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ABSTRACT

Shan Yang: Non-rigid Body Mechanical Property Recovery from Images and Videos
(Under the direction of Ming C. Lin)

Material property has great importance in surgical simulation and virtual reality. The mechanical

properties of the human soft tissue are critical to characterize the tissue deformation of each patient.

Studies have shown that the tissue stiffness described by the tissue properties may indicate abnormal

pathological process. The (recovered) elasticity parameters can assist surgeons to perform better

pre-op surgical planning and enable medical robots to carry out personalized surgical procedures.

Traditional elasticity parameters estimation methods rely largely on known external forces measured

by special devices and strain field estimated by landmarks on the deformable bodies. Or they

are limited to mechanical property estimation for quasi-static deformation. For virtual reality

applications such as virtual try-on, garment material capturing is of equal significance as the

geometry reconstruction.

In this thesis, I present novel approaches for automatically estimating the material properties

of soft bodies from images or from a video capturing the motion of the deformable body. I use a

coupled simulation-optimization-identification framework to deform one soft body at its original,

non-deformed state to match the deformed geometry of the same object in its deformed state. The

optimal set of material parameters is thereby determined by minimizing the error metric function.

This method can simultaneously recover the elasticity parameters of multiple regions of soft bodies

using Finite Element Method-based simulation (of either linear or nonlinear materials undergoing

large deformation) and particle-swarm optimization methods. I demonstrate the effectiveness of this

approach on real-time interaction with virtual organs in patient-specific surgical simulation, using

parameters acquired from low-resolution medical images. With the recovered elasticity parameters

and the age of the prostate cancer patients as features, I build a cancer grading and staging classifier.
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The classifier achieves up to 91% for predicting cancer T-Stage and 88% for predicting Gleason

score. To recover the mechanical properties of soft bodies from a video, I propose a method which

couples statistical graphical model with FEM simulation. Using this method, I can recover the

material properties of a soft ball from a high-speed camera video that captures the motion of the

ball.

Furthermore, I extend the material recovery framework to fabric material identification. I

propose a novel method for garment material extraction from a single-view image and a learning-

based cloth material recovery method from a video recording the motion of the cloth. Most recent

garment capturing techniques rely on acquiring multiple views of clothing, which may not always be

readily available, especially in the case of pre-existing photographs from the web. As an alternative,

I propose a method that can compute a 3D model of a human body and its outfit from a single

photograph with little human interaction. My proposed learning-based cloth material type recovery

method exploits simulated data-set and deep neural network. I demonstrate the effectiveness of

my algorithms by re-purposing the reconstructed garments for virtual try-on, garment transfer, and

cloth animation on digital characters. With the recovered mechanical properties, one can construct

a virtual world with soft objects exhibiting real-world behaviors.
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CHAPTER 1: INTRODUCTION

From the soft tissue in our human body to the garments we wear everyday, deformable objects

are ubiquitous. We interact with soft objects daily: when we comb our hair, dress ourselves with

different styles of garments, and eat various types of delicious food. The physics, such as the

mechanical properties of those deformable bodies, make them distinguishable via touch. This

interaction with soft objects make us aware of their deformation behavior. Over time, we have been

trained to develop this inner simulation system to predict the motion of those soft objects when we

only have the visual of such items. For instance, we would expect a cotton-like textured t-shirt to be

much softer than a linen-like textured cloth and curly hair to be more bouncy than straight hair.

For movies, animations and virtual reality applications, we prefer soft objects to be modeled

accurately. For example, in the animations shown in Fig. 1.1, we would expect to see that Merida’s

hair, Maui and Moana’s muscle and Queen Elsa and Anna’s dresses behave exactly the same way as

our own hair, muscle and dresses. Movides are not the only example; real-world physics especially

Figure 1.1: Examples of soft bodies in movies. (a) The long and curvy hair of Merida in the movie
Brave. (b) The strong muscles of both Maui and Moana in the movie Moana. (c) The gorgeous
dresses of Queen Elsa and Anna in the movie Frozen.

the mechanical properties of the object can significantly affect human interaction with the virtual
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Figure 1.2: Example of the virtual try-on system with MagicMirror®.

world. In particular, the application of virtual try-on garment material properties changes both the

appearance and the fit. Fig. 1.2 shows a virtual try-on system from MagicMirror®. This system

helps brides easily try out wedding dresses. However, a simple 3D garment overlaying our body is

far from sufficient for a multimodal virtual try-on experience. Users will wish to change their pose

to see how the garment fits. In order to provide such an experience, a physically-based simulation

with the material properties of the garment as close as possible to real-world materials is crucial.

Physically-based simulation, unlike traditional keyframing, can automatically generate realistic

motion and deformation without tedious and time-consuming low-level control (Terzopoulos et al.,

1987) and offers greater flexibility, allowing for quick prototyping of different designs of complex

artifacts. But in physically-based animation, simulation parameters (such as material properties)

often require many iterations of manual adjustment and re-assessment of the visual results. This

iterative process is both unintuitive and costly. In computer animation, artists and animators often

sketch out keyframes of conceptualized motion and body deformation. These drawings are mental

images of animated virtual models that do not exist, so it is impossible to measure the elasticity

parameters of these virtual objects to reproduce the artist’s desired deformation. An efficient

method for inferring these parameters directly from the artist’s sketches (which can be treated as

images) can help automate the selection of elasticity parameters for physically-based animation of
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deformable bodies based on given hand drawings of keyframes. Automatic parameter identification

from real-world data, such as simulation results, images, audio, video, and animators’ sketches, is

thus becoming a topic of increasing interest in computer animation (Bickel et al., 2010; Wang et al.,

2011b; Miguel et al., 2012a, 2013; Ren et al., 2013).

For example, the use of material-property estimation in the simulation of cloth has been

suggested in (Wang et al., 2011b; Miguel et al., 2012a); it has also been used in procedures for

designing and fabricating materials that produce a certain deformation behavior (Bickel et al., 2010).

These parameter estimation methods focus on materials that can be taken into a specialized video

capturing system to measure displacements, and (in the case of elasticity parameters) often require

a force measuring device (Pai et al., 2001; Bickel et al., 2009).

Beyond virtual reality applications, non-rigid materials are widely used in medical robotics,

design and manufacturing, virtual surgery for soft robot planning, procedural rehearsal and virtual

reality applications etc. Medical robots (shown in Fig. 1.3) have the potential to perform surgical

procedures beyond current clinical capabilities. Identification of mechanical properties, such as

tissue elasticity parameters, is critical to enable medical robots to safely operate within highly

unstructured, deformable human bodies and to compute desired, accurate force feedback for

individualized haptic display characterized by patient-specific parameters for different tissues and

organs. In addition to medical robots, simulations are also increasingly used for rapid prototyping

of clinical devices, pre-operation planning of medical procedures, virtual training exercises for

surgeons and supporting personnel, etc. And, bio-tissue elasticity properties are central to developing

realistic and predictive simulation and for designing responsive, dexterous surgical manipulators.

Furthermore, with increasing interest in 3D printing for rapid creation of soft robots consisting of

flexible materials, the ability to easily acquire material properties from existing sensor data, such as

medical images and videos, can help to replicate similar material properties.

More importantly, our human body is mostly composed of soft tissue. Certain pathological

changes could significantly affect the mechanical properties of the soft tissue. In particular, cancer

alters the mechanical properties of the tissue because it causes tissue calcification. Similar to blood
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Figure 1.3: Surgeons prepare surgery with the da Vinci® surgical system.

test, tissue mechanical properties recognition can also help with disease diagnosis. Thus mechanical

parameter estimation is also an area of interest in medical applications such as non-invasive cancer

detection, since human tissues are generally difficult to measure and it is sometimes impossible

to acquire the actual parameters of a live patient. Prostate cancer, for instance, is one of the most

commonly diagnosed types of cancer for men worldwide (shown in Fig. 1.4). Early diagnosis

can greatly increase the survival rate of cancer. Cancerous tissue tends to be stiffer than normal

tissue. The recovery of the mechanical properties of those tissues can greatly help doctors with the

diagnosis. Currently, 2D Elastography (Ophir et al., 1999; Zhu et al., 2003a; Kallel and Bertrand,

1996) is used to estimate the elasticity value of each pixel in medical images; most existing methods

are based on a dense displacement field established by pixel-wise correspondence between pre- and

post-compression images. However, in some imaging modalities, it is difficult to find a reliable

dense displacement field, and some organs, such as prostate, are located so deep within the body that

direct force measurements (such as 3D elastography) are practically impossible to use. Furthermore,

the majority of the measurements taken in a laboratory are performed on organs ex vivo, but bodies’

tissue properties can change from in situ to ex vivo. Therefore, obtaining patient-specific tissue

elasticity parameters remains a practical challenge.
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Figure 1.4: Prostate cancer statistics (Cook, 2017).

1.1 Cloth Material Property Recovery

Figure 1.5: Skirts with different material types (stylewe, 2014). Skirts with different material
properties showcase different appearances.

Retail is a multi-trillion dollar business worldwide, with the global fashion industry valued at

$3 trillion (FashionUnited, 2016). Approximately $1.6 trillion of retail purchasing in 2015 was

done via online e-commerce sales, with growth rates in the double digits (Lindner, 2015). Thus,

enabling better online apparel shopping experiences has the potential for enormous economic

impact. Given the worldwide demand for fashion and the obvious impact of this demand on the

apparel industry, technology-based solutions have recently been proposed, a few of which are

already in use by commercial vendors. For example, there are several computer-aided design

(CAD) software systems developed specifically for the apparel industry. The apparel CAD industry

has focused predominantly on sized cloth-pattern development, pattern-design CAD software, 3D

draping preview, and automatic generation of 2D clothing patterns from 3D body scanners or other

measurement devices. Some of the leading apparel CAD companies include Gerber Technology,

Lectra, Optitex, Assyst, StyleCAD, Marvelous Designer, and Clo-3D, etc. Developing these systems
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often requires careful and lengthy design by a domain expert. The prior virtual try-on systems often

use simple, fast image-based or texture-based techniques for a fixed number of avatar poses. Many

of the virtual try-on systems assume either that the user selects one of a pre-defined set of avatars or

that accurate measurements of their own bodies have been captured via 3D body scans.

More recent advances have been introduced in virtual try-on systems, such as triMirror and

Avametric, that allow users to visualize what a garment might look like on them before purchasing.

These methods enable 3D visualization of simulated garments, fast animation of dynamic cloth, and

a quick preview of how the cloth drapes on avatars as they move around. To account for the effects

of fabric materials under different conditions (e.g. varying poses, weight fluctuation, cloth-cloth

interactions etc), a full cloth simulation is needed to predict how the fabric bends, wrinkles, or

changes its physical appearance when the virtual human moves or changes his/her pose in various

activities. One of the challenges that has not been addressed to date is to automatically determine

and select the cloth material parameters required to simulate the garment fabric that visually exhibits

the same physical behaviors, i.e. with the same simulated cloth material, as the one(s) shown in

the given (online catalog) image of the garment on a fashion model. These simulation material

parameters cannot always be obtained by physical measurements since they are often specific to a

given computational model such as the one proposed by Wang et. al. (Wang et al., 2011a) of the

simulated cloth. Generally they are acquired by tedious, time-consuming, and laborious manual

tuning of multiple simulation parameters that result in the similar visual appearance as the real

garment.

1.2 Thesis Statement

My thesis is as follows,

Material properties of the non-rigid objects presented in images or videos can be estimated

using a coupled deterministic simulation optimization, a stochastic statistical inferring based

method or a learning based method.
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To support this thesis statement, I present four methods: two methods couple physically-based

deformable body simulation and optimization, one method applies machine learning for cloth

material recovery from a video, and one statistically inferencing method.

1.3 Main Results

1.3.1 Image-based Multi-region Deformable Body Material Recovery

Material property of human tissue has great importance in medical applications. The recovered

elasticity parameters can assist doctors with disease diagnosis and surgeons to perform better pre-op

surgical planning. Previous non-invasive elasticity parameters estimation methods are limited to

recover only one elasticity parameter of one deformable body at a time. The elasticity parameters

of multiple resgions of a soft body such as a human organ can help doctors to further locate the

cancerous area. To recover the material properties of multiple regions of a deformable body directly

from an image, in Chapter 3 I propose to couple physically-based soft body simulation with Particle

Swarm Optimization. The main contributions of my work are:

• A coupled physically-based soft body simulation with Particle Swarm Optimization;

• A multi-region image-based material recovery method.

1.3.2 Video-based Deformable Body Material Recovery

Prior elasticity recovery methods are limited to soft bodies that are in quasi-static state. For

dynamic soft bodies, the information contained in one image is too limited to extract the physics

properties. A temporal sequence of deformation samples such as ultrasound videos contain much

more information than an image. In Chapter 4, I present a method to recovery the mechanical

property of a dynamic soft-body from a video. In constrast to the traditional strain-stress matching

methods and the more recent inverse FEM, I propose a method to recover the mechanical parameters

of the deformable bodies by tracking and matching a temporal sequence of deformation samples

with simulated deformation. The main contributions of my work are:
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• An alternative approach to dynamically track the surface of a deformable body in motion;

• Reconstruction of non-rigid mechanical properties from temporal sequences of deformation

samples using a probabilistic, graphical model.

1.3.3 Classification of Prostate Cancer Grades and T-Stages based on Tissue Elasticity

To study the possible use of tissue elasticity to help evaluate the prognosis of prostate cancer

patients given at least two set of CT images, in Chapter 5 I analyze 29 prostate cancer patients data.

I apply and improved the method proposed in Chapter 3 to estimate the individualized, relative

tissue elasticity parameters directly from medical images. Using the recovered elasticity parameters,

I train a multiclass classifier to predict the T-stage and Gleason scores of prostate cancer patients.

The main contributions of my work are:

• An improved method that uses geometric and physical constraints to deduce the relative tissue

elasticity parameters;

• Multiclass classification system for classifying T-stage and Gleason scores for prostate cancer

patients;

• Demonstrate the feasibility of a statistically-based multiclass classifier as additional clinical

aids for the physicians and patients to make more informed decision.

1.3.4 Single-view Image-based 3D Garment Reconstruction

More recent advances have been introduced in virtual try-on systems that allow users to

visualize what a garment might look like on them before purchasing. But most of these systems

only overlay the human body with the garment. They ignore the effects of fabric materials under

different conditions. To account for these situations, a full cloth simulation is needed to predict

how the fabric bends, wrinkles, or changes its physical appearance when the virtual human moves

or changes his/her pose in various activities. One of the challenges that has not been addressed to

date is to automatically determine and select the cloth material parameters required to simulate the
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garment fabric that visually exhibits the same physical behaviors. In Chapter 6, I present a method

that recovers the garment with both material and sizing parameters from a single-view image. The

main contributions of my work are:

• An image-guided garment parameter selection method that makes the generation of virtual

garments with diverse styles and sizes a simple and natural task;

• A joint material-pose optimization framework that can reconstruct both body and cloth models

with material properties from a single image;

• Application for virtual try-on and character animation.

1.3.5 Learning-based Cloth Material Recovery from A Video

Image and video understanding enables better reconstruction of the physical world. Existing

methods focus largely on geometry and visual appearance of the reconstructed scene. The physical

properties of the objects in the environment can further provide a more realistic human-scene

interaction. In Chapter 7, I present a method to recover the material properties of cloth from a video

using a deep neural network. The main contributions of my work are:

• A deep neural network based parameter learning algorithm;

• Application of physically-based simulated data of cloth visual-to-material learning.

1.4 Organization

The subsequent chapters of this dissertation are organized as follows.

Chapter 2 surveys previous work that is related to the thesis work including: physically-based

deformable body simulation methods, human-tissue material recovery methods and cloth mechanical

property identification methods.

Chapter 3 introduces my proposed method which recovers the material properties of multiple

regions of a deformable body.
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Chapter 4 presents the graphical model based dynamic deformable body mechanical property

recovery from video.

Chapter 5 shows real-life patient data analysis. I first identify the material properties of the

prostate of each patient using my proposed method introduced in Chapter 2. Then I build a classifier

using two features: recovered prostate mechanical property and patients’ age. I demonstrate in this

chapter the effectiveness of the recovered material properties for cancer identification.

Chapter 6 presents a method which reconstructs garments from a single-view image.

Chapter 7 introduces a learning-based method to identify material properties of a piece of cloth

from video.
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CHAPTER 2: PREVIOUS WORK

In this chapter, I survey the previous work related to my thesis work. In the following sections,

I first survey physically-based soft-body simulation methods which are the basis of my research.

Then, I introduce previous work on human-tissue mechanical property recovery methods and cloth

mechanical property recovery methods. Finally, I survey previous work on a deep neural network

which is related to my proposed learning-based cloth material recovery method.

2.1 Deformable Body Simulation

In computer graphics, extensive research has been done for deformable body simulation (Ter-

zopoulos et al., 1987; Nealen et al., 2006; Müller and Gross, 2004; Meehan et al., 2003). The

methods can be classified into a couple of categories: non-physically based, physcially-based and

hybrid methods. Non-physically based are those methods that are purely geometric such as B-spline

based surface editing method (Bartels and Beatty, 1989; Piegl, 1989a,b; Griessmair and Purgathofer,

1989) and free-form deformation (Barr, 1984; Chang and Rockwood, 1994). These methods are

particularly useful for computer aided design (CAD). The most basic physically-based soft-body

simulation is the mass-spring system (Chadwick et al., 1989). It discretizes the soft-body into ver-

tices and springs. The springs connect the vertices to form a volumetric mesh of the soft body. The

physics of the mass-spring system is based on Hooke’s law. The mass-spring system is widely used

for real-time animation such as hair simulation (Hadap and Magnenat-Thalmann, 2001; Selle et al.,

2008), muscle simulation (Nedel and Thalmann, 1998), and human tissue simulation (Kühnapfel

et al., 2000; Mollemans et al., 2003; Westwood et al., 2005; Hammer et al., 2011) but it has its

limitations. Due to the inaccurate approximation to the underlying continuum physics, it is unstable

primarily because of the time step size restriction when simulating a stiff deformable body.
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Finite element method (FEM) (Bathe, 2006) is one class of physically-based deformable

body simulation methods. FEM was proposed in general as a numerical method to solve the

underlying governing partical differentiate equation (PDE). It is frequently used for flesh/mus-

cle simulation (Teran et al., 2003, 2005; Sifakis et al., 2006; Irving et al., 2007) and surgery

simulation (Bro-Nielsen, 1996; Bro-Nielsen and Cotin, 1996; Miller, 1999; Berkley et al., 2004).

Simulation of cloth and garments as one special kind of deformable body has also been

extensively studied in computer graphics (Ng and Grimsdale, 1996; House and Breen, 2000; Bridson

et al., 2002; Govindaraju et al., 2007). Methods for cloth simulation can also be divided in to classes

based on the underlying numerical methods: mass-spring system based cloth simulation (Vassilev

et al., 2001) and FEM-based cloth simulation (Narain et al., 2012).

2.2 Human-Tissue Mechanical Property Recovery

Medical robots have the potential to perform surgical procedures beyond current clinical

capabilities. To enable medical robots to safely operate within highly unstructured, deformable

human bodies are needed for designing responsive and dexterous surgical manipulators. In addition,

virtual surgical simulation has also been increasingly used for rapid prototyping of clinical devices,

pre-operation planning of medical procedures, virtual training exercises for surgeons and medical

personnel, etc. And, tissue elasticity properties are important parameters for developing accurate

and predictive surgical simulation. Futhermore, to compute desired and accurate force feedback for

a haptic display requires knowledge about the deformation of soft tissues and organs, which are

characterized by patient-specific elastic parameters for different tissues and organs.

Currently screening of prostate cancers is usually performed through routine prostate-specific

antigen (PSA) blood tests and/or a rectal examination. Based on a positive PSA indication, a biopsy

of randomly sampled areas of the prostate can then be considered to diagnose the cancer and assess

its aggressiveness. Biopsy may miss sampling cancerous tissues, resulting in missed or delayed

diagnosis, and miss areas with aggressive cancers, thus under-staging the cancer and leading to

under-treatment.
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Studies(Fowlkes et al., 1995) (Garra et al., 1997) show that tissue elasticity parameters are

important indicators of cancer and other diseases. Traditional cancer detection methods such

as palpation have limitations. For tissues that locate inside the human body and far from the

skin, procedures like palpation cannot reach. Besides, these methods are based on the empirical

knowledge of the doctor. Further for each patient, the normal elastic properties may vary making

it difficult for the doctor to establish a diagnoses standard. Thus, researchers proposed methods

that are based on scientific computing instead of the sense of the doctor to estimate the elastic

parameters of soft tissue. The emerging field of elastography tries to solve this problem. Methods

that are based on medical image analysis and FEM based simulation provide a rigorous way of

calculating the elasticity parameters of the potential cancer tissues.

Estimation of material parameters for human tissues is also well-studied in medical image

analysis, where it is used in screening and detecting tumors, as cancerous tissues tend to be stiffer

than healthy tissues. There are mainly two kinds of soft tissue elasticity properties estimation

method (Samur et al., 2007): invasive and non-invasive techniques. The invasive methods rely on

a device to measure the displacement and force response (Carter et al., 2001; Kauer et al., 2002a;

Rosen et al., 1999). These methods take organ samples either out of the human or animal bodies

and perform the experiment in-vitro (out side the body) or do the procedure in-situ (inside the body).

The collected data are then used to solve the inverse problem, which is to recover the elasticity

properties, by constructing a polynomial interpolation (Bicchi et al., 1996) or by using a finite

element model (Gao et al., 2009; Misra et al., 2010; Samur et al., 2007).

Elastography(Ophir et al., 1991a) was first proposed to determine the elasticity properties by

measuring the deformation of the tissue due to the application of the known external forces. The

known external forces are the boundary condition needed to recover the exact elasticity parameter.

(Washington and Miga, 2004) present an alternative 2D elastography for extracting tissue parameters.

3D elastography usually requires force measurements, but it is not always possible to obtain these

measurements for deeply-seated organs, such as the prostate. Originally, the deformations were

measured using ultrasound imagery(Krouskop et al., 1987), but such techniques produced coarse,
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two-dimensional representations of the moving tissue. More sophisticated imaging techniques,

such as magnetic resonance imaging (MRI)(Chenevert et al., 1998; Van Houten et al., 1999)and

computed tomography (CT), produce three-dimensional images of the deforming tissues, allowing

a more accurate measurement of displacement.

In the early days, ultrasound images were used in elastography(Krouskop et al., 1987). However,

ultrasound images can only provide low resolution information. Compared to ultrasound images,

magnetic resonance imaging (MRI) (Chenevert et al., 1998; Van Houten et al., 1999)and computed

tomography (CT) images offer high resolution three-dimensional data. Based on magnetic resonance

images or computed tomography images, three dimensional model can be reconstructed. Finite

element method is used to simulate the deformation of the three dimensional model. By applying

optimization method or other kinds of method, elasticity parameters are recovered.

The non-invasive methods mostly base on image analysis techniques to measure the displace-

ment. Measurement-based methods, such as (Ashab et al., 2015; Khojaste et al., 2015) using

magnetic resonance imaging (MRI) and/or ultrasound, were proposed for study of prostate cancer

tissue. However, previous works in material property reconstruction often have limitations with

respect to their genericity, applicability, efficiency and accuracy (Yang and Lin, 2015b). In the

1980s, several methods were proposed to measure the motion of the soft tissue, such as the one

proposed by Wilson and Robinson (Wilson and Robinson, 1982) using radio frequency M-mode

signals and the one proposed by Birnholz and Farrell (Birnholz and Farrell, 1985) using ultrasound

B-scans. Researchers have also used medical image analysis on 2D ultrasound and/or MRI images

to estimate the elastic parameters of soft tissue (Gao et al., 1996; Manduca et al., 2001; Zheng and

Mak, 1996). More recent techniques, such as inverse finite-element methods (Goksel et al., 2013;

Lee et al., 2012b; Shahim et al., 2013; Vavourakis et al., 2016; Yang and Lin, 2015b), stochastic

finite-element methods (Shi and Liu, 2003), and image-based ultrasound (Uniyal et al., 2014) have

been developed for in-vivo soft tissue analysis.
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2.2.1 Measurement-based Methods

Other than distance field based methods, there are also other measurement algorithms. The

modality-independent elastography (MIE) method (Miga, 2002) measures the elasticity parameters

by maximizing the image similarity based on a number of landmarks. However, this technique does

not apply to all the soft tissues, as landmarks cannot always be found in some of the organs such as

prostate. Statistical and machine learning algorithms have also been used to classify soft tissues and

estimate the parameters using multi-spectral MR images (Liang et al., 1994).

2.2.2 Elastography

2D elastography (also known as elasticity reconstruction), can acquire ‘strain images’ or

‘elasticity images’ of soft tissues (Skovoroda and Emelianov, 1995; Rogowska et al., 2014; Bilston

and Tan, 2015). Elastography is usually done by estimating the optimal deformation field that

relates two ultrasound images, one taken at the rest state and the other taken when a known force

is applied to the skin (Ophir et al., 1999; Rivaz et al., 2008). They were proposed to avoid the

explicit measurement of the displacement. Van Houten et al. (Van Houten et al., 1999, 2001) used

elastography methods to estimate the Young’s modulus distribution of a deformable body. These

methods need high-resolution displacement fields to recover the elasticity parameter (Manduca

et al., 2001). The displacement field can be obtained through an external device using a vibration

actuation mechanism. External device is still required for both the force exertion on the soft tissue

and the external force measurement. Special vibrator were placed inside the organ (Chopra et al.,

2009) to complete the procedure. Other than distance-field-based methods for high-resolution

magnetic resonance medical images, other video based method measure the displacement field from

the video (Syllebranque et al., 2007).

Alternatively, the displacement field can be found with a modified MRI machine that is in tune

with a mechanical vibration of tissues (Muthupillai and Ehman, 1996; Fu et al., 2000). Assuming

that the physical model is linear, once the deformation field and external forces are known, the

material properties can be computed by simply solving a least-squares problem (Zhu et al., 2003a)
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or by performing an iterative optimization to minimize the error in the deformation field (Kallel and

Bertrand, 1996; Balocco et al., 2008; Schnur and Zabaras, 1992). One limitation for this class of

methods is that they require a device both to measure the external force and to exert external force

on the deformable bodies.

2.2.3 Inverse Finite Element Methods

Inverse finite element methods use the implicitly known or computed external force to recover

the mechanical property. Lee et al. proposed a model to estimate the Young’s modulus based on

low-resolution CT images and no external force is required to set the boundary condition (Lee

et al., 2012a). The most recent work on identification of mechanical properties based on surface

tracking (Wang et al., 2015) proposed a decoupled iterative tracking and parameter estimation

framework. They applied a combined probabilistic physically-based method for surface tracking.

Then, the tracked surfaces of the static state are the input to the parameter estimation framework.

This approach does not require external force to be measured, but uses the gravity as the boundary

condition. This class of methods avoid both the explicit measurement of external force and the

displacement field. But the input references need to be in static state.

2.2.4 Probabilistic Graphical Models

Probabilistic graphical models, such as Kalman Filter and Hidden Markov Model (HMM),

have been used for both state estimation and parameter identification of dynamical systems. E.J.

Lefferts et al. applied Kalman Filter for estimation of spacecraft attitude (Lefferts et al., 1982).

Kalman filters have been widely used in tracking of dynamical systems and parameter estimation,

including rigid-body tracking (Zhan and Wan, 2007; Moghari and Abolmaesumi, 2007), motion

retargeting (Tak and Ko, 2005), geometric contour tracking (Dambreville et al., 2006), and more.

We adopt a tightly coupled framework using FEM-based state estimation and unscented Kalman

Filter (UKF) for parameter identification.
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2.3 Cloth Mechanical Property Recovery

Other models have focused on physically-based simulation of cloth, especially on determining

the cloth model’s stiffness and damping coefficients. (Bhat et al., 2003) estimated cloth simulation

parameters by comparing video of real fabric patches with simulated images; they used the orienta-

tion of each edge pixel to compute the error metric, and used the continuous simulated annealing

method (Press, 2007) to minimize estimation error. K.L. Bouman et. al. (Bouman et al., 2013)

presented a learning based method to identify cloth material from a cloth moving video. They

proposed to use visual features such as optical flow and texture features. Becker and Teschner pre-

sented a novel framework based on quadratic programming to determine linear elastic parameters;

they also assessed the effects of noisy measurements (Becker and Teschner, 2007b). Most recently,

improved data-driven methods have been proposed to estimate cloth parameters (Wang et al., 2011b;

Miguel et al., 2012a, 2013), which can photorealistically recreate the look of real fabric. Lately, A.

Davis (Davis et al., 2015) introduced a method to estimate the material properties of a deformable

thin shell based on the video which records the vibration pattern of it.
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CHAPTER 3: MULTI-REGION IMAGE-BASED ELASTICITY RECOVERY

3.1 Introduction

Being able to estimate the elasticity parameters of the patients tissue accurately can greatly help

with the diagnoses. For prostate cancer diagnoses, doctors need to sample the tissue of the prostate

in order to be certain about stage of the cancer and the kind of cancer. This procedure, however, is

done without the prior knowledge of which region to sample. Thus, the tissue sample may offer

misleading information. If I can learn before hand the elasticity of the two parts of the prostate,

the sampling result may be able to provide valuable information. For problem like this, previous

elastography methods have their limitations.

Toward realizing the concept of 3D physiological humans, I propose perhaps one of the

first elasticity parameter estimation algorithm for multiple, heterogeneous deformable bodies

simultaneously using medical images1. My approach is based on a multi-dimensional optimization

method that iteratively performs deformable body simulation using a finite element method on

reconstructed organ models with the continuously refined, estimated elasticity parameters. The

geometric models of organs are reconstructed based on low-resolution CT images. My objective

function measures the sum of the distance between the nodes of the organ surface. In contrast to

elastography methods (Becker and Teschner, 2007a; Eskandari et al., 2011; Zhu et al., 2003b),

the only information I need is the displacement of the nodes of the organ surface. I do not need

every pixel-wise displacement vector, thus no extra procedures need to be performed on the patient.

Two sets of (medical) images are sufficient to recover the elasticity parameters using my method.

Therefore, my method can be widely applicable to different imaging technology. It can be used

1 In this work, I use computed tomography (CT) images. But, the algorithm is also applicable to magnetic resonance
imaging (MRI) images.
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for animatino of soft bodies (see supplementary video) and possibly for cancer staging using only

low-resolution CT images.
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Figure 3.1: The Flow Chart of My Framework. My framework takes (at least) two sets of
images (medical images or other multi-view images) as input; I use these images to reconstruct 3D
meshes. The initial guess at the elasticity parameter is based on standard values and is given prior
to the start of the optimization process. For each optimization iteration, the body deformation is
recomputed using FEM simulation. The value of the distance objective function is also re-evaluated.
At the end of each iteration, the elasticity parameter is updated; the new, refined value is used by the
finite element model to continue the simulated-based optimization process.

3.2 Method

Given (at least) two sets of multi-view images of a deformable object, my framework can

automatically estimate elasticity properties within multiple regions of this model.

Fig. 3.1 provides an overview of my system. I assume that (at least) two sets of multiple-view

images are given, along with some initial guess at the elasticity parameters. First, I offer an overview

of how my method uses the input images to produce the geometrical reconstructions that are then

used in the elasticity-parameter reconstruction. Next, I describe each component of my system in

more detail.

3.2.1 Geometry Reconstruction and Mesh Generation

There are many approaches to reconstructing 3D geometry from multiple images; the method

chosen depends upon the image sources. I briefly summarize below how the 3D geometry of input

objects can be constructed using various image sources.
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Medical Images are usually taken when the organs are in a static or quasi-static state. There

are several widely-used imaging technologies, such as X-ray radiography, magnetic resonance

imaging (MRI), medical ultrasonography or ultrasound, elastography, tactile imaging, thermography,

nuclear medicine functional imaging, computed tomography (CT) scanning or computerized axial

tomography (CAT), etc. Each set of CT or CAT scans provides image “slices”, or the cross-sectional

images of anatomy. Variants of MRI and ultrasound images can be used to reconstruct anatomical

3D geometry using public-domain libraries such as ITK-SNAP (Yushkevich et al., 2006b) or

commercial systems such as AVS, 3D-Doctor, MxAnatomy, etc.

2D Drawings and Sketches can be converted to 3D models using widely available commercial

CAD and 3D modeling systems, such as Rhino, Autodesk LABS, Dassault Systems SolidWorks,

etc.

Multi-view Images from Cameras/Camcorder and other imaging technologies have been

used for 3D geometry reconstruction. Excellent surveys of methods of extracting 3D models

from images can be found in (Moons et al., 2010; Yushkevich et al., 2006b; Snavely, 2008; Wu,

2013b). These methods include algorithms using images for which camera parameters are unknown,

uncalibrated structure-from-motion methods, metric reconstruction from images with additional

knowledge about images, etc.

FEM Mesh Generation is accomplished by first building the input surface meshes as described

above. If medical images (e.g. CT, MRI, etc.) are used as input they require an additional step

before mesh generation: segmenting using ITK-SNAP (Yushkevich et al., 2006b) into multiple

regions. After mesh simplification and smoothing, the entire region of interest can be tetrahedralized

using TetGen (Si, 2007).

3.2.2 Quasi-Static Process Elasticity Parameter Estimation

My approach consists of two alternating phases: the forward simulation and the inverse

optimization process.
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3.2.2.1 Forward Simulation

This step uses the elasticity parameters generated from the inverse optimization process to

compute the amount of deformation that the body would undergo. I use the FEM to solve the

following governing equation of the deformable body.

∫
Ω

δuTρü dΩ +

∫
Ω

δ(ε)Tσ dΩ−
∫

Ω

δuTb dΩ−
∫

Γ

δuT t dΓ = 0, (3.1)

with u as the displacement field, ε as the strain tensor, σ as the stress tensor, b as the body force

and t as the tractions on the boundary Γ of the deformable body Ω. For the quasi-static deformation

process the ü = 0. I can rewrite Eqn. 3.1 as

[ ∫
Ω

δ(ε)Tσ dΩ−
∫

Ω

δuTb dΩ

]
−
[ ∫

Γ

δuT t dΓ

]
= 0, (3.2)

with the first part of the equation as the internal body force and the second part as the external force.

The computation of the stress force is determined by the material properties. Researchers have

proposed many models for simulating different kinds of materials. These material models define

the relation between the stress and the strain. To simulate the human organs in the abdomen and the

soft tissue surrounding those organs, I use the isotropic hyperelastic material model, which is used

commonly to approximate the deformation behavior of human tissue (Hu and Desai, 2004). The

stress-strain relation for the hyperelastic material model is defined through the strain energy density

function Ψ (energy per unit undeformed volume). I will be using the Green-Lagrange strain tensor

E with the second Piola-Kirchhoff stress tensor σPK2(Gurtin, 1982). The boundary conditions I

apply are the tractions t applied on the boundary Γ. My forward simulation framework uses an

invertible FEM (Teran et al., 2005) to ensure that the deformed elements have positive volumes in

the coupled simulation-optimization process.
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3.2.2.2 Material Model

The elastic behavior of deformable bodies varies for different materials. For small deformations,

most elastic materials (e.g. springs) exhibit linear elasticity, which can be described as a linear

function between stress and strain.

Linear Elasticity Material Model: The linearly elastic model assumes a constant variation

of stress and strain according to Hooke’s law, with no permanent deformations after the applied

stresses are removed. This holds true until the yield point, which is followed by an unrestricted

plastic strain after yield. Assuming isotropic linear elasticity, I can write

σ = Dε, (3.3)

where σ is the stress tensor induced by the surface forces, ε is the strain tensor defined by the spatial

derivatives of the displacement u, and D is a matrix defined by the material property parameters µ

(D = D(µ)). Assuming an isotropic material, the commonly used material property parameters are

Young’s modulus E and Poisson’s ratio ν.

Isotropic Nonlinear Hyperelastic Material Model: For many materials, linear elastic mod-

els cannot accurately capture the observed material behavior. Hyperelastic material models better

describe the nonlinear material behavior exhibited when deformable bodies are subjected to large

strains. For example, animal tissue and some common organic materials are known to be hypere-

lastic (Hu and Desai, 2004). The nonlinearity is captured through the energy density function Ψ

for hyperelastic material models. The energy function is a function of the strain tensor ε and the

material property parameters µ, where Ψ = Ψ(ε,µ). With the energy function, the stress tensor is

computed by taking the derivative of the energy function over the strain tensor.

σ =
∂Ψ(ε,µ)

∂ε
(3.4)

The energy function takes different forms for different models of hyperelastic materials.
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Energy Function: The energy density function determines the nonlinear behavior of the

deformable object. Human organs are hyperelastic and nearly isotropic. Generally speaking, for an

isotropic material model, the energy function is expressed as a function of the invariants I1, I2 and

I3 of the deformation gradient F,

I1 = λ2
1 + λ2

2 + λ2
3

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3

I3 = λ2
1λ

2
2λ

2
3

(3.5)

and the deformation gradient F is a function of the strain F = F(ε). One general energy function

for this class of incompressible materials, proposed by Rivlin (Rivlin, 1948), is

ΨR =
∞∑

i,j=0

Cij(I1 − 3)i(I2 − 3)j, (3.6)

where Cij are the material parameters. To account for volume changes, compressible forms of this

class of material are proposed by adding the third invariant to the above Rivlin expression.

Ψ = ΨR + Ψ(J), (3.7)

where J is the volume ratio J =
√

I3. I refer interested readers to the brief tutorial, provided as a

supplementary document, for more detail.

Mooney-Rivlin material model is widely known for its accuracy in modeling this property; I

use this model in my implementation because of its popularity and wide adoption in both medical

and engineering applications. In this work, I use this form of the energy function of Mooney-Rivlin

material model (Treloar et al., 1976; Rivlin and Saunders, 1951):

Ψ =
1

2
µ1((I2

1 − I2)/I
2
3
3 − 6) + µ2(I1/I

1
3
3 − 3) + v1(I

1
2
3 − 1)2, (3.8)
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where µ1, µ2 and v1 are the material parameters. The first two elasticity parameters, µ1 and µ2, are

related to the distortional response (i.e., together they describe the response of the material when

subject to shear stress, uniaxial stress, and equibiaxial stress), while the last parameter, v1, is related

to volumetric response (i.e., it describes the material response to bulk stress). I1, I2 and I3 are the

three invariants.

Incompressibility: In my simulation, I model abdominal organs as incompressible mate-

rial (Nava et al., 2003). There are several options for achieving incompressibility: One can add

constraints to the governing equation to ensure that the determinant of the jacobian J of the defor-

mation gradient F is equal to one. Alternatively, one can use the third material parameter (v1 in

Eqn. 5.2) to approximate incompressibility. To achieve incompressibility, I choose a fairly large v1;

this means v1 will not be optimized. In order to accurately describe the material, I reconstruct both

µ1 and µ2.

3.2.2.3 The Boundary Condition

The boundary condition is critical in solving Eqn. 3.2. The boundary condition can be either

the displacement field or the tractions on the boundary. My target applications for this work include

both medical applications and sketch-driven animation; for medical applications, I use the contact

force between the organ and the surrounding tissue as the boundary condition. To compute the

contact force I make two assumptions:

1. I simulate the surrounding tissue using a linear material model.

2. I know the (default) elasticity parameters for the surrounding tissue.

During the model reconstruction step, I include the surrounding soft tissue of the prostate, as well

as the bones of the male pelvis area (as shown in Fig. 5.3). I simulate the surrounding tissue using

a linear material model. This assumption is valid because the volume of the surrounding tissue

is far larger than that of the target organ, so the amount of strain ∂us

∂Xs
can be considered a small

strain. The displacement of the surface of the surrounding tissue will populate the displacement
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field us. For the second assumption, I set the elasticity parameters of the surrounding tissue to a

default value. Then the elasticity parameters of the target organ become relative values with respect

to the surrounding tissue. The second assumption is necessary for several reasons:

1. It is almost impossible to assess the elasticity properties of the tissue surrounding the target

organ in vivo;

2. without the boundary condition I cannot accurately solve the governing equation, Eqn. 3.2;

and

3. the relative material properties of the target organ have already proven to be useful for cancer

detection(Tsutsumi et al., 2007).

Given the displacement field us of the surrounding tissue, I compute the contact force using the

following equation:

Kus = f , (3.9)

where K is the stiffness matrix of the surrounding tissue (whose elasticity parameters are known),

and f is the resulting contact force. The FEM domain for the computation consists of elements

belonging only to the surrounding tissue. An example of the reconstructed contact force is shown in

Fig. 3.3.

Figure 3.2: The CT Image of Male Pelvic Area. The red dotted lines are the boundary of my
model reconstruction.

3.2.2.4 Distance-Based Objective Function

Since my simulation framework requires only two three-dimensional surface models of organs,

my error metric is constructed using the Hausdorff distance dH between the deformed organ surface
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Figure 3.3: Reconstructed Contact Force of One Patient’s Prostate. The light colored transpar-
ent surface is the reference mesh; the nontransparent surface is the initial surface.

Sl and the target reference organ surface St. The deformed organ surface is the output of the forward

simulation. The one-sided Hausdorff distance of two sets of points A and B is defined as

dH(A,B) = max
a∈A

min
b∈B

d(a, b), (3.10)

where set A represents points vl of the deformed organ surface Sl and set B represents the points

on the target reference organ surface St.

Given this definition of the one-sided Hausdorff distance, my surface distance metric is given as

Φ(µ) =
∑
vl∈Sl

‖dH(vl,St)‖2. (3.11)

The above Eqn. 6.12 will be the objective function for this optimization problem. The optimization

problem is thus

µ = argmin
µ

∑
vl∈Sl

‖dH(vl,St)‖2, (3.12)

where µ is the material parameter vector. The µ that minimizes the objective function is the

optimized elasticity parameter vector.

3.2.2.5 Multi-Region Elasticity Parameter Estimation

Multi-region elasticity parameter reconstruction is much more complicated than single-body

reconstruction. I consider two options for multi-region parameter reconstruction: 1) Alternate the
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parameter reconstruction process between the regions, or 2) simultaneously reconstruct the elasticity

parameters for all regions. I adopt the second method in this work, since my early experiments

showed simultaneous reconstruction method to have a better convergence rate than the alternating

method. Questions still remain regarding several elements of the process: 1) How to define the

regions; 2) how to simulate the regions; and 3) how to define the objective function.

In the case of prostate, I define the regions under the guidance of physicians; in general, this

step can be left to the users with knowledge in the target applications. In my examples, the prostate

is naturally divided into two parts by the prostatic urethra, as shown in Fig. 3.4. My multi-region

elasticity parameter estimation is aimed at determining which part of the organ of interest is stiffer

and therefore more likely to have cancers. This work will assist in diagnosing cancer and in

performing simulation-guided biopsy and other surgical procedures.

Figure 3.4: The Prostatic Urethra. The prostatic urethra naturally divides the prostate into two
parts. © Wikipedia(Gray, 1918)

I choose to simulate the regions of the deformable body as one deformable body. I do this

because I need to maintain the continuity of the surface of the target organ. Multi-region elasticity

parameter reconstruction requires some modifications to the objective function defined in Eqn. 6.12.

In this type of multi-region reconstruction, I use the following objective function:

Φ(µ) =
M∑
m=1

∑
vl∈Sm,l

‖dH(vl,Sm,t)‖2, (3.13)
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with M as the total number of regions, Sm,l as the deformed surface of the mth region, and Sm,t as

the surface of the reference mth region. The definition of Sm,l is critical for the convergence of the

reconstruction.

I exclude the nodes that are shared by other regions (as shown in Fig. 3.5(a) and Fig. 3.5).

When the nodes shared by the regions are included in the objective function given in Eqn. 3.13, the

distance dH(vl,Sm,t) may lead to optimization in the wrong direction; the decrease in the distance

that is computed from these nodes’ displacement fails to show that the optimizer is converging to the

ground truth. In fact, it is possible for the distance between the nodes and the reference surface to

decrease while the optimizer is diverging from the ground truth when nodes shared between regions

are used in the computation. I address this issue by including only the original vertices on the

surface of the object, not those on the shared boundary of two regions, as the vl in Eqn. 3.13. With

this approach, my experiments indicate that the multi-region parameter estimation can converge to

the right parameters for each region simultaneously.

Region'1' Region'2'

(a) (b)

Figure 3.5: The 2D and 3D Illustration of the Nodes of Regions. (a) These nodes do not
contribute to the convergence of the optimization. (b) The figure on the left shows nodes shared by
the two regions; the figure on the right shows the nodes not shared by the two regions.

3.2.2.6 The Inverse Step

This step estimates the recovered elasticity parameters of the target organ (or tissue). It

determines the accuracy of the estimated parameter by measuring the Hausdorff distance between

the (model) surface of the reference organ and that of the deformed organ, using the displacement

computed by the forward simulation.

Particle Swarm Optimization: A critical part in the inverse step is the optimization process.

After experimenting with several techniques, I have adopted a variant of the Particle Swarm
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Optimization (PSO) method (Kennedy et al., 1995; Poli et al., 2007; Clerc, 2010), a population-

based stochastic optimization method. This variant of the PSO method has the following advantages:

1. It can cope with a noisy objective function that has many local minima;

2. it does not need to compute the gradient of the objective function; and

3. it is easy to parallelize the state updates of each particle.

Each particle in the PSO method corresponds to a state in the optimization process, and each

particle possesses five attributes: the position, the velocity, the fitness value, the previous best

position of itself, and the previous best position of the entire particle swarm. I use the subscript

i to index the particle in the swarm, pi to represent the previous best position of the ith particle,

and pg,i to represent the previous best position of its neighbors. Superscript t denotes the current

iteration. Position will be a vector of N dimension represented as µti, and vti is the velocity of the

ith particle in the current iteration; yti (scalar value) represents the fitness value of the ith particle in

the current iteration. The swarm size is M , which usually ranges from 10 to 100. The dimension N

of the particle position and velocity is the same as the dimensionality of the optimization problem

space. The five attributes of the ith particle at the tth optimization iteration can then be defined as:

1. The position µti = (µt1,i, . . . , µ
t
n,i, . . . , µ

t
N,i), with µti ∈ H, 1 ≤ n ≤ N , 1 ≤ i ≤M

2. The velocity vti = (vt1,i, . . . , v
t
n,i, . . . , v

t
N,i), with vmin ≤ ‖vti‖ ≤ vmax, 1 ≤ n ≤ N , 1 ≤ i ≤

M

3. The fitness value yti = Φ(µti), with Φ() as the fitness function or the objective function of the

optimization problem

4. The previous best position of itself pti = (pt1,i, . . . , p
t
n,i, . . . , p

t
N,i), with pti ∈ H, 1 ≤ n ≤ N ,

1 ≤ i ≤M

5. The previous best position of its neighbors ptg,i = (ptg,1,i, . . . , p
t
g,n,i, . . . , p

t
g,N,i), with ptg,i ∈ H,

1 ≤ n ≤ N , 1 ≤ i ≤M
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The position is a point in the Euclidean search space H of the optimization problem. In my problem,

the search space is the range of all possible elasticity parameters. The number of parameters I are

recovering is the dimension of the search space of the optimization. In other words, the positions of

the particles are a set of the parameters I want to estimate. The fitness value is computed from the

fitness function Φ, which is the objective function of the optimization problem (Eqn. 6.12). The

velocity represents the search direction. The previous best position of the particle itself is the best

set of parameters this particle has found so far. And the previous best position of its neighbors is

the best set of parameters the neighbors of particles has found. The current position, the current

velocity, the fitness value, the previous best position itself, and the previous best position of the

swarm will be used to compute the velocity or the search direction.

Instead of optimizing one estimated solution at a time, a number of the particles are used

together to collectively search for the best solution to the optimization problem (i.e., multiple

coordinated searches going on simultaneously). Intuitively, the “particle swarm” will not only

accelerate the search for the best solution, but will also increase the probability of finding the

globally optimal solution.

The PSO method works by iteratively updating the particles’ properties. The canonical PSO

method uses the following two equations to update particle position and velocity, with Rand() as a

random value generator.

v
(t+1)
i = vti +Rand()(pti − µti) +Rand()(ptg,i − µti) (3.14)

µ
(t+1)
i = µti + vt+1

i ∆t, (3.15)

with ∆t = 1. The particle’s position update (Eqn. 3.14, Eqn. 3.15) can be computed since it is

determined by several factors: the current position µti; the persistence in the previous direction (first

part of Eqn. 3.14); the influence of the previous best position of itself (second part of Eqn. 3.14);

and the influence from its neighbors (third part of Eqn. 3.14). Two questions remain:

1. How to define the neighbors (how to compute ptg,i), and
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2. how to weigh the particle’s persistence in its previous direction and the influence from its

neighbors (i.e., how to refine Eqn. 3.14).

The design of appropriate PSO variants mainly focuses on these two issues.

Population Structure: The population structure of the swarm affects the convergence rate, as

the structure determines how fast information propagates inside the swarm. If each particle in the

swarm is informed by every other particle, the influence term in Eqn. 3.14 will be same for every

particle, meaning that all particles will move in similar directions. This makes it easy for the swarm

to become entrapped in a local minimum. But if each particle in the swarm is only informed by one

or two other swarm particles, the influence of other particles will be small. But if the particles are

not informed enough, this slows down the process of finding the best solution. Therefore, the way

that information is communicated from particle to particle can be crucial. Various kinds of swarm

topology, or population structures (Kennedy and Mendes, 2002), have been studied. The canonical

particle swarm optimization (Eqn. 3.14, Eqn. 3.15) uses the global best solution so far; it connects

every particle with every other particle. After some experiments, I chose instead to use the adaptive

random structure (Clerc, 2012). With this adaptive scheme, after every unsuccessful iteration, the

neighbors of the particle i changes to K random neighbors. This adaptive random structure keeps

the particles informed about different neighbors at every iteration. The value of K depends on the

swarm size M and the properties of the objective function. For my problem, I chose K = 3 and

M = 40 based on my experiments.

Velocity: The canonical way of updating velocity (dimension by dimension) is known to be

biased (Monson and Seppi, 2005). Therefore, I adapted the method of computing the velocity or the

search direction from (Clerc, 2012). For each iteration, I update the velocity of the ith particles by

v
(t+1)
i = C(vti,p

t
i − µti,ptg,i − µti). (3.16)

The function C, denoting the velocity of the next iteration, is dependent on three terms: (a) the

current velocity vti, (b) the difference between the current position µti and the current best position of
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itself pti, and (c) the difference between the current position µti and the best position of its neighbors

pg,i. The best positions are the ones that result in best fitness value. For each iteration, the fitness

value of each particle is evaluated to find the best position.

D being the dimension of the search space, which is denoted by a hypersphere Hi(G
t
i, ‖Gt

i −

µti‖)), with the center Gi as the geometric center of the three points. These three points are: 1) the

current position µti; 2) the point near the previous best position of it self (µti + c(pti − µti)); and 3)

the point near the previous best position of the neighbors (µti + c(ptg,i − µti)).

Gt
i =

µti + (µti + c(pti − µti)) + (µti + c(ptg,i − µti))
3

, (3.17)

with c as a constant. I use c = 1/2 + ln(2)(Clerc, 2010) and I assume a radius of rmax = ‖Gt
i−µti‖

I then randomly select a position µ′ti within the space bounded by the D-sphere that has radius

r = U(0, rmax).

In addition to their known bias, the canonical velocity update methods (Eqn. 3.14) also result in

velocity divergence. This problem was solved in paper (Shi and Eberhart, 1998) by the introduction

of the inertia term ω; I follow (Shi and Eberhart, 1998) by incorporating ω into my velocity update

function to solve the problem of velocity divergence. Now my velocity update function is defined as

v
(t+1)
i = ωvti + µ

′t
i − µti, (3.18)

where the ω is a constant. I set ω = 1
2ln(2)

(Clerc, 2010). The update of the position of the ith particle

is then computed as

µ
(t+1)
i = ωvti + µ

′t
i . (3.19)

If the position of the next iteration µt+1
i is outside the current D-sphere, then the particle is

“exploring” the area (searching in the unknown area); otherwise, it is “exploiting” (searching within

the known area). Allowing the particles to “explore” and “exploit” can effectively avoid the problem
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of noise and local minima affecting the results. The pseudo code for my system work flow is

provided in Algorithm. 1.

3.2.3 Sensitivity Analysis

In the sensitivity analysis, I aim to identify the uncertainties in the output of the system that

come from variation in the input. The input to my optimization-simulation-identification framework

is the amount of tissue deformation inferred from two sets of images, while the output is the

estimated elasticity parameters. I wish to identify the relation between the changes in the input, i.e.

the deformation, and the output, the elasticity parameters. Mathematically, I take the derivative of

the elasticity parameters on both sides of the objective function (Eqn. 6.12):

∂Φ(µ)

∂µ
=

∂Φ

∂dH(u)

∂dH(u)

∂u

∂u

∂µ
(3.20)

My study therefore focuses on testing the sensitivity of the deformation with respect to the

elasticity parameters of the Mooney-Rivlin nonlinear material model, given fixed external forces.

Specifically, I study the µ1 and µ2 in Eqn. 5.2. Since µ1 and µ2 are related to distortional response,

to simplify the test without losing generality I set µ1 and µ2 to the same value for the simulation of

isotropic homogeneous deformable bodies. I will use µ to represent both µ1 and µ2 in the following

text. To demonstrate the advantages of the nonlinear material model over the linear material model

for large deformations, I also compare the results with those produced by linear material model.

I design the model of my test as a simple sphere embedded in a cube. The entire domain has

been tetrahedralized using TetGen (Si, 2007). The sliced view of the model is shown in Fig. 3.6.

Forces are applied on the surface of the sphere. The sphere will deform to an equilibrium state;

the surface of the cube will be fixed. In this study I will use relative elasticity parameter instead

of absolute values for two reasons: (a) comparison (in order to produce the same amount of

deformation, the value of the elasticity parameters differ in linear and nonlinear material models),
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Algorithm 1 Static Elasticity Parameter Estimation Method
1: procedure FORWARD SIMULATION(u, µk)
2: u + ∆u← f(u,µk) // fem
3: return uk
4: procedure OBJECTIVE FUNCTION EVALUATION(u,µ)
5: u + ∆u← FORWARD SIMULATION(u,µ)
6: y ← Φ(u,u + ∆u,µ) // refer to Eqn.14
7: return y
8: procedure PARTICLE SWARM OPTIMIZATION(u)
9: Step 1: Initialize

10: for all the particles do
11: µ0

i ← randomly selected position from search space H with uniform distribution
12: v0

i ← randomly selected vector with the length not larger than the radius of the search
space H

13: p0
i ← µ0

i

14: p0
g,i ← µ0

i

15: y0
i ← 0

16: close;
17:
18: Step 2: Iterate
19: while not converged do
20: for all the particles do
21: yti ← OBJECTIVE FUNCTION EVALUATION(u,µti) // evaluate fitness function
22: Gt

i ←
µt

i+(µt
i+c(p

t
i−µt

i))+(µt
i+c(p

t
g,i−µt

i))

3
. // evaluate the center of the D-sphere

23: µ
′t
i ← randomly picked point from the D-sphere with uniform distribution

24: vt+1
i ← ωvti + µ

′t
i − µti // update velocity

25: µt+1
i ← µti + vt+1

i // update position
26: if yti better than previous best fitness value then
27: pt+1

i = µti
28: else
29: pt+1

i = pti
30: close;
31: close;
32: for all the particles do
33: Iterate the neighbors update pt+1

g,i ← the best pt+1
i

34: close;
35: close;
36: return µ
37: procedure MAIN

38: while not converged do
39: PARTICLE SWARM OPTIMIZATION(u)
40: close;
41: close;
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and (b) consistency (in application, I can usually assume default values for the elasticity parameters

of the tissue surrounding the organ of interest).

My analysis studies two types of material models: incompressible linear models and nonlinear

models. To test the incompressibility of the material model, external forces are applied to only some

of the nodes on the sphere surface, deforming it to an ellipsoid; the ratio of the length of the major

axis and the minor axis will be used as the measurement of the amount of deformation. To ensure

that the resulted system will be in equilibrium, the sum of the external forces is set to zero. Note

that I also fixed the elasticity parameters of the area between the surface of the sphere and the cube.

I also study the difference in material behavior between the linear material model and the

nonlinear material model. To make a fair comparison, I start with the set of elasticity parameters that

will result in the same amount of deformation when the same amount of external force is applied to

the model. I first set the elasticity parameters of the sphere and the surrounding area to this same set

of values. Then I change the elasticity parameters of the sphere and record the deformation of the

sphere.

Figure 3.6: Sliced View of the Model Used for Sensitivity Analysis.

To show the result, I plot the relative elasticity parameters against the amount of deformation,

which is computed as the ratio of the ellipsoid major axis and the minor axis for the incompressible

material model in Fig. 3.7. Fig. 3.7(a) shows that the value of the slope for the nonlinear material

curve is high when the elasticity value is small. The slope of the curves in Fig. 3.7(a) is in fact

∂u
∂µ

. When the value of ∂u
∂µ

is high, large variation or uncertainty in the input does not lead to large
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(a) (b)

Figure 3.7: The Sensitivity Analysis Results. (a) shows the relation between amount of deforma-
tion represented by the inner sphere’s radius changes vs. the relative elasticity parameter. (b) shows
the relation between the change in deformation per change in the relative elasticity parameter vs.
the relative elasticity parameter.

errors in the output. This implies that my optimization framework is less prone to uncertainties and

numerical errors when the elasticity parameters are small; when the value of the elasticity parameter

is large, the parameter value can still be recovered but its accuracy may be lower in comparison to

the accuracy of lower parameter values. For the target medical applications, tumor tissues generally

tend to be much stiffer and to have a much broader range of parameter values; therefore, comparably

lower accuracy in this range poses little problem for the screening and diagnosis of cancer (see

Fig. 3.12), for surgical procedures, or for haptic rendering.

Furthermore, in both Fig. 3.7(a) and Fig. 3.7(b), I observe that the slope of the blue line is

almost always larger than that of the red line (i.e., the blue line lies above the red line), as shown in

Fig. 3.7(a) and in Fig. 3.7(b). These results show that, compared to the linear material model, the

nonlinear material model is more robust and less prone to error from variation/uncertainty in the

input, and is thus better for medical applications.

36



3.3 Experiments

I have implemented my algorithms in C/C++ and have validated the results by 1) using a

synthetic dataset with known elasticity values; 2) determining the correlation between the elasticity

values extracted from the patients’ medical (CT) images and their cancer stages, thereby indirectly

validating the results of my approach on a real-world (live) patient dataset (I validated indirectly

rather than by direct force measurements because 3D elastography cannot be performed non-

invasively to obtain elasticity values in vivo); and 3) elasticity parameter estimation based on a

sequence of 2D sketches. I demonstrate the application of my algorithm on two scenarios. The first is

a 3D interaction with a virtual liver for surgical simulation; the second is a physics-based animation

of letters spelling out ‘AROMA’ based on a user’s conceptualized sketches as keyframes. From these

drawings, I automatically estimate the elasticity parameters and recreate the desired deformation

using the MaterialCloning algorithm. Please see the supplementary video for demonstration of

these applications.

3.3.1 Multi-Region Elasticity-Parameter Reconstruction

The experiment is designed to validate my multi-region, elasticity-parameter reconstruction

using synthetic data. In this experiment I divide the organ of interest into two regions; one of

the regions contains an embedded tumor with high elasticity parameters (Fig. 3.8). I validate my

method by recovering the elasticity parameters for the two different regions; the region with the

embedded tumor should have higher elasticity parameters than the normal region. According to

data from surgical experiments on human tissues, the two material parameters, µ1 and µ2, tend to

be close (Tang et al., 2001). Therefore, the average value of the two material parameters is used in

the following studies. I test the accuracy and the robustness of my framework by varying the size of

the tumor, as shown in Fig. 3.8. In this experiment I assign the tumor elasticity parameters a value

of 70kPa; the rest of the elements are assigned 30kPa. I expect the recovered elasticity parameter

for the normal tissue region to be close to 30kPa and the recovered elasticity parameter for the
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Figure 3.8: Different Regions of the Organ. left with a tumor embedded; right with normal tissue.

Table 3.1: Multi-Region Elasticity Parameter Reconstruction

As the volume ratio of tumor to the embedded region increases,
so does the average stiffness value for the tumor-embedded region.

Tumor-to-Region ratio 0.022 0.14 0.30 0.49 0.65 0.76 0.85
Region with tumor µ̄ (kPa) 30.63 31.54 39.18 43.93 51.23 61.16 71.01
Region with normal tissue µ̄ (kPa) 29.15 28.89 31.22 30.17 31.49 29.31 30.46

tumor region to correlate with the tumor size. Results in Table 3.1 show that the recovered elasticity

parameter of the region with the tumor almost linearly correlates with the size of the tumor: the

linear correlation coefficient is 0.9659. The relative error for the normal tissue region is much less

than 5%. An example optimization process for the normal tissue region is shown in Fig. 3.9.

I further validate my multi-region elasticity parameter reconstruction scheme by varying the

tumor’s elasticity parameters while keeping its size fixed. The tumor for this set of experiments

occupies about 64% of the entire region on the left side of Fig. 3.8. The recovered value, shown in

Table. 3.2, has a high linear correlation coefficient of 0.9856.

One possible source of error in my multi-region elasticity parameter reconstruction scheme

comes from variation in the mesh resolution. It is expected that finer mesh resolution will produce

increased accuracy. To test this assumption, I re-run the first part of my multi-region experiment on

models with different mesh resolutions. In this experiment, I vary the size of the tumor in the tumor

region (shown in Fig. 3.8), then recover the elasticity parameter for the normal region and the tumor

region using models of different mesh resolutions. In Fig. 3.10, I plot the relative error of elasticity

parameters recovered from models with different mesh resolution against the tumor-to-region ratio.

For the normal region, I set the ground truth to be 30kPa. I found that varying the mesh resolutions

from 1,500 nodes to 200 nodes was responsible for 1 − 5 percent of the error in the recovered
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Figure 3.9: Particle-Swarm Optimization Process: The blue dots are the particles and the red
dot signifies the ground truth.

Table 3.2: Multi-Region Elasticity Parameter Reconstruction

As the the tumor becomes more stiff, the average elasticity value in the tumor region increases as well.
Tumor Elasticity Parameter (kPa) 70 140 210 280 350 420 490
Region 1 with tumor µ̄ (kPa) 51.23 112.92 157.44 186.78 202.22 254.20 272.58
Region 2 with normal tissue µ̄ (kPa) 31.49 28.28 30.04 28.56 27.62 29.61 25.18

elasticity parameters (shown in Fig. 3.10). I also found that the recovered elasticity parameters

tend to converge better (i.e. with less fluctuation) with higher mesh resolution. As Fig. 3.11 shows,

the blue and the green lines, which indicate results with finer mesh resolutions, tend to be closer

together; compared this with the red and the cyan lines, which plot lower mesh resolutions and

diverge significantly. This study further indicates that the robustness and the convergence of my

algorithm, as the resolution of the FEM meshes increases.

Other Sources of Error: I do not expect the recovered elasticity values to be completely

free of errors, because error can come from multiple sources, including distance-field computation,

accumulation of numerical errors from discretization, parameter dependency, etc. I focus on two as-

pects, namely the mesh resolution (see above) and the sensitivity analysis on parameter dependency

(Section 3.2.3), since the other possible sources of error are similar because of discretization.

3.3.2 Correlating Estimated Tissue Parameters with Cancer T-Stages

I adopt the experimental protocol from (Lee et al., 2012b), because it is impractical, if not

impossible under existing regulations for human subject protection, to measure tissue elasticity of

organs for a live patient in vivo. This experiment is designed to indirectly validate the effectiveness

of the proposed tissue elasticity reconstruction approach in cancer staging. The T-stage, laid out in
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Figure 3.10: The Relative Error vs. Tumor-to-Region Ratio. This figure shows the relative error
of elasticity parameters for the normal region recovered using models with varying mesh resolutions
plotted against the tumor-to-region ratio.

Table 3.3, follow the definitions in the TNM (Tumor, lymph Nodes, Metastasis) system (Sobin et al.,

2011), a common cancer staging system. I use ten sets of real patient data in my experimental study.

The simulation scene includes the prostate, its surrounding tissue, and the bones within a male’s

pelvis area. The three-dimensional prostate models were reconstructed from the patient’s CT images,

which were taken when the patient was in two different states; the squished and the undeformed

state. For the correlation experiment, I use the same elasticity parameter value for all the patients’

prostate-surrounding tissue: 20kPa (Rosen et al., 2008). The result of my experiment is shown in

Fig. 3.12. I further analyze the statistical significance of this correlation between the documented

T-stages of each patient’s cancer at the time of the imaging and the estimated elasticity of their

prostates; I use Pearson linear correlation and Spearman correlation to compare the significance of

the measured vs. the estimated values. The Pearson linear correlation coefficient for the prostate’s

material parameters and T-stage is 0.8233, with a p-value of 0.0034. The Spearman rank correlation

coefficient is 0.8304, with p-value of 0.0029. These statistics suggest a strong correlation between

the prostates’ elasticity parameters and their T-stages. The p-values computed from my experiments
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Figure 3.11: The Recovered Elasticity Parameter vs. Tumor-to-Region Ratio. This figure
shows the recovered elasticity parameter for the tumor region using models with different mesh
resolutions vs. the tumor-to-region ratio.

are one order smaller than that of previous work (Lee et al., 2012b); this indicates that my method

is much more accurate.

Stage Definition
TX Primary tumor cannot be assessed
T0 No evidence of primary tumor
T1 Clinically inapparent tumor by palpable

or visible in imaging
T2 Tumor confined within prostate
T3 Tumor extends through the prostate capsule
T4 Tumor is fixed or invades structures

other than seminal vesicles

Table 3.3: T-stages for prostate cancer definition

3.3.3 Performance Analysis for Quasi-Static Parameter Estimation

The model I use in my multi-region reconstruction validation experiment and cancer-stage

correlation experiment consists of (on average) 4,000 tetrahedral elements. I run my experiment on

a desktop with Intel(R) Core(TM) i7 CPU, 3.20GHz. With the Particle-Swarm Optimization (PSO)
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Figure 3.12: Box Plot of Estimated Average Elasticity Parameters. The estimated elasticity
parameters µ̄ of the prostate of the ten patients vs. their cancer stages shows positive correlation.

method, the entire parameter reconstruction process takes no more than 24 hours on a single core. I

gain nearly linear performance scaling by paralleling the PSO method using OpenMP, as shown

in Figure. 3.13. The searching step of the PSO can be easily parallelized because each particle

searches independently for the optimal solution. Parallelizing the particles’ searches gives better

performance. Compared to earlier elasticity parameter reconstruction methods (Lee et al., 2012b),

my reconstruction algorithm can be easily parallelized; it therefore achieves a performance much

superior to other methods on modern parallel architectures (such as GPUs, many-core processors,

etc).

Figure 3.13: The Running Time of the Reconstruction Process vs. the Number of Threads
Used. The running time decreases almost linearly with the increase of the number of thread.

3.3.4 Applications

I demonstrate the application of my MaterialCloning algorithm on several different scenarios:
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Figure 3.14: The virtual surgery application. (a) shows the liver, with elasticity parameter
reconstructed from patient data, resting on a plate. (b) is the screenshot of our virtual surgery system,
using elasticity parameters for the prostate that were reconstructed from patient data.

(a) (b)

Figure 3.15: Animation from 2D Sketches. The three images in the first row are the 2D Sketches
of three keyframes; the three images in the second row are the simulation result of the corresponding
keyframes.

• Dynamic simulation of a liver and a prostate, using extracted stiffness values from CT images

of two different patients, dropped onto a medical dish (see Fig. 3.14(a));

• A user poking and interacting with a ‘virtual prostate’ with patient-specific elasticity param-

eters that were automatically acquired from 2 sets of CT images of the patient on different

days (see Fig. 3.14(b));

• ‘Animated letters’ (see Fig. 3.15(a)) and ’Animated figure’ (see Fig. 3.15(b)) are simulated

from material parameters estimated directly from the artist’s sketches, which serve as the

keyframes to an animation sequence. My system, combined with dynamic tracking mechanism
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presented in a technical report (Yang and Lin, 2015a), can be extended to create animations

from time-sequential sketches.

The visual illustrations of these examples are included in the supplementary video.

3.3.5 Comparison with Other Approaches

It is difficult to compare my work to existing methods on parameter estimation for soft tissues

(Pai et al., 2001; Becker and Teschner, 2007b; Syllebranque and Boivin, 2008a; Bickel et al., 2009,

2010), as my approach does not require force-measuring devices such as force sensors or trinocular

stereo vision systems. In contrast to earlier methods, my algorithm does not perform data fitting,

but instead uses a coupled simulation-optimization framework to refine the estimated parameters

until the optimizer converges. Instead of force measurements, I use (at least) two sets of images to

reconstruct 3D geometry, then perform FEM simulation on them. The reconstructed 3D geometry

and FEM meshes can introduce approximation and discretization errors, respectively. Nevertheless,

my approach makes it possible to perform non-invasive parameter estimation directly on images in

situations where 3D elastography is impossible or impractical, such as on live patients or sourced

from hand drawings.

The work closest to ours is that of Lee et. al.(Lee et al., 2012b). and in comparison to this work,

my method shows much improved accuracy (see Sec. 3.3.2), as well as adds the ability to perform

simultaneous parameter estimation for multiple materials. I use the Particle Swarm Optimization

(PSO) method, which is more easily parallelizable than iterative optimization methods (Lee et al.,

2012b) and is less prone to local minima entrapment. However, PSO is computationally more

expensive and would require parallel implementation on commodity hardware (e.g., GPUs or many

cores) to increase its performance. Furthermore, I demonstrate that my method can also be used

to estimate elasticity parameters with the artist’s sketches as keyframes to automate physics-based

animation.

44



3.4 Conclusion and Future Work

In this chapter, I presented the MaterialCloning algorithm, which can automatically acquire

multi-region elasticity parameters directly from two sets of multiple-view images. I validate its

effectiveness using both synthetic datasets and real-world medical images.

The results of my validation experiments using real-world data suggest some immediate

applications: Cancer staging with only low-resolution CT images as input, computer animation of

deformable models from keyframe sketches, and patient-specific surgical simulation. This method

does not require any external forces to be measured; only the deformation of the body surface

is needed. It can therefore be used on organs deeply seated in the human or animal body. Most

importantly, this method can reconstruct elasticity parameters for multiple regions simultaneously.

With this additional analysis, physicians can perform a more effective, image-guided biopsy, thereby

leading to higher accuracy in cancer detection and diagnosis. I also demonstrate my algorithm

on real-time interaction with virtual organs in surgical simulators, as well as on physics-based

animation of virtual objects directly from the animator’s conceptualized drawings.

One possible future direction is to significantly improve the algorithm’s computational per-

formance using reduced models, so that it is possible to adopt such a technique for real-time

image-guided biopsy and surgery.
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CHAPTER 4: VIDEO-BASED SOFT-BODY MECHANICAL PROPERTY RECOVERY

4.1 Introduction

In this chapter, I propose a novel Bayesian elasticity-parameter estimation algorithm for

deformable bodies using temporal sequences of deformation samples. These deformation samples

may be medical images, such as those from ultrasound and echocardialgram, videos, or hand

sketches. The samples reflect the 4-dimensional (or 3D) behavior of the deformable bodies by

providing a temporal sequence of 3D (or 2D) shapes in motion. Our method follows the iterative

optimization from the Lavenberg-Marquardt Algorithm (Moré, 1978; Lourakis and Argyros, 2004).

But, I address the problem using the Bayesian framework. Given the temporal sequences input, I

adopt a probabilistic graphical model (Loague and Green, 1991; Madigan et al., 1995), the unscented

Kalman Filter (Wan and Van Der Merwe, 2000), to continuously refine the estimated elasticity

parameters by matching the simulated deformation (generated by FEM simulation) to the input

temporal sequences of (captured) deformation samples. The geometric models of the deformable

bodies are reconstructed from the given measurements, e.g. videos.

In contrast to the traditional strain-stress matching methods (Mehrabian and Samani, 2009;

Ottensmeyer, 2001; Brouwer et al., 2001; Boonvisut and Cavusoglu, 2013), elastography meth-

ods (Rogowska et al., 2014; Engel and Bashford, 2015; Bilston and Tan, 2015), and the more recent

inverse FEM (Kauer et al., 2002b; Lee et al., 2012a), I are able to recover the mechanical parameters

of the deformable bodies by tracking and matching a temporal sequence of deformation samples

with simulated deformation. Similar to the inverse FEM, our approach utilizes the implicitly known

or computed external force as the boundary condition. But, I further maximize the utilization of the

input video by constructing the posterior probability distribution of the estimated parameters using

the given temporal sequence of deformation samples. I validate the effectiveness of our framework
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by recovering the mechanical parameters of a tennis ball and a foam ball from videos captured by

high-speed cameras.

The key results of this work include

• An alternative approach to dynamically track the surface of a deformable body in motion;

• Reconstruction of non-rigid mechanical properties from temporal sequences of deformation

samples using a probabilistic, graphical model.

The rest of this chapter is organized as follows. I describe our Bayesian framework for elasticity

parameter estimation from temporal sequences of deformation samples in Section 4.2 and present

the validation experiments and results in Section 4.3.

4.2 Method

Given a temporal sequence of deformation samples, such as ultrasound videos, high-speed

camera videos, etc., the goal is to recover the mechanical properties of the non-rigid body in

motion. Our framework uses the unscented Kalman Filter (Sec. 4.2.4) for the estimation of elasticity

parameters and a tightly coupled module for hidden state estimation (Sec. 4.2.5) for deformable

body undergoing motion. The input to our framework are the observed temporal sequence of

deformation samples and the computed boundary condition. Our framework then computes the

optimized the mechanical properties and the tracked surfaces of the deformable body in motion.

The overview of our framework is given in Fig. 6.2.

4.2.1 Generalized Dynamic Process and Decoupled State Parameter Estimation

I first give an abstract model for the general dynamic process. The discrete-time dynamic

deformation process can be described by a dynamic state-space model. I will use subscript k for

the kth iteration for the dynamic process and subscript n for the nth deformation sample in the

sequence. The model has the hidden system state xk with noise, the corresponding observation
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Figure 4.1: The Flow Chart of Our Framework. Our framework takes a temporal sequence of
deformation samples as the input. The UKF takes in the observations and drives the finite element
simulation by optimizing both the hidden parameter and hidden states.

yk with noise, the hidden parameter wk, an update function f(x; w) and an observation function

h(x; w). The model is given as:

xk = f(xk−1; w) (4.1)

y′k = h(xk; w) (4.2)

y′k equals to yk when the hidden state and the hidden parameters are optimized.

When applied to our discrete-time dynamic deformation process, the hidden system state x

consists of the displacement u, the velocity u̇ and the acceleration u̇.

x = [u u̇ ü] (4.3)

The observation y is the key frame configurations which is the displacement of the key frame

deformations. The update function f is the integrator. For different time discretization method, the

update function f is different. The observation function h is the transformation matrix from x to y′

with noise added.
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Our dynamic elasticity parameters estimation problem can be stated as using the above dynamic

state-space model for estimation of hidden system variables (including states and parameters) based

on the keyframe observations.

4.2.2 Deformable Body Modeling

I use Finite Element Method (FEM) for the spacial integration in deformable body simulation. I

use incompressible, linear stress-strain model in this work. For linear stress-strain model, it assumes

that the relation between stress and strain can be represented by a linear function. I apply the Lamé

material with the Lamé’s first and second parameter computed from the Young’s modulus E and

the Poisson’s ratio ν. Lamé material model is a widely used simple linear material model. Though

the linear material model is not accurate to approximate large deformations, for our application, it is

accurate enough to identify different mechanical properties of various materials. Because I assume

incompressibility, I use 0.45 as the Poisson’s ratio. The Young’s modulus E is the parameter I will

optimize using our framework. FEM combined with the Newmark implicit time integration method

forms the update function Eqn. 4.1

4.2.3 Bayesian Parameter Estimation

For Bayesian parameter estimation, we estimate the posterior probability distribution of the

parameters wk,

p(wk|y1:n) (4.4)

based on the observations,

y1:n = y1,y2, . . . ,yn (4.5)

To motivate our reason for choosing unscented Kalman Filter as the estimation method, we will first

give a brief introduction of the Recursive Bayesian Estimation algorithm. Recursive Bayesian esti-

mation algorithm filters the posterior probability density function recursively for new observations.
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According to Bayes’ theorem, the posterior probability density can be expressed as,

p(wk|y1:n) =
p(yn|wk)p(wk|y1:n−1)

p(yn|y1:n−1)
(4.6)

We will not give details on every term in Eqn. 4.6. We focus on the hidden parameter transition prior

p(wk|wk−1) and the observation likelihood densities p(yn|wk). The computation of the hidden

parameter transition prior p(wk|wk−1) depends on the update function f(x; w). In our application,

the state update function f(x; w) is nonlinear. Thus we need an approximation method.

The basic Kalman Filter models the densities in Eqn. 4.6 by Gaussian distributions. And it

assumes that the state posterior probabilistic density can consistently be minimized by updating

only the first (mean) and second order moments (covariance) of the true probabilistic densities. The

extended Kalman Filter applies the basic Kalman Filter to nonlinear dynamic state-space system

by first linearize it using Taylor series. This linearization affects the accuracy of the estimation

process. The unscented Kalman Filter approaches the nonlinear problem differently. Instead of

linearizing the system using Taylor series, it uses a general deterministic sampling framework, or

the sigma-point approach. Thus we choose to use unscented Kalman Filter as our basic estimator

for our dynamic elasticity-parameter estimation problem.

4.2.4 Unscented Kalman Filter for Parameter Estimation

The unscented Kalman Filter (Wan and Van Der Merwe, 2000) handles the nonlinear problem

with the idea that it is easier to approximate a random variable than a non-linear function. Like both

basic Kalman filter and extended Kalman filter, the unscented Kalman filter consists of two steps:

the prediction step and the correction step. In order to do parameter estimation, we first construct a

mapping between the measured observation y′, state x and the parameters w. In the following, we

will use d for y′. The observation y equals to the measured observation d when the state x and the

parameters w are optimized. We define a function g as follows,

dk = g(xk,wk) (4.7)
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We will use superscript minus for prior probabilistic densities, P for covariance matrix, hat

symbol for the mean of the random variable, subscript k for the current estimation iteration and L

as the size of the parameter vector w.

1. Initialize the mean of the parameters and the covariance matrix of the parameters

ŵ0 = E[w0] (4.8)

with w0 as the initial guess of the parameters

Pw0 = E[(w0 − ŵ0)(w0 − ŵ0)T ] (4.9)

2. For each estimation iteration k: Compute the prior of the mean of the parameters and the

prior of the covariance of the parameters as,

ŵ−k = ŵk−1 (4.10)

P−wk
= Pwk−1

(4.11)

Select a set of sigma points Xk|k−1. The columns of the matrix Xk|k−1 are the sampled

parameters.

Xk|k−1 = [ŵ−k , ŵ
−
k + γ

√
P−wk

, ŵ−k − γ
√

P−wk
] (4.12)

where γ =
√
L+ λ. The matrix expands as,

X0,k|k−1 = ŵk i = 0

Xi,k|k−1 = ŵk + (γ
√

Pw−k
)i i = 1, . . . , L

Xi,k|k−1 = ŵk − (γ
√

Pw−k
)i i = L+ 1, . . . , 2L

(4.13)
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The weights ω(m) for computing the mean of the sigma-points and the weights ω(c) for

computing the covariance matrix of the sigma-points are,

ω
(m)
0 = λ

L+λ
i = 0

ω
(c)
0 = λ

L+λ
+ (1− α2 + β) i = 0

ω
(m)
i = ω

(c)
i = 1

2(L+λ)
i = 1, . . . , 2L

(4.14)

i=2L∑
i=0

ω
(c)
i = 1,

i=2L∑
i=0

ω
(m)
i = 1 (4.15)

where α and β are two tuned parameters for the filter. α affects the distribution of the sigma-

points. The distribution of the sigma-points can affect the convergence rate to some extent.

And β controls the tails of the posterior distribution. In our experiments we set β = 2 and α

varies from 0.1 to 2. Then compute the measured observation sigma points of each element

of the sigma points matrix Xk|k−1,

Yk|k−1 = g(xk,Xk|k−1) (4.16)

the prior of the mean of the measurements d−k ,

d̂−k =
2L∑
i=0

ω
(m)
i Yi,k|k−1 (4.17)

the prior of the covariance matrix of the measurements P−dk
,

P−dk
=

2L∑
i=0

ω
(c)
i (Yi,k|k−1 − d̂−k )(Yi,k|k−1 − d̂−k )T + Rek (4.18)

the cross covariance matrix for the parameter and the measurement,

Pwkdk
=

2L∑
i=0

ω
(c)
i (Xi,k|k−1 − ŵ−k )(Yi,k|k−1 − d̂−k )T (4.19)
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Compute the Kalman gain Kk,

Kk = Pwkdk
P−1

dk
(4.20)

Compute the posterior of the parameter and the posterior covariance of the parameter

wk = w−k + Kk(yn − d̂−k ) (4.21)

Pwk
= P−wk

−KkPdk
KT
k (4.22)

4.2.5 Coupled State Estimation

The hidden state variables for our dynamical system include the positions, the velocities, and the

accelerations. Though the unscented Kalman Filter can be used for dual state-parameter estimation,

the fact that the state and the parameters are coupled makes such a dual estimation fail to converge.

Thus we use the finite difference method to estimate both the initial velocities and the accelerations.

Given the observations of three frames yn−1, yn, yn+1 and the time elapsed between the frames ∆t,

the velocities u̇,

u̇ =
yn − yn−1

∆t
(4.23)

the accelerations ü,

ü =
yn+1 − 2yn + yn−1

(∆t)2
(4.24)

Our dynamic parameter estimation scheme is given in Algorithm 2.

4.3 Experiments

I have implemented our algorithms in C/C++ and have validated the results by first conduct a

synthetic heart experiment. In this experiment, I use 3D meshes from simulation as the deformation

samples. I also validate our framework by reconstructing the Young’s moduli of a tennis ball and of

a foam ball from videos captured by high-speed cameras.
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Algorithm 2 Dynamic Elasticity Parameter Estimation
1: procedure MEASUREMENT COMPUTATION

2: // this is the function g in Eqn. 8.
3: u̇← (yn − yn−1)/∆t
4: ü← (yn+1 − 2yn + yn−1)/(∆t)2

5: d← f(x; w) // evaluate measurement based on the parameters and the states
6: end Measurement Computation;
7: procedure UNSCENTED KALMAN FILTER ITERATE

8: Xk|k−1 ← [ŵ−k , ŵ
−
k + γ

√
P−wk

, ŵ−k − γ
√

P−wk
]

9: // compute the sigma-points
10: Yk|k−1 ← g(xn,w

−
k ) // compute the prior of the mean of the measurement sigma-points

11: d̂−k ←
∑2L

i=0 ω
(m)
i Yi,k|k−1 // compute the prior of the covariance matrix of the measurement

sigma-points
12: Pwkdk

←
∑2L

i=0 ω
(c)
i (Xi,k|k−1−ŵ−k )(Yi,k|k−1−d̂−k )T // compute the cross covariance matrix

of the measurements and the parameters
13: Kk ← Pwkdk

P−1
dk

// compute the Kalman gain
14: ŵk ← w−k + Kk(yn − d̂−k )
15: // update the mean of the parameters
16: Pwk

← P−wk
−KkPdk

KT
k

17: // update the covariance matrix of the parameters
18: end Unscented Kalman Filter Iterate;
19: procedure MAIN

20: while not converged do
21: for Sampled Keyframes yni

do
22: Initialize x0, w0, Pw0

23: Unscented Kalman Filter Iterate()
24: end for;
25: end while;
26: end Main;
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4.3.1 Synthetic Heart Experiment

Figure 4.2: The human heart anatomy. In this project I model the left and right ventricle.© Texas
Heart Institute (Institute, 1996)

In this experiment, I recover the Young’s modulus for a human heart from synthetic simulation

results. I use 3D heart model reconstructed from a live patient ultrasound images, then simulate

it with known Young’s modulus and the computed contraction force using FEM. A human heart

function by the contraction of the heart muscle of the right ventricle and right ventricle (shown in

Fig. 4.2) to pump out blood. In this experiment, I will focus on the left and the right ventricles,

because one of the main causes for diastolic dysfunction is due to the stiffening of muscles of the left

or the right ventricle. I reconstructed our synthetic heart model from 3D ultrasound images (Bernard

et al., 2014) (shown in Fig. 4.3(a)- 4.3(b)) using ITK-SNAP (Yushkevich et al., 2006a) to manually

segment both the left and right ventricles (shown in Fig. 4.3(c)). I use Tetgen (Si, 2015) to discretize

the surface mesh for FEM simulation (shown in Fig. 4.3(d)). Then I use our statistical optimization

framework to estimate both the Young’s modulus and the state of the synthetic heart.

I compute the heart contraction force based on: a) the assumed Young’s modulus; b) the

statistics that by the end of the systole phase the volume of the heart reduced by around 40%. The

computed heart contraction force with the model’s Young’s modulus being 40KPa is shown in

Fig. 4.4. It ranges from 8.633mN to 37.40mN. This contraction force will serve as the boundary

condition for solving the governing equation Eqn. 3.1. The observed deformation samples I feed

into our framework are the 3D meshes from the synthetic simulation (shown in Fig. 4.3). I use
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deformation samples of two time stamp: a) the end of systole phase (shown in Fig. 4.4(c)) b) the

end of diastole phase (shown in Fig. 4.4(d)).

The relative error for the recovered Young’s modulus is within 7.5% of the ground-truth values,

as shown in Table 4.1. The initial guess on the Young’s modulus can contribute upto about 5% of

relative error in the recovered value. I also measure the distance between the surface with optimized

Young’s modulus and the given reference surface using level set as another metric for validation.

Our method can reduce the surface-tracking error down to less than 5%, as shown in Table 4.1,

where the initial average separation distance between surfaces is 3.2mm. The average surface

distance error between the tracked surface and the reference surface is shown in Table 4.1. These

results show that our method can also be used to track the surfaces of the non-rigid bodies in the

temporal sequences of deformation samples. The convergence graphs of the optimization process

are shown in Fig. 4.5.

(a) (b) (c) (d)

Figure 4.3: Reconstructed left ventricle and right ventricle of human heart. (a)-(b) the slices
of a human heart ultrasound image © CETUS 2014 (Bernard et al., 2014), (c) the surface mesh of
the reconstructed model, (d) the sliced view of the tetrahedra mesh from the surface mesh in (b).

Table 4.1: The result for the synthetic heart experiment with noises in the initialization. The
relative error of the recovered Young’s modulus is within 7.5% of the ground-truth values. Our
method reduces the average surface-tracking error down to less than 5%.

Synthetic Young’s Modulus (kPa) 40 80 100 140 180
Initialized Young’s Modulus (kPa) 20±10 40±10 50±10 70±20 90±20
Recovered Young’s Modulus (kPa) 37±2 76±3 93±4 134±7 167±10
Average Relative Error (%) 7.5 5 7 4.3 7.2
Standard Deviation of the Recovered Young’s Modulus 1.41 2 3.2 7.5 10.2
Average Surface Distance Error (mm) 0.2±0.1 0.3±0.1 0.3±0.1 0.5±0.2 0.7±0.2
Average Relative Tracking Error (%) 1.3 2.0 2.0 3.3 4.7
Contraction Force Range (mN) 8-37 17-80 17-85 25-110 30-170
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(a) (b) (c) (d)

Figure 4.4: The computed contraction force and synthetic heart simulation result. (a) the
visualization of the contraction force on the surface of the 3D heart model using cool to hot color
map, (b) the sliced view of the contraction force. (c) the simulated heart model by the end of systole
phase, (d) the simulated heart model by the end of diastole phase.

(a) (b)

Figure 4.5: The convergence graphs for synthetic heart experiment.(a) shows our framework
reduces the distance between the surface with the optimized material parameter and the reference
surface, as the framework iterates with the initial distance error at 3.2mm, (b) shows the convergence
of the Young’s modulus to the ground truth.

Possible Sources of Errors: 1) error introduced by the estimation of the velocities; 2) error

introduced by incomplete information from the key frames; 3) error introduced by the sensitivity

between the elasticity parameter and the amount of deformation.

4.3.2 Mechanical Parameters Recovered from Videos

I valid our framework further by recovering mechanical parameters of a tennis ball and a foam

ball from videos captured by high-speed cameras. First, I reconstruct the 3D mesh from the video. I

deduce 2D shape of the object from the video. Then I reconstruct the 3D shape by rotating the 2D
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shape (on the x,y plane) around the y-axis. Then I use our framework for estimation of non-rigid

mechanical parameters. From the above synthetic experiment, I know the initialization can affect

the accuracy of the method. I choose to initialize the Young’s modulus after doing a line search.

This process can greatly reduce the optimization iterations and increase the speed as well.

The boundary condition for both the videos are the gravity. The average density of a tennis ball

is 0.4g/cm3 and that of a foam ball is around 30g/cm3.

From the tennis ball video (clips shown in 4.6(a)- 4.6(e)), I recovered the Young’s modulus

to be 2.2-2.5MPa. The surface meshes of the model with optimized mechanical parameters and

states are shown in 4.6(f)- 4.6(j). The Young’s modulus I recovered is within the range of the values

measured in the work (Sissler et al., 2010; Wójcicki et al., 2011). The estimated velocities of the

tennis ball (before it hit the flat surface) from the video is about 20m/s. For the foam ball, the

Young’s modulus I recovered is about 15-21KPa. According to the video description, the foam ball

in the video (clips shown in 4.7(a)- 4.7(e) ) is a stress relief foam ball. This type of foam ball is

made of polyurethane foam. Our estimated parameter is well within the range presented in the

literature (Moore et al., 2007). One of the sources of error is the estimated initial value to the state

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.6: Input tennis video clips and the tracked surface mesh. (a)-(e) the clips of the tennis
video © Trevor Shannon (Shannon, 2009); (f)-(j) the tracked surface mesh at the corresponding
time stamp.

estimation. Currently I estimated the initial velocity with a finite difference technique using the first

couple video frames. I conducted a study using the tennis ball data with different velocity magnitude

58



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.7: Input foam ball video clips and the tracked surface mesh. (a)-(e) the clips of the ten-
nis video © Trevor Shannon (Shannon, 2009); (f)-(j) the tracked surface mesh at the corresponding
time stamp.

before hitting the surface. The initial velocities could affect the recovered Young’s modulus shown

in Table 4.2. One reason for how much it affects the recovered Young’s modulus is the size of the

object. The impact of initial-value estimation is reduced as the size of the object increases.

I also compare our method with the most recent work by Wang et al. (Wang et al., 2015). They

also use temporal sequences of deformation samples as input, but they assume the deformable

objects are in static state. As is shown in Table 4.3, our results are much closer to the measured

parameters from real-world experiments. Please see the supplementary video for demonstration of

these experiments.

Table 4.2: Impact of initial velocities on recovered Young’s moduli.

Initial Vel Mag (m/s) 0 0.01 20
Recovered E (kPa) 5.1-5.9 6.2e2-6.9e2 2.2e3-2.5e3

4.4 Conclusion and Future Work

In this chapter, I presented a Bayesian parameter estimation framework for dynamic deformable

bodies. Our inputs are temporal sequences of deformation samples, such as simulation results or

videos from ultrasound and high-speed cameras. This approach uses the Unscented Kalman Filter
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Table 4.3: Comparison with results of (Wang et al., 2015) and experimental measurements.
The measured Young’s modulus for the tennis ball is taken from (Sissler et al., 2010; Wójcicki et al.,
2011) and for the foam ball is derived from (Moore et al., 2007). The recovered Young’s modulus
using our method is within the range of the Young’s modulus measured, the Young’s modulus
recovered using (Wang et al., 2015) is not.

Tennis Ball Foam Ball
Wang et al. (Wang et al., 2015) E (KPa) 5.1e0-5.9e0 1e−1-2e−1

Our method E (KPa) 2.2e3-2.5e3 1.2e1-2.1e1

Measured E (KPa) 1e3-5e3 1e1-3e1

for hidden parameter estimation to recover the Young’s modulus, tightly coupled with a simulation-

based state estimation for surface tracking/matching. The results from synthetic experiments and

validation using real-life videos demonstrate the effectiveness of the proposed method in estimating

the mechanical properties of the deformable bodies in motion.

For nonrigid bodies, state estimation still remains a challenging problem. The boundary

conditions in our framework are known or can be computed. In many real-life situations, the

boundary conditions can be complicated to derive. Detailed analysis and study on the impact of the

boundary conditions would be possible avenues for future research, when applying this framework

to different problem domains.
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CHAPTER 5: CLASSIFICATION OF PROSTATE CANCER GRADES AND T-STAGES
BASED ON TISSUE ELASTICITY USING MEDICAL IMAGE ANALYSIS

5.1 Introduction

Traditional stress-strain matching methods have been practiced for decades to measure the

mechanical properties of deformable bodies (Veronda and Westmann, 1970). Special external force

measuring devices are often applied. Landmarks on the deformable bodies are usually used in these

methods for measuring displacement fields. Following the wide adoption of ultrasound, elastogra-

phy(Ophir et al., 1991b) emerged, which estimates relative elasticity properties by measuring both

the deformation of the tissue via ultrasound images and explicitly measuring the external force using

special devices. In the last decade or so, numerical methods, such as inverse Finite Element Methods

(FEM) (Kauer et al., 2002b; Lee et al., 2012a), were proposed to estimate mechanical properties

of deformable body without the measurement of the displacement field. But, these techniques are

generally limited to quasi-static deformation process. Human tissues, such as the heart, are often in

a dynamic state.

In this chapter, I study the possible use of tissue (i.e. prostate) elasticity to help evaluate the

prognosis of prostate cancer patients given at least two set of CT images. The clinical T-stage of a

prostate cancer is a measure of how much the tumor has grown and spread; while a Gleason score

based on the biopsy of cancer cells indicates aggressiveness of the cancer. They are commonly used

for cancer staging and grading. I present an improved method that uses geometric and physical

constraints to deduce the relative tissue elasticity parameters. Although elasticity reconstruction, or

elastography, can be used to estimate tissue elasticity, it is less suited for in-vivo measurements or

deeply seated organs like prostate. I describe a non-invasive method to estimate tissue elasticity
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values based on pairs of CT images, using a finite-element based biomechanical model derived from

an initial set of images, local displacements, and an optimization-based framework.

Given the recovered tissue properties reconstructed from analysis of medical images and

patient’s ages, I develop a multiclass classification system for classifying clinical T-stage and

Gleason scores for prostate cancer patients. I demonstrate the feasibility of a statistically-based

multiclass classifier that classifies a supplementary assessment on cancer T-stages and cancer grades

using the computed elasticity values from medical images, as an additional clinical aids for the

physicians and patients to make more informed decision (e.g. more strategic biopsy locations,

less/more aggressive treatment, etc). Concurrently, extracted image features (Haq et al., 2015b,

2014, 2015a) using dynamic contrast enhanced (DCE) MRI have also been suggested for prostate

cancer detection. These methods are complementary to ours and can be used in conjunction with

ours as a multimodal classification method to further improve the overall classification accuracy.

5.2 Method

Our iterative simulation-optimization-identification framework consists of two alternating

phases: the forward simulation to estimate the tissue deformation and inverse process that refines

the tissue elasticity parameters to minimize the error in a given objective function. The input to

our framework are two sets of 3D images. After iterations of the forward and inverse processes, I

obtain the best set of elasticity parameters. Below I provide a brief overview of the key steps in this

framework and I refer the interested readers to the supplementary document at http://gamma.

cs.unc.edu/CancerClass/ for the detailed mathematical formulations and algorithmic

process to extract the tissue elasticity parameters from medical images.
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5.2.1 Forward Simulation: BioTissue Modeling

In our system, I apply Finite Element Method (FEM) and adopt Mooney Rivlin material for

bio-tissue modeling (Cotin et al., 1999). After discretization using FEM, I arrive at a linear system,

Ku = f (5.1)

with K as the stiffness matrix, u as the displacement field and f as the external forces. The

stiffness matrix K is not always symmetric possitive definite due to complicated boundary condition.

The boundary condition I applied is the traction forces (shown in Fig. 7(a) of the supplementary

document) computed based on the displacement of the surrounding tissue (overlapping surfaces

shown in Fig. 7(b) of the supplementary document). I choose to use the Generalized Minimal

Residual (GMRES) (Saad and Schultz, 1986) solver to solve the linear system instead of the

Generalized Conjugate Gradient (GCG) (Liu and Storey, 1991), as GMRES can better cope with

non-symmetric, positive-definite linear system.

The computation of the siffness matrix K in Eqn. 5.1 depends on the energy function Ψ of the

Mooney Rivlin material model (Rivlin and Saunders, 1951; Treloar et al., 1976).

Ψ =
1

2
µ1((I2

1 − I2)/I
2
3
3 − 6) + µ2(I1/I

1
3
3 − 3) + v1(I

1
2
3 − 1)2, (5.2)

where µ1, µ2 and v1 are the material parameters. In this work, I recover parameters µ1 and µ2. Since

prostate soft tissue (without tumors) tend to be homogenous, I use the average µ̄ of µ1 and µ2 as our

recovered elasticity parameter. To model incompressibility, I set v1 to be a very large value (1 + e7

was used in our implementation). v1 is linearly related to the bulk modulus. The larger the bulk

modulus, the more incompressible the object.

Relative Elasticity Value: In addition, I divide the recovered absolute elasticity parameter µ̄ by

the that of the surrounding tissue to compute the relative elasticity parameter µ̂. This individualized

relativity value helps to remove the variation in mechanical properties of tissues between patients,
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normalizing the per-patient fluctuation in absolute elasticity values due to varying degrees of

hydration and other temporary factors. I refer readers to our supplementary document for details

regarding non-linear material models.

5.2.2 Inverse Process: Optimization for Parameter Identification

To estimate the patient-specific relative elasticity, our framework minimizes the error due to

approximated parameters in an objective function. Our objective function as defined in Eqn. 5.3

consists of the two components. The first part is the difference between the two surfaces – one

reconstructed from the reference (initial) set of images, deformed using FEM simulation with the

estimated parameters toward the target surface, and one target surface reconstructed from the second

set of images. This difference is measured by the Hausdorff distance (Dubuisson and Jain, 1994).

In addition I add a Tikhonov regularization (Engl et al., 1989; Golub et al., 1999) term, which

improves the conditioning of a possibly ill-posed problem.

With regularization, our objective function is given as:

µ = argmin
µ

∑
‖d(Sl,St)‖2 + λΓSl, (5.3)

with d(Sl,St) as the distance between deformed surface and the reference surface, λ as the regular-

ization weight, and Γ as the second-order differentiatial operator.

The second-order differential operator Γ on a continuous surface (2-manifolds) S is the curva-

tures of a point on the surface. The curvature is defined through the tangent plane passing that point.

I denote the normal vector of the tangent plane as n and the unit direction in the tangent plane as eθ.

The curvature related to the unit direction eθ is κ(θ). The mean curvature κmean for a continuous

surface is defined as the average curvature of all the directions, κmean = 1
2π

∫ 2π

0
κ(θ)dθ. In our

implementation, I use triangle mesh to approximate a continuous surface. I use the 1-ring neighbor

as the region for computing the mean curvature normal on our discrete surface Sl. I treat each
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triangle of the mesh as a local surface with two conformal space parameters u and v. With these

two parameters u and v the second-order differential operator Γ on vertex x is, ∆u,vx = xuu + xvv.

5.2.3 Classification Methods

For classification of cancer prognostic scores, I develop a learning method to classify patient

cancer T-Stage and Gleason score based on the relative elasticity parameters recovered from CT

images. Both the prostate cancer T-stage and the Gleason score are generally considered as ordinal

responses. I study the effectiveness of ordianl logistic regression (Bender and Grouven, 1997)

and multinomial logistic regression (Kleinbaum and Klein, 2010) in the context of prostate cancer

staging and grading. For both cases I use RBF kernel to project our feature to higher dimentional

space. I refer readers to supplementary document for method details and the comparison with the

Random Forests method.

5.3 Results

5.3.1 Preprocessing and Patient Dataset

Given the CT images (shown in Fig. 5.1(a)) of the patient, the prostate, bladder and rectum

are first segmented in the images. Then the 3D surfaces (shown in Fig. 5.1(b)) of these organs

are reconstructed using VTK and these surfaces would be the input to our elasticity parameter

reconstruction algorithm. Our patient dataset contains 113 (29 as the reference and 84 as target)

sets of CT images from 29 patients, each patient having 2 to 15 sets of CT images. Every patient in

the dataset has prostate cancer with cancer T-stage ranging from T1 to T3, Gleason score ranging

from 6 to 10, and age from 50 to 85. Gleanson scores are usually used to assess the aggressiveness

of the cancer.
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(a) (b)

Figure 5.1: Real Patient CT Image and Reconstructed Organ Surfaces. (a) shows one slice of
the parient CT images with the bladder, prostate and rectum segmented. (b) shows the reconstructed
organ surfaces.

5.3.2 Cancer Grading/Staging Classification based on Prostate Elasticity Parameters

I further study the feasibility of using recovered elasticity parameters as a cancer prognostic

indicator using our classifier based on relative tissue elasticity values and ages. Two classification

methods, ordinal logistic regression and multinomial logistic regression, were tested in our study.

I test each method with two sets of features. The first set of features contains only the relative

tissue elasticity values µ̂. The resultant feature vector is one dimension. The second set of features

contains both the relative tissue elasticity values and the age. The feature vector for this set of

features is two dimensional. Our cancer staging has C = 3 classes, T1, T2 and T3. And the cancer

grading has G = 5 classes, from 6 to 10. In our patient dataset, each patient has at least 2 sets

of CT images. The elasticity parameter reconstruction algorithm needs 2 sets of CT images as

input. I fix one set of CT images as the initial (reference) image and use the other M number of

images T , where|T | = M as the target (deformed) images. By registering the initial image to the

target images, I obtain one elasticity parameter µ̂i, i = 1 . . .M for each image in T . I perform both

per-patient and per-image cross validation.

Per-Image Cross Validation: I treat all the target images (N = 84) of all the patients as data points

of equal importance. The elasticity feature for each target image is the recovered elasticity parameter

µ̂. In this experiment, I train our classifier using the elasticity feature of the 83 images then cross

validate with the one left out. Then, I add the patient’s age as another feature to the classifier

and perform the validation. The results for cancer staging (T-Stage) classification are shown in
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Fig. 5.2(a) and that for cancer grading (Gleason score) classification are shown in Fig. 5.2(b). The

error metric is measured as the absolute difference between the classified cancer T-Stage and the

actual cancer T-Stage. Zero error-distance means our classifier accurately classifies the cancer

T-Stage.

The multinomial method outperforms the ordinal method for both cancer staging (T-Stage)

and cancer aggression (Gleason score) classification. The main reason that I are observing this is

due to the optimization weights or the unknown regression coefficients β (refer to supplementary

document for the definition) dimension of the multinomial and ordinal logistic regression method.

The dimension of the unknown regression coefficients of the multinomial logistic regression for

cancer staging classification (with elasticity parameter and age as features) is 6 while that of ordinal

logistic regression is 4. With the ‘age’ feature, I obtain up to 91% accuracy for perdicting cancer

T-Stage using multinomial logistic regression method and 89% using ordinal logistic regression

method. For Gleason score classification I achieve up to 88% accuracy using multinomial logistic

regression method and 81% using ordinal logistic regression method.

(a) (b)
Figure 5.2: Error Distribution of Cancer Grading/Staging Classification for Per-Image Study.
(a) shows error distribution of our cancer staging classification using the recovered prostate elasticity
parameter and the patient’s age. For our patient dataset, the multinomial classifier (shown in royal
blue and sky blue) outperforms the ordinal classifier (shown in crimson and coral). I achieve up
to 91% accuracy using multinomial logistic regression and 89% using ordinal logistic regression
for classifying cancer T-Stage based on recovered elasticity parameter and age. (b) shows the
correlation between the recovered relative elasticity parameter and the Gleason score with/without
the patient’s age. I achieve up to 88% accuracy using multinomial logistic regression and 81% using
ordinal logistic regression for classifying Gleason score based on recovered elasticity parameter and
age.
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Per-Patient Cross Validation: For patients with more than 2 sets of images, I apply Gaussian

sampling to µ̂i, i = 1 . . .M to compute the sampled elasticity parameter as the elasticity feature

of the patient. I first train our classifier using the elasticity feature of the 28 patients then test the

trained classifier on the remaining one patient not in the training set. I repeat this process for each

of the 29 patients. Then I include the patient age as another feature in the classifier. The error

distribution for cancer staging (T-Stage) classification results are shown in Fig. 5.3(a) and the error

distribution of cancer grading (Gleason score) classification are shown in Fig. 5.3(b). I observe

that the multinomial method in general outperforms the ordinal method. More interestingly, the

age feature helps to increase the classification accuracy by 2% for staging classification and 7%

for Gleason scoring classification). With the age feature, our multinomial classifier achieves up

to 84% accuracy for classifying cancer T-Stage and up to 77% accuracy for classifying Gleason

scores. And our ordinal classifier achieves up to 82% for cancer T-Stage classification and 70%

for Gleason score classification. The drop in accuracy for per-patient experiments compared with

per-image ones is primary due to the decrease in data samples.

Among the 16% failure cases for cancer staging classification, 15% of our multinomial classifi-

cation results with age feature is only 1 stage away from the ground truth. And for the failure cases

for scoring classification, only 10% of the classified Gleason scores is 1 away from the ground truth

and 13% of them are 2 away from the ground truth.

5.4 Conclusion

In this chapter, I present an improved, non-invasive tissue elasticity parameter reconstruction

framework using CT images. I further studied the correlation of the recovered relative elasticity

parameters with prostate cancer T-Stage and Gleason score for multiclass classification of cancer

T-stages and grades. The classification accuracy on our patient dataset using multinormial logistic

regression method is up to 84% accurate for cancer T-stages and up to 77% accurate for Gleason
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(a) (b)
Figure 5.3: Error Distribution of Cancer Aggression/Staging Classification for Per-Patient
Study. (a) shows the accuracy and error distribution of our recovered prostate elasticity parameter
and cancer T-Stage. For our patient dataset, the multinomial classifier (shown in royal blue and
sky blue) outperforms the ordinal classifier (shown in crimson and coral). I achieve up to 84%
accuracy using multinomial logistic regression and 82% using ordinal logistic regression for
classifying cancer T-Stage based on our recovered elasticity parameter and patient age information.
(b) shows the correlation between the recovered relative elasticity parameter and the Gleason score.
I achieve up to 77% accuracy using multinomial logistic regression and 70% using ordinal logistic
regression for classifying Gleason score based on our recovered elasticity parameter and patient age
information.

scores. This study further demonstrates the effectiveness of our algorithm for recovering (relative)

tissue elasticity parameter in-vivo and its promising potential for correct classification in cancer

screening and diagnosis.

Future Work: This study is performed on 113 sets of images from 29 prostate cancer patients

all treated in the same hospital. More image data from more patients across multiple institutions

can provide a much richer set of training data, thus further improving the classification results and

testing/validating its classification power for cancer diagnosis. With more data, I could also apply

our learned model for cancer stage/score prediction. And other features, such as the volume of the

prostate can also be included in the larger study. Another possible direction is to perform the same

study on normal subjects and increase the patient diversity from different locations. A large-scale

study can enable more complete analysis and lead to more insights on the impact of variability

due to demographics and hospital practice on the study results. Similar analysis and derivation

could also be performed using other image modalities, such as MR and ultrasound, and shown to be

applicable to other types of cancers.
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CHAPTER 6: SINGLE-VIEW IMAGE-BASED GARMENT RECOVERY

6.1 Introduction

Figure 6.1: Garment recovery and re-purposing results. From left to right, I show an example of
(a) the original image (Saaclothes, 2015) ©, (b) the recovered dress and body shape from a single-
view image, and (c)-(e) the recovered garment on another body of different poses and shapes/sizes
(Hillsweddingdress, 2015) ©.

In this work, I consider the problem of recovering garment models with both material and

sizing parameters from a single-view image. Such a capability enables users to virtually try on

garments given only a single photograph of themselves wearing clothing. Instead of representing

the clothed human as a single mesh (Chen et al., 2013; Li et al., 2012), I define a separate mesh

for a person’s clothing, allowing us to model the rich physical interactions between clothing and

the human body. This approach also helps capture occluded wrinkles in clothing that are caused

by various sources, including garment design that incorporates pleats, cloth material properties

that influence the drape of the fabric, and the underlying human body pose and shape. Figure 6.1

illustrates some results generated by my system. In addition to virtual try-on applications, broader

impacts in graphics include improving the accuracy of clothing models for animated characters, with

the potential to further increase the visual realism of digital human models that already incorporate
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Figure 6.2: The flowchart of my algorithm. I take a single-view image (ModCloth, 2015) ©,
a human-body dataset, and a garment-template database as input. I preprocess the input data by
performing garment parsing, sizing and features estimation, and human-body reconstruction. Next,
I recover an estimated garment described by the set of garment parameters, including fabric material,
design pattern parameters, sizing and wrinkle density, as well as the registered garment dressed on
the reconstructed body. Finally, I perform joint material-pose optimization and show the recovered
results using cloth simulation on the virtual mannequin.

body-dependent priors for hair (Chai et al., 2012), face (Cao et al., 2013), skin (Nagano et al., 2015),

and eyeballs (Bérard et al., 2014).

With limited input from a single-view image, I constrain the problem’s solution space by

exploiting three important priors. The first prior is a statistical human body distribution model

constructed from a (naked) human body data set. This statistical model is used for extracting and

matching the human body shape and pose in a given input image. The second prior is a collection

of all sewing patterns of various common garment types, such as skirts, pants, shorts, t-shirts, tank

tops, and dresses, from a database of all garment templates. Finally, the third prior is a set of all

possible configurations and dynamical states of garments governed by their respective constitutive

laws and simulated by a physically-based cloth model. Simulation helps provide additional 3D

physical constraints lacking in a 2D image.

My method proceeds as follows. To construct an accurate body model, the user indicates 14

joint positions on the image and provides a rough sketch outlining the human body silhouette. (This

step can also be automated using image processing and body templates for standard unoccluded
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poses.) From this information, I use a statistical human model to automatically generate a human

body mesh for the image. To estimate the clothing model, I first compute a semantic parse of the

garments in the image to identify and localize depicted clothing items. This semantic segmentation

is computed automatically using a data-driven method for clothing recognition (Yamaguchi et al.,

2013). I then use the semantic parsing to extract garment sizing information, such as waist girth,

skirt length and so on, which are then used to map the depicted garments onto the existing garment

templates and adjust the sewing patterns based on the extracted parameters. I also analyze the

segmented garments to identify the location and density of wrinkles and folds in the recovered

garments, which are necessary for estimating material properties of the garments for virtual try-on.

Once I have obtained both the body and clothing models, I perform an image-guided parameter

identification process, which optimizes the garment template parameters based on the reconstructed

human body and image information. I fit my 3D garment template’s surface mesh onto the human

body to obtain the initial 3D garment, then jointly optimize the material parameters, the body shape,

and the pose to obtain the final result. The flow chart of the overall process is shown in Fig. 6.2. My

main contributions include:

• An image-guided garment parameter selection method that makes the generation of virtual

garments with diverse styles and sizes a simple and natural task (Section 6.5);

• A joint material-pose optimization framework that can reconstruct both body and cloth models

with material properties from a single image (Section 6.6);

• Application to virtual try-on and character animation (Section 6.7).

6.2 Related Work

My work is built on previous efforts in cloth modeling, human pose/shape recovery, garment

capture from single-view images, and semantic parsing.

Cloth Modeling: Cloth simulation is a traditional research problem in computer graphics.

Early work on cloth simulation includes (Weil, 1986; Ng and Grimsdale, 1996; Baraff and Witkin,
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1998; House and Breen, 2000). More recently, a number of methods were proposed to solve the

complicated problems presented in cloth simulation, including collision detection (Govindaraju

et al., 2007; Tang et al., 2009; Curtis et al., 2008), collision handling, friction handling (Bridson

et al., 2002), strain limiting (Goldenthal et al., 2007; English and Bridson, 2008; Thomaszewski

et al., 2009; Wang et al., 2010) and remeshing (Narain et al., 2012).

Realistic wrinkle simulation is an important problem in realistic cloth modeling. Volino and

Magnenat-Thalmann (Volino and Magnenat-Thalmann, 1999) introduced a geometry-based wrinkle

synthesis. Rohmer et al. (Rohmer et al., 2010) presented a method to augment a coarse cloth mesh

with wrinkles. Physically based cloth wrinkle simulation depends on an accurate model of the

underlying constitutive law; different bending and stretching energy models for wrinkle simulation

have been proposed (Bridson et al., 2003). More recently, physically-based simulation has been

proposed for direct 3D editting (Bartle et al., 2016).

Garment modeling is built upon cloth simulation. It also needs to take into consideration the

design and sewing pattern of the garment. Some methods start from the 2D design pattern (Protop-

saltou et al., 2002; Decaudin et al., 2006; Berthouzoz et al., 2013) or 2D sketches (Turquin et al.,

2007; Robson et al., 2011). Other methods explore garment resizing and transfer from 3D template

garments (Wang et al., 2005; Meng et al., 2012; Sumner and Popović, 2004). In contrast, my work

synthesizes different ideas and extends these methods to process 2D input image and fluidly transfer

the results to the simulation of 3D garments. I can also edit the 2D sewing patterns with information

extracted from a single-view image, which can be used to guide the generation of garments of

various sizes and styles.

Human Pose and Shape Recovering: Human pose and shape recovery from a single-view

image has been extensively studied in computer vision and computer graphics. Taylor (Taylor, 2000)

presented an articulated-body skeleton recovery algorithm from a single-view image with limited

user input. Agarwal et al. (Agarwal and Triggs, 2006) proposed a learning-based method to recover

human body poses from monocular images. Ye et al. (Ye et al., 2014) applied a template-based
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method for real-time single RGBD image human pose and shape estimation. I refer readers to this

survey on human motion recovery and analysis (Moeslund et al., 2006).

Human pose and shape recovery in computer graphics focus primarily on reconstructing muscle

accurately and on watertight 3D human body meshes. A realistic 3D human body mesh is the

basis for character animation. A human body mesh is required for the recovery of clothing with

rich details. For human body mesh generation, I follow the previous data-driven methods, most of

which are PCA based. These techniques use a set of bases to generate a variety of human bodies

of different poses and shapes. Seo and Thalmann (Seo and Magnenat-Thalmann, 2003) presented

a method to construct human body meshes of different shapes. Following this work, Anguelov et

al. (Anguelov et al., 2005) introduced the SCAPE model, which can produce human body meshes

of different poses and shapes. Using the SCAPE model, Balan et al. (Balan et al., 2007) presented a

method to recover detailed human shape and pose from images. Hasler et al. (Hasler et al., 2009)

encode both human body shapes and poses using PCA and semantic parameters. Building upon

these previous models, Zhou et al. (Zhou et al., 2010) proposed a method to recover the human

body pose and shape from a single-view image.

Clothing Capturing: In the last decade, many methods have been proposed for capturing

clothing from images or videos. Methods can be divided into two categories: marker-based and

markerless. Most marker-based clothing capture methods require the markers to have been pre-

printed on the surface of the cloth. Different kinds of markers have been used for capturing (Scholz

and Magnor, 2006; Hasler et al., 2006; Tanie et al., 2005; Scholz et al., 2005; White et al., 2007).

Markerless methods, which do not require pre-printed clothing markers, can be characterized into

several categories of methods: single-view (Zhou et al., 2013; Jeong et al., 2015), depth camera

based (Chen et al., 2015); and multi-view methods (Popa et al., 2009). Rest configuration recovery

proposed by Casati et. al. (Casati et al., 2016) is used for cloth design. These methods have some

limitations, however, including inability to capture fine garment details and material properties,

the loss of the original garment design, and complexity of the capturing process. In contrast, my

method can retrieve the 2D design pattern with the individual measurements obtained directly from

74



a single image. Using a joint human pose and clothing optimization method, my algorithm recovers

realistic garment models with details (e.g. wrinkles and folds) and material properties.

Semantic Parsing: Semantic parsing is a well-studied problem in computer vision, where the

goal is to assign a semantic label to every pixel in an image. Most prior work has focused on parsing

general scene images (Long et al., 2015a; Farabet et al., 2013; Pinheiro and Collobert, 2014). I work

on the somewhat more constrained problem of parsing clothing in an image. To obtain a semantic

parse of the clothing depicted in an image, I make use of the data-driven approach by Yamaguchi

et al. (Yamaguchi et al., 2013). This method automatically estimates the human body pose from a

2D image, extracts a visual representation of the clothing the person is wearing, and then visually

matches the outfit to a large database of clothing items to compute a clothing parse of the query

image.

6.3 Method

In this section, I give the formal definition of the problem. The input to my system is an RGB

image Ω. I assume the image is comprised of three parts: the background region Ωb, the foreground

naked human body parts Ωh and the foreground garment Ωg, where Ω = Ωb∪Ωh∪Ωg. In addition, I

assume that both the human body and the garment are in a statically stable physical state. Although

this assumption precludes images capturing a fast moving human, it provides a crucial assumption

for my joint optimization algorithm.

Problem: Given Ωg, Ωh, how to recover

– the garment described by a set of parameters < C,G,U,V >,

– along with a set of parameters < θ, z > that encode human body pose and shape obtained from

the image.

Garment: For the clothing parameters, C is the set of material parameters including stretching

stiffness and bending stiffness coefficients; U is the 2D triangle mesh representing the garment’s

75



pattern pieces; and V is the 3D triangle mesh representation of the garment. For each triangle

of the 3D garment mesh V, there is a corresponding one in the 2D space U. For each mesh

vertex x ∈ V, such as those lying on a stitching seam in the garment, there might be multiple

corresponding 2D vertices u ∈ U. The parameter G is the set of parameters that defines the

dimensions of the 2D pattern pieces. I adopt the garment sizing parameters based on classic

sewing patterns (Barnfield, 2012) shown in Fig. 6.3(a), 6.3(c) and 6.3(e), with the corresponding

parameters defined in Fig. 6.3(b), 6.3(d), and 6.3(f), respectively. For example, I define the parameter

Gpants = < w1, w2, w3, w4, h1, h2, h3 > for pants, where the first four parameters define the waist,

bottom, knee and ankle girth and the last three parameters indicate the total length, back upper, and

front upper length. For each basic garment category, I can manually define this set of parameters

G. By manipulating the values of the parameters G, garments of different styles and sizes can be

modeled: capri pants vs. full-length pants, or tight-fitting vs. loose and flowy silhouettes.

Fabric Materials: I adopt the material model developed by Wang et al. (Wang et al., 2011a). The

material parameters C consist of 18 bending and 24 stretching parameters.

Human Body: For the human body parameters, θ is the set of joint angles that together parameter-

ize the body pose, and z is the set of semantic parameters that describe the body shape. I follow the

PCA encoding of the human body shape presented in (Hasler et al., 2009). The semantic parameters

include gender, height, weight, muscle percentage, breast girth, waist girth, hip girth, thigh girth,

calf girth, shoulder height, and leg length.

6.4 Data Preparation

This section describes the data preprocessing step. I begin with the data representations for the

garment and the human body, followed by a brief description of each preprocessing module.

6.4.1 Data Representations

The garment template database can be represented as a set Dc = {< Ci,Gi,Ui,Vi,Bgarment,i >

|i ∈ 1, · · · , N}, where N is the number of garment templates. Each garment template consists of a
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(a) (b) (c) (d) (e) (f)

Figure 6.3: Template sewing pattern and parameter space of a skirt, pants, and t-shirt. (a)
The classic circle sewing pattern of a skirt. (b) My parametric skirt template showing dashed
lines for seams and the four parameters < l1, r1, r2, α >, in which parameter l1 is related to the
waist girth and parameter r2 is related to the length of the skirt. (c) The classic pants sewing
pattern. (d) My parametric pants template with seven parameters < w1, w2, w3, w4, h1, h2, h3 >.
(e) The classic t-shirt sewing pattern. (f) My parametric t-shirt template with six parameters
< r,w1, w2, h1, h2, l1 >.

2D triangle mesh U representing the sewing pattern, a 3D mesh V, a set of dimension parameters

G for each pattern piece, the skeleton Bgarment, and a set of material parameters C.

The human body template database Dh = {< θj, zj,Bbody,j > |j ∈ 1, · · · ,M} consists of

M naked human body meshes with point to point correspondence. The garment skeleton Bgarment

and the human body skeleton Bbody share the same structure, i.e. they have the same number of

the joints and bones. Furthermore, the two skeletons are of same scale. I use several human body

datasets, including the SCAPE dataset (Anguelov et al., 2005), the SPRING dataset (Yang et al.,

2014), the TOSCA dataset (Bronstein et al., 2008; Young et al., 2007; Bronstein et al., 2006), and

the dataset from (Hasler et al., 2009). My garment template is defined in the same metric system as

the human template to scale the garments during the initial registration. Each garment template and

human template is rigged on a common skeleton with the same set of joints.

Parameterized Garment Model: Given the garment template database Dc, each vertex u of

the 2D garment pattern mesh is computed as

u(G) =
M∑
i=0

νi(G)u0, (6.1)

with M is the number of the neighboring vertices that have influence on vertex u, νi is the weight

associated with the vertex u and u0 is the vertex position of the 2D garment pattern template.
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Parameterized Human Model: Given the body database Dh, I extract a statistical shape

model for human bodies. Under this model, each world space vertex position p on the human body

is parameterized as

p(θ, z) =

|Bbody|∑
i

ωiTBi(θ)
(
p0 + Ziz

)
, (6.2)

which is a composition of a linear blend skinning model (Kavan et al., 2010) and an active shape

model (Zhao et al., 2003). Here ωi and Bi are the set of weights and bones associated with the vertex

p. TBi is the transformation matrix of bone Bi. p0 and Zi are the mean shape and active shape basis

at the rest pose, respectively. The basis Zi is calculated by running PCA (Hasler et al., 2009) on Dh.

6.4.2 Preprocessing

My preprocessing step consists of: a) human body reconstruction to recover the human body

shape and pose from the input image, b) garment parsing to estimate the locations and types of

garments depicted in the image, and c) parameter estimation to compute the sizing and fine features

of the parsed garments.

Human Body Reconstruction: My human body recovery relies on limited user input. The

user helps us identify the 14 human body joints and the human body silhouette. With the identified

joints, a human body skeleton is recovered using the method presented in (Taylor, 2000): the

semantic parameters z are optimized to match the silhouette. In this step, I ignore the camera scaling

factor.

Garment Parsing: I provide two options for garment parsing. The first uses the automatic

computer vision technique presented in (Yamaguchi et al., 2013). This approach combines global

pretrained parse models with local models learned from nearest neighbors and transferred parse

masks to estimate the types of garments and their locations on the person. The second option

requires assistance from the user. Given the image Ω, I extract the clothing regions Ωb,h,g by

performing a two-stage image segmentation guided by user sketch. In the first stage, a coarse region
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boundary is extracted using a graph cut algorithm (Li et al., 2004). Then, the region is refined via

re-clustering (Levin et al., 2008).

Image Information Extraction: Given the segmentation of the garment Ωg, the next step is

to convert it to pixel-level garment silhouette S and compute the regional average wrinkle density

P . I define the region based on the contact between garment and human body joints. If there are

no contact, the wrinkle density is that of the entire garment. I extract the average regional wrinkle

density P from the garment images using an improved implementation of (Popa et al., 2009). I

first detect edges using Holistically-Nested edge detection (Xie and Tu, 2015) and then smooth the

edges by fitting them to low-curvature quadric curves. I reconnect broken edges by merging those

with nearby endpoints and similar orientations. Finally, I form 2D folds by matching parallel edges.

Edges not part of a pair are unlikely to contribute to a fold and are discarded. The average number

of wrinkles per region is the average wrinkle density P .

6.4.3 Initial Garment Registration

My initial clothing registration step aims to dress my template garment onto a human body

mesh of any pose or shape. I optimize the vertex positions of the 3D mesh, x, of the template

clothing based on the human body mesh parameters < θ, z >. In this step, I ignore the fit of the

clothing on the human body (this step is intended to fix the 2D triangle mesh U). I follow the

method proposed in (Brouet et al., 2012) for registering a template garment to a human body mesh

with a different shape. However, their method is unable to fit the clothing to human meshes with

varying poses; I extend their approach by adding two additional steps.

The first step requires the alignment of the joints Qc of the template garment skeleton with the

jointsQh of the human body mesh skeleton, as shown in Fig. 6.4. Each joint q ∈ Qc of the garment

has one corresponding joint t ∈ Qh of the human body mesh. I denote the number of joints of the

garment as Kc. This step is done by applying a rigid body transformation matrix T on the joint of
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the garment, where T minimizes the objective function

Kc∑
i=0,qi∈Qc,ti∈Qh

‖Tqi − ti‖2 (6.3)

Next, I need to fit this transformed 3D template garment mesh onto the human body mesh with

pose described by parameter θ, the vector of the angles of the joints. My template garment is

then deformed according to θ. I denote the vector β as the joint angles of the template garment

mesh. I set the value of the vector βi to the value of the corresponding joint angle θi of the human

body mesh. Then I compute the 3D garment template mesh such that it matches the pose of the

underlying human body mesh according to this set of joint angles β by,

xi(β) =
∑
j

υijTBj(β)x0, (6.4)

where υij is the weight of bone Bj on vertex xi and TBj is the transformation matrix of the bone Bj .

An example result is shown in Fig. 6.4(c).

The final step is to remove collisions between the garment surface mesh and the human

body mesh. I introduce two constraints: rigidity and non-interception. The deformation of the

clothing should be as-rigid-as-possible (Igarashi et al., 2005). After this step, I have an initial

registered garment with a 3D mesh V̂(T,θ) that matches the underlying human pose and is free of

interpenetrations with the human body. I show my initial garment registration results in Fig. 6.5.

6.5 Image-Guided Parameter Identification

In this section, I explain the step-by-step process of extracting garment material and sizing

parameters < C,G > from an image.
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(a) (b) (c) (d)

Figure 6.4: Initial garment registration process. (a) The human body mesh with the skeleton
joints shown as the red sphere and the skeleton of the arm shown as the cyan cylinder. (b) The initial
t-shirt with the skeleton joint shown as the red sphere and the skeleton of the sleeve part of it shown
as the cyan cylinder. (c) The t-shirt and the human body mesh are aligned by matching the joints.
(d) The result after aligning the skeleton and removing the interpenetrations.

Figure 6.5: Initial garment registration results. I fit garments to human bodies with different
body shapes and poses.

6.5.1 Overview

Starting from my 2D triangle mesh U of the pattern pieces, I select garment parameters based

on the sizing and detailed information < S,P > estimated from the source image. In this step, I

adjust the garment material and sizing parameters< C,G > but fix the 3D mesh V̂(T,θ) (computed

from Sec. 6.4.3) to obtain the garment that best matches the one shown in the image. I need two

specific pieces of information from the image: the pixel-level garment silhouette S and the regional

average wrinkle density P of the clothing. For example, for a skirt, I need to estimate the waist girth

and the length of the skirt from the image. Using these two pieces of information, I initialize the

garment sizing parameters G. Based on the wrinkle information computed from the image, I then

optimize both the fabric material parameters C and the sizing parameters of the garment pattern G,

to be described in the following two subsections.
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6.5.2 Garment Types, Patterns, and Parameters

For basic garment types, such as skirts, pants, t-shirts, and tank tops, I use one template pattern

for each. I modify the classic sewing pattern according to the parameters G. By adjusting the

garment parameters G and fabric material parameters C, I recover basic garments of different styles

and sizes. The classic circle skirt sewing pattern is shown in Fig. 6.3(a). My parametric space,

which is morphed from this circle sewing pattern, is shown in Fig. 6.3(b). For the skirt pattern,

there are four parameters to optimize: Gskirt =< l1, r1, r2, α >. The ratio between the parameter

l1 and r2 is constrained by the waist girth and skirt length information extracted from the image.

The other two parameters, r1 and α, are constrained by the wrinkle density. With different garment

parameters, skirts can vary from long to short, stiff to soft, and can incorporate more or fewer pleats,

enabling us to model a wide variety of skirts from a single design template.

Similarly for pants, the classic sewing pattern and my template pattern pieces are shown in

Fig. 6.3(c) and Fig. 6.3(d). There are seven parameters for the dimensions of the pants template:

Gpants =< w1, w2, w3, w4, h1, h2, h3 > with the first four parameters describing the waist, bottom,

knee, and ankle girth, and the last three parameters representing the total, back-upper and front-

upper lengths. The t-shirt sewing pattern is shown in Fig. 6.3(e), and my parametric t-shirt pattern

is shown in Fig. 6.3(f) with the garment parameters Gtshirt =< r,w1, w2, h1, h2, l1 >. Among the

parameters Gtshirt, parameter r describes the neckline radius, w1 describes the sleeve width, w2

describes the shoulder width, h1 describes the bottom length, h2 describes the total length, and l1

describes the length of the sleeve.

Different sewing patterns result in very different garments. Traditional sewing techniques form

skirt wrinkles by cutting the circular portion of the pattern. To simulate this process but make it

generally applicable, I modify the parameter G, which achieves the same effect. In addition to the

differences created by sewing patterns, professional garment designers also take advantage of cloth

material properties to produce different styles of clothing. I tune the bending stiffness coefficients

and stretching stiffness coefficients in C to simulate this parameter selection process.
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(a) (b) (c)

Figure 6.6: Material parameter identification results. (a) The local curvature estimation before
optimizing the bending stiffness coefficients (using the cool-to-hot color map). (b) The local
curvature estimation after the optimization. (c) The original garment image (ModCloth, 2015) ©.

6.5.3 From Wrinkle Density to Material Property and Sizing Parameters

One of my key contributions in this work is the identification of fabric materials based on

wrinkles and folds, because different fabric stiffness produce varying wrinkle/folding patterns. I

characterize the wrinkles and folds using their local curvatures. The first step is to map the regional

wrinkle density P (computed in Sec. 6.4.2) to the average regional curvature K.

I recover the garment material parameter C ′ by minimizing the regional average curvature

differences between my recovered garment K(C,G) and the reference garment K(P)target

C ′ = argmin
C
‖K(C,G)−K(P)target‖2. (6.5)

The reference garment regional average curvature K(P)target is computed by linear interpolation.

I first approximate the regional average curvature threshold for the sharp wrinkles and smooth

folds. The regional average curvature threshold for one sharp wrinkle is up to 105 m−1 and that

for smooth folds is close to 10−4 m−1. Sharp wrinkles or large folds are determined by the density

of the extracted 2D wrinkles. Both sharp wrinkles and large folds are detected by edge detection.

Sharp wrinkles are identified by the center of the wrinkles while the large folds are identified by the

edges where the curvature are the largest. The density of the extracted 2D wrinkles ranges from 1

m−2 to 50 m−2 based on my observation. The interpolation process (with the linear interpolation

function I) is

K(P)target = I(P), (6.6)

83



with the linear interpolation function I(1) = 10−4 and I(50) = 105. Local curvature estimation of

κ at each vertex is computed based on the bending between the two neighboring triangles sharing

the same edge. For each vertex x of the two triangles that share an edge e, the local curvature κ is

computed following the approach from Wang et al. (Wang et al., 2011a) and Bridson et al. (Bridson

et al., 2003)

κ = ‖ sin(α/2)(h1 + h2)−1|e|x‖, (6.7)

where h1 and h2 are the heights of the two triangles that share the edge e and α is the supplementary

angle to the dihedral angle between the two triangles. The corresponding bending force fbend for

each vertex x is computed as

fbend = k sin(α/2)(h1 + h2)−1|e|x, (6.8)

where k is the bending stiffness coefficient.

Stretching also affects the formation of wrinkles. Each triangle < u0,u1,u2 > in the 2D

template mesh is represented as Dm =

u1 − u0

u2 − u0

, and each triangle in the 3D garment mesh

< x0,x1,x2 > is represented as dm =

x1 − x0

x2 − x0

. The stretching forces fstretch are computed by

differentiating the stretching energy Ψ, which depends on the stretching stiffness parameter w, the

deformation gradient F = dmD
−1
m , and the Green strain tensor G = 1

2
(FTF− I) against the vertex

3D position x

fstretch =
∂Ψ(w,F)

∂x
. (6.9)

The sizing and style of the garment described by the parameter G obtained from the parsed

garment are matched by minimizing the silhouette which is a 2D polygon differences between my
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recovered garment S(C,G) and the reference garment silhouette Starget

G ′ = argmin
G
‖S(C,G)− Starget‖2. (6.10)

The distance between two polygons is computed by summing up the distances between each point in

polygon S(C,G) to the other polygon Starget. To compute the 2D silhouette S(C,G), I first project the

simulated garment 3D mesh V(C,G, V̂(T,θ)) onto the the 2D image with the orthogonal projection

matrix H, then compute the 2D polygon enclosing the projected points. The process is expressed as

S(C,G) = f(HV(C,G, V̂(T,θ))), (6.11)

with f as the method that convert the projected points to a 2D polygon. I ignore the camera scaling

factor in this step since the input is a single-view image. It is natural to scale the recovered clothing

and human body shape as a postprocessing step.

Combining these two objectives, the objective (energy) function is expressed as

E =‖K(C,G)−K(P)target‖2+

‖S(C,G)− Starget‖2.

(6.12)

6.5.4 Optimization-based Parameter Estimation

The optimization is an iterative process (given in Algorithm 3), alternating between updates for

the garment sizing and material parameters, G and C. I found that the value of the objective function

is more sensitive to the cloth material properties C than to the garment parameter G, so I maximize

the iterations when optimizing for C, fixing G. The optimization of parameter C is coupled with

the cloth dynamics. The underlying cloth simulator is based on the method proposed in (Narain

et al., 2012). I drape the initial fitted garment onto the human body mesh. The garment is in the

dynamic state and subject to gravity. I couple my parameter estimation with this physically based

simulation process. Before the simulation, I change the cloth material parameters C so that when in
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static state the average of the local curvature κ matches the targeting threshold Ktarget. That is to

say, our optimizer minimizes ‖K − Ktarget‖2 by changing the bending stiffness parameters k and

stretching stiffness parameters w.

I apply the Particle Swarm Optimization (PSO) (Kennedy, 2010) method for my material

parameter optimization. The PSO method is known to be able to recover from local minima, making

it the ideal method for some of the non-convex optimization problems. When the clothing reaches a

static state, the optimizer switches to optimizing parameter G. The optimizer for the parameter G is

not coupled with the garment simulation. The objective function is evaluated when the clothing

reaches the static state. Similarly I adopt the PSO method for the parameter G optimization. I use

40 particles for the parameter estimation process. The alternating process usually converges after

four steps. One example result of the garment parameter process is shown in Fig. 6.6.

I constrain the cloth material parameter space. I use the “Gray Interlock” presented in (Wang

et al., 2011a), which is composed of 60% cotton and 40% polyester, as the “softest” material,

meaning it bends the easiest. I multiply the bending parameters of this material by 102 to give

the “stiffest” material based on my experiments. My solution space is constrained by these two

materials, and I initialize my optimization with the “softest” material parameters.

Algorithm 3 Garment Parameter Identification
1: procedure SIZINGPARAMIDENTIFICATION(G, Starget)
2: Compute silhouette S(C,G) using Eqn. 6.11
3: Minimize ‖S(C,G)− Starget‖2 using PSO
4: G ′ = argminG ‖S(C,G)− Starget‖2

5: Update the 2D mesh U′ using Eqn. 6.1
6: return G ′, U′

7: procedure MATERIALPARAMIDENTIFICATION(C, Ktarget)
8: Compute regional curvature K(C,G)
9: Minimize ‖K(C,G)−K(P)target‖2 using PSO Method

10: C ′ = argminC ‖K(C,G)−K(P)target‖2

11: return C ′
12: procedure MAIN( C, G, U, ε)
13: while E > ε do // E as defined in Eqn. 6.12
14: MATERIALPARAMIDENTIFICATION(C)
15: SIZINGPARAMIDENTIFICATION(G)
16: return G ′,C ′,U′
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6.6 Joint Material-Pose Optimization

6.6.1 Optimal Parameter Selection

The parameter identification step provides us with the initial recovered garment described by

the set of material and sizing parameters < C ′,G ′ >. Many realistic garment wrinkles and folds,

however, are formed due to the underlying pose of the human body, especially wrinkles that are

located around human joints. Therefore, in this step, I further refine my results by optimizing

both the pose parameters of the human body θ and the material properties of the cloth C ′. The

optimization objective for this step is

Ejoint = ‖K(C ′,θ)−K(P)target‖2. (6.13)

The optimization process (shown in Algorithm 4) is similar to the garment parameter identifica-

tion step, alternating between updating the pose parameter θ and the material parameters C ′. I use

Particle Swarm Optimization method (Kennedy, 2010). The objective function (Eqn. 6.13) is more

sensitive to the pose parameter θ than to the material parameters C ′. I constrain the optimization

space of parameter θ by confining the rotation axis to only the three primal axes. An example of my

joint material-pose optimization method is shown in Fig. 6.7.

Figure 6.7: Joint Material-Pose Optimization results. (a) The pants recovered prior to the joint
optimization. (b) The recovered pants after optimizing both the pose and the material properties.
The wrinkles in the knee area better match with those in the original image. (c) The original pants
image (Anthropologie, 2015) ©.
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Algorithm 4 Joint Pose-Material Parameter Identification
1: procedure MAIN( C ′, G ′, θ, ε1, ε2)
2: while Ejoint > ε1and En+1

joint /E
n
joint > ε2 do // Ejoint as defined in Eqn. 6.13

3: Fix C ′, Optimize for θ using Particle Swarm Method

θ′ = argmin
θ
‖K(C̃,θ)−K(P)target‖2. (6.14)

4: Fix θ, Optimize for C ′ using Particle Swam Method

C̃ = argmin
C′
‖K(C ′,θ)−K(P)target‖2. (6.15)

5: return C̃,θ′

6.6.2 Application to Image-Based Virtual Try-On

This joint material-pose optimization method can be applied directly to image-based virtual

try-on. I first recover the pose and shape of the human body < θ, z > from the single-view image.

Then I dress the recovered human body with the reconstructed garments < C̃, G̃, Ũ, V̂ > from other

images. I perform the initial garment registration step (Sec. 6.4.3) to fit the 3D surface mesh V̂ onto

the recovered human body < θ, z >.

Existing state-of-the-art virtual try-on rooms require a depth camera for tracking, and overlay

the human body with the fitting garment (Ye et al., 2014). My algorithm, on the other hand, is able

to fit the human body from a single 2D image with an optimized virtual outfit recovered from other

images. I provide the optimized design pattern together with a 3D view of the garment fitted to the

human body.

The fitting step requires iterative optimization in both the garment parameters and the human-

body poses. As in a real fitting process, I vary the sizing of the outfits for human bodies of

different sizes and shapes. When editing in parameter space using the methods introduced in the

previous section, I ensure that the recovered garment can fit on the human body while minimizing

the distortion of the original design. For each basic garment, I use one template pattern and the

corresponding set of parameters. To preserve the garment design, I do not change the material

properties of the fabric when virtually fitting the recovered garment to a new mannequin.
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6.7 Results and Discussion

I have implemented my algorithm in C++ and demonstrated the effectiveness of my approach

throughout this chapter. In this section, I show example results, performance, and comparisons to

other garment recovery methods.

6.7.1 Garment Recovery Results

I show several examples of garment recovery from a single-view image. In Fig. 6.8, I show that

my method can recover garments of different styles and materials. It also shows that my recovered

garment can be applied to human bodies in different poses.

Figure 6.8: Skirt and pants recovery results. I recover the partially occluded, folded skirts from
the single-view images in the first, fourth (ModCloth, 2015; AliExpress, 2015) © and seventh
(Anthropologie, 2015) © columns. The recovered human body meshes are shown in the second,
fifth and eighth columns overlaid on the original images. The recovered skirts are shown in the
third, sixth and nineth columns.

Image-Based Garment Virtual Try-On: I show examples of my image-based garment virtual

try-on method (Sec. 6.6.2) in Fig. 6.1 and Fig. 6.10. I can effectively render new outfits onto people

from only a single input image.

Evaluation: I evaluate the accuracy of the recovered sizing parameters G and regional average

curvature K using synthetic scenes. Each synthetic scene has two lighting conditions, mid-day,

and sunset (shown in Fig. 6.11). I fix both the extrinsic and the intrinsic camera parameters for

scene rendering, and the garments are in static equilibrium. Through these ten test cases, I can

best validate the accuracy and reliability of my method against different body poses and lighting
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Figure 6.9: Garment recovery results. For the first two rows, the input image (leftmost) (ModCloth,
2015; AliExpress, 2015; RedBubble, 2015) © and recovered garment on the extracted human body.
In the last row, the input image (leftmost) and the recovered garment on a twisted body.

conditions on T-shirts and pants, as the sizing and material parameters are known exactly and do

not require noisy measurements and/or data fitting to derive a set of estimated/measured parameters

(which are not likely to be 100% accurate) to serve as the ground truth. The evaluation result, after

eliminating the camera scaling factor, is shown in Table 6.1.

I found that the lighting conditions mainly affect the body silhouette approximation and the

garment folding parsing, while the body skeleton approximation is affected by the pose. Overall, I

achieve an accuracy of up to 90.2% for recovering the sizing parameters and 82% for recovering
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Figure 6.10: Image-based garment transfer results. I dress the woman in (a) (FashionableShoes,
2013; Boden, 2015) © with the skirt I recovered from (b) (AliExpress, 2015; ModCloth, 2015) ©.
(c) I simulate my recovered skirt with some wind motion to animate the retargeted skirt, as shown
in (d). Another example of garment transfer is given in (e) - (h).

the material parameters for t-shirts and pants under different body poses and lighting conditions.

The accuracy is computed as the average accuracy for each parameter from the ground truth.

I evaluate the accuracy of the recovered material properties by measuring the difference between

the ground truth and that of the recovered garment for both the mean curvature and the material

parameters, as the accuracy of mean-curvature recovery also correlates with the accuracy of the

material-parameter estimation. As shown in Table 6.2, I are able to achieve an accuracy of up

to 86.7% and 80.2%, respectively, for the recovery of mean curvatures and different material

parameters for the skirt.

To test the sensitivity of my garment sizing and material recovery method with respect to the

human body recovery, I further validate the accuracy of my recovered human-body skeleton joint

angles. I measure the accuracy of the human body pose by computing the difference between the

recovered joint angles and the known ‘ground-truth’ joint angles, as shown in Table 6.3). I achieve

100% of accuracy when the joints are not occluded because some of those joints are in the initial

states. For those joints that are occluded by the human body or covered by the garment, the relative
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error of the recovered joint angle ranges from 1.7% to 3.9%. The relative error is computed by

dividing the angle difference by the angle range (upto 180 degree).

Figure 6.11: Synthetic evaluation scenes. (a)-(c) fixed body shape with different poses. (d)-(e)
fixed body shape with a skirt of different material. (f)-(j) same scene setup as (a)-(e) but different
lighting condition.

Table 6.1: The accuracy of the recovered sizing and material parameters. The accuracy of the
recovered sizing and material parameters of the t-shirt and the pants (in percentages).

T-Shirt Pants Scene
Pose a a b b c c
Lighting Mid-Day Sunset Mid-Day Sunset Mid-Day Sunset
Gtshirt Accuracy 90.2 88.3 89.8 88.1 88.3 86.3
Gpants Accuracy 89.3 87.6 85.8 83.3 88.2 87.5
Ctshirt Accuracy 80.6 81.3 79.2 81.5 80.9 82.0
Cpants Accuracy 80.3 78.6 80.0 80.7 80.3 80.5

Table 6.2: The accuracy of recovered garment curvature and material parameters. The ac-
curacy of the recovered garment local mean curvature and material parameters of the skirt (in
percentages).

T-Shirt Skirt Scene
Material Low Bending Low Bending High Bending High Bending
Lighting Mid-Day Sunset Mid-Day Sunset
Kskirt Accuracy 86.7 83.4 85.3 82.5
Cskirt Accuracy 80.2 78.9 81.3 78.3
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Table 6.3: Difference between the recovered human body joint angles and the ground-truth
values (in Degree) for different poses shown in Fig. 6.11.

T-Shirt Pants Scene
Pose a a b b c c
Lighting Mid-Day Sunset Mid-Day Sunset Mid-Day Sunset
Joint Name Angle Difference
Head 3 3 3 3 3 3
Neck 0 0 0 0 0 0
Left Shoulder 0 0 0 0 4 4
Right Shoulder 0 0 0 0 4 4
Left Elbow 7 7 7 8 9 9
Right Elbow 5 6 6 6 8 7
Left Wrist 0 0 0 0 0 0
Right Wrist 0 0 0 0 0 0
Pelvis 0 0 0 0 0 0
Left Hip 0 0 4 4 0 0
Right Hip 0 0 5 6 0 0
Left Knee 0 0 5 6 0 0
Right Knee 0 0 4 5 0 0
Left Ankle 0 0 0 0 0 0
Right Ankle 0 0 0 0 0 0

6.7.2 Comparison with Other Related Work

I compare my results with the multi-view reconstruction method CMP-MVS (Jancosek and

Pajdla, 2011) together with the structure-from-motion framework (Wu, 2011, 2013a). For a fair

comparison, I apply smoothing (Taubin, 1995) to the results of their work. Fig. 6.12 and Fig. 6.13

show that the garment recovered using my method is clean and comparable in visual quality to

the recovered garments using multi-view methods. In addition, I are able to estimate the material

properties from one single-view image for virtual try-on applications.

I further compare the results of my work against two recent methods – one using 3D depth

information and an expert-designed 3D database (Chen et al., 2015), and the other using a large

database of manually labeled garment images (Jeong et al., 2015). My method, which does not

require depth information, an expert-designed 3D database, or a large manually labeled garment

image database, achieves a comparable level of high accuracy to Chen et al. (Chen et al., 2015) (see
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Figure 6.12: Comparison. (a) One frame of the video along with (b) the CMP-MVS results before
and (c) after smoothing. (d) My results using only one frame of the video.

Figure 6.13: Comparison.(a) One frame of the multi-view video along with (b) the CMP-MVS
results before and (c) after smoothing. (d) My results using only one frame of the video.

Fig. 15) and higher visual quality when compared with Jeong et al. (Jeong et al., 2015) (see Fig. 16).

In addition, my method is able to recover material and estimate sizing parameters directly from a

given image.

Figure 6.14: Comparison. (a) input image (© 2015 ACM) from paper Chen et al. (Chen et al.,
2015) Figure 12. (b) my garment recover results from only a single-view RGB image (a). (c)
recovery results (© 2015 ACM) from Chen et al. (Chen et al., 2015) using both RGB image and
depth information.
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Figure 6.15: Comparison. (a) input image (© 2015 Wiley) from Figure 3 in Jeong et al. (Jeong
et al., 2015). (b) my garment recover results from (a). (c) recovery results (© 2015 Wiley) from
Jeong et al. (Jeong et al., 2015).

6.7.3 Performance

I run my method on a desktop with an Intel(R) Core(TM) i7 CPU, 3.20GHz. For each garment,

my pipeline takes on average 4 to 6 hours. The garment parameter identification (Sec. 6.5) and

joint material-pose optimization (Sec. 6.6.1) takes around 60%− 80% of the entire process. The

preprocessing step (Sec. 6.4.2) takes around 20%− 30%. The performance depends largely on the

complexity of the garment, the image quality, and how much the garment is occluded.

6.7.4 Discussions and Limitations

Estimation of Material Parameters My material recovery method depends on the existence of

wrinkles and folds of the garment. In cases where no or very few wrinkles or folds are present, other

image features, such as textures and shading, would be required to identify the material properties.

In most garments like shirts, skirts, or dresses, wrinkles and folds are common (especially around

the joints or from the garment stylization), and can be highly informative with regards to garment

material properties. Based on this observation, I are able to estimate material parameters as well as

recover garment geometry from single-view images. This capability is one of my main objectives,

and it is the key feature differentiating my work from existing techniques.

Accuracy of Geometry Reconstruction In general, it is expected that recovery from single-view

images should yield less accurate results than from standard 3D reconstruction and/or the most

95



recent 3D multi-view methods. My method adopts accurate physics-based cloth simulation to

assist in the recovery process and achieves comparable visual quality, with a focus on capturing

plausible wrinkles and folds, as well as material parameters required for virtual try-on using only

photographs.

However, it is important to note that high visual quality does not always guarantee geometric

accuracy in 3D garment recovery. At the same time, for some applications such as virtual try-on,

rapid design, and prototyping, it is unclear if a high degree of geometric accuracy is required; it is

also unknown how much error tolerance is needed for the comfortable fitting of garments. These are

important considerations for further investigation in application to fashion design and e-commerce.

Databases The current implementation of my approach depends on two databases: a database of

commonly available garment templates and a database of human-body models. These databases

introduces some limitations that can be mitigated.

Garment Templates: The range of garments I can recover is, to some extent, limited by the

available garment templates. My parameter identification method can only generate garments that

are “morphable” from the garment template, i.e. homeomorphic to the garment template. For

example, since I use only one template for each garment type, I cannot yet model variations in some

clothing details, e.g. multi-layered skirts, or collars on shirts. But for those garments that are not

morphable from the template, my method can recover whichever version of the garment is closest

to the actual garment. With a more extensive set of templates, I can begin to model more variations

of styles and cuts, with richer garment details.

Human-body Shapes: Another limitation is the human body shape recovery. My reduced

human body shape is described by a set of semantic parameters z. The representation of this set of

semantic parameters is not enormous, though it is sufficient to include most of the common human

body shapes, as shown in my images. The known artifacts of linear human shape blending can

also affect results. Aside from the human body shape recovery, my method is also limited by the

state-of-art 3D human pose recovery methods. Manual intervention is needed when these methods

fail to output a reasonably accurate 3D human pose.
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Image Processing My current implementation cannot deal with texture, when the texture color

is same as background. Although it can cope with small, partial occlusion, it cannot handle large

occlusion.

6.8 Conclusion and Future Work

In this chapter I present an algorithm for physics-inspired garment recovery from a single-view

image. My approach recovers a 3D mesh of the garment together with the 2D design pattern, fine

wrinkles and folds, and material parameters. The recovered garment can be re-targeted to other

human bodies of different shapes, sizes, and poses for virtual try-on and character animation.

In addition to addressing some limitations mentioned above, there are many possible future

research directions. First of all, I plan to develop a parallelized implementation of my system on

GPU or a many-core CPU for fast garment recovery. Both the underlying cloth simulator and the

optimization process can be significantly accelerated. I also plan to extend my approach to enable

fabric material transfer from videos for interactive virtual try-on. Furthermore, I hope to explore

possible perception metrics, similar in spirit to (Sigal et al., 2015).
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CHAPTER 7: LEARNING-BASED CLOTH MATERIAL RECOVERY FROM VIDEO

7.1 Introduction

Figure 7.1: Learning-based cloth material prediction and material cloning results. (a) learning
samples generated using the state-of-art physically-based cloth simulator Arcsim(Narain et al.,
2012) (b) example real-life cloth motion videos presented in(Bouman et al., 2013) (c) simulated
skirt with the material type predicted from the real-life video in (b) using the learned model from
samples presented in (a).

Recent advances in virtual reality (VR) make it possible to recreate a vivid virtual world

that can be captured as a collection of images or a video sequence. Better understanding of the

physical scene can further assist in the virtual reconstruction of the real world by incorporating more

realistic motion and physical interaction of virtual objects. With the introduction of the deep neural

network and advances in image understanding, object detection and recognition have achieved an

unprecedented level of accuracy. Capturing the physical properties of the objects in the environment

can further provide a more realistic human-scene interaction. For example, in a virtual try-on system

for clothing, it is critical to use material properties that correctly reflect the garment behavior;

physical recreation of the fabric not only gives a compelling visual simulacrum of the cloth, but

also affects how the garment feels and fits on the body. In this chapter, I propose a novel method of

extracting physical information from videos in a way analogous to how humans perceive physical

systems in an image or a video using “mental simulations” (Craik, 1967).
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Figure 7.2: An overview of my method. My cloth material recovery method learns an appearance-
to-material mapping model from a set of synthetic training samples. With the learned mapping
model, I perform material-type prediction given a recorded video of cloth motion.

The key intuition behind my method is that the visual appearance of a piece of moving cloth

encodes the intrinsic material characteristics. I use the parameters of the material model to represent

the cloth’s material properties for the recorded fabrics. I adopt the cloth material model proposed by

Wang et. al. (Wang et al., 2011a), which encodes the stretching and the bending of the cloth. To

quantify the parameter space, I first find a parameter sub-space which discretizes the cloth material

type into 54 classes. Each class defines a range of the stretching and bending parameters in the

original continuous parameter space. To recover these stretching and bending parameters from the

target video, I use machine learning to define the mapping between the “visual features” and the

physics properties.

The visual features I use consist of the RGB information of each frame of the video. I assume

that the videos are taken in controlled lighting conditions. Furthermore, I take advantages of

simulated data from high-fidelity, physically-based cloth simulator to generate a very large set of

videos that would be either difficult to obtain or too time-consuming and tedious to capture. With

the recovered and tracked moving cloth, I can create a virtual world that uses fabrics with physical

properties similar to those of the actual fabrics items in the captured video. The key contributions

of this work are: a deep neural network based parameter-learning algorithm and the application of

physically-based simulated data of cloth visual-to-material learning.
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7.2 Related Work

Material Understanding: One of the fundamental problems in computer vision is image and

video understanding. It includes the key processes, such as object segmentation (Hariharan et al.,

2015; Noh et al., 2015; Dai et al., 2015; Girshick et al., 2016; Pinheiro and Collobert, 2015; Long

et al., 2015b), object detection (Ren et al., 2015; Borji et al., 2015; Girshick et al., 2014; Dollár et al.,

2014; Szegedy et al., 2015; Hariharan et al., 2014), object recognition (Donahue et al., 2014; Lin

et al., 2014; Zhang et al., 2014; Aubry et al., 2014; Sharif Razavian et al., 2014; Russakovsky et al.,

2015), scene understanding (Choi et al., 2013; Wang et al., 2013), human activities and behavior

understanding (Shao et al., 2015, 2014; Solmaz et al., 2012), traffic pattern analysis (Geiger et al.,

2014; Zhang et al., 2013), and surface material recognition (DelPozo and Savarese, 2007; Bell et al.,

2015).

My proposed cloth material understanding is one sub-process of image/video understanding.

More recently, “physical scene understanding,” which focuses on understanding the intrinsic

properties of moving objects (Battaglia et al., 2013; Wu et al., 2015) has emerged as the next frontier

of scene understanding. It is known that human brain can perceive dynamic systems in an image or a

video. Inspired by human cognition, my method presents a computational framework that perceives

the material properties of cloth in ways similar to how humans perceive dynamical systems in the

physical world.

Deep Neural Network for Temporal Pattern Learning: With the advance in the artificial

intelligence area, the deep neural network has been used for a vast number of tasks, especially the

use of the recurrent neural network in the temporal sequence pattern learning tasks such as activity

recognition (Donahue et al., 2015b; Ibrahim et al., 2016) and video captioning (Yu et al., 2016). My

proposed neural network structure is inspired by the LRCN (Donahue et al., 2015b).

Use of Synthetic Data-set: The time and the energy needed to label captured data means

that there is a limited amount of real-world data for training deep neural networks. Increasingly,

researchers are starting to explore the use of synthetic databases to assist a variety of computer vision
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tasks. For example, Chen et.al. (Chen et al., 2016) proposed a synthetic human-body data-set to

help with 3D pose estimation; Keskin et.al. (Keskin et al., 2013) make use of synthetic hand images

to train a hand-pose estimator; and many synthetic pedestrian data-sets (Hattori et al., 2015; Cheung

et al., 2016) have been generated to study computer detection of humans in real-life images/videos.

Recovery of Physical Properties: Recovering the physical properties of a dynamical system

has been a challenging problem across computer graphics, medical imaging, robotics, and computer

vision for decades. And recovering physical properties of dynamical systems has become especially

important with the rise of interest in VR research; the recovered physics properties from a real-life

scene can be used in a virtual world or a synthetic environment to recreate a realistic animation

of the given dynamical system. For example, in medical image analysis, accurately recreating the

physical properties of patient tissues in virtual systems can increase diagnostic accuracy for certain

kinds of diseases (Yang and Lin, 2015b; Yang et al., 2016b).

Previous methods of recovering physical properties can be classified into to three key categories:

measurement-based methods (Syllebranque and Boivin, 2008b; Miguel et al., 2012b; Wang et al.,

2011a), which estimate the physical properties by sampling various physical quantities of the

dynamical system; statistically based methods (Yang and Lin, 2016; Bouman et al., 2013; Davis

et al., 2015), which learn the physical properties by observing the statistical parameters of the

observed data; and iterative simulation-optimization techniques (Bhat et al., 2003; Yang and Lin,

2015b; Lee et al., 2012b; Mongus et al., 2012), which recover physical properties by simultaneously

simulating the dynamical phenomena and identifying its physical properties. My method is a hybrid

of these three methods. I take advantage of simulations of the dynamical phenomenon for more

robust prior computations, and use the statistical method to better learn the intrinsic parameters

characterizing the dynamical system, i.e. the moving cloth, in this work.

Cloth Simulation: Simulation of cloth and garments has been extensively studied in computer

graphics (Bridson et al., 2002; Govindaraju et al., 2007; Narain et al., 2012). Methods for cloth

simulation can be divided into two classes: one focuses on the accuracy of the simulation, and the

other tackles the problem of real-time performance (Koh et al., 2014). This work takes advantage of
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the state-of-art cloth simulator, ArcSim (Narain et al., 2012), which has a high degree of accuracy

and visual fidelity.

7.3 Method

In this section I give a formal definition of the problem.

Problem Statement: Given a sequence of RGB images V = {Ω1,Ω2, . . . ,ΩN}, determine the

type of material of the recorded cloth.

Figure 7.2 presents an overview of my approach. To constrain both my input and solution

space, I first find the suitable material and the motion sub-space that can best represent the cloth

material and motion in real life. Then, I exploit physically based cloth simulations to generate a

much larger number of data samples within these sub-spaces that would otherwise be difficult or

time-consuming to capture. The “appearance feature” of the cloth is represented by the pixel Irgb.

With the data samples, I combine the image signal feature extraction method, Convolutional Neural

Netork (CNN), with the temporal sequence learning method, Long Short Term Memory (LSTM), to

learn the mapping from visual “appearance” to “material”.

In the following sections, I present details of how my method learns the mapping between the

visual appearance of cloth and its physical properties, and information on the generation of synthetic

data-sets.

7.4 Visual, Material and Motion Representation

I first describe the visual appearance feature representation, material parameter space discretiza-

tion and the motion sub-space of cloth.

7.4.1 Appearance Representation

I use the convoluted RGB color (Irgb) in the video as the appearance representation. I apply

5 layers of Convolutional Neural Network (CNN) to the RGB channels to extract both low and

high-level visual features.

102



v(Irgb) = W [CNN(Irgb)] + b, (7.1)

with W as the weights and b as the bias to be learned. The output of the final fully connected layer

(fc6 layer) is the input to the LSTM as the appearance encoding.

7.4.2 Material Representation

Before I introduce my material representation, I first describe the material model I applied

in my physically-based cloth simulator. Instead of using the types of manufacturing material of

fabric from the physical world, I use the parameters of the material model of the physically-based

simulator as the basis for representing the types of fabric material. Manufacturing fabric material,

such as cotton, polyester, and linen, alone does not sufficiently define the material of the cloth. Other

factors, such as the weaving patterns and thread count, also affect the material properties of a piece

of cloth. Furthermore, since the driving application of this work is virtual try-on for e-commerce,

my goal is to automatically determine the set of material parameters required for the physics-based

cloth simulator that would reproduce the cloth dynamics observed in the video. The material model

in the physically-based cloth simulator defines the cloth behavior under different external forces.

The parameters of the material model thus appropriately defines the material type of the cloth under

simulation. Therefore, I use the parameters of the material model of the physically-based cloth

simulator to represent the types of fabric material in this work.

7.4.2.1 Material Model

The choice of material models defines the number of material types that can be approximated

using a physically based simulator. In this work, I use a cloth material model proposed by Wang et

al. (Wang et al., 2011a), which can be used to model most of the cloth materials in the real world.

A material model, in general, defines the relation between the stress σ and the strain ε. The

cloth material consists of two sub-models, stretching and bending models. The stretching model

describes how much the cloth would stretch, when subject to a certain amount of planar external

forces. Similarly, the bending model defines how much the cloth would bend, when subject to
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out-of-plane forces. A linear stress-strain relation can be expressed using a constant stiffness tensor

matrix C as: σ = Cε. To better approximate the stretching physics of a piece of cloth, Wang et

al. (Wang et al., 2011a) proposed a stiffness tensor matrix that is not constant but depends on the

in-plane-strain tensor C(ε). I refer readers to my supplementary file for detailed explanation on this

material model.

7.4.2.2 Parameter Space Discretization

In the cloth material model (Wang et al., 2011a), the stretching parameter consists of 24 real

numbers varying from 10 to 1000. This continuous space makes this problem intractable. To

constrain my input/solution space, I discretize the original material parameter space and choose

the “quantized” parameter sub-space as my material parameter sub-space. My output will be in

this sub-space. To discretize the continuous material parameter space, I choose one of the material

presented in the paper (Wang et al., 2011a), called “camel-ponte-roma”, as the basis. The material

sub-space is constructed by multiplying this material basis with a positive coefficient. I further

quantize the coefficients in continuous space to a discrete set of numbers. The size of this discrete

set of numbers is the number of material types I used to represent the cloth material in real life.

Using this mechanism, I discretized both the stretching and the bending parameter space.

To construct an optimal material parameter sub-space P , optimal in the sense that the size of

the coefficient set is minimized and the number of different real-life cloth materials that can be

represented is maximized, I first conduct a material parameter sensitivity analysis. The material

parameter sensitivity analysis examines the sensitivity of the material parameters κ with respect

to the amount of deformation D(κ). The sensitivity is measured as: ∂D(κ)
∂κ

, which is the slope of

the curve shown in Fig. 7.3. For the stretching parameter p analysis, I hang a piece of cloth and

measure the maximum amount of stretching D(M) as in the length changes, when subjected to

gravity. And, for bending parameter k sensitivity analysis, I fold a piece of cloth and keep track

with the maximum curvature C(M). The maximum amount of stretching D(M) and the maximum

curvature C(M) are measured from the 3D meshM as follows:
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D(M) = max
u∈V
‖u− u0‖, (7.2)

C(M) = max
f1,f2∈F,f1∩f2=e0

‖e0‖arccos(n1 · n2)

A1 + A2

, (7.3)

whereM = V, F,E is the 3D triangle mesh, which has a vertex set V , a face set F and an edge

set E, of the cloth, u is a vertex of the cloth’s meshM and u0 is position of that vertex in rest

configuration, f1, f2 are two adjacent faces with shared edge e0, n1,n2 are their normals and A1, A2

are the area of those two faces.

The analysis results are shown in Fig. 7.3. The slope of the sensitivity curve (light blue) in

Fig. 7.3 is positively related to how sensitive the cloth deformation/curvature is with respect to the

stretching/bending coefficient. The jittering in the bending parameter sensitivity analysis is due to the

re-meshing scheme. I further divide the x-axis in Fig. 7.3 into a set of segments based on the slope of

the sensitivity curve. I divide the x-axis into more discrete sets when the slope of the sensitivity curve

is large and vice versa. The discrete set segments of the x-axis are the stretching/bending coefficients

set. Based on my analysis, the stretching parameter sub-space is Ps = {0.5, 1, 2, 3, 10, 20} and the

bending parameter sub-space is Pb = {0.5, 1, 2, 3, 4, 5, 10, 15, 20}. Combining the two sub-spaces

P = {(p, k)|p ∈ Ps, k ∈ Pb}, my discretized sub-space can represent 54 types of material.

To prove the validity of my material parameter sub-space, I illustrate that my material types have

the ability to represent some of the commonly encountered real-life fabric material classes. I use the

ten material types presented in the paper (Wang et al., 2011a) for the validation experiment. Firstly,

I estimate the parameters (the floating point numbers (p̃, k̃) in Table 7.1). And then I discretize

them into my subspace (the numbers in the parenthesis(p, k) in Table 7.1). As shown in Table 7.1,

my discretized material types can represent these 10 types of cloth with a limited amount of error.

7.4.3 Motion Sub-space

To further make my problem tractable, I constrain the motion space of the cloth by controlling

the external forces of the cloth. Under controlled external forces, the cloth moves in a motion

sub-space. In addition, I need to make sure that the motion subspace is spanned in a way to capture
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(a) (b)

Figure 7.3: Stretching and bending parameters sensitivity analysis results. (best view in color)
The x-axis is the reciprocal of parameter ratios to the basis material. The y-axis is the maximum
amount of deformation of the cloth, i.e., maximum amount of stretching or maximum curvature,
respectively. I use the vertical lines with different colors to represent the 10 types of materials
presented in (Wang et al., 2011a).

the relation between the motion and the material properties of the cloth. I choose two types of

external forces: constant-velocity wind blowing and fixed-size arm bending. The constant-velocity

wind blowing can stretch the cloth to its maximum amount of stretching deformation, while the

fixed-size arm bending can bend the cloth to its highest curvature.

7.5 Learning Method

In this section, I explain how to establish the mapping between the visual appearance of a

moving cloth and its physical properties using deep neural network.

7.5.1 Deep Neural Network Structure

Design Rational: I propose to combine CNN with LSTM (similar to the LRCN (Donahue et al.,

2015a) structure) for my appearance-to-material learning (network structure shown in Fig. 7.4).

CNN is used to extract both low- and high-level visual features. LSTM part of the network focuses

on temporal motion pattern learning. In the following sections, I will briefly introduce my network

structure.
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Table 7.1: Material parameter sub-space validation. The floating point numbers show the
estimated stretching/bending parameter coefficients (p̃, k̃), while the numbers in the parenthesis are
the corresponding stretching/bending parameter (p, k) in my defined subspace P .

Material (Wang et al., 2011a)
Stretching

Ratio
p̃(p)

Bending
Ratio
k̃(k)

ivory-rib-knit 1.3817(1) 2.3(2)
pink-ribbon-brown 2.9343(3) 12(10)
camel-ponte-roma 1(1) 0.52(0.5)
white-dots-on-blk 15.8108(20) 3.5(4)

navy-sparkle-sweat 0.5613(0.5) 1.7(2)
gray-interlock 1.0164(1) 1.6(2)

11oz-black-denim 3.6079(3) 3(3)
white-swim-solid 1.9126(2) 2.9(3)
tango-red-jet-set 1.9784(2) 1.9(2)

royal-target 22.2857(20) 19(20)

Figure 7.4: Appearance-to-material learning method. I apply CNN and LSTM (the original
LRCN design presented in (Donahue et al., 2015a)) to learn the mapping between appearance and
material.

Convolutional Neural Network for Hierarchical Visual Feature Learning: Convolutional

neural network was first proposed by LeCun et. al. (LeCun et al., 1998) for digit recognition. The

basis of the convolutional neural network is the convolution operation. The convolution operation

serves as a filtering operation on an image. Layers of convolutional neural network (CNN) with

convolution kernels of different dimensions extract features at various levels of details.

I applied a five-layer CNN (shown in Fig. 7.5) for its ability in hierarchical visual feature

selection. This part of the network structure is similar to the AlexNet (Krizhevsky et al., 2012). The

fifth convolution layer is followed by one fully connected layer. The output of the fully connected

layer (fc6) is the input to each LSTM cell.
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Figure 7.5: The five-layer CNN structure. The original design is presented in (Krizhevsky et al.,
2012)

To demonstrate the effectiveness of my CNN design, I visualize the activation of the fifth

convolution layer (the “conv5” layer). In Fig. 7.6, I overlay the real-life cloth moving images

with the “conv5” layer activation which is visualized using the “jet” color map. The model is

trained with my simulated wind-blowing data set. It is shown that I successfully trained the neural

network in paying attention to the cloth area (high-lighted in yellow-red) and the cloth moving

edges (high-lighted in red) of real-life images.

Figure 7.6: Learned CNN conv5-layer activation visualization. (best view in color) I overlay
the conv5 layer activation using the “jet” color map with the original image. The model is trained
with my simulated data set with the cloth wind-blowing motion.

Recurrent Neural Network for Sequential Pattern Learning: A single image contains a

limited amount of information concerning the physics properties of a piece of cloth. But a video

can be more powerful to demonstrate how the physics properties, such as the material properties

of a piece of cloth, can affect its motions. To approximate this mapping between the material

properties of the cloth and its sequential movement, I apply the recurrent neural network. Unlike the

feed-forward neural network, the recurrent neural network has a feedback loop. The loop connects
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Figure 7.7: Data generation pipeline. My simulated data learning samples generation pipeline
consists of two steps: cloth simulation and image rendering.

the output of the current cell to the input of the cell at the next step. The feedback loop act as the

“memory” of the recurrent neural network. With the “memory”, the recurrent neural network has the

ability to gradually extract the pattern of the input sequence.

Following the intuition behind the recurrent neural network, I choose the LSTM (Hochreiter and

Schmidhuber, 1997) instead of the traditional recurrent neural network architecture for its ability

to deal with vanishing/exploding gradient and fast convergence to learn the pattern in temporal

sequence of data.

7.6 Physics-based Synthetic Data-sets

To learn the mapping between the visual appearance of a moving cloth and its material charac-

teristics using a statistical method, I require a large number of data samples. Instead of using limited

number of real-life recorded videos of cloth moving, I use simulation data as training samples. My

synthetic data generation exploits physically based cloth simulation. This approach enables us

to automatically generate a large number of data samples in a short amount of time without any

manual recording or labeling.

In the following section, I will introduce my learning data samples generation pipeline.

7.6.1 Data Generation

My data generation pipeline (shown in Fig. 7.7) consists of two steps: cloth simulation and

image rendering. The cloth meshes are generated through physically based simulation (ArcSim

(Narain et al., 2012)). The cloth is subject to external forces such as gravity, wind and arm bending.
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(a) (b)

Figure 7.8: Simulated data showcase. The first three rows are example frames from my Wind-
blowing data set with the cloth in pose-1. The bottom two rows are example frames from my
Wind-blowing simulated data set with the cloth in pose-2 consisting of two different types of
material.

Those external forces will drive the movement of the cloth. I vary the stretching, bending parameters

to simulate a number of sequences of cloth motion. For each set of stretching, bending parameters I

generate a sequence of 3D cloth meshes. The sequence is divided into sub-sequences as temporal

training samples. Then I render each frame of the 3D cloth meshes to 2D images using Blender. The

images are rendered under controlled lighting conditions and camera settings. Instead of rendering

the cloth as uniform colored, for each sequence of 3D mesh, I randomly assign them with a texture

image. I further composite the foreground cloth with a random background image (as shown in

Fig. 7.8) to make the scene more complicated and to train the network to pay attention to the

cloth area (as shown in Fig. 7.6). My background images are chosen from the indoor scene image

dataset (Quattoni and Torralba, 2009).

7.7 Experiments

I implemented my method using the Caffe (Jia et al., 2014) deep neural network framework.

The training process takes around 12 hours with a NVDIA-TitanxTM GPU. It takes up to 40,000

iterations to converge.
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7.7.1 Data Preparation

My data set is generated using physically-based cloth simulation. By changing the simulation

parameters, I obtain cloth with different material properties. I also observed two key factors that can

affect the learning process: the remeshing scheme (adaptive vs. uniform resolution) and the texture

of the cloth. The remeshing scheme affects the wrinkle formulation of the simulated cloth, while

the texture affects the visual feature that the CNN can extract. For each motion, remeshing scheme,

and texture type, I generated 2,592 sequences of cloth motion, using the method I introduced in

Sec. 7.6.1. Among the 2,592 sequences, 2,106 of them were used for training and the rest 432

were used for testing. Each sequence consists of 10 frames. I tested my learned model on both the

simulated data set and the real-life videos.

7.7.2 Results

My training data consists of two different types of motion: arm bending and wind blowing,

with 54 material types (by varying a combination of 6 bending and 9 stretching parameters).

7.7.2.1 Baseline Results

To validate my network structure, I constructed two baseline tests. My first baseline test excludes

the sequential pattern learning part (LSTM). I fine-tune the pre-trained AlexNet (Krizhevsky et al.,

2012) with all the frames (210,600 images) of my training videos. Then I test my fine-tuned model

on simulated data (43,200 images). Test results are shown in Table 7.2. My first baseline framework

achieves 53.6% of accuracy for predicting 54 classes of materials for arm bending motion and

that of 56.9% for wind blowing motion when testing on simulated data. For the second baseline,

I fix my CNN part of the network but train the LSTM part. The second test aims to validate the

effectiveness of my CNN sub-network. This framework obtains 56.9% of accuracy for predicting

54 classes of materials for arm bending motion and that of 57.0% for wind blowing motion when

testing on simulated data. As is shown in Table 7.2 and Table 7.3, the accuracy for cloth material
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type prediction from both simulated images/videos and real-life images/videos for both baseline

frameworks is lower than my (CNN+LSTM) model.

Table 7.2: Testing results. The models are trained with the arm bending motion and wind blowing
motion. Then they are tested on 432 simulated arm bending/wind blowing videos, where the ground
truth is known. My method achieved up to 71.8% of accuracy for predicting 54 classes of materials
for arm bending motion and upto 66.7% for wind blowing motion.

Data Setting
Method

Base-1 Base-2 CNN+LSTM

Type Re-mesh Texture RGB-I RGB-V RGB-V

Arm

Adapt
Grid 56.0 54.0 63.3
Color 52.9 50.2 66.0
Rand 53.0 54.3 71.1

Unif-1 Rand1 54.0 56.8 62.9
Unif-2 Rand2 51.9 57 62.7
Unif-3 Rand3 53.6 56.9 71.8

Wind

Adapt
Grid 50.4 48.0 63.4
Color 54.0 51.2 68.0
Rand 53.7 53.2 67.7

Unif-1 Rand1 53.6 53.3 64.7
Unif-2 Rand2 58.9 57.0 64.5
Unif-3 Rand3 56.9 53.0 66.7

7.7.2.2 Validation of My Method

To validate my method, I first test the accuracy of the model trained with only the simulated

arm bending motion for predicting material type of the arm bending videos. I achieve up to 71.8%

of accuracy for predicting from the 54 classes of material types when using only the three-channel

RGB video. The model that has the best accuracy is the one trained with the texture randomly

assigned and the mesh uniformly remeshed three times. And the second best model is the one

trained with the adaptive remeshing scheme and randomly assigned texture. The main reason

behind this is that the meshes that are uniformly remeshed three times contain more details than the

adaptive remeshed ones.

Next, I train the deep neural network with the wind blowing motion data set and test the learned

model on the simulated wind blowing videos. The results are shown in Table 7.2. Similar to the
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arm bending results, the best performing model is the one that is trained with the texture randomly

assigned and the mesh uniformly remeshed three times. I achieve up to 66.7% of accuracy for

predicting among 54 material types when using only the three-channel RGB Video.

Finally, I test my learned model on 90 real-life videos (Bouman et al., 2013). The 90 videos

record the wind blowing motion of 30 kinds of cloth with three different wind strength. I correlate

my predicted material type with both the ground truth stiffness value and the ground truth density

value. My material types are 54 discrete numbers range from 0 to 53. The higher the number

generally means the cloth is stiffer. Among the models I trained, the one which is trained with the

wind blowing motion, uniformly remeshed three times, texture randomly assigned performs the

best on both simulated data according to Table 7.3.

The prediction from this model also correlates the best with both the ground truth stiffness

value and the ground truth density value. I achieve up to 0.50 and 0.64, respectively, as of the R

value which is close to the one when human predicting material from a single image presented in

(Bouman et al., 2013) for the correlation test. My experiment results also show that my prediction

results is sensitive to the cloth motion as the predicted material type correlate better with the ground

truth values as the strength of the wind increases (W3-Video). Further comparison analysis is given

in the following section.

7.7.2.3 Comparison

In Table 7.3, I compare my method with the other cloth material recovery methods (Bouman

et al., 2013) that addresses the same problem as ours. Inspired by the feature selection proposed

in (Bouman et al., 2013), I propose a more general feature extraction method based on deep

neural network. To make fair comparison with K. Bouman et.al. (Bouman et al., 2013), I also

removed 7 videos which lack of texture or of high specularity. After excluding those 7 videos,

my correlation coefficient R value for predicting cloth stiffness is 0.77 which is higher than those

presented in (Bouman et al., 2013). I demonstrated in my experiments that my learned model can
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Table 7.3: Stiffness/density correlation r values for (Bouman et al., 2013) vs. Ours My method
outperforms both (Bouman et al., 2013) and human perception, achieving the highest correlation
value of 0.77 and 0.84 respectively for stiffness and density, undergoing larger motion due to
stronger wind (W3-video).

Method Input Stiffness Density
Human (Bouman et al., 2013) Image 0.48 0.45
Human (Bouman et al., 2013) Video 0.73 0.83
AlexNet (baseline1) Image 0.04 0.06
preCNN+LSTM (baseline2) 30 W3-Videos 0.12 0.13
CNN+LSTM (ours) 30 W1-Videos 0.47 0.55
CNN+LSTM (ours) 30 W2-Videos 0.43 0.62
CNN+LSTM (ours) 30 W3-Videos 0.50 0.64
K. Bouman et. al. (Bouman et al., 2013) 23 W1-Videos 0.74 0.77
K. Bouman et. al. (Bouman et al., 2013) 23 W2-Videos 0.67 0.85
K. Bouman et. al. (Bouman et al., 2013) 23 W3-Videos 0.70 0.77
CNN+LSTM (ours) 23 W1-Videos 0.71 0.75
CNN+LSTM (ours) 23 W2-Videos 0.69 0.80
CNN+LSTM (ours) 23 W3-Videos 0.77 0.84

predict material type from videos more accurately than using the feature proposed in (Bouman et al.,

2013) and human perception.

7.7.3 Application

I further demonstrate my proposed framework with the application of “material cloning”. With

my trained deep neural network model, I can predict the material type from a video recording the

motion of the cloth in a fairly small amount of time. The recovered material type can be “cloned” on

another piece of cloth or a piece of garment as shown in Fig. 7.9. I refer readers to my supplementary

file for video demos.

7.7.4 Discussion and Limitations

My current learning samples are generated using physically based simulator. However, there

are differences between the simulated data and real-life recorded videos. The difference comes from

the numerical errors in the cloth simulation method, but also quality of the rendered images. My

experiments show great promise of my learned model using data from cloth simulator in predicting

material types of cloth in the real-life videos. But there is still room for improvement. With a more
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Figure 7.9: Material cloning results. The first column are the input cloth motion videos(Bouman
et al., 2013). I predict the material type of the cloth in these input videos and clone those material
on to the skirt. The simulated skirt are shown in the second-sixth columns.

accurate physics simulator and more photo-realistic rendering, the proposed deep neural network

framework can learn a better model from these sampled simulation data. Moreover, the neural

network structure can also be improved to deal with the cross domain learning.

7.8 Conclusion and Future Work

In this chapter, I have presented a learning based algorithm to recover material properties from

videos, using training datasets generated by simulators. I proposed a physically-based method to

generate synthetic data-sets. My learned model can recover the physical properties (e.g. fabric

material) of the cloth from a video. In this work, the videos contain only a single piece of cloth

and the recorded cloth is not interacting with any other object. While this is not always the case in

real-world scenarios, this method provides new insights on addressing this challenging problem. A

natural extension would be to learn from videos of cloth directly interacting with the human body,

under varying lighting conditions and partial occlusion.
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CHAPTER 8: CONCLUSION

In this dissertation, I presented methods or algorithms to recover material properties of a soft

body from images or videos. The first coupled optimization-simulation framework is applied to

recover the material properties of multiple regions of a soft body from two sets of images. The two

sets of images record the deformation of the soft body. I validate the method using both synthetic

data and real-life patients data. The results of validation using real-life patients are presented in

Chapter 5. It further lead to a cancer staging/grading classifier using the recovered mechanical

properties of the organ as one of the features. The classifier achieved upto 90% accuracy for prostate

cancer staging prediction. To recover the material properties of a dynamic soft body, I further

proposed a statistical graphical model based framework. I coupled a statistical graphical model with

FEM simulation to optimize for the material properties of a dynamic deformable body from a video.

To recover the material properties of a piece of a garment from a single-view image, I introduced a

wrinkle density-based algorithm in Chapter 6. Finally, I presented a learning-based framework to

identify the material properties of a piece of cloth from a video in Chapter 7. Below, I summarize

the main results of the methods I proposed.

8.1 Summary of Results

8.1.1 Image-based Multi-region Deformable Body Material Recovery

In medical applications, the recovered elasticity parameters can assist surgeons to perform better

pre-op surgical planning and enable medical robots to carry out personalized surgical procedures.

More importantly, certain pathological changes such as cancer affect the mechanical properties

of soft tissue. Traditional cancer diagnosis is based on blood tests and biopsy results. The biopsy

procedure is done by uniformly taking tissue samples from the organ of interest. It is highly possible
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that the sampling will miss the cancerous region. Thus if we have a map of the mechanical properties

of the organ of interest, we can guide the biopsy to take more samples in the cancerous region.

Previous elasticity parameter estimation methods are limited to recover one elasticity parameter

of one deformable body at a time. To recover the material properties of multiple regions of a

deformable body directly from an image, in Chapter 3 I proposed to couple physically-based soft

body simulation with Particle Swarm Optimization. I first reconstructed 3D geometry from the given

sets of multi-view images. Then I used a coupled simulation-optimization-identification framework

to deform one soft body at its original, non-deformed state to match the deformed geometry of the

same object in its deformed state. For shape correspondence, I used a distance-based error metric to

compare the estimated deformation fields against the actual deformation field from the reconstructed

geometry. The optimal set of material parameters is thereby determined by minimizing the error

metric function. This method can simultaneously recover the elasticity parameters of multiple types

of soft bodies using Finite Element Method-based simulation (of either linear or nonlinear materials

undergoing large deformation) and particle-swarm optimization methods. I validated the method

using both synthetic data with known elasticity values and real world data. Using the method, I

recovered the elasticity of multi-region of an organ of interest and compared it with the ground

truth. The error of the recovered elasticity parameter is less than 5%. Then I applied the method to

extract elasticity values from real-life patients’ medical (CT) images. The correlation study between

the extracted elasticity values and the patients’ cancer stages indirectly proved the correctness of

my approach. Finally I demonstrated the application of my algorithm in two scenarios. The first

is a 3D interaction with a virtual liver for the virtual surgical simulation shown in Fig. 3.14. And

the second is a physics-based animation of the figure using an elasticity parameter recovered from

artists’ sketches shown in Fig. 3.15(b). These results were published in (Yang and Lin, 2015b,c).

8.1.2 Video-based Deformable Body Material Recovery

Material property has great importance in medical robotics. The mechanical properties of

human soft tissue are important in order to characterize the tissue deformation of each patient.
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The recovered elasticity parameters can assist surgeons to perform better pre-op surgical planning

and enable medical robots to carry out personalized surgical procedures. A temporal sequence

of deformation samples such as ultrasound videos contain much more information than an image.

Prior elasticity recovery methods are limited to images. In Chapter 4, I presented a method to

recover the mechanical properties of a soft-body from a temporal sequence of deformation samples.

This method does not require an external force-application measurement device or landmark-based

displacement tracking. I tested my proposed method on the reconstruction the Young’s modulus of

a synthetic human heart. The relative error of the recovered Young’s modulus is within 7.5% of the

ground-truth values shown in Table. 4.1. And I further validated the results derived from videos

using known parameters of tennis and foam balls. The Young’s moduli recovered using my method

are within the range of the measured parameters from real-world experiments shown in Table. 4.3.

These results were published in (Yang and Lin, 2016).

8.1.3 Classification of Prostate Cancer Grades and T-Stages based on Tissue Elasticity

In Chapter 5, I studied the correlation of tissue (i.e. prostate) elasticity with the spread and

aggression of prostate cancers. I improved upon the in vivo method proposed in Chapter 3 to

estimate the individualized, relative tissue elasticity parameters directly from medical images. I

demonstrated the feasibility of a statistically-based multi-class learning method that classifies a

clinical T-stage and Gleason score using the patients age and relative prostate elasticity values

reconstructed from computed tomography (CT) images. The clinical T-stage of prostate cancer is a

measure of how much the tumor has grown and spread while a Gleason score based on the biopsy of

cancer cells indicates the aggressiveness of the cancer. They are commonly used for cancer staging

and grading. I performed the study on 113 sets of images from 29 prostate cancer patients. The

classification accuracy of the patient dataset using a multinomial logistic regression method is up to

84% accurate for cancer T-stages and up to 77% accurate for Gleason scores. This result further

demonstrated the effectiveness of my algorithm for recovering relative tissue elasticity parameter
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and its promising potential for correct classification in cancer screening and diagnosis. These results

were published in (Yang et al., 2016b).

8.1.4 Single-view Image-based 3D Garment Reconstruction

Most recent garment capturing techniques rely on acquiring multiple views of clothing, which

may not always be readily available, especially in the case of pre-existing photographs from the

web. As an alternative, in Chapter 6 I proposed a method that is able to compute a 3D model of

a human body and its outfit from a single photograph with little human interaction in Chapter 6.

My algorithm is not only able to capture the global shape and overall geometry of the clothing, it

can also extract the physical properties (i.e. material parameters needed for simulation) of cloth.

Unlike previous methods using full 3D information (i.e. depth, multi-view images, or sampled 3D

geometry), my approach achieved garment recovery from a single-view image by using physical,

statistical, and geometric priors and a combination of parameter estimation, semantic parsing,

shape/pose recovery, and physics-based cloth simulation. To solve the problem, I proposed an

image-guided garment parameter selection method that makes the generation of virtual garments

with diverse styles and sizes a simple and natural task. And I introduced a joint material-pose

optimization framework that can reconstruct both body and cloth models with material properties

from a single image. I showed some skirts, pants, and tops recovery results in Fig. 6.8 and in

Fig. 6.9 for visual evaluation. Then I evaluated the accuracy of the recovered sizing parameters

and regional average curvature using synthetic scenes (shown in Fig. 6.11) with known parameters.

Overall, my method achieved an accuracy of up to 90.2% for recovering the sizing parameters and

82% for recovering the material parameters for the t-shirts and pants under different body poses and

lighting conditions, shown in Table 6.1. Further, I demonstrated the effectiveness of my algorithm

by re-purposing the reconstructed garments for virtual try-on and garment transfer applications and

for cloth animation on digital characters in Fig. 6.10. These results were published in (Yang et al.,

2016a).
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8.1.5 Learning-based Cloth Material Recovery from A Video

Image and video understanding enables better reconstruction of the physical world. Existing

methods focus largely on geometry and visual appearance of the reconstructed scene. In Chapter

7, I extended the frontier in image understanding and presented a method to recover the material

properties of cloth from a video. Previous cloth material recovery methods often require markers

or complex experimental set-up to acquire physical properties, or are limited to certain types of

images or videos. My approach takes advantages of the appearance changes of the moving cloth

to infer its physical properties. To extract information about the cloth, my method characterizes

both the motion and the visual appearance of the cloth geometry. I applied the Convolutional

Neural Network (CNN) and the Long Short Term Memory (LSTM) neural network to material

recovery of cloth from videos. I also exploited simulated data to help statistical learning of mapping

between the visual appearance and material type of the cloth. The effectiveness of my method was

demonstrated via validation using both the simulated datasets and the real-life recorded videos.

When the model was trained with only the simulated arm bending motion for predicting material

type of the arm bending video, my method achieved up to 71.8% accuracy for predicting from the

54 classes of material types. And when the model was trained with only the simulated wind blowing

motion for predicting material type of the wind blowing video, my method achieved up to 66.7%

accuracy for predicting from the 54 classes of material types. Then I tested my learned model on

90 real-life videos. My method achieved up to 0.50 and 0.64, respectively, of the R value which is

close to the one with a human predicting material from a single image shown in Table 7.3. I further

demonstrated that the recovered material type can be “cloned“ on another piece of cloth or a piece

of garment as shown in Fig 7.9. These results were published in (Yang et al., 2017).

8.2 Limitations

In each chapter, I have discussed several limitations. Here, I summarize the key limitations

of each method I proposed in previous chapters. All the methods proposed in this thesis try to
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solve the problem of deformable objects mechanical property reconstruction from an image or a

video. The limited amount of information existing in an image or a video makes the problem itself

ill-posed. This property of the problem leads to serveral limitations to the my solutions. While my

methods present a promising approach for parameter estimation, it is important to understand their

limitations for correct application.

It is important to note that the tissue elasticity parameter recovery method introduced in Chapter

3 is limited by the formation of the cost function. The optimization is driven by the minimization of

the distance between the two reconstructed meshes from the two sets of CT images. One of the

most significant prerequisites of the input CT images is that the organ of interest in the input CT

images needs to have a certain amount of deformation. Without any amount of deformation, the

elasticity parameter I recovered using my method will be invalid. The amount of deformation is

assessed from the 3D reconstructed human organ. This leads to two other limitations of this method

which are the accuracy of the tissue segmentation as discussed in Chapter 3, and the time elapsed

between when the two sets of CT images were taken. The longer the time the less accurate the

recovered elasticity parameters are.

My 3D garment reconstruction from a single view image introduced in Chapter 6 is also

limited by the formation of the optimization cost function. Since the camera matrices were not

included in the optimization cost function, the camera is limited to being in front of the human. The

learning-based method presented in Chapter 7 aimed to replace the optimization-based method with

a deep neural network. The vision feature based learning method requires that the motion of the

deformable body in the test videos should be as close as possible to that of the deformable body in

the training videos.

The other limitation lies in the performance of the algorithms. The problem of tissue elasticity

parameter recovery and the 3D garment reconstruction from a single view image are non-convex

optimization problems. This non-convex optimization problem requires a number of iterations

for the optimizer to obtain the global optimal solution. This property of the problem limits the

performance of the methods proposed in this dissertation.
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8.3 Future Work

There are several possible research directions extending this dissertation. Firstly, the perfor-

mance of both my tissue elasticity parameter recovery method and my 3D garment reconstruction

method can be improved. Espetially for the tissue elasticity parameter estimation, significant

improvement in the algorithms computational performance lead to possible adoption for real-time

image-guided biopsy and surgery. The bottleneck of the performance of this method lies in both the

soft body simulation and the optmization algorithm. The performance of the soft body simulation

can be boosted by using a reduced model. But one needs to balance between the performance and

the accuracy. The optimization method can be easily enhanced using distributed systems. Similarly,

for the 3D garment reconstruction method, both the underlying cloth simulator and the optimization

process can be significantly accelerated by developing a parallelized implementation of my system

using GPU or a many-core CPU.

Secondly, the current patient study, which is one of the important part of my dissertaion, is

performed on 113 sets of images from 29 prostate cancer patients all treated in the same hospital.

More image data from more patients across multiple institutions can provide a much richer set of

training data, thus further improving the classification results and testing/validating its classification

power for cancer diagnosis. With more data, we could also apply our learned model for cancer

stage/score prediction. And other features, such as the volume of the prostate can also be included

in the larger study. Another possible direction is to perform the same study on normal subjects

and increase the patient diversity from different locations. A large-scale study can enable more

complete analysis and lead to more insights on the impact of variability due to demographics and

hospital practice on the study results. Similar analysis and derivation could also be performed using

other image modalities, such as MRI and ultrasound, and shown to be applicable to other types of

cancers.

Thirdly, in order to apply our 3D garment reconstruction method in applications such as real-

time virtual try-on, further improvement is needed on the human body reconstruction step. My
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3D human body reconstruction relies on manual input to segment the human in the image. With

the human body mask, I optimize the parameters of the human body template for the final 3D

reconstruction. Because of the ambiguity, the optimization problem is non-convex. The question

remains how to best resolve the ambiguity. This step can be further improved by using the deep

neural network (Kanazawa et al., 2017).

Finally, one other future direction from my last chapter is a better domain adaptation algorithm.

In the last chapter, I investigated the method of learning from a synthetic dataset which has different

underlying probability distribution than the real-life test images. This method is important in the

sense that synthetic data contains much more information than the real-life images. They provide

accurate mapping between the images and the information one wishes to recover from the images,

such as 3D human pose and shape. And one can generate a huge number of synthetic data samples

in a very short time. Once solved, this domain adaptation technique can be applied to solve many

inverse problems.
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