5,193 research outputs found

    Comparison of Geometric Optimization Methods with Multiobjective Genetic Algorithms for Solving Integrated Optimal Design Problems

    Get PDF
    In this paper, system design methodologies for optimizing heterogenous power devices in electrical engineering are investigated. The concept of Integrated Optimal Design (IOD) is presented and a simplified but typical example is given. It consists in finding Pareto-optimal configurations for the motor drive of an electric vehicle. For that purpose, a geometric optimization method (i.e the Hooke and Jeeves minimization procedure) associated with an objective weighting sum and a Multiobjective Genetic Algorithm (i.e. the NSGA-II) are compared. Several performance issues are discussed such as the accuracy in the determination of Pareto-optimal configurations and the capability to well spread these solutions in the objective space

    Comparison of Direct Multiobjective Optimization Methods for the Design of Electric Vehicles

    Get PDF
    "System design oriented methodologies" are discussed in this paper through the comparison of multiobjective optimization methods applied to heterogeneous devices in electrical engineering. Avoiding criteria function derivatives, direct optimization algorithms are used. In particular, deterministic geometric methods such as the Hooke & Jeeves heuristic approach are compared with stochastic evolutionary algorithms (Pareto genetic algorithms). Different issues relative to convergence rapidity and robustness on mixed (continuous/discrete), constrained and multiobjective problems are discussed. A typical electrical engineering heterogeneous and multidisciplinary system is considered as a case study: the motor drive of an electric vehicle. Some results emphasize the capacity of each approach to facilitate system analysis and particularly to display couplings between optimization parameters, constraints, objectives and the driving mission

    Multi-objective optimisation for battery electric vehicle powertrain topologies

    Get PDF
    Electric vehicles are becoming more popular in the market. To be competitive, manufacturers need to produce vehicles with a low energy consumption, a good range and an acceptable driving performance. These are dependent on the choice of components and the topology in which they are used. In a conventional gasoline vehicle, the powertrain topology is constrained to a few well-understood layouts; these typically consist of a single engine driving one axle or both axles through a multi-ratio gearbox. With electric vehicles, there is more flexibility, and the design space is relatively unexplored. In this paper, we evaluate several different topologies as follows: a traditional topology using a single electric motor driving a single axle with a fixed gear ratio; a topology using separate motors for the front axle and the rear axle, each with its own fixed gear ratio; a topology using in-wheel motors on a single axle; a four-wheel-drive topology using in-wheel motors on both axes. Multi-objective optimisation techniques are used to find the optimal component sizing for a given requirement set and to investigate the trade-offs between the energy consumption, the powertrain cost and the acceleration performance. The paper concludes with a discussion of the relative merits of the different topologies and their applicability to real-world passenger cars

    Advanced methodology for the optimal sizing of the energy storage system in a hybrid electric refuse collector vehicle using real routes

    Get PDF
    This paper presents a new methodology for optimal sizing of the energy storage system ( ESS ), with the aim of being used in the design process of a hybrid electric (HE) refuse collector vehicle ( RCV ). This methodology has, as the main element, to model a multi-objective optimisation problem that considers the specific energy of a basic cell of lithium polymer ( Li – Po ) battery and the cost of manufacture. Furthermore, optimal space solutions are determined from a multi-objective genetic algorithm that considers linear inequalities and limits in the decision variables. Subsequently, it is proposed to employ optimal space solutions for sizing the energy storage system, based on the energy required by the drive cycle of a conventional refuse collector vehicle. In addition, it is proposed to discard elements of optimal space solutions for sizing the energy storage system so as to achieve the highest fuel economy in the hybrid electric refuse collector vehicle design phase.Postprint (published version

    Small-body encounters using solar sail propulsion

    Get PDF
    Cometary Rendezvous and Flybys have large V requirements, which impose almost unattainable, and sometimes prohibitive, demands on the propellant budget of conventional, chemical propulsion. Ion Propulsion is a viable alternative, but as the number and difficulty of target objectives increases then the potential of this technology becomes rapidly less attractive. Solar sails exhibit an extremely high effective specific impulse over long mission durations. No propellant is required so that large changes in V could be realised without necessitating the introduction of complex gravity assists, which prolong mission duration and restrict launch opportunities. The endurance of the structures and materials are thus the only limiting factors dictating the number and range of bodies with which the solar-sail propelled vehicle can encounter throughout its lifetime. In this paper we have analysed a number of high-energy, small-body mission scenarios using a parameterised approach to sail control representation. The sail cone and clock angle histories were characterised by linear interpolation across a set of discrete nodes. The optimal control problem was thus transcribed to a Non-Linear Programming problem to select the optimal controls at the nodes that minimised the transfer time while enforcing the cartesian end-point boundary constraints (6 states for rendezvous, 3 for flypast). The Fortran77 optimisation package NPSOL 5.0 was used for this purpose with the variational equations of motion formulated in modified equinoctial orbital elements and integrated using a variable-order, adaptive step-size Adams-Moulton-Bashforth method. We present optimal rendezvous trajectories to Short-Period Comets such as 46P/Wirtanen in 484 days with a sail characteristic acceleration of 1.9 mms-2, and with 2P/Encke in 574 days with a characteristic acceleration of 1.0 mms-2. An analysis using high-performance sails has been conducted to permit fast flyby intercepts of newly discovered Long Period Comets (LPCs). Previous examples adopted were C/1995 O1/Hale- Bopp, C/1995 Y1/Hyakutake, C/1999 T1/McNaught-Hartley, C/1999 F1/Catalina, C/1999 N2/Lynn and C/1999 H1/Lee, to demonstrate the feasibility of a late launch to quickly intercept a new LPC using a solar sail. Since the time between discovery of a new LPC such as Hale-Bopp and perihelion passage was less then 2 years, this then leaves a very short time-span for orbit determination, preparation, planning and operational phases. Preliminary mission analysis shows that a Hale-Bopp perihelion flypast could have been achieved, with a sail characteristic acceleration of 5.0 mms-2, by launching just 209 days before comet perihelion passage. With a characteristic acceleration of 2.0 mms-2 Hale-Bopp could also have been intercepted at its descending node by launching 270 days before nodal descent. The sail could then have returned to rendezvous with the Earth 261 days later, giving a minimum total mission turn-around time of 531 days. An alternative, dual flyby scenario has been investigated, to continue on to C/1997 D1/Mueller, after which solar system escape was reached and arrival at Heliopause would occur in 12 years. Solar Electric Propulsion has been adopted as the primary propulsion system for the DAWN dual asteroid rendezvous mission scheduled for launch in 2006. The objective of this mission is to rendezvous with inner main-belt asteroids, Vesta and Ceres. We have also investigated solar sail adaptation to this mission, for the same launch date and 11 month orbiter stay-times. We have extended the mission objectives to two further asteroids, Lucina and Lutetia, with the aim of demonstrating a Mainbelt Asteroid Survey scenario

    Economic optimization of component sizing for residential battery storage systems

    Get PDF
    Battery energy storage systems (BESS) coupled with rooftop-mounted residential photovoltaic (PV) generation, designated as PV-BESS, draw increasing attention and market penetration as more and more such systems become available. The manifold BESS deployed to date rely on a variety of different battery technologies, show a great variation of battery size, and power electronics dimensioning. However, given today's high investment costs of BESS, a well-matched design and adequate sizing of the storage systems are prerequisites to allow profitability for the end-user. The economic viability of a PV-BESS depends also on the battery operation, storage technology, and aging of the system. In this paper, a general method for comprehensive PV-BESS techno-economic analysis and optimization is presented and applied to the state-of-art PV-BESS to determine its optimal parameters. Using a linear optimization method, a cost-optimal sizing of the battery and power electronics is derived based on solar energy availability and local demand. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, feed-in remuneration, and battery aging. Using up to date technology-specific aging information and the investment cost of battery and inverter systems, three mature battery chemistries are compared; a lead-acid (PbA) system and two lithium-ion systems, one with lithium-iron-phosphate (LFP) and another with lithium-nickel-manganese-cobalt (NMC) cathode. The results show that different storage technology and component sizing provide the best economic performances, depending on the scenario of load demand and PV generation.Web of Science107art. no. 83

    Integrated optimal design for hybrid electric vehicles

    Get PDF
    corecore