
Bimanual Interaction with Clothes

Topology, Geometry, and Policy
Representations in Robots

Lukas Twardon

A thesis submitted for the degree of
Doctor of Engineering (Dr.-Ing.)

Faculty of Technology
Bielefeld University

Reviewers

Prof. Dr. Helge Ritter
Prof. Dr. Franz Kummert

2019

Printed on permanent paper as per ISO 9706

Declaration of Authorship

In accordance with §8(1)g of the General Doctoral Regulations of Bielefeld
University, I hereby declare that

• I am familiar with the current Doctoral Regulations of the Faculty of
Technology.

• I have written the thesis by myself, no parts of the text have been copied
from a third party or my own assessed work without due attribution,
and aids and sources used have been duly referenced and attributed in
the text.

• no third party has received monetary benefits or benefits in kind, directly
or indirectly, for any intermediary services or work related to the contents
of the submitted thesis.

• I have not yet submitted the thesis as an assessed work for a public or
other academic examination.

• I have not submitted the same paper, a similar paper, or another paper
as a thesis to another university.

Place, Date Lukas Twardon

3

Abstract

If anthropomorphic robots are to assist people with activities of daily living,
they must be able to handle all kinds of everyday objects, including highly
deformable ones such as garments. The present thesis begins with a detailed
problem analysis of robotic interaction with and perception of clothes. We
show that handling items of clothing is very challenging due to their complex
dynamics and the vast number of degrees of freedom. As a result of our analy-
sis, we obtain a topological, geometric, and functional description of garments
that supports the development of reduced object and task representations.
One of the key findings is that the boundary components, which typically cor-
respond with the openings, characterize garments well, both in terms of their
topology and their inherent purpose, namely dressing. We present a polygon-
based and an interactive method for identifying boundary components using
RGB-D vision with application to grasping. Moreover, we propose Active
Boundary Component Models (ABCMs), a constraint-based framework for
tracking garment openings with point clouds. It is often difficult to maintain
an accurate representation of the objects involved in contact-rich interaction
tasks such as dressing assistance. Therefore, our policy optimization approach
to putting a knit cap on a styrofoam head avoids modeling the details of
the garment and its deformations. The experimental results suggest that a
heuristic performance measure that takes into account the amount of contact
established between the two objects is suitable for the task.

5

Acknowledgments

I would like to express my gratitude to the many people who have helped me
on the path toward this thesis. I am particularly thankful for the opportunity
to have had Professor Helge Ritter as a supervisor. He supported me when
it mattered most and inspired me to become an independent researcher. I
also want to thank the other members of the dissertation committee, Profes-
sor Franz Kummert, Professor Stefan Kopp, and Thies Pfeiffer. Without the
persistent help of Guillaume Walck, Robert Haschke, and the other colleagues
from the AGNI Grasp Lab this thesis would not have been possible. I have
also greatly benefited from Oliver Lieske’s technical support. Special thanks
to everyone from the lunch and coffee break group with whom I shared mo-
ments of laughter and joy. I would particularly like to thank Andrea Finke
and Hendrik Koesling who were my master’s thesis supervisors and introduced
me to the Neuroinformatics Group. Discussions with my office colleagues have
been illuminating. I greatly appreciate the valuable feedback given by Sascha
Fleer. I am grateful for the financial, academic, and administrative support
I received from the CITEC Graduate School. In particular, I want to thank
Claudia Muhl for always listening to my questions and concerns. I am grateful
to my parents, brother, sisters, and friends who have supported me along the
way. Special thanks also to my nephew Mika for (his parents’) permission to
use the inspiring video of him learning to put on a knit cap. Last but by no
means least, I would like to thank my wife Janina for her understanding, love,
and support during the past few years, and my sons Niklas and Lenny for
providing the motivation necessary for me to complete this thesis.

7

Contents

1 Introduction 17

1.1 Research Questions . 18

1.2 Scenario . 19

1.3 Contributions and Outline . 21

2 The Problem Space of Bimanual Interaction with Clothes 23

2.1 Perception and Action in the Clothing Domain 24

2.1.1 Perception . 24

2.1.2 Action . 27

2.1.3 Affordances . 30

2.2 The Topology and Geometry of Clothes 31

2.2.1 Topology . 32

2.2.2 Geometry . 37

2.2.3 Effects on Perception and Action 38

2.3 The Dressing Task . 39

2.3.1 Task Topology . 40

2.3.2 Task Decomposition . 42

2.3.3 Implications for Object and Task Representations 44

2.4 Strategies for Reducing and Searching the Problem Space 45

2.4.1 Integrating Action with Perception 46

2.4.2 From Geometry to Topology and Back 47

2.4.3 Task-centric Policy Spaces 49

2.5 Discussion . 52

3 Related Work 55

3.1 Coupling Perception and Action 55

3.2 Topology-based Representations 57

3.3 Handling Clothes . 60

3.4 Robot-assisted Dressing . 63

3.5 Discussion . 64

9

Contents

4 Reducing the Problem Space for Detection and Grasping 67
4.1 Robot Vision in Complex Scenes 68

4.1.1 Depth Images and Point Clouds 68
4.1.2 Semantic Point Cloud Filtering 71

4.2 Polygon-based Boundary Component Detection 77
4.2.1 Preliminaries . 77
4.2.2 Algorithms . 78
4.2.3 Evaluation . 84

4.3 Interactive Boundary Component and Optimal Grasp Pose De-
tection . 87
4.3.1 Initial Grasping . 88
4.3.2 Algorithms . 90
4.3.3 The Boundary Grasp . 95
4.3.4 Evaluation . 97
4.3.5 Application . 99

4.4 Discussion . 101

5 Reducing the Problem Space for Tracking 103
5.1 Dynamic Models of Deformable Objects 104

5.1.1 Models for Visual Tracking 104
5.1.2 Position-based Dynamics 105

5.2 Active Boundary Component Models (ABCMs) 107
5.2.1 Definition and Properties 107
5.2.2 Distance Constraints . 108
5.2.3 Entanglement Constraints 111
5.2.4 Active Skeleton Models 114

5.3 Tracking ABCMs with Point Clouds 116
5.3.1 Initialization . 117
5.3.2 Iterative Edge Point Matching 119
5.3.3 Evaluation . 121
5.3.4 Application to a Simplified Dressing Task 123

5.4 Discussion . 125

6 Reducing the Problem Space for Policy Search 127
6.1 Reinforcement Learning and Optimization 128

6.1.1 Policy Search in MDPs 128
6.1.2 Evolution Strategies . 130

6.2 An Exemplary Dressing Task: Putting On a Knit Cap 132
6.2.1 Ellipsoidal Model of the Head 133
6.2.2 Head-centric State Space 137
6.2.3 Policy Parameterization 141

10

Contents

6.3 Policy Search in the Example Task 141
6.3.1 Objective Function . 142
6.3.2 A Toy Problem for Structuring Hyperparameter Search . 143
6.3.3 Learning in the Real World 146

6.4 Discussion . 149

7 Conclusion 153
7.1 Summary . 153
7.2 Recommendations for Future Research 156

11

List of Figures

1.1 Hardware setup used in the experiments. 20
1.2 Software setup used in the experiments. 20

2.1 Distances in 3-space between points on the surface of objects
before and after typical manipulations. 32

2.2 Two ways of regarding the topology of garments. 35
2.3 Garment structures that cannot be represented by oriented 2-

manifolds with boundary. 37
2.4 Skeleton model of the human body and target configurations of

the dressing task, exemplified by a leg warmer, a pair of pants,
and a sweater. 41

2.5 Task topology of putting on a pair of pants. 42

4.1 Point cloud filtering result. 75
4.2 Template polygons of a sweater, a pair of pants, and a legwarmer. 77
4.3 Steps of the hybrid foreground-background segmentation method. 79
4.4 Turning function of the extracted polygon matched against each

of the three templates. 81
4.5 Result of the polygon matching and the heuristic search for

garment openings. 82
4.6 The input point cloud and the result of the boundary component

projection onto the support surface (tabletop). 83
4.7 Test set used for evaluating the polygon-based boundary com-

ponent detection method. 85
4.8 Two trials from the polygon-based detection experiment. 85
4.9 Failed polygon matching trial. 87
4.10 Initial grasp configuration for interactive boundary component

detection. 88
4.11 Intermediate results of the graph-based boundary component

detection method. 91
4.12 Basic idea of the path graph reduction algorithm. 93
4.13 Intuition of the convexity criterion used for evaluating simple

cycles. 94

13

List of Figures

4.14 Grasp pose around the boundary of a knit cap opening. 95
4.15 Qualitative evaluation of the graph-based boundary component

detection algorithm. 98
4.16 Four trials from the interactive boundary component detection

and grasping experiment. 98
4.17 The coat-check task (hanging up a knit cap on a hat-stand)

divided into a sequence of eight actions. 100
4.18 The robot christmas elf task (putting candy into a stocking)

divided into a sequence of six actions. 101

5.1 Schematic diagram of an ABCM and the distance constraint
parameters. 109

5.2 Smoothness constraint experiment. 112
5.3 Entanglement constraint experiment. 112
5.4 Schematic diagram of an Active Skeleton Model linking two

ABCMs, and the skeleton constraint parameters. 115
5.5 Template polygons and skeletons of a sweater, a pair of pants,

and a legwarmer. 117
5.6 Result of the template skeleton deformation. 118
5.7 Active Skeleton Model and three ABCMs right after initialization.118
5.8 Edge point detection during point cloud based ABCM tracking. 120
5.9 Deformation heuristic during point cloud based ABCM tracking. 120
5.10 Comparison of the ABCM tracking performance between several

model configurations. 122
5.11 Point cloud based ABCM and skeleton tracking of a pair of pants.122
5.12 Bimanual robot sliding a rod through a pant leg. 124
5.13 Time curves of the relative opening size S of boundary compo-

nent b0 (waist opening) during the simplified dressing assistance
experiment. 125

6.1 Detection of the symmetry plane of the face and the tip of the
nose using point cloud data. 134

6.2 Head proportion heuristics used for initialization of the ellipsoid
model parameters. 134

6.3 Ellipsoid model fitted to the noisy and incomplete point cloud
of a styrofoam head. 136

6.4 Root mean squared distance (RMSD) of the upper head points
from the ellipsoid model, averaged over ten trials. 138

6.5 Baseline mesh model of the styrofoam head used in our experi-
ments. 138

6.6 Hand frames used during the knit cap dressing experiments. . . 140

14

6.7 Toy problem used for hyperparameter search. 143
6.8 Amount of successful learning sessions after a given number

of episodes under several hyperparameter variations in the toy
problem. 145

6.9 Configurations of the three entities involved in the example task
of putting a knit cap on a styrofoam head: a robot, a garment,
and a head. 147

6.10 End effector trajectories for the task of putting a knit cap on a
styrofoam head. 148

6.11 Average reward gained per generation. 149
6.12 Possible configurations of the knit cap after an optimal policy

rollout. 150

List of Tables

2.1 Taxonomy of interaction primitives with clothes 28

4.1 Runtime of the semantic point cloud filter implementation . . . 76
4.2 Polygon-based boundary component detection accuracy 86
4.3 Interactive detection and grasping results 99

Listings

4.1 XML filter configuration corresponding to Example 1 73
4.2 XML filter configuration corresponding to Example 2 73
4.3 Semantic point cloud filter algorithm in pseudocode 73

15

1 Introduction

The 1989 science fiction movie Back to the Future Part II paints a vivid picture
of the near future (more precisely, the year 2015) to which the main character
Marty McFly travels using a time machine. The film shows a number of
fictional everyday technologies. For example, many people in 2015 as depicted
in the movie wear smart clothing. In one scene, Marty McFly is seen putting
on self-tying shoes (with so-called power laces) and a jacket with sleeves that
are way too big at first but, at the push of a button, automatically adjust
to the arms of the wearer. In another scene, when the main character falls
into a pool and gets wet, the jacket switches to a self-drying mode. At the
time of this writing, the fictional future has already been overtaken by the
real present. Nevertheless, our everyday life is not dominated by such smart
objects. Inspired by the movie’s success, a sportswear company has recently
auctioned off some self-tying shoes for several thousand dollars. Besides, a
few do-it-yourself guides to making more or less usable self-adjusting jackets
exist on the internet. However, it seems to be far from trivial to create smart
garments that are affordable and practical for daily use.

The ideas of the present thesis are similar to those in the film in that the
goal is to develop technologies that help simplify the handling of everyday
objects. This is opposed to technologies for use in industry. However, in
another respect, our ideas are very different from those in the movie. In general,
there are two approaches to automation in the context of everyday objects.
On the one hand, objects can be designed in a way that allows machines
to use them or even be integrated into the objects’ material. We will refer
to such items as technology-enabled objects. To many people (including the
makers of the film series Back to the Future), this seems to be the natural
approach, and there is also some serious research in that direction. On the
other hand, it is possible to develop machines and algorithms that are capable
of handling objects the way they are (in the following referred to as object-
inspired technology). This is the approach we pursue in this thesis, using
the example of an anthropomorphic robot that will be equipped with clothes
perception and manipulation skills. Our methods can be regarded as steps
toward robots that assist humans with dressing or hang out wet laundry and,
in doing so, tackle the issues described in the film very differently. There are

17

1 Introduction

two key arguments for object-inspired technology. First, it should be everyone’s
own decision to use a specially designed product or not. For example, we do
not want the user to be required to wear function-specific clothing. Second, in
the future, our techniques could be implemented in a general purpose domestic
robot, so that it is not necessary to develop a dedicated device for each and
every task.

Creating object-inspired technology means we must look at the objects a robot
is supposed to interact with in detail, describe their properties, and differenti-
ate them from other objects. Throughout this thesis, it will become apparent
that it is particularly challenging to suitably represent clothes in robots. For
one thing, appearance features are typically not sufficient, especially if the task
is not only recognition but also dexterous manipulation. For another thing,
the shape of a garment can be very complex. In addition to this, the materials
of most articles of clothing are highly deformable, which makes it very hard
to model the dynamics during interaction with the robot hands and other ob-
jects explicitly and in detail. Therefore, we aim at representations that are on
a higher level of abstraction. To this end, we describe the spatial (and spatio-
temporal) properties of clothes more qualitatively using topological and simple
geometric concepts. Moreover, we attempt to identify the most relevant parts
and features of the objects involved in the tasks considered, and use only those
for robotic acquisition of optimal action strategies (policies).

1.1 Research Questions

The present thesis aims to provide answers to open questions associated with
robotic perception and manipulation of clothes. The technological long-term
goal of research in this field is to enable robots to handle garments in all kinds
of everyday situations. For our experiments, we picked out a few exemplary
tasks such as recognizing and tracking the relevant features of different clothes,
grasping and regrasping, putting on and hanging up a knit cap, putting some-
thing into a stocking, and sliding an object through a pant leg. Questions
related to these problems include but are not limited to the following:

How to deal with the variety and complexity of the tasks?
Robotic tasks in the clothing domain are diverse, but many of them
involve multiple complex objects and a hierarchy of subgoals. To keep
track of the differences and similarities, the many interaction possibilities
with clothes should be categorized and common challenges should be
identified.

18

1.2 Scenario

How to deal with the deformability of clothes?
The main challenges in garment pose estimation and tracking are the
huge number of degrees of freedom and the complex dynamics resulting
from the high deformability of clothes. Therefore, effective algorithms
have to reduce and search the problem space in sophisticated ways.

Which sensory modalities can be used?
Many modern robots are equipped with different cameras and sensors.
Therefore, it is important to ask which modality is suitable for a given
perception task and how the input data must be processed to be useful
for solving problems related to handling clothes.

What is the right level of abstraction for representing space?
Spatial relationships can be described either geometrically, i.e., based
on a concept of distance, or topologically, i.e., more qualitatively and
without relying on a distance measure. On the one hand, geometric
representations have the advantage that they arise more or less naturally
from the quantitative measurements typical sensors provide. On the
other hand, topological properties remain invariant under deformations
frequently occuring during interaction with clothes.

What is the right abstraction level for task state and policy representations?
Not only the spatial configurations of clothes but also task states and
action strategies can be represented at different levels of abstraction. For
example, the state space could either be made up of all possible sensory
inputs or it could be something related to a garment manipulation task.
Similarly, robotic actions could be expressed directly in joint space or
the policy space could be task-centric.

When should learning be preferred to explicit modeling (and vice versa)?
A question often asked in cognitive robotics is whether robots should
learn by interacting with the environment or domain knowledge should
be integrated to make accurate modeling and planning possible. In the
clothing domain, there is a lot of useful prior knowledge available, but on
the other hand, the variance resulting from deformations and differences
between individual garments calls for learning from experience.

1.2 Scenario

In the following, we describe the scenario and experimental setup used through-
out this thesis. Depending on the hardware and software available, the answers

19

1 Introduction

Tabletop

Shadow Dexterous Hands

PA-10 Robot Arms

Kinect Sensor

Figure 1.1: Hardware setup used in the experiments.

PC 1

PC 2

PC 3

Kinect

Hand Server

User

GUI

Shared Memory

Left Hand

Left Arm

Right Hand

Right ArmArm Server

HSM

Vision Component N

Vision Component 1

...

Figure 1.2: Software setup used in the experiments.

20

1.3 Contributions and Outline

to the questions raised in Section 1.1 could be slightly different. For example,
if a multi-view camera system were used, modeling geometric details would
be easier because the occlusion problem would be largely avoided. Moreover,
some researchers have explicitly argued for specialized robot grippers tailored
to a particular task, such as the gripper for garment handling developed by Le
et al. [1]. Simo-Serra et al. [2] suggested that, in general, non-anthropomorphic
hand designs be used also for tasks in human environments. Nevertheless we
decided to employ an anthropomorphic robot setup for the following two rea-
sons: (i) There has been a lot of prior work in our lab and in the literature
on control of and grasping with two five-fingered hands that we can draw
on. (ii) Many real-world objects and tasks are designed for the human hand.
Therefore, future general purpose robots are likely to be anthropomorphic.
Our hardware setup (Figure 1.1) includes two redundant 7-DOF Mitsubishi
PA-10 robot arms with attached 20-DOF electric-actuated Shadow Dexterous
Hands. This configuration is meant to resemble the upper body of a humanoid
robot. The finger tips are equipped with tactile sensors which, however, were
only used for protecting the tendons in the fingers against wearout [3] and
for grasp evaluation in rigid object grasping (Section 4.3.5). For a discussion
about why we focus on visual perception in this thesis, the reader is referred to
Section 2.1.1. For robot vision, we use a Microsoft Kinect v1 including both a
color camera and a depth sensor viewing from above toward a tabletop at an
angle of about 45◦.
We employ a distributed system consisting of three computers, one for each
group of tasks: hand control, arm control, and vision. The inter-process com-
munication flow is shown in Figure 1.2. Two robot server components control
the hands and arms and simulate the robot kinematics in oder to avoid colli-
sions. A shared memory provides the Kinect sensor data to the vision compo-
nents. The user (or experimenter) can send commands to the robot through
a graphical user interface. Overall task control is carried out by a hierarchical
state machine (HSM). The states of the HSM usually correspond to subtasks,
and state transitions can be triggered by the user, the robot server, or a vision
component.

1.3 Contributions and Outline

The remainder of this thesis is organized as follows: In Chapter 2, we thor-
oughly define the problems and tasks addressed in this work. We will be loosely
guided by a well-established cognitive theory called the problem space theory.
One result of our analysis will be the insight that naive task representations in
the clothing domain are almost always highly unstructured and prohibitively

21

1 Introduction

large. Other contributions include a taxonomy of interaction primitives with
garments, a topological and geometric characterization of clothes, and a spec-
ification of the dressing task. Finally, we will be able to derive a few strategies
for building efficiently searchable task representations. Chapter 3 is a review
of related works.
Chapters 4, 5, and 6 provide reduced representations and suitable algorithms
for different subproblems of the garment handling task. In Chapter 4, we
present techniques for static perception of typical scenes with clothes, with
application to grasping and regrasping. At the heart of this chapter are two
methods for garment opening identification and a novel concept called the
boundary grasp. In addition to this, we propose a primitive-based point cloud
filter useful for data preprocessing. Chapter 5 introduces Active Boundary
Component Models (ABCMs), which can be seen as an extension of the con-
cepts from Chapter 4 to the dynamic case, and we show how these models can
be tracked with point clouds and applied to a simplified dressing task. Chapter
6 is concerned with policy search in a knit cap dressing scenario. We present
a head-centric trajectory parameterization, a novel objective function for the
task, and a suitably designed toy problem to support hyperparameter search.
Moreover, the chapter makes two algorithmic contributions: (i) A method for
head pose and scale estimation and (ii) a policy search algorithm combining
evolutionary optimization with a simple surrogate model. In Chapter 7, we
present our conclusions and give recommendations for future research.
Many of the contributions have already been published in two conference pa-
pers and a journal paper. Parts of the garment characterization presented in
Chapter 2 and the interactive perception and grasping approach from Chap-
ter 4 are covered in [4]. The formalization of the dressing task (Chapter 2),
the polygon-based boundary component detection method (Chapter 4), and
ABCMs (Chapter 5) are described in [5]. Besides, large parts of Chapter 6 are
based on [6]. The papers and accompanying videos are available online123.

1https://pub.uni-bielefeld.de/record/2904297
2https://pub.uni-bielefeld.de/record/2908790
3https://pub.uni-bielefeld.de/record/2917731

22

2 The Problem Space of Bimanual
Interaction with Clothes

Intuitively, one might find the task of handling clothes rather simple. People
accomplish it every day when they get dressed in the morning, when they
do the laundry, or when they hang up their jacket after coming home in the
evening. Children acquire many of the involved skills during the early stages
of their development, and healthy adults are expected to master these routines
effortlessly and efficiently. Nevertheless, present-day robots are still far from
being able to take the work out of humans’ hands. As a consequence, physically
handicapped persons often have to rely on caregivers’ assistance, e.g., with
dressing. Apparently, our judgment of the task difficulty is biased by the
importance of the task in everyday life.

To gain a better understanding of how difficult the task truly is (for a robot),
we require a more formal description of the problem. To this end, we borrow
a definition of problem solving from classical cognitive science. In Newell and
Simon’s problem space theory [7], solving a problem is equivalent to searching
a so-called problem space. The problem space consists of an initial state, at
least one goal state, and all possible intermediate states. The problem solver
can choose from a range of operators, otherwise known as actions, to change
the current state until a goal state is reached. According to this theory, the
difficulty of the problem is determined by the size of the problem space and,
more importantly, by its structure. In fact, the structure of the problem space,
also called internal representation, has a strong influence on how efficiently the
space can be searched.

In this chapter, we will consider both the task environment, i.e., what is more
or less objectively given, and the problem space, i.e., how the task can be
represented in a robot. Starting with the perceptual input and the action pos-
sibilities (Section 2.1), and continuing with the spatial properties of clothes
(Section 2.2) and a specification of the dressing task (Section 2.3), we will see
that the naive problem space of bimanual interaction with clothes is extremely
high-dimensional and difficult to search. Therefore, we will have to find ways
to reduce this space both in size and in complexity. In this connection, it
will become apparent that different subproblems of the clothes perception and

23

2 The Problem Space of Bimanual Interaction with Clothes

manipulation problem demand different representations, and that the repre-
sentation structure influences the search strategy to a great extent (Section
2.4).

2.1 Perception and Action in the Clothing

Domain

In modern robotics, it can be assumed that the outside world (the task en-
vironment) and its internal representation (the problem space) are linked in
two different ways. In one direction, information continuously flows from the
environment to the robot. This link is established through sensors whose out-
put is the input to the robot’s perceptual system. In the other direction,
the robot is capable of changing the environment using its actuators. Besides
describing robotic perception of and interaction with clothes, we will discuss
environment-contingent action possibilities (affordances), i.e., how the set of
meaningful actions is determined by the properties of the environment itself.

2.1.1 Perception

There are three sensory modalities that could possibly play a role in biman-
ual interaction with clothes: proprioception, vision, and touch. In robotics,
proprioception is achieved through forward kinematics, i.e., through the com-
putation of the end-effector poses from measured joint angles. By vision, we
mean the processing of a camera image, which is most commonly an RGB
color image. Unfortunately, while color cameras are cheap, they do not always
provide the information needed for task-relevant visual perception. To detect
the configuration of an item of clothing, for instance, depth data might be
much more helpful than color. Although this information can sometimes be
inferred from RGB images using stereo vision or single-image depth cues, it is
often easier to employ time-of-flight or structured-light sensors which output
depth images directly. Regardless of the type of camera used, vision has the
important advantage over other sensory modalities of providing almost global
views of a scene without requiring potentially distorting physical contact.

By contrast, tactile sensors attached to the robot’s end effectors (the fingers in
the anthropomorphic case) provide highly localized measurements. However,
in the domain of interaction with clothes, the normal forces detected by com-
mon sensors may be very low and unspecific. Consider the example of a robot
holding a thin piece of cloth with two fingers such that it hangs freely under
gravity. If the robot now moves the other hand toward the cloth and the fingers

24

2.1 Perception and Action in the Clothing Domain

begin to touch it, the fabric immediately deforms in hard-to-predict ways. At
the same time, there is little or no measurable pressure against the fingertips,
and if there is some, the data does not contain much information about how
the configuration of the cloth has changed. Tangential force measurements
could be slightly more useful because they might allow one to detect slippage
or to derive shear forces in the fabric, but all inferences would be limited to
local deformation effects. This is one of the reasons why, in the present thesis,
we lay the focus on visual sensing and processing instead.
We point out however that, to a certain extent, the situation in our example
changes when an additional object comes into play. Consider a hook located
at a fixed position near the low end of the hanging cloth. If the fingers of
the robot now push the cloth toward the hook, high-level or low-level force
signals might be observed at the fingertips depending on whether the fabric
got caught on the hook (constraining the deformation of the fabric) or not.
This information is relevant in the sense that, even though gathered locally
at the robot hand, it provides some knowledge of how the overall contact
relation between two objects (the cloth and the hook) has changed. Detecting
contact indirectly from its effects is indeed an important skill in interaction
with highly deformable objects. However, our robot will almost exclusively use
vision (and possibly proprioception) for that, exploiting the superior ability of
visual systems to assess global and structural changes in the scene. Consider
the following two examples.

Example 1: A robot tries to pick up a piece of clothing. From the forces
measured at the fingertips, it cannot decide whether the grasp is stable
or not. However, in case of success, parts of the fabric move along with
the hand when lifting the arm. This effect can be perceived visually.

Example 2: A robot assists a person with putting on a sock. From the com-
plex tactile and visual signals, it cannot tell whether it is successful in
establishing the right amount of contact between the sock and the foot.
However, if the sock slips off or does not fit properly, the effect is clearly
visible.

Besides detecting spatial relations between objects, the goal of perception is
very often to reconstruct the configuration of an individual task-relevant ob-
ject. As a result of this process, one usually obtains the parameter values of
a finite-dimensional model. The number of parameters needed to describe the
configuration of an object in space depends on the type of object considered.

Rigid objects: Solid bodies in which deformation can be neglected are referred
to as rigid objects. The pose of an unconstrained rigid object (such as a

25

2 The Problem Space of Bimanual Interaction with Clothes

plastic cube) can be specified by six parameters, three for describing its
position and three corresponding to its orientation. This is another way
of stating that the object has six degrees of freedom.

Articulated objects: To describe the configuration of an articulated object, i.e.,
an object consisting of several rigid parts connected by joints (such as a
folding ruler), an extra parameter is required for each degree of freedom
added by a joint.

Locally deformable objects: The configuration of a locally or reversibly de-
formable object (such as a sponge) can be represented by a rigid model
together with a description of the relative deformation. This can be any
parameterized mapping from an undeformed reference configuration to
the deformed state of the object.

In clothing, deformations tend to be global, hardly reversible (due to the limp-
ness of the material), and so complex that none of the mentioned approaches
can be used. The huge amount of degrees of freedom that one would have to
model renders exhaustive representations impractical. Moreover, the situation
is often complicated further by the complex interplay between the considered
garment and other physical entities such as the robot and, depending on the
task, additional deformable or rigid objects. The following classical problems
of visual perception are hence usually much harder to solve in interaction with
clothes than in other domains.

Segmentation: Before the configuration of a single object or relations between
different objects can be detected, the relevant entities need to be seg-
mented from each other and from the background. In the clothing do-
main, this is particularly difficult because common segmentation criteria,
such as sharp edges between objects, do not apply if a garment wraps
around or lies flat on another object. Then, using a combination of
geometric and color cues may be the only practical solution.

Recognition: If the type of object that the robot is supposed to interact with
is not known a priori, the garment category (T-shirt, pair of pants, sock,
etc.) has to be classified on the basis of visual information. However,
clothing exists in all colors and designs, and with a wide variety of prints.
Therefore, classifiers have to rely on geometric features, which may be
difficult to extract from images of heavily deformed garments, though.

Pose estimation under (self-)occlusion: Not only are models of garments and
their configurations usually high-dimensional, but the data on which they

26

2.1 Perception and Action in the Clothing Domain

are based is almost always incomplete. First, a garment may be partially
hidden by another object (occlusion). Second, and more importantly,
some parts of the garment may be obscured from the camera view by
other parts that are closer to the camera (self-occlusion). While symme-
try or continuity assumptions often facilitate model completion of rigid
objects, it is nearly impossible to reconstruct the configuration of the
invisible parts of a highly deformable garment. Therefore, one always
has to make sure that the relevant parts are seen by the camera.

Tracking: To handle incompleteness, noise, and ambiguities in images of mov-
ing objects, tracking (i.e., locally updating a model over time rather than
estimating the object pose from scratch at each frame) is an essential
skill. On the one hand, this requires making assumptions about which
configuration changes are plausible. On the other hand, it is important
not to over-constrain the model, given the fact that clothes may indeed
be subject to strong deformation.

2.1.2 Action

Despite the high dimensionality and complexity of the problem, it is possible
to find suitable representations, considering the fact that a complete model
of the environment is not necessarily required for accomplishing a task. We
only have to define the problem space such that a task solution can be found
using the actions available to the robot. With this in mind, we have created a
taxonomy of interaction primitives with clothes (Table 2.1). By analogy with
the twofold goal of perception (to reconstruct the configuration of individual
objects and to detect spatial relations between objects), we have categorized
the interaction primitives according to their effect, i.e., according to whether
they only manipulate the configuration of the involved garment or change the
spatial relation of the garment to another object. Moreover, it has become
apparent that the openings of the garment (e.g., at the waist, leg, or sleeve
ends) play a prominent role in many of the interaction primitives. Therefore,
another grouping criterion has been whether garment openings are central to
the interaction or not. Interestingly, most interaction primitives with clothes
can be paired with an “inverse” primitive that, to some degree, reverses the
effect of its counterpart. Primitives and their respective inverses have been
placed side-by-side in Table 2.1.
While the vast majority of interactions preserve the number of garment open-
ings and their global structure, opening and closing (e.g., by (un)zipping or
(un)buttoning) form an exception to this rule. Folding outward (e.g., a col-
lar or a sleeve) is another example of changing the configuration of a piece

27

2 The Problem Space of Bimanual Interaction with Clothes

Table 2.1: Taxonomy of interaction primitives with clothes

interaction involves garment openings does not involve garment
primitive openings

changes the opening closing crumpling/ stretching/
garment folding folding deforming flattening
configuration outward/ inward/ folding unfolding

turning turning twisting/ untwisting/
inside out outside in knotting unknotting

changes the grasping releasing grasping releasing
contact (targeted) (randomly)
relation to reaching pulling the
the robot into hand out
hand

changes the - - picking up/ dropping
contact lifting
relation to sliding/pushing (across/off
the support the surface)
surface

changes the hanging up unhanging hanging up unhanging
contact (targeted) (randomly)
relation to pulling over pulling off wrapping unwrapping
another putting sth. taking sth. sth. sth.
object in out

sliding sth. pulling sth.
through out

28

2.1 Perception and Action in the Clothing Domain

of clothing by manipulating its openings. Carrying this interaction primitive
to an extreme by pulling one of the openings (let us call it o1) over all other
openings (o2, ..., on) and/or closed ends (e1, ..., em) turns the garment inside
out. This is equivalent to folding o2, ..., on and e1, ..., em inward and pushing
them through o1.

Manipulations which do not involve garment openings tend to be less com-
plex. In principle, crumpling, folding, twisting, and knotting are all instances
of deforming the surface of a piece of clothing. However, crumpling results
in unstructured deformations, whereas folding and twisting/knotting produce
structures of creases and coils, respectively.

We emphasize that, in our experiments, we focus on those interactions which
change the contact relation between a garment and either the robot or another
physical entity because these primitives provide the basis for complex skills in
scenarios with multiple objects. In manual interaction with clothes, establish-
ing contact between a garment and the hand of the robot is of course essential.
We distinguish between two types of grasping. If the sole purpose of grasping
is to attach the garment to the fingers, the contact position is arbitrary as long
as it allows a stable grasp. We refer to this as random grasping. By contrast,
if the grasp serves to make another action possible (e.g., to pull the garment
over another object), it usually has to be targeted (e.g., around the boundary
of an opening). A further primitive that possibly establishes contact between
the garment and the robot hand is reaching into one of the openings.

In some of the interactions, a support surface, such as the floor or a tabletop,
plays an important role. Obviously, picking up or dropping an item of clothing
changes the contact relation to the support surface. Sliding the garment across
the surface only changes the contact position, whereas pushing it off the surface
(e.g., the tabletop) is another way of changing the contact relation globally.

Concerning the interaction primitive of hanging up a garment, we again distin-
guish between a random and a targeted version. In some cases, it is sufficient
to hang the garment over the target object (e.g., a coat rack or hook) in an
arbitrary manner, and to rely on gravity and the deformability of the fabric
that cause it to get caught. In other cases, it is necessary to make use of an
opening (e.g., of a hood) in order to be successful.

Wrapping is often the only way to create a stable attachment of an arbitrary
object to a garment without openings. If the garment has at least one opening,
depending on its orientation in space, it may be possible to make use of gravity
to put something in. Using the deformability of a garment to pull it tightly
over another object is probably among the most common interaction primitives
(e.g., when putting on a sock). We note that, in our analysis of interaction
primitives with clothes, we make no distinction between a human body part

29

2 The Problem Space of Bimanual Interaction with Clothes

and any other physical object. In fact, sliding a limb through a piece of clothing
is one of the most important interactions during the task of getting dressed or
undressed. This primitive requires the garment to have at least two connected
openings.
To give an example of how everyday tasks are composed of several instances
of the listed interaction primitives, we consider the following scenario:
Alice enters her apartment and is about to take off her winter clothes. She
performs the actions below (using the interaction primitives given in brackets).

1. She puts the keys back in her pants pocket [putting sth. in].

2. She grasps her knit cap [grasping (randomly)] and pulls it off her head
[pulling off].

3. She regrasps the cap around the boundary of its opening [grasping (tar-
geted)] and hangs it up on the coat rack [hanging up (targeted)] [releas-
ing].

4. She unzips her jacket [opening].

5. She reaches into the left sleeve of her jacket with two fingers of the right
hand [reaching into], grasps it around the boundary [grasping (targeted)],
and pulls her left arm out [pulling sth. out] [releasing].

6. She reaches into the right sleeve [reaching into], grasps it [grasping (tar-
geted)], and pulls the right arm out [pulling sth. out].

7. She regrasps the jacket around the boundary of the hood [grasping (tar-
geted)] and hangs it up [hanging up (targeted)] [releasing].

8. She grasps her scarf [grasping (randomly)], takes it off [unwrapping sth.],
and throws it on the coat rack [hanging up (randomly)] [releasing].

9. She takes off her gloves [grasping (randomly)] [pulling off], crumples
them in her hands [crumpling], and puts them in the laundry basket
[dropping].

2.1.3 Affordances

It seems natural to integrate a database of interaction primitives into the
memory of a robot as part of its prior knowledge about clothes, possibly in-
fluencing in a top-down manner how the robot perceives the environment.
However, according to [8], there is also a bottom-up aspect of perception, i.e.,

30

2.2 The Topology and Geometry of Clothes

the environment itself has an effect on the structure of its representation and
on the action possibilities available to the robot. In this connection, the term
affordance plays an important part.

The affordances of the environment are what it offers the animal,
what it provides or furnishes, either for good or ill. . . . [The term]
implies the complementarity of the animal and the environment.

— Gibson [8, p. 127]

Of course, in our case, animal is to be replaced by robot. The meaning of
affordances is best explained using examples: The shape of a zipper provides
an affordance for opening or closing. The deformability of most clothes affords
crumpling or folding. A pants pocket, together with a small rigid object, offers
the robot an affordance for putting the object in the pocket. In a similar
manner, we could express all interaction primitives with clothes as affordances
arising from the physical properties of the involved objects.
As already pointed out by Gibson in his original work, detecting affordances
is not necessarily the same as classifying an object. A pocket affords putting
something in, regardless of whether it is a pants pocket or the breast pocket of a
shirt. Nevertheless, affordance sometimes implies classification and vice versa:
If something affords sliding the legs through, it is probably a pair of pants.
Conversely, if something has been classified correctly as a sock, it inevitably
provides an affordance for pulling it over a foot. However, just because an
object affords a particular interaction does not mean the robot notices it.
Affordances themselves are independent of perception [9]. Consequently, there
may be false positives (false affordances) as well as false negatives (hidden
affordances). For example, a printed breast pocket may create the illusion
that something can be put in, and the real pocket of a crumpled shirt may be
hidden by other parts of the garment.

2.2 The Topology and Geometry of Clothes

Rather than directly addressing the problem of how robots can detect affor-
dances, we first approach the question of which properties cause clothes to
provide certain affordances. To this end, we describe the spatial structure of
garments more or less objectively and globally, i.e., we take the perspective of
an omniscient observer (as opposed to the limited perspective of the robot’s
perceptual system). By doing so, we avoid being deceived by the mislead-
ing local features of false affordances. In the following, we also assume that

31

2 The Problem Space of Bimanual Interaction with Clothes

Figure 2.1: Distances in 3-space between points on the surface of objects before
and after typical manipulations. (a) On a rigid object, the distance
between two arbitrary points is preserved because translation and
rotation are the only possible transformations. (b) On a deformable
garment, the distances may change dramatically when the object
is manipulated, e.g., by a robot.

color and the reflective properties of the material in general do not have any
influence on the affordances clothes provide.

Although the goal of this analysis is a global decription of clothes, it is neces-
sary to first consider the basic structures that make up garments: Most items
of clothing are made of textiles, i.e., networks of yarn which are created, e.g.,
by weaving or knitting. One natural way to regard clothes is hence as meshes
or graphs consisting of vertices representing the intersection points between
the strands of yarn, and edges connecting adjacent vertices. From now on, we
will refer to such representations as textile graphs. However, the fabric of most
garments is so finely woven that we can introduce some abstraction and con-
sider the clothing material as forming a surface, which is an essential concept
both in topology and geometry.

2.2.1 Topology

While Euclidean geometry is concerned with numerical measurements such
as distances between points, angles between lines, as well as the shape, size,
and position of objects, topology [10] provides more qualitative descriptions of
space. When clothes are deformed in typical ways, many of their quantitative
properties change continuously over time. In particular, and in contrast to
rigid objects, the distances in Euclidean 3-space between different points on
the garment surface are usually not preserved (Figure 2.1). But there are also
object properties that remain invariant under continuous deformation. Since
topology is the study of just these properties, it is well-suited for describing
the spatial structure of clothes in a very general way.

One of the basic concepts of topology is that of topological spaces, which can
be defined without any notion of distance. The most common definition of a

32

2.2 The Topology and Geometry of Clothes

topological space is as a set X of points together with a collection T of subsets
of X. The subsets are called open sets and the collection T is called a topology
on X if the following axioms are satisfied:

1. The empty set and X belong to T .

2. The union of an arbitrary number of members of T belongs to T .

3. The intersection of a finite number of members of T belongs to T .

Any metric space has a topology that is said to be induced by its metric
(distance function). Given a metric m, the topology can be constructed from a
base formed by the open balls Br(x0) = {x ∈ X : m(x0, x) < r}, where x0 ∈ X

and r > 0. The collection of open sets then consists of all sets which are unions
of open balls. For example, a hypothetical textile graph can be considered as
a simplicial 1-complex 1 in which the edges of the graph are copies of the real
unit interval [0, 1] glued together at the vertices. This complex is naturally
equipped with a metric indicating the shortest path between two given points
(which can be vertices of the graph or points on an edge). Then, the open ball
B1(v0) centered at a vertex v0, for instance, contains v0 and all its adjacent
edges. The topology induced by this metric consists of all possible unions of
all such open balls centered at any of the points in the complex.
In the following, we focus on surfaces, but we note that we can think of a
textile graph being embedded on a surface, and thereby inheriting many of
its properties [11]. In particular, homeomorphism and connectedness have
equivalent meanings in graphs and surfaces, and the genus of a graph denotes
the minimal integer g such that the graph can be drawn on an oriented surface
of genus g without self-crossings. The terms homeomorphism, connectedness,
genus, and orientability are defined and explained below.
Surfaces in the topological sense are two-dimensional manifolds. An n-manifold
is a locally Euclidean topological space, i.e., a space in which each point has
a neighborhood (a subset of the space that includes an open set containing
the point) that is homeomorphic to the Euclidean space of dimension n. Two
spaces are called homeomorphic if a homeomorphism exists between them.
Homeomorphism is another fundamental concept of topology. It is defined as
a function f between two topological spaces which has the following properties:

1Simplices are the simplest forms of polytopes (generalized polygons) consisting of only
n+ 1 vertices, where n denotes the dimension of the simplex. For example, a 0-simplex
is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a
tetrahedron, and so on. A simplicial n-complex is a set S of simplices of dimension
n or lower that satisfies the following conditions: (i) Any face (the convex hull of any
nonempty subset of the points that define the simplex) of a simplex s ∈ S is also in S.
(ii) The intersection of any two simplices s1, s2 ∈ S is empty or a face of both s1 and s2.

33

2 The Problem Space of Bimanual Interaction with Clothes

1. f is a bijection.

2. f is continuous.

3. f−1 is continuous.

Formally, a function f : X → Y is continuous if the inverse image of any
open set in Y is also an open set in X. But the concept of continuity is well
explained informally using the example of manipulating clothes. Considering
the surface of a piece of clothing as a 2-manifold, the properties that make
a transformation applied to the garment a self-homeomorphism roughly have
the following meaning:

Continuity of f : Intuitively, a garment manipulation is continuous if it does
not involve cutting, ripping, or any similar action. In particular, most
interaction primitives from Section 2.1.2 are continuous, with the excep-
tion of opening (by unzipping or unbuttoning).

Continuity of f−1: The inverse function of a transformation is continuous if
no gluing or, more commonly in the domain of clothing, sewing, zip-
ping, or buttoning is required. As this is also true for most interaction
primitives with clothes (except for closing), they can be considered as
self-homeomorphisms of the involved garments.

One way to think of clothes is as 2-manifolds without boundary comprising
both the outer and the inner surface of a garment (Figure 2.2(a)). A piece
of clothing specified in this way has some topological invariants, i.e., spatial
properties that do not change under typical continuous deformations (self-
homeomorphisms). One such invariant is connectedness, which is defined as
follows: A topological space is connected if it cannot be written as the union
of two disjoint nonempty open sets. Usually, the fact that a garment can be
regarded as a connected space makes it an identifiable object and separates it
from other objects. However, there are exceptions to this rule. For example,
a pair of zip-off pants, i.e., a pair of pants with removable legs, may, in some
sense, be considered a single garment even if the legs have been removed.
The genus of a connected (and oriented) surface is an invariant that plays an
important role in the topological characterization of clothes. It is defined as the
maximum number of cuttings along non-intersecting and non-self-intersecting
closed curves (loops) that can be performed without disconnecting the surface.
In an intuitive sense, it is the number of holes in the surface. Thus, scarfs,
caps, gloves, socks, and other similar garments are represented by genus zero

34

2.2 The Topology and Geometry of Clothes

(a)

(b)

Figure 2.2: Two ways of regarding the topology of garments. (a) A leg warmer,
a pair of pants, and a sweater represented by 2-manifolds without
boundary. The garment surfaces are thought of as connected sums
of g stretched tori (sleeves). (b) The outer surfaces of the same
items of clothing considered as genus zero 2-manifolds with bound-
ary. The boundary components are depicted in red.

35

2 The Problem Space of Bimanual Interaction with Clothes

manifolds. Closed surfaces of genus g ≥ 1 with properties as above can be ex-
pressed as connected sums of g tori. In this regard, a torus can be visualized as
a manifold homeomorphic to the surface of a doughnut, and forming the con-
nected sum of two tori means removing a disc from each torus and gluing them
together along the resulting boundary circles. In clothing, stretched torus-like
structures often occur in the form of sleeves. Hence, one can naturally consider
garments as connected sums of sleeves, i.e., as sleeves suitably sewed together.
In fact, the garments shown in Figure 2.2(a) can be classified by their genus,
i.e., by the number of sleeves they are made up of: A leg warmer has genus
one, a pair of pants has genus two, and a sweater has genus three.

A slightly different way to think of clothes is as genus zero 2-manifolds with
boundary (Figure 2.2(b)). From this perspective, the fabric has no thick-
ness, and only the outer surface of a garment is regarded. Then, the essential
topological invariant is no longer the genus, but the number of boundary com-
ponents. In this context, the boundary is the complement of the manifold’s
interior (the set of points with neighborhoods homeomorphic to R

n), and the
boundary components are the connected components of the boundary. The
boundary components themselves are manifolds without boundary of dimen-
sion n − 1, i.e., in our case, they are closed curves (1-manifolds). Apart from
garments without openings such as scarfs, the boundary components usually
coincide with the boundaries of the garment openings., i.e., caps, gloves, or
socks have one, whereas leg warmers, pairs of pants, and sweaters have two,
three, and four boundary components, respectively.

We note that some special structures of clothes are impossible to represent
as oriented 2-manifolds with boundary in the same way as above. For ex-
ample, a breast pocket, considered as a surface sewed on another surface, is
non-manifold because it has edges with three neighboring surfaces and hence
does not locally resemble Euclidean 2-space in a neighborhood of every point
(Figure 2.3(a)). Furthermore, we have specified that a manifold with bound-
ary should represent a garment’s outer surface, which is implicitly assumed to
have an unmodeled complementary inner surface. In other words, the surface
is required to be orientable, i.e., it must be possible to consistently define it as
either the inner side or the outer side of a garment. However, there are some
rare examples of clothes in which this is impossible: A loop scarf that has
been created by twisting a regular scarf 180 degrees and joining the ends re-
sembles the so-called Möbius strip and is hence not orientable (Figure 2.3(b)).
Nevertheless, on a certain level of abstraction and if we make a few assump-
tions, the topology of most garments is uniquely characterized by the number
of boundary components.

36

2.2 The Topology and Geometry of Clothes

(a) (b)

Figure 2.3: Garment structures that cannot be represented by oriented 2-
manifolds with boundary. (a) A breast pocket regarded as a sur-
face with boundary sewed on the surface of a shirt. The resulting
space is non-manifold because the edges depicted as dashed lines
have three neighboring surfaces which violates the axiom that a
2-manifold should be locally homeomorphic to Euclidean 2-space.
(b) A loop scarf shaped like a Möbius strip has only one non-
orientable surface which cannot be defined as the garment’s outer
side in a consistent manner.

2.2.2 Geometry

The topological invariants provide a very general and global description of a
garment’s spatial structure because they are preserved under the most common
manipulations performed, e.g., by a robot. However, the informative content
of these invariants is also limited in that they do not tell us anything about
the exact shape or pose of the garment. For example, the statement that the
surface of an item of clothing is connected translates as “It consists of one
piece.”, which naturally raises the question, “A piece of what?”. Topology
alone cannot answer this question since very different objects may be topo-
logically the same (e.g., a sock and a glove are represented by homeomorphic
manifolds).

Throughout our topological analysis of clothes, we have been interested in
metrics only in so far as they helped us to define reasonable topologies on
garments. For example, in a textile graph, the geometric realizations of the
edges could, from a topological perspective, be arbitrary real intervals because
they are all equivalent up to homeomorphism. However, in order to accurately
model the garment’s geometry, they should reflect the true physical lengths of
the strands of yarn. Of course, it may be impractical to keep track of such
details, but similar considerations hold for the more abstract representation

37

2 The Problem Space of Bimanual Interaction with Clothes

by manifolds. Although the distances between points on a garment are not
preserved in 3-space, the shortest-path distances on the surface remain almost
constant under a certain class of deformations. In this context, we distin-
guish between stretching, which may significantly change the distances on the
manifold, and bending, under which they are preserved to the greatest extent.
Depending on the properties of the material, we can thus make some geo-
metric assumptions. For example, if the fabric of a sweater is not too elastic
(stretchable), the length of the sleeves may be assumed to be constant.

It is however difficult to make general statements about the geometry of clothes
because there may be great differences between items of a particular garment
category (e.g., between different types of pants). Moreover, the embeddings of
the garment surfaces in 3-space tend to be complex. One way to circumvent
this issue is to assume a canonical configuration of and a certain perspective
on a garment. For example, a short-sleeved shirt spread out on a flat surface
and viewed from above has a T-shape, and a pair of pants roughly has a Y-
shape. Rather than considering the overall geometry of an item of clothing,
it is also possible to focus on the most important parts (such as the closed
curves representing the boundary components). This outlines one of the key
challenges in interaction with clothes, which is to find task-specific geometric
heuristics that can be used in addition to the general topological knowledge
we have about clothes.

2.2.3 Effects on Perception and Action

The topological and geometric properties of clothes per se are part of the task
environment and as such independent of perception. Conversely, they do how-
ever influence the representation of the task in the robot’s perceptual system
in two different ways. First, the topology and geometry of garments imply
affordances that may or may not be perceptible from the sensory input alone,
i.e., in a bottom-up manner. Second, the robot’s topological and geometric
prior knowledge of clothes leads to certain expectations and hypotheses that
guide perception (top-down processing) and thus robotic action.

The characteristics of garments that induce affordances can be categorized into
topological, geometric, and material properties. We give a simple example of
a topology-induced affordance: A pair of zip-off pants consisting of three de-
tached parts (two legs and the top part) provides an affordance for connecting
the parts by zipping the legs back on (and thus creating a connected manifold).
Some of the most important affordances of clothes are effects of the number
of boundary components: If a garment has at least one boundary component
that represents an opening, it can be used, e.g., for pulling it over another

38

2.3 The Dressing Task

object. If it has two or more boundary components, it potentially affords slid-
ing an object through. But it is often a geometric property that makes an
action physically possible or impossible. The affordance of sliding a cylindri-
cal object through the opening of a garment, for instance, becomes realizable
only if the circumference of the cylinder base is smaller than the arc length
of the boundary component corresponding to the opening. We note however
that the material properties of the garment might provide an affordance for
changing the geometry, e.g., by stretching it such that the object fits through
the opening.
During the perception of clothes, robots are confronted with complex and
ambiguous stimuli. Therefore, it is often difficult to detect affordances di-
rectly from the sensory input. Instead, it may be possible to use abstract
topological or geometric prior knowledge to initiate a top-down process. For
example, if the robot knows that the only object in its field of view is a gar-
ment whose surface is connected, it can exploit this knowledge and apply a
simple foreground-background segmentation algorithm, rather than trying to
solve the much harder problem of segmenting an arbitrary scene. Similarly,
if the garment category is known, detecting openings simplifies to finding a
predefined number of boundary components.

2.3 The Dressing Task

In Section 2.1, we have described the perception of and interaction possibilities
with clothes without taking into account their overall spatial structure. By
contrast, in Section 2.2, we have focused on the form of garments but largely
ignored the purpose it serves. However, what all garments have in common is
their main function which is to cover parts of the body. Therefore, one reason
to analyze the dressing task in detail is the fact that robotic assistance with
dressing could be helpful, especially for physically handicapped persons. But
beyond that, we also believe that, since dressing is the inherent purpose of
clothes (this is what they were made and designed for), the task determines
the relationship between the form and function of garments. As a consequence
of this analysis, we therefore hope to gain some insight into how the objects
involved in the task and the interactions between them could be represented in
robots, not only during dressing assistance but also during other manipulation
tasks in the clothing domain.
We first formalize the dressing task topologically, i.e., without considering the
exact geometry of the involved objects (the human body and one or more
items of clothing). To this end, we draw on the spatial characterization of
clothes from Section 2.2 along with a simple topological representation of the

39

2 The Problem Space of Bimanual Interaction with Clothes

body and relate them through qualitative dressing paths. While this simplistic
description of the task neglects all difficulties that arise when performing it in
the real world, we also decompose the task into smaller subproblems that make
it much easier to identify the challenges of robot-assisted dressing.

2.3.1 Task Topology

In the following, we describe the task of putting on a piece of clothing in a
topological manner. We assume that the outer surface of the garment is repre-
sented by a connected, orientable genus zero 2-manifold with boundary. Then,
the garment is topologically characterized by the number of boundary compo-
nents. We note that, in principle, this is also true for clothes like button shirts
where, in the unbuttoned state, the collar forms a large boundary component
together with the front and the waist part. However, in such cases, the dress-
ing task usually involves an opening (unbuttoning) step before and a closing
(buttoning) step after the actual procedure of putting the garment on. This
means that the garment topology changes two times during dressing. In the
task description below, we limit ourselves to topology-preserving strategies,
i.e., in the example of button shirts, we assume them to be closed throughout
the whole dressing procedure.

A very intuitive representation of the human body is that of a stick figure,
which we will refer to as a skeleton. There is a graph-theoretic realization of
such a skeleton (as a tree, i.e., as a connected graph without cycles). Hence,
topologically, we can formalize skeletons as simplicial 1-complexes, much like
we did with textile graphs in Section 2.2.1. This representation has the ad-
vantage over more realistic models in that it abstracts the big picture from
geometric details such as body proportions and size. Essentially, it reduces
the shape of the body to a structure of links between its extremities (the
head, the hands, and the feet), which renders the skeleton models of all (non-
amputated) human bodies topologically equivalent, allowing us to make some
person-independent statements about the task.

In most cases, only a part of the body is involved in putting on a garment,
so we usually consider a sub-skeleton. To formalize the tasks of putting on a
leg warmer, a pair of pants, and a sweater, we use the skeletons representing
one of the legs, the lower body, and the upper body, respectively (depicted
as orange lines in Figure 2.4). If, for simplicity, we assume star-shaped sub-
skeletons with one central point (depicted in green), it is easy to see that
the three simplicial 1-complexes considered are pairwise non-homeomorphic
because removing the central point yields two (in the single leg case), three (in

40

2.3 The Dressing Task

b0

b0

b0

Figure 2.4: Skeleton model of the human body and target configurations of the
dressing task, exemplified by a leg warmer, a pair of pants, and a
sweater. The involved sub-skeletons are depicted in orange. The
green dots show the central points of the star-shaped sub-skeletons.

the lower body case), or four connected components (in the upper body case).2

Thus, the body parts involved in dressing are topologically characterized by
the number of sub-skeleton end points.
To specify the objective of the dressing task, it is helpful to imagine a target
skeleton in the interior of the garment which connects the centers of the bound-
ary components (openings). We note that there are also articles of clothing
that are supposed to cover one or more of the extremities (e.g., a hat covers the
head and tights cover the feet). Then, the target skeleton can be considered to
have end points representing the closed ends of the garment. In any case, the
goal of putting on a piece of clothing is to match the relevant sub-skeleton of
the body with the visualized target skeleton inside the garment. In particular,
it is important that the end points of the two skeletons be positioned in a de-
fined way with respect to each other. For example, after putting on a sweater,
the end point representing the left hand should match the end point at the left
sleeve opening, the head should match the neck opening, and so on.
The actual dressing procedure begins with the identification of a boundary
component b0 that corresponds to a specific opening through which the whole
body part to be dressed has to pass. In fact, the choice of b0 is uniquely
predetermined by the garment category (the waist end in case of a sweater or a

2It can be shown that if f : X → Y is a homeomorphism, then for any x ∈ X, the
restricted function f |X\{x} : X \ {x} → Y \ {f(x)} is also a homeomorphism. If we
choose x to be the central point of a star-shaped skeleton with n branches, we obtain
n connected components, whereas removing an arbitrary point from a skeleton with
m < n branches yields at most m < n connected components. However, two spaces with
different connectedness properties cannot be homeomorphic because, intuitively, cutting
or gluing would be necessary.

41

2 The Problem Space of Bimanual Interaction with Clothes

Figure 2.5: Task topology of putting on a pair of pants. The target skeleton
and the sub-skeleton representing the lower body are depicted in
green and orange, respectively.

pair of pants, the upper end in case of a leg warmer, etc.). Suitable trajectories
through the garment can be found by considering the configuration of the
target skeleton. Except for some unusual dressing strategies which involve
turning the item of clothing inside out, the path of any end point of the
body’s sub-skeleton through the garment interior starts at b0. An exemplary
path then follows the target skeleton, passes its central point, and ends after
passing through the associated target opening (or when reaching the associated
closed end).

Figure 2.5 shows a possible trajectory of the skeleton during the task of putting
on a pair of pants. We emphasize however that this is only a qualitative il-
lustration of the procedure which, in the real world, is subject to different
variations. First, the trajectory shown describes relative changes in pose be-
tween the skeletons, i.e., in order to achieve a certain configuration, either the
human limbs or the garment could be moved. Second, we have considered the
paths of the skeleton end points independently of each other. In the illustrated
example, the feet move simultaneously, but they could also pass through the
garment interior one after the other. Third, the garment (and thus the target
skeleton and the trajectories) may be subject to topology-preserving deforma-
tions such as stretching or bending.

2.3.2 Task Decomposition

Up to this point, we have only considered the qualitative spatio-temporal struc-
ture of the dressing task. In doing so, we have consistently ignored the me-
chanical processes that are responsible for moving the garment and the body
with respect to each other. For the topological analysis of the task, it has

42

2.3 The Dressing Task

also been irrelevant whether a person gets dressed with or without help from a
robot. By contrast, in the following, we focus on robot-assisted dressing. We
decompose the problem into three essential skills a bimanual robot needs in
order to be able to accomplish the overall task.

Generate a suitable initial configuration: Even before the actual dressing pro-
cedure, the robot has to solve the difficult problem of bringing the in-
volved entities (the garment, the human body, and the robot’s own me-
chanical components) into a starting pose that facilitates the planning
of successful dressing paths. In this regard, the garment opening that
is represented by boundary component b0 almost always plays an im-
portant part. First, the opening has to be found. Depending on the
garment category and configuration, this may require physical actions
that make the opening visible. Then, the garment has to be manipu-
lated such that the area of the opening is increased to make the limbs fit
through. Furthermore, it may be the case that the person to be dressed
requires support with moving the extremities of the body to the garment
opening. Besides, in order to be able to perform the subsequent steps,
the robot hands must be attached to the garment, which, depending on
the dressing strategy, involves one- or two-handed grasps.

Assist with sliding the limbs through the garment: One possible realization of
an abstract relative dressing trajectory is to keep the garment in a more
or less static configuration and to slide the limbs through the garment
interior. Depending on the physical abilities of the person to be dressed,
robotic assistance may be necessary, or the movement has to be carried
out completely by the robot. This means that the robot hand grasps
around one of the human limbs, and the robotic joints are controlled in
such a way that the extremity of the limb is guided along the planned
trajectory to its target position. As a consequence of attaching the robot
hand to the person’s body, the human and the robotic kinematics have
to be considered as a whole. Moreover, one has to keep in mind that, in
this strategy, only one robot hand is available for holding the garment.

Pull the garment over the limbs: Alternatively or in addition, the item of cloth-
ing can be moved and deformed while assuming the body to be static. An
optimal dressing assistance robot would probably apply both strategies
alternatingly. Pulling the garment over the body has the advantage that
the robot can use both hands to grasp the garment. Using this strategy,
the robot is faced with two competing challenges. On the one hand, the
fabric can get caught on an extremity (e.g., the foot when putting on

43

2 The Problem Space of Bimanual Interaction with Clothes

a pair of pants) or on another body part (e.g., the knee). This may be
detectable indirectly at the robot hand as the garment starts to slip out
between the robotic fingers, and the robot could try to avoid such situ-
ations. On the other hand, it has to be ensured that enough contact is
established between the garment and the human body. In order to pull a
garment tightly over a limb, the robot must apply higher forces at some
points to counteract the resistance of the body. In many cases, the exact
trajectory and/or the optimal force profile may only be determined by
trial and error, which poses the additional challenge of guaranteeing the
safety of the person to be dressed and the involved objects during the
learning phase.

2.3.3 Implications for Object and Task Representations

The action possibilities determine the design and appearance of most everyday
objects, a fact that is often paraphrased as “form follows function”. Therefore,
the purpose of an object should be considered when defining the structure of
its representation. From the formalization of the dressing task, i.e., from the
inherent function of garments, we now derive a few guidelines for how clothes
and their interplay with other objects can be modeled in robots. We think that
the memory of any robot that is meant to interact with clothes in complex ways
requires at least some of the following components.

Overall plan with subgoals: Using the example of robot-assisted dressing, we
have seen that, although the movements and manipulations themselves
tend to be continuous, complex interactions with clothes can be decom-
posed into smaller discrete subtasks with their own goals and challenges.
An explicit overall plan should therefore define the conditions for tran-
sitioning from one phase to another. Moreover, the limited resources
should be taken into account. For example, the plan should specify how
a bimanual robot can use both hands in an optimal way. One possible
implementation of such a plan is as a hierarchical state machine (Section
1.2).

Representation of the garment openings: It has become apparent that the open-
ings characterize an item of clothing surprisingly well, not only from a
topological perspective, but also in terms of its inherent function, namely
dressing. Therefore, a robot interacting with clothes should, in some
way, model the garment openings. In particular, a specific opening rep-
resented by boundary component b0 has been identified as being essential
during robotic assistance with dressing.

44

2.4 Strategies for Reducing and Searching the Problem Space

Representation of the garment interior: For some clothes manipulation tasks,
such as folding or flattening, it may be sufficient to only represent the
geometry of the garment surface. However, in more complex interactions
involving openings, such as sliding a limb or another object through a
piece of clothing, the interior of the garment plays an important role.
Consequently, it may be useful to have an explicit representation of how
the openings are linked inside the garment.

Integrated kinematic model: In order to manipulate clothes, the robot also has
to coordinate its own mechanical components. The fact that during
dressing assistance the robot hands sometimes need to be attached to a
human limb further complicates the situation. This is, in some sense,
similar to integrating a complex tool into the kinematic chain of the
robot, which is not an exclusive problem to robot-assisted dressing. For
example, an integrated kinematic model of the robot and a clothes hanger
might facilitate sliding the hanger through a garment opening.

Representation of knowledge gained from experience: While a predefined plan
is well-suited for specifying how to proceed after reaching a subgoal,
finding a policy for accomplishing a subtask, such as pulling a garment
over a body part or another object, may require trial and error learning.
Therefore, the robot has to store, e.g., trajectories that it found to be
successful during its exploration. But beyond that, it also has to re-
member and take into account negative experiences in order to imporove
gradually.

2.4 Strategies for Reducing and Searching the

Problem Space

Given the vast amount of degrees of freedom most garments have, a naive (i.e.,
exhaustive) internal representation of the clothes perception and manipulation
problem would be exceedingly large. To model the state of the environment in
its entirety, both its configuration and the complex motions would have to be
represented. Furthermore, one would have to integrate a model of the forces
acting within the clothing material and the contact forces between the involved
objects. Even if the robot had access to all these data (which is far from the
case as we have seen), it would be almost impossible to find solutions in such
a high-dimensional and unstructured problem space.
But it is not only the size of the state space but also the action space that
complicates the search. Take the simple example of sliding a piece of clothing

45

2 The Problem Space of Bimanual Interaction with Clothes

across a support surface. The robot could use one or more fingers, change
the contact position and angle, alter the direction of movement, or vary the
force it applies to the garment. In other words, it has so many options that
it seems difficult to even determine where to begin. Therefore, we think that
robotic action should be tightly coupled with perception. Besides, we suggest
that the size and seeming randomness of the problem space of interaction
with clothes be reduced by using more qualitative (topology-based) spatial
representations. As another strategy for simplifying the problem, we discuss
ways to transition from high-dimensional task-agnostic state and action spaces
to lower-dimensional task-centric policy spaces that are much easier to search.

2.4.1 Integrating Action with Perception

The set of actions available to the robot for solving a given problem has a
large effect on the optimal search strategy through the problem space. In
Section 2.1.2, we have considered interaction with clothes in isolation from
perception. But the actions/operators in the problem space theory may be
different from the described interaction primitives in that they are supposed
to provide ways to move from one perceived state to another until a goal state
is reached. Therefore, both the state representation and the overall problem
to be solved have to be taken into account when specifying the operators.
If, for example, the robot is faced with a high-level problem such as doing
the laundry, the action space should, in the first instance, also be made up
of high-level operators (sort the clothes by material and color, put them in
the washing machine, etc.). By contrast, if the task is to grasp a piece of
clothing and the state representation is derived from depth information, the
lower abstraction level should be reflected in the specification of actions, too
(e.g., move the fingertips of the right hand toward a graspable point on the
garment surface extracted from a point cloud of the scene). Generally speaking,
when defining the action space, we try to find the minimum set of operators
such that, considering the perceptual abilities of the robot and the internal
representation of the task, a sequence of these operators can be found that
solves the given problem.

In robotics, it is sometimes implicitly assumed that the operators are physical
actions and the role of perception is only to update the internal state repre-
sentation. But it is often the case that perception itself is the problem to be
solved (or at least an essential subproblem of a wider task). Then, the op-
erators may be search steps within the state space which do not change the
task environment in any way. For example, in visual tracking of clothes, the
goal at each time step is to find the garment configuration that, given the

46

2.4 Strategies for Reducing and Searching the Problem Space

configuration at the previous time step, explains the current visual input best
or, more precisely, good enough according to some criterion. The operators
required to reach the goal state defined in this way may be simulated rotations,
translations, and deformations that iteratively transform the internal garment
model.

However, not only simulated actions but also real physical interaction with
the environment can be helpful for solving perception tasks. This is referred
to as interactive perception in the literature (e.g., [12, 13]). Many robot con-
trol architectures consist of three elements which are repeatedly applied in the
following order: (i) sensing, (ii) planning, and (iii) acting. Traditionally, the
second and third steps are based on the first one, i.e., the purpose of percep-
tion is to enable the robot to plan its actions. Interactive perception reverses
the causality, i.e., the robot acts in order to improve its perception of the
environment.

In the clothing domain, the interactive perception paradigm is particularly
useful because it can help overcome some of the issues of visual perception
mentioned in Section 2.1.1. Consider the task of counting the items in a
heap of clothes. While the segmentation problem is practically impossible to
solve based on images of the static scene, interacting with the environment
by randomly picking and removing one item after the other makes the task
much easier to accomplish. In a similar way, the self-occlusion problem in
recognition and pose estimation can be tackled by turning a garment such
that the relevant parts become visible to the camera.

Interestingly, the issues that have arisen in the context of affordances (Section
2.1.3), namely separating true from false affordances and making hidden af-
fordances perceptible, are both problems that can be solved using interactive
perception. For example, in order to determine whether a breast pocket is real
or just printed on a shirt, the robot could try to pull at the perceived hem
and see if it creates an opening. Similarly, to uncover the hidden pocket of a
crumpled shirt, the robot could stretch or flatten the garment.

2.4.2 From Geometry to Topology and Back

Representing the complex geometry of the involved objects (particularly the
garments themselves) in detail blows up the problem space of interaction with
clothes extremely. Therefore, this space should be reduced in size by only
modeling the most relevant features of the environment. Since we have shown
that, at least on a qualitative level, clothes are aptly characterized by topol-
ogy, it seems natural that feature selection should be based on topological
considerations.

47

2 The Problem Space of Bimanual Interaction with Clothes

If biological evolution had given rise to representation structures in the brain
that are consistent with the mathematical notion of topology, this would
strongly support our argument. In fact, researchers have speculated that topo-
logical representations might dominate geometric representations in humans.
Piaget and Inhelder [14] found that children at a particular stage of devel-
opment succeed in drawing a cross (“+”) while a hand-drawn circle is not
distinguishable from a triangle or a square. This indeed corresponds with
the definition of topologically equivalent (homeomorphic) spaces. However,
Darke [15] remarks that topological primacy in representation is not the only
possible explanation of this phenomenon because a child’s drawing is influenced
by sensorimotor abilities as well as likes and dislikes, and the end product of
a drawing is often less revealing than the process of creating it. Moreover,
parts of Piaget and Inhelder’s work have been criticized for being difficult or
impossible to replicate and for using the term topology loosely [15, 16].
Our approach to topology-based modeling is not so much motivated by psycho-
logical findings on how humans generally represent space as by a task-driven
perspective on how robots should represent spatial knowledge to solve problems
related to handling clothes. Because garments are usually highly deformable
and topology is concerned with the properties that still hold if an object is
continuously deformed, the most general yet relevant features of clothes are
almost inevitably the topological invariants. However, we think that topol-
ogy can and should not replace geometry but provide a means for reconciling
bottom-up and top-down perception.
The input to the robot’s perceptual system tends to be of a geometric nature
because sensors can only make quantitative measurements. For example, the
depth cameras we have used in many of our experiments measure distances
of objects from the camera. Usually, this data travels through a bottom-up
processing pipeline to gradually yield more qualitative information about the
environment. At the same time, the robot has some abstract prior knowledge
that it can use to perform a more targeted top-down search for task-relevant
structures in the data.
We believe that, in the clothing domain, both pathways often meet at the
level of topology. However, to control its movements, the robot has to rely on
exact positional information. Therefore, topological representations have to be
enriched with geometric data, again. In this sense, our strategy for reducing
and searching the problem space can be described as going from geometry to
topology and back. We give two examples of how our robot uses this strategy
to perceive clothes:

Example 1: In robot-assisted dressing, a combination of bottom-up and top-
down processing can be used to find the garment opening through which

48

2.4 Strategies for Reducing and Searching the Problem Space

the human limbs have to pass. On the one hand, the bottom-up vision
pipeline contains an edge detection step and a procedure for representing
the edges topologically in a graph3. On the other hand, it is known in
advance that a garment opening is edged in a certain way, and that
the corresponding boundary component is a 1-manifold, i.e., a closed
curve (Section 2.2.1). The robot can apply this prior knowledge to the
graph in a top-down way in order to find the patterns that yield the
desired boundary component and thus the garment opening. However, to
determine if a limb fits through the opening, topological knowledge is not
sufficient, but the size of the opening has to be computed geometrically.

Example 2: If the problem is to classify a piece of clothing that lies spread
out on a support surface, an important step of bottom-up processing
is to extract the contour of the garment from the input image. This
information together with the robot’s prior knowledge about prototypical
garment shapes can be exploited for classification. Beyond that, knowing
the garment category usually implies knowing the number of openings.
But again, to be useful, this topological knowledge has to be augmented
with geometric data, e.g., with the exact positions of the openings.

2.4.3 Task-centric Policy Spaces

We recall that the problem space theory covers three major aspects of problem
solving by an information processing system: (i) The environment is repre-
sented in such a way that solutions can be found by searching in a space of
internal states. (ii) The problem solver chooses its actions depending on the
current state. (iii) The actions are goal-directed. Although the focus of the
problem space theory has initially been on human problem solving, it also pro-
vides an interesting perspective on the question of how difficult a given task
is for a robot. However, in order to be useful for robotic decision making in
a wide range of problems, it lacks the important concepts of uncertainty and
motivation which are made explicit by another theory, namely the theory of
Markov decision processes (MDPs). MDPs add to the set of states and the
set of actions a probability that choosing a certain action while being in one

3Intuitively, a graph is a topological representation in the sense that it focuses on neigh-
borhoods rather than distances. Formally, we have discussed in Section 2.2.1 how the
realization of a graph as a simplicial 1-complex can be considered a topological space,
using the example of what we have referred to as a textile graph. We emphasize however
that, while the concept of textile graphs has been introduced to formalize the objec-
tive spatial structure of garments, using graphs during perceptual processing serves to
organize the robot’s subjective knowledge, which are two completely different things.

49

2 The Problem Space of Bimanual Interaction with Clothes

state leads to being in another state in the next time step. Moreover, they
introduce the notion of a reward that the robot receives for transitioning from
one state to another by taking a particular action.
In an MDP, the solution to a problem is represented by a so-called policy, a
function specifying which action to choose (or the probability of choosing an
action) when being in a certain state. In episodic tasks and if the complete
state of the environment cannot be observed, instead of focusing on the values
of individual states and actions, it is often more efficient to search in a space
of parameterized policies (e.g., in a space of parametric trajectories) directly,
using an evolutionary algorithm or a similar optimization method. Then, the
reward does not specify the immediate feedback for taking an action in a
particular state but the overall performance feedback the robot receives for a
full episode of the task, and uncertainty is not necessarily considered on the
level of state transitions but only on the reward level.
Regardless of whether one sticks to MDPs or opts for evolutionary algorithms
(as we do in our experiments), one has to decide on the structure of the internal
task representation. Some approaches to robotic problem solving try to be,
at least in principle, task-agnostic by working with raw sensory data such as
pixel values from camera images or the joint angles of a robot arm. Most deep
learning algorithms belong to this class of methods. They learn intermediate
representations from a vast amount of training data in order to avoid manual
feature engineering. At the other end of the spectrum are those methods that
use a lot of domain knowledge to model the relationship between the sensory
input and the internal representation explicitly.
We believe that the optimal abstraction level of the representation is highly
dependent on the task at hand. The deep learning paradigm has been used
successfully for image recognition [17], robotic grasping [18], as well as for
playing Atari [19] and the game of Go [20], to name but a few applications.
However, in the domain of garment perception and manipulation, there are
good reasons for employing task-specific representations rather than relying
on raw input data. In the following, we express some concerns with respect to
using present-day deep learning methods as black boxes for interaction with
clothes and suggest strategies for using task-centric policy spaces instead.

Sample efficiency: Deep learning tends to be extremely data hungry. For ex-
ample, the ImageNet ILSVRC dataset [21] that has been used success-
fully for training deep convolutional neural network classifiers [17] con-
tains 1.3 million labeled images and 1000 object classes. Even if the
network architecture and the hyperparameters are reused across similar
tasks, e.g., across different Atari games [19], the actual learning proce-
dure has to be carried out separately for each task. In robotic interaction

50

2.4 Strategies for Reducing and Searching the Problem Space

with clothes, it would be very difficult and costly (if not impossible) to
generate thousands of training samples. Especially if human subjects are
involved as in robot-assisted dressing, such an amount of training sessions
would be inacceptable. Therefore, in scenarios of that kind, the dimen-
sionality of the policy space should be minimized by using task-specific
heuristics so as to reduce the number of samples required.

Integrating prior knowledge: To be more or less independent of the task (if only
in theory), most deep learning methods use as little domain knowledge
as possible. Consequently, there is typically no easy way to integrate
prior knowledge into these frameworks. However, as we have seen in our
analysis of the problem, robots have to exploit very abstract topolog-
ical concepts (e.g., that of garment openings and how to make use of
them) to handle clothes successfully. But it is difficult to imagine that
a deep learning system could develop such a qualitative understanding
of the task from scratch because the solutions learned by most exist-
ing algorithms are more superficial than they might initially appear, as
pointed out by Marcus in [22]. By contrast, in task-centric policy spaces,
robots do not acquire new concepts, but they learn how to apply known
concepts optimally, which is usually much easier.

Hierarchical planning: Many tasks in the clothing domain, e.g., robotic assis-
tance with dressing, have a hierarchical structure. However, the cor-
relations between non-hierarchical feature sets learned by present-day
deep learning algorithms typically cannot represent such structures in a
natural way [22]. Moreover, these methods often fail to find strategies
that extend over longer time scales [19]. Therefore, to carry out complex
tasks, our robot follows a high-level plan and uses policy learning only
for solving particular subproblems. When designing the policy space, we
can thus assume that the environment is in a certain initial configuration,
and that the robot has a clearly defined goal, e.g., to optimize the end
effector trajectory for the specific subtask of pulling a piece of clothing
over one of the human limbs during dressing assistance.

Dealing with rare events: To acquire comparatively simple manipulation skills
such as grasping objects [18], robotic learners can rely on receiving re-
ward at regular intervals. This is even more the case in computer games
with an ever-increasing score. In poorly initialized deep learning of inter-
action with clothes, it would take a very long time before the robot does
anything meaningful and reward-worthy at all. During this exploration
phase, the robot would behave almost randomly and it would be difficult

51

2 The Problem Space of Bimanual Interaction with Clothes

to guarantee the safety of the involved objects and/or persons. By con-
trast, task-centric policy spaces can be limited to at least theoretically
plausible policies for accomplishing a certain task. Beyond that, it may
be possible to exploit the task-specific structure of such policy spaces
for defining objective functions that do not only reward the rare event
of complete success but guide the robot to successful policies gradually
(task-centric reward shaping).

2.5 Discussion

In this chapter, we have developed a problem definition of bimanual interaction
with clothes, with a view to finding suitable ways of representing the problem
in robots. This has been done within the framework of the problem space the-
ory. The theory states that any problem solving strategy can be reformulated
as a search through a space that constitutes the robot’s internal representation
of the task. We point out however that, throughout this thesis, we will not
always make the problem space (i.e., the state space, the action space, as well
as the initial state and the goal state) explicit. Moreover, at times, it will be
clear that the robot performs a search (e.g., a stochastic search for an opti-
mal policy), whereas at other times, it will be more implicit. Notwithstanding
this, the problem space theory has been helpful in understanding the chal-
lenges of clothes perception and manipulation, and in identifying strategies for
simplifying the task by reducing the search space complexity and size.
We began our analysis by considering robotic perception in the clothing do-
main. In other words, we regarded the link between the task environment
and its internal representation. We found that, in this context, a robot faces
two key challenges, namely to reconstruct the configuration of garments and
to detect their physical interaction with other objects indirectly from the per-
ceptible effects. It has become apparent that both problems can, in principle,
be solved using visual perception. However, the situation is complicated by
the fact that clothes tend to be extremely deformable which can result in pro-
hibitively high-dimensional models. On the other hand, the deformability of
garments also affords a large amount of interaction possibilities with them.
These interactions can be useful in two respects. For one thing, they possibly
change the state of the environment such that it progresses toward a state that
corresponds to a goal state in the problem space. For another thing, interac-
tion may simplify and improve the robot’s perception of the scene, which is
often referred to as interactive perception.
There is a related controversy about whether perception should be a bottom-up
process starting at the environment affordances or a top-down process guided

52

2.5 Discussion

by prior knowledge about the task. We think that information should travel
in both directions, eventually converging to qualitative representations that,
in the case of interaction with clothes, are often aptly described at the level
of topology. From the spatial structure of garments, we have derived that the
most important topological invariant of clothes is the number of openings or,
more formally, the number of boundary components.
The openings are not only essential in characterizing garments topologically
but also in view of the inherent purpose of clothing which is to cover the
human body. We have described the task of putting on clothes both in an
abstract topological manner and more concretely with regard to robot-assisted
dressing. Based on this functional analysis, we have made some suggestions
for how garments and the other entities involved in the task can be represented
in robots. Furthermore, we have argued that the structure of the task should
also be considered and exploited when defining policy spaces for robotic motor
skill learning in the clothing domain. This is opposed to the vast majority of
deep learning methods that deliberately ignore any domain knowledge to be,
at least to some extent and in theory, task-agnostic.

53

3 Related Work

One guiding principle of this thesis is to take an integrated view of perception
and action. Another central idea is to use concepts from topology for more
qualitative representations of the environment. Both ideas are shared by a
growing number of researchers in the field of cognitive robotics. Therefore, in
this chapter, we will first give an overview of works that are concerned with
the question of how action can facilitate perception and vice versa (Section
3.1). Then, we summarize the related work on topology-based representations
in robots (Section 3.2). In Section 3.3, we provide a literature review of robotic
clothes manipulation. Finally, since the dressing task has been identified as
being essential in characterizing the form-function relationship of garments,
we take a closer look at recent works on robotic dressing assistance (Section
3.4).

3.1 Coupling Perception and Action

Perception and action can be coupled in two ways. It is widely accepted that
perception is often a requirement for meaningful action selection, e.g., in the
sense-plan-act paradigm, in visual servoing, and whenever a state represen-
tation of the environment is needed (such as in Markov decision processes).
However, in the following, we focus on the opposite case in which action facil-
itates perception. For a detailed survey of interactive perception, the reader is
referred to [13]. The authors distinguish interactive perception from active per-
ception [23] which does not involve forceful interaction with the environment.
Examples of active perception include simultaneous localization and mapping
(SLAM) [24] in which a robot has to move around its environment in order to
build a map and at the same time localize itself in it, and active vision [25] in
which the robot actively changes the viewpoint(s) of its camera(s) but leaves
the rest of the environment unchanged.
If touch is the main modality considered, it is quite clear that interaction with
the environment is almost always necessary to localize [26], explore [27], or
identify [28] objects. Moreover, Li et al. [29] showed that, using haptic explo-
ration primitives and a tactile servoing controller, it is possible to learn the
homogeneous transformation of a tool with respect to the robot’s end effector.

55

3 Related Work

Meier et al. [30] demonstrated that push manipulation is useful in classifying
the behavior of an object (sliding vs. slipping) during interactive perception
with a tactile fingertip. Vásquez et al. [31] suggested robotic grasping of an
object to identify its shape by means of a so-called invariant proprioceptive
signature based on the joint angles of the hand.

In recent years, there has been an increasing number of works investigating how
interaction can be used to improve visual perception. In an influential paper of
Katz and Brock [12], who coined the term interactive perception, the authors
describe a system observing changes in distance between points on the surface
of an articulated object during robotic manipulation so as to build a kinematic
model of the object. The problem of estimating articulation models using
interactive perception has since been addressed in a number of projects (e.g.,
[32–34]). Other visual perception tasks that have been approached with an
interactive method include segmentation (e.g., [35–37]) and object recognition
(e.g., [38–40]).

Interactive perception and regrasping can be combined such that, on the one
hand, moving a grasped object in front of the robot’s camera improves per-
ception, and on the other hand, the improved model of the object helps to
specify suitable poses for regrasping. Krainin et al. [41] suggested an infor-
mation gain based next best view algorithm guiding manipulator motion and
object regrasping from the tabletop so as to minimize uncertainty in object
shape. Tsuda et al. [42] extended the idea to the bimanual case, i.e., they
considered in-air regrasping. In both works, the goal was to generate complete
volumetric or mesh models of unknown rigid objects.

Interactive perception has also played an important role in robotic perception
and manipulation of deformable objects such as clothes. Sun et al. [43] and
Willimon et al. [44–46] explicitly characterized their works on robotic laundry
handling as applications of the interactive perception paradigm. However,
many projects have used similar ideas. For a detailed review of works concerned
with perceiving and handling garments, the reader is referred to Section 3.3.

Another concept that relates action to perception is that of affordances. In
Şahin et al.’s formalization [47], an affordance from the robot’s perspective is a
relation between an entity-behavior tuple and its effect, written as
(< effect >,< (entity,behavior) >), where angle brackets denote equivalence
classes. In this framework, a key aspect of learning is forming these equivalence
classes, i.e., abstracting from irrelevant properties of the environment. For ex-
ample, the effects of lifting a red object with the right hand and lifting a blue
object with the left hand are equivalent. Object-Action Complexes (OACs) [48]
are another formalization of affordances as state-transition functions. The fo-
cus of OACs is not on equivalence classes, but on the fact that actions can

56

3.2 Topology-based Representations

also be unsuccessful. Specifically, an OAC is a triplet (E, T,M), where E is
an identifier, the prediction fuction T : S → S represents the system’s belief
about how the OAC will change the state of the environment if successful,
and M is a statistical measure of the OAC’s success in the past. In general,
this framework can be used for planning at different levels of a cognitive archi-
tecture (from high-level reasoning to the sensorimotor level) and for learning
S (the state representation), T , M , or a control program that maximizes the
probability of success.

3.2 Topology-based Representations

An aspect we and other researchers have added to the affordance discussion is
the relationship between the action possibilities of an object and its topological
invariants. Under the assumption that topological representations facilitate
the coupling of perception and action, roboticists have exploited various ideas
from topology. Since some of the concepts used are related but not identical,
we begin this section with a few definitions in order to avoid confusion.

Homology group: A homology associates to an object, such as a topological
space, a sequence of homology groups. Roughly speaking, the elements
of the homology groups Hk(X) with k ∈ {0, 1, ..., n} of an n-manifold
X are equivalence classes of k-dimensional cycles (looping around k-
dimensional holes) 1. If X is a connected and orientable 2-manifold
without boundary of genus g, the rank of H0(X) is 1, the rank of H1(X)
is 2g, and the rank of H2(X) is 1.

Winding number: The winding number is a topological invariant of a closed
curve in the plane with respect to a particular point (usually the origin).
It is an integer that counts the number of times the curve travels around
the point, and it does not change if the curve is continuously deformed
without traversing the point. Given a closed, differentiable curve γ with
points (x, y) along the curve, the winding number around the origin can
be defined as follows:

W =
1

2π

∫

γ

x dy − y dx

x2 + y2
(3.1)

1In practice, the construction of the homology groups of a manifold often begins with
defining a simplicial complex on the manifold (triangulation) so that simplicial homology
theory can be applied. Then, a k-chain is a linear combination of k-simplices and a cycle
is a chain without boundary. Two k-cycles z1 and z2 are equivalent if z1 − z2 is the
boundary of a (k + 1)-chain (negation meaning inverting the orientation), and a k-cycle
is trivial (neutral element of the kth homology group) if it is a boundary all by itself.

57

3 Related Work

It is also possible to compute a winding number for a piecewise linear
and even a non-closed curve. Then, however, W is no integer and no
topological invariant anymore, but it is still a measure of the curve’s
winding around the origin.

Linking number: Given two non-intersecting simple, closed, differentiable
curves γ1 and γ2 with points r1 and r2 along the curves, the linking
number can be computed by the following Gauss linking integral:

Lk =
1

4π

∫

γ1

∫

γ2

dr1 × dr2 ·
r1 − r2

|r1 − r2|3
(3.2)

The definition is very similar to that of the writhe (Section 5.2.3). How-
ever, while the writhe is defined for a single curve and takes values in R,
the linking number is an integer and a topological invariant of two closed
curves. Like the winding number, it can also be computed for piecewise
linear and non-closed curves, taking values in R and losing its property
of being a topological invariant.

Writhe matrix: Ho and Komura [49] introduced the concept of a writhe matrix
for two (possibly non-closed) piecewise linear curves. Unlike the name
suggests, it is most closely related to the linking number. Specifically,
each entry of the matrix represents the (real-valued) linking between two
line segments of the curves.

Topology coordinates: In the same paper, the writhe matrix was used to de-
fine the so-called topology coordinate system describing how two curves
are tangled with each other. The first coordinate is the sum of the ma-
trix entries (which is equivalent to the real-valued linking number of the
curves) and indicates the amount of tangling. The second and third co-
ordinates represent the center of mass of the entries and correspond to
the center of the tangled area. The fourth coordinate can be determined
by computing the orientation of the matrix entries’ principal axis and
corresponds to the density of the tangled area.

Reeb graph: The basic idea of Morse theory is to study the topology of a
manifold with respect to a differentiable function defined on it. One of
the most popular object representations originating in Morse theory is
the Reeb graph which describes the evolution of the function’s level sets
on the manifold. Specifically, the vertices of a Reeb graph correspond to
the critical points of the function (where the level set topology changes),
and the edges represent connected components of the level sets.

58

3.2 Topology-based Representations

Pokorny et al. [50] suggested a topology-inspired approach to robotic grasping
of objects with holes. They share with us the idea that finding certain closed
curves on the surface of an object is an important factor for meaningful and
successful grasping. However, they focused on 2-manifolds without boundary,
so that the most relevant closed curves were not boundary components but
the one-dimensional cycles from the first homology group (which loop around
one-dimensional holes). In particular, they built simplicial complex represen-
tations of the objects considered before employing the method from [51] to
find a basis of H1(X) that consists of loops representing the shortest cycles in
their respective equivalence classes. Then, they used the real-valued winding
number for non-closed curves to optimize how the control curves (e.g., the
curve connecting the finger tips of the thumb and the forefinger) wind around
a target point on an object loop during grasping. Finally, they exploited an-
other topological concept, namely the real-valued linking number between the
control curves and the loop, for evaluating the caging grasp after execution.
In [52], very similar ideas were used and extended to the interaction primitives
of clasping, latching, and hooking. Winding numbers were also shown to be
useful for grasp transfer between different hand kinematics [53].

Persistent homology describes how a topological feature, in particular homol-
ogy, changes if the spatial resolution of an object (considered as a topological
space) is changed. In [54], persistent homology was used to classify robot
trajectories into equivalence classes such that no trajectory of one class can
be continuously transformed to a trajectory of another class. Beksi and Pa-
panikolopoulos [55] suggested a signature of topologically persistent points as
a global point cloud descriptor.

Writhe matrices and topology coordinates were initially used in the context of
character animation [49]. Recently, the idea was taken up by several roboti-
cists. Ho et al. [56] demonstrated how a humanoid robot can be controlled
in topology coordinates. Zarubin et al. [57] made use of the concept in hier-
archical motion planning. Vinayavekhin et al. [58] considered the problem of
how a robot can learn to regrasp objects from human demonstration. They
used topology coordinates to express the tangle relationship between the hand
and the object to be grasped. Yuan et al. [59] presented an approach to re-
inforcement learning of robotic whole arm manipulation skills for moving a
human body, e.g., in a swimming rescue scenario. To represent the topological
relationships between the robot arms, the human arms, and the torso, com-
bined writhe matrices were used. Topology coordinates were also applied to
robot-assisted dressing [60,61], as described in Section 3.4.

The key ingredient for constructing Reeb graphs is the real-valued function
defined on the manifold considered. For illustration purposes, the height func-

59

3 Related Work

tion is often used. Then, however, the Reeb graph is not rotation invariant,
i.e., it might look different depending on how the manifold is oriented in space.
Therefore, Berretti et al. [62] used the AGD function (i.e., the average geodesic
distance of a point to all the other points on the object surface) in their algo-
rithm for decomposing objects into parts using Reeb graphs. The method was
applied to part-based robot grasp planning from human demonstration [63]
and to the robotic task of handing over an object to a human in a comfortable
way [64].
Regardless of how they are created (using Reeb graphs or any other topologi-
cal or non-topological technique), skeletons can be considered topology-based
representations in the sense that they try to reduce complex geometric shapes
to connections between the most relevant parts. Among other things, skeleton
models were used for shape matching [65] and as simplified representation of
the human body during tracking and recognition [66]. In a wider sense, any
model that is focused on adjacency rather than distance, such as a graph or a
topological map [67], can be considered a topological representation.

3.3 Handling Clothes

It is only in recent years that roboticists have begun to focus on objects with
very high-dimensional configuration spaces. While ten years ago, robotic han-
dling of clothes was still quite underinvestigated, the amount of publications
in this field of research has since increased tremendously. Perception and
manipulation tasks studied include clothing classification [43–45, 68–75], pose
estimation [76–81], grasping [82–88], unfolding [46, 89–94], flattening [95, 96],
ironing [97,98], and folding [99–105].
Willimon et al. [44] suggested using interactive perception for the recogni-
tion of garments. Their robot first extracted an item from a pile of laundry
before classifying it based on images obtained from a procedure of repeated
dropping, regrasping, and observing. In a later work [45], a multi-layer classifi-
cation strategy was introduced to improve the accuracy of the method. Sun et
al. [43] proposed another manipulation-perception cycle to gradually increase
the confidence of a probabilistic classifier. In [68], they also presented an algo-
rithm for single-shot recognition of the clothing category. In the experiments
of Hu and Kita [69], the robot brought the garment into one of a limited num-
ber of shapes to facilitate classification on the basis of the object contour. The
Gabor filter based image features suggested by Yamazaki and Inaba [70] pro-
vide classification-relevant information about the clothing material, wrinkles,
and folds. Kampouris et al. [71] proposed an explorative approach to garment
perception using RGB-D, tactile, and photometric stereo sensors. Besides rec-

60

3.3 Handling Clothes

ognizing the garment category, their method is capable of classifying the fabric
pattern and material.

While it is still an open question whether black box deep learning is suitable for
end-to-end learning of complex garment handling tasks, a few researchers have
been able to show that particular deep learning methods can be used to solve
essential subproblems such as clothing classification. Gabas et al. [72] proposed
a convolutional neural network (CNN) approach to occlusion-robust garment
recognition using depth information. In [73], the system was expanded by two
additional CNNs performing a search for relevant grasping points. Mariolis et
al. [74] presented another CNN-based framework containing two layers, one for
category recognition and one for pose estimation. Yuan et al. [75] suggested
an active exploration approach to garment perception and classification based
on material properties such as thickness, smoothness, and textile type, using
tactile sensing and deep learning.

Cusumano-Towner et al. [76] proposed a hidden Markov model (HMM) for es-
timating the configuration of an article of clothing during a sequence of specific
manipulations and observations using a rather simple observation model. Kita
et al. [77] suggested the following two-stage method for pose estimation: First,
a number of representative shapes is generated through physical simulation
of hanging clothes. In the second stage, the shapes are deformed to match
the observed data and select the most consistent hypothesis. Beyond that,
the authors showed in [78] that cues from strategic observation can be helpful
for garment state recognition. In a similar way, Li et al. [79] first generated
training data by simulating hanging garments grasped at different points and
capturing depth images from different views. Then, using sparse coding and
SVM classification, they were able to predict both the object category and the
grasping point (and thus the object pose). In [80], the method was improved
both in accuracy and speed by using volumetric fusion instead of individual
depth images and majority voting. Wang et al. [81] restricted themselves to
algorithms for the perception of socks. Their robot was able to predict the
configurations and to match similar socks into pairs.

The focus of Ramisa et al.’s work has been on robotic grasping of clothes.
In [82], they proposed a measure of wrinkledness computed from the distribu-
tion of normal directions in a point cloud. In a later work [83], appearance
features were used in addition to depth information to select optimal grasping
points. Moreover, they built a 3D shape descriptor to characterize textiles
and used it for wrinkle detection, instance recognition, and informed robotic
grasping [84]. Yamazaki [85] presented an approach to extracting graspable
hem elements from depth images. Maitin-Shepard et al. [86] suggested that
grasping and regrasping points be selected based on geometric cues like borders

61

3 Related Work

and corners. Gibbons et al. [87] addressed the problem of identifying possible
grasping locations on a pile of clothes in a remote manipulation scenario. Their
method takes into account visual features as well as the kinematic abilities of
the robot. Since different techniques and experiments in the field of robotic
grasping of clothes are difficult to compare, the reader is referred to [88] for
a method of characterizing grasping systems at the level of perception-action
couples.

Unfolding a crumpled piece of clothing is often considered as a preliminary to
folding. In an early work, Hamajima and Kakikura [89] suggested a heuristic
strategy with the aim of grasping the garment at two hemline points, followed
by a classification and a shaping step. In a similar spirit, Triantafyllou et
al. [90] presented a geometric approach to the task of unfolding clothes based
on the idea that a hanging garment held by two points can be approximated as
a planar object. Yuba et al. [91] showed that simple pinch and slide motions can
be used for unfolding. However, their method is limited to rectangular pieces
of cloth. Doumanoglou et al. [92] approached the unfolding problem with
some reasoning about possible lowest points together with random decision
forest based recognition and probabilistic planning. Li et al. [93] applied their
recognition scheme [80] to the unfolding task, optimizing an evaluation function
of a two-point grasping configuration through iterative regrasping. The robot
in [46] unfolded a piece of laundry by pulling it in different directions at various
points using interactive perception. Stria et al. [94] proposed a method for
bimanual robotic unfolding of an item of clothing placed flat on a table and
folded over a particular axis.

If the item of clothing considered is only moderately wrinkled, it may be suffi-
cient to flatten the garment rather than to completely unfold it. The method
described by Sun et al. performs a surface analysis of a 2.5D heightmap rep-
resentation of a garment and was used successfully for robotic dual-arm [95]
and single-arm flattening [96]. Flattening an article of clothing is also the goal
of the ironing task, which was addressed by Estevez et al. [97] combining 3D
perception with force/torque sensing. Besides, Li et al. [98] suggested a multi-
sensor surface analysis fusing a curvature scan and a discontinuity scan and
applied it to robotic ironing.

There have been a few studies concerned with the problem of folding a garment
that was more or less crudely spread out on a flat surface. Van den Berg et al.
[99] presented an algorithm planning a sequence of gravity-based folds referred
to as g-folds. Bersch et al. [100] proposed a fold detection, grasp generation,
unfolding, and folding strategy that was applied to clothes with printed fiducial
markers simplifying perception. Both Miller et al. [101] and Stria et al. [102]
initialized 2D polygonal garment models and used these models to implement

62

3.4 Robot-assisted Dressing

a robotic folding procedure. In a work of Kita et al. [103], a folding task was
implemented in a humanoid robot using the recognition algorithm described in
[77]. In two different papers, the problem of trajectory optimization preventing
garment slipping during folding is addressed. While Li et al. [104] employed a
physics engine, Petŕık et al.’s model is based on the equilibrium of forces and
assumes a rectangular piece of cloth for simplicity [105].

3.4 Robot-assisted Dressing

Over the last few years, robot-assisted dressing has attracted increasing in-
terest. While solutions for the general task are still out of reach, there is a
growing number of works that demonstrate how important parts of the prob-
lem can be solved. In many cases, this is done by exploiting simplifications
gained through focusing on a narrow subdomain.
Most projects in the field of robotic dressing assistance make use of machine
learning or stochastic optimization techniques. Then, a key distinguishing
characteristic is the objective function used because it determines what is to
be optimized. Colomé et al. [106] proposed a reinforcement learning framework
for the problem of wrapping a scarf around the neck of a mannequin. Since no
tight garment openings are involved in this particular task, it was possible to
minimize a rather simple objective function using the spatial distance of the
scarf from a reference position. In [107], a reward-weighted Gaussian mixture
model (GMM) was proposed for action selection in a robotized shoe dressing
task, the reward reflecting success/failure. Gao et al. [108] suggested a path
optimization algorithm for putting on a jacket without sleeves. In this task
domain, an objective function that aims at avoiding large external forces and,
in this way, external resistance has proven to be effective. Tamei et al. [60]
modeled the relationship between a T-shirt’s neck opening (equipped with
markers) and a mannequin’s head through topology coordinates which were
used to define a reward function. In [61], the authors have reported some
success in markerless estimation of the coordinates.
While many studies on robot-assisted dressing focus on trajectory planning,
there is also a number of works concerned with user modeling during the
dressing process. In [109], random decision forests were employed to estimate
the upper-body pose and GMMs were used to model the movement spaces
of particular body parts. Chance et al. [110] used recurrent neural networks
(RNNs) to predict the elbow position based on other features of the user pose
under occlusion. The two key contributions of Zhang et al.’s work [111] are (i)
a control strategy that minimizes forces applied between the user and the robot
and (ii) the use of a Gaussian Process Latent Variable Model (GPLVM) for

63

3 Related Work

modeling the user movement limitations and updating the dressing trajectory
accordingly. Clegg et al. [112] used reinforcement learning to model what
a human character model is capable of doing in a simulated robotic dressing
assistance scenario. In [113], a method for tracking the user pose during robot-
assisted dressing with capacitive proximity sensing was described.
Haptic information can be used to learn how to navigate a simulated arm
through the interior of a garment, as shown in [114]. However, in more realistic
dressing assistance scenarios, contact between a garment and the human body
can often be inferred only indirectly from feedback at the robot’s end effector.
Kapusta et al. [115] distinguish three possible outcomes of the task of pulling
a sleeve over a person’s forearm: The hand misses the opening to the sleeve,
the hand or forearm gets caught in the fabric, or the full forearm successfully
enters the sleeve. Their algorithm is able to classify these three outcomes
using forces measured at the end effector. Yu et al. [116] employed a simulator
to reduce both the classification error and the amount of required real-world
samples. Erickson et al. [117] were even able to infer the areas of contact
between the sleeve and the arm in simulation, and to use the approach in
a real robot-assisted dressing task [118]. The work of Clegg et al. [119] is a
good example of how high level planning and deep learning techniques can be
combined by separating the dressing task into subtasks and learning a control
policy for each subtask, even though the method has only been applied to
character animation so far.
Furthermore, we should mention that not all works on robot-assisted dressing
make use of stochastic optimization or learning. Chance et al. [120] argue
that simple human robot interaction (HRI) strategies could be used instead of
complex machine learning methods. Yamazaki et al. [121] proposed a failure
detection and replanning approach using visual and force information in a
bottom dressing task. The robot in [122] inferred a knowledge base of user
constraints and used it for placing a stiff hat on the head.

3.5 Discussion

In this chapter, we have provided a literature review of works that are related to
the present thesis in one of two respects. For one thing, we have been interested
in how other roboticists tackled the issues of integrating action with perception
and of modeling the environment qualitatively in a topological manner. For
another thing, we have given an overview of methods whose area of application
is robotic interaction with clothes.
We have seen that there is a large body of research on interactive perception.
The approaches discussed range from haptic exploration to interactive robot

64

3.5 Discussion

vision and regrasping-perception coupling. Moreover, the idea of object affor-
dances as action possibilities provided to the robot has proven beneficial in
congnitive robotics. Therefore, attempts were made to formalize the concept.
However, these formalizations aim at specifying the meaning of affordances
in general rather than aiding in finding the affordances of particular objects.
We believe that the topological properties and the affordances of an object
are strongly correlated, and it has become apparent that other researchers in
the field have had similar ideas. Action-relevant invariants used by robots
include homology, winding and linking numbers, topology coordinates, and
Reeb graphs. But to the best of our knowledge, boundary components and
their topological connections in the interior of an object have not been con-
sidered so far. Furthermore, the idea of using interactive perception to build
topology-based object representations appears to be largely unexplored.
Grasping, folding, unfolding, and flattening are some of the most extensively
investigated tasks in the domain of robotic garment manipulation. These tasks
have been approached with a wide variety of methods including interactive per-
ception, RGB-D vision, tactile sensing, physical simulation, deep learning, and
traditional machine learning algorithms. When comparing with the taxonomy
of interaction primitives we have developed in Section 2.1.2, it is noticeable
that most works focused on primitives from the top right part of Table 2.1,
i.e., no garment openings were involved and contact relations to other objects
played a minor part. As opposed to this, in the present thesis, we consider
primitives from the bottom left part of the taxonomy table in detail. In robot-
assisted dressing, the openings almost inevitably play an important role, but
most existing works have avoided modeling them explicitly. By contrast, in
the following chapters, we will present methods that are relevant to dressing
assistance and allow our robot to detect, grasp, track, and manipulate garment
openings.

65

4 Reducing the Problem Space for
Detection and Grasping

One of the major challenges of handling clothes is the complex dynamics of
garments (and textiles in general) because even minimal interaction with such
an object can change the parameter values of a physical or geometric model in
a seemingly chaotic manner. Consider the introductory example from Section
2.1.1 again: Pushing against a piece of cloth hanging freely under gravity with
one finger leads to large changes in configuration, e.g., the cloth may wrinkle
up or wrap around the finger in unpredictable ways. However, the object will
also return to a state of static equilibrium quickly as soon as the finger stops
moving. Therefore, our first simplification of the problem of interacting with
garments is to limit robotic perception to the phases in which the environment
can be assumed to be static. Of course, this simplification is not always rea-
sonable. For example, in robot-assisted dressing, the dynamics of the garment
presumably plays an important part. But under certain conditions, the visual
features that are relevant for such essential skills as grasping can be detected
in static images of the scene.

We start this chapter with some preliminaries of visual perception by a robot,
focusing on complex scenes with multiple objects as they are common in inter-
action tasks in the clothing domain (Section 4.1). In particular, we describe
the sensory input signals mainly used throughout this thesis, namely depth im-
ages and point clouds. Furthermore, we discuss how task-relevant objects can
be efficiently isolated in such signals (point cloud filtering). Then, we present
two different approaches to detecting the openings of a garment which are
represented by the boundary components and have been identified in Chapter
2 as being (topologically and functionally) the most important features. The
first method makes use of geometric and topological prior knowledge about
clothing and assumes that the garment lies spread out on a tabletop (Section
4.2). The second method is based on the interactive perception paradigm and
a graph representation of edges. Finally, we show how a bimanual robot can
use the information gained about garment openings to find and exploit suitable
grasp poses (Section 4.3).

67

4 Reducing the Problem Space for Detection and Grasping

4.1 Robot Vision in Complex Scenes

Many algorithms described in this thesis presuppose that it is straightforward
to separate the relevant from the irrelevant objects in the robot’s field of view.
However, even in lab settings, robots often have to cope with more or less clut-
tered environments. Typical scenes in the domain of interaction with clothes
consist of a support surface auch as a tabletop, at least one garment, the robot
arms and hands, and some background objects. Additionally, in robot-assisted
dressing, there is the human body and perhaps further equipment. In envi-
ronments of such complexity, visual perception solely based on color images
would be very difficult. In static environments, especially in the single-view
case (i.e., if the robot has only one static camera), depth perception would
be a particularly hard problem because motion parallax and other depth cues
that rest upon stimulus changes over time cease to exist. While humans have
to rely on this kind of information, many present-day robots are equipped with
depth cameras, which have become more and more affordable in recent years.
In the following, we briefly outline how these cameras work and describe the
properties of the signal they provide directly (depth images) and after prepro-
cessing (point clouds). Furthermore, we present an algorithm for filtering such
point clouds semantically and in real time.

4.1.1 Depth Images and Point Clouds

Depth cameras are used in various areas including gaming, human-machine
interfaces, security, and medical applications. Since Microsoft introduced the
Kinect sensor (the first high-resolution depth sensor available for less than
150 dollars), and especially since two community projects (OpenKinect1 and
OpenNI 2) started to develop open source drivers for reading the sensor data,
such devices have also become popular among smaller research institutes and
even amateur hackers. In particular, they have been used in many robotics
projects. For a review of some early applications of the Kinect sensor, the
reader is referred to [123]. There are now a lot of similar (and affordable)
camera systems that output depth images, sometimes also called range images,
i.e., 2D arrays of pixels, each corresponding to the distance of the nearest
light-reflecting object in a certain direction from the camera. The systems use
different imaging methods, the most common ones being the following:

Stereo triangulation: Using two color cameras, it is possible to simulate binoc-
ular depth perception (stereopsis). Just like the human eyes, the cameras

1https://openkinect.org
2https://structure.io/openni

68

4.1 Robot Vision in Complex Scenes

need to be located at slightly different (horizontal) positions. Then, from
the disparity between two corresponding points in the left and right cam-
era images, a depth value can be computed by triangulation. However,
as corresponding points have to be found on the basis of color informa-
tion, this method may fail for homogeneous parts of the scene, e.g., in
the case of single-colored garments or textureless background.

Time of flight: In contrast to stereo camera systems, time-of-flight cameras are
active sensors, i.e., they do not rely on ambient light but consist of an
infrared light source and a receiver unit. The general approach is based
on measuring the time the emitted light requires to travel to an object in
the scene and back to the camera. Most modern devices, e.g., the second
Kinect version (Kinect v2), employ continuous wave modulation [124].
In this method, the time of flight is obtained from the estimated phase
difference between the emitted and the received signal.

Structured light: Depth cameras based on structured light, such as the first
Kinect version (Kinect v1), combine triangulation with active imag-
ing [124]. Much like in time-of-flight cameras, there is an infrared light
emitter and a receiver. However, like in the stereo camera setup, both
units have to be positioned at a certain distance from each other to
make triangulation possible. Specifically, a known light pattern, such as
a structure of lines or dots, is projected onto the scene whose surface
shape makes the pattern appear distorted when seen from the receiver’s
perspective. The depth image is then computed by analyzing the dispar-
ity between the original and the distorted light pattern.

In our experiments, we used the Kinect v1 sensor which provides a depth
range of about 500 mm to 4000 mm. The depth camera has a resolution of
320×240 pixels (which can be upscaled to 640×480 pixels), a field of view of
57×43 degrees, and a frame rate of 30 Hz. The pixels take integer values in [0,
2047], the maximum of 2047 representing an invalid measurement. The raw
values can be easily converted to real distances with an accuracy of up to 1
mm (depending on the camera calibration) and a precision error proportional
to the squared distance3.
As the sensor uses the structured-light method, there is a horizontal displace-
ment between the infrared projector and the infrared camera which may lead
to undefined regions in the depth image. In areas that are in the camera’s
field of view but on which the light pattern cannot be projected because of
occlusion by another (or the same) object, depth estimation is impossible.

3http://wiki.ros.org/openni_kinect/kinect_accuracy

69

4 Reducing the Problem Space for Detection and Grasping

Our algorithms either ignore these pixels or interpret them as having infinite
depth. We note however that specific filters for removing these artifacts have
been suggested in the literature (e.g., [125]).
The Kinect sensor provides RGB color images with a resolution of 640×480
pixels along with the depth images. However, there is also a horizontal dis-
placement between the infrared camera and the RGB camera. Consequently,
the depth and color images need to be registered onto one another. Moreover,
the coordinate systems of the cameras have to be aligned with the world co-
ordinate system (the robot’s frame of reference). Both is accomplished by a
calibration process estimating the extrinsic (camera position and orientation)
and intrinsic parameters (focal length, pixel size, and principle point) of the
RGB as well as the infrared camera. We employ the calibration tool provided
by the Image Component Library (ICL)4 which uses a 3D calibration object
(with a defined geometry and a set of fiducial markers attached to it) that is
placed at a fixed position and orientation in front of the camera.
Using the intrinsic and extrinsic camera parameters, it is straightforward to
generate a point cloud by converting the pixel values of a depth image to a
set of points in world coordinates. In addition to the 3D coordinates, the
points may have a color obtained from a depth-registered RGB image and
possibly further features such as a label or an estimated surface normal. Point
clouds generated from depth images have another advantageous characteristic:
Rather than considering them as unordered sets of points, one can explicitly
make use of their structure by storing references to the points in a 2D array
with indices corresponding to the pixel positions in the original depth image.
Such point clouds are referred to as organized point clouds and can be used for
implementing some algorithms (e.g., algorithms for surface normal estimation
[126]) more efficiently by exploiting the additional pixel adjacency information.
Throughout this thesis, we assume that our algorithms have access to the
original RGB and depth images as well as a calibrated and color-registered
organized point cloud. We use ICL not only for camera calibration but also
for image and point cloud processing because it allows for easy prototyping, has
a rich set of functions, and can be seamlessly integrated with the middleware
we use (RSB5 and ROS 6). Moreover, it provides OpenKinect and OpenNI data
grabbers as well as wrappers around other computer vision (OpenCV 7), point
cloud processing (PCL8), and parallel computing libraries (OpenCL9).

4http://www.iclcv.org
5https://code.cor-lab.de/projects/rsb
6http://www.ros.org
7https://opencv.org
8http://pointclouds.org
9https://www.khronos.org/opencl

70

4.1 Robot Vision in Complex Scenes

4.1.2 Semantic Point Cloud Filtering

In point cloud processing by a robot, the goal is often to extract certain task-
specific patterns not from the entire point cloud but only from the parts repre-
senting the relevant objects in the scene. For example, when trying to identify
the boundary components of clothes, the sub point clouds corresponding to
some background objects may be distracting and only increase the space that
has to be searched by the core algorithm. Therefore, to reduce the search
space, it is generally useful to remove (or at least mark) the irrelevant points.
We make two basic demands on such a point cloud filter. First, using prior
knowledge about the shape and pose of the objects in the scene, it should be
easy to unambiguously define which parts of the point cloud are to be filtered
out. Second, the filter algorithm should be implemented efficiently enough
to integrate smoothly with the other vision components. Ideally, the point
cloud filter should operate in real time, i.e., it should not hinder the overall
processing pipeline from running at the frame rate of the depth camera.

Functionally Complete Filter Specification In most scenarios, one can eas-
ily express in natural language which are the irrelevant parts of the point cloud.
For example, if the robot’s task is to recognize an article of clothing placed on
a table in a defined workspace, the filter specification could be as follows.

Example 1: Filter out all points that belong to the tabletop or to the robot or
are outside the workspace.

After detecting the shape and pose of the garment, the robot’s task might be to
assist a person with putting it on. Then, the following would be a reasonable
filter specification.

Example 2: Filter out all points that belong to neither the garment nor the
person to be dressed.

Using the notation of propositional logic and the set of operators {∨,∧,¬} as
well as variables x with the semantics “point p belongs to object x”, the points
that should be filtered out in Example 1 can be defined as those points p for
which the following expression is true:

Tabletop ∨ Robot ∨ ¬Workspace (4.1)

Alternatively, we can follow the notational conventions of the algebra of sets
and use the union, intersection, and complement operations. Then, under-
standing the variables as the subsets of points that belong to the respective
objects, the set of points to be filtered out can be specified as follows:

71

4 Reducing the Problem Space for Detection and Grasping

Tabletop ∪ Robot ∪Workspace (4.2)

Using propositional logic notation, a formalization of Example 2 is given by

¬Garment ∧ ¬Person. (4.3)

Equivalently, using set notation, we can write

Garment ∩ Person. (4.4)

In our examples, the elementary (atomic) semantic units have been Tabletop,
Robot, Workspace, Garment, and Person. Spatially, such objects can some-
times be modeled as geometric primitives. For example, a tabletop or the
workspace may be represented by a rectangular box. Otherwise, it is usually
possible to approximate an object by a finite set of primitives. A simplistic
representation of a robotic arm, for instance, could be a set of cylinders, each
corresponding to one of the segments. The logical expressions then define the
points to be filtered out on a higher semantic level. We note that using the
operators ∨, ∧, and ¬ (or equivalently, ∪, ∩, and the complement operator),
any possible filter configuration can be expressed, i.e., the set of operators is
functionally complete. Moreover, any particular expression can be given in
a standardized form, e.g., in Disjunctive Normal Form (DNF). A formula in
DNF is a disjunction of conjunctive clauses (orange symbols indicate optional
operators):

∨

i

(
∧

j

¬xij

)

(4.5)

This is equivalent to a union of intersections in set notation:

⋃

i

(
⋂

j

xij

)

(4.6)

XML-based Configuration Filter specifications should be both easy to gen-
erate for a human experimenter and understandable to a robot. Therefore, our
semantic point cloud filter can be configured in a formal yet human-readable
language, namely Extensible Markup Language (XML)10. The configuration
files for our examples are presented in Listings 4.1 and 4.2. Atomic variables
can be declared by use of the primitivegroup tag. The id attribute gives each

10https://www.w3.org/XML

72

4.1 Robot Vision in Complex Scenes

Listing 4.1: XML filter configuration corresponding to Example 1

1 <p o i n t c l o u d f i l t e r>
2 <pr imi t ivegroup id=”Tabletop” regex=” tab l e top ” />
3 <pr imi t ivegroup id=”Robot”

regex=” rh \w+| r a \w+| l h \w+| l a \w+” />
4 <pr imi t ivegroup id=”Workspace” regex=”workspace” />
5 <remove>
6 <group id=”Tabletop” part=” inner ” />
7 <group id=”Robot” part=” inner ” />
8 <group id=”Workspace” part=” outer ” />
9 </remove>

10 </ p o i n t c l o u d f i l t e r>

Listing 4.2: XML filter configuration corresponding to Example 2

1 <p o i n t c l o u d f i l t e r>
2 <pr imi t ivegroup id=”Garment” regex=”garment \w+” />
3 <pr imi t ivegroup id=”Person” regex=” person \w+” />
4 <remove>
5 < i n t e r s e c t i o n>
6 <group id=”Garment” part=” outer ” />
7 <group id=”Person” part=” outer ” />
8 </ i n t e r s e c t i o n>
9 </remove>

10 </ p o i n t c l o u d f i l t e r>

Listing 4.3: Semantic point cloud filter algorithm in pseudocode

1 for a l l p r im i t i v e s
2 pr imit iveGroup = matchRegEx (. . .)
3 for a l l po in t s p // geometry (p a r a l l e l i z e d)
4 groupMap [p] [pr imit iveGroup] |= i s I n s i d e (p , p r im i t i v e)
5 for a l l formulas
6 for a l l po in t s p // l o g i c (p a r a l l e l i z e d)
7 actionMap [p] = evalFormula (formula , p , groupMap)
8 pe r f o rmFi l t e rAct i on (pointCloud , actionMap)

73

4 Reducing the Problem Space for Detection and Grasping

variable a name, and the regex attribute indicates, by means of a regular ex-
pression, which geometric primitives (each associated with a description string)
should be grouped together to form a semantic unit. The Tabletop object in
Listing 4.1, for instance, consists of a single “tabletop” primitive, whereas the
Robot object combines all geometric primitives whose description strings be-
gin with “rh ” (right hand), “ra ” (right arm), “lh ” (left hand), or “la ” (left
arm). We emphasize that these primitive groups have to be disjoint (mutually
exclusive), i.e., a primitive cannot be part of two groups at the same time.
Between the opening and closing remove tags, the points to be removed are
specified in DNF, i.e., by a sequence of intersections (indicated by intersection
tags) that are implicitly assumed to form a union. If a conjunctive clause
(intersection) consists of only one literal (group tag), such as in Example 1,
the intersection tag can be omitted. The group tags either refer to an atomic
variable (part=“inner”) or to its negation/complement (part=“outer”).
Removing points renders organized point clouds unorganized because the struc-
turing 2D array now contains invalid references. Therefore, rather than actu-
ally removing the points, it is also possible to specify another action such as
moving the points to a distant position (using the setpos tag) or labeling them
as invalid (using the label tag). Furthermore, color and intensity actions are
provided for visualization, and the source depth image can be manipulated
using the filterdepthimg tag. A general specification of the XML filter configu-
ration can be found on the ICL website11. The geometric primitives are defined
either by using the filter API included in ICL or through RST 12 messages sent
via RSB which specify the primitive type (cube, sphere, or cylinder), the pose,
the scale, and the description string.

Parallel Implementation In Listing 4.3, our filter implementation is sum-
marized in pseudocode. Efficiency has been achieved by parallelizing the al-
gorithm using OpenCL. Parallel algorithms can run concurrently on different
processing devices such as the cores of a Graphics Processing Unit (GPU) and
are particularly useful if many independent computations have to be performed
for a large number of similar items such as the points of a point cloud. Thus,
we were able to parallelize both the geometry and the logic part of our filter
algorithm.
In OpenCL, code that is executed in parallel on many devices is called a
kernel. The isInside kernel performing the geometric computations in our
algorithm consists of two basic steps: (i) shifting and rotating p according
to the primitive’s position and orientation (resulting in a point p′), and (ii)

11http://www.iclcv.org/tutorials/pointcloud-filtering.html
12https://code.cor-lab.de/projects/rst

74

4.1 Robot Vision in Complex Scenes

(a) (b)

Figure 4.1: Point cloud filtering result. (a) A point cloud consisting of points
that correspond to a heap of clothes, the robot, a tabletop, a styro-
foam head, and some other background objects. (b) After filtering,
the point cloud only contains the heap of clothes. The geometric
primitives that were used for filtering are depicted in transparent
gray.

checking if p′ is inside the non-rotated primitive centered at the origin. The
result of this kernel is stored in a group map indicating for each point whether
it belongs to a certain primitive group or not. The group map is then used
in another kernel that evaluates the logical formulas specifying the points to
which a particular action (e.g., removing) should be applied.

Evaluation Figure 4.1(a) shows the point cloud we used for evaluating the
performance of our filter implementation. It includes several possibly irrelevant
objects such as the robot arms and hands as well as the styrofoam head that
was part of our policy learning setup in Chapter 6. In our tests, the algorithm
filtered out all points outside the workspace which was specified by a cube
and, depending on the experimental condition, all points belonging to the
robot (according to the current joint angles and a description of the links by
a set of primitives). The resulting point cloud is visualized in Figure 4.1(b).
We measured the runtime of the filter implementation following a 3×2 factorial
design. For one thing, we were interested in the extent to which parallelization
improved the performance of the algorithm. In particular, we tested a non-
parallelized, a fully parallelized, and a partially parallelized implementation
(in which only the isInside kernel was run in parallel). For another thing,
we analyzed the effect of the amount of geometric primitives used on the
algorithm’s runtime. In the first condition, only one 0.5 cm × 0.5 cm ×

75

4 Reducing the Problem Space for Detection and Grasping

Table 4.1: Runtime of the semantic point cloud filter implementation

runtime not parallelized parallelized only geometry
in [ms] parallelized

one primitive 4.7 3.1 3.6

124 primitives 97.7 8.6 9.2

0.5 cm cubic primitive representing the workspace was used for filtering. In
the second condition, there were 123 additional primitives corresponding to
the arms and hands of the robot.

The experimental results are shown in Table 4.1. It is not surprising that the
number of primitives had a large effect on the filter performance. While a
runtime of 4.7 ms in the non-parallelized implementation with a single prim-
itive would still allow for real-time processing, 97.7 ms in the condition with
124 primitives would be a prohibitive amount of time. Parallelizing both the
geometric computations and the evaluation of the logical formulas significantly
reduced the runtime (to 3.1 ms in the single-primitive condition and 8.6 ms
in the many-primitives condition). In the case of more than a hundred ge-
ometric primitives, this was a speed-up of one order of magnitude. It has
become apparent that most of the increase in performance has been due to the
parallelization of the geometry part of the algorithm. Evaluating the logical
expressions sequentially for each point only slightly increased the runtime (to
3.6 ms in the single-primitive condition and 9.2 ms in the many-primitives
condition).

Besides its efficient implementation in ICL and OpenCL, our algorithm has
two key advantages over existing point cloud filters. First, and in contrast to
camera-centric approaches13, the pose of the depth sensor need not be known.
Consequently, our technique is applicable to any type of point cloud, regardless
of its source. Second, and in contrast to an otherwise similar method14, our
algorithm is not only meant for robot self filtering but, due to its functional
completeness, can deal with semantically complex configurations of nested
and/or overlapping objects.

13http://wiki.ros.org/rgbd_self_filter
14http://wiki.ros.org/robot_self_filter

76

4.2 Polygon-based Boundary Component Detection

ta tb

Figure 4.2: Template polygons of a sweater, a pair of pants, and a legwarmer.
The line segments associated with the garment openings are de-
picted in black.

4.2 Polygon-based Boundary Component

Detection

We are now ready for our first detection algorithm. In this section, we de-
scribe an approach to finding all boundary components (Section 2.2) of a piece
of clothing using topological and geometric prior knowledge about different
garment categories. After applying the semantic filter from Section 4.1.2, we
can assume that the point cloud used is free from distracting background ob-
jects. Specifically, in the following, we assume that it only contains a single
item of clothing and a support surface (the tabletop). In other words, we have
reduced the problem space such that we can now straightforwardly focus on
two key problems of garment recognition: (i) classifying the garment category
and (ii) detecting the most relevant features, namely the openings.

However, the overall geometry of a piece of clothing can be extremely complex.
Therefore, we further simplify the problem by assuming that the garment has
been more or less accurately spread out on the tabletop. Then, it usually
takes a polygonal shape that is characteristic of its category (Figure 4.2). This
representation is related to the garment topology in that typically projections
of the boundary components appear as line segments of the polygon (depicted
in black) which represent the openings of the garment.

4.2.1 Preliminaries

It is natural to ask how realistic the assumed initial garment configuration is,
and we give a twofold answer to this question. For one thing, depending on the
scenario, a human can easily spread out the garment on the tabletop before the
robot starts to perceive and possibly interact with it. In our evaluation of the
method, this was done by the experimenter. For another thing, the preliminary

77

4 Reducing the Problem Space for Detection and Grasping

actions could also be carried out by the robot. Then, the difficulty of bringing
the garment into the desired configuration depends on the previous state of
the garment, again. We distinguish three possible situations, for each of which
potential solutions have been discussed in the literature: (i) If the fabric is only
slightly wrinkled, it may be sufficient to perform a procedure for flattening the
garment surface [95, 96]. (ii) If the garment has been accurately folded over a
certain axis, it can be unfolded using the approach from [94]. (iii) Otherwise, it
may be possible to use one of the interactive methods for unfolding a randomly
folded garment mentioned in Section 3.3.
Given the state of the art, we think that it is indeed reasonable to start from
an item of clothing lying spread out on a flat surface. This allows us to encode
our geometric knowledge about different garment categories as 2D polygonal
templates with vertices t1, ..., tn, similar to [101] and [102]. In addition to this,
we require the (topological) knowledge of how many openings a garment of a
particular category has and the (geometric) knowledge of which line segments
tatb correspond to the openings. In the following, we will consider legwarmers,
pairs of pants, and sweaters, i.e., garments with two, three, and four openings,
respectively. For a more fine-grained classification, one could, of course, use
many different polygonal templates, but we decided to limit the database to one
prototypical polygon for each of the three mentioned categories. Thus, Figure
4.2 provides a complete description of the prior knowledge used throughout
our experiments.

4.2.2 Algorithms

Our polygon-based boundary component detection method consists of the fol-
lowing four steps:

1. Hybrid foreground-background segmentation

2. Polygon matching

3. Heuristic search for openings

4. Projection onto the tabletop

Hybrid Foreground-Background Segmentation In theory, the semantic
point cloud filter could be used not only for removing the points belonging
to the robot or to irrelevant objects placed on the tabletop, but also for sepa-
rating the garment points from the tabletop points (assuming that the pose of
the tabletop plane is known or can be easily determined). However, in prac-
tice, there are several reasons why this segmentation method is not accurate

78

4.2 Polygon-based Boundary Component Detection

(a) (b) (c)

Figure 4.3: Steps of the hybrid foreground-background segmentation method.
(a) Depth-registered color image. (b) Depth-based pre-
segmentation result. (c) Segmentation result after applying the
color-based GrabCut algorithm. Foreground pixels are depicted in
dark gray, background pixels in light gray.

enough for estimating the shape of the polygon that represents the garment’s
2D projection onto the support surface. First, there is always some noise in
the depth data provided by the Kinect sensor. Second, the tabletop pose es-
timation might be imperfect. Third, and most importantly, we require the
garment to lie flat on the tabletop which has the effect that the differences
in depth between foreground (garment) and background (tabletop) points can
be very small. Alternatively, one could employ a purely color-based segmenta-
tion approach. However, these methods tend to fail if the color ranges of the
foreground and background overlap immoderately, especially if simplistic or
improperly initialized color distribution models are used. Therefore, we sug-
gest a hybrid approach to foreground-background segmentation, using both
color and depth information.

The input to the algorithm is a depth-registered color image (Figure 4.3(a))
together with the corresponding point cloud. We begin by cutting the point
cloud in two parts slightly above the support surface using a separating plane
whose normal vector, in our case, results immediately from the point cloud
calibration procedure because the table was used to define the world coordinate
frame, i.e., the calibration object (Section 4.1.1) was placed on the tabletop.
In other cases, one could employ any plane fitting method to estimate the pose
of the support surface. The result of this pre-segmentation step is visualized
in pixel space in Figure 4.3(b).

We can now assume that the set of foreground pixels only contains points
that belong to the garment whereas the background pixel set contains many
tabletop points and only relatively few garment points. Therefore, these sets
are well-suited for learning color distribution models of the foreground and

79

4 Reducing the Problem Space for Detection and Grasping

background, respectively, and for initializing the GrabCut segmentation algo-
rithm [127]. In GrabCut, the color distributions are represented by Gaussian
mixture models (GMMs), and the segmentation is iteratively improved such
that an energy function is minimized. The energy function consists of a data
term that evaluates how well the foreground and background pixels of a given
segmentation fit the current color distribution models, and a smoothness term
that encourages a smooth segmentation boundary. The minimization problem
is solved by means of a graph cut technique [128]. We use the OpenCV imple-
mentation of the GrabCut algorithm. The final segmentation result is shown
in Figure 4.3(c).

Polygon Matching The next step is to approximate the foreground region
representing the garment by a polygon with vertices v1, ..., vm. For this, we
employ the curvature-based corner detector from [129]. The polygon needs to
be corrected for the camera perspective to make it commensurable with the
template polygons. Therefore, the polygon approximation is not carried out in
pixel space but in a planar coordinate system parallel to the support surface.
To compare the extracted polygon with each of the templates, a matching
algorithm is required which should output (i) the garment category (legwarmer,
pair of pants, or sweater) that best fits the data and (ii) additional geometric
information that can be used for finding the line segments corresponding to
the garment openings. The turning function based method from [130] meets
these requirements.
First, the extracted polygon as well as the three template polygons are scaled to
have length 1. Then, we compute a turning function for each of the polygons.
The turning function θ(s) of a polygon v1, ..., vm describes how its tangent turns
in the plane as a function of the (counterclockwise) arc length s. Specifically,
θ(0) is the counterclockwise angle of the tangent at some reference point on the
polygon boundary, as measured with respect to the x-axis, and θ(s) increases
with left-hand turns and decreases with right-hand turns at each vertex of the
polygon such that θ(1) = θ(0) + 2π. The L2 distance between two turning
functions θX and θY is defined as follows:

d2(θX , θY) = ||θX − θY ||2 =
(∫ 1

0

|θX(s)− θY (s)|2ds
) 1

2

(4.7)

However, d2 is sensitive to both rotation of and choice of reference point on
the boundary of polygon X. Rotating the polygon corresponds to a vertical
shift φ of θX whereas choosing the reference point differently corresponds to
a horizontal shift u. Therefore, the metric describing the degree of shape
similarity between two polygons X and Y is defined as the minimum of d2

80

4.2 Polygon-based Boundary Component Detection

(a)

(b)

(c)

Figure 4.4: Turning function of the extracted polygon (green) matched against
each of the three templates (blue). (a) Legwarmer template. (b)
Pants template. (c) Sweater template. The light pink areas corre-
spond to the turning function distances.

81

4 Reducing the Problem Space for Detection and Grasping

Figure 4.5: Result of the polygon matching and the heuristic search for gar-
ment openings. The extracted polygon and the best-matching tem-
plate are shown in green and blue, respectively. The optimal seg-
ments (representing the openings) are depicted as red lines, the
corresponding template segments as black lines.

over all φ and u so as to be independent of rotation and choice of reference
point:

m(X, Y) = min
φ,u

(∫ 1

0

|θX(s+ u)− θY (s) + φ|2ds
) 1

2

(4.8)

In Figure 4.4, the template turning functions are depicted in blue, and the
turning function of the polygon to be matched (which was extracted from
the example images shown in Figure 4.3) is depicted in green. The three
green graphs all show the same turning function, but shifted both vertically
and horizontally to match the respective template functions optimally. The
turning function distances are visualized in light pink. It is apparent that the
light pink area in Figure 4.4(b) is much smaller than those in Figures 4.4(a)
and 4.4(c), meaning that the pair of pants is classified correctly. Specifically,
m is 0.89 for the legwarmer, 0.75 for the sweater, and only 0.43 for the pair of
pants. Both the horizontal shift u and the vertical shift φ of the best match
are stored to be used in the next step.

82

4.2 Polygon-based Boundary Component Detection

Figure 4.6: The input point cloud and the result of the boundary component
projection (red) onto the support surface (tabletop).

Heuristic Search for Openings The vertical shift φ corresponds to the ro-
tation that was necessary to achieve the optimal match. Therefore, knowing
φ makes it possible to lay the best-matching template on top of the extracted
polygon in such a way that the overall orientations, the arc lengths, and the
centroids match. In Figure 4.5, the extracted polygon is shown in green and
the matching pants template is depicted in blue.

Moreover, using the horizontal shift u (and assuming all polygons to be scaled
to length 1), we are able to define an arc distance between a template vertex
ti and a vertex vj of the extracted polygon. For this purpose, we consider two
corresponding reference points tr and vR, where one reference point can be
chosen arbitrarily (e.g., tr = t0) and the other one is determined by the value
of u (e.g., obtain vR by starting at v0 and going u units along the polygon

boundary). Then, using the counterclockwise arc lengths L(
⌢

trti) and L(
⌢

vRvj),
we define the arc distance as follows:

darc(ti, vj) = min
(

|L(
⌢

trti)− L(
⌢

vRvj)|, 1− |L(
⌢

trti)− L(
⌢

vRvj)|
)

(4.9)

Identifying the 2D projection of a garment opening is the problem of finding
the vertices vA and vB of the extracted polygon that correspond to ta and tb
in the best-matching template. First, we determine all approximately linear
segments vivj. By this, we mean that the distances of intermediate vertices to
the connecting line do not exceed a threshold. Strictly speaking, we define two
thresholds, one for outlying vertices (i.e., vertices to the right of the connecting
line in the counterclockwise case) and a higher one for inlying vertices, relaxing

83

4 Reducing the Problem Space for Detection and Grasping

the linearity condition for concave segments such as the neckline of a sweater.
Then, we minimize a heuristic cost term F over all vivj to find vAvB:

F = α1Farc + α2Fdist + α3Forient + α4Flength, (4.10)

where

Farc = darc(ta, vi) + darc(tb, vj), (4.11)

Fdist = ||ta − vi||+ ||tb − vj||, (4.12)

Forient = arccos

(
(tb − ta) · (vj − vi)

||tb − ta|| · ||vj − vi||

)

, (4.13)

and

Flength =

∣
∣
∣
∣
1− ||vj − vi||

||tb − ta||

∣
∣
∣
∣
. (4.14)

While Farc makes use of the arc length parameterizations of the polygons, the
other three terms operate in Euclidean space. Specifically, Fdist corresponds to
the Euclidean distance between the line segments, Forient is the angle between
tatb and vivj, and Flength relates to their difference in length. The coefficients
α1, α2, α3, and α4 control the relative influence of the terms. The segments
vAvB that minimize F are shown as red lines in Figure 4.5, and the corre-
sponding template segments are depicted in black.

Projection onto the Tabletop Finally, the optimal line segments vAvB are
back-projected to the 3D world. Since the polygon approximation was per-
formed in a coordinate system parallel to the tabletop, we can simply shift the
vertices vA and vB of the original (i.e., unscaled) polygon along the normal
vector of the support surface and connect them to obtain the contact line be-
tween a garment opening and the tabletop. This contact line is then completed
to a rectangular boundary component model of height 1 cm as visualized in
Figure 4.6.

4.2.3 Evaluation

In our experiments, we used a test set consisting of six different child gar-
ments from three categories (i.e., two leg warmers, two pairs of pants, and two
sweaters) as shown in Figure 4.7. We performed twelve runs of the first three
steps of the method described in Section 4.2.2 (omitting the conversion to a

84

4.2 Polygon-based Boundary Component Detection

Figure 4.7: Test set used for evaluating the polygon-based boundary compo-
nent detection method.

(a) (b)

Figure 4.8: Two trials from the polygon-based detection experiment. Ground
truth segments provided by a human participant are shown in yel-
low. (a) A leg warmer in the black background condition. (b) A
sweater in the multicolored background condition.

85

4 Reducing the Problem Space for Detection and Grasping

Table 4.2: Polygon-based boundary component detection accuracy

error with respect to black multicolored
ground truth background background

mean SD mean SD
position error
in pixels (image frame) 3.0 1.4 7.9 11.2
in mm (world frame) 7.4 2.9 18.9 23.2

length error
in pixels (image frame) 4.8 4.5 4.1 4.2
in mm (world frame) 12.2 10.5 10.6 10.5

orientation error
in degrees (image frame) 3.2 2.4 5.6 5.3
in degrees (world frame) 3.4 2.4 6.1 5.3

rectangular model). The coefficients of the cost term F were chosen as follows:
α1 = 1.0, α2 = α3 = α4 = 0.5. Each item from the test set was spread out
once on a black tabletop and once on a multicolored table cloth.

The first result is that the algorithm classified the garment category correctly
in all trials. In addition to this, we testet the accuracy of the method by
comparing the results with the ground truth given by a human subject. The
participant was presented with the same twelve depth-registered color images
and was asked to mark the openings of the garments (Figure 4.8). Afterwards,
we measured the differences in position, length, and orientation between the
algorithm-generated segments and ground truth (Table 4.2). In the black
background condition, errors in position (7.4 mm), length (12.2 mm), and
orientation (3.4 degrees) were small. While length errors did not differ much
between the conditions, both position and orientation accuracy suffered from
the poorer segmentation results in the multicolored background condition.

In the quantitative experiments, we assumed the items of clothing to lie more
or less flat on the tabletop. But we were also interested in how stretching,
crumpling, and folding the garments influence the results of the algorithm.
Therefore, we performed some additional qualitative tests in which, in the first
instance, we deformed the garments only slightly. We found that the algorithm
is quite forgiving of moderate deformations as far as classification is concerned
(at least in the three-class case considered), but the resulting line segments
were sometimes inaccurate because the position and orientation assumptions
given by the templates were violated. Finally, we tested the method with
more heavily deformed garments which lead to misclassifications such as the

86

4.3 Interactive Boundary Component and Optimal Grasp Pose Detection

(a) (b)

Figure 4.9: Failed polygon matching trial. (a) Depth-registered color image of
a deformed pair of pants. (b) The pair of pants is misclassified as
a sweater.

one illustrated in Figure 4.9. However, this was an expected result, considering
the fact that the polygon matching algorithm only operates in 2D.

4.3 Interactive Boundary Component and

Optimal Grasp Pose Detection

Although we were able to show the effectiveness of the polygon-based bound-
ary component detection method, there are some obstacles to its practical
application in robotic interaction with clothes. First, it may not always be
trivial to meet the requirement that the garment should be spread out flat.
Second, the areas of the openings of a flattened garment are, of course, very
small. Consequently, there is not much space for reaching into the openings
with one or more fingers. Third, while the positions, orientations, and lengths
of the openings are detected quite well, the boundary curves are only approx-
imated by rectangular models. Nevertheless, this simplistic representation of
the boundary components is well-suited for initializing a dynamic model, as
will be seen in Chapter 5.
However, it is also possible to rely on static images, but to make use of inter-
active perception. By this, we mean that the robot changes the configuration
of the environment by lifting the garment from the support surface (Section
4.3.1) so as to facilitate perception. The method described in Section 4.3.2
then uses a graph representation for boundary component detection, which
allows us to define a grasp pose around the boundary of a garment opening
(Section 4.3.3). The main disadvantage of this technique is that it can typi-

87

4 Reducing the Problem Space for Detection and Grasping

r

(a)

o

a

Q

(b)

Figure 4.10: Initial grasp configuration for interactive boundary component
detection. The approach and orientation vectors specifying the
hand frame during grasping are depicted in green and pink, re-
spectively. (a) Point cloud of a knit cap and extracted grasp pose.
(b) Closed hand posture.

cally only detect one opening. Therefore, it is primarily intended to be used
with single-opening garments (such as socks or knit caps) or to model only
the most relevant boundary component such as b0 in robot-assisted dressing
(Section 2.3).

4.3.1 Initial Grasping

One of the key properties of any interactive perception scheme is a more or less
targeted interaction with the environment that precedes the main process of
perception (e.g., boundary component detection). The initial robotic action is
of an exploratory nature, i.e., it is often rather simple and sometimes affected
by a certain amount of randomness. Nevertheless, it must serve a clearly
defined purpose, namely to transform the environment into a state in which
the perception task is simplified or solvable in the first place. In our case,
that means making the garment opening visible to the camera. To this end,
the robot grasps the garment using one of its hands and slightly lifts it from
the tabletop. Several sophisticated approaches to finding an optimal pick-up
grasp pose for a piece of clothing being placed on top of a flat surface have
been suggested in the literature (Section 3.3). But these techniques cannot
guarantee that the garment opening is made visible. Therefore, we present

88

4.3 Interactive Boundary Component and Optimal Grasp Pose Detection

a new heuristic method exploiting gravity and the approximate shape of the
garment considered.

We distinguish two different concepts that, taken together, determine the con-
figuration of the grasping hand. The first concept is that of a grasp pose. By
this, we mean the grasp position Q along with the orientation of the hand
frame relative to the world frame. An intuitive way to specify the hand frame
orientation during grasping is by two orthogonal unit vectors ~a and ~o. The
third coordinate axis ~n is then given implicitly by the cross product. The ap-
proach vector ~a (depicted in green in Figure 4.10) defines the direction along
which the hand should approach the object to be grasped. The orientation
vector ~o (pink) specifies how the hand is oriented in the plane orthogonal to ~a.
To compute the rotation between the world frame and the hand frame, ~a, ~o,
and ~n can be considered the columns of a rotation matrix which can be easily
converted to an Euler angle or unit quaternion representation, if needed. The
second concept is that of a hand posture which is defined by the joint angles of
the wrist and the fingers. Specifically, the procedure of picking up a garment
will be characterized by three hand configurations (i.e., three grasp poses and
three hand postures): a pre-grasp configuration (before closing the hand), a
grasp configuration (of the closed hand), and a post-grasp configuration (the
target configuration of the hand holding the garment).

We now describe a simple heuristic method for grasping a certain class of
knit caps. While this particular technique is not applicable to other types of
clothing, we think that similar heuristics can be used to find suitable initial
grasp configurations for differently shaped garments. The main idea is not
to apply a method that tries to be exact such as the polygon-based approach
from Section 4.2, but to make use of approximate measures that are tolerant of
minor garment deformations. We make the assumption that when dropping a
knit cap (of the type considered in our experiments) on a flat surface, it retains
an elongated shape, even if it is slightly crumpled. Under this condition, our
method extracts a grasp pose from point cloud data, which is then also used
for deriving the pre- and post-grasp configurations.

We assume that the knit cap has been isolated in the input point cloud using
the filter from Section 4.1.2. Of course, the garment-tabletop segmentation
may be imperfect again. But for estimating an initial grasp pose, this is
less of a problem because the method is not based on the exact shape of the
garment but only on the statistical distribution of the points. We perform
a 2-dimensional principal component analysis (PCA) of the knit cap points,
omitting the vertical coordinates. Let ~µ be the mean of the 2D points, let λ1,
λ2 be the eigenvalues of the covariance matrix, and let ~v1, ~v2 be the correspond-
ing eigenvectors. Now, ~v1 points approximately in the direction of either the

89

4 Reducing the Problem Space for Detection and Grasping

opening or the opposing closed end of the knit cap. For the sake of simplicity,
we leave this binary distinction to the user and from now on assume that ~v1
is directed roughly toward the garment opening. Then, a line ~r (visualized as
white dashed line in Figure 4.10(a)) can be defined as

~r = ~µ+
1

2

√

λ1 ~v1 + t · ~v2 (4.15)

for t ∈ R. The highest point within a distance of 1 cm to this line is selected
as the grasp position Q. The approach direction is straight downward (i.e.,
~a is orthogonal to the tabletop plane) and the orientation vector ~o is set to
−~v1 (Figure 4.10(a)). In order to cover the whole range of possible angles, the
grasping hand is chosen depending on whether the orientation vector points
more to the left or to the right. The hand posture during grasping is shown in
Figure 4.10(b). It can be seen that the thumb and the forefinger are almost in
contact.
In the pre-grasp hand posture, by contrast, there is some space between the
thumb and both the forefinger and the middle finger. The pre-grasp position
is set to Q − dpre · ~a, where dpre = 5 cm, i.e., the finger tips are positioned 5
cm above the garment. The post-grasp pose is predefined such that, assuming
a successful grasp at a point in the knit cap’s front area, the garment hangs
in a good configuration to be observed by the depth camera. Optimally, the
orientation vector would be orthogonal to the image plane. However, this pose
is not reachable by the robot arm due to its joint limits. Therefore, the post-
grasp hand posture is defined to be different from the grasp posture in that
the ring finger and the little finger are stretched out so as to push the hanging
knit cap to a pose in which the opening is closer to parallel to the image plane.

4.3.2 Algorithms

In the following, we assume that the garment has been picked up from the
tabletop successfully and hangs freely under gravity in such a way that the
opening (or one of the openings) is visible to the robot’s camera. We present
an approach to finding the closed contour that represents the boundary com-
ponent corresponding to the opening. We first show how to create a graph rep-
resentation of thinned edges which is then used to extract the boundary com-
ponent. Specifically, our graph-based boundary component detection method
consists of the following steps:

1. Edge detection

2. Skeletonization

90

4.3 Interactive Boundary Component and Optimal Grasp Pose Detection

(a) (b) (c) (d) (e)

Figure 4.11: Intermediate results of the graph-based boundary component de-
tection method. (a) Color image of a knit cap held by a human
hand. (b) Depth image visualized as a heat map. (c) Edge im-
age. (d) Skeletonized edge image. (e) Skeleton graph and selected
cycle (depicted in red).

3. Skeleton graph creation

4. Finding simple cycles

5. Selecting simple cycles

6. Back-projection to 3D

Edge Detection Visually, the boundary components of garments appear as
edges that form closed curves. In the ideal case, these edges can be detected
in color or grayscale images using, e.g., the well-known Canny edge detector
[131]. However, detectors based on intensity differences in the image tend to
produce false positives caused by prints and patterns on the fabric and miss
relevant edges in the case of homogeneously colored garments (such as the knit
cap in Figure 4.11(a)). Therefore, we rely on depth images (Figure 4.11(b))
along with the corresponding point clouds, and employ a surface normal based
edge detection method. We use the highly optimized implementation from
Ückermann et al. [132] which can be configured to meet our requirements.

The first step is to smoothen the input depth image both temporally (by aver-
aging over a number of successive frames) and spatially (by means of a median
filter). This noise reduction step is crucial for the subsequent parts of the
algorithm to be stable. Then, for each pixel, a surface normal is estimated
from the plane spanned by three neighboring points. Finally, the scalar prod-
ucts with the normals in an 8-neighborhood are averaged before binarizing the
obtained angle image employing a threshold (which is set rather low to make
sure that no relevant edge is missed). The edge detection result is shown in
Figure 4.11(c).

91

4 Reducing the Problem Space for Detection and Grasping

Skeletonization The edge points in the binary image created by the surface
normal based detector often form complex shapes. In particular, the edges
may be fringed and have varying thickness. In other words, the image contains
overly detailed (yet sometimes inaccurate) geometric information. Therefore,
the next step is to thin out the edges in such a way that only the topological
and the most relevant geometric properties are preserved. For a survey of
thinning (skeletonization) methodologies covering sequential, parallel, as well
as non-iterative techniques, the reader is referred to [133].
Our skeletonization procedure is based on Zhang and Suen’s parallel algorithm
described in [134] which we reimplemented in ICL using OpenCL for paral-
lelization. The idea of the algorithm is to iteratively remove boundary points
preserving the end points and pixel connectivity. To this end, two subitera-
tions are conducted. Southeast points are deleted in a first pass before deleting
northwest points in a second pass. The result is an 8-connected thinned version
of the edge image (Figure 4.11(d)).

Skeleton Graph Creation The next algorithm converts the skeletonized edge
image to a graph representation. This is done in a two-step process. First, the
junction points, i.e., the points with three or more neighbors in the image, are
inserted as vertices into the graph. In a second step, we find the branches that
link the junction points in the image. To this end, a new branch is created for
each point adjacent to a junction point. Then, we follow each branch (consist-
ing of points with two neighbors) until we reach another junction point or an
end point (i.e., a point with exactly one neighbor). If another junction point
is found (and no edge representing the same branch exists in the graph), the
branch is inserted into the graph as edge linking the two vertices. Otherwise,
the branch is discarded because free ends cannot be part of a simple cycle (see
below).
Up to this point, the algorithm misses components without any junction point.
Therefore, while there are still unvisited points, the branch following procedure
is started again at an arbitrary point. This results in branches with two end
points (which we discard) or subgraphs with a single vertex and a loop edge.
Strictly speaking, the overall result of the algorithm (Figure 4.11(e)) is in
general not a graph but a multigraph, i.e., two vertices may be linked by
multiple edges which is forbidden in conventional graphs.

Finding Simple Cycles It is reasonable to assume that the visible boundary
component of the garment is represented as a cycle in the skeleton graph. The
following definitions are required for a graph-theoretic specification of the cycle
finding algorithm:

92

4.3 Interactive Boundary Component and Optimal Grasp Pose Detection

P1 P2

x y

v

P1 - v - P2

x y

(a)

P

v

(b)

Figure 4.12: Basic idea of the path graph reduction algorithm from [135]. (a)
Removing vertex v and adding a new edge concatenating the paths
P1 and P2 of two adjacent edges. (b) A simple cycle has been
found if there is a loop in the path.

A walk is a sequence of vertices where any two consecutive vertices are linked
by an edge.

A cycle is a walk through the graph starting and ending at the same vertex.

A simple cycle is a walk that does not contain any repetitions of edges or
vertices, except the starting and ending vertex being the same.

A cycle chord is an edge that is not part of the cycle but connects vertices
which are part of the cycle.

A chordless cycle is a cycle without any chords.

There are efficient methods for detecting all chordless simple cycles in a graph.
However, the boundary component cycle is not necessarily chordless. For ex-
ample, the red cycle in Figure 4.11(e) has a chord resulting from a wrinkle in
the inner part of the knit cap. Consequently, all simple cycles in the graph
must be detected because they are possible boundary component candidates.
For this purpose, a path graph reduction method is applied. We reimplemented
Hanser et al.’s algorithm [135] which returns the simple cycles as a side product
of iteratively reducing the graph. The procedure is as follows: While there are
vertices in the graph, the vertex v of minimum degree is selected. For each
pair of edges x− P1 − v and v − P2 − y with disjoint paths P1 and P2, a new
edge x−P1−v−P2−y is created (Figure 4.12(a)). If an edge’s starting vertex
is the same as its ending vertex (v − P − v), a simple cycle has been detected
(Figure 4.12(b)). Then, vertex v and all its edges are removed from the graph
and the next vertex is selected. The algorithm terminates when there are no
vertices left in the graph.
We note that, in theory, the maximum number of simple cycles in a graph (and
hence the runtime of the algorithm) increases exponentially with the number

93

4 Reducing the Problem Space for Detection and Grasping

pi
*

pi
l

pi
r

Figure 4.13: Intuition of the convexity criterion used for evaluating simple cy-
cles: Boundary points stick out compared to points to the left and
to the right of the edge.

of edges. Therefore, the search space should be reduced before applying the
cycle finding algorithm. In our experiments, we only considered a region of
interest around the estimated garment position, which, in the interactive per-
ception scenario, was easily derived from the post-grasp pose of the robot hand.
Another strategy for reducing the number of edges in the graph is described
below.

Selecting Simple Cycles The simple cycles are evaluated by how well they
meet a set of criteria. Here, we make use of our prior knowledge about the
garment considered. For example, it is known that a knit cap has one boundary
component of a certain (approximate) length. We remark that one could come
up with a wide variety of criteria (e.g., based on color information). However,
in our experiments, we only applied a convexity criterion in addition to the
length condition. The basic idea of the convexity criterion is visualized in
Figure 4.13. First, we find the pixel p∗i with the lowest depth value in a small
range around each edge point pi, accounting for minor deviations from the real
edge caused by skeletonization. Then, after estimating the orthogonal vector
to the edge (in the image plane) using pi−1 and pi+1, we compare the depth
value of p∗i with those of two pixels pli and pri to the left and to the right of the
edge. The edge point pi fulfills the criterion if it is closer to the depth camera
than pli and pri .
The cycle with the highest ratio of edge points satisfying the convexity criterion
is selected from all simple cycles that fulfill the length criterion (if the ratio is
higher than a threshold). To circumvent the exponential growth problem in
connection with simple cycles, we also apply the convexity criterion to all edges

94

4.3 Interactive Boundary Component and Optimal Grasp Pose Detection

Figure 4.14: Grasp pose around the boundary of a knit cap opening. The de-
tected boundary component is shown in red, the optimized grasp
segment in blue, and the derived approach and orientation vectors
in green and pink, respectively.

above a certain length before running the cycle finding algorithm, removing
the edges that match the criterion worse than a threshold.

Back-projection to 3D Finally, the winning simple cycle is converted to a
3D boundary component model as follows: First, we approximate the cycle by
a closed polygonal chain using the corner detector from [129] and, again, find
the pixel p∗i with the lowest depth value in a small range around each polygon
corner pi. Then, we intersect the view ray of the depth camera at pi with a
plane parallel to the image plane and going through the point corresponding to
p∗i in the organized point cloud, adding the intersection point to the boundary
component model.

4.3.3 The Boundary Grasp

In Section 2.1.2, we have shown that the openings provide a meaningful link
between the appearance of a piece of clothing and a number of manual interac-
tion possibilities with it (affordances). Using the example of getting undressed,
we have demonstrated how such interaction primitives are applied by humans
in everyday tasks. In this example, targeted grasps around the boundaries of
the garment openings played a particularly important part. Furthermore, it
has become apparent that boundary grasps are also needed in robot-assisted
dressing and similar robotic tasks. Therefore, we will now describe a method
for determining a suitable grasp configuration using the boundary component
model obtained from the interactive detection procedure.

95

4 Reducing the Problem Space for Detection and Grasping

We think that good boundary segments to grasp around (such as the one
depicted in blue in Figure 4.14) should satisfy the following criteria:

Low curvature: Segments with high curvature are likely to be corners or creased
parts of the boundary. By contrast, low curvature segments usually pro-
vide more space for reaching into the opening and hence should be pre-
ferred.

Stability: Perceptual reliability should be taken into account when specifying
grasp configurations for a robot hand. Therefore, optimal segment hy-
potheses that are stable over time are preferred to unstable hypotheses.

Reachability: Another important optimization criterion is grasp comfort. For
example, the left hand should not try to grasp around a segment on the
right side of the boundary and vice versa. Therefore, we prefer segments
that match a desired orientation.

Good segment length: Optimal segments should be of a certain length corre-
sponding to the breadth of the fingers that attempt to reach into the
garment opening (plus some spacing).

Given a boundary component represented by a sequence of 3D points p1, ..., pN
in clockwise order, our optimizer iterates through all segments pn, ..., pn+l of
length L ≈ 5 cm, where L =

∑n+l−1
i=n ||pi − pi+1||, and finds the segment

which minimizes an overall cost term E. The procedure is repeated for several
consecutive frames. E is a weighted sum of three terms:

E = α1Ecurv + α2Edist + α3Eorient, (4.16)

where the coefficients α1, α2, and α3 control the relative influence of the terms.
Curvature is approximated as follows:

Ecurv =
L

||pn − pn+l||
(4.17)

Edist penalizes sudden changes of position between frames and thus enforces
stability:

Edist =
1

2L

(
||pn(t)− pn(t− 1)||+ ||pn+l(t)− pn+l(t− 1)||

)
(4.18)

To enforce reachability, Eorient is defined as follows:

Eorient =
pn − pn+l

||pn − pn+l||
· ~vorient, (4.19)

96

4.3 Interactive Boundary Component and Optimal Grasp Pose Detection

where ~vorient = (0, 0, 1)T if the left hand is used, and ~vorient = (0, 0,−1)T if the
right hand is used.
In the following, we describe how the boundary grasp pose is specified based
on the optimal segment: The pre-grasp position is set to Qpre = pn+pn+l

2
and

the grasp position is defined as Q = Qpre + dgrasp · ~a, where dgrasp = 7 cm.
The approach vector ~a is set to the normal direction of a plane that we fit to
the boundary points using a planar RANSAC algorithm [136]. We limit the
approach vector to deviate from the tabletop plane by at most 20◦ in order
to obtain a relaxed elbow pose. For the orientation vector, pn and pn+l are
projected onto the RANSAC plane, resulting in two points p∗n and p∗n+l. Then,

we set ~o =
p∗n−p∗

n+l

||p∗n−p∗
n+l

||
if the left hand is used, and ~o =

p∗
n+l

−p∗n

||p∗
n+l

−p∗n||
if the right

hand is used. The hand postures are similar to those in Section 4.3.1. Thus,
if the boundary grasp is successful, the thumb reaches into the opening of the
garment while the other fingers grasp it from the outside.

4.3.4 Evaluation

Boundary Component Detection In a first series of experiments, we evalu-
ated the graph-based boundary component detection method qualitatively in
an isolated manner. To this end, a human experimenter held different items of
clothing in his hand in such a way that one opening was visible to the camera.
Boundary component detection was successful for garments of various types,
e.g., a knit cap, a glove, and a T-shirt, as shown in Figure 4.15(a). The short-
comings of our method can be seen in Figure 4.15(b). First, we found that the
algorithm was not robust to occlusion, e.g., by the human hand, because the
occluding object was likely to disrupt the cycle in the skeleton graph. Second,
detection failed when parts of the boundary lay flat on the tabletop such that
no edge was found by the surface normal based edge detector. Third, dents in
the fabric which geometrically resembled a boundary component led to false
positives.

Interactive Detection and Grasping In a second series of tests, we evalu-
ated the performance of the robot in a complete interactive perception and
regrasping experiment with a knit cap, i.e., with a single-opening garment.
The robotic setup used was the one described in Section 1.2. We conducted
twelve trials in which a human experimenter held the knit cap roughly in the
middle before dropping it from a height of about 50 cm above the tabletop.
The robot’s task was to pick up the knit cap, detect the opening, and regrasp
it around a suitable segment of the boundary component. We aborted the trial
if any of the subtasks failed.

97

4 Reducing the Problem Space for Detection and Grasping

(a)

(b)

Figure 4.15: Qualitative evaluation of the graph-based boundary component
detection algorithm. (a) Three successful trials. (b) Three failed
trials (two false negatives and one false positive).

(a) (b) (c) (d)

Figure 4.16: Four trials from the interactive boundary component detection
and grasping experiment. (a+b) Two examples of successful runs.
(c+d) Two regrasping failures.

98

4.3 Interactive Boundary Component and Optimal Grasp Pose Detection

Table 4.3: Interactive detection and grasping results

success rate initial grasp detection boundary grasp

trials 11/12 10/11 8/10

percentage 91.7 90.9 80.0

The robot successfully performed the initial pick-up grasp in eleven out of
twelve runs. In one single case, the knit cap slipped out between the fingers.
Boundary component detection was successful in ten out of eleven remaining
trials. The one detection failure was due to the knit cap being turned down in
such a way that the opening was not visible to the depth sensor. The robot
succeeded in regrasping the knit cap around its boundary in eight out of ten
runs (e.g., Figures 4.16(a) and 4.16(b)). One failure was caused by trying to
grasp the garment too close to a boundary corner and unintentionally squeezing
the opening (Figure 4.16(c)). The second failure occurred because the hand
folded the knit cap to the side when trying to grasp it and hence missed the
opening (Figure 4.16(d)). The overall success rate of the whole procedure was
66.7 percent. The results are summarized in Table 4.3.

4.3.5 Application

The Coat-check Scenario To demonstrate the usefulness of our interactive
perception and regrasping approach, we created the so-called robotic coat-
check scenario. In this scenario, we have shown how grasping based on a
boundary component model can be exploited for implementing another com-
mon interaction primitive with clothes, namely hanging up a garment. Specif-
ically, our robot performed a sequence of eight actions in order to change the
configuration of a knit cap from lying on the table to hanging on a hat-stand.
While the first three steps have been discussed in detail, we basically regard
the (more or less preprogrammed) subsequent actions as an application of the
boundary grasp. In the following, we describe the overall procedure (Figure
4.17):

1. Picking up: The robot picks up the knit cap from the tabletop using a
heuristic-based initial grasp configuration.

2. Visually observing: One robot hand holds the knit cap in such a way
that the boundary can be detected.

3. Regrasping around the boundary: Having determined a good boundary
grasp pose, the robot regrasps the knit cap with the other hand.

99

4 Reducing the Problem Space for Detection and Grasping

Figure 4.17: The coat-check task (hanging up a knit cap on a hat-stand) di-
vided into a sequence of eight actions.

4. Regrasping at the tail: The robot performs another regrasp at a point
near the closed end of the knit cap.

5. Aligning: The top of the hat-stand is detected in the point cloud and
the knit cap is aligned accordingly.

6. Lifting up: One hand lifts the tail of the knit cap above the hat-stand.

7. Pulling down: The other hand pulls the knit cap over the hat-stand.

8. Releasing: The robot drops the knit cap.

The Christmas Elf Scenario In another demonstration scenario, we tried
to bridge the gap between science and art with a christmas video that was
made in collaboration with several members of our group. In the video15, a
so-called robot christmas elf explains its work (putting candy into a stocking)
in a humoristic christmas song while performing the task. From a technical
perspective, the procedure (Figure 4.18) realizes yet another interaction prim-
itive with garments, namely putting sth. in. It consists of six basic steps,
the first three being identical to those in the coat-check task, the other three
implementing the interaction with the objects to be put into the stocking:

15https://youtu.be/2naQbWa-Sv8

100

4.4 Discussion

Figure 4.18: The robot christmas elf task (putting candy into a stocking) di-
vided into a sequence of six actions.

1. Picking up: The robot picks up the stocking from the tabletop.

2. Visually observing: One robot hand holds the stocking in such a way
that the boundary can be detected.

3. Regrasping around the boundary: Having determined a good boundary
grasp pose, the robot regrasps the stocking with the other hand.

4. Picking up a candy: The robot hand that was used for the initial grasp
releases the stocking and reaches into a gift basket trying to grasp a piece
of candy.

5. Evaluating the grasp: The grasp is evaluated using the tactile sensors at
the fingertips, and the previous step is repeated if the grasp is detected
to have failed.

6. Dropping: The robot moves its hand above the opening of the stocking
and drops the candy into it.

4.4 Discussion

In this chapter, we have explored the limits of static representations in robotic
perception and action in the clothing domain. By doing so, we have avoided

101

4 Reducing the Problem Space for Detection and Grasping

modeling the complex dynamics of highly deformable objects. However, algo-
rithms that use static models cannot draw on previous states to detect local
changes of the environment (such as garment deformations), but instead, they
essentially have to search for relevant structures in the whole scene. Therefore,
it is important to choose an appropriate input space in which to perform the
search. In our case, depth images and point clouds were mostly preferred to
color images because we focused on topological and geometric properties rather
than the overall appearance of clothes. We have demonstrated that, exploiting
prior knowledge of the objects in the scene, the search space can be reduced
using a semantic point cloud filter which we have shown to be functionally
complete and efficiently parallelizable.
Although we considered static scenes, the representation structure was chosen
with an eye toward usefulness for complex interactions and dynamic model
initialization. Hence, our focus was on those features of clothes that do not
vanish under typical deformations. In particular, we have presented and dis-
cussed two methods for boundary component detection. The first method uses
polygonal templates of different types of clothing to find all boundary compo-
nents of a garment that has been spread out flat on a support surface. In an
evaluation against the ground truth from a human subject, we found that the
performance of the algorithm was acceptable.
However, the static boundary component models of flattened garments turned
out to be not so well suited for manual interaction. Therefore, in the second
(interactive) method, a robot hand is assumed to pick up and hold the garment
such that one of the openings is visible to the camera and the boundary com-
ponent can be detected using a graph-based algorithm. We have shown that
the resulting model can be used for defining a boundary grasp configuration
that takes into account grasp comfort, perceptual reliability, and the shape
of the boundary component. Our robot applied the boundary grasp in two
demonstration procedures implementing the interaction primitives of hanging
up and putting sth. in.

102

5 Reducing the Problem Space for
Tracking

Deriving contact relations between a garment and other physical entities (such
as a robot hand) from the visible effects is a key element of perception in
the clothing domain, as already pointed out in Chapter 2. However, vision
algorithms based on static images usually assume rather than detect that two
objects are in contact. For example, if in the interactive perception scheme
from Section 4.3 the knit cap slips out between the fingers when the robot tries
to lift the garment from the tabletop, that will not be realized until boundary
component detection fails. Therefore, to be able to determine at any time
whether the garment moves and deforms in a plausible and desired manner
when interacting with it (e.g., whether it moves along with the grasping hand),
a dynamic model is required.

At the beginning of this chapter, we consider different approaches to modeling
the dynamic behavior of non-rigid objects (Section 5.1). In this connection,
it will become apparent that tracking highly deformable articles of clothing
is extremely difficult, especially if no exact reference model of the garment
considered is available. This is due to the vast number of degrees of freedom
of clothes in addition to the noisy and incomplete measurements robots have
to cope with. Therefore, we suggest reducing the problem space by focusing
on the relevant object parts and structures which are, in robot-assisted dress-
ing as well as in many other interaction tasks with clothes, the openings and
their spatial relationships. Specifically, in Section 5.2, we build on the models
from Chapter 4 and represent openings as closed, oriented chains of movable
points which we refer to as Active Boundary Component Models (ABCMs).
Compared with the hardly predictable motions of an overall piece of cloth-
ing, relatively strict assumptions regarding the dynamics of these models can
be made. We express these assumptions through position-based constraints
which significantly restrict the degrees of freedom. In Section 5.3, we show
how ABCMs as well as Active Skeleton Models linking the ABCMs can be
initialized, and how they can be tracked visually using point cloud data. Ad-
ditionally, we consider the task of sliding a rod through a pant leg as a first
step toward robotic dressing assistance for physically handicapped persons.

103

5 Reducing the Problem Space for Tracking

5.1 Dynamic Models of Deformable Objects

In the following, we discuss several ways to model the dynamic behavior of a
deformable object, i.e., how the position and configuration change over time
when the object is manipulated by a human or robot. In general, the config-
uration of an object can be parameterized in many different ways, but often,
it is approximated by a deformable mesh or just a set of points. When we
refer to a dynamic model, we do not necessarily mean a model that explicitly
includes the acting forces or even the motion parameters (i.e., the velocities
and accelerations) of the points. However, what all methods discussed below
have in common is that they update a (deterministic or probabilistic) model
at every time step depending on some input data. In Section 5.1.1, we con-
sider the case where the input is a sequence of color images, depth images, or
point clouds. The approach described in Section 5.1.2 originally assumed that
the input is a set of external forces acting upon the model points, but we will
use the same constraint solving technique in the context of tracking garment
deformations with point cloud data.

5.1.1 Models for Visual Tracking

In the past, depth cameras were expensive and most robots were only equipped
with a color camera. Therefore, a common simplification of the deformable
object tracking problem has been to consider the 2-dimensional projection
onto the image plane. But some of the key ideas of the methods below can, at
least in principle, be transferred to the 3D case. A simple appearance-based
tracking technique is mean shift [137] which in most implementations uses a
histogram (e.g., a color histogram) as a feature descriptor for the object to be
tracked. Since histograms are deformation invariant, they can be applied to
non-rigid-objects. However, the mean shift algorithm cannot be used to track
object deformations but only positions in the image.
One of the most influential works on tracking deformable curves is the one from
Kass et al. [138]. They suggested an energy minimization approach where the
energy function is the sum of an image term (e.g., based on edges) and an
internal energy term that imposes constraints on the shape of the curve. The
models are called snakes or Active Contour Models, which served as a basis for
naming our Active Boundary Component Models (Section 5.2). A drawback of
snakes is that they do not necessarily show physically plausible behavior, e.g.,
they tend to shrink over time.
A widely used probabilistic method is the Condensation (Conditional Density
Propagation) algorithm [139] which is an example of a particle filter based
tracker. In the Condensation framework, a stochastic model of the dynamics

104

5.1 Dynamic Models of Deformable Objects

of the parameterized object contour has to be learned from training data. In
recent years, deep learning has been used to model both object appearances
and dynamics for visual tracking [140].

Modeling and tracking the complete configuration of a 3-dimensional object
in real time is a very difficult task. Therefore, some methods simplify the
problem by relying on visual markers on the object surface. Elbrechter et al.
[141] presented an approach to tracking a sheet of paper with fiducial markers
printed on it. They employed an external physics engine and a simple P-
controller establishing a link between the physical model and the visual input.
Schröder et al. [142] suggested a data-driven method for hand tracking with a
color glove.

In object tracking with point clouds, a well-established approach that does not
require markers or physical simulation is to perform a point matching proce-
dure between the model and the observation points at each frame. Iterative
Closest Point (ICP) [143] is a comparatively simple point set registration al-
gorithm and will be explained in Section 5.3.2. ICP is mainly suited for rigid
object tracking, but extensions for articulated [144] and non-rigid objects [145]
exist. It is also possible to define the geometry of the object to be tracked im-
plicitly by its signed distance function (SDF). Then, tracking means finding
the object configuration that minimizes the mean square of the SDF over all
observation points at the current time step. In the DART framework [146],
the SDF representation has been extended to articulated objects.

In the hand tracking method described in [147], an energy function consist-
ing of various data fitting and prior terms is minimized using the Levenberg-
Marquardt algorithm. Schulman et al. [148] proposed a probabilistic model
in which inference is performed by means of an expectation-maximization al-
gorithm where the maximization step involves calls to a physics simulation
engine. To the best of our knowledge, the mentioned markerless approaches
are either restricted to articulated objects with comparatively few degrees of
freedom or tracking has been shown to be robust and accurate only if the
object topology is rather simple (such as that of a rope or a piece of cloth).

5.1.2 Position-based Dynamics

To achieve physical plausibility, many methods for visual tracking of deformable
objects limit the degrees of freedom implicitly through energy terms or by
choosing a certain model parameterization. Other approaches rely on com-
plex physical simulation by an external engine which is usually treated as a
black box. However, we think that the key element that guarantees physically
realistic models is often a constraint solver. Therefore, we now describe a sim-

105

5 Reducing the Problem Space for Tracking

ple position-based constraint solving technique which has been suggested by
Müller et al. in the context of their Position-based Dynamics (PBD) frame-
work for computer graphics [149].
In the original PBD paper, the update procedure at each time step is as follows:
The model points have masses which, given the current external forces and a
set of damping coefficients, are used to generate new velocity and position
hypotheses. Then, the positions are corrected such that the object’s internal
constraints are satisfied. After this constraint projection step, the velocities
are changed accordingly. In the following, we ignore the forces and velocities
and assume that the points have equal masses.
Position-based constraint projection is an iterative process in which the posi-
tions are corrected repeatedly for all unsatisfied constraints, one after another.
Let C be a constraint function and ∇C the gradient with respect to the points
affected by the constraint. Furthermore, let p be the concatenation vector of
these points. Then, constraint solving means finding a correction ∆p such
that C(p + ∆p) = 0 (equality constraint), C(p + ∆p) < 0, or C(p + ∆p) > 0
(inequality constraints). For equality constraints, this can be approximated
by

C(p+∆p) ≈ C(p) +∇C(p) ·∆p = 0. (5.1)

The inequality constraint case is not considered separately because the pro-
cedure is the same except that it is only performed if the inequality is not
satisfied.
Now, ∆p is restricted to be along ∇C(p):

∆p = λ∇C(p) (5.2)

The rationale behind this is twofold: (i) Rigid body modes (translation and
rotation) do not change the value of an internal constraint function, i.e., the
direction of maximal change ∇C(p) is perpendicular to rigid body modes. (ii)
Corrections ∆p should be chosen to be independent of rigid body modes.
Equation (5.2) is substituted into Equation (5.1):

C(p) +∇C(p) · λ∇C(p) = 0 (5.3)

Solving for λ yields

λ = − C(p)

|∇C(p)|2 . (5.4)

After substituting back into Equation (5.2) and introducing a stiffness coeffi-
cient cs ∈ [0, 1] specifying the relative strength of the constraint, we have

106

5.2 Active Boundary Component Models (ABCMs)

∆p = −cs
C(p)

|∇C(p)|2∇C(p). (5.5)

For the correction of an individual point, that means

∆pi = −cs
C(p)

∑

j |∇pjC(p)|2∇piC(p). (5.6)

5.2 Active Boundary Component Models

(ABCMs)

Tracking deformable objects is a hard problem because of the huge amount
of degrees of freedom to be modeled. In the case of clothing, the task is
complicated further by the complex topology and geometry of most garments.
Therefore, we present a reduced approach that is along the lines of Chapter 4
in that only the boundary components are modeled instead of the full garment
geometry. We extend this idea to the dynamic case and suggest an integrated
representation which takes account of how the openings are topologically linked
inside the garment.

5.2.1 Definition and Properties

We define an Active Boundary Component Model (ABCM) as a tuple of 3D
points p1, ..., pN with attached constraints. Adjacent points (i.e., pi and pi+1

for i < N as well as pN and p1) are implicitly considered as being connected by
lines forming a piecewise linear approximation of the closed boundary curve.
The order in which the points are given specifies the direction of the corre-
sponding garment opening in accordance with the following right-hand rule:
If the curled fingers mimic the orientation of the boundary curve, then the
interior of the garment is roughly in direction of the thumb (i.e., if one looks
inside the opening, the points are in clockwise order).
In ABCMs, external influences on the models (e.g., based on image or point
cloud data) and internal priors are kept strictly separate. At each update
iteration, the models undergo a two-step process. First, the positions of the
boundary component points are manipulated according to the input from the
robot’s sensors. Then, a position-based constraint solving step ensures that
the models fulfill a set of conditions. Thus, ABCMs provide an intuitive and
extensible mechanism to express physical, geometric, and topological prior
knowledge about clothes in an explicit manner. Specifically, ABCMs have the
following properties:

107

5 Reducing the Problem Space for Tracking

Simplicity: Since boundary components are simply approximated by closed
sequences of points, no complex curve parameterization is required.

Flexibility: ABCMs are in principle not restricted to visual tracking. The
model points can be freely manipulated according to whatever forces or
sensory modalities influence the object perception.

Plausibility: Despite their flexibility, the models behave plausibly in terms of
the assumptions made. The assumptions are formalized through con-
straints on the model points.

Stability: Formulating the constraints in a position-based manner ensures high
stability and controlability as compared with force-based methods.

One of the basic ideas of ABCMs is that even though the overall dynamics of
clothes may be hard to predict, we can still make a few reasonable assumptions
regarding the boundary components, in particular the following:

1. Roughly constant arc length: Boundary component shrinkage or expan-
sion is minimal during typical garment manipulations.

2. Smoothness: Although different materials allow different degrees of de-
formation, model plausibility is significantly increased by assuming a
minimum boundary smoothness.

3. No entanglement: The boundary components of many real-world gar-
ments (including those considered in our experiments) do not excessively
coil out of the plane.

To formalize these assumptions, we derive suitable constraint functions along
with their gradients as required by Equation (5.6). We emphasize again that
these constraint functions are absolutely independent of any sensory input.

5.2.2 Distance Constraints

The first and probably the most important constraints we impose on the
boundary component models relate to the distances between adjacent points
(Figure 5.1). These constraints mainly have an effect on the local behavior
of the boundary curve, but they can also be used to indirectly control global
properties. For example, if the number of model points is assumed to remain
unchanged and the distances between adjacent points are kept constant, the
overall length of the curve is constant, too. In some sense, the smoothness
constraint introduced below can also be considered a distance constraint on
each three adjacent model points.

108

5.2 Active Boundary Component Models (ABCMs)

ϕ
d

pi-1

pi

pi+1

Figure 5.1: Schematic diagram of an ABCM (red) and the distance constraint
parameters (black).

Arc Length Our first physical assumption regarding the boundary compo-
nents of clothes has been that they do not excessively expand or shrink. This
is ensured geometrically by imposing equality constraints on the distances of
adjacent boundary points pi and pi+1 (with pN+1 = p1). The corresponding
constraint function is

Cdist(pi, pi+1) = |pi − pi+1| − d, (5.7)

where d is chosen to be the distance between the two points at initialization
time. It is also possible to allow stretching by replacing the equality constraint
with two inequality constraints indicating the lower and upper distance toler-
ances. The gradients of Cdist are as in [149]:

∇piCdist(pi, pi+1) =
pi−pi+1

|pi−pi+1|
(5.8)

∇pi+1
Cdist(pi, pi+1) = − pi−pi+1

|pi−pi+1|
(5.9)

Substituting Equations (5.7), (5.8), and (5.9) into Equation (5.6) yields

∆pi = −1

2
cs(|pi − pi+1| − d)

pi − pi+1

|pi − pi+1|
(5.10)

and

∆pi+1 =
1

2
cs(|pi − pi+1| − d)

pi − pi+1

|pi − pi+1|
. (5.11)

It is easy to see that for |pi−pi+1| > d the points are moved toward each other,
and for |pi − pi+1| < d they are moved away from each other. From now on,
we will only give the constraint functions and their gradients rather than the
explicit formulas for ∆pi.

109

5 Reducing the Problem Space for Tracking

Smoothness Our second assumption has been that the boundary compo-
nents have a minimum degree of smoothness, i.e., that they do not bend too
much locally. A natural way to restrict bending is through angular inequality
constraints (Csmooth(pi−1, pi, pi+1) > 0) between adjacent segments pi−1pi and
pipi+1 of a boundary component model (with p0 = pN and pN+1 = p1), the
constraint function being

Csmooth(pi−1, pi, pi+1) = arccos
(
(pi−1−pi
|pi−1−pi|
︸ ︷︷ ︸

â

)T (pi+1−pi
|pi+1−pi|
︸ ︷︷ ︸

b̂

)
)
− φ, (5.12)

and the gradients with respect to the points being

∇pi−1
Csmooth(pi−1, pi, pi+1) = − 1√

1−(âT b̂)2

(
(Jpi−1

â)T b̂
)
, (5.13)

∇piCsmooth(pi−1, pi, pi+1) = − 1√
1−(âT b̂)2

(
(Jpi â)

T b̂+ (Jpi b̂)
T â
)
, (5.14)

and

∇pi+1
Csmooth(pi−1, pi, pi+1) = − 1√

1−(âT b̂)2

(
(Jpi+1

b̂)T â
)
. (5.15)

To compute the gradients, the following Jacobians are required:

Jpi−1
â =

I3−
(

pi−1−pi
|pi−1−pi|

)(
pi−1−pi
|pi−1−pi|

)T

|pi−1−pi|
(5.16)

Jpi â =
−I3+

(
pi−1−pi
|pi−1−pi|

)(
pi−1−pi
|pi−1−pi|

)T

|pi−1−pi|
(5.17)

Jpi+1
b̂ =

I3−
(

pi+1−pi
|pi+1−pi|

)(
pi+1−pi
|pi+1−pi|

)T

|pi+1−pi|
(5.18)

Jpi b̂ =
−I3+

(
pi+1−pi
|pi+1−pi|

)(
pi+1−pi
|pi+1−pi|

)T

|pi+1−pi|
(5.19)

The actual smoothness of the model is influenced not only by φ, but also by
the number of points N . Therefore, we make the choice of φ in Equation (5.12)
dependent on an overall smoothness parameter ksmooth ∈ [0, 1]. The smoothest
possible boundary component model (ksmooth = 1) is a regular N -polygon in

which all internal angles have the same value φ = (N−2)
N

· π. Hence, we set

φ =
(N − 2)

N
· π · ksmooth. (5.20)

110

5.2 Active Boundary Component Models (ABCMs)

Figure 5.2(a) shows an ABCM that violates the smoothness assumption. In
Figure 5.2(b), the same model is shown after smoothness constraint projection
(with ksmooth = 0.8).

5.2.3 Entanglement Constraints

While constant length and smoothness have been ensured simply by imposing
distance constraints on adjacent model points, restricting entanglement is less
straightforward. One possibility could be to constrain the local torsion of the
boundary curve. For example, Umetani et al. [150] have shown how, within
the PBD framework, all three components of bending and twisting of an elastic
rod can be controlled independently using so-called ghost points that represent
the rod’s material. As an alternative, we discuss how coiling out of the plane
can be constrained globally and without giving up the idea of one-dimensional
boundary component models. To this end, we define two different constraint
functions which act upon all model points simultaneously.

Writhe One way to quantify the entanglement of a boundary component
model is through the writhe which can be viewed as the sum of all signed
self-crossings averaged over all possible viewing directions. The writhe of a
simple, closed, differentiable curve γ with points r1 and r2 along the curve is
defined as the Gauss integral

Wr =
1

4π

∫

γ

∫

γ

dr1 × dr2 ·
r1 − r2

|r1 − r2|3
. (5.21)

A similar definition could be used to calculate the writhe of a piecewise linear
curve. However, it is computationally more efficient to consider an additional
virtual curve γ′, to calculate both the twist Tw and the Gauss linking number
Lk of γ with γ′, and to employ the Cǎlugǎreanu-White-Fuller theorem [151]:

Wr = Lk − Tw (5.22)

The linking number Lk is a topological invariant and an integer indicating how
often two closed curves wind around each other. The twist Tw is neither an
integer nor a topological invariant, but it measures the rate of rotation of γ′

around γ. Thus, Equation (5.22) describes geometrically how a ribbon with
boundary curves γ and γ′ reduces torsional stress by forming coils, i.e., by
converting twist into writhe. For details and a comparison of several methods
to calculate the writhe, the reader is referred to [152]. The gradient of the
writhe can be computed using the formula from [153].
Now, we are able to define a writhe constraint function:

111

5 Reducing the Problem Space for Tracking

(a) (b)

Figure 5.2: Smoothness constraint experiment. (a) Initial rectangular ABCM.
(b) The ABCM after constraint projection.

(a) (b)

(c) (d)

Figure 5.3: Entanglement constraint experiment. (a) Initial coiled ABCM. (b)
The ABCM after writhe constraint projection. (c) The ABCM
after planarity constraint projection. (d) The ABCM after writhe
and planarity constraint projection.

112

5.2 Active Boundary Component Models (ABCMs)

Cwrithe(p) = |Wr(p)| − dwrithe, (5.23)

where dwrithe denotes the maximum entanglement in an inequality constraint
(Cwrithe(p) < 0).
The writhe quantity has a few disadvantages. First, it is not defined for self-
intersecting boundary component models, which can be circumvented by im-
posing some additional distance constraints on non-adjacent points. Second,
under certain circumstances, the gradient-based solver may not converge to
a root of the writhe constraint function. Third, not only the writhe of any
planar curve but also that of any curve located on a sphere is zero. Therefore,
ABCMs tend to form highly non-planar configurations during uncoiling. To
illustrate this, we initialized a coiled ABCM with Wr = 0.74 (Figure 5.3(a)).
After writhe constraint projection with dwrithe = 0.5, Wr is indeed reduced to
0.5, but the global configuration of the model has changed drastically (Figure
5.3(b)).

Planarity To avoid the above-mentioned issues with the writhe constraint
function, coiling out of the plane can also be restricted by imposing a planarity
constraint on the model. The cross product version of the so-called shoelace
formula yields a vector np which is perpendicular to and whose length is twice
the area of a given polygon. For non-planar polygonal chains such as ABCMs,
the result is an approximate “best-fit” normal vector:

np =
N∑

i=1

pi × pi+1 (5.24)

with pN+1 = p1. Let n̂p =
np

|np|
be the unit normal, and let mp be the mean of

the model points. Then, a planarity constraint function can be defined as

Cplan(p) =
1

N

N∑

i=1

(
n̂T
p (pi −mp)
︸ ︷︷ ︸

di

)2 − dplan, (5.25)

limiting the mean squared distance of the points to a plane when used in an
inequality constraint (Cplan(p) < 0). The gradients with respect to the points
are given by

∇pjCplan(p) =
2

N

[
N∑

i=1

di(Jpj n̂p)
T (pi −mp)−

N∑

i=1,i 6=j

1
N
din̂p + (1− 1

N
)djn̂p

]

(5.26)

113

5 Reducing the Problem Space for Tracking

with

Jpj n̂p =
1

|np|
Jpjnp − n̂pn̂

T
p Jpjnp (5.27)

and

Jpjnp =

0 pj+1z − pj−1z pj−1y − pj+1y

pj−1z − pj+1z 0 pj+1x − pj−1x

pj+1y − pj−1y pj−1x − pj+1x 0

 . (5.28)

Again, we make dplan in Equation (5.25) dependent on an overall planarity
parameter kplan ∈ [0, 1]. From some geometric considerations, we derive that
the mean distance of the model points to the fitted plane cannot exceed 1

16
of

the boundary component model’s arc length L. Hence, we set

dplan =
(L

16
(1− kplan)

)2

. (5.29)

The planarity constraint indeed helps to avoid coiling of the boundary com-
ponent model, but it sometimes also prevents uncoiling when the curve is
already in an entangled state. For example, the writhe of the ABCM in Figure
5.3(c) has even increased from 0.74 to 0.98 after planarity constraint projec-
tion. Therefore, in practice, it makes sense to have both a writhe constraint
and a planarity constraint, and to decrease the stiffness of the planarity con-
straint during uncoiling. In Figure 5.3(d), it can be seen that applying a writhe
constraint with high stiffness (cs = 0.75) and a planarity constraint with sig-
nificantly lower stiffness (cs = 0.05) results in a flattened and disentangled
model with Wr = 0.03.

5.2.4 Active Skeleton Models

ABCMs as defined so far model the internal degrees of freedom of individ-
ual garment openings, but they do not incorporate the relationships between
different boundary components. Active Skeleton Models extend the constraint-
based concept to include a coarse representation of the overall geometry and
topology of an article of clothing. We expect that the skeleton models could
robustify tracking of the boundary components by providing some information
about the relative poses of the openings. Furthermore, they can be used to
define trajectories for the human limbs in dressing assistance.
We model the skeletons as star-shaped structures with a single central point,
one end point for each opening, and several points describing the paths from the
central point to the boundary components. In Section 5.3.1, we will describe

114

5.2 Active Boundary Component Models (ABCMs)

ϕalign
dconn q1

q2
mp

np

Figure 5.4: Schematic diagram of an Active Skeleton Model (orange) linking
two ABCMs (red), and the skeleton constraint parameters (black).

how a skeleton model can be initialized together with the ABCMs. Possible
deformations are again formalized by means of position-based constraints. We
use internal angular and distance constraints to define the degrees of allowed
stretching and bending. The attachments of the ABCMs to the skeleton (Fig-
ure 5.4) are characterized by the following two properties:

Connectedness: The main purpose of a skeleton model is to link the openings
of a garment. Therefore, all skeleton end points are positioned close to
the centers of their respective boundary components.

Alignment: The openings define the optimal entry directions into the garment
interior. Hence, each skeleton end is roughly aligned with the normal
vector of the boundary component model it is attached to.

Connectedness We achieve connectedness between the skeleton model and
an ABCM by imposing a distance constraint on the skeleton end point q1 and
the boundary points p. Assuming that the mean mp is a sufficient approxi-
mation of the boundary component center, we can define a simple constraint
function

Cconn(p, q1) = |mp − q1| − dconn (5.30)

with gradients

∇q1Cconn(p, q1) = − mp − q1

|mp − q1|
(5.31)

and

115

5 Reducing the Problem Space for Tracking

∇piCconn(p, q1) =
mp − q1

N |mp − q1|
, (5.32)

where dconn is usually set to 0 in an equality constraint.

Alignment Each end of the skeleton model is aligned with the normal vector
of the corresponding ABCM by means of an angular constraint on the last
skeleton segment q1q2 and the unit normal n̂p of the boundary component:

Calign(p, q1, q2) = arccos
(
(n̂p)

T (q2−q1
|q2−q1|
︸ ︷︷ ︸

ê

)
)
− φalign (5.33)

The gradients with respect to the boundary points are

∇piCalign(p, q1, q2) = − 1√
1−(n̂T

p ê)2

(
(Jpin̂p)

T ê
)
, (5.34)

where Jpin̂p is the Jacobian of the unit normal from Equation (5.27).
The gradients with respect to the skeleton points are given by

∇qjCalign(p, q1, q2) = − 1√
1−(n̂T

p ê)2

(
(Jqj ê)

T n̂p

)
, (5.35)

for j ∈ {1, 2}.
The formulas for the required Jacobians are as follows:

Jq1 ê =
−I3+

(
q2−q1
|q2−q1|

)(
q2−q1
|q2−q1|

)T

|q2−q1|
(5.36)

Jq2 ê =
I3−
(

q2−q1
|q2−q1|

)(
q2−q1
|q2−q1|

)T

|q2−q1|
(5.37)

The parameter φalign is used in an inequality constraint (Calign(p, q1, q2) < 0)
to specify the misalignment tolerance.

5.3 Tracking ABCMs with Point Clouds

Under the assumption that the position-based constraint solving step ensures
that the physical, topological, and geometric conditions are satisfied, the model
points can be moved according to input from the robot’s sensors in a rather
unrestricted way. We think that, in principle, various types of sensory input
could be used. However, in the present work, we focus on point cloud data
from a Kinect sensor. In the following, we show how ABCMs and skeleton

116

5.3 Tracking ABCMs with Point Clouds

Figure 5.5: Template polygons and skeletons (pink) of a sweater, a pair of
pants, and a legwarmer.

models can be initialized, and how they can be tracked by means of an iterative
edge point matching approach. The method has been evaluated with different
articles of clothing and applied to a simplified robotic dressing assistance task.

5.3.1 Initialization

In principle, both the polygon-based boundary component detector from Sec-
tion 4.2 and the interactive perception approach from Section 4.3 can be used
to initialize ABCMs. The interactive method is mainly suited for garments
with only one opening, i.e., for initializing a single ABCM. The only adjust-
ment we make to the algorithm is to distribute the model points evenly along
the detected boundary curve (at a distance of 1 cm) rather than to employ a
curvature-based corner detector. Similarly, in the polygon-based method, the
points are equidistantly placed on the resulting rectangular boundary compo-
nent model. The violation of the smoothness assumption is going to vanish
within the first iterations of constraint solving.
In the case of garments with multiple boundary components, a representation
of how the openings are linked in the interior of the garment is often required.
Therefore, we have extended the method from Section 4.2 to be capable of ini-
tializing an Active Skeleton Model along with the ABCMs. For this purpose,
template skeletons (depicted as pink lines in Figure 5.5) have been added to
the polygonal garment prototypes. Our algorithm deforms a copy of the given
template skeleton so as to match the geometry of the garment polygon that
has been extracted from point cloud data. The central point of the skeleton
remains unchanged because we assume it to be fixed with respect to the poly-
gon centroid. Then, the individual skeleton branches are rotated and stretched
in such a way that the end points match the centers of the (black) segments
representing the 2D projections of the garment openings. The result of this
process is visualized for a pair of pants in Figure 5.6. Figure 5.7 shows the
skeleton model after its projection onto the tabletop.

117

5 Reducing the Problem Space for Tracking

Figure 5.6: Result of the template skeleton deformation. The polygon seg-
ments representing the garment openings are depicted as red lines,
the corresponding template segments as black lines. The tem-
plate skeleton and its deformed copy are shown in pink and yellow,
respectively.

Figure 5.7: Active Skeleton Model (yellow) and three ABCMs (red) right after
initialization.

118

5.3 Tracking ABCMs with Point Clouds

5.3.2 Iterative Edge Point Matching

Much like in the graph-based detection approach from Section 4.3, we assume
that the boundary components of clothes can be found based on surface edges
that, in the ideal case, form closed curves. However, while the static detector
has to perform a global search, our tracking algorithm always uses the previous
state of the model which is updated only locally. The method can therefore
make weaker assumptions (e.g., the garment openings can be less wide open)
and estimate the boundary component configurations in real time. At each
frame, using edge points extracted from a point cloud, the algorithm first
determines how the positions and orientations of the ABCMs have changed.
Then, the edge points are used again for a rough heuristic estimate of the
model deformations. It is not critical if this estimate is somewhat inaccurate,
considering the fact that physical plausibility is subsequently ensured by a set
of position-based constraints. In summary, there are three steps that precede
constraint projection during ABCM tracking with point clouds:

1. Edge point detection

2. Rigid transformation

3. Heuristic deformation

Edge Point Detection Surface edges of sufficiently thick clothes can be de-
tected by employing the technique from Ückermann et al. [132] which finds
differences in angle between adjacent surface normals in the point cloud. For
details, the reader is referred to Section 4.3.2. We apply the method twice,
using slightly different parameters in the vicinity of the tabletop to detect
the weak edges of flattened garments. The result is shown in Figure 5.8(a)
using the examples of a spread-out and a lifted pair of pants. At each time
step, our algorithm collects a set E of relevant edge points by searching in a
range around the ABCM points. We define two search radii, a smaller one
in direction of the boundary component’s normal vector (pointing inside the
opening), and a larger one in the opposite direction. This accounts for the fact
that the boundary components are located at the outer ends of a garment.
The extracted edge points are depicted in green in Figure 5.8(b).

Rigid Transformation The internal constraints of an ABCM serve as prior
knowledge in estimating its deformations, but translation and rotation have
to be detected solely based on sensory data. Specifically, the model points
should be roughly aligned with the edge points in E. We determine a rigid

119

5 Reducing the Problem Space for Tracking

(a)

(b)

Figure 5.8: Edge point detection during point cloud based ABCM tracking.
(a) Surface normal based edge detection result. (b) Relevant edge
points (green) lying within a certain range around an ABCM (red).

Figure 5.9: Deformation heuristic during point cloud based ABCM tracking.
ABCMs are deformed by moving the model points (red) toward
the means of the edge points (green) in their respective Voronoi
regions. The boundaries between the Voronoi regions are indicated
by black lines.

120

5.3 Tracking ABCMs with Point Clouds

transformation of the ABCM using a reverse Iterative Closest Point (ICP)
approach. The ICP algorithm [143] in its simplest form consists of three basic
steps which are performed iteratively until the alignment between the model
and the data points does not improve anymore: (i) Assign each model point
to its closest data point. (ii) Estimate a rigid transformation which, using the
assignment from the previous step, minimizes the mean squared point to point
distance. (iii) Transform the model accordingly. Since there are usually many
more data points than model points, it is however significantly more effective
to find a transformation T from the points in E to the model (i.e., to assign
the data points to the model points) and to apply T−1 to the ABCM model.

Heuristic Deformation Finally, the ABCM is deformed to match E even
better. To this end, another closest point assignment step between the data
points and the model points is performed. This is equivalent to decomposing
the 3D space into Voronoi regions using the rigidly transformed model points
before shifting the model points toward the centroids of the edge points that
fall within their respective regions (Figure 5.9). To increase model stability,
we limit the displacement of an individual point per time step to the distance
between two adjacent model points.

We emphasize that this simple heuristic approach to estimating deformation
neither considers any of our model assumptions nor does it update the skele-
ton estimates. Therefore, boundary component tracking relies on effective
constraint solving. We note that, in our current implementation, there is no
partial occlusion handling, i.e., tracking of an individual ABCM stops imme-
diately when another object crosses the view ray of a model point.

5.3.3 Evaluation

Tracking with point clouds was again implemented using ICL and runs in real
time (30 Hz) on a PC with a modern graphics card. We used a knit cap,
i.e., a garment with a single boundary component, to qualitatively evaluate
the influence of individual constraints on the tracking performance. In each
trial, we initialized two ABCMs with different parameters using the graph-
based method from Section 4.3, and observed how the models behaved during
manipulation by a human. First, we tested an unconstrained model against
an ABCM without stretching tolerance, ksmooth = 0.5, kplan = 0.85, and a
maximum writhe of 0.25. It can be clearly seen in Figure 5.10(a) that the
unconstrained model heavily violates our assumptions, while the constrained
model reflects the real boundary component fairly well. In a second trial
(Figure 5.10(b)), we compared the constrained ABCM from the first trial with

121

5 Reducing the Problem Space for Tracking

(a) (b) (c)

Figure 5.10: Comparison of the ABCM tracking performance between several
model configurations. (a) Unconstrained (red) vs. constrained
(blue). (b) Without (red) vs. with entanglement constraints
(blue). No stretching allowed. (c) Without (red) vs. with en-
tanglement constraints (blue). Stretching allowed.

Figure 5.11: Point cloud based ABCM (red) and skeleton (yellow) tracking of
a pair of pants shortly after initialization (1), while grasped (2),
lifted (3), and moved (4) by a human hand.

122

5.3 Tracking ABCMs with Point Clouds

an ABCM from which we removed the planarity and writhe constraints. We
found that the performance of both models was similar and coiling occurred
rarely, even in the condition without entanglement constraints. However, when
we allowed stretching (up to 50 percent) in both conditions (Figure 5.10(c)), we
frequently observed boundary component entanglement if it was not explicitly
constrained.
We also tested the dynamic behavior of Active Skeleton Models with attached
ABCMs using the articles of clothing from the test set presented in Section
4.2. Figure 5.11 shows tracking of a pair of pants. We found that the models
reacted plausibly to several manipulations such as grasping, lifting, moving,
or slightly deforming parts of the garments. The models were indeed not
robust against strong occlusions or deformations such as folding a sleeve, but
we emphasize that there was no visual tracking of the skeletons or the overall
garments. Taking into account that the skeleton models only followed the
boundary component dynamics in a constraint-based manner, they represented
the object configurations surprisingly well.

5.3.4 Application to a Simplified Dressing Task

We also investigated the performance of our model in a controlled robotic
scenario that contained several elements of the dressing assistance task. As
already pointed out in Section 2.3, the task of getting dressed consists of three
basic action patterns: generating a suitable initial configuration, sliding the
limbs through the garment interior, and pulling the garment over the limbs.
In the current experiment, we focused on the first two patterns. Specifically,
the robot’s task was to slide a rod through a pant leg, which can be regarded
as an abstraction of dressing a leg prosthesis. The task consisted of two steps
(Figure 5.12):

Increasing the opening size: We specified a heuristic grasp position (the high-
est point in a region behind the opening) which allowed the robot to
slightly lift the garment from the tabletop in order to increase the size
of the area circumscribed by the boundary component b0 (i.e., the waist
opening through which the rod has to pass). Success was measured using
the relative opening size S ∈ [0, 1] which we defined as the ratio of the
area to its upper bound (approximated by the area L2

4π
of a circle):

S =
2π|np|
L2

, (5.38)

where L is the arc length and np is the normal vector from Equation
(5.24) whose length is twice the area of the ABCM.

123

5 Reducing the Problem Space for Tracking

Figure 5.12: Bimanual robot sliding a rod through a pant leg. (1a) Heuristic
grasp pose detection. The approach vector is depicted in green,
the orientation is shown in pink. (1b) The left hand lifting the gar-
ment in order to increase the size of the opening. (2a) Trajectory
detection (orange) based on the skeleton model of the garment.
(2b) The right hand pushing the rod through the garment interior.
The tip of the rod follows the detected trajectory.

124

5.4 Discussion

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 12 14 16 18 20

re
la

ti
v
e
 o

p
e
n

in
g

 s
iz

e

time since grasp trigger in seconds

threshold
successful grasp

failed grasp
successful grasp

Figure 5.13: Time curves of the relative opening size S of boundary compo-
nent b0 (waist opening) during the simplified dressing assistance
experiment.

Following the trajectory: If the waist opening b0 was wide enough (S > 0.5),
the robot used the other hand to slide the rod through the boundary
component and the interior of the garment toward the target leg opening.
As suggested in Section 2.3, the rod was integrated into the robot’s
kinematic chain, and its tip followed a static path along the skeleton
model while the orientation of the rod was aligned with the last segment
of the trajectory.

The robot performed the task successfully with both pants from our test set.
However, in the second run, the initial grasp was not strong enough, and
the garment slipped out of the robot’s hand. Our system correctly detected
the failure by checking the relative opening size S, triggered a new grasp,
and completed the task. The time curves of S for the failed grasp and both
successful grasps are shown in Figure 5.13. Despite the lack of force control,
the tip of the rod did not get stuck in the fabric. This indicates that the
skeleton models provided suitable paths through the garment.

5.4 Discussion

In this chapter, we have suggested a novel method for modeling how the con-
figuration of a garment changes over time during human or robotic manipu-
lation. While capturing the full dynamics of such complex objects as articles

125

5 Reducing the Problem Space for Tracking

of clothing remains an almost intractable problem, we have presented a re-
duced approach using deformable models of the boundary components which
we refer to as ABCMs. We were able to show that ABCMs limit the degrees
of freedom to a tractable level by imposing position-based constraints on the
model points. In our framework, the topological and geometric relationships
between the ABCMs are described by so-called Active Skeleton Models. We
explained how these skeleton models with attached ABCMs can be initialized
using slightly modified versions of the detection schemes from Chapter 4, and
how they can be tracked with point cloud data.
In experiments with a bimanual robot, we demonstrated the applicability of
the proposed representation to the interaction primitive of sliding sth. through
a garment, which plays an important part in robot-assisted dressing. In par-
ticular, our robot accomplished the task of sliding a rod through a pant leg.
An important requirement for performing this task is to increase the size of the
area circumscribed by the boundary component at the waist end of the pants
such that the rod fits through the opening. This can be achieved by slightly
lifting the top part of the pants’ fabric. Using an ABCM to estimate the cur-
rent size of the considered opening, the robot knows at any time whether its
grasp is successful and has the desired effect, i.e., it derives the contact relation
between the fingers and the garment indirectly from the state of the model.
Furthermore, we showed that the configuration of the skeleton model after
grasping and lifting the garment can be used to define successful trajectories
for the tip of the rod through the garment interior.
In the general case, robotic assistance with dressing obviously demands a num-
ber of additional skills, both in perception and manipulation. These skills
presumably require the integration of different modalities such as color vision,
proprioception, force/torque, or tactile sensing. We are optimistic that, in
future work, the independence of our model assumptions from any particular
type of sensory input may prove beneficial in this regard.

126

6 Reducing the Problem Space for
Policy Search

One reason why humans are so good at handling such complex everyday ob-
jects as clothes is that they are experts both in understanding and executing
given plans, and in applying more implicitly learned strategies (commonly re-
ferred to as policies in reinforcement learning). To be able to carry out a
predefined plan, a robot requires an explicit and more or less accurate rep-
resentation of (the task-relevant part of) the environment. In the previous
two chapters, using topology-based models and domain knowledge related to
these models, we were able to implement some interactions with clothes, e.g.,
sliding a thin rod through the interior of a garment. However, another in-
teraction primitive which is essential to the dressing task, namely pulling a
garment over a human body part (or any other rigid or non-rigid object), is
much more difficult to model explicitly. This is because the physical entities
involved (the robot hands, the garment, and the body part to be dressed) are
in tight contact most of the time which complicates modeling in two different
ways. First, there is usually heavy occlusion, i.e., the most relevant areas of
the scene (the areas of contact between the objects) are often invisible to the
camera. Second, the effects of robotic motion cannot be estimated so easily.
To simulate how a garment deforms and wraps around another object during
contact-rich interaction, many parameters such as the friction coefficients and
other material properties would be required which are generally not known
in advance. Therefore, we believe that, in such cases, it is more effective to
learn successful policies from experience gained during interaction with the
real environment.

In this chapter, after introducing and discussing some of the key challenges
and methods of reinforcement learning and policy optimization (Section 6.1),
we will focus on the robotic dressing assistance problem again. In particular,
as a step toward solutions for the general task, we consider the example of a
bimanual robot that learns to put a knit cap on a styrofoam head (Section
6.2). Our approach avoids modeling the details of the garment and its defor-
mations. Instead, we suggest learning in a reduced head-centric policy space.
In Section 6.3, we demonstrate how this low-dimensional policy parameteri-

127

6 Reducing the Problem Space for Policy Search

zation, combined with a suitable objective function for determining the right
amount of contact between the knit cap and the head, enables a direct policy
search algorithm to find successful trajectories for this task.

6.1 Reinforcement Learning and Optimization

While we have already equipped our robot with the ability to evaluate some of
its actions from the visible effects, the core problem considered in this chapter
is different and can be formulated as follows: Learn successful actions not
from what can be seen immediately, but from the long term consequences (in
our example task: after releasing the knit cap, it slips off or holds firmly on
the head). These consequences can be regarded as performance feedback the
environment (or an experimenter) provides to the robot. In this sense, the
robot is confronted with a typical reinforcement learning problem: It wants to
optimize an objective function (representing the long term reward) which is not
known in advance but has to be learned by interacting with the environment.
Reinforcement learning differs from supervised learning in that it does not rely
on prespecified examples of correct or incorrect behavior, and it differs from
unsupervised learning in that the goal is not to find hidden structure in the
input data but to maximize future rewards [154].
In the following, we discuss two approaches to solving reinforcement learning
problems. First, we give a definition of the most commonly used framework,
namelyMarkov decision processes (MDPs), and we describe how learning takes
place in this framework (Section 6.1.1). Then, we consider a quite different
class of methods often referred to as evolution strategies (Section 6.1.2). It will
become apparent that there are similar challenges, such as credit assignment,
sample efficiency, and the exploration-exploitation dilemma, in both classes of
approaches. We think that looking closely at how different methods tackle
these issues helps in understanding why a particular technique is suited to a
given problem (e.g., why we have chosen a variant of the CMA-ES algorithm
for our example task).

6.1.1 Policy Search in MDPs

An MDP is a tuple (S,A, P,R), where S is a set of states, A is a set of
actions, P (s′|s, a) is the transition probability that action a in state s will
lead to state s′, and R(s, a) is the immediate reward for taking action a in
state s. The problem to be solved in an MDP is to find a policy π that
maximizes the expected return. In episodic tasks with a specified terminal
state, the return is usually the sum of the rewards gained during one episode.

128

6.1 Reinforcement Learning and Optimization

In the continuing case, the return Gt from time t until infinity can be defined
as Gt =

∑∞
k=0 γ

kRt+k+1, with the discount factor γ ∈ [0, 1] determining the
relative importance of future rewards. A deterministic policy specifies for each
state an action to be taken, whereas a stochastic policy assigns to each state
and action a probability π(a|s) of choosing action a in state s. If all parameters
of an MDP are given, it can be solved using dynamic programming. However,
if the transition probabilities or the rewards are unknown, an optimal policy
has to be learned [154].

Value-based Learning Learning in MDPs can be done using action-value
functions qπ(s, a) that represent the expected return when starting in s, tak-
ing action a, and then following π. The general idea is to find an optimal
policy by alternately changing an approximate value function to better match
the true value function of the current policy, and making the policy greedy with
respect to the current value function (such that in each state, the action with
the highest value is selected). InMonte Carlo methods, the value function is ap-
proximated by sampling and averaging returns after each episode. By contrast,
temporal difference methods, such as Q-learning [155] and SARSA [156], do not
wait until the end of an episode, but they update the value function estimates
after each action. This has the advantage that learning already takes place
during interaction with the environment. However, immediate rewards only
have a weak effect on earlier states, and many iterations are required to prop-
agate delayed rewards back to the states and actions that deserve the credit
or blame. In other words, the temporal credit-assignment problem is solved
at the expense of sample efficiency. Moreover, acting greedily with respect
to a non-optimal value function leads to insufficient exploration. Therefore,
the exploration-exploitation dilemma is usually solved either by optimizing a
stochastic policy with π(a|s) > 0 for all states and actions, or by optimizing a
deterministic policy while behaving according to a different stochastic policy
(off-policy learning).

Policy Gradient and Actor-Critic Methods In contrast to value-based ap-
proaches, policy gradient methods do not iteratively assign credit to state-
action pairs in order to learn a value funtion. Instead, they directly learn a
parameterized policy with parameters ω ∈ R

n by optimizing some objective
function J(ω) that represents the expected return. To maximize J(ω), policy
gradient methods use gradient ascent :

ωt+1 = ωt + α∇ωt
J(ωt), (6.1)

where α is the learning rate.

129

6 Reducing the Problem Space for Policy Search

According to the policy gradient theorem [157], the gradient of the objective
function can be related with the gradient of the parameterized policy as follows:

∇ωJ(ω) ∝ Eπ

[

qπ(s, a)
∇ωπ(a|s)
π(a|s)

]

(6.2)

Taking the return Gt as a sample of qπ(s, a) results in a simple policy gradient
algorithm referred to as REINFORCE [158] with the following update rule:

ωt+1 = ωt + αGt

∇ωt
π(a|s)

π(a|s) (6.3)

Like all gradient-based optimization methods, REINFORCE can get stuck in
a local optimum leaving large regions of the policy space unexplored. Fur-
thermore, the return can have high variance which makes the algorithm rather
sample-inefficient. Therefore, actor-critic methods (e.g., [159]) approximate
qπ(s, a) using a value-based technique so as to get the best of both worlds.

6.1.2 Evolution Strategies

One way to think of reinforcement learning is as an instance of (stochastic)
optimization. Hence, in principle, any optimizer can be used to maximize the
expected return. While policy gradient methods are, as the name suggests,
gradient-based, it is also possible to use gradient-free optimizers. Not using
derivative information has two advantages. First, gradient-free methods are
in many cases not restricted to finding local optima. Second, the gradient
of the objective function does not have to be easy to compute or even exist,
so both the objective function and the policy parameterization can be cho-
sen arbitrarily. Moreover, gradient-free policy search has been shown to be
more robust than gradient-based methods regarding initialization, choice of
hyperparameters, and noise [160].
Among the most successful gradient-free optimizers are the cross-entropy meth-
od [161], simulated annealing [162], and evolutionary algorithms [163] because
they do not assume any particular knowledge on the structure of the objective
function (which is sometimes referred to as black-box optimization). Evolu-
tionary algorithms are inspired by principles of biological evolution, in partic-
ular mutation, selection, and recombination. We consider a subclass of evolu-
tionary algorithms called evolution strategies [164] in which the search space
is a subspace of Rn, i.e., like in policy gradient methods, the goal is to find a
parameter vector ω ∈ R

n that represents an optimal policy. Since evolution
strategies do not necessarily consider MDPs, the main problem to be solved is
no longer credit assignment to the right states and actions but to combinations
of policy parameter values.

130

6.1 Reinforcement Learning and Optimization

CMA-ES The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[165] is a general purpose optimizer that has become a quasi-standard in several
areas of robotics. In fact, in the present thesis, we use it for such different opti-
mization tasks as point cloud fitting (Section 6.2.1) and policy search (Section
6.3). Like most evolution strategies, CMA-ES is a generation-based algorithm.
At the beginning of each generation, λ = 4 + ⌊3 ln(n)⌋ parameter vectors are
sampled from a multivariate normal distribution centered around the current
policy parameters (mutation). After that, the robot evaluates the objective
function for all samples by following the respective policies. Then, the µ = ⌊λ

2
⌋

best samples are picked out (selection), and their weighted mean is considered
the new optimal policy (recombination). Furthermore, after each generation,
the covariance matrix encoding the pairwise dependencies between the param-
eters, and a step size variable σ balancing exploration and exploitation, are
updated using paths of the policy evolution over time. The only free parameter
of CMA-ES is the initial step size σ0.

Surrogate-enhanced Active-CMA-ES In our experiments, we use the more
sample-efficient Active-CMA-ES variant of the CMA-ES algorithm which in-
troduces a negative update of the covariance matrix so that not only the best,
but also the worst episodes are considered [166]. Besides, it has been shown
that even less samples are required if previous samples are used to approxi-
mate the landscape of the objective function by means of a surrogate model.
In some sense, the idea is similar to that of actor-critic methods in that not
only the return of the latest samples but also a long term approximation of
the expected return is used in order to improve sample efficiency. According
to [167], surrogate models can be exploited at various stages of evolutionary
optimization, and all kinds of approximation techniques have been described in
the literature. We employ a simple k-nearest-neighbor regression model which
can be used in different ways including the following two: (i) Before each gen-
eration, λpre > λ samples are drawn from the distribution, and only the λ best
samples according to the model are preselected for re-evaluation by the robot.
(ii) A certain proportion of real-world episodes per generation is replaced by
surrogate function evaluations.

In summary, the main reasons we have preferred a surrogate-enhanced Active-
CMA-ES approach to other policy search methods in our example problem
are: (i) The only ingredients required are an arbitrary parameterization of
the robot’s policy and an objective function quantifying the final outcome of
an episode. This is particularly beneficial if it is difficult to obtain reliable
information about the true state of the environment and the current perfor-
mance of the robot during task execution. (ii) The CMA-ES algorithm solves

131

6 Reducing the Problem Space for Policy Search

the exploration-exploitation problem in a sophisticated manner, adapting the
critical strategy parameters automatically. (iii) Using the enhancements of
Active-CMA-ES and a surrogate model, the method can be made reasonably
sample-efficient.

6.2 An Exemplary Dressing Task: Putting On a

Knit Cap

The general dressing assistance problem is extremely challenging because of
the hardly predictable dynamics of the involved objects, together with the dif-
ficulty to control the complex interactions between a garment and the body
part to be dressed. Therefore, we believe that it is important to consider meth-
ods which avoid the need to model the item of clothing and its interplay with
the other physical entities in full detail. In this spirit, our approaches to de-
tection and tracking have been focused on reduced topological representations
of clothes rather than exhaustive geometric models. However, occlusion and
self-occlusion complicate tracking during contact-rich interactions. This mo-
tivates the work described in this chapter which explores an extreme strategy
that neglects any information about the configuration of the garment during
task execution and instead uses reinforcement learning to optimize an objec-
tive function that is based solely on information about the task performance
gathered after an episode of the task.

We focus on the specific scenario of a robot putting a knit cap on a head. This
exemplary task involves many of the aforementioned challenges that charac-
terize robot-assisted dressing. As a simplification, we use a styrofoam head
model firmly attached to a wooden base. This bypasses most of the safety is-
sues and additional difficulties that would arise from reactive movements of a
real human head. It also simplifies systematic studies of the learning approach
which relies on repeated interaction with the environment.

Nevertheless, the task remains very challenging because the robot is neither
provided with a model of the garment nor with the full geometry of the head.
Moreover, the robot receives no visual or force feedback during task execution
and has to coordinate two kinematically redundant arms with attached five-
fingered hands. For the movement policies to be meaningful in the context of
the dressing task, we assume that the robot is initially in a certain configuration
and grasps the garment in a defined way. The policy space is then a space of
robot trajectories expressed in a reference frame that is based on an ellipsoidal
model of the head. Hence, a robot vision algorithm is required that provides
an estimate of the head pose and scale.

132

6.2 An Exemplary Dressing Task: Putting On a Knit Cap

6.2.1 Ellipsoidal Model of the Head

The method described in the following provides the robot with a geometric
representation of the part of the head that is to be covered by the knit cap.
We emphasize that we require an estimate not only of the pose of the head
but also of the scale parameters. The reader is referred to [168] for a survey
of computer vision methods for human head pose estimation. Many of the
existing approaches are texture-based. The styrofoam head in our example
does not have much texture though. Therefore, we rely on techniques based
on 3D structures which can be extracted from depth data.
We model the styrofoam head as an ellipsoid which we will use for a policy
parameterization based on spherical coordinates (Section 6.2.3). Our algorithm
aims to find the ellipsoid whose upper hemiellipsoid best fits the upper part
of the (hairless) head. We propose a point cloud based single-view approach
which is (i) independent of texture, shadows, and skin color; and (ii) designed
to be used in a realistic robotic setup including a single depth camera with a
downward diagonal viewing direction.
In general, an ellipsoid is defined through nine parameters: three for posi-
tion, three for orientation, and three for scaling. Throughout this chapter,
C = (Cx, Cy, Cz)

T denotes the ellipsoid center. The axes u, v, w of the ellip-
soid object (depicted as red, green, and blue lines in Figures 6.2 and 6.3) are
represented by unit vectors ~u, ~v, ~w and lengths a, b, c. The angles of rota-
tion w.r.t. an extrinsic coordinate system about the intrinsic axes are denoted
by α (about u), β (about v), and γ (about w) and applied in reverse order.
The difficulty with the single-view setup is that the point cloud of the head
is incomplete due to self-occlusion, so that there is no unique solution to the
ellipsoid fitting problem. We employ a cascade of heuristics to initialize an
ellipsoid whose parameters are then optimized to fit the point cloud.

Ellipsoid Initialization Using Landmark Structures and Head Proportions
One way to resolve head pose ambiguities is to detect landmark structures of
the face. However, there are often only two stable 3D features: the tip of the
nose and the symmetry plane through the nose. We make the assumption that
somewhat more than half of the face is visible to the depth camera. Then, we
can use the obtained 3D point cloud to detect both features. In order to do
so, we basically follow Spreeuwers’ approach [169].
First, we extract those points which belong to the head by detecting the biggest
connected region of points in a predefined area. As a second step, we create
a set of range images (Figure 6.1(a)) by projecting the reduced point cloud
to a vertical plane which is rotated in steps of one degree about the vertical
axis through the center of mass of the points. To find the symmetry plane,

133

6 Reducing the Problem Space for Policy Search

(a) (b) (c)

Figure 6.1: Detection of the symmetry plane of the face and the tip of the
nose using point cloud data. (a) Example range image. (b) Nose
template. (c) Optimal axis of symmetry (blue) and nose tip (red).

Pnose

Cu

w

a

c

(a)

C

Pnose

dvert

v

w

b

c

(b)

Figure 6.2: Head proportion heuristics used for initialization of the ellipsoid
model parameters. (a) Front view. (b) Side view.

134

6.2 An Exemplary Dressing Task: Putting On a Knit Cap

we calculate a symmetry measure for each rotation and each shift along the
horizontal axis of the range image (for details, refer to [169]). Then, for all
local minima of the symmetry measure, Normalized Cross Correlation based
nose template matching (Figure 6.1(b)) is performed along the vertical mirror
axis to find an optimal symmetry plane / nose tip pair (Figure 6.1(c)).
We are now able to initialize the model parameter tuple (Cx, Cy, Cz, α, β, γ,

a, b, c) using several heuristics. We set γ to the optimal rotation of the sym-
metry plane. It can be assumed that the styrofoam head is not tilted to the
side, i.e., there is no rotation β. To estimate the remaining orientation param-
eter α, we employ another technique from [169]. We fit a cylinder with a fixed
radius to the points within a defined region around the nose. To this end, we
vary both the shift of the cylinder along v and the rotation about u, and set α
to the rotation angle that minimizes the mean squared distance of the points
from the cylinder.
To obtain initial values for the position and scale parameters, we consider the
head proportion heuristics illustrated in Figure 6.2. We see that the head can
be modeled as an oblate spheroid, i.e., b = c. Let Pnose be the position of
the tip of the nose. We define a plane spanned by ~u and ~v and going through
Pnose. Then, we compute the distances of the head points above the nose tip
from that plane, define dvert to be a high percentile of the distances, and set
b = c = 3

4
dvert. The scale parameter a is set to a high percentile of all horizontal

distances of the head points from the symmetry plane, and the center of the
ellipsoid is initialized as follows:

C = Pnose − b~v +
1

3
c~w (6.4)

Parameter Optimization Through Point Cloud Fitting We must be careful
which parameters to optimize when fitting the ellipsoid model to a noisy and
incomplete point cloud. The back part of the head, for instance, is usually
not represented, so we rely on the heuristic estimates of the scale parameters b
and c, and only optimize a. As mentioned above, we assume that β = 0. The
rotation angle α is used to define the coordinate frame of the ellipsoid object,
but rotating about u does not change the shape of the oblate spheroid model.
Therefore, we can only improve γ. However, the tip of the nose should be on
the symmetry plane, so we optimize a rotation angle γ′ about an axis w′ with
direction ~w and going through Pnose instead. Moreover, we do not optimize
the global position C of the ellipsoid center, but two parameters Cv and Cw

representing translation along this new symmetry plane.
The parameter tuple (a, γ′, Cv, Cw) is optimized using Active-CMA-ES (Sec-
tion 6.1.2). As objective function, we use the mean squared distance of the

135

6 Reducing the Problem Space for Policy Search

(a) (b)

(c)

Figure 6.3: Ellipsoid model fitted to the noisy and incomplete point cloud of
a styrofoam head. The intrinsic coordinate frame is depicted as
red (u-axis of length a), green (v-axis of length b), and blue lines
(w-axis of length c). (a) Front view. (b) Side view. (c) Diagonal
back view.

136

6.2 An Exemplary Dressing Task: Putting On a Knit Cap

upper head points (those lying above the old uv-plane) from the ellipsoid. The
distances are computed iteratively using the algorithm from [170] because no
closed-form solution is known to the point-ellipsoid distance problem. Figure
6.3 shows the fitted ellipsoid.

Evaluation The experimental setup used for evaluating the ellipsoid fitting
method included a styrofoam head placed on a table and a Kinect depth camera
with a downward diagonal viewing angle of about 45◦ w.r.t. the tabletop.
This was intended to simulate the situation where a human sits on a chair
with the face roughly directed toward the robot. To test the performance of
our algorithm in multiple configurations, we randomly placed the head on the
tabletop at ten slightly different positions and horizontal orientations (within
a range of about ±10 cm and ±20◦ as measured from the vertical plane along
the viewing direction of the camera). In doing so, we varied the structure
and amount of self-occlusion of the head w.r.t. the depth camera. We were
interested (i) in how much these variations affected the repeatability (standard
deviation) of the estimation of the other model parameters (the rotation angle
α about u and the scale parameters), and (ii) in how well the model fitted the
visible and invisible parts of the upper head.
From visual inspection, we found that the model fitting was reasonable in
all trials. The standard deviation of α was 0.95◦. The repeatability of the
estimation of a (SD = 0.64 mm) was better than that of the other scale pa-
rameter b = c which had a standard deviation of 2.3 mm. Figure 6.4 shows
the evolution of the root mean squared distance (RMSD) of the visible upper
head points from the ellipsoid model, averaged over the ten trials. After 30
Active-CMA-ES generations, it has converged to a value of 2.61 mm (SD =
0.27 mm).
To investigate the accuracy of the model w.r.t. both the visible and invisible
parts of the head, we created a baseline mesh model of the styrofoam head
in advance employing a high-precision laser scanner1 (Figure 6.5). Then, we
used ICP [143] to align the mesh (including the wooden base) with the point
cloud and measured the distances of the upper head vertices from the ellipsoid
model. The RMSD averaged over the ten trials was 3.6 mm (SD = 0.75 mm).

6.2.2 Head-centric State Space

When defining the head-centric state space, we assume a certain garment pose
relative to the robot, but we do not model it explicitly. Specifically, the fingers
of both hands are assumed to grasp around the boundary of the fabric with

1We would like to thank Jascha Achenbach for creating the baseline mesh model.

137

6 Reducing the Problem Space for Policy Search

Figure 6.4: Root mean squared distance (RMSD) of the upper head points
from the ellipsoid model, averaged over ten trials. Each generation
comprises λ = 8 objective function evaluations.

(a) (b)

Figure 6.5: Baseline mesh model of the styrofoam head used in our experi-
ments. (a) Front view. (b) Side view.

138

6.2 An Exemplary Dressing Task: Putting On a Knit Cap

the thumbs pointing inside the knit cap. The robot has to infer strategies
to bring the garment into the desired configuration from interaction with the
environment. Therefore, the state space should (i) be restricted to only allow
robot poses which are safe for the robot arms and hands, the garment, and
the head; and (ii) allow fast learning, e.g., by keeping the dimensionality low.

Hand Positions We encode the end effector position (the contact point of the
thumb and the forefinger) in spherical coordinates (θ, φ,∆) w.r.t. the upper
hemiellipsoid of the head model. The polar coordinate θ specifies the angle
between −~v and the position vector of the end effector w.r.t. C. The azimuth
coordinate φ defines the angle between the position vector’s orthogonal projec-
tion on the uw-plane, and −~u or +~u (such that φ ≤ π

2
). To put it less formally,

the polar angle θ ∈ [0, π] runs from the back pole to the front pole of the el-
lipsoid, whereas the azimuth angle φ ∈ [0, π

2
] determines the ”meridian” on

which the end effector is located at a given θ. Both coordinates are stretched
according to the values of a, b, and c. The third coordinate ∆ represents the
distance of the finger tips from the ellipsoid model.
To obtain the cartesian coordinates Q of the end effector, we employ

Q = C ± (a+∆)sin(θ)cos(φ)~u

− (b+∆)cos(θ)~v

+ (c+∆)sin(θ)sin(φ)~w.

(6.5)

The± operator indicates the symmetry of the left and right hand w.r.t. the vw-
axis. Restricting the hand motions to be symmetric halves the dimensionality
of the state space. We enforce a minimum distance of 5 cm between the hands
to prevent collisions. Besides, we note that adding ∆ to the scale parameters
does not result in a strictly constant distance between Q and the ellipsoid
surface, but is a reasonable approximation if the values of a, b, and c do not
differ too much.

Hand Orientations The hand orientations are predefined for given positions
to ensure safe poses and motions. In robotic grasping, end effector orientations
are often specified by two unit vectors: an approach vector, and an orientation
vector (Section 4.3.1). Now, we follow a similar convention, replacing the
approach vector by a pull vector. The position Q, the orientation vector ~o, the
pull vector ~p, and the normal vector ~n = ~o × ~p form the intrinsic coordinate
frame of the hand (Figure 6.6).
A safe end effector orientation can be achieved by choosing the vectors ~o and
~p in such a way that they span a tangent plane to the head ellipsoid, with ~p

139

6 Reducing the Problem Space for Policy Search

o

p Q

Figure 6.6: Hand frames used during the knit cap dressing experiments.

being oriented along the ”meridian” through Q (one of the lines running from
the back pole to the front pole). This ensures that (i) the robot hands do not
collide with the head (as the palms are roughly tangential to the head), and (ii)
when moving the hands from the back to the front of the head, the fingers do
not get caught in the fabric, but, in case of too much external resistance, the
cap slips out between the thumb and the forefinger in a controlled (orthogonal)
way.
The described hand orientations correspond to the following normalized gra-
dients:

~o = − ∇φQ

|∇φQ| =
[

± (a+∆)sin(θ)sin(φ)~u

− (c+∆)sin(θ)cos(φ)~w
]/

|∇φQ|
(6.6)

~p =
∇θQ

|∇θQ| =
[

± (a+∆)cos(θ)cos(φ)~u

+ (b+∆)sin(θ)~v

+ (c+∆)cos(θ)sin(φ)~w
]/

|∇θQ|

(6.7)

The vectors ~o and ~p can be made perfectly orthogonal by rotating them in
opposite directions about ~n. In practice, the elbows or other parts of the robot
arms would in some cases exceed the workspace limits to reach the proposed
end effector poses. Therefore, we have to partly give up the conditions on the
hand orientations. In the back part of the head, we limit the upward angle
of the pull vector, but try to keep it on the tangent plane to avoid robot-
head collisions. In the front part (where robot-head collisions are not a major
issue), the downward angle of the pull vector is limited in such a way that the
orientation vector remains essentially unchanged. Moreover, we restrict the
horizontal angle between the forearms. The details of the constraint handling
procedure are however out of the scope of this thesis.

140

6.3 Policy Search in the Example Task

Very low values of ∆ involve the risk of collisions with the head, whereas too
high values might lead to excessive stretching of the fabric. Therefore, we can
further reduce the dimensionality by assuming a fixed distance ∆ = 1 cm of
the finger tips from the head model.

6.2.3 Policy Parameterization

While the behavior policies during CMA-ES based learning are stochastically
sampled from a multivariate normal distribution, we consider a deterministic
target policy to be optimized. Hence, the policy parameters should uniquely
specify for each state of the robot hands (relative to the head ellipsoid) how to
proceed. We predefine a suitable initial configuration (both hands positioned
at the back of the head and grasping the knit cap) and target pose (both
hands at the front of the head). Then, policy search reduces to finding a
parameterized end effector trajectory from the back pole to the front pole of
the ellipsoid in the (θ, φ) space. We disregard paths from the front to the back
of the head in the present work.
We parameterize the trajectories as B-splines which have been used success-
fully in robotics (e.g., [171]). Specifically, we use non-periodic uniform B-
Splines B(t) of degree 3 which are fully specified by N ≥ 4 control points
that determine the shape of the path. Other authors have used policy param-
eterizations which do not directly depend on a parameter t (such as Dynamic
Movement Primitives [172]). However, using B-splines, it is easy to exploit the
prior knowledge that the end effector should move continuously from the back
to the front of the head, by making the spline a function of the polar angle θ

instead of t. Thus, B(θ) expresses the behavior of the azimuth angle φ w.r.t.
the running parameter θ. The number of control points N (which equals the
dimensionality n of the policy parameter vector because the control points are
one-dimensional) is the only hyperparameter of this parameterization.

6.3 Policy Search in the Example Task

After specifying the policy space, two challenges remain: (i) defining a task-
specific objective function and (ii) finding suitable hyperparameters for learn-
ing. Designing the objective function is challenging as it is not obvious how the
distance from a successful reference outcome can be defined. This is because
failures to properly finish the execution of a planned trajectory may be frequent
in the early stages of learning. The robot could try to maximize the distance
covered along the path before failing. This would however favor strategies that
avoid garment-head contact completely. Therefore, we use an objective func-

141

6 Reducing the Problem Space for Policy Search

tion that enables the robot to learn a trade-off between establishing contact
and minimizing the risk of early failure. To support hyperparameter search
and a structured analysis of the optimization process without the need for
time-consuming real-world samples, we use a toy problem that mirrors some
of the task constraints. Finally, we present and discuss the results of our
robot’s attempt to find an optimal policy for the task of putting a knit cap on
a styrofoam head.

6.3.1 Objective Function

The objective function quantifies the performance feedback the robot gets after
each episode (trajectory execution). For our example task, we suggest the
objective function below. The robot receives a fixed reward rsuccess for putting
on the knit cap successfully. In the other cases, the objective function aims
to support the robot in finding a trade-off between minimizing the risk of
early failure, and establishing contact between the fabric and the head. This
is expressed as a linear combination of two variables: the polar angle θfail
at which the robot fails (the knit cap slips out between the thumb and the
forefinger), and the average azimuth φmean along the path. From evolutionary
computation, we adopt the convention that the objective function is called f

(rather than J) and is to be minimized.

f(P1, ..., PN) =

{

−rsuccess, if successful

fshaped(P1, ..., PN), otherwise
(6.8)

with

fshaped(P1, ..., PN) = ccontactφmean − (1− ccontact)θfail (6.9)

where P1, ..., PN denote the control points of the B-spline policy parameteri-
zation.
The rationale behind the shaped objective function is as follows: The further
down the robot hands go (i.e., the lower the azimuth angle φ is) when moving
around the head, the more contact is established between the fabric of the cap
and the head. This is a very rough heuristic contact estimate and could of
course be replaced by a more sophisticated force-based measure. If φmean is
very low, the first term becomes minimal, but the robot is likely to fail early. If
φ is constantly high, the knit cap will probably drop down only when releasing
it at the end of the trajectory. In this case, the second term is minimized, but
the policy is outperformed by every other policy with the same outcome and a
slightly lower path. The coefficient ccontact is a hyperparameter which controls
the relative importance of the objectives.

142

6.3 Policy Search in the Example Task

a
z
im

u
th

 ϕ
 i
n
 [

ra
d
]

polar angle θ in [rad]

θfail θfail

Figure 6.7: Toy problem used for hyperparameter search. The regions of suc-
cessful policies and early failure are depicted in green and red,
respectively. The example paths depicted as colored lines repre-
sent success (blue), early failure (pink), and failure at the end of
the trajectory (orange).

6.3.2 A Toy Problem for Structuring Hyperparameter
Search

Experiments with a robot are time-consuming and may lead to material wearout.
Therefore, it is desirable to reduce the amount of real-world interaction needed
for learning a task. Simulation can be useful, but tends to be overly complex,
in particular in the absence of an accurate model of the involved materials. In
our example, the exact physical properties of the garment, the head, and the
fingertips of the robot are unknown. This is one of the reasons why we rely
on real-world samples during the actual learning phase. However, hyperpa-
rameter search and an analysis of the problem structure (e.g., the influence of
delayed feedback) require a particularly large number of samples. Therefore,
they are performed in a simplified problem that shares some properties with
the real problem but avoids costly objective function evaluations in a physical
environment.

143

6 Reducing the Problem Space for Policy Search

Problem Definition and Characteristics We have designed a toy problem
analogous to the real task, i.e., a problem with the same policy parameter-
ization, identical parameter dimensionality and range, as well as a similarly
structured objective function. The exact shape of the landscape of f in the
real world is of course not known, but it is reasonable to assume a certain
topology: There is a tube-shaped area (the green region in Figure 6.7) in the
(θ, φ) space which contains the successful policies (e.g., the path depicted in
blue). Below that area, there is another area (depicted in red) that causes
immediate failure when entered by a path (e.g., by the pink one). This rep-
resents the case when the knit cap slips out between the fingers because of
too much contact between the cap and the head. All other policies (e.g., the
path depicted in orange) fail when releasing the knit cap at the end of the
trajectory because the established contact is not sufficient. We believe that
the convergence behavior of the optimizer is largely determined by the overall
structure of f , whereas the exact geometry plays a minor part. Hence, we
are optimistic that hyperparameters found in the toy problem are also a good
choice for the real-world problem. To be more realistic, we add a stochastic
delay to θfail using Gaussian noise. This accounts for delayed sensor or user
feedback, and the fact that failures are often caused by suboptimal behavior
at an earlier stage of the trajectory.

Hyperparameter Search The toy problem was repeatedly solved to find suit-
able hyperparameters for the real dressing task, and to analyze the effect of
delayed feedback on the optimization algorithm. The considered parameters
were: N (the number of control points in the B-spline policy parameteriza-
tion), ccontact (the weighting coefficient of the objective function), σ0 (the initial
step size used by the Active-CMA-ES optimizer), k (the free parameter of the
surrogate model), and the number of surrogate function evaluations per gen-
eration (if any). We did not perform an automated hyperparameter search
because (i) the performance criterion was not clear (speed of learning, proba-
bility of convergence, or something else), and (ii) there was a risk of overfitting
the hyperparameters to the simplified toy problem.

Instead, we performed a manual search and varied one parameter after the
other to illustrate and discuss the choices made. We set rsuccess = 10 and
conducted 1000 sessions (i.e., learning cycles from initialization until conver-
gence) per hyperparameter variation. At each session, the stopping criterion
for the optimizer was whether the current optimal policy was within the de-
fined success area (green in Figure 6.7). In Figure 6.8, we show the amount of
successfully finished sessions after a given number of episodes. We introduced

144

6.3 Policy Search in the Example Task

––– N=4

––– N=6

––– N=8

#episodes

#
s
u
c
c
e
s
s
fu

l
s
e
s
s
io

n
s

(a)

––– ccontact=0.1

––– ccontact=0.5

––– ccontact=0.8

#episodes

#
s
u
c
c
e
s
s
fu

l
s
e
s
s
io

n
s

(b)

––– σ0=π/16

––– σ0=π/8

––– σ0=π/4

#episodes

#
s
u
c
c
e
s
s
fu

l
s
e
s
s
io

n
s

(c)

––– no preselection

––– preselection

––– 33% surrogate evaluations

––– 66% surrogate evaluations

#episodes

#
s
u
c
c
e
s
s
fu

l
s
e
s
s
io

n
s

(d)

––– k=1

––– k=2

––– k=3

––– k=5

––– k=7

#episodes

#
s
u
c
c
e
s
s
fu

l
s
e
s
s
io

n
s

(e)

––– no delay

––– σdelay=π/4

––– σdelay=π/2

#episodes

#
s
u
c
c
e
s
s
fu

l
s
e
s
s
io

n
s

(f)

Figure 6.8: Amount of successful learning sessions after a given number
of episodes under several hyperparameter variations in the toy
problem.

145

6 Reducing the Problem Space for Policy Search

a limit assuming that sessions which were not solved after 300 episodes had
erroneously converged to a local minimum.

The choice of N heavily influenced the speed of convergence. Learning in
low-dimensional policy spaces was fast, but also prone to premature conver-
gence (Figure 6.8(a)). Besides, the B-spline trajectory parameterization can
only represent N − 2 changes of direction, so the number of control points re-
quired to specify successful policies in the real world is not known in advance.
Choosing N = 6 was considered a reasonable trade-off. We set ccontact = 0.1,
but interestingly, the parameter had little influence on the convergence be-
havior, as long as ccontact ≤ 0.5 (Figure 6.8(b)). As can be seen from Figure
6.8(c), the optimizer was very robust regarding σ0. We set σ0 = π

8
. Fig-

ure 6.8(d) shows that using the surrogate model for preselection (λpre = 60)
greatly speeded up learning. Replacing real objective function evaluations by
surrogate evaluations drastically increased the risk of premature convergence
to a local minimum, so we decided for a pure preselection strategy. The choice
of k in the k-nearest-neighbor regression model played a minor part, but local
models (e.g., k = 2) performed slightly better (Figure 6.8(e)). Our method
was robust to moderate Gaussion delay (σdelay ≤ π

4
) added to θfail (Figure

6.8(f)).

6.3.3 Learning in the Real World

In the following, we report on the experiments we conducted with the real
robot. First, we describe the experimental setup used for learning the example
task. While in the toy problem, no physical objects were involved, i.e., the
spherical coordinates were almost semantics-free, they now have the meaning
given to them by the ellipsoid model and the head-centric policy space. A
qualitative result of the experiment is that the carefully designed policy space
is indeed capable of ensuring safety for the involved objects. In particular,
the knit cap was not overstretched, there were no collisions between the hands
and the styrofoam head, and no tendons broke in the robot fingers. The
quantitative results are given below.

Experimental Procedure The robot setup in the exemplary dressing ex-
periment consisted of two arms with attached anthropomorphic hands and a
Kinect depth camera, as described in Section 1.2. Before each episode, the
human experimenter placed the knit cap between the thumbs and the forefin-
gers of the robot in such a way that the fabric covered the first two phalanges
of the thumbs (Figure 6.9(a)). This step could be automated in the future
using methods similar to those described in Chapter 4. The robot closed the

146

6.3 Policy Search in the Example Task

(a) (b)

(c)

Figure 6.9: Configurations of the three entities involved in the example task of
putting a knit cap on a styrofoam head: a robot, a garment, and a
head. (a) The fingers of the anthropomorphic robot hands grasping
around the boundary of the fabric with the thumbs pointing inside
the knit cap. (b) Starting pose of the dressing trajectory. (c) The
robot executing the trajectory.

147

6 Reducing the Problem Space for Policy Search

(a) (b) (c)

Figure 6.10: End effector trajectories for the task of putting a knit cap on a
styrofoam head. (a) Example of a path which induces too much
object-head contact. (b) Example of a path which avoids object-
head contact. (c) Optimized path.

hands and moved to the starting pose at the back of the styrofoam head (Fig-
ure 6.9(b)). The CMA-ES based learning algorithm provided the parameters
to be explored next, and the robot started to execute the corresponding tra-
jectory (Figure 6.9(c)). The tendons in the fingers followed a predefined force
profile protecting them against wearout [3], but no forces were applied to coun-
teract slippage of the fabric. If the knit cap slipped out of the robot’s hands,
the experimenter immediately pressed a button to stop the execution. After
each episode, the experimenter decided whether it was a failed, successful (the
cap was placed firmly on the head; rsuccess = 10), or perfect run (the cap was
placed firmly on the head, and the edge of the cap was not folded inward;
rsuccess = 20).

Results As expected, two types of failure occurred during learning: (i) There
was too much contact between the fabric of the cap and the head because the
hands went too low (e.g., Figure 6.10(a)), and the knit cap slipped out between
the thumb and the forefinger. (ii) The robot was not able to establish enough
object-head contact because the path was too high (e.g., Figure 6.10(b)).

Figure 6.11 shows the average reward (−f) the robot gained per generation.
Learning was stopped when more than half of the episodes of one generation
were successful or perfect. The objective function does not represent the dif-
ferent forms of deformation which occur in this region of the policy space.
Therefore, adding more iterations would not help the robot learn to reliably
prevent the fabric from folding inward.

After eight generations (72 episodes), the robot has learned the trade-off vi-
sualized in Figure 6.10(c). To evaluate the result, we conducted ten trials in
which the robot followed the optimized policy. In half of the trials, the knit

148

6.4 Discussion

1 2 3 4 5 6 7 8
generation

0

2

4

6

8

10

12
av

er
ag

e
re
w
ar
d

Figure 6.11: Average reward (−f) gained per generation. Each generation
comprises λ = 9 trajectory executions.

cap was perfectly placed on the head (Figure 6.12(a)), whereas in the other
trials, parts of the edge were folded inward (Figure 6.12(b)).

A shortcoming of our method is the fact that the robot tends to pull the knit
cap too far over the face of the styrofoam head. To show that this is not a major
limitation, we have implemented a heuristic to uncover the eyes subsequently
(Figure 6.12(c)): The robot grasps the knit cap at the highest intersection
point between the fabric and the symmetry plane of the face, and pulls it
backward along a line whose angle and length have been derived empirically.

6.4 Discussion

In this chapter, we have shown that reinforcement learning in a reduced, task-
centric policy space allowed our robot to find successful trajectories for an
exemplary but simplified dressing task. Although we did not model the con-
figuration of the garment explicitly, the robot learned to put a knit cap on a
styrofoam head. This can be considered an application of the interaction prim-
itive of pulling over. There are several similarly structured problems both in
robot-assisted dressing (e.g., learning to put on socks) and in related domains
(e.g., in the task of covering a pillow).

149

6 Reducing the Problem Space for Policy Search

(a) (b)

(c)

Figure 6.12: Possible configurations of the knit cap after an optimal policy
rollout. (a) A perfect run. The cap was placed firmly on the
styrofoam head. (b) A successful run. The cap was placed firmly
on the head, but the edge was folded inward. (c) Configuration
after a finalizing robot motion to uncover the eyes.

150

6.4 Discussion

Since the general dressing assistance problem is still far from being solved, we
have considered a constrained subproblem. As a consequence, our method has
a number of limitations. Applying the technique to real humans would pose
additional challenges such as handling heads with hair, motion tracking, and
robot compliance. We were able to reduce the complexity of the problem to a
tractable level, but the suggested learning approach might miss some possibly
successful policies because we assume a certain grasp pose and limit the search
space to paths between two fixed poles. We used a problem-specific heuristic
for estimating areas of contact, and it is an open question if objective functions
with similar trade-off structures can be found for other dressing tasks.
Thus far, our method does not generalize over caps or heads. However, we
believe that spherical coordinates facilitate the design of algorithms with such
generalization properties because they scale with the head model. For example,
the robot could try to learn how a baseline trajectory must be transformed
depending on the ellipsoid parameters and the size and deformability of the
knit cap opening. In general, the question is how the extreme strategy of not
modeling the garment at all can be softened to improve the performance of
the algorithm and its ability to generalize. This could be done on the level of
the objective function (e.g., by penalizing undesired folds or deviations from a
baseline configuration of the garment) or on the state representation level (by
including partial observations of how the garment deforms).

151

7 Conclusion

The use of clothing to cover the human body is common to all cultures world-
wide. Consequently, handling garments is one of the most important everyday
tasks. It is therefore not surprising that a wide variety of ideas of how technol-
ogy could be useful for dealing with clothes exist in films as well as in popular
and scientific literature. It has been suggested that small computing devices
and motors could be integrated into the clothing material or that machines
specialized in garment handling should be developed. Contrary to such ap-
proaches, we have shown in the present thesis that essential parts of the clothes
perception and manipulation problem can be solved by an anthropomorphic
robot in a bimanual interaction scenario. In the tasks considered, interac-
tion occurs between various entities. Clothes interact with the robot hands, a
support surface, body parts to be dressed, and other objects. Therefore, an
important distinguishing feature of our work is the way these interactions are
represented topologically, geometrically, and functionally. In this concluding
chapter, we summarize the main results of the thesis (Section 7.1) and discuss
possible directions for future research (Section 7.2).

7.1 Summary

To organize our thoughts, in Section 1.1, we raised six fundamental research
questions related to handling clothes. After analyzing and decomposing the
problem as well as developing and evaluating potential solutions using a bi-
manual robot, we are now able to provide informed answers which we formulate
as six lessons learned in the course of the project:

Consider the role of garment openings and contact relations.
To identify the similarities and dissimilarities between different tasks, we
have developed a taxonomy of interaction primitives with clothes. We
found that contact relation changes and the role of garment openings are
reasonable categorization criteria. While there is a comparatively large
body of research on garment manipulation tasks such as folding and
unfolding, in our experiments, we focused on interactions that involve
openings and have an effect on the contact relation between a piece of

153

7 Conclusion

clothing and the robot hands (in particular, grasping around the bound-
ary of an opening) or another object (hanging up a garment, pulling over,
putting sth. in, and sliding sth. through). Identifying garment openings
and contact relations has also played an important part in our robot vi-
sion algorithms. We have presented two methods for detecting openings
as well as a model for tracking. Moreover, we have shown that contact
between a garment and a robot hand can be inferred indirectly from the
configuration and size of the garment opening during grasping, and that
the amount of contact created between the cap and the head is a good
performance measure for the task of putting on a knit cap.

Make assumptions, but do not over-constrain.
The extreme deformability of most garments results in high-dimensional
configuration spaces and very complex dynamics during manipulation
and interaction with other objects. We were able to simplify many of the
problems considered in this thesis by introducing some assumptions into
our models. For example, we presupposed a garment lying spread out
on a support surface in our polygon-based detection approach. While,
depending on the scenario, this can be a reasonable assumption, we also
tested the performance of the method in situations in which the condi-
tion was not satisfied, yielding limited results. In our Active Boundary
Component Models (ABCMs) for tracking garment openings, the model
assumptions have been formalized through position-based constraints.
Again, we observed good performance only as long as the assumptions
were generally met. We conclude that constraints are often necessary
but have to be carefully considered.

Vision is not enough.
In our problem analysis, we identified two key challenges of perception in
the clothing domain, namely to estimate the configuration of individual
garments and to detect spatial relations between different objects. In our
experiments, we focused on RGB-D vision and were able to show that
this is sometimes sufficient for solving these two problems. However, we
also demonstrated that robotic interaction is often required to render
visual perception of relevant structures possible (interactive perception).
For example, we suggested that a garment should be lifted from the
support surface first to make the openings visible. Besides, it has become
clear that robust occlusion handling during garment tracking and more
accurate contact estimation in robot-assisted dressing are hardly possible
without integrating additional sensory modalities into our models.

154

7.1 Summary

Spatial representations should combine concepts from topology and geometry.
In recent years, a few researchers have used concepts from topology to
develop qualitative object and task representations for robots. We be-
lieve that such representations are particularly meaningful in interaction
with clothes because the topological invariants are just those properties
that remain unchanged under the most typical garment deformations and
hence correlate strongly with the affordances of clothing. Therefore, we
conducted a detailed topological analysis of clothes, revealing that the
openings (more formally, the boundary components) and their intercon-
nections (represented as skeletons) characterize garments not only func-
tionally but also topologically. The applicability of topological invariants
alone is limited, but the boundary component and skeleton models that
have been based on this analysis proved to be useful in interaction tasks
with clothes when they were combined with geometric concepts such as
position, length, convexity, smoothness, planarity, and entanglement.

State and action representations do not have to be task-agnostic.
One of the basic motivations behind our work has been the idea that one
day anthropomorphic general purpose robots might assist humans in var-
ious everyday situations. Many roboticists would probably associate this
with another related idea, namely that of general purpose artificial intel-
ligence. However, it is also possible that future robots use standardized
hardware but still maintain different representations for different tasks.
As far as interaction with clothes is concerned, we have presented some
arguments for using task-centric state and action representations rather
than working with raw sensory data and low-level motor commands.
Our experimental results suggest that such representations allow robots
to solve complex problems including tasks from the dressing assistance
domain.

Use as much prior knowledge as available, learn as much as necessary.
In several experiments, we demonstrated how domain knowledge about
clothing can be exploited by a robot. To this end, we integrated different
types of prior knowledge into our models and algorithms. Topological
prior knowledge includes the number of openings associated with a given
type of clothing as well as the fact that most (but not all) garments can
be considered as consisting of a single piece of fabric and hence are aptly
represented as connected manifolds. Geometric prior knowledge has been
provided, e.g., in the form of constraint functions or in the form of polyg-
onal templates representing prototypical shapes of spread-out garments.
The point cloud filter we have developed makes use of semantic knowl-

155

7 Conclusion

edge about task-relevant and irrelevant objects in the scene. Moreover,
functional prior knowledge about the inherent purpose of garments has
played an important role in the specification of the dressing task. In
general, we think that explicit knowledge should be used if available,
but learning is necessary to acquire contact-rich interaction skills such
as pulling a garment tightly over another object.

7.2 Recommendations for Future Research

There are various possible directions for follow-up research to the work pre-
sented in this thesis. One interesting direction would be to consider robotic
interactions with clothes in which our current assumptions do not hold. Thus
far, we have only regarded topology-preserving interaction primitives, but in
many everyday situations, it is necessary to change the topology of a garment
by opening or closing it (e.g., using a zipper or buttons). Turning a piece of
clothing inside out is another useful skill that is not readily expressible using
our models because they assume that the orientation of the garment does not
change during manipulation so that there is no need to maintain a represen-
tation of the inner surface (which in this case would be folded outward).

In large parts of this thesis, we limited ourselves to algorithms for robot vision,
but we think that, in future work, different sensory modalities should be inte-
grated. For example, tactile sensors in the fingertips could be used to deal with
visual occlusion during detection and tracking of garment openings. To avoid
distorting physical contact, short-range distance sensors might be employed
instead. Moreover, proprioception could serve as a prior during tracking since
a point on the garment surface close to where the robot holds the garment will
also be close to the grasping point after moving the arm. Force/torque sensing
while pulling at an opening could be used to infer the stretchability of the
material and/or the size of the opening. To obtain a better contact estimate
between the garment and a body part to be dressed, direct pressure measure-
ment, e.g., in the styrofoam head during knit cap dressing, is a possibility in
artificial learning scenarios in the lab. By contrast, indirect force measurement
at the robot’s end effector is more practical in real-world applications.

To move from lab studies to field studies, it is also necessary to consider human
factors such as reactive movements during robot-assisted dressing. Further-
more, humans might act as teachers providing expert knowledge and giving
feedback, or as cooperators in everyday tasks such as doing the laundry. In
this context, efficient task allocation and communication about clothing are
relevant research topics.

156

7.2 Recommendations for Future Research

Another open question is how different levels of abstraction can be optimally
combined in robotic representations of garments and their interactions with
other objects. As far as spatial representations are concerned, there are pre-
sumably many different ways of how high-level topological models can be built
up from low-level geometric features. Concerning task representations, we be-
lieve that a lot of research is still needed before machine learning methods can
be used out of the box for acquiring complex interaction skills with clothes
from raw data. However, present-day deep learning architectures are suit-
able for recognition and other subtasks for which much data is available. It
is a long-term research question how such neural networks can be organized
hierarchically to make high-level skill learning possible.
We think that some of our ideas can be transferred from the clothing domain
to other application areas. The perception and grasping methods could be
adapted to similar deformable objects with openings such as bags or pillow-
cases. Besides, the algorithmic contributions from Chapter 6 (point cloud
based head pose and scale estimation as well as k-nearest-neighbor enhanced
CMA-ES optimization) might be useful for other tasks. Furthermore, in the
knit cap dressing task, the amount of contact between two objects was maxi-
mized, but at the same time, the risk of failing immediately (slipping off) had
to be minimized. We ask how objective functions can be designed for similarly
structured tasks from other domains. Finally, from a basic research perspec-
tive, it would be interesting to further investigate the relationship between
topology and affordances. In particular, it is an open question whether the
concept of interactive perception of topological properties is applicable to a
broader range of everyday objects.

157

Bibliography

[1] T.-H.-L. Le, M. Jilich, A. Landini, M. Zoppi, D. Zlatanov, and
R. Molfino, “On the development of a specialized flexible gripper for gar-
ment handling,” Journal of automation and control engineering, vol. 1,
no. 3, pp. 255–259, 2013.

[2] E. Simo-Serra, F. Moreno-Noguer, and A. Perez-Gracia, “Design of non-
anthropomorphic robotic hands for anthropomorphic tasks,” in ASME
International Design Engineering Technical Conferences & Computers
and Information in Engineering Conference, 2011, pp. 377–386.

[3] G. Walck, R. Haschke, M. Meier, and H. Ritter, “Robot self-protection by
virtual actuator fatigue: Application to tendon-driven dexterous hands
during grasping,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2017, pp. 2200–2205.

[4] L. Twardon and H. Ritter, “Interaction skills for a coat-check robot:
identifying and handling the boundary components of clothes,” in IEEE
International Conference on Robotics and Automation, 2015, pp. 3682–
3688.

[5] ——, “Active boundary component models for robotic dressing assis-
tance,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2016, pp. 2811–2818.

[6] ——, “Learning to put on a knit cap in a head-centric policy space,”
IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 764–771, 2018.

[7] A. Newell and H. A. Simon, “Human problem solving: The state of the
theory in 1970,” American Psychologist, vol. 26, no. 2, pp. 145–159, 1971.

[8] J. J. Gibson, The Ecological Approach to Visual Perception. Houghton
Mifflin Harcourt, 1979.

[9] W. W. Gaver, “Technology affordances,” in SIGCHI Conference on Hu-
man Factors in Computing Systems, 1991, pp. 79–84.

[10] M. A. Armstrong, Basic Topology. Springer, 1983.

159

Bibliography

[11] J. L. Gross and T. W. Tucker, Topological graph theory. Wiley-
Interscience, 1987.

[12] D. Katz and O. Brock, “Manipulating articulated objects with inter-
active perception,” in IEEE International Conference on Robotics and
Automation, 2008, pp. 272–277.

[13] J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal, and
G. S. Sukhatme, “Interactive perception: Leveraging action in percep-
tion and perception in action,” IEEE Transactions on Robotics, vol. 33,
no. 6, pp. 1273–1291, 2017.

[14] J. Piaget and B. Inhelder, La représentation de l’espace chez l’enfant.
Presses universitaires de France, 1977.

[15] I. Darke, “A review of research related to the topological primacy thesis,”
Educational Studies in Mathematics, vol. 13, no. 2, pp. 119–142, 1982.

[16] W. Schipper, “The topological primacy thesis: Genetic and didactic as-
pects,” Educational Studies in Mathematics, vol. 14, no. 3, pp. 285–296,
1983.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[18] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with large-scale data collection,”
in 2016 International Symposium on Experimental Robotics, 2017, pp.
173–184.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” in NIPS Deep Learning Workshop, 2013.

[20] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
nature, vol. 529, no. 7587, pp. 484–489, 2016.

160

Bibliography

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Im-
agenet large scale visual recognition challenge,” International Journal of
Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[22] G. Marcus, “Deep learning: A critical appraisal,” arXiv:1801.00631
[cs.AI], 2018.

[23] R. Bajcsy, “Active perception,” Proceedings of the IEEE, vol. 76, no. 8,
pp. 996–1005, 1988.

[24] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: part 1,” IEEE Robotics & Automation Magazine, vol. 13, no. 2,
pp. 99–110, 2006.

[25] S. Chen, Y. Li, and N. M. Kwok, “Active vision in robotic systems: A
survey of recent developments,” International Journal of Robotics Re-
search, vol. 30, no. 11, pp. 1343–1377, 2011.

[26] P. Hebert, T. Howard, N. Hudson, J. Ma, and J. W. Burdick, “The
next best touch for model-based localization,” in IEEE International
Conference on Robotics and Automation, 2013, pp. 99–106.

[27] V. Chu, I. McMahon, L. Riano, C. G. McDonald, Q. He, J. M. Perez-
Tejada, M. Arrigo, T. Darrell, and K. J. Kuchenbecker, “Robotic learn-
ing of haptic adjectives through physical interaction,” Robotics and Au-
tonomous Systems, vol. 63, no. 3, pp. 279–292, 2015.

[28] D. Xu, G. E. Loeb, and J. A. Fishel, “Tactile identification of objects us-
ing bayesian exploration,” in IEEE International Conference on Robotics
and Automation, 2013, pp. 3056–3061.

[29] Q. Li, R. Haschke, and H. Ritter, “Learning a tool’s homogeneous
transformation by tactile-based interaction,” in IEEE-RAS International
Conference on Humanoid Robots, 2016, pp. 416–421.

[30] M. Meier, G. Walck, R. Haschke, and H. Ritter, “Distinguishing slid-
ing from slipping during object pushing,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2016, pp. 5579–5584.

[31] A. Vásquez, Z. Kappassov, and V. Perdereau, “In-hand object shape
identification using invariant proprioceptive signatures,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2016, pp.
965–970.

161

Bibliography

[32] R. M. Mart́ın and O. Brock, “Online interactive perception of articulated
objects with multi-level recursive estimation based on task-specific pri-
ors,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2014, pp. 2494–2501.

[33] J. Sturm, C. Stachniss, and W. Burgard, “A probabilistic framework for
learning kinematic models of articulated objects,” Journal of Artificial
Intelligence Research, vol. 41, pp. 477–526, 2011.

[34] K. Hausman, S. Niekum, S. Osentoski, and G. S. Sukhatme, “Active
articulation model estimation through interactive perception,” in IEEE
International Conference on Robotics and Automation, 2015, pp. 3305–
3312.

[35] C. J. Tsikos and R. K. Bajcsy, “Segmentation via manipulation,” IEEE
Transactions on Robotics and Automation, vol. 7, no. 3, pp. 306–319,
1991.

[36] J. Kenney, T. Buckley, and O. Brock, “Interactive segmentation for ma-
nipulation in unstructured environments,” in IEEE International Con-
ference on Robotics and Automation, 2009, pp. 1377–1382.

[37] D. Schiebener, A. Ude, and T. Asfour, “Physical interaction for segmen-
tation of unknown textured and non-textured rigid objects,” in IEEE
International Conference on Robotics and Automation, 2014, pp. 4959–
4966.

[38] B. Willimon, S. Birchfield, and I. Walker, “Rigid and non-rigid classi-
fication using interactive perception,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2010, pp. 1728–1733.

[39] A. Ude, D. Omrčen, and G. Cheng, “Making object learning and recog-
nition an active process,” International Journal of Humanoid Robotics,
vol. 5, no. 2, pp. 267–286, 2008.

[40] N. Lyubova, S. Ivaldi, and D. Filliat, “From passive to interactive ob-
ject learning and recognition through self-identification on a humanoid
robot,” Autonomous Robots, vol. 40, no. 1, pp. 33–57, 2016.

[41] M. Krainin, B. Curless, and D. Fox, “Autonomous generation of complete
3d object models using next best view manipulation planning,” in IEEE
International Conference on Robotics and Automation, 2011, pp. 5031–
5037.

162

Bibliography

[42] A. Tsuda, Y. Kakiuchi, S. Nozawa, R. Ueda, K. Okada, and M. Inaba,
“On-line next best grasp selection for in-hand object 3d modeling with
dual-arm coordination,” in IEEE International Conference on Robotics
and Automation, 2012, pp. 1799–1804.

[43] L. Sun, S. Rogers, G. Aragon-Camarasa, and J. P. Siebert, “Recog-
nising the clothing categories from free-configuration using gaussian-
process-based interactive perception,” in IEEE International Conference
on Robotics and Automation, 2016, pp. 2464–2470.

[44] B. Willimon, S. Birchfield, and I. Walker, “Classification of clothing using
interactive perception,” in IEEE International Conference on Robotics
and Automation, 2011, pp. 1862–1868.

[45] B. Willimon, I. Walker, and S. Birchfield, “A new approach to clothing
classification using mid-level layers,” in IEEE International Conference
on Robotics and Automation, 2013, pp. 4271–4278.

[46] B. Willimon, S. Birchfield, and I. Walker, “Model for unfolding laundry
using interactive perception,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2011, pp. 4871–4876.

[47] E. Şahin, M. Çakmak, M. R. Doğar, E. Uğur, and G. Üçoluk, “To afford
or not to afford: A new formalization of affordances towards affordance-
based robot control,” Adaptive Behavior, vol. 15, no. 4, pp. 447–472,
2007.

[48] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann,
“Object-action complexes: Grounded abstractions of sensorimotor pro-
cesses,” Robotics and Autonomous Systems, vol. 59, no. 10, pp. 740–757,
2011.

[49] E. S. Ho and T. Komura, “Character motion synthesis by topology coor-
dinates,” Computer Graphics Forum, vol. 28, no. 2, pp. 299–308, 2009.

[50] F. T. Pokorny, J. A. Stork, and D. Kragic, “Grasping objects with holes:
A topological approach,” in IEEE International Conference on Robotics
and Automation, 2013, pp. 1100–1107.

[51] T. K. Dey, J. Sun, and Y. Wang, “Approximating loops in a shortest
homology basis from point data,” in Twenty-sixth annual symposium on
Computational geometry, 2010, pp. 166–175.

163

Bibliography

[52] J. A. Stork, F. T. Pokorny, and D. Kragic, “A topology-based object
representation for clasping, latching and hooking,” in IEEE-RAS Inter-
national Conference on Humanoid Robots, 2013, pp. 138–145.

[53] D. Zarubin, F. T. Pokorny, D. Song, M. Toussaint, and D. Kragic, “Topo-
logical synergies for grasp transfer,” in Hand Synergies - How to Tame
the Complexity of Grapsing, Workshop, IEEE International Conference
on Robotics and Automation, 2013.

[54] F. T. Pokorny, M. Hawasly, and S. Ramamoorthy, “Multiscale topo-
logical trajectory classification with persistent homology,” in Robotics:
Science and Systems, 2014.

[55] W. J. Beksi and N. Papanikolopoulos, “Signature of topologically per-
sistent points for 3d point cloud description,” in IEEE International
Conference on Robotics and Automation, 2018, pp. 3229–3234.

[56] E. S. Ho, T. Komura, S. Ramamoorthy, and S. Vijayakumar, “Control-
ling humanoid robots in topology coordinates,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2010, pp. 178–182.

[57] D. Zarubin, V. Ivan, M. Toussaint, T. Komura, and S. Vijayakumar, “Hi-
erarchical motion planning in topological representations,” in Robotics:
Science and Systems, 2012.

[58] P. Vinayavekhin, S. Kudoh, and K. Ikeuchi, “Towards an automatic
robot regrasping movement based on human demonstration using tangle
topology,” in IEEE International Conference on Robotics and Automa-
tion, 2011, pp. 3332–3339.

[59] W. Yuan, K. Hang, H. Song, D. Kragic, M. Y. Wang, and J. A.
Stork, “Reinforcement learning in topology-based representation for hu-
man body movement with whole arm manipulation,” arXiv:1809.04322
[cs.RO], 2018.

[60] T. Tamei, T. Matsubara, A. Rai, and T. Shibata, “Reinforcement learn-
ing of clothing assistance with a dual-arm robot,” in IEEE-RAS Inter-
national Conference on Humanoid Robots, 2011, pp. 733–738.

[61] N. Koganti, J. G. Ngeo, T. Tomoya, K. Ikeda, and T. Shibata, “Cloth
dynamics modeling in latent spaces and its application to robotic cloth-
ing assistance,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2015, pp. 3464–3469.

164

Bibliography

[62] S. Berretti, A. Del Bimbo, and P. Pala, “3d mesh decomposition using
reeb graphs,” Image and Vision Computing, vol. 27, no. 10, pp. 1540–
1554, 2009.

[63] J. Aleotti and S. Caselli, “Part-based robot grasp planning from human
demonstration,” in IEEE International Conference on Robotics and Au-
tomation, 2011, pp. 4554–4560.

[64] J. Aleotti, V. Micelli, and S. Caselli, “Comfortable robot to human ob-
ject hand-over,” in IEEE International Symposium on Robot and Human
Interactive Communication, 2012, pp. 771–776.

[65] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson, “Skeleton based
shape matching and retrieval,” in Shape Modeling International, 2003,
pp. 130–139.

[66] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in Conference on Computer Vision and Pat-
tern Recognition, 2011, pp. 1297–1304.

[67] F. Blochliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart,
“Topomap: Topological mapping and navigation based on visual slam
maps,” in IEEE International Conference on Robotics and Automation,
2018, pp. 3818–3825.

[68] L. Sun, G. Aragon-Camarasa, S. Rogers, R. Stolkin, and J. P. Siebert,
“Single-shot clothing category recognition in free-configurations with ap-
plication to autonomous clothes sorting,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2017, pp. 6699–6706.

[69] J. Hu and Y. Kita, “Classification of the category of clothing item after
bringing it into limited shapes,” in IEEE-RAS International Conference
on Humanoid Robots, 2015, pp. 588–594.

[70] K. Yamazaki and M. Inaba, “Clothing classification using image features
derived from clothing fabrics, wrinkles and cloth overlaps,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2013, pp.
2710–2717.

[71] C. Kampouris, I. Mariolis, G. Peleka, E. Skartados, A. Kargakos, D. Tri-
antafyllou, and S. Malassiotis, “Multi-sensorial and explorative recogni-
tion of garments and their material properties in unconstrained environ-

165

Bibliography

ment,” in IEEE International Conference on Robotics and Automation,
2016, pp. 1656–1663.

[72] A. Gabas, E. Corona, G. Alenyà, and C. Torras, “Robot-aided cloth
classification using depth information and cnns,” in International Con-
ference on Articulated Motion and Deformable Objects, 2016, pp. 16–23.

[73] E. Corona, G. Alenyà, A. Gabas, and C. Torras, “Active garment recog-
nition and target grasping point detection using deep learning,” Pattern
Recognition, vol. 74, pp. 629–641, 2018.

[74] I. Mariolis, G. Peleka, A. Kargakos, and S. Malassiotis, “Pose and cat-
egory recognition of highly deformable objects using deep learning,” in
International Conference on Advanced Robotics, 2015, pp. 655–662.

[75] W. Yuan, Y. Mo, S. Wang, and E. H. Adelson, “Active clothing material
perception using tactile sensing and deep learning,” in IEEE Interna-
tional Conference on Robotics and Automation, 2018, pp. 4842–4849.

[76] M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel,
“Bringing clothing into desired configurations with limited perception,”
in IEEE International Conference on Robotics and Automation, 2011,
pp. 3893–3900.

[77] Y. Kita, T. Ueshiba, E. S. Neo, and N. Kita, “Clothes state recognition
using 3d observed data,” in IEEE International Conference on Robotics
and Automation, 2009, pp. 1220–1225.

[78] Y. Kita, F. Kanehiro, T. Ueshiba, and N. Kita, “Clothes handling based
on recognition by strategic observation,” in IEEE-RAS International
Conference on Humanoid Robots, 2011, pp. 53–58.

[79] Y. Li, C.-F. Chen, and P. K. Allen, “Recognition of deformable object
category and pose,” in IEEE International Conference on Robotics and
Automation, 2014, pp. 5558–5564.

[80] Y. Li, Y. Wang, M. Case, S.-F. Chang, and P. K. Allen, “Real-time
pose estimation of deformable objects using a volumetric approach,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2014, pp. 1046–1052.

[81] P. C. Wang, S. Miller, M. Fritz, T. Darrell, and P. Abbeel, “Perception
for the manipulation of socks,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2011, pp. 4877–4884.

166

Bibliography

[82] A. Ramisa, G. Alenyà, F. Moreno-Noguer, and C. Torras, “Determining
where to grasp cloth using depth information,” in International Con-
ference of the Catalan Association for Artificial Intelligence, 2011, pp.
199–207.

[83] ——, “Using depth and appearance features for informed robot grasp-
ing of highly wrinkled clothes,” in IEEE International Conference on
Robotics and Automation, 2012, pp. 1703–1708.

[84] ——, “Finddd: A fast 3d descriptor to characterize textiles for robot
manipulation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013, pp. 824–830.

[85] K. Yamazaki, “Grasping point selection on an item of crumpled cloth-
ing based on relational shape description,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 3123–3128.

[86] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth
grasp point detection based on multiple-view geometric cues with appli-
cation to robotic towel folding,” in IEEE International Conference on
Robotics and Automation, 2010, pp. 2308–2315.

[87] P. Gibbons, P. Culverhouse, and G. Bugmann, “Visual identification of
grasp locations on clothing for a personal robot,” in Conference Towards
Autonomous Robotic Systems, 2009, pp. 78–81.

[88] G. Alenyà, A. Ramisa, F. Moreno-Noguer, and C. Torras, “Characteriza-
tion of textile grasping experiments,” in ICRA Workshop on Conditions
for Replicable Experiments and Performance Comparison in Robotics Re-
search, 2012.

[89] K. Hamajima and M. Kakikura, “Planning strategy for task of unfolding
clothes,” Robotics and Autonomous Systems, vol. 32, no. 2-3, pp. 145–
152, 2000.

[90] D. Triantafyllou, I. Mariolis, A. Kargakos, S. Malassiotis, and N. As-
pragathos, “A geometric approach to robotic unfolding of garments,”
Robotics and Autonomous Systems, vol. 75, pp. 233–243, 2016.

[91] H. Yuba, S. Arnold, and K. Yamazaki, “Unfolding of a rectangular
cloth based on action selection depending on recognition uncertainty,” in
IEEE/SICE International Symposium on System Integration, 2015, pp.
623–628.

167

Bibliography

[92] A. Doumanoglou, A. Kargakos, T.-K. Kim, and S. Malassiotis, “Au-
tonomous active recognition and unfolding of clothes using random deci-
sion forests and probabilistic planning,” in IEEE International Confer-
ence on Robotics and Automation, 2014, pp. 987–993.

[93] Y. Li, D. Xu, Y. Yue, Y. Wang, S.-F. Chang, E. Grinspun, and P. K.
Allen, “Regrasping and unfolding of garments using predictive thin shell
modeling,” in IEEE International Conference on Robotics and Automa-
tion, 2015, pp. 1382–1388.

[94] J. Stria, V. Petŕık, and V. Hlaváč, “Model-free approach to garments un-
folding based on detection of folded layers,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2017, pp. 3274–3280.

[95] L. Sun, G. Aragon-Camarasa, S. Rogers, and J. P. Siebert, “Accurate
garment surface analysis using an active stereo robot head with appli-
cation to dual-arm flattening,” in IEEE International Conference on
Robotics and Automation, 2015, pp. 185–192.

[96] L. Sun, G. A. Camarasa, A. Khan, S. Rogers, and P. Siebert, “A precise
method for cloth configuration parsing applied to single-arm flattening,”
International Journal of Advanced Robotic Systems, vol. 13, no. 2, 2016.

[97] D. Estevez, J. G. Victores, R. Fernandez-Fernandez, and C. Balaguer,
“Robotic ironing with 3d perception and force/torque feedback in house-
hold environments,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2017, pp. 6484–6489.

[98] Y. Li, X. Hu, D. Xu, Y. Yue, E. Grinspun, and P. K. Allen, “Multi-sensor
surface analysis for robotic ironing,” in IEEE International Conference
on Robotics and Automation, 2016, pp. 5670–5676.

[99] J. van den Berg, S. Miller, K. Goldberg, and P. Abbeel, “Gravity-based
robotic cloth folding,” Springer Tracts in Advanced Robotics, vol. 68, pp.
409–424, 2011.

[100] C. Bersch, B. Pitzer, and S. Kammel, “Bimanual robotic cloth manip-
ulation for laundry folding,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2011, pp. 1413–1419.

[101] S. Miller, M. Fritz, T. Darrell, and P. Abbeel, “Parametrized shape mod-
els for clothing,” in IEEE International Conference on Robotics and Au-
tomation, 2011, pp. 4861–4868.

168

Bibliography

[102] J. Stria, D. Pr̊uša, V. Hlaváč, L. Wagner, V. Petŕık, P. Krsek, and
V. Smutný, “Garment perception and its folding using a dual-arm
robot,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2014, pp. 61–67.

[103] Y. Kita, F. Kanehiro, T. Ueshiba, and N. Kita, “Strategy for folding
clothing on the basis of deformable models,” in International Conference
Image Analysis and Recognition, 2014, pp. 442–452.

[104] Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. K. Allen, “Folding de-
formable objects using predictive simulation and trajectory optimiza-
tion,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2015, pp. 6000–6006.

[105] V. Petŕık, V. Smutný, P. Krsek, and V. Hlaváč, “Physics-based model of
a rectangular garment for robotic folding,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2016, pp. 951–956.

[106] A. Colomé, A. Planells, and C. Torras, “A friction-model-based frame-
work for reinforcement learning of robotic tasks in non-rigid environ-
ments,” in IEEE International Conference on Robotics and Automation,
2015, pp. 5649–5654.

[107] A. Colomé, S. Foix, G. Alenyà, and C. Torras, “Reward-weighted gmm
and its application to action-selection in robotized shoe dressing,” in
Iberian Robotics Conference, 2017, pp. 141–152.

[108] Y. Gao, H. J. Chang, and Y. Demiris, “Iterative path optimisation for
personalised dressing assistance using vision and force information,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2016, pp. 4398–4403.

[109] ——, “User modelling for personalised dressing assistance by humanoid
robots,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2015, pp. 1840–1845.

[110] G. Chance, A. Jevtić, P. Caleb-Solly, G. Alenyà, C. Torras, and S. Dogra-
madzi, ““Elbows out” - predictive tracking of partially occluded pose for
robot-assisted dressing,” IEEE Robotics and Automation Letters, vol. 3,
no. 4, pp. 3598–3605, 2018.

[111] F. Zhang, A. Cully, and Y. Demiris, “Personalized robot-assisted dress-
ing using user modeling in latent spaces,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2017, pp. 3603–3610.

169

Bibliography

[112] A. Clegg, W. Yu, J. Tan, C. C. Kemp, G. Turk, and C. K. Liu, “Learning
human behaviors for robot-assisted dressing,” arXiv:1709.07033 [cs.RO],
2017.

[113] Z. Erickson, M. Collier, A. Kapusta, and C. C. Kemp, “Tracking human
pose during robot-assisted dressing using single-axis capacitive proximity
sensing,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2245–
2252, 2018.

[114] A. Clegg, W. Yu, Z. Erickson, J. Tan, C. K. Liu, and G. Turk, “Learning
to navigate cloth using haptics,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2017, pp. 2799–2805.

[115] A. Kapusta, W. Yu, T. Bhattacharjee, C. K. Liu, G. Turk, and C. C.
Kemp, “Data-driven haptic perception for robot-assisted dressing,” in
IEEE International Symposium on Robot and Human Interactive Com-
munication, 2016, pp. 451–458.

[116] W. Yu, A. Kapusta, J. Tan, C. C. Kemp, G. Turk, and C. K. Liu,
“Haptic simulation for robot-assisted dressing,” in IEEE International
Conference on Robotics and Automation, 2017, pp. 6044–6051.

[117] Z. Erickson, A. Clegg, W. Yu, G. Turk, C. K. Liu, and C. C. Kemp,
“What does the person feel? learning to infer applied forces during
robot-assisted dressing,” in IEEE International Conference on Robotics
and Automation, 2017, pp. 6058–6065.

[118] Z. Erickson, H. M. Clever, G. Turk, C. K. Liu, and C. C. Kemp, “Deep
haptic model predictive control for robot-assisted dressing,” in IEEE
International Conference on Robotics and Automation, 2018, pp. 4437–
4444.

[119] A. Clegg, W. Yu, J. Tan, C. K. Liu, and G. Turk, “Learning to dress:
Synthesizing human dressing motion via deep reinforcement learning,”
ACM Transactions on Graphics, vol. 37, no. 6, 2018.

[120] G. Chance, A. Camilleri, B. Winstone, P. Caleb-Solly, and S. Dogramadz,
“An assistive robot to support dressing - strategies for planning and error
handling,” in IEEE International Conference on Biomedical Robotics and
Biomechatronics, 2016, pp. 774–780.

[121] K. Yamazaki, R. Oya, K. Nagahama, K. Okada, and M. Inaba, “Bottom
dressing by a life-sized humanoid robot provided failure detection and

170

Bibliography

recovery functions,” in IEEE/SICE International Symposium on System
Integration, 2014, pp. 564–570.

[122] S. D. Klee, B. Q. Ferreira, R. Silva, J. P. Costeira, F. S. Melo, and
M. Veloso, “Personalized assistance for dressing users,” in International
Conference on Social Robotics, 2015, pp. 359–369.

[123] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with
microsoft kinect sensor: A review,” IEEE Transactions on Cybernetics,
vol. 43, no. 5, pp. 1318–1334, 2013.

[124] H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing:
Structured-light versus time-of-flight kinect,” Computer Vision and Im-
age Understanding, vol. 139, pp. 1–20, 2015.

[125] Y. Berdnikov and D. Vatolin, “Real-time depth map occlusion filling and
scene background restoration for projected-pattern based depth cam-
eras,” in International Conference on Computer Graphics and Vision,
2011, pp. 200–203.

[126] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab, “Adap-
tive neighborhood selection for real-time surface normal estimation from
organized point cloud data using integral images,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2012, pp. 2684–
2689.

[127] A. B. Carsten Rother, Vladimir Kolmogorov, “Grabcut: Interactive
foreground extraction using iterated graph cuts,” ACM transactions on
graphics, vol. 23, no. 3, pp. 309–314, 2004.

[128] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 9, pp. 1124–1137, 2004.

[129] X. C. He and N. H. C. Yung, “Corner detector based on global and local
curvature properties,” Optical Engineering, vol. 47, no. 5, 2008.

[130] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B.
Mitchell, “An efficiently computable metric for comparing polygonal
shapes,” IEEE Transactions on Pattern Analysis & Machine Intelli-
gence, vol. 13, no. 3, pp. 209–216, 1991.

171

Bibliography

[131] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis & Machine Intelligence, vol. 8, no. 6, pp.
679–698, 1986.

[132] A. Ückermann, R. Haschke, and H. Ritter, “Realtime 3d segmentation
for human-robot interaction,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2013, pp. 2136–2143.

[133] L. Lam, S. W. Lee, and C. Y. Suen, “Thinning methodologies - a com-
prehensive survey,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, vol. 14, no. 9, pp. 869–885, 1992.

[134] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning
digital patterns,” Communications of the ACM, vol. 27, no. 3, pp. 236–
239, 1984.

[135] T. Hanser, P. Jauffret, and G. Kaufmann, “A new algorithm for ex-
haustive ring perception in a molecular graph,” Journal of Chemical
Information and Computer Sciences, vol. 36, no. 6, pp. 1146–1152, 1996.

[136] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated car-
tography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[137] D. Comaniciu, R. Visvanathan, and P. Meer, “Real-time tracking of non-
rigid objects using mean shift,” in IEEE Conference on Computer Vision
and Pattern Recognition, vol. 2, 2000, pp. 142–149.

[138] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour mod-
els,” International Journal for Computer Vision, vol. 1, no. 4, pp. 321–
331, 1988.

[139] M. Isard and A. Blake, “Condensation - conditional density propagation
for visual tracking,” International Journal of Computer Vision, vol. 29,
no. 1, pp. 5–28, 1998.

[140] P. Li, D. Wang, L. Wang, and H. Lu, “Deep visual tracking: Review and
experimental comparison,” Pattern Recognition, vol. 76, pp. 323–338,
2018.

[141] C. Elbrechter, R. Haschke, and H. Ritter, “Folding paper with anthropo-
morphic robot hands using real-time physics-based modeling,” in IEEE-
RAS International Conference on Humanoid Robots, 2012, pp. 210–215.

172

Bibliography

[142] M. Schröder, C. Elbrechter, J. Maycock, R. Haschke, M. Botsch, and
H. Ritter, “Real-time hand tracking with a color glove for the actuation of
anthropomorphic robot hands,” in IEEE-RAS International Conference
on Humanoid Robots, 2012, pp. 262–269.

[143] P. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 14,
no. 2, pp. 239–256, 1992.

[144] R. Plankers and P. Fua, “Articulated soft objects for multiview shape and
motion capture,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, vol. 25, no. 9, pp. 1182–1187, 2003.

[145] D. Hähnel, S. Thrun, and W. Burgard, “An extension of the icp algo-
rithm for modeling nonrigid objects with mobile robots,” in International
joint conference on Artificial intelligence, vol. 3, 2003, pp. 915–920.

[146] T. Schmidt, R. A. Newcombe, and D. Fox, “Dart: Dense articulated
real-time tracking,” in Robotics: Science and Systems, vol. 2, 2014.

[147] A. Tagliasacchi, M. Schröder, A. Tkach, S. Bouaziz, M. Botsch, and
M. Pauly, “Robust articulated-icp for real-time hand tracking,” Com-
puter Graphics Forum, vol. 34, no. 5, pp. 101–114, 2015.

[148] J. Schulman, A. Lee, J. Ho, and P. Abbeel, “Tracking deformable objects
with point clouds,” in IEEE International Conference on Robotics and
Automation, 2013, pp. 1130–1137.

[149] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based
dynamics,” Journal of Visual Communication and Image Representa-
tion, vol. 18, no. 2, pp. 109–118, 2007.

[150] N. Umetani, R. Schmidt, and J. Stam, “Position-based elastic rods,” in
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
2014, pp. 21–30.

[151] F. B. Fuller, “The writhing number of a space curve,” Proceedings of the
National Academy of Sciences, vol. 68, no. 4, pp. 815–819, 1971.

[152] K. Klenin and J. Langowski, “Computation of writhe in modeling of
supercoiled dna,” Biopolymers, vol. 54, no. 5, pp. 307–317, 2000.

[153] R. de Vries, “Evaluating changes of writhe in computer simulations of
supercoiled dna,” The Journal of chemical physics, vol. 122, no. 6, p.
064905, 2005.

173

Bibliography

[154] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

[155] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, 1992.

[156] G. A. Rummery and M. Niranjan, “On-line q-learning using connection-
ist systems,” University of Cambridge, Department of Engineering, Tech.
Rep. CUED/F-INFENG/TR 166, 1994.

[157] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems, 2000, pp. 1057–
1063.

[158] R. J. Williams, “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning,” Machine Learning, vol. 8, no. 3, pp.
229–256, 1992.

[159] T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” in In-
ternational Conference on Machine Learning, 2012, pp. 179–186.

[160] V. Heidrich-Meisner and C. Igel, “Evolution strategies for direct policy
search,” in International Conference on Parallel Problem Solving from
Nature, 2008, pp. 428–437.

[161] R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy Method: A Uni-
fied Approach to Combinatorial Optimization, Monte-Carlo Simulation,
and Machine Learning. Springer, 2004.

[162] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simu-
lated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[163] D. Fogel, “An introduction to simulated evolutionary optimization,”
IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 3–14, 1994.

[164] I. Rechenberg, Evolutionsstrategie ’94. Frommann-Holzboog, 1994.

[165] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance ma-
trix adaptation (cma-es),” Evolutionary Computation, vol. 11, no. 1, pp.
1–18, 2003.

174

Bibliography

[166] G. A. Jastrebski and D. V. Arnold, “Improving evolution strategies
through active covariance matrix adaptation,” in IEEE International
Conference on Evolutionary Computation, 2006, pp. 2814–2821.

[167] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm and Evolutionary Computation, vol. 1,
no. 2, pp. 61–70, 2011.

[168] E. Murphy-Chutorian and M. M. Trivedi, “Head pose estimation in com-
puter vision: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 4, pp. 607–626, 2009.

[169] L. Spreeuwers, “Fast and accurate 3d face recognition,” International
Journal of Computer Vision, vol. 93, no. 3, pp. 389–414, 2011.

[170] D. Eberly, “Distance from a point to an ellipse, an ellipsoid, or a hyper-
ellipsoid,” Geometric Tools, LLC, 2013.

[171] M. Ruchanurucks, S. Nakaoka, S. Kudoh, and K. Ikeuchi, “Generation
of humanoid robot motions with physical constraints using hierarchical
b-spline,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2005, pp. 1869–1874.

[172] S. Schaal, “Dynamic movement primitives - a framework for motor con-
trol in humans and humanoid robotics,” in Adaptive motion of animals
and machines. Springer, 2006, pp. 261–280.

175

