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Convex Mapping Formulations Enabling Optimal
Power Split and Design of the Electric Drivetrain in

All-Electric Vehicles
Arne De Keyser , Matthias Vandeputte, and Guillaume Crevecoeur

Abstract—All-electric drivetrains have been identified as a
promising alternative to contemporary hybrid vehicle technology.
Extending their operational range is key and can be achieved by
means of design procedures based on high-fidelity models captur-
ing the dynamical behavior of the electric drivetrain. This paper
proposes a dedicated power split embodying a dual electric drive
and a model-based strategy to design the drivetrain. Advance-
ments are required in model-based design that can cope with the
complexity of the computationally expensive and high-dimensional
parametric design problems. We propose a nested optimization
approach wherein parameter exploration is attained using an evo-
lutionary algorithm and the optimal power flows are determined
by abstracting the high-fidelity behavioral models into appropri-
ate convex loss mappings. This allows for an accelerated design
procedure based on convex optimization without compromising
accuracy. We size an electric drivetrain for maximal range exten-
sion, consisting of a battery stack, buck–boost converter, inverter
and mechanically coupled induction motors subjected to variable
load conditions. A tractable convex formulation is obtained and
optimization time is reduced by 99.3% compared to the tradi-
tional approach without convexification. Optimal control of the
incorporated power split increases the operational range by 0.7%
compared to the isolated operation of a single motor. The proposed
methodology thus paves the way for extensive designs of drivetrains
and complex mechatronic systems in a general context.

Index Terms—Convex functions, design optimization, electric
vehicles, mechatronics, metamodeling.

I. INTRODUCTION

COMPLEX dynamic systems necessitate dedicated re-
sources and specific methodologies, especially in the

highly variant and flexible environments encountered in mecha-
tronic design problems. A specific class within the general
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domain of mechatronic engineering consists of electric energy
conversion, revolving around the power flows between distinct
components. All-electric drivetrains provide a promising al-
ternative to contemporary combustion-based technology with
the aim of reducing harmful emissions. Model-based design
of such complex mechatronic systems involves a multitude of
high-fidelity models acting on various domains (electric, me-
chanical, etc.) and time scales. Contemporary numerical design
procedures [1], [2] often entail an intrinsic deficiency in terms
of time-efficient and objective-focused model abstraction. To
enable tractable model-based design from computational time
perspective as well as to reduce the observed complexity in
the design phase, a streamlined approach is needed wherein
high-fidelity models and corresponding control structures are
abstracted. Translation of the problem into a suitable and highly
time-efficient solver can be made possible by reducing the
complexity associated to the multitude of models, elevated di-
mensionality of the parameter space and various distributed
controllers.

A general revision of the standard and demanding numerical
optimization procedures, mostly employing the computationally
expensive dynamic programming [3] and related methodologies
[4], was proposed on the basis of the principles of convex op-
timization in [5]. Convex solvers are known to converge in
polynomial time and are able to cope with a vast amount of
equality and inequality constraints. This benefit can be further
exploited by formulating a convex sizing procedure [6]. Fur-
thermore, heuristic rules can be determined founded on a more
intuitive approach, being of purely deterministic [7] or fuzzy
nature [8]. A big detriment to this framework is the lack of
analytical foundation and ability to prove the asserted optimal-
ity. Parameter exploration based on evolutionary algorithms [9],
[10] allows for both exploration of the design space and exploita-
tion of favorable regions based on the unambiguous evaluation
of the design cost.

To extend the operational range of currently existing electric
drivetrains for vehicular technology, one can resort to a model-
based design approach that needs to cope with the complexity
and curse of dimensionality [11]. We explore a power split
embodied as a dual electric drive and perform a model-based
design with respect to this electric drivetrain. The proposed
technology enables exploitation of distinct operating regions,
analogous to the concept of hybrid drivetrains, in terms of en-
ergy efficiency. Dynamical power losses need to be mapped as
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Fig. 1. Proposed drivetrain design with two distinct asynchronous motors in
power split. Separate voltage source inverters supply the motors.

a function of power flows, which can constitute the basis for
time-efficient power flow distribution and the resulting power
splitting between drives. Based on the criteria for operation,
optimal operating scenarios can be generated for a specific set
of design parameter values. A nested optimization strategy is
therefore proposed, consisting of an inner loop determining the
optimal power flow variables and an outer loop assessing the
sizing parameters with respect to a predominating objective.
The dynamics of the system under design are incorporated in
the convex mappings that are function of the underlying state
variables, e.g. input and output power flows, stored kinetic or
potential energy, etc. No trade-off between time-saving mea-
sures and level of accuracy needs to be consulted as the convex
mappings can be directly deduced from high-fidelity physics-
based models. The effectiveness of the proposed design strategy
is demonstrated based on a case study concerning the domain of
vehicle technology, namely an all-electric vehicle incorporating
dual propulsion drives.

II. OBJECTIVE-ORIENTED CONVEX MAPPINGS

A first step in the pursuit of an effective design consists of
translating the high-fidelity models, in which the dynamic be-
havior of the components composing the complete mechanism
is contained, into a formulation suited for minimization within
the framework of convex optimization. Abstraction of the de-
tailed models is therefore inevitable but despite the correspond-
ing loss of physical representation, the abstracted models allow
for a time-efficient optimization procedure.

A basic lay-out for electric propulsion has been carried
out, consisting of a battery stack [12], a DC-DC converter
[13], a voltage source inverter (VSI) [14], two distinct coop-
erating asynchronous machines [15] and a fixed final reduc-
tion as depicted in Fig. 1. A detailed discussion regarding the
physical modeling of the interconnected system is gathered in
Appendix A.

The accommodated energy is provided by the battery stack,
while a buck-boost converter with its corresponding PID-control
provides a controllable voltage level. Consequently, a voltage
source inverter converts the DC voltage level to an appropri-
ate 3-phase voltage system. The provided torque of the distinct
machines is controlled by direct torque control [16]. The ob-

jective of the optimization consists of enhancing the vehicle’s
operating range by sizing the battery stack and electing a fa-
vorable combination of drives. Note that the drivetrain in Fig. 1
can be implemented for various industrial applications where a
varying load needs to be driven. The driveline component mod-
els are elaborated in Appendix A. The physical characteristics
of the battery, DC-DC converter and the mechanical driveline
are assumed to be fixed quantities. All decisive numerical pa-
rameters are included in Table II of Appendix C. Furthermore,
setpoints for the voltage reference (Vset) and flux level (Ψset)
are also provided. Both voltage and flux reference can further-
more be incorporated in a supervisory control loop [17]. This is
however out of the scope of this article. Finally, the component
values for the dynamical models of the induction motors under
consideration are listed in [18].

A. Model Abstraction Into Convex Mappings

A special class within the broad concept of mathematical
functions consists of so-called convex functions with its spe-
cific particularities. Since a local optimum of a convex mini-
mization problem is also the global optimal solution, one can
combine the minimization of convex costs for all component
modules in the interconnected system. Furthermore, the sum of
distinct functions, each of them being convex in the considered
variables, remains convex, which allows for summation of dif-
ferent objectives. More information concerning the background
of convex functions and their practical use within optimization
problems can be found in [19]. For the actual implementation
in a numerical environment, the MATLAB package CVX was
used [20], [21].

The main goal of the sizing procedure is to minimize the
total system’s cost C(·) which is intrinsically connected to the
dynamic behavior of a certain design with respect to the predom-
inating criteria, assessed by the convex cost function L(·). Both
minimization problems are restricted by constraints indicating
the feasible region, for which linear constraints are denoted
by the matrices A ∈ R na ×np , Aeq ∈ R nb ×nx , b ∈ R na and
Beq ∈ R nb ×n t whose dimensions depend on the amount of
linear constraints imposed in the outer (na) or inner (nb · nt)
optimization loop. Furthermore,m convex boundaries are incor-
porated in the set of functions gj(·) (j = 1, ...,m). A generalized
formulation of the problem statement for a time horizon t ∈ R n t

is presented in (1).

p∗ = arg min
p

C(p, L∗(p))

s.t. Ap ≤ b

s.t. L∗(p) = min
X

L (p,X)

s.t.

{
AeqX = Beq

gj(X) ≤ 0 for j = 1, . . . ,m

with L (p, ·) and {gj(·)} convex. (1)

The characterizing state variables for each time step are herein
represented by X ∈ R nx x n t , while the vector p ∈ Rnp con-
tains the distinct parameters for the tuning procedure. In the
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Fig. 2. Overview of the power flows in a node of the system.

introduced case study, the internal states of the system depict
the input and output power flows and the stored energy for each
distinct component. Conservation of energy transferred from
one component to the next results in linear equality constraints
included in the expression AeqX = Beq .

In the treated application, the original state space matrices
in torque, speed, voltages and currents are not state-invariant.
Therefore a translation to the convex problem statement in the
form of a linear state space model is not directly applicable. The
observed nonlinearities are induced by the speed-dependency
of the state evolution for the asynchronous machines. A power-
oriented abstraction is made and the system power flows and
energy buffer states are chosen as state vector elements. Hence,
the state space equations resulting from the conservation of
energy are time invariant. The proposed formulation could nev-
ertheless be variant in time, given that the characteristic system
matrices Aeq and Beq are not a function of the states. Linearity
of the equality constraints needs to be maintained.

The time instant is not explicitly specified for the convex
boundaries in (1) such that the internal relations or the objective
performance can be a function of previous states. This enables
us to translate a power flow model containing time derivatives to
the convex problem statement by approximating the derivative
operators by forward or central differencing.

B. Convexification of the Power Flows

A correct objective-oriented mindset plays a major role in ob-
taining an effective implementation of the proposed algorithm
as the system dynamics need to be casted into an objective func-
tionL. The operating range of the all-electric vehicle constitutes
the focal point of the work presented in this paper, which cor-
responds to a minimization of the energy leaving the battery
stack. Therefore, power and energy flows can be considered as
the decisive factor within the complete configuration. A gener-
alized formulation of the power balance can be expressed as the
equality of all incoming and leaving flows (2).

Pin + Ė = Pout + Pd . (2)

This expression can be translated into a schematic nodal rep-
resentation of the power flows in a node of the system based on
[5], as demonstrated in Fig. 2.

The output power (Pout) results directly from the external
demands on the system, while the change of stored energy (Ė),
e.g. kinetic energy, can be deduced from the system configu-
ration at each time instant. All power flows, and consequently
all changes in energy, are thus uniquely defined if mappings of
the dissipation (Pd ) in each component or subsystem are con-

structed. As power losses tend to monotonously increase when
deviating from optimal operation, a model abstraction of the
dissipated power into a convex mapping-based formulation is
intuitively feasible. In (2) the dissipative flows can be formu-
lated as a convex function f of the other power flows and the
stored energy in the junction.

Pin = Pout − Ė + f(Pout , E, Ė). (3)

To prove the existence of a convex reformulation, one can
consider the power flows associated with the electric motor. As
the change in internal energy is assumed to be negligible with
respect to the provided mechanical power, (3) is rewritten as:

Pin = Pout + Pd . (4)

In order to satisfy the conditions proposed in the convex
problem formulation (1), this equality needs to be relaxed into
an inequality constraint.

Pin ≥ Pout + Pd . (5)

Pd is uniquely defined for a certain output power Pout and
because of (4) also for a certain input power Pin . Assuming P̃in
to be the optimal solution for Pin coinciding with this convex
inequality constraint and another solution Pin satisfying the
inequality constraint (5), one can write:

Pin = γ + Pd(Pin) + Pout

= γ + Pd(P̃in + γ) + Pout

� γ + Pd(P̃in) + ΔPd + Pout . (6)

With γ being a non-negative real-valued slack variable and
ΔPd the change in the power dissipation when deviating the
input power Pin from its optimal solution P̃in . Taking the equal-
ity relation in (4) into account, the following relation can be
obtained:

Pin = P̃in + γ + ΔPd . (7)

For which P̃in is optimal if and only if the following condition
holds:

γ + ΔPd ≥ 0. (8)

Consequently the reformulation in a relaxed convex problem
results in a solution coinciding with the boundary of the inequal-
ity constraint and thus satisfying the original equality constraint.
As ΔPd is previously defined as

ΔPd = Pd(Pin + γ) − Pd(Pin). (9)

It immediately follows that

|ΔPd | = γ

∣∣∣∣Pd(Pin + γ) − Pd(Pin)
γ

∣∣∣∣
≤ γ

∣∣∣∣
[
∂Pd

∂Pin

]
max

∣∣∣∣ . (10)

Plugging this result in (8) and reminding that γ is non-
negative, consequently leads to

1 ≥
∣∣∣∣
[
∂Pd

∂Pin

]
max

∣∣∣∣ . (11)
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Fig. 3. Reduced subsystem-focused representation of the proposed drivetrain.

Therefore, a sufficient condition for the applicability of the
aforementioned relaxation is formulated.

−1 ≤ ∂Pd

∂Pin
≤ 1. (12)

This condition is intuitively weak, as this translates in an in-
crease of the dissipated power that outweighs the increase in
transferred mechanical power. In a practical context, this op-
eration is to be avoided. One can thus assert that the practical
operating range is restricted to the area of monotonous increase,
which satisfies the imposed requirements for a convex opti-
mization procedure. A completely similar methodology can be
developed for the energy supply, in whichPin should be replaced
by Ė, as only an internal charge is present.

The followed approach can thus be applied in a generic man-
ner to electric drivetrains and convex mapping formulations. In
order to ensure convexity and to reduce the number of neces-
sary convex loss models, components are merged into separate
subsystems, which can be seen in Fig. 3, providing a schematic
overview of the studied drivetrain.

With respect to the energy supply, including both battery and
buck-boost converter, the loss model is initially parametrized in
the magnitude of the stack n. The corresponding surface Pb,d
appears to be convex as a function of the variablesEb andPb,out ,
as proposed in [5]. Convex loss models, coupled with the stack
size n through the coefficients of the regression and character-
ized by (13) can thus be constructed. A parabolic dependency
on the supplied power is proposed, while the influence of the
actual energy level is assumed to behave in a linear trend.

Pb,d = anP
2
b,out + bnPb,out + cnEb + dn . (13)

Herein the notation Eb is wielded to denote the accommo-
dated energy in the battery cells, while Pb,out represents the
power leaving the supply unit at the output of the DC-DC con-
verter. The resulting surface and its convex approximation for a
connection of 330 NiMH-cells [12] are provided in Fig. 4.

A least-squares calculation provides the coefficient values
for the convex approximation, with reference data for regime
power and losses being provided by high-fidelity simulations of
the isolated subsystem with a simulation time span of 0.1 s and
a step size equaling 50 μs. The underlying analytical models
for the distinct components are covered in Appendix A. A total
of 301 high-fidelity simulations of an isolated battery-converter
module with varied current draw suffices to construct a reliable
convex loss model.

Fig. 4. Convex model of the dissipation Pb ,d for an energy supply containing
330 NiMH-cells.

Fig. 5. Convex model of the dissipation PIM ,d for an asynchronous motor
of 19 kW with its corresponding supply. The quadratic coefficient decreases
monotonously for higher ω.

The asynchronous motor and its three-phase supply can be
mapped by introducing varying torque reference and rotational
speed signals, hereby altering the output power of the propulsion
mechanism. The flux setpoint in the control algorithm is fixed
at a level of 1.0 Wb, while a constant input voltage of 400 V
is furthermore assumed as this quantity is internally controlled.
Within this approach, the different convex loss mappings are
parametrized for various rotational speeds ω. For each imposed
speed a quadratic relation fω (PIM ,out) for the dissipated power
PIM ,d is determined with PIM ,out being the output power of the
subsystem. The other power and energy variables, i.e. E and Ė,
are unambiguously defined if an external speed profile (subscript
ω in (14)) and the corresponding kinetic energy variations are
imposed.

PIM ,d = aωP
2
IM ,out + bωPIM ,out + cω . (14)

In order to minimize the expected quadratic error between the
simulated data points and the parabolic approximation, a stan-
dard least-squares algorithm provides the optimal estimates for
the different model coefficients in (14). An example to demon-
strate the validity of the incorporated mapping is given in Fig. 5,
displaying the curves for a machine with a rated power of 19 kW
[18]. The reference steady state data are obtained based on 1312
short-term simulations of the computationally expensive mod-
els provided in Appendix A over a period of 0.1 s with a discrete
simulation step of 50 μs.

If convex estimates need to be provided at intermediate
speeds, linear interpolation between the surrounding mappings



9706 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 11, NOVEMBER 2017

is executed. This methodology can be justified by considering
the monotonous behavior of the quadratic approximations as a
function of the rotational speed, as displayed in Fig. 5.

C. Equivalent Convex Problem Statement

Given these convex formulations of the dissipation in each
subsystem, the complete problem statement can then be trans-
formed into an expression matching (1) and subsequently im-
plemented in the environment of a convex solver. Referring to
the problem statement presented in (1), the convex formulation
is implemented for the dual drive based on the occurring energy
flows in the drivetrain and the corresponding dissipation map-
pings. The complete state X contains all power transfers at each
time instant. All power flows in the system, which is reduced
to a connection of several mapped subsystems, are determined
over the complete optimization horizon. The input to the system
consists of the requested output power Preq , imposed by the
external load. Based on the calculated power flows, the optimal
distribution between both electric machines is immediately as-
sessed. If one takes the external velocity profile into account,
the optimal torque references over the course of the trajectory
are uniquely defined.

The implemented minimization problem for a sampling time
Δt is written as:

L∗ = min
X

n t∑
k=1

Ėb(k) · Δt

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pb,out(k) − PIM1,in(k) − PIM2,in(k) = 0

Pdrive,in(k,p) − PIM1,out(k) − PIM2,out(k) = 0

Preq(k,p) − Pdrive,out(k,p) = 0

Pb,d(k) + Pb,out(k) − Eb (k)−Eb (k−1)
Δt ≤ 0

PIM1,d(k) + PIM1,out(k) − PIM1,in(k) ≤ 0

PIM2,d(k) + PIM2,out(k) − PIM2,in(k) ≤ 0

Pdrive,d(k) − (
1 − ηsgn(Pd r iv e , i n (k))

)
Pdrive,in(k) ≤ 0.

(15)

The governing equality and inequality constraints can be
casted into a formulation matching (1), introducing the appro-
priate matrices Aeq , Beq and functions gj respectively. In this
set of equations, an additional quantity Pdrive is introduced,
which denotes the power flow to the mechanical part of the
driveline with a fixed efficiency η equaling 90%. The incor-
porated inequality constraints signify the relaxed constraints
following from the conservation of energy passing through and
dissipated in each component, while the equalities indicate the
physical connection between components, as denoted in Fig. 3.
The chosen objective function, being the time integral of the
energy leaving the buffer, is positive and linear in the states of
the system and is thus a strictly increasing convex function of
the battery buffer state Eb over time.

III. EMBEDDING CONVEX MAPPINGS FOR SIZING

In order to obtain an ideal configuration with a minimal value
for the design cost C(·), different feasible designs and their re-
spective set of sizing parameters p need to be evaluated and

compared with respect to each other in terms of the objective.
The characteristic parameters determine the dimensions, behav-
ior and costs of the components. Altering these characteristics
allows to explore different feasible regions. In contrast to [5],
convex optimization for the sizing procedure is discarded, as
this would inhibit the possibility to include different types of
electric motors. Furthermore, only a limited library of reference
components is used in the course of this work and a reliable
assessment of a possible sizing trend is therefore not feasible.

An effective search algorithm combines exploration, as to
include every area in the design space, with exploitation, i.e.
elaborating further on promising designs by slightly adjusting
the characteristic parameters. In order to satisfy the proposed
needs, the genetic search is elected [22]. This evolutionary algo-
rithm is able to cope with discrete variables, which in this case
represent the limited set of induction motors in the library. In
order to guarantee the general applicability of the approach, the
standard mixed integer genetic search algorithm of Matlab, MI-
LXPM, is implemented [23]. An observable trend in the mapped
motor characteristics would furthermore favor a faster conver-
gence. The number of batteries in the stack is approximated by
a continuous variable and eventually rounded to the closest in-
teger value. Nevertheless, other global search heuristics can be
engaged in the design procedure.

In the evaluation step of the search algorithm, which is itera-
tively repeated during the evolutionary search, the fitness of each
population member is assessed. As this step is to be repeated
during each iteration and for every offspring, a time-efficient ap-
proach is desired. For each configuration elected by the search
algorithm, and the corresponding set of parameters p, the fitness
is obtained by convex optimization of the power flow system in
terms of energy efficiency. The total cost C(·) for each design
can be constructed as the sum of different objectives, where one
can combine the energy dissipation during optimal operation
(L∗) with additional (virtual) costs, e.g. denoting accelerated
wear or elevated investments in machinery. For the proposed
case study (15), the fitness is solely assessed based on energy
considerations.

IV. RESULTS AND DISCUSSION

The introduced application provides valuable insights with
respect to the numerical performance of the proposed algorith-
mic structure regarding accuracy and time-efficiency. The ideal
configuration of the interconnected system is prone to changes,
taking into account that only a limited library of reference com-
ponents is used and thereby mapped in their respective convex
loss approximations. Furthermore, only an internal series con-
nection of the battery stack is considered. Parallel energy buffers
can be readily incorporated, in which each battery pack has to
deliver only a predefined fraction of the output power, based on
the ratios of the branch resistances.

A. Algorithmic Results

To assess the performance of the proposed procedure, both
the necessary calculation time and the corresponding number of
iterations are consulted for problems with a stepwise increase in
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Fig. 6. Standardized velocity profile of the WLTP (Class 3) reference cycle.

Fig. 7. Calculation time and number of iterations (SQP and CVX) for increas-
ing problem dimensions.

time span and thus total dimension. In a first phase, the power
split between the engines is optimized over the standardized
WLTP road cycle provided in Fig. 6, ranging from a duration
of 1 s up until 100 s. The actual power demand at each time
instant is determined using an analytical model of the vehicle
dynamics, which is included in Appendix B.

The performance of the approach based on objective-
oriented convex mappings is compared to a classical Sequential
Quadratic Programming (SQP) solver in MATLAB (R2015b;
Mathworks, Natick, MA, USA). As is demonstrated in Fig. 7,
the total computational time for the standard minimization pro-
cedure rises in an exponential way, the so-called curse of di-
mensionality associated to minX L(p,X). The dimensionality
of X ranges from 381 for a limited time span of 20 s up to
1901 for an optimization horizon of 100 s. Convex mappings
on the other hand allow to limit the necessary time drastically,
more specifically by 99.3%. The construction of the necessary
convex formulations needs some supplementary preprocessing,
but needs to be carried out only once for a single subsystem.
Furthermore, these mappings can be computed in advance. The
increased calculation times are due to the rising number of it-
erations to find L∗(p) for longer time horizons, both for SQP
and CVX. For even longer time horizons, the SQP-algorithm
fails to find a feasible solution in a reasonable time, since the
dimensionality becomes larger than what’s practically achiev-
able. This discards the possibility to include more than 100 time

Fig. 8. Calculation time and number of iterations (CVX) for lengthy time
spans.

steps within the actual sizing procedure and therefore impedes
a drivetrain design based on a representative reference cycle.

As demonstrated in Fig. 8, the convex abstraction allows to
determine optimal operation for extended time spans, i.e., larger
than 500 time steps, thereby enabling a sizing procedure of the
proposed system. Assessment of the optimal sizing parameters
p∗ based on standard optimization strategies would be out of the
question, as the mentioned minimization associated to L∗(p) is
repeated for each evaluation step in the iterative approach.

The number of iterations necessary to converge to the optimal
solution does not increase monotonously. The convex optimiza-
tion procedure thus efficiently selects the next best guess for the
optimal solution. For longer time spans, one would intuitively
expect a higher calculation time, which corresponds to the gen-
eral trend observed in Fig. 8. The stable amount of iterations
per number of considered time steps indicates that the increased
total calculation time is mostly due to the increase in computa-
tional time per iteration. The observed variability in calculation
time is associated with the specific translation into its respective
convex problem formulation and the practical implementation
of the internal solver.

B. Optimal Drivetrain Sizing

In the proposed case study, battery stack size is varied to al-
low for higher initial charge but comes with an inherent increase
in mass, assumed to be 170 g per additional cell. Therefore in-
cluding an additional energy reservoir leads to extended vehicle
range but possibly suboptimal operation due to the increased
weight and corresponding rise of inertial forces to be overcome.
The collection of propelling motors is chosen to be a limited
selection of induction motors with two pole pairs, spanning
a whole range of distinct rated powers [18]. Furthermore, the
asynchronous machines are assumed to have a constant spe-
cific power ρIM equal to 1.5 kg/kW. This measure discourages
equipping over-sized motors in the design if this results in no
significant improvement of the performance. To explore the de-
sign space, a population size of 8 is chosen and the maximum
number of iterations is fixed at 15, while all other settings are
kept at their default conditions. The small values for the char-
acteristic parameters stem from the limited amount of possible
configurations, which will cause the genetic search to converge
rapidly.
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Fig. 9. Convergence plot of the genetic sizing procedure for an initial popu-
lation of eight members.

TABLE I
OPTIMAL DRIVETRAIN CONFIGURATION

Parameter Value

Em ax 665.6 kW·h
Pn ,1 75 kW
Pn ,2 19 kW

During the sizing procedure, the genetic algorithm steadily
converges towards an optimal configuration, minimizing the oc-
curring drop in available energy over a standardized trajectory
as depicted in Fig. 9. On this graph, the presented fitness func-
tion corresponds to the total consumed energy during the road
cycle. This quantity reaches a minimum after five generations,
while the mean cost remains at a higher level, demonstrating the
further attempts to explore the whole parameter space. Based
on the provided convergence graph, one could conclude that
a, at least close to, optimal configuration has been achieved.
The complete sizing procedure is terminated in 12 h 43 min
on an Intel i7-6600U processor for a reference cycle spanning
30 min. Each evaluation of the convex problem statement (15)
necessitates the determination of 34 196 variables, subject to a
total of 16 197 constraints and is finished in approximately 478
s. The vector of sizing parameters p has a dimension of three
in the representative case, as three characteristics of the driv-
etrain are variable and can thus be altered towards an optimal
configuration.

An optimal energy buffer results in a stack containing 302
cells of the proposed NiMH-battery, while cooperating drives
of 37 and 132 kW prove to operate in the most favorable fash-
ion regarding energy management of the accommodated battery
charge. The obtained optimal design is outlined in Table I. The
corresponding maximal energy buffer, in the fully charged state,
is denoted by Emax . Furthermore, rated powers for both asyn-
chronous machines are represented by Pn,k (k = 1, 2).

Optimal control of the power flows in both engines improves
the energy management of the battery with 0.7%, compared
to isolated operation of the main propulsion motor. The actual
power split between both asynchronous motors is demonstrated
in Fig. 10. As can be observed, the smaller engine provides the

Fig. 10. Distribution of the demanded output powerPIM ,out of both induction
motors over the complete trajectory.

majority of the power at low power demands, while the reverse
situation is noticed during intervals of elevated power consump-
tion. The only minor improvement is caused by the absence of
a discrete on-off management heuristic [24] for both motors,
which could eliminate losses at zero load. As these losses add
up to a considerable fraction of the total power dissipation,
including a supervisory control loop can thus significantly im-
prove the collaboration between both engines. This constitutes
the topic of future research.

Similar graphs can be obtained for all power flows occurring
in the drivetrain. These flows rely solely on the implemented
constraints as the power split and corresponding torque distri-
bution is the subject of the optimization procedure.

V. CONCLUSION

A model-based design approach for attaining optimal power
split and design of the electric drivetrain in all-electric vehicles
is presented. The main objective is to increase the operational
range of an optimally sized dual drive topology consisting of
two asynchronous motors that can serve in different operat-
ing conditions. This configuration is proposed to anticipate for
varying load conditions, allowing for a more efficient usage of
the accommodated energy. Due to the complexity and the high
dimensionality of the parameter space, advancements of the
model-based design procedure are required. A nested design
optimization approach, combining time-efficient computations
with high-fidelity physics, is proposed based on specific con-
vex abstraction towards the design objective. Convex models
are preferred, as these allow to implement the principles of
convex optimization and benefit from its computational time-
efficiency. A combination with a genetic search is introduced
as to include exploration of feasible designs. Results with re-
spect to both optimal design and the design procedure itself
are considered, comparing the observed performance to that
of classic algorithms employed within the domain of vehicu-
lar technology. Based on the proposed procedure, the design
problem is rendered tractable and optimization time is reduced
by 99.3% with respect to a standard SQP-minimization proce-
dure. Optimal power distribution allows to improve the energy
management of a single battery charge by 0.7%. The limita-
tion on the observed improvement stems from the absence of a



DE KEYSER et al.: CONVEX MAPPING FORMULATIONS ENABLING OPTIMAL POWER SPLIT AND DESIGN OF THE ELECTRIC DRIVETRAIN 9709

supervisory on/off management strategy. Nevertheless, the pro-
posed framework, with a special focus on convex abstraction
of system-specific behavior, outperforms the classical approach
for lengthy time horizons. It is therefore primarily appealing for
the complex engineering problems encountered in mechatronic
environments.

APPENDIX A
HIGH-FIDELITY COMPONENT MODELING

A. Battery Stack

The output voltage of standard battery types reduces as the
state of charge (SOC) depletes. The voltage-SOC relation shows
to be highly non-linear for charging over around 80% of the max-
imum capacity or discharging under around 20% of the highest
possible charge to be held by the battery. In [12] these non-
linear sections are expressed as a rational and exponential curve
added to the approximately linear voltage-discharge relation.
For a known evolution of the current through the battery (ib ),
this leads to:

e(t) = e0 −K1 · Q

Q− ∫ t

0 ibdτ
+K2 · e−K 3 ·

∫ t
0 ib dτ . (16)

In this equation e(t) denotes the internal voltage of the battery
cell with maximal charge Q. The parameters K1, K2 and K3

in the proposed expression can be deduced from data provided
by the manufacturers. Incorporating the internal resistance Ri ,
which is often non-negligible and introduces dissipation, leads
to an output voltage reduced by the corresponding voltage drop.
The values used for the high-fidelity simulation for several bat-
tery types are inspired by [12]. The respective numerical values
are summarized in Table II.

B. DC-DC Converter

A state-space representation for a converter fed by a constant
but variable voltage source vb at the input and connected to
a load with a known current iBB drawn at the output is de-
rived. The characteristic inductance LBB and capacitance CBB
demonstrate parasitic dissipative effects, introduced by the re-
sistances RL and RC . The state derivatives for inductor current
iL and capacitor voltage vC are approximated by weighing the
relative duration of the switching states of the converter using
the duty ratio δ. For boost-operation, this results in:

ẋBB = ABBxBB + BBBuBB . (17)

With

ẋBB =

[
iL

vC

]
;uBB =

[
vb

iBB

]
;

ABB =

[− RL
LB B

+ δ RC
LB B

−δ 1
LB B

δ 1
CB B

0

]
;

BBB =

[ 1
LB B

δ RC
LB B

0 − 1
CB B

]
. (18)

TABLE II
THE COMPONENT VALUES FOR THE HIGH-FIDELITY DRIVELINE SIMULATION

Parameter Value

e0 1.2848 V
Ri 0.0002 Ω
K1 0.01875 V
K2 0.144 V
K3 2.3077 (Ah)−1

Q 6.5 Ah
mb 170 g
ρIM 1.5 kg/kW
Ψset 1.0 Wb
fsw itch ,IM 20 kHz
L 130 μH
C 5 mF
RL 0.0096 Ω
RC 0.005 Ω
Vset 400 V
fsw itch ,BB 20 kHz

Parameter Value

RCE 0.005 Ω
Esw ,ref 0.01 J
Iref 200 A
Ki 1
Vcc ,ref 600 V
Kv 1.3
TCsw 0.003
Tj,ref 150 ◦C
fro l 0.012
kro l 0.0002 s2/m2

mcar 1000 kg
g 9.81 m/s2

ρair 1.293 kg/m3

SCx 0.56
Jwheels 9.44 kg · m2

Jdrive 1.2 kg · m2

ie 1.01:1
rdyn 0.3454 m

A similar model can be derived for operation in buck-mode.
To control the transient behavior of the converter in a favorable
manner and eliminate the steady state error on the output voltage,
a basic PID-control loop is implemented. The corresponding
gain factors are determined by application of the Ziegler-Nichols
design methodology [25]. This way, both overshoot and settling
time are reduced, while the steady state error is eliminated.
The inherent power electronic components introduce additional
losses in the system, being switching and conduction losses.
These will be discussed in more detail in an upcoming section.

C. Induction Motor

The dynamic behavior of the induction motors is simulated
by a fourth-order nonlinear state space model [15] in the differ-
ent characteristic parameters, being stator resistance Rs , rotor
resistance Rr , stator inductance Ls , rotor inductance Lr , mu-
tual inductance Lm and number of pole pairs Np . The mass of
the induction motor is estimated by an empirical specific mass
coefficient ρIM , such that mIM = ρIMPnom ,IM , with Pnom ,IM
the rated power.

In order to deliver the required torque within a reasonable
region of accuracy, the direct torque control algorithm is imple-
mented [16]. In problems dealing with stator control one usually
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adopts a stationary reference frame. The state variables x are
chosen to be the stator currents is and fluxes ψs in the com-
plex plane. The real and imaginary components are denoted by
a subscript x and y respectively. Based on predefined tables,
the output torque and flux magnitude can be regulated to be
confined in a limited hysteresis region around the respective
reference values.

ẋIM = AIM (ω)xIM + BIMuIM . (19)

With ω the rotational speed at the output shaft and

ẋIM =
[
isx isy ψsx ψsy

]T
uIM =

[
Vsx Vsy Vrx Vry

]T

AIM (ω) =

⎡
⎢⎢⎣

L rR s +L sR r
N −Npω −R r

N −L rNp
N ω

Npω
L rR s +L sR r

N
L rNp
N ω −R r

N−Rs 0 0 0
0 −Rs 0 0

⎤
⎥⎥⎦

BIM =

⎡
⎢⎢⎣
−L r

N 0 Lm
N 0

0 −L r
N 0 Lm

N
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦. (20)

In this formulation the parameter N is is defined by:

N = L2
m − LrLs . (21)

No internal delays or parasitic effects are assumed in the
inverter. However, power electronic losses are considered.

D. Switching Losses

Switching losses and conduction losses are observed in both
the three phase voltage source inverter and in the DC-DC
converter. Conduction losses are estimated by an equivalent
collector-emitter resistance RCE in the conducting path of the
transistor. The switching losses per cycle, Esw , are calculated
by an approximate loss model of Semikron (22), a manufacturer
of switching components.

Esw = Esw ,ref

(
I

Iref

)K i
(

Vcc

Vcc,ref

)Kv

× (1 + TCsw (Tj − Tj,ref )). (22)

Here Esw ,ref , Iref , Ki , Vcc,ref , Kv , TCsw and Tj,ref are all
reference and model parameter values provided in the compo-
nent datasheet. Vcc denotes the supply voltage and Tj is the
temperature at the junction. For both the DC-DC converter and
the DTC-controlled induction motors, the switching frequency
is fixed at 20 kHz.

APPENDIX B
VEHICLE DYNAMICS

A. Dynamical Forces Acting on the Driveline

In order to propel the vehicle, different dynamical resistances
have to be overcome, resulting in a counteracting torque. One
can categorize two main components in the required torque,

being the rolling (23), drag (24) and inclination resistances im-
posed by the environment, and the acceleration torque for an
acceleration a caused by the inertia of the vehicle (25). As a
flat road is presumed, the presence of an inclination force is
consistently disregarded. The friction coefficient for the rolling
resistance is symbolized as frol , while krol denotes the speed
dependency of the rolling resistance. The mass of the vehicle,
mveh is the sum of the car mass, mcar , induction motor masses
mIM and the mass of the battery stack mb . The gravitational
acceleration constant is incorporated by the notation g. Further-
more, the drag force Fdrag is calculated using the volumetric
mass density of air, ρair , the relative speed of the car compared
to the surrounding air, Vres , and the drag coefficient SCx .

Frol = frol
(
1 + krolV

2
)
mvehg (23)

Fdrag =
1
2
ρairV

2
resSCx (24)

Facc = kmmveha. (25)

The necessary torque has to be delivered by the pair of electric
motors. Based on the desired acceleration, the internal control
system can deduce the torque required to accelerate at a given
rate, while the road dynamics impose the different counteracting
forces. The inertia of the driveline is converted to an equivalent
vehicle mass by adding a factor λ (26). The notation rdyn cor-
responds to the dynamic wheel radius during driving.

km = 1 + λ = 1 +
J

mvehr2
dyn

. (26)

With

J = Jwheels + i2eJdrive . (27)

The rotational kinetic energy stored in the drivetrain is ob-
tained using the rotational inertia of the driveline components
translated to an equivalent inertia at the motor axle (27) with ie
the differential gearing ratio.

B. Translation of Vehicle Dynamics to the
Convex Problem Statement

Given the proposed formulation, the external loss functions
are translated to a fixed output power flowPdrive,out . A generally
acceptable approach to incorporate additional driveline losses
is to assume a fixed efficiency η of 90%. Consequently, the
dissipated power can be written as

Pdrive,d = Pdrive,in − Pdrive,out = (1 − η)Pdrive,in (28)

when motoring (Pdrive,in ≥ 0) and

Pdrive,d = Pdrive,in − Pdrive,out =
(

1 − 1
η

)
Pdrive,in (29)

when regenerating energy (Pdrive,in < 0).
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APPENDIX C
GENERIC PARAMETER VALUES

An overview of all constant numerical parameters for the
different components composing the drivetrain is provided in
Table II.
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[24] P. Elbert, T. Nüesch, A. Ritter, N. Murgovski, and L. Guzzella, “En-
gine on/off control for the energy management of a serial hybrid electric
bus via convex optimization,” IEEE Trans. Veh. Technol., vol. 63, no. 8,
pp. 3549–3559, Oct. 2014.

[25] P. Cominos and N. Munro, “PID controllers: Recent tuning methods and
design to specification,” Proc. IEE, vol. 149, no. 1, pp. 46–53, Jan. 2002.

Arne De Keyser was born in Sint-Niklaas, Belgium,
in 1993. He received the M.Sc. degree in electrical
and mechanical engineering from Ghent University,
Ghent, Belgium, in 2016.

He fulfilled an Internship at the Simulation and
Modeling department, ArcelorMittal, Ghent, as a
Systems Engineer, in 2015. In August 2016, he joined
the Department of Electrical Energy, Metals, Me-
chanical Constructions and Systems, Ghent Univer-
sity, as a Ph.D. Student of the Special Research Fund
(B.O.F.). His research interests mainly concern time-

efficient metamodeling algorithms and robust optimization techniques of com-
plex dynamic systems, focusing on real-time implementation of minimization
strategies in hybrid systems containing power electronic elements.

Mr. De Keyser is an affiliate member of Flanders Make, the strategic research
centre for the manufacturing industry in Flanders, Belgium.

Matthias Vandeputte was born in Ghent, Belgium,
in 1993. He received the M.Sc. degree in electrical
and mechanical engineering from Ghent University,
Ghent, Belgium, in 2016.

In 2015, he interned at the Simulation and Model-
ing department, ArcelorMittal, Ghent, as a Systems
Engineer. He joined the Department of Electrical En-
ergy, Metals, Mechanical Constructions and Systems,
Ghent University as Ph.D. Student of the Special Re-
search Fund (B.O.F.) after graduating, in 2016. His
current research interests are semianalytical and nu-

merical methods in electromagnetics, sizing and topology optimization, applied
on interacting resonant structures.

Mr. Vandeputte is an affiliate member of Flanders Make, the strategic re-
search centre for the manufacturing industry in Flanders, Belgium.

Guillaume Crevecoeur was born in Ghent, Belgium,
in 1981. He received the M.Sc. degree in physical en-
gineering and the Ph.D. degree in applied sciences
from the Ghent University, Ghent, Belgium, in 2004
and 2009, respectively.

In 2004, he joined as a Doctoral Researcher the
Department of Electrical Energy, Metals, Mechani-
cal Constructions and Systems of the Faculty of En-
gineering and Architecture, Ghent University. Since
2009, he has been a Postdoctoral Researcher for
the Fund of Scientific Research-Flanders (FWO) at

Ghent University. In the winter of 2011, he was a visiting researcher at the
Technical University Ilmenau and the Physikalische Technische Bundesanstalt,
Berlin, Germany. In October 2014, he was appointed Associate Professor in the
research field modeling, optimization and control of electrical energy applica-
tions.

Dr. Crevecoeur is a member of Flanders Make, the strategic research centre
for the manufacturing industry. His main research interests are multidomain
modeling, inverse problems, data analytics, numerical optimization, co-design,
uncertainty quantification, numerical and experimental mechatronics.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


