review–part 1: Statistical ap-
proaches. Signal Processing, 83(12):2481–2497, 2003.

[88] Rainer Martin. An efficient algorithm to estimate the instantaneous snr of speech signals. In
Third European Conference on Speech Communication and Technology, 1993.

[89] M. Andy McEvoy and Nikolaus Correll. Thermoplastic variable stiffness composites with
embedded, networked sensing, actuation, and control. Journal of Composite Materials,
49(15):1799–1808, 2015.

[90] Michael A. McEvoy. Shape-Changing Robotic Materials Using Variable Stiffness Elements
and Distributed Control. PhD thesis, University of Colorado at Boulder, 2017.

[91] Michael Andrew McEvoy and Nikolaus Correll. Materials that couple sensing, actuation,
computation, and communication. Science, 347(6228):1261689, 2015.

[92] Yiğit Mengüç, Nikolaus Correll, Rebecca Kramer, and Jamie Paik. Will robots be bodies
with brains or brains with bodies? Science Robotics, 2(12):eaar4527, 2017.

[93] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Fran-
con, Bala Raju, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving deep neural
networks. arXiv preprint arXiv:1703.00548, 2017.

[94] Siva Natarajan and R. Russell Rhinehart. Automated stopping criteria for neural network
training. In Proceedings of the American Control Conference, volume 4, pages 2409–2413.
IEEE, 1997.

[95] R. B. Nelson, T. J. van Dover, S. Jin, S. Hackwood, and G. Beni. Shear-sensitive magnetore-
sistive robotic tactile sensor. IEEE Transactions on Magnetics, 22(5):394–396, 1986.

[96] Fernando Nobre, Michael Kasper, and Christoffer Heckman. Drift-correcting self-calibration
for visual-inertial slam. In IEEE International Conference on Robotics and Automation,
pages 6525–6532. IEEE, 2017.

[97] Robert D. Nowak. Distributed em algorithms for density estimation and clustering in sensor
networks. IEEE Transactions on Signal Processing, 51(8):2245–2253, 2003.

[98] Masahiro Ohka, Hiroaki Kobayashi, Jumpei Takata, and Yasunaga Mitsuya. Sensing precision
of an optical three-axis tactile sensor for a robotic finger. In IEEE International Symposium
on Robot and Human Interactive Communication, pages 214–219. IEEE, 2006.

100

[99] Christian W. Omlin and C. Lee Giles. Constructing deterministic finite-state automata in
recurrent neural networks. Journal of the ACM, 43(6):937–972, 1996.

[100] Francisco Javier Ordóñez and Daniel Roggen. Deep convolutional and lstm recurrent neural
networks for multimodal wearable activity recognition. Sensors, 16(1):115, 2016.

[101] Michael Otte. Collective cognition and sensing in robotic swarms via an emergent group-mind.
In International Symposium on Experimental Robotics, pages 829–840. Springer, 2016.

[102] Mark Paskin, Carlos Guestrin, and Jim McFadden. A robust architecture for distributed
inference in sensor networks. In International Symposium on Information Processing in Sensor
Networks, page 8. IEEE Press, 2005.

[103] Mark A. Paskin and Carlos E. Guestrin. Robust probabilistic inference in distributed systems.
In Proceedings of the 20th conference on Uncertainty in Artificial Intelligence, pages 436–445.
AUAI Press, 2004.

[104] Radhen Patel and Nikolaus Correll. Integrated force and distance sensing for robotic manip-
ulation using elastomer-embedded commodity proximity sensors. In Proceedings of Robotics:
Science and Systems, 2016.

[105] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[106] Thomas Plötz, Nils Y. Hammerla, and Patrick Olivier. Feature learning for activity recog-
nition in ubiquitous computing. In International Joint Conference on Artificial Intelligence,
volume 22, page 1729, 2011.

[107] E. Rehmi Post and Maggie Orth. Smart fabric, or ”wearable clothing”. In First International
Symposium on Wearable Computers, pages 167–168. IEEE, 1997.

[108] Halley Profita, Nicholas Farrow, and Nikolaus Correll. Flutter: An exploration of an assistive
garment using distributed sensing, computation and actuation. In Proceedings of the 9th
International Conference on Tangible, Embedded, and Embodied Interaction, pages 359–362.
ACM, 2015.

[109] J. Andrew Pruszynski and Roland S. Johansson. Edge-orientation processing in first-order
tactile neurons. Nature Neuroscience, 17(10):1404, 2014.

[110] Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun. Efficient
learning of sparse representations with an energy-based model. In Advances in Neural
Information Processing Systems, pages 1137–1144, 2007.

[111] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features
off-the-shelf: An astounding baseline for recognition. In IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 512–519. IEEE, 2014.

[112] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu,
Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers. arXiv preprint
arXiv:1703.01041, 2017.

101

[113] Alfréd Rényi. On measures of entropy and information. Technical report, Hungarian Academy
of Sciences Budapest Hungary, 1961.

[114] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural
reinforcement learning method. In European Conference on Machine Learning, pages 317–
328. Springer, 2005.

[115] Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian Förster, Gerhard
Tröster, Paul Lukowicz, David Bannach, Gerald Pirkl, Alois Ferscha, Jakob Doppler, Clemens
Holzmann, Marc Kurz, Gerald Holl, Ricardo Chavarriaga, Hesam Sagha, Hamidreza Bayati,
Marco Creatura, and José del R Millàn. Collecting complex activity datasets in highly rich
networked sensor environments. In International Conference on Networked Sensing Systems,
pages 233–240. IEEE, 2010.

[116] Joseph M. Romano, Kaijen Hsiao, Günter Niemeyer, Sachin Chitta, and Katherine J. Kuchen-
becker. Human-inspired robotic grasp control with tactile sensing. IEEE Transactions on
Robotics, 27(6):1067–1079, 2011.

[117] Tara N Sainath, Oriol Vinyals, Andrew Senior, and Haşim Sak. Convolutional, long short-
term memory, fully connected deep neural networks. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 4580–4584. IEEE, 2015.

[118] S. Sankaralingam and Bhaskar Gupta. Determination of dielectric constant of fabric materials
and their use as substrates for design and development of antennas for wearable applications.
IEEE Transactions on Instrumentation and Measurement, 59(12):3122–3130, 2010.

[119] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt. Support
vector method for novelty detection. In Advances in Neural Information Processing Systems,
pages 582–588. The MIT Press, 1999.

[120] Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of neural nets.
Journal of Computer and System Sciences, 50(1):132–150, 1995.

[121] Patrice Y. Simard, David Steinkraus, and John C. Platt. Best practices for convolutional neu-
ral networks applied to visual document analysis. In International Conference on Document
Analysis and Recognition, volume 3, pages 958–962, 2003.

[122] Slobodan N. Simic. A learning-theory approach to sensor networks. IEEE Pervasive
Computing, 2(4):44–49, 2003.

[123] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing Systems, pages
2951–2959, 2012.

[124] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10(2):99–127, 2002.

[125] W. D. Stiehl, J. Liberman, C. Breazeal, L. Basel, L. Lalla, and M. Wolf. Design of a thera-
peutic robotic companion for relational, affective touch. In Proceedings of the International
Workshop on Robot and Human Interactive Communication, pages 408–415, 2005.

102

[126] Walter Dan Stiehl and Cynthia Breazeal. A sensitive skin for robotic companions featuring
temperature, force, and electric field sensors. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1952–1959. IEEE, 2006.

[127] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with back-
propagation. In Advances in Neural Information Processing Systems, pages 2244–2252, 2016.

[128] Jiri Svacina. Analysis of multilayer microstrip lines by a conformal mapping method. IEEE
Transactions on Microwave Theory and Techniques, 40(4):769–772, 1992.

[129] Viet-Cuong Ta, Wafa Johal, Maxime Portaz, Eric Castelli, and Dominique Vaufreydaz. The
grenoble system for the social touch challenge at icmi 2015. In Proceedings of the 2015 ACM
on International Conference on Multimodal Interaction, pages 391–398, 2015.

[130] Graham W. Taylor, Rob Fergus, Yann LeCun, and Christoph Bregler. Convolutional learning
of spatio-temporal features. In European Conference on Computer Vision, pages 140–153.
Springer, 2010.

[131] Cho-Huak Teh and Roland T. Chin. On image analysis by the methods of moments. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10(4):496–513, 1988.

[132] Sreenivas Sremath Tirumala, Shahid Ali, and C Phani Ramesh. Evolving deep neural net-
works: A new prospect. In International Conference on Natural Computation, Fuzzy Systems
and Knowledge Discovery, pages 69–74. IEEE, 2016.

[133] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning
spatiotemporal features with 3d convolutional networks. In IEEE International Conference
on Computer Vision, pages 4489–4497. IEEE, 2015.

[134] Pavan Turaga, Rama Chellappa, Venkatramana S Subrahmanian, and Octavian Udrea. Ma-
chine recognition of human activities: A survey. IEEE Transactions on Circuits and Systems
for Video Technology, 18(11):1473–1488, 2008.

[135] Abhinav Valada, Luciano Spinello, and Wolfram Burgard. Deep feature learning for acoustics-
based terrain classification. In Robotics Research, pages 21–37. Springer, 2018.

[136] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S. J. Pister. Smart dust: Com-
municating with a cubic-millimeter computer. Computer, 34(1):44–51, 2001.

[137] Christian Weiss, Holger Frohlich, and Andreas Zell. Vibration-based terrain classification
using support vector machines. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4429–4434. IEEE, 2006.

[138] Karsten Weiss and Heinz Woern. Tactile sensor system for an anthropomorphic robotic hand.
In Proceedings of IEEE International Conference on Manipulation and Grasping, pages 12–17,
2004.

[139] Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85, 1994.

[140] Keith Worden, Graeme Manson, and Nick R. J. Fieller. Damage detection using outlier
analysis. Journal of Sound and Vibration, 229(3):647–667, 2000.

103

[141] Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiaoli Li, and Shonali Krishnaswamy. Deep
convolutional neural networks on multichannel time series for human activity recognition. In
International Joint Conference on Artificial Intelligence, pages 3995–4001, 2015.

[142] Zhao Yanling, Deng Bimin, and Wang Zhanrong. Analysis and study of perceptron to solve
xor problem. In International Workshop on Autonomous Decentralized System, pages 168–
173. IEEE, 2002.

[143] S. Yohanan and K. E. MacLean. The role of affective touch in human-robot interaction:
Human intent and expectations in touching the haptic creature. International Journal of
Social Robotics, 4(2):163–180, 2012.

[144] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European Conference on Computer Vision, pages 818–833. Springer, 2014.

[145] Ming Zeng, Le T. Nguyen, Bo Yu, Ole J. Mengshoel, Jiang Zhu, Pang Wu, and Joy Zhang.
Convolutional neural networks for human activity recognition using mobile sensors. In
International Conference on Mobile Computing, Applications and Services, pages 197–205.
IEEE, 2014.

[146] Hong Zhang and Eric So. Hybrid resistive tactile sensing. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 32(1):57–65, 2002.

