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NOTATION

Abbreviations

Abbreviation Description Reference
CO2 Carbon Dioxide p. 1
HD Heavy Duty p. 1
HEV Hybrid Electric Vehicle p. 3
OEM Original Equipament Manufacturer p. 3
HIT Hybrid Innovation in Trucks p. 2
EM Electric Machine p. 3
EMS Energy Management System p. 5
NOx Nitric Oxide and Nitrogen Dioxide p. 4
PM Particulate Matter p. 4
EPA US Environmental Protection Agency p. 5
NEDC New European Driving Cycle p. 5
BEV Battery Electric Vehicle p. 18
SLD System Level Design p. 23
FD Finite Domains p. 25
ECMS Equivalent Consumption Minimization Strategy p. 27
(S)DP (Stochastic) Dynamic Programming p. 27
RB Rule Based p. 27
MPC Model Predictive Control p. 27
GA Genetic Algorithms p. 32
CSP Constraint Satisfaction Problem p. 44
PBS Platform Based Design p. 45
BB Branch and Bound p. 53
CLP Constraint Logic Programming p. 53
TPM Transition Probability Matrix p. 95
MCMC Markov Chain Monte Carlo technique p. 99
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ii NOTATION

Symbols

Symbols Description Reference
T Topology p. 25
V Vertex / node p. 22
E Edge p. 22
T A set of elements of type T p. 22
D Domain of a variable p. 22
X Variables p. 6
J Optimization target/function p. 6
C Battery capacity p. 19
Pm Electric motor power p. 64
Λ Driving cycle p. 6
Pi j The probability of going from current state i to next state j p. 98
F Transition probability matrix p. 98
Φ Optimization target p. 22
M Velocity classes p. 99
N Road slope classes p. 99
O Acceleration classes p. 104
τ Node type p. 22
c Constraint function p. 22
γ Gear number p. 64
Superscripts p. 22
p Possible p. 25
fe Feasible p. 25
f Functionality p. 22
c Control p. 19

Special Symbols

Symbols Description Reference
⊆,⊂ Subset of p. 25
(, 6⊂ Not a subset of p. 45
≤,≥ Inequality (smaller/greater or equal to) p. 6
A
⋃

B The union of two sets A and B: {x : x ∈ A or x ∈ B} p. 25
∑

n
i=1 xi Sum over i; i = 1,2, ...,n (= x1 + x2 + ...xn) p. 48

∏
n
i=1 xi Product over i; i = 1,2, ...,n (= x1x2...xn) p. 25

a || b The concatenation of vector a with vector b p. 100



SOCIETAL SUMMARY

Integrated Optimal Design for Hybrid Electric Vehicles

Increasing levels of air emissions, regardless of their source, harm the planet, both on
the short, as well as on the long term. In the last decades significant increases in global
emissions were measured that contributed to the growth of greenhouse gas emissions
and global warming. For example, only between 1990 and 2007, CO2 emissions from
transport (land, water and air) increased by 45%. To constrain climate changes, these
emission levels must be reduced. To this end, in the recent past, electric and hybrid
cars have entered the market, especially, in the passenger vehicle category. With proven
benefits, these new power trains will enter other markets as well, be it commercial trucks,
buses, boats, ships and so forth.

In this thesis, the design of hybrid electric vehicles is studied, to provide efficient so-
lutions (low energy and fuel consumption), with affordable and competitive prices. In
particular, the research focuses on solutions suitable for long-haul heavy-duty trucks.
To find the optimal design for a hybrid electric vehicle, its architecture, the components
used (their sizes and technologies), the driving cycle and the optimal control algorithm
are investigated. Starting from a set of components, a method for finding all possible
architectures of hybrid electric vehicles is introduced. Then, the design problem is for-
mulated as an optimization problem on several levels and with multiple objectives. The
results presented in this thesis demonstrate significant potential for reducing the fuel
consumption and emission by introducing new hybrid architectures and by integrated the
optimal sizing and control of components. The design methods introduced here for hy-
brid electric trucks can be easily used in the design of other transport systems, optimizing
the prototyping process and eliminating costly redesigns.
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SUMMARY

Integrated Optimal Design for Hybrid Electric Vehicles

Current challenges for newly developed vehicles are addressed in various transportation
sectors, with hybrid power trains, as viable solutions. These challanges include strict
legislations on CO2 or the foreseen future-lack of oil. Having more than one source of
power, hybrid power trains give birth to a large design space for the physical system and
increase the complexity of the controller. The strong coupling between the parameters of
the physical system (e.g., topology) and the parameters of the controller transforms the
problem into a multi-level problem that, if solved sequentially, is by definition subopti-
mal. To obtain an optimal system design, the physical system and its controller should
be designed in an integrated manner.

The design of a hybrid electric vehicle (HEV) can be formulated as a multi-objective
optimization problem that spreads over multiple levels (technology, topology, size and
control). In the last decade, studies have shown that, by integrating these optimization
levels fuel and energy benefits are obtained, which go beyond the results achieved with
solely optimal control for a given topology. Due to the large number of variables for
optimization, their diversity, the nonlinear and multi-objective nature of the problem,
various design methodologies have been developed, yet none has proven to be widely
accepted. Moreover, current design methods lack generality and a systematic analysis
of the vehicle. In this thesis, defining such a design methodology is discussed, from the
general problem definition to how to solve different design layers.

The first contribution of this work is a framework on how to automatically generate
topologies for HEVs. The first HEVs design area, the topology, has the largest design
space, yet, so far in literature, the topology design is limited investigated due to its high
complexity. Having more than 1045 possible topologies, its design space may contain
variations in the number, placement and type of components. In practice, using expert
knowledge, a predefined small set of topologies is used to optimize their energy effi-
ciency by varying the power specifications of the main components (sizing). By doing
so, the complete design of the vehicle is, inherently and to a certain extent, sub-optimal.
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Moreover, various complex topologies appear on the automotive market and no tool ex-
ists to optimally choose or evaluate them. Software packages, as ADVISOR or AVL
Cruise could be used, yet they rely on rule based controllers and a very limited num-
ber of topologies. To overcome this design limitation, in this work, a novel framework
is presented that deals with the automatic generation of possible topologies given a set
of components (e.g., engine, electric machine, batteries or transmission elements). This
framework uses a platform (library of components) and a hybrid knowledge base (func-
tional and cost-based principles) to set-up a constraint logic programming problem and
outputs a set of feasible topologies for HEVs. These are all possible topologies that
could be built considering a fixed, yet large set of components. Then, by using these
results, insights are given on what construction principles are mostly critical for simu-
lations times and what topologies could be selected as candidate topologies for sizing
and control studies. Such a framework can be used for any power-train application, it
can offer the topologies to be investigated in the design phase and can provide insightful
results for optimal design studies.

The second and third contributions deal with the integrated design of topology, sizing
and supervisory control for HEVs. First, different existing bi-level optimization coordi-
nation strategies, with the outer loop using algorithms as Genetic Algorithms, Sequential
Quadratic Programming, Particle Swarm Optimization or Pattern Search (DIRECT) and
the inner loop using Dynamic Programming, are benchmarked to optimally size a par-
allel topology of a heavy duty vehicle. Secondly, nested design is applied to electrified
auxiliary systems (such as the power steering pump, air brake and air conditioning com-
pressors). At auxiliary sub-system level, the potential of reduced emissions/fuel comes
mostly by eliminating the fixed-ratio dependency between the auxiliaries speed and en-
gine speed that induces high energy losses. To study this potential, in this work novel
topologies are introduced and then exhaustive search (combined with nested sizing and
control) is used for each topology, to find its optimal design. The results show significant
fuel reduction by hybridization, engine downsizing, electrification of auxiliary units and
offer insights in the usability of nested optimization approaches in HEV design.

To enable and facilitate HEVs design and development, short, yet realistic, driving cy-
cles need to be synthesized. The newly developed driving cycle should give a good
representation of measured driving cycles in terms of velocity, slope, acceleration and so
on. Current methods use only velocity and acceleration, and assume zero road slope. The
heavier the vehicle is, the more important the road slope becomes in powertrain prototyp-
ing (as component sizing or control), hence neglecting it leads to unrealistic, sub-optimal
or limited designs. To include slope, we extend existing methods and propose an ap-
proach based on multi-dimensional Markov chains. The validation of the synthesized
driving cycle, is based on a statistical analysis (as average acceleration or maximum ve-
locity) and a frequency analysis. This new method demonstrates the ability of capturing
measured road slope information in the syntesized driving cycle. Furthermore, results
show that the proposed method outperforms current methods in terms of accuracy and
speed.
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CHAPTER

ONE

INTRODUCTION

Abstract / This chapter presents an introduction to hybrid electric vehicle design, includ-
ing the powertrain and the auxiliary units. From the existing challenges, new directions
for research are identified and the research objectives are defined.

1.1 Challenges in Vehicle Design

In our modern society, with a growing population size and that strives for an improved
quality of life, we need a sustainable energy future. Increased levels of carbon dioxide
(CO2), the main greenhouse gas that originates for 90% from fossil-fuel combustion,
contribute to the global warming effect in the atmosphere. Global CO2 emissions are
forecast to grow from the current 35.3 billion tonnes (Gt) per year to 46 Gt yr−1 [1, 2],
which largely reflects the increase in fossil energy consumption. The path that will be
followed depends on how efficiently we use the current energy sources.

Despite the significant growth in the use of renewable energies, the transportation sector
uses mainly petroleum-derived liquid fuels, accounting for 26% of the globally emitted
CO2. Road transport alone contributes to about one-fifth of the EU’s total emissions of
CO2 in 2012, with particularity heavy-duty (HD) vehicles (trucks and buses) being re-
sponsible for about a quarter of these emissions. The negative impact on the environment
will be even greater given the forecasts that support the transport of goods will grow sig-
nificantly in the coming decades. In 1992, there were over half a billion cars and trucks
worldwide and it is estimated that, by 2050, this number will exceed 2.5 billion.

1



2 Chapter 1: Introduction

To create a sustainable energy future, improving the efficiency of transport systems (i.e.,
the vehicles, the supply/demand/distribution infrastructures, etc.) is required. In partic-
ular, improving the energy efficiency of vehicles can greatly reduce the oil dependency.
We focus here, on the heavy-duty vehicles sector, in which, as shown in Fig. 1.1 a sub-
stantial portion of the energy consumed is lost into heat (in average 50%) or other losses.
To improve the energy efficiency of these vehicles, there are multiple research directions
as lighter materials or more improved designs, but are limited. For instance, while reduc-
ing further the aerodynamic drag or the tire losses is possible, braking and idling losses
will always be significant in conventional vehicles. Likewise, in engine-only vehicles,
the sizing of the combustion engine will always be decided by the power it needs to
provide.

Fuel Energy 

100%

Rolling 

Resistance 13.2%

Exhaust 

30%

Cooling

20%

Mechanical 

Power 

50%

Auxiliaries 3.1%

Air Drag 13.4%

Friction Losses

33%

Engine 7.3%

Auxiliaries 3.1%

Air Drag 13.4%

Transmis. 5.1%

Brakes 7.2%

Energy used 

to move 

the vehicle

34%

Thermal 

Losses

Total 

Energy 

Losses

Figure 1.1: Breakdown of the average energy consumption in heavy duty vehicles (trucks
and buses). Adapted with permission from ref. [3].

To reduce consumption, exhaust emissions and to increase vehicle performance, safety
and engine efficiency, the automotive original equipment manufacturers (OEMs) are in-
corporating increased electronic content in vehicles. This includes stability controls, col-
lision avoidance systems, electronic braking, thermoelectric technologies and navigation
systems [4]. Studies have shown that improved low-cost wast-heat recovery can increase
efficiency, especially, in HD vehicles, reducing both pollution and equipment sizes [5].
Further significant improvement of the energy efficiency of vehicles can be done by the
electrification of the powertrain, which will be the focus of this work.

This thesis is part of the HIT (Hybrid Innovation in Trucks) project that ran from Septem-
ber 1, 2010 through June 30, 2014 in a collaboration between DAF Trucks N.V., Eind-
hoven University of Technology and different suppliers. In this project the aim was to
improve the fuel consumption and CO2 emissions of a long-haul heavy-duty truck. The
prototype presented in Fig. 1.2, was built by DAF with a parallel hybrid configuration,
and it was used, when necessary, as a benchmark for the results in this thesis. The meth-
ods presented in this thesis are applicable but not restricted to these types of applications.
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Figure 1.2: DAF XF prototype heavy-duty hybrid electric truck with a parallel topology.

1.2 Hybrid Electric Vehicle System Level Design

Hybrid vehicles combine two, or more technology principles to produce, store and de-
liver power. Current market hybrid vehicles, typically, combine a combustion engine and
an electric machine (EM), as power converters, and they are referred to as hybrid electric
vehicles (HEVs). This hybridization allows a wide variety of possible topologies of the
powertrain and configurations of the sub-systems. Depending on the powertrain arhitec-
ture and the power control strategy selected, the powertrain may operate on battery only,
engine only, or a combination of the battery and engine.

More than a decade ago, when hybrid cars were introduced first on the market, they
emerged in a limited number of architectures, i.e., serial, parallel or mixed serial-parallel,
as illustrated in Fig. 1.3. These topologies, and their applicability to various transporta-
tion sectors, have been researched intensively in recent years and are described in detail
in survey articles such as [6–11] and books [12–15]. In a HEV, depending on its topology
and component technologies, an electric machine can function as motor (delivering pos-
itive torque and speed to propel the vehicle) or as a generator (producing energy, from
either the engine or from regenerative braking, to charge the battery). Conditional to the
usage of the vehicle, energy savings can be obtained from brake energy recuperation,
engine downsizing, reducing engine idling, etc. [12]. Since hybrid vehicles containing
more than one source of power, there is a greater flexibility in the design and control of
these systems. This flexibility is reflected also in the choice of the vehicle subsystems
(such as the power steering or the air conditioning systems), that may be independent on
the engine choice [16].
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Combustion 
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Figure 1.3: Main topology classes in vehicles: conventional (solely fuel driven) and
hybrid electric (series, parallel and series-parallel (with one or more planetary gear sys-
tems). Here dotted lines represent electrical links and solid lines represent mechanical
links.

The complete design process of a HEV, together with its different (nested) design levels,
is depicted in Fig. 1.4. The topology, technology and sizing of components are layers
related to the physical system. The control layer is dependent on the physical system,
yet it will not change its physical parameters (e.g., the battery size, electric machine type
or gear ratios). These physical system parameters will act as bounds with which the
control algorithm must cope. In addition, the HEV topology will define the variables
of the control algorithm (i.e., their number and type). This inter-dependence (coupling)
between the plant design layers and the control algorithm, supports the statement that the
performance, which can be obtained from optimal per-layer design, is influenced by the
design of other layers.

In general, a HEV is built such that operating costs and construction costs are minimized.
Moreover, other performance criteria may be considered either as limits on the design or
design targets. These can include NOx (Nitric Oxide and Nitrogen Dioxide), CO2 or PM
(Particulate Matter) emissions, vehicle weight, safety, comfort, handling and dynamic
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Figure 1.4: Hybrid electric vehicle system-level design (SLD) and its multi-layers

performance (such as acceleration or braking times). Based on these descriptions, the
problem of designing a hybrid vehicle reduces to solving an optimization problem with
multiple levels and multiple optimization targets. Moreover, the problem has discrete and
continuous variables with the component models and the optimization functions gener-
ally being nonlinear and non-convex [12].

Understanding what is the best methodology to design a hybrid electric vehicle, requires
knowing the characteristics of each level in detail. Often in literature the plant design
layers are fixed, i.e., one particular vehicle is considered, and constructing the controller
is investigated. How this control problem is defined and approached is discussed next,
in Section 1.2.1. Moreover, this control design problem requires at least one driving
cycle to evaluate the performance of the proposed algorithm. Since the choice of driving
cycle will have a significant influence on the results, in Section 1.2.2 the possible options
are summarized. In a similar manner, the controller can be fixed and different vehicle
parameters can be varied. These sequential approaches are described briefly in Section
1.2.3 and highlights the need for more integrated design methods of HEVs, where plants
and controller are designed together (Section 1.3).

1.2.1 Control Design

Building the control algorithm, i.e., the energy management system (EMS) of a HEV
powertrain, consists of finding the power-converters setpoints that can deliver the driver’s
required power in an optimal way. This optimality, of the EMS, is analysed for a certain
objective function, typically, fuel consumption, but can be extended to include pollutant
emissions, drivability or aspects related to the battery (e.g., life degradation or charge).

For each HEV, the fuel consumption is evaluated in accordance with certain usability con-
ditions. These are contained in the input driving cycle, Λ, as the NEDC (New European
Driving Cycle) or the EPA Highway Fuel Economy Test Cycle [17]. This optimization
problem is written in the following mathematical format: find the set xc(t) of control
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design variable values, within the design space that will minimize the objective function:

Jc(xc(t),Λ)

subject to the inequality and equality constraints:
g j(xc(t))≤ 0, j = 1,2, ...,m,

hl(xc(t)) = 0, l = 1,2, ...,e,
and to the system’s dynamics:

ξ̇ (t) = f (ξ (t),xp,xc(t), t),

ξ (t0) = ξ0,

ξ (t f ) = ξ f ,

(1.1)

with xp ∈ Rn the set of plant design variables and ξ the states of the dynamical system,
e.g., the state of charge (SOC) of the electric buffer (continuous variable), gear number
(discrete variable) or engine on/off (binary variable).

In cases where ξ denotes the battery SOC, the final state conditions

ξ f = ξ0, (1.2)
ξ f = ξmin, (1.3)

constrain the charge sustaining, (1.2), or depleting, (1.3), behaviour of the energy storage
pack at the end of the driving cycle. Thus, (1.2) is used for charge sustaining hybrids and
(1.3) is used for plug-in HEVs. Constraints, g j and hl contain per-component operational
boundaries, such as the engine torque, Te, subject to the speed-dependent constraint,
Te,min(ωe)≤ Te(t)≤ Te,max(ωe).

To solve the optimization problem in (1.1), there exist two large categories of methods.
Introduced first, the rule based algorithms (including heuristic and fuzzy logic meth-
ods), use expert knowledge translated into boolean rules to decide the set-points for the
power sources of the HEV [18–21]. These algorithms are sub-optimal, they require sig-
nificant tuning effort and they usually change for each topology. Motivated by these,
optimization based algorithms emerged and were used either for real-time control or
for off-line design studies. Among often used algorithms for real-time control, we can
find the Equivalent Consumption Minimization Strategy (ECMS) [22–28], Stochastic
Dynamic Programming (SDP) Strategies [29–33], or Model Predictive Control (MPC)
Strategies [34, 35]. Reviews of EMS can be found in review articles as [36–42]. Several
of these algorithms are used and compared in [43] to control the Plug-In Chevrolet Volt.
For off-line design studies Dynamic Programming (DP) is often used since it can find an
optimal solution for the mixed-integer non-convex optimization problem. DP can also be
used as a benchmark to compare and for development of rule-based algorithms. In this
thesis, for various case studies in Chapters 4 and 5, this optimization algorithm will also
be used.
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1.2.2 Driving Cycle

The driving cycle, denoted as Λ, that is used for designing the HEV, significantly in-
fluences the design of the final system, its fuel consumption, its emissions and its per-
formance [44]. Using a more realistic driving cycle implies that the HEV will be more
efficient in real-life everyday driving. Very often, to restrict the time of synthesizing a
controller (during simulations) these driving cycles are very short, which is the opposite
of reality. In addition, most driving cycles contain only a velocity profile, considering
zero altitude. This assumption is unrealistic and it will influence the performance of the
HEV directly proportional to its weight (i.e., heavier vehicles consume more power to go
up-hill and can regenerate more energy when driving down-hill).

Generally, there exist two types of driving cycles: modal, such as NEDC, and transient,
such as VAIL2NREL or the FTP-75 ( US Federal Test Procedure) [45]. The modal cycles
consist of acceleration, deceleration and constant speed segments, while the transient cy-
cles contain multiple speed variations, resembling more measured driving cycles. When
the cycle has a predictable pattern (such as the modal cycles), the engineers can design
a vehicle that will perform well on that particular cycle, but will fail to perform well
when driven normally. This effect, of designing a HEV with respect to only one cycle,
is referred to as ”cycle beating” and results in high emissions during normal driving of
carbon monoxide (CO), hydrocarbons (HC) and ammonia (NH3) [46]. In recent years,
one option to avoid this effect was to use multiple cycles as input to the design, analyse
the sensitivity of the design with respect to cycle variation and chose the most suitable
design [47–50]. A second option, that can provide improved and faster results, is to use
a synthesised cycle that resembles well (multiple) measured cycles [51–53]. Thus far,
stochastic methods, based on Markov chains, that use solely velocity (and acceleration)
and generate a purely synthetic driving cycle, from [54, 55], have shown better results
then other existing methods. In [56] it is shown that one can reach improved vehicle
designs at reduced computational costs with the use of such methods. These results mo-
tivate the incorporation of stochastic driving cycles in HEV optimization studies [56].
Moreover, these methods of driving cycle synthesizing leave room for improvement,
where one could consider also the differences in road altitude making the cycle even
more realistic. In this thesis, this challenge is analysed as described in the following
sections.

1.2.3 Plant Design

In a conventional engine-driven vehicle, as depicted in Fig. 1.3, the sizes of the com-
ponents (such as power specifications) are restricted and deducted from the performance
and drivability conditions. These include (i) top speed; (ii) maximum grade at which
the fully loaded vehicle reaches the legal top speed limit; (iii) acceleration time from
standstill to a reference speed (100 km/h or 60 mph are often used); (iv) uphill driving
capability; (v) braking distance form a reference speed and so on [12]. In hybrid electric
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vehicles, although the same performance and drivability conditions apply, the flexibility
in the sizing of the components, as-well as their placement (topology) is significantly
higher.

To find the plant parameters, xp (e.g., variables as battery sizing, topology type or gear
ratios), that minimize certain design targets, the following optimization problem should
be solved

min
xp

Jp(xp)

subject to the inequality and equality constraints:
g j(xp)≤ 0, j = 1,2, ...,m,

hl(xp) = 0, l = 1,2, ...,e.

(1.4)

When the cost function Jp is dependent on solving the control problem (e.g., Jp contains
the fuel consumption or emissions), (1.4) should be solved in a nested manner with the
problem from (1.1). For instance, to size the power train components of a series-hybrid
microbus, in [57] a one-variable-at-a-time exhaustive search is performed. In this ap-
proach, first the power generating group size is varied for a fixed battery pack and a
value is selected. Accordingly, for the newly found power generating group size, the
variation of the battery pack is investigated.

Another example can be found in [58], where three hybrid topologies (a start-stop, a full
parallel and a mixed series-parallel) are compared to a conventional vehicle to find the
most fuel efficient design. These sequential strategies using exhaustive search, where the
plant is designed first (for instance looking for minimum cost), are simple and insightful
which made them very popular among research and practice. However, they pose signifi-
cant challenges in the computational burden, which grows quickly for increasing number
of plant variables (that contain also the topology options).

Rules-based approaches and sequential coordination strategies resulted in sub-optimally
designed systems, with high costs for the hybridization and an unattractive return on
investment time for both the client and OEM [25]. If, when designing a HEV, one wants
to evaluate the fuel consumption as-well, this requires simulating the vehicle over a given
driving cycle. Implicitly, this requires a control algorithm and a structure for coordinating
the design between various layers. All these motivated plant and control design in an
integrated way, which is discussed in the next section.

1.3 Motivation for Integrated Plant and Control Design

The attainable performance by the control algorithm, limited by the physical system,
encourages the integrated design of the plant and its controller. Since this new design
problem is an extension of the optimization problem defined in (1.1), its solution is more
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complex and more difficult to find. For instance, in a plant and control optimization
problem there are more design variables, larger design spaces and various (conflicting)
optimization targets at different levels. To approach this, in the various stages of the
design process, specialists used their experience to make decisions and decrease the di-
mensions of the problem. The most common solutions in literature include the co-design
of components sizing and controller by using a nested coordination structure. Examples
include the design of parallel passenger cars in [59–64], a parallel hybrid electric heavy-
duty truck [44, 65] a series hybrid commercial city bus [66] or a parallel HEV transit
bus [67].

For each level of this design problem an optimization algorithm must be chosen to find
the solution. For the control problem often Dynamic Programming is used, and for the
component sizing problem often evolutionary optimization algorithms (such as Particle
Swarm Optimization and Genetic Algorithms) or exhaustive search are used. The per-
formance of these algorithms varies from the design of one vehicle to another since the
optimization problem changes. Therefore, there is no universally accepted method that
suits HEV design studies. All these options, together with a more detailed formalisation
of the HEV design problem, are described in Chapter 2.

To reduce the consumption even more, in more recent studies also the topology of the ve-
hicle is varied alongside with the components dimensions and the control algorithm. This
further integration of the design layers is shown in [68] for a full-parallel and a torque
assist HEV and in [69] for a hybrid and an electric submarine. The majority of these
studies are restrictive in choosing different topologies, with parallel and mixed series-
parallel being the most often studied. The authors of [70] have studied the topological
variation of Toyota Prius and Chevrolet Volt using the generic state-space representation
for the dynamics of HEVs with single planetary gears sets from [32]. It is shown in [70]
that with small variations of the configurations, such as adding or eliminating a clutch,
improvements can be attained in vehicle cost, topology complexity or fuel consump-
tion. The generic state-space representation method goes beyond the intuitive selection
of topologies for design and motivates the use more automated methods to select candi-
date topologies for optimization.

1.4 Research Objectives

This thesis aims to contribute in the techniques and methods used for hybrid electric
vehicle design to enable fast simulations and the evaluation of hybrid vehicles. Such
frameworks should optimize the prototyping process, should eliminate costly redesigns
and should find HEVs with smaller operational and construction costs. As motivated
in the previous sections, the multi-disciplinary nature of this design problem requires
frameworks that facilitate the interaction between various layers/disciplines. To develop
such an optimization methodology, the following key research objective should be inves-
tigated:
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Develop a design methodology that yields an optimal hybrid vehicle with respect to
imposed usability conditions and various design targets. Herein, one might use var-
ious topologies for the HEV powertrain components or other sub-systems, different
component sizes and control algorithms.

To address this research objective the following sub-objectives have been identified and
addressed in this thesis:

O1 Identify what are the main challenges in designing hybrid electric vehicles and what
interactions between the various design levels influence the optimality of the de-
signed system.

O2 Develop a method of construction and automatic selection of hybrid topologies.

O3 Investigate the potential of reducing the operational and component costs by power-
train hybridization.

O4 Analyse the potential benefits of electrification of auxiliary systems present in a ve-
hicle, such as the steering system, the air-conditioning system and so on.

O5 Build a method to synthesize a short driving cycle representative of real driving cy-
cles, in which the characteristics of speed, acceleration and road altitude variations
are accurately captured.

1.5 Thesis Contributions and Outline

This thesis contains another six chapters, of which five are research chapters and a final
chapter that summarizes the research findings and presents recommendations for future
research. In Table 1.1, the main topics studied in this thesis are summarized in connection
with the chapters of which they are part.

Due to the significant variation in approaches and methods used to design a hybrid vehi-
cle, in Chapter 2 (publication 2 in Section 1.7) , we present a review of these. We define
the optimal design problem of a hybrid vehicle, describing all its existing design levels
shown in Fig. 1.4, and we highlight the most important assumptions that can be made in
this process. Then, to identify future research lines and related challenges, we categorize
more in detail the types of coordination architectures (e.g., sequential, nested, simulta-
neous) and the optimization algorithms used. A comparative study of various control
algorithms applied to a Plug-in HEV, the Chevrolet Volt, is not included in this thesis but
is a result of this doctoral study, and is presented in publication 4.
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Table 1.1: Overview of the subjects included in this thesis, arranges by topic.

Topic Chapter
2 3 4 5 6 App.

Theoretical
Concepts

and
Methods

O1: Coordination Strategies 3 3 3 3

O2: HEV Topology Generation 3

O3: Optimization Algorithms 3 3 3

O4: Auxiliary Topologies Design 3 3

O5: Cycle Synthesis 3

Design
Study
Cases

O3: Hybridization Potential 3

O3: Engine Downsizing Potential 3

O4: Auxiliary Units 3 3

O5: Cycle Compression 3

The first level to be addressed in designing a hybrid vehicle, the topology generation, is
discussed in Chapter 3 and has been published in publication 3. Most often, scientists
have neglected this layer and made assumptions or specific choices (such as selecting a
parallel configuration). Here, to obtain the complete design space of topologies, the prob-
lem of generating hybrid topologies is introduced, described and solved. In the step of
defining the problem, we use two types of topology construction constraints, some based
on functionality and some based on cost. This is done to find hybrid electric vehicles
with desired functionalities, that do not use components in a redundant or unnecessary
way. This chapter proposes a methodology to find hybrid vehicle topologies that is easily
modifiable and applicable to various power trains.

In Chapter 4, a comparison of the most used optimization algorithms in HEV studies
is presented using as an example of a parallel architecture of a long-haul truck. In this
comparison of various algorithms, we analyse the ability to find an optimal solution
for the components sizing (battery, electric motor and combustion engine) and control
problem, for minimum consumption and maximum profit. The trade-offs between these
conflicting optimization targets is analysed in the form of a Pareto front and optimization
algorithms are evaluated on various criteria (eg, tuning effort, suitability, etcetera). These
results are summarized in publication 9, and were also used as a basis for publication 5.

The potential benefits obtained by using multi-level design are analysed in Chapter 5
for the auxiliary systems present in a heavy-duty truck. Together with appendix A, this
chapter summarizes the publication 7,8 and 10. In particular, various new topologies
are proposed and optimized for the power steering system. Moreover, in Chapter 5, we
investigate the effects of simultaneously designing various auxiliary systems.

Chapter 6 introduces a new method of synthesizing driving cycles (publication 1). This
method is an improvement to current methods, containing both information about the
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change in elevation of the road and speed. For this multi-dimensional Markov chains
are used to capture probabilistic properties of a driving cycle and different criteria in the
time domain and frequency domain are used for validation. Based on previous chapters,
in Chapter 7, conclusions and recommendations are formulated.

1.6 A Guideline for the Reader

The chapters of this thesis are generally self-contained and there is no need to read all
chapters successively. Chapter 2 formulates the optimization problem and describes in
more detail all the research directions addressed in this thesis, being a good introduction
for all the remaining chapters. After Chapter 2, one might proceed to Chapters 4 and 5 for
the optimal topology, sizing and control design studies or to Chapters 3 and 6 for novel
theoretical concepts and methods for driving cycles and HEV topologies generation and
synthesis.
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CHAPTER

TWO

REVIEW OF OPTIMIZATION STRATEGIES FOR
SYSTEM-LEVEL DESIGN IN HEVS

Abstract / The optimal design of a hybrid electric vehicle can be formulated as a multi-
objective optimization problem that spreads over multiple levels (technology, topology,
size and control). In the last decade, studies have shown that, by integrating these op-
timization levels fuel benefits are obtained, which go beyond the results achieved with
solely optimal control for a given topology. Due to the large number of variables for
optimization, their diversity, the nonlinear and multi-objective nature of the problem,
various methodologies have been developed, yet none has proven to be widely accepted.
This chapter presents a comprehensive analysis of the various methodologies developed
and identifies challenges for future research. Starting from a general description of the
problem, with examples found in the literature, we categorize the types of optimization
problems and methods used. To offer a complete analysis, we broaden the scope of the
search to several sectors of transport, such as naval or ground.

The content of this chapter is based on: E.Silvas, T. Hofman, N. Murgovski, P. Etman, M. Steinbuch.
Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles, submitted, under
review for journal publication.
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2.1 Introduction

Current challenges for newly developed vehicles, as strict legislations on CO2 or the fore-
seen future-lack of oil, are addressed in various transportation sectors, with hybrid power
trains, as viable solutions. Having more than one source of power, hybrid power trains
give birth to a large design space for the physical system and increase the complexity of
the control algorithm. The coupling (dependency) between the parameters of the phys-
ical system (e.g., topology) and the parameters of the control algorithm transforms the
problem into a multi-level problem (as depicted in Fig. 1.4) that, if solved sequentially, is
by definition sub-optimal [71]. Therefore, the physical system and the control algorithm
should be designed in an integrated manner to obtain an optimal system design.

Because of the large dimensions of the design space, computer simulations of dynam-
ical systems, e.g., for different architectures and component sizes, have become more
important as a preliminary step to building prototypes [72]. Sizing is defined for each
component differently, typically being expressed in terms of power for engines and elec-
tric machines, capacity for energy storage devices, fixed rations for gears and so on.
Computer simulations significantly speedup the control synthesis of a given design and
topology. However, even with computer systems, the problem of finding the optimal
vehicle design that provides the best control performance is typically intractable. Ob-
viously it is not feasible (cost or time-wise), given a design space, to build all possible
vehicles and evaluate which configuration and parameters provide the best performance
for control. Moreover, even when designing the control algorithm, due to the nonlinear,
mixed-integer and multi-dimensional (several states) characteristics of hybrid electric ve-
hicles (HEV) control problem, the simulations require large computational times. Ergo,
it is not time-wise feasible to simulate all combinations (i.e., brute force searches) of the
design variables [44]. Instead, optimization-based frameworks for plant and control syn-
thesis of HEVs are being developed. Starting from the optimal control and continuing to
the optimal sizing, different optimization algorithms were used to obtain the maximum
power train energy efficiency and/or the minimum total cost of vehicle ownership.

Based on examples from recent literature, in this chapter we introduce the general prob-
lem of optimally designing a HEV. Then we summarize the common challenges in this
design problem and present the different methods and frameworks that have been devel-
oped to improve the design of HEVs. The focus of this overview is on frameworks that
include the co-design of HEVs, i.e. concurrent plant (as topology or size) and control
optimization.

The remaining sections of this chapter are organized as follows. After a description of
HEV topologies is given in Section 2.2, the system-wide optimization problem is de-
scribed in Section 2.3. Section 2.4 discusses existent methodologies used for integrating
the plant and the control optimization, together with the used optimization algorithms. In
Section 2.5, these algorithms are discussed and compared and in Section 2.6 conclusions
are drawn.
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2.2 Hybrid Electric Vehicles

As briefly described in Chapter 1 and through Fig. 1.3, three categories of topologies
may be distinguished: series, parallel and series-parallel. Series HEVs, perform best
in stop-and-go driving since there is no mechanical link between the combustion engine
and the wheels. In this way the engine can be run at its most efficient point also in
varying vehicle speeds. Moreover, because there is no mechanical connection between
the combustion engine and the wheels, this configuration is rather flexible with regard to
the physical location of the various components in the power train. This makes the series
topology highly suitable for application with restricted (re)design space.

When a series HEV is not used in city driving high powers need to be transmitted to the
wheels from the EM, hence large electrical machines are needed to achieve high vehicles
speeds. In addition, this topology requires a double energy conversion for delivering
the required power, which induces efficiency losses. In this configuration the size of the
traction EM is deducted from the vehicle’s required performance (such as the top speed
requirement). Thus, the sizing of the power train reduces to finding the optimal sizing of
the battery and the power generating group (combustion engine/generator).

In parallel HEVs the combustion engine and the electric machine are both connected to a
mechanical transmission and they can generate power independently of each other. The
electric machine can be connected before or after the transmission as shown in Fig. 1.3
with (a) and (b) on pg. 4. Moreover, the HEV can switch between the power sources given
the driving conditions. In this configuration there is no separate generator. Whenever
generating power is possible and needed (e.g., energy recuperated from braking) the
electric machine functions as a generator.

Parallel HEVs have a direct mechanical connection between the engine and the wheels.
This leads to smaller energy losses (as they don’t require the dual energy conversion as
the series topology) but also less flexibility in the mutual positioning of the power train
components compared to the series HEV drivetrain.

Series-parallel HEVs have an extra direct mechanical connection between the generator
and the traction motor via the transmission. These architectures combine the benefits
from both series and parallel HEVs. They are usually constructed with one or more plan-
etary gear sets (PGS), and require at least two electric machines. PGS are transmission
elements with three connectivity points (ring, sun and carrier).These transmission ele-
ments, eliminate the need of a traditional stepped (manual or automatic) gearbox and
other transmission components.

Due to their increased flexibility in operating the components (as in series HEVs) and the
presence of mechanical links (as in parallel HEVs), series-parallel HEVs can lead to a
reduced fuel consumption for a wide variety of applications [73]. Yet, at the same time,
they come at a higher price and require more complex control strategies.
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Except these three HEVs categories, others can also be found in literature or practice,
e.g., the dual mode hybrid and the four quadrant transducer. These mostly vary in the
construction of the transmission components and will not be addressed here. The inter-
ested reader could refer to [74–78] for more information.

The efficiency of hybrid topologies varies according to the conditions under which they
are driven. The design choice for one or other architecture depends on the (intended)
mission of the vehicle and the trade-off between cost and performance. Given the pros
and cons of the serial, parallel and series-parallel topologies, these are each predomi-
nantly used in certain transportation sectors. Serial topologies are currently most often
found in buses [67, 79–81], battery electric vehicles (BEV) [82] with range extenders,
boats [83], heavy vehicles (military), locomotives [84–87] and other in-urban vehicles,
such as taxis [88], while parallel topologies and series-parallel are very common in pas-
senger vehicles [60, 89–91].

Due to the high-cost and complexity of series-parallel topologies, the parallel topologies
are, at the moment, the most commonly produced type of HEVs. Consequently, the paral-
lel hybrids dominate the literature on supervisory control strategies for HEVs [19,24,60].

For different applications, dedicated research has been conducted on technologies for
hybrid components and storage devices (as batteries, fuel cells or others). Overviews of
electric motor drives and storage devices are well presented in [7, 92–96]. The require-
ments of each application determine the suitability of a certain technology, as well as the
required dimensions of the respective hybrid component. In fact, determining the tech-
nology and dimension of a particular power train component represents also a discrete
choice. This makes the optimal design of the power train of a hybrid electrical vehicle
a discrete programming problem in terms of topological connectivity, technologies, and
dimensions of the HEV power train components.

In the first research efforts on HEV development, the various options (topology, type,
size) were investigated for a restricted set of discrete design choices, (e.g., a battery ver-
sus fuel cells, or three dimensions for the same Li-ion battery). The limited search space
already provided novel hybrid power train configurations with a lower fuel consumption
than conventional vehicles. Recent research papers on HEV development increase the
scale of the optimization problem, in an effort to further improve the HEV performance.
Typically, one seeks to formulate and solve a system-wide optimization problem cover-
ing the various components and disciplinary aspects involved in the HEV power train
design.

In the following section these approaches for design and control of HEVs will be pre-
sented and analysed, with their pros and cons. We address the design of hybrid elec-
tric vehicles alone, without considering their effect on infrastructures (charging, traf-
fic/transport, communication). For details on co-optimization of both HEVs and infras-
tructure, interested readers are referred to [97–99].
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2.3 Problem Statement for System Optimal Design

A hybrid vehicle contains multiple interconnected subsystems which, themselves, consist
of several sub-systems.When a HEV is built, it is desired to minimize both operational
and component/design cost.

2.3.1 Driving Cycle

To evaluate the fuel consumption of an HEV a drive cycle, Λ, is necessary. This is a
series of data points,

Λ(t) =
[

v(t)
θ(t)

]
, with t ∈ [t0, t f ], (2.1)

with v(t) representing the speed of a vehicle over time, θ(t) representing the slope (gra-
dient) of the road and [t0, t f ] representing the driving cycle length. The drive cycle repre-
sents the type of driving conditions in which the HEV is used. It is the main determinant
for the fuel consumption and the design (such as dimensioning of components) of the
vehicle.

Driving cycles, which can be either measured or artificially created, vary across ap-
plications, countries and organizations. Driving cycles are used to asses the perfor-
mance of HEVs in different ways, as for example fuel consumption and pollution emis-
sions [17,47,100]. In literature most driving cycles assume s(t) = 0. This is an important
assumption for heavier vehicles, where the contribution in the total power demand, for
s(t) 6= 0, becomes significant.

2.3.2 Plant and Control Optimization Problem

The HEV efficiency and cost is dependent on the components (their connections, tech-
nologies and sizes) but also on the control algorithm used. The varying parameters defin-
ing topology, sizing and control inputs constitute the design variables (denoted by x) in
the optimal design problem, for both the plant and the control of a HEV,

min
xp,xc(t)

J(xp,xc(t),Λ)

subject to the inequality and equality constraints:
g j(xp,xc(t))≤ 0, j = 1,2, ...,m,

hl(xp,xc(t)) = 0, l = 1,2, ...,e.
and to the system’s dynamics:

ξ̇ (t) = f (ξ (t),xp,xc(t), t),

ξ (t0) = ξ0,

ξ (t f ) = ξ f .

(2.2)
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Here xp ∈Rn and xc(t) ∈Rz denote the design variable vectors with n independent plant
variables and z independent control variables, m the number of inequality constraints,
e the number of equality constraints, J is the cost function, and ξ the states of the dy-
namical system, e.g., the state of charge (SOC) of the electric buffer. The additional
state conditions from (1.2) and (1.3) apply here as-well. Furthermore, the constraints,
g j and hl contain per-component operational boundaries, such as the engine torque, Te,
subject to the speed-dependent constraint, Te,min(ωe) ≤ Te(t) ≤ Te,max(ωe), component
sizing boundaries, such as the engine power, Pe, Pe,min ≤ Pe ≤ Pe,max, or other boundaries
related to the HEV topology (connectivity of components).

Note. For ease of understanding vectors are marked in bold, i.e., x is a vector of design
variables, where each variable is denoted by x. Moreover, (·)p, represents a plant related
variable (such as battery sizing) while (·)c, represents a control related variable (such as
engine torque).

The inter-links between different levels of vehicle design are illustrated in Fig. 2.1. We
distinguish three design levels: (a) determining the topology T f

k , (b) determining com-
ponent dimensions, and, (c) designing the control algorithm. Fig. 2.1 is a more detailed
view of Fig. 1.4, in which the technology and sizing optimization are combined in one
layer for ease of understanding and readability. Moreover, the topology design layer is
split into a topology generation and topology optimization layers.

min
𝒙c

𝐽c(𝒙c) 

(a) Topology Optimization 

(b) Technology and Size  
 Optimization 

(c) Optimal Control 

𝑔 𝒙c ≤ 0, 
ℎ(𝒙c) ≤ 0. 

𝑠. 𝑡.  

Topology Generation 

Find all 𝐓f ⊆ 𝐓p s.t. construction constraints 

min
𝒙c

𝐽p(𝒙p) 

𝑔 𝒙p ≤ 0, ℎ(𝒙p) ≤ 0. 𝑠. 𝑡.  

min
𝑻f

𝐽p(𝐓f) 

𝑔 𝐓f ≤ 0, ℎ(𝐓f) ≤ 0. 𝑠. 𝑡.  

𝒙p 

𝒙c 

𝒙c 

𝒙p 

𝒙p
𝑖 

𝐓𝑘
f 

Each topology selection 
determines the plant    
sizing and control variables  

𝒙p, 𝒙c.  

Each component 
size determines 
constraints 

𝑔 𝒙c ≤ 0, 
ℎ(𝒙c) ≤ 0. 

Figure 2.1: System-level design (SLD) layers and interlinks in HEVs
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As already stated in Chapter 1, the coupling between the three design levels presents
a multi-level optimization problem with discrete design variables (such as battery size,
transmission gear, powertrain mode) as well as continuous design variables (such as en-
gine torque, battery power). Furthermore, the component models and the optimization
functions are generally nonlinear and non-convex [12].

Design Space Selection

To illustrate the use of xp and xc in (2.2), consider the optimal sizing and control problem
for a one-motor parallel HEV depicted in Fig. 2.2. For the powertrain topology and com-

Engine Transmission 

Motor 
Generator 

Battery 

𝑢ps ∈ 𝒙c 𝑃e ∈ 𝒙p
pr 

𝐶 ∈ 𝒙p
pr 𝑃m ∈ 𝒙p

pr 

Final 
Drive 

γ ∈ 𝒙c 

𝑟m ∈ 𝒙p
pr 

Figure 2.2: Design variables, for sizing ,xpr
p , and control, xpr

c , of a one motor pre-coupled
parallel topology.

ponents in this figure [combustion engine, electric machines, battery and transmission],
xp and xc become

xpr
p =

[
Pe Pm C rm

]T
,

xpr
c (t) =

[
ups(t) γ(t)

]T
.

(2.3)

Herein Pe is the maximum power of the engine, Pm is the electric motor maximum peak
power, C is the battery capacity, rm is the maximum gear ratio, ups is the power-split ratio
that defines the portion of power delivered by the engine and electric machine, γ is the
gear number and the superscript (·)pr indicates the parallel type of the topology. Next,
(·)s indicates a series topology and (·)ps indicates a series-parallel topology.

For a series topology xp and xc become

xs
p =

[
Pe Pm1 C

]T
,

xs
c(t) =

[
Te(t) ωe(t)

]T
,

(2.4)

with Te and ωe the torque and speed of the combustion engine, for the input-split series-
parallel topology xp and xc become

xps
p =

[
Pe Pm1 Pm2 C Z

]T
,

xps
c (t) =

[
ωe(t) Tm2(t)

]T
,

(2.5)
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with Tm2 the torque of the second electric machine and Z the epicyclic gear ratio of the
planetary gear set. For alternative topologies one may wish to include additional design
variables related to clutches, more electric machines, more battery packs or alternative
components.

When the topology or the technology are assumed variable too (besides the sizes of
components), then more variables are included in the plant design variable vector, xp.
Assume xp consists of design variables from three plant design layers

xp = [xtop
p ,xtech

p ,xsize
p ], (2.6)

with xtop
p , xtech

p and xsize
p the plant design variable representing the topology, technology

and size layers. Each instance of xtop
p will influence the size of xtech

p and xsize
p , as well

as their corresponding control variables, exemplified in (2.3), (2.4) and (2.5). Further-
more, the selection of components sizing will, partially, determine the constraints for the
control algorithm. Explicit derivations of the coupling between the sizing and the con-
trol layer, for different applications, and how they influence the overall design, are found
in [71, 101].

Therefore, to find the vector xp that minimizes the cost function J, is a challenge for the
chosen multi-level optimization methods, and for the optimization algorithms used for
each individual level.

Optimization Targets Selection

J ∈ Rk in (2.2) represents the vector of objective functions, that comprises the system-
level design (SLD) objectives. As mentioned before, a HEV is generally built such that
both operational and component/design cost are minimized. Nonetheless, other objec-
tives, such as minimizing emissions or maximizing the payload of the vehicle, have been
also used.

The most commonly employed objective functions, Ji(x) : Rn+z→ R1, are

J1 =
∫ t f

t0
ṁf(t)dt, J4 =

∫ t f

t0
NOx(t)dt,

J2 = Ψm +Ψi +Ψb, J5 =
∫ t f

t0
HC(t)dt,

J3 =−m0 +mb, J6 =
∫ t f

t0
CO(t)dt.

(2.7)

Herein J1 represents the CO2 reduction, or the overall fuel consumption; J2 is the hy-
bridization costs, i.e., the summed cost of the motor, Ψm, the cost of the inverter, Ψi, and
the cost of the battery, Ψb. J3 is the payload weight of the vehicle (onboard passengers or
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cargo), m0, plus the weight of the battery, mb. J4, J5 and J6 are the nitrogen oxides (NO),
hydrocarbons (HC) and carbon monoxides (CO) emissions.

The multi-objective character of the HEV system level design problem (SDL) (fuel, costs,
etc..) requires dedicated multi-objective (MO) optimization algorithms/solvers, or refor-
mulation of the problem into a single objective formulation. The latter, referred to as also
as scalarization of the cost function, is often used and represents a choice of the designer.

There are multiple methods for objective function scalarization [102]. The weighted sum
formulation equals

f (J,w) = w1J1 +w2J2 + ...+wkJk, (2.8)

with w a vector of weight parameters, with

w1 +w2 + ...+wk = 1. (2.9)

The weights are adjusted such that a certain preference for the optimization targets is
imposed. This scalarization, is used for example in [103, Ch.3],

f (J,w) = (w−1)Ĵ1 +wĴ2 (2.10)

is proposed (with Ĵ representing the normalized1 value of J) or in [104] where

f (J,w) = w1Ĵ1 +w2Ĵ5 +w3Ĵ6 +w4Ĵ4 (2.11)

is used.

As mentioned before, when a HEV is built, it is desired to minimize both operational and
component/design cost. The system-level design (SLD) problem is a challenge given
that different optimization functions depend of different system levels. For example,
minimizing the cost of electrification, J2, is typically used for power-train component
sizing while, J1 is always used as objective for the control algorithm design. What are
the possible optimization schemes and how the HEV design problem has been addressed
so far it is discussed next.

2.4 Published HEV Design Frameworks

In the context of HEV prototyping, a design framework is a methodology that uses exist-
ing optimization algorithms combined on multi-levels, to find the best design for given
targets and constraints. This describes how and in which order the coupled optimization
problems at the various levels are solved in an effort to solve the overall system level
design problem. Moreover, it relates to coordination methods in distributed multidisci-
plinary optimization, see for instance [105, 106], where the coordination method defines

1The authors define a normalized value Ĵ = J
JN ∈ [0,1], where JN is estimated as the largest possible value

of J within the search space.
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how the coupled disciplinary subproblems are solved to arrive at the system optimal so-
lution.

For the plant and control design problem, there are basically three coordination archi-
tectures, as shown in Fig. 2.3: (i) alternating plant and control design, i.e. first the
plant is optimally designed. Using this outcome the controller is optimally designed.
Subsequently, the plant is optimized again, etcetera. The coordinator alternates between
optimizing the plant and optimizing the control until the coupled variables have con-
verged. (ii) control design nested within plant design, i.e. every evaluation of a plant,
requires the full optimization of the controller design; and (iii) simultaneous plant and
controller design (i.e. solving (2.2) all-in-one). Often, nested coordination architectures
are referred to as bi-level, implying a nested optimization between two design layers.
These have been many times used in literature for components sizing and control studies.

Plant 
Design

Control 
Design

Control 
Design

Alternating

Plant and 
Control 
Design

SimultaneousNested

Plant 
Design

Figure 2.3: Coordination Architectures for System-Level Design (SLD) in HEVs.

In mid ′90, when the hybrid vehicle market emerged, the plant design problem and the
control design problem were treated completely independently. Nowadays, in most lit-
erature and practice, a clear distinction is made between the plant and the control design
variables and objectives, where (2.2) becomes the following co-design problem

min
xp,xc(t)

J(x) = {Jp(xp,xc(t)),Jc(xp,xc(t))}

s.t. g j(xp,xc(t))≤ 0, j = 1,2, ...,m,

hl(xp,xc(t)) = 0, l = 1,2, ...,e,
and to the system’s dynamics as in (2.2).

(2.12)

The plant cost function, Jp, and the control cost function, Jc, may contain any combina-
tion of the objectives from (2.7).

For the plant design problem, in the literature also distinction is made between topology
design and component sizing optimization. Usually, the component sizing problem is
solved for a fixed topology. The choice of topologies to be analyzed has, so far, been
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mainly dictated by practical experience rather than by a topology optimization proce-
dure. A computational tractable method for combined topology and component sizing
optimization of the plant design is an open research question.

In the next subsection we give an overview of the currently employed methods for topol-
ogy optimization of the HEV plant. Most of these methods aim at finding feasible topolo-
gies, not necessarily optimal topologies. Subsequently, in the forthcoming subsections
we survey methods for alternating, nested, and simultaneous plant and control design of
HEV vehicles.

2.4.1 HEV Topology Generation or Selection

In practice, a HEV topology is often selected on the basis of criteria that derive from
expert knowledge. In this approach the set of rules forming the criteria can be derived
from expert knowledge, availability of components on the market, other HEVs and so
on. The selected topology is very likely not optimal. Recent studies show that very small
changes in known topologies, such as the Toyota Prius or Chevrolet Volt, can lead to
more efficient HEVs (w.r.t. cost or fuel) [70].

Another approach for arriving at a suitable topology is to evaluate at all possible topolo-
gies that can be constructed from a predefined fixed set of components. This is sometimes
referred to as topology generation.

Usually topology generation means the search for all feasible topologies, Tf, within a
(large) set of possible topologies, Tp, given design constraints, c,

Find all Tf ⊆ Tp,

s.t. c(T f)≤ 0.
(2.13)

A method to solve (2.13) was proposed in [107] where c consists of functionality (i.e.,
power delivery, hybrid functions, feasibility) and cost constraints. Each topology is mod-
eled as an undirected connected finite graph, where each component is a node of the
graph. Based on these nodes, a set of constraints are defined and (2.13) is solved as a
constraint satisfaction problem over finite domains (FD) [108]. The authors of [107],
apply this method on a set of 16 power-train components (including two PGS, two EMs,
three clutches, etcetera) searching for feasible series, parallel, and series-parallel HEV
topologies. They show that the initial search space of 5.7 · 1045 possible topologies is
reduced to 4779 feasible topologies.

Another recent method by [109] to solve (2.13) aims at developing series-parallel topolo-
gies with one or multiple PGS. This method models a topology as a bond graph and,
similar to the previous method, uses constraints to arrive at feasible topologies. Using
this method, in [110], the topology generation and optimization of a mid-size passenger
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car is discussed. When series-parallel topologies with double planetary gears is used,
in [111] and [112] a method to automatically model and exhaustively search for optimal
topologies is proposed. The authors of [111] show, using Toyota Prius as a study case,
that improved configurations (offering reduced fuel consumption) are found.

These studies show how the initial set of candidate topologies can be reduced in a sys-
tematic and complete way. At the same time, they highlight new challenges in defining
and solving this kind of problems.

Once a topology has been decided on, the co-design problem (2.12) is to be solved. Next
we distinguish sequential, alternating, nested, and simultaneous methods. Sequential is
a special instance of the alternating coordination-strategy (plant and control subproblem
are solved only once, sequentially) and is also referred to as a design-first-then-control
methodology.

2.4.2 Design-First-Then-Control for HEV Design

The design-first-then-control is the simplest strategy one can envision; the coupling be-
tween the plant design and control design problem is neglected. Mainly due to its de-
centralized manner, this strategy has been a pioneer when approaching HEV design. The
control problem is approached for a fixed plant, i.e., fixed (a), (b) and (c) layers in Fig.
2.1 on pg. 20.

The development of the control algorithm, i.e., the energy management system (EMS)
of a HEV powertrain, consists of finding the set-points of the power converters that can
deliver the driver’s required power in an ”optimal” way. Optimality is defined in terms
of fuel consumption (J1 from (2.7)) , but may also include pollutant emissions (J4 and J5
from (2.7)), drivability, or performance criteria related to the battery (e.g., life degrada-
tion or charge). This optimal control problem, given by

min
xc(t)

Jc(xp,xc(t),Λ)

s.t. g j(xc(t))≤ 0, j = 1,2, ...,m,

hl(xc(t)) = 0, l = 1,2, ...,e,
and to the system’s dynamics as in (2.2),

(2.14)

has been approached by two main categories of methods as depicted in Fig. 2.4: (i)
optimization based methods and, (ii) rule based methods.

The strategies based on rules, either heuristics [18] or fuzzy logic [19–21], are based
on expert knowledge translated into boolean rules, to make the power sources work in
their most efficient regions. These algorithms are easy to implement and they don’t
require high computation times. Yet they can not offer any proof of optimality of the
solution found. They may require significant tuning effort and may change significantly
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for each topology. This disadvantage has motivated the investigation and the applicability
of rigorous optimization algorithms.
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Figure 2.4: Classification of energy management strategy categories: optimality, con-
trol horizon and real-time implementation. RB = Rule based, MPC = Model Predictive
Control, (S)DP= (Stochastic) Dynamic Programming, ECMS = Equivalent Consumption
Minimization Strategy.

There exist a wide variety of optimization algorithms for controller design. Two cat-
egories may be distinguished: real-time implementable or off-line algorithms [113].
Dynamic Programming (DP) is widely used for off-line optimization and DP typically
serves as a benchmark for evaluating other (real-time) algorithms [114]. There exist
also optimization-based algorithms that can be online implementable. These are mostly
based on Equivalent Consumption Minimization Strategy (ECMS) [22–28], Stochastic
Dynamic Programming (SDP) Strategies [29–32], or Model Predictive Control (MPC)
Strategies [34, 35]. Reviews of EMS can be found in review articles as [36–42]. Bench-
mark comparisons are given in [63] and [43], where several algorithms are implemented
and compared for controlling the Plug-In Chevrolet Volt HEV.

Note, again, that all these energy/power control algorithms are derived for an a priory
defined HEV. Therefore, the dependence between the system design and the control al-
gorithm design is not taken into account. Yet, this coupling exists, e.g., the dimension
of the battery will influence the optimal control problem. To overcome this limitation,
attempts to design better systems have been developed using design-and-control method-
ologies (in either an alternating, nested or simultaneous fashion).
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2.4.3 Alternating, Nested and Simultaneous Coordination Schemes

For each topology, to find the set of optimal x∗p with a nested coordination scheme, var-
ious authors [57, 58, 62, 63, 115–117], have used exhaustive search in the plant design
optimization problem, combined with a rule based or DP for control design. With ex-
haustive search, also referred to as brute force search, the design space is gridded and for
each grid point the cost function is evaluated [118]. This is depicted in Fig. 2.5 for the
parallel topology from Fig. 2.2 on pg. 21, where the hybridization potential is analysed
in terms of fuel consumption for xpr
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Figure 2.5: Design space exploration using exhaustive search (light grey dots), an op-
timization algorithm (dark grey points) and the interpolation contour lines of the cost
function.

Using the values of the cost function at each point the shape of this function can be
interpolated, and a design can be chosen. For the sake of clarity, we depict this for two
plant design variables only. If more design variables are included the visualisation and
interpretation of results will be difficult. Then, Latin Hypercube Sampling can be used
to explore the cost function in all the feasible design spaces [119].

In [58], such a nested exhaustive search framework is used to compare four topologies (a
conventional, a start-stop, a full parallel HEV and a power-split HEV), for a passenger car
application given different driving cycles. Due to hybridization and engine downsizing,
the authors present more than 33% CO2 decrease for the full-parallel and power-split
(similar to Toyota Prius) HEVs. In [62], focusing on the transmission selection, three
full-parallel hybrid electric drivetrain topologies are investigated, In [57], one-variable-
at-a-time exhaustive search is used for the component sizing optimization loop and DP
is used for the control algorithm. Considering a series-hybrid microbus, the authors
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define xs
p =

[
Pe+m1 C

]T , with Pe+m1 representing the generating group power (i.e.,
the combined generator motor and engine) and C representing the battery capacity. With
a fixed battery pack the generating group of the series architecture ,Pe+m1, is varied in size
and the possibility of downsizing or upsizing the engine is analysed. Once a value was
found for Pe+m1, this is fixed, and the variation on the battery pack sizing is investigated.
We refer to this as one-variable-at-a-time exhaustive search, since when mapping this
problem to the previous example from Fig. 2.5, the authors vary one variable at a time,
resulting in only one row/column, and repeat this process for all design variables.

The exhaustive search strategy is simple and insightful, but only works for a limited num-
ber of plant design variables. The computational burden quickly grows, for increasing
number of plant variables. The computational time may be expressed as T = Ta ·∏N

i=1 gi,
with N the number of plant design variables, Ta the time in which the optimal control
problem is solved and gi the number of grid points for variable i. The grid needs to
be sufficiently dense to guarantee a reasonable accurate interpolation between the grid
points. Alternatively, for increasing number of plant variables, one may consider to use
a Latin hyper cube design exploration with a radial basis of Kriging type of surrogate
model for the interpolation [120].

In recent years, the usage of optimization-base multi-level design, (introduced already
for different applications [121–123]), has seen an increased interest. By using an opti-
mization algorithm for the plant design problem, one seeks to reduce the number of cost
function evaluations, compared to exhaustive search (see for example Fig. 2.5), with a
better exploration of the design space in the design region of interest.

The SLD problem is usually nonlinear and often also has mixed-integer characteristics.
In the literature about multilevel optimization of HEV, a wide variety of algorithms has
been selected for the plant optimum design. One may distinguish between derivative-free
and gradient based algorithms. Examples of derivative free algorithms include: Dividing
Rectangles (DIRECT) [130, 142], Particle Swarm Optimization (PSO) [103, 135, 136],
Genetic Algorithms (GA) [17, 67, 143, 144] and Simulated Annealing (SA) [66, 145].
Articles that use a gradient based algorithm include Sequential Quadratic Programming
(SQP) or Convex Optimization (CO) [137, 140, 141, 146]. In Table 2.1 a classification
of several frameworks from existing literature is shown. This table tabulated the type
of algorithm for the plant design problem, the type of algorithm for the control design
problem, and the coordination strategy to arrive at the system optimal solution.

Vehicle simulation packages1, containing rule based algorithms for HEV control, have
facilitated the fast development and simulation of design frameworks. For instance, using
a rule based (RB) control algorithm nested within multi-objective GA [17], in [67] the
sizing of a parallel hybrid bus is discussed for multiple objectives, J1, J4, J5 and J6
from (2.7). Besides the benefits for design, the authors highlight that: (a) the increase

1Such as ADVISOR [http://www.nrel.gov/analysis/models_tools_archive.html]
[Online; accessed 18-November-2014], or PSAT [http://www.transportation.anl.gov/
modeling_simulation/PSAT/][Online; accessed 15-February-2012]

http://www.nrel.gov/analysis/models_tools_archive.html
http://www.transportation.anl.gov/modeling_simulation/PSAT/]
http://www.transportation.anl.gov/modeling_simulation/PSAT/]
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Table 2.1: Classification of several frameworks from existing literature, as a function
of coordination methods and algorithms used for sizing and control design (ECMS
= Equivalent Consumption Minimization Strategy, (S)DP = (Stochastic) Dynamic Pro-
gramming, SQP = Sequential Quadratic Programming), SA = Simulated Annealing, PSO
= Particle Swarm Optimization, RB = Rule Based, SADE = Self-Adaptive Differential
Evolution, DS = Downhill Simplex Method).

Algorithms Coordination Methods:

Component
Sizing Control Sequential

Fixed

RB Parallel HE Truck [124]

ECMS Parallel Small HEV [24], Through-the-road Parallel Midsize
HEV [125]

SDP Mid-size Series-Parallel HEV [32]
DP Parallel HE Truck [124]

Nested

Exhaustive
Search

RB
Large-size passenger parallel HEV [59], Medium-Duty Parallel
HE Truck [115], Small passenger HEV with CVT [90], Torque-
Assist Midsize HEV [126], Parallel HE Truck [44]

ECMS Fuel Cell HE Truck with two in-wheel EMs [116]

DP
Passenger HEV (Parallel [60, 61], Torque-Assist [126], Large Par-
allel [62], Compact Parallel [63], Several vehicles [58]), Heavy-
Duty HEV [119], HE microbus [57].

SQP RB PNGV passenger HEV [127]
DP Parallel HE Class 8 Truck [65]

DIRECT RB Parallel passenger HEV [8, 64], Mid-size HE SUV [128] Mid-size
parallel HE SUV [129], Parallel passenger HEV [130]

SA RB Parallel passenger HEV [8, 64, 130], Series HE Commercial City
Bus [66]

DS RB Series passenger PHEV [131]
SADE RB PNGV parallel passenger HEV [132]

Single /
Multi-Obj.
GA

RB
Parallel passenger HEV [64, 130], Parallel HEV transit bus [67],
Fuel-cell Parallel HEV [133], Parallel HEV [8], Hybrid and Elec-
tric Submarine [69]

SQP Hybrid and Electric Submarine [134]
DP Parallel Class 8 HE Truck [44]

PSO RB Parallel passenger HEV [8, 64, 104]

DP
Midsize Parallel HEV [103, 135] Torque-assist and Parallel pas-
senger HEV [68], Parallel Class 8 HE Truck [44], Series PHEV
Bus [136].

Simultaneous

Convex Opt. Series PHEV Bus [136–140] Parallel PHEV [141]



2.5: Trends in Optimal System Level Design for HEVs 31

of population size of the algorithm will result in improved accuracy of results; (b) no
user-supplied weights of each objective must be provided; and, (c) more driving cycles
must be used to improve this methodology and the design. This is addressed in [69]
and [134], where the same strategy is applied to find the optimal design of a hybrid
submarine, investigating three different topologies for four different driving cycles. This
study shows that multi-objective GA can handle a very large design problem, with 16
objective functions and a 9 dimensional design space, with both discrete and continuous
design variables.

One clear drawback in these studies is the usage of rule based algorithms for controller
design, which is sub-optimal. An alternative is to use for example an evolutionary algo-
rithm as Particle Swarm Optimization (PSO) in combination with DP for optimizing the
control strategy, as used in [103, 135, 136]. In this novel framework, Dynamic Program-
ming ensures finding the optimal control policy for every population point candidate
selected by PSO in the outer-loop. The authors use this framework to optimally size
and control a parallel passenger HEV, and compare its results with previously developed
frameworks, that use SQP in the outer loop (plant design) and RB algorithms in the inner
loop (controller design). It is shown that RB algorithms are less fuel efficient (by 11% for
this case) and lead to a more expensive system (by 14%) than optimal solutions obtained
by PSO.

The frameworks that solve the plant design problem using stochastic algorithms such as
PSO, GA, or SA, or using deterministic search algorithms such as DIRECT, can handle
nonlinear cost function and constraints, searching the design space globally. Yet, when
the cost function behaves smooth and has only few local minimizers, a derivative based
algorithm will offer a faster solution to the optimization problem. Also, a larger number
of plant variables can be addressed in that case.

The typically used J1 cost function from (2.7) is multi-modal (with many local min-
ima), and sometimes noisy and discontinuous [130]. To ensure the receivability of the
global optimum, in [137, 146, 147] and in [80] the HEV design problem is formulated
as a convex optimization problem, with proposed convex component models and integer
control signals obtained by heuristics. Comparative studies of the gradient-based and
the derivative-free algorithms for HEVs optimal design are presented in [148]. Further,
comparisons between only the derivative-free algorithms for HEVs optimal design can
be found in [130] and [64].

2.5 Trends in Optimal System Level Design for HEVs

An important driver for optimization approaches in HEV vehicle design is the legislative
restrictions which have become increasingly tight during the last two decades. Emission
regulations have evolved from Euro 1 in 1993 to Euro 6 in 2014 (changing both permis-
siveness (e.g., CO2 levels) and focus (e.g., from CO2 to NOx or PM)). The number of
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yearly publications on HEV optimization approaches has steadily grown (see Fig. 2.6).
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Figure 2.6: Research trends in hybrid vehicles design and optimization algorithms used.
The curve shows the number of papers in the Google Scholar database containing the key
words hybrid vehicle and the keywords in the legends as parts of their title.

When defining an optimization problem, its target is a formal transposition of vehicle
manufacturer preferences on the constructed system. In turn, the manufacturer tries to
meet all legislative restrictions and create a vehicle competitive on the market, appealing
to customers and financially-beneficial. In this frame-up, the challenge to have a general
problem definition is even bigger, since these dependencies are changing over time (e.g.,
emissions regulations). These challenges have led to constant development of control
algorithms for HEVs (named either Supervisory Control or Energy Management Sys-
tems). In Fig. 2.6 one can see an ascending trend in the use of Dynamic Programming as
a control algorithm. In fact, DP is used as a benchmark comparison for the development
of other algorithms (real time implementable).

For solving the problem of optimal system design there is no universally accepted or
widely used algorithm (as for example in control design DP). The trend in algorithms
selection, for component sizing is to use evolutionary optimization algorithms. Among
these, most commonly used optimization algorithms are GA and PSO, as shown in Fig.
2.6. Furthermore, multiple research articles report the computational inefficiency of ex-
haustive search, that leads to its inapplicability for large multi-dimensional design spaces.

Another trend is the increased focus on the driving cycles used in the HEV optimization
problem formulation. Each manufacturer will design a car suitable for certain road types
(road (e.g., highway, in-city, inter-urban), off-road, ship, rail or air) and applications (e.g.,
heavy duty vehicle, passages, bus), that will use a specific driving cycle. These range
from high speed highway driving on flat road, to city driving with altitude variations, and
all the variations in-between. The ideal HEV should be fuel efficient in all situations in
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which it is used. In most cases, designers/researchers choose to vary the driving cycle
in the design step of the hybrid vehicle to have a more efficient vehicle (in terms of
energy) [48, 68, 116]. Also, synthetic cycles can be constructed to be shorter (enabling
thus faster simulations or larger design space explorations) but more representative of the
actual driving cycles. In this direction, the methods based on Markov Chain theory show
promising results, as presented in [100, 149, 150].

Depending on the shape of the optimization function, and the types of constraints, an
optimization algorithm may prove to be better than others. Typically, the road types
and applications dictate a choice of topology, eliminating layers (a) and (b) in Fig. 2.1.
In [130] and [44] different optimization algorithms, for the sizing loop (plant design), are
compared to find the optimal design for one topology. For the control, one algorithm is
used in all cases. At the expense of larger batteries, GA reaches a design with 7% reduced
fuel consumption. Next, a design that doesn’t require engine downsizing is reached
with PSO algorithm, where the 5% fuel consumption is achieved with a smaller electric
machine. Without continuing with this analysis, one must be aware that these results
are sensitive to how the algorithms are tuned (such as maximum number of function
evaluations and, to what supervisory control algorithm is used).

In the case of a strong nonlinear optimization function, the algorithms that use the gra-
dient of the function, as SQP, often converge to a local minimum. To avoid prema-
ture convergence and local optima, one can start from different initial points, xp0 or use
a global optimization algorithm, as GA, PSO or another. Population-based evolution-
ary algorithms, as GA, PSO and SA, will have overall more function evaluations then
gradient-based algorithms, since at each iteration (generation) they will evaluate J for
multiple starting points xp0 (often named population).

Summarizing, different tricks must be applied when one desires to use a certain kind of
optimization algorithm for sub-problem solving: (i) when convex optimization is used,
the convexification of the optimization problem is required to guarantee finding the global
optimum; (ii) when SQP is used, for the original problem (non-convex), the initial point
xpo can be varied to test the reach of local or global minimum; and (iii) when evolutionary
algorithms are used various parameters have to be tuned (e.g., population size). Also, as
stated earlier, it is important what coordination strategy is used, and which decomposition
paradigm (overviews of such paradigms are found in [151] or [152]).

Designing a HEV with explicitly considering the coupling between the plant and its con-
trol has proved more promising than sequential design. These novel design approaches
(nested or simultaneous) were investigated for the main components of the propulsion,
i.e. electric motor, battery and combustion engine. Following this trend of combining the
plant and control design, in the future more components can be considered as variables
in the design process. Examples can include auxiliary units, e.g., air conditioning sys-
tem or the power steering system, as considered in [44, 153, 154]. With the inclusion of
more components as variables, the design problem becomes more difficult to define and
handle.
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2.6 Conclusions

This chapter reviewed the current state of design of hybrid vehicles, including architec-
ture, sizing components, control algorithm and methods of finding the optimal system
level design. Although, at first glance, there seem to be three major classes of HEV
topologies to chose from (serial, parallel and serial-parallel), current market vehicles
prove that minor design changes can lead to significant improvements in fuel consump-
tion, costs of electrification, performance and generated emissions. These small changes,
like the addition of a clutch or resizing the battery, cause many changes in different design
levels (both at the subsystem level as-well as at the system level). Thus, the interaction
between components is becoming increasingly important and, neglecting it in the design
step leads to loss of potential after hybridization.

Starting with sequential designs, usually made in a top-down manner, a transition to cou-
pled plant and control designs commenced in the last decade. The most popular variant
being controller design nested within plant design. These approaches prove clear ad-
vantages but also introduce several challenges in solving this optimization problem. Se-
quential design is simple and intuitive, but neglects the influence from one design layer to
another. The plant is designed without taking the controller into account. Subsequently,
the controller is designed using the given design as is.

Bi-level optimization frameworks take the coupling between plant and controller design
into account. One may distinguish a nested and an alternating formulation. Often used,
nested optimization poses more challenges on finding a global optimal solution at the
system level and creates a shift towards multi-disciplinary design. Even so, recent studies
have shown that, HEV designs with significantly lower fuel consumption and emissions
can be found. These are opportunities to be further investigated.

By analyzing existing publications, we can conclude that using optimization algorithms,
to solve different optimization layers, have proven beneficial for design. These could be
further used, in more extended coordination methods to include the selection of topolo-
gies and technologies. For instance, these extended coordination methods might include:
(i) (simultaneous topology and sizing design) alternating with controller design; (ii) con-
troller design nested with respect to simultaneous topology and sizing, (iii) topology
alternating with sizing alternating with control; or (iv) simultaneous topology, sizing,
and control design.

To substantially reduce the computational burden one can introduce approximations of
the original problem (e.g., the convexification of the problem or metaheuristic models),
can shorten the driving cycle used for design or can use parallel computing. Driving
cycles used as input for the control algorithm (energy management strategy) should be
build short, more realistic and more representative of realistic driving types.

How to address, in an (more) automatic way, multiple topologies with a large variety in
the components types and numbers remains an open question. Further, the topology auto-
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matic construction and optimization problems create challenges in the control algorithm
development, that has to handle various topologies in an automatic way. To solve the
system level design problem and find a HEV that can be market competitive, one may
define the optimization targets to include besides fuel, also costs, emissions or perfor-
mance aspects. Easy-to-use methodologies must be developed, to help developers, and
industry in general, to reach better designs in early steps of HEV development process.
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CHAPTER

THREE

FUNCTIONAL AND COST-BASED AUTOMATIC
GENERATOR OF HEV TOPOLOGIES

Abstract / The energy efficiency of a hybrid electric vehicle is dictated by the topology
(coupling option of power sources/sinks), choice (technology) and control of compo-
nents. The first design area among these, the topology, has the biggest flexibility of them
all, yet, so far in literature, the topology design is limited investigated due to its high
complexity. In practice, a predefined small set of topologies is used to optimize their en-
ergy efficiency by varying the power specifications of the main components (sizing). By
doing so, the complete design of the vehicle is, inherently and to a certain extend, sub-
optimal. Moreover, various complex topologies appear on the automotive market and no
tool exists to optimally choose or evaluate them. To overcome this design limitation, in
this work, a novel framework is presented that deals with the automatic generation of
possible topologies given a set of components (e.g., engine, electric machine, batteries or
transmission elements). This framework uses a platform (library of components) and a
hybrid knowledge base (functional and cost-based principles) to set-up a constraint logic
programming problem and outputs a set of feasible topologies for hybrid electric vehi-
cles. These are all possible topologies that could be built considering a fixed, yet large,
set of components. Then, by using these results, insights are given on what construction
principles are mostly critical for simulations times and what topologies could be selected
as candidate topologies for sizing and control studies. Such a framework can be used for
any power-train application, it can offer the topologies to be investigated in the design
phase and can provide insightful results for optimal design analyses.

The results presented in this chapter are published in: E. Silvas, T. Hofman, A. Serebrenik and M. Stein-
buch. Functional and Cost-Based Automatic Generator for Hybrid Vehicles Topologies. IEEE/ASME Transac-
tions on Mechatronics, 20(4):1561-1572, 2015.
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3.1 Introduction

Optimal design studies are required for the upcoming hybrid powertrains introduced on
the market, where various targets are to be considered. Besides fuel, which has been the
biggest drive in developing hybrid vehicles, original equipment manufactures (OEMs)
need to optimize their designs for emissions (e.g., CO2, NOx), performance, costs or
comfort [155, 156]. Driven by the OEMs engineering experience and the non-triviality
characteristic of the choosing a topology question, design studies, for sizing and control,
of hybrid powertrains assume the topology to be known [21, 64, 157]. This traditional,
heuristic, design approach is hard to re-use, decreases the hybrid electric vehicle (HEV)
chance to comply with future exhaust emission legislation and, usually, leads to costly
re-design steps. These disadvantages arise mostly because the dependencies between
various levels of design are neglected. Ergo, there is a need of integrating the topology
design with control or sizing design, such that the explicit coupling between these design
areas is addressed.

Prior studies [115, 126, 130, 141, 147] have shown that by integrating the sizing and con-
trol design of HEV, one can improve the energy efficiency significantly. More recent
studies have also tried to show the influence of topology change of one or more com-
ponents [6, 62, 68, 70, 96, 158–161] or to integrate the topology selection, as a discrete
choice, with the sizing and control of components [44, 162, 163]. Yet, no methodology
exists to build or determine suitable topologies candidates for these sizing or control
studies and, as substitute, a discrete and limited set of topologies is used. Endeavors
of developing topological synthesizing frameworks can be found in the works of [164]
and [165], which are constructed for one particular sub-system of a bigger system (e.g.,
gearbox, electric machine).

In this chapter, to attain a hybrid electric powertrain optimal design, a constraint-search-
based topology generation tool is introduced. This design framework requires a struc-
tured system-based approach to find the set of feasible topologies. Once this set is found,
the design of individual topologies can be further reduced to match a particular appli-
cation (e.g., an in-city bus), or, can be further optimized in terms of sizing and control.
Automatically generating topologies is a heavy-computational problem [166], solvable
within a finite time and design space only if the number of components is limited [108].
To solve this design challenge, the proposed framework is based on a limited set of com-
ponents, from which it can find all feasible topologies. This limited set of elements can
be seen also as a library of mechanical or electrical components from which one wants
to construct topologies. By feasible domain we refer to a set of topologies that: (i)
can ensure energy is delivered to the wheels; (ii) represent a hybrid electric configura-
tion; (iii) avoid the redundant usage of components; and, (iv) can ensure certain hybrid
modes/functionalities, if desired (e.g., Brake energy recuperation).

The proposed automatic topology generation methodology starts with defining in a more
abstract manner the functionality that a hybrid vehicle should provide. This definition is
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then completed by adding constraints on component connectivity and made robust again
variations of the design dimensionality (e.g., more components can be added without
breaching the problem setup). The benefit of such a tool lies also in the fact that, simple
principles can restrict more then 5.7 · 1045 design space (i.e., all possible solutions that
can be constructed form a limited set of components) to a 4779 feasible set of hybrid
topologies with at most 16 components each. The strength of this method is the flexi-
bility and modularity of its construction and the high level of detail it provides for the
construction of new hybrid vehicles.

The remaining sections of this chapter are organized as follows. After a brief description
of HEV topologies and their design challenges is given in Section 3.2; the library of
mechanical components is described in Section 3.3. Section 3.4 describes the constraint
satisfaction problem, and how can this be implemented for automatically generating HEV
topologies; and, Section 3.5 presents the search algorithm. Next, Section 3.6 reports
results of the application of this design framework, and it is followed by concluding
remarks in Section 3.7.

3.2 Topologies of Hybrid Electric Vehicles

Among the vast area of hybrid vehicles, three main categories of topologies can be distin-
guished: series, parallel and (mixed) series-parallel. The characteristics of these topolo-
gies are not going to be addressed in details here, seeing that in-depth details descriptions
of them are given in comprehensive articles as [6,7,10,11,156]. The focus in view of this
chapter is on the variety that these topologies have, and how, proven by current hybrids,
they influence the fuel consumption, OEMs system costs and the return on investment
of the customer. Each of these topology families (series,parallel) contains various de-
scents that enable extra functionality modes (e.g., electric or engine-only driving) with
the usage of extra components, as for example, clutches, brakes, etc. This is easily seen
in current market examples, as the parallel Honda Civic, or the series-parallel General
Motors (GM) Voltec, depicted in Fig. 3.1. Although, variants of hybrid cars, already,
exist on the market, the topology (and its number of components) is not straightforward
nor easy to choose. Several comparisons between topologies exist, and among recent
ones, in [70] the configurations of power-split hybrids of Prius and Chevrolet Volt are
compared. Using a dynamic modeling both configurations are compared and modified
into Prius+ and Volt-, with no loss of performance. This demonstrates that small design
variations can bring significant benefits in terms of costs, fuel or another design target.
It is, therefore, important to investigate what are the trade-offs between these design tar-
gets, and how optimally global sets of parameters can be identified on a wide variety of
topologies.

On today’s market, there exist, increasingly, complex topologies, including power split
devices, multiple clutches or brakes, more complex gearboxes, more motors and more
battery packs. All these are design choices and the chosen ones will result in a certain
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Figure 3.1: Two topologies examples found in current market vehicles, (a) GM Voltec
and (b) Honda Civic.

system cost, energy efficiency, vehicle performance, emissions, and so on. This shows
the difficulty of choosing a topology and motivates the need for automatic methods to
synthesize these architectures for hybrid vehicles.

3.2.1 Hybrid Vehicle Functionality

In contrast to other vehicles, i.e., combustion-only or full-electric driven, hybrids are
characterized by at least two prime movers, usually, referred to as combustion engine
and an electric machine. With hybrids configurations, the fuel consumption and the
emissions of a vehicle can be reduced, while achieving the same performance. This is
attained by smartly combining the benefits of pure combustion engine driving with full-
electric driving [12].

If one regards the prime movers as power sources and the wheels as power consumers,
then any other choice of components connecting these two constitutes the topology. De-
pending on this topology choice, certain functionalities, or modes, of the hybrid power-
train are (or not) enabled. In both, academia and industry, one can find different names
for these operation modes. In principle, six categories are distinguished, and described
below.

Engine-only mode (Conventional vehicle) represents conventional driving, i.e., similar
to as the vehicle would not be a hybrid. In this case, the combustion engine is the only
power source, which provides the requested traction power. This mode is possible if all
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other power sources in the hybrid driveline can be decoupled from it (using clutches or
bakes).

Electric-only mode (Battery drive, Stop Go, Zero Emission) refers to pure-electric
driving with one or multiple electric machines. This mode requires the possibility of
decoupling the engine from the driveline and its usability depends on the size of the
battery.

Motor-Assist, Motor power assist, or Boosting refers to any combination of at least
two different power sources in delivering the required power. These modes emphasise
the ability of an electric motor to help share the load with an engine towards an optimal
fuel driving and, furthermore, enable engine downsizing without loss of performance.

Regenerative braking mode (Brake Energy Recovery) refers to the process of recover-
ing the kinetic energy of a slowing down vehicle into another form of energy, which can
be used, directly, or stored until needed. This mode is both different and an improvement
when compared with conventional braking systems, where the excess kinetic energy is
converted to heat by friction, ergo wasted.

Start-Stop mode enables the vehicle to switch off its engine when stopped and turn it
back on when needed. This functionality is achieved with an electric machine used either
as a starter motor or as a full functioning electric machine, operating at higher voltages.

Charging mode (Battery recharge) is a mode where the engine is used both for propul-
sion as-well as charging the battery.

Re-charge (Plug-in) refers to the ability of the vehicle to be recharged from an energy
grid, and it is not by itself a driving mode, but more of a technological feature.

To illustrate, several functionalities (i.e., regenerative braking, engine only, hybrid modes,
pure electric) typically present in a hybrid car are depicted in Fig. 3.2, together with their
power flow directionality. Here dots can represent component choices and lines their
connectivity. By following a certain reasoning about the closing and openings of the
clutches and brakes, these modes can be easily identified, for any topologies, (e.g., Fig.
3.1).

Note that, by having all modes in one topology does not directly imply the maximum
driveline efficiency nor an optimal fuel consumption of a vehicle. The more complex
one topology is, the more modes this vehicle can drive in yet also higher costs. Es-
sentially, as mentioned before, the choice of topology (and its optimal parameters) will
dictate system costs, fuel consumption, emission levels, functionality, complexity and
weight. Therefore, an optimal selection of topology is required and must be integrated
with an optimal sizing and control design of the vehicle. This leads back to the question
introduced in the beginning, how to build all possible topologies (given a finite compo-
nents set). To achieve this family of solutions, in the following sections, we map the
functionalities that the system is supposed to have to a set of possible components, and



42 Chapter 3: Functional and Cost-Based Automatic Generator of HEV Topologies

Engine Only

Electric-only mode

Hybrid Drive

Regenerative  braking

Start-StopEngine

Motor 

Final Drive 
+Wheels

Motor 



Figure 3.2: Operational modes and their power flows in hybrid topologies

overall build a framework to generate these topologies.

3.3 Mechanical and Electrical Components Library

A finite set of components constitutes a library from which any existing (i.e., known mar-
ket HEV topologies, as the Toyota Prius) or future topology can be build. Besides the
power sources (internal combustion engine, electric machine) and consumers (wheels)
mentioned before, for further functionalities other transmission components are used
(e.g., clutches, brakes or power split devices). This limited set of components, referred
to as the design platform in design studies by [166,167], is defined in Table 3.1, denoted
by τi, and is used here as a pre-defined input to the topology generator.

Table 3.1: Library of components used to generate topologies

Component
Number,τ

Component
Name

Maximum
Number

of Instances

Number
of Edges

1 Engine 1 1
2 Electric Machine 2 2
3 Gearbox 1 2
4 Planetary Gear Set 2 3
5 Differential+Wheels 1 1
6 Clutch 3 2
7 Brake 3 1
8 3-node connector 3 3

In Table 3.1, a 3-node connector represents a component that can connect 3-edges of
other components, e.g., a torque coupler or power electronics. One example of a torque
coupler is depicted in Fig. 3.1, where the electric machine connects, with fix or no gears,
to the main shaft of the engine. This 3-node connector element is defined to confine
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the design space, the computational time, and to maintain a certain level of abstraction
as regards to other works in this research area. Furthermore, in the virtue of the same
reasons, in this study only the principal propulsion components are considered and extra
auxiliary units (e.g., power steering system, air compressors, power take offs, etc) are
not considered. We are interested to attain all possible series, parallel and (mixed) series
parallel topologies that can have at most two electric machines, a gearbox and two plan-
etary gear sets. Moreover, several clutches and brakes can be used, which gives rise to a
enormous design space of 5.7 ·1045. We neglect here very particular cases, as topologies
with in-wheel motors and we do not analyse the connectivity of the energy buffers (i.e.,
fuel tank and batteries). Without loss of generality, given this framework, this can be
easily extended, later on, to include these or other particular design principles.

3.3.1 Modular Graph Representation of Topologies

Each component instance, denoted as V , that can appear in a topology, can be seen as
an abstract representation of a real system, or collection of sub-systems that has certain
functional principles. The automatic generation of topologies requires these components
to have a modular and fixed formalized structure. This, to enable the computer-added
synthesis of all possible topologies. For each component of this library several attributes
are defined as follows: (i) component type, denoted as τ and, (ii) a maximum number of
instances, i.e., how many times this component can be presented in a topology. The max-
imum number of appearances has been chosen such that, roughly, all possible topologies
are covered.

Definition 1 A hybrid vehicle topology is an undirected connected finite graph, denoted
as T = (V,E), characterized by a set of nodes (components), V, and edges (connections
between components), E, with the set E containing two-element sub-sets of V. Further-
more, each node V ∈ V, representing a particular component, is characterized by the
component type (τi) and instance, which define the degree of the node.

For ease of readability, the subscript of each V will combine these characteristics (com-
ponent type and instance) as

V61 represents a node of component type τ = 6, first instance (i.e., the first clutch),

V62 represents a node of component type τ = 6, second instance (i.e., the second clutch).

Note. For ease of understanding sets are marked in bold, i.e., T is a set of topologies,
where each instance is denoted by T .
When the element V is a conventional, 5 or 6-speed manual transmission, it will have
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an input and an output, which will be modeled as two edges. Using Definition 1, the
conventional topology shown in Fig. 3.3 is written as

T = (V,E),
with V = {V11,V61,V31,V51},

E = {{V11,V61},{V61,V31},{V31,V51}}.
(3.1)

11V

Engine Clutch Gearbox Final Drive + Wheels

Edge

Node61V
31V 51V

Figure 3.3: Undirected connected finite graph representation of a conventional power-
train topology.

We denote the set of all possible topologies Tp. Furthermore, we distinguish between
feasible topologies T f e and infeasible topologies Ti. We say that a topology T is fea-
sible if and only if T satisfies the following criteria: (i) can ensure energy is delivered
to the wheels; (ii) represents a hybrid electric configuration; (iii) avoids the redundant
usage of components; and, (iv) can ensure certain hybrid modes (functionalities). Other-
wise, we say that the topology is infeasible. In the following sections, these criteria are
transformed into constraints and the whole problem of generating such feasible topolo-
gies, T f e, is formulated as a constraint satisfaction problem (CSP). For this topology
graph representation, we chose a level of detail that results in easy reconfigurable sys-
tems which mimics real vehicles. The components defined in the library (Table 3.1)
define real life components, but can also be seen as a cluster. For example, a gearbox can
be any transmission element (as for example a Continuous Variable Transmission) that
has two edges.

3.4 Automatic Topology Generation Problem

Considering a predefined set of mechanical and electrical components, the problem of
automatic generation of topologies reduces to finding all T f e (Tp fulfilling all functional
constraints of a hybrid vehicle. This is a feasibility search problem (NP-complete) [168, Ch.
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8] that can be formulated as

Find all T f e ⊆ Tp,

s.t.

c f
1,...,l ⊆ C

cc
l+1,...,z ⊆ C

C = c f
1,...,l

⋃
cc

l+1,...,z,

(3.2)

where c f
1,...,l represents the l functionality related constraints, cc

1,...,z represents the z cost
related constraints and C the complete set of constraints for the problem. If, for example,
also a minimal cost has to be considered, then the feasibility search problem becomes an
optimization problem [169], and (3.2) becomes

min
T f e(Tp

Φ(T f e),

s.t.

c f
1,...,l ⊂ C

cc
1,...,z ⊂ C

C = c f
1,...,l

⋃
cc

1,...,z,

(3.3)

where Φ(T f e) is the optimization target, e.g., costs or number of components. In this
chapter, we would like to obtain the complete family of solutions that satisfy functionality
and cost-related constraints, hence to solve (3.2) rather then (3.3).

3.4.1 Hybrid Topology Synthesis Framework

The automatic generator of topologies proposed in this work and depicted in Fig. 3.4, is
a combination of a

i top-down approach, e.g., mapping of each desired functionality of the system design
level to constraints on the generated topologies, with a

ii bottom-up approach, e.g., building a topology by choosing particular components of
the library, defined in Table 3.1, by reflecting on which are the functional principles
of these components and what transmission components they need when forming
a topology.

Such an approach, refereed to, as platform-based design (PBS) in [167, 170], was suc-
cessfully used in [166] to synthesize topologies for an aircraft electric power system, and
in [171] for designing wireless systems. Thorough this work, we use PBS to determine
how to build constraints for the problem described in (3.2), thereby providing a structured
way of definition, modification, or extension of constraints for a given platform.
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Figure 3.4: Illustrated description of the framework for generating hybrid powertrain
topologies using functional and cost based principles

3.4.2 Formalizing the Constraint Satisfaction Problem

A CSP is, formally, defined by a set < X, D, C >, where X is a finite set of variables,
D is a set of corresponding domains and C is a finite set of constraints [108, 169]. The
domain of a variable is the set of possible values that this variable can take. For these
variables, X, and their domains, D, a set of constraints are build, restricting the values that
the variables can simultaneously take. Formally, a constraint Ci jk... between the variables
Xi,X j, ...,Xk is any subset of the possible combinations of values of Xi,X j, ...,Xk, i.e.,

Ci jk... ⊆ Di×D j×Dk× .... (3.4)

A constraint is said to be satisfiable if by assigning appropriate logical values (i.e., true,
false) to its variables, this constraint holds. Summarizing, the CSP is a feasibility search
problem for properly defined < X,D,C >.

For instance, consider the classic crypt-arithmetic puzzle example: Replace each letter
by a different digit such that

SEND+MORE = MONEY

is a correct equation, presented in [108, Ch.8]. Given this CSP, its set of elements are
X = {S,E,N,D,M,O,R,Y}, with their domain, the set of digits, D = {0..9} and the
constraints..

C1 The sum must work out 1000 ·S+100 ·E +10 ·N+D+1000 ·M+100 ·O+10 ·R+
E = 10000 ·M+1000 ·O+100 ·N +10 ·E +Y ;
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C2 the eight variables must all be assigned a different value.

C3 S and M cannot be 0.

Solving this constraint satisfaction problem can find, among others, the solution S = 9,
E = 5, N = 6, D = 7, M = 1, O = 0, R = 8, Y = 2. A solver can be used to explore all
possibilities and yield the complete set of solutions to the CSP.

In a similar manner, to position the question of automatic generation of powertrain
topologies as a CSP problem, the variables and their domains are identified as

X = V∪E, (3.5)
D = {0,1}|V∪E|, (3.6)

with V the variables representing nodes and E the variables representing edges, both
defined in (3.1). The values of 0 and 1 that components, V, and edges, E, can take
represent their absence and presence, respectively. For instance, V41 = 1 would mean
that the first PGS is present in the topology and (V41,V11) = 0 would mean that the first
PGS is not directly connected to the engine.

3.4.3 Functional and Cost Based Principles for HEV Design

To construct a feasible HEV topology, defined in Sec. 3.3.1, generally, there are two
categories of constraints that can be used. The first category, referred to as functionality
constraints, has to ensure the proper functioning of the vehicle (i.e., criteria points (i),
(ii) and (iv) in Sec. 3.3.1) and all its subsystems, whereas the second category, referred
to as cost constraints, restricts the redundant usage of components (i.e., criteria point
(iii)). The problem of mapping functional descriptions, explained in Section 3.2.1, to
a possible topology is the core of platform-based design-by refinement paradigm [167].
This requires a prior description of the functionality that the system must employ and
other restrictions on the design (cf. Sec. 3.2 and 3.3). Moreover, this top-down mapping
of functional descriptions is combined with the bottom-up mapping of component func-
tional constraints in order to create a generic, structured approach, that is easily reusable.

Functionality Constraints

For a functional solution to be found, three categories of constraints are explain sequen-
tially through examples: (a) graph consistency; (b) powertrain hybridization and modes;
and, (c) components and sub-systems correct functionality.

(a) Each candidate topology, T p, is functional if the power sources are directly or indi-
rectly related to the wheels via connecting elements, i.e., the graph is connected. Con-
sider the following constraint: “Each planetary gear set (PGS) should be connected to
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3 other nodes” as defined in Table 3.1. Taking the node representing the first planetary
gear set, V41, for a consistent solution, this implies the following constraints:
(1) if the PGS is present then there are exactly three other nodes connected to it;

V41 = 1→ (V41,V11)+(V41,V21)+ ..+(V41,V83) = 3, (3.7)

(2) If the PGS is absent then there are no nodes connected to it;

V41 = 0→ (V41,V11)+(V41,V21)+ ..+(V41,V83) = 0, (3.8)

(3) If a PGS connection is present then the PGS is present.

(V41,V11)+(V41,V21)+ ..+(V41,V83) = 3→V41 = 1,
(V41,V11)+(V41,V21)+ ..+(V41,V83) = 0→V41 = 0.

(3.9)

Recall that (V41,V11) denotes a variable, as defined in (3.5). Furthermore, (3.7), (3.8) and
(3.9) can be written as

(V41,V11)+(V41,V21)+ ..+(V41,V83) = 3 ·V41, (3.10)

When both planetary gears sets are considered, V41 and V42, (3.10) yields c f
1 as

∑
τ,i
(V4n,Vτi) = 3 ·V4n,

∀ i ∈ {1,2,3},τ ∈ {1, ..,8},n ∈ {1,2}.
(3.11)

Sequentially, to have consistency in the solutions found, similar constraints are built for
all components defined in Table 3.1. To ensure no self-loops (i.e., the connection of one
node to itself) exist the connection of one element to itself is constraint by c f

2 in Table 3.2.
More, the complete set of constraints used to generate topologies is presented in Table
3.2 and next, various types of constraints are explained and supported by examples. This
search problem, defined in Table 3.2, can be then implemented using any solver suitable
to CSP as it will be shown in Section 3.6.

(b) For powertrain hybridization, i.e., to have a hybrid electric vehicle, each topology
should contain at least one node of type τ = 1 (engine), one of type τ = 2 (motor), one of
type τ = 5 (wheels) and one of type τ = 6 (clutch). This will be constraint by c f

3 , which
imposes the first instance of these elements to be present in all T f e. Next, each candidate
topology is functional if the power sources, τ = 1 (engine) and τ = 2 (motor), are directly
or indirectly related to the loads τ = 5 (diff+wheels) via connecting elements, (c f

4), i.e.,
each solution is a connected graph.

Since, we are searching for all feasible HEV topologies within the design space, we do
not build constraints for each functioning mode defined in Sec. 3.2.1. Enabling engine
ON/OFF and full-electric driving are assumed to be desired in all topologies, i.e., there
should be always one node of type τ6 (clutch) on one path between a node of type τ1
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(engine) and a node of type τ5 (wheels). The placement of this τ6 is enforced through
c f

5 to be in direct connection with τ1, by constraining the edge between them, (V11,V61),
to be always present, while positioning the clutch prior to the gearbox is another op-
tion. Although, usually, this clutch is part of the gearbox, or neglected from topology
descriptions, we choose to place it next to engine for completeness and because not all
topologies contain a gearbox. The remaining of the functioning modes, e.g., ICE only,
are not enforced and will be used to post-process the results.

(c) Clutches and brakes are components used to couple or decouple parts of the driveline
and their connectivity is constraint to ensure this functionality. For instance, no brakes
or clutches are used to decouple the wheels from the remaining power train, and will be
constraint here as well by c f

6 , c f
7 and c f

8 . For brakes, we consider usual operation cases
(a and b in Fig. 3.5), where the brakes are used to prevent freewheeling of the PGS (see
also the GM Volt topology in Fig. 3.1.a). This implies that if a τ6 (clutch) is connected
to a τ4 (PGS), this is done with an additional τ8 (virtual node), which enables another
power path, or the usage of a brake (c f

6 ,c f
7 and c f

9 ). As the defined platform contains

6

7

4

open

6

7

4

closed

openclosed

6 4closed
6 4open

(a)

(c)

(b)

(d)

Figure 3.5: Different ways to connect a PGS using clutches and brakes

many two- or three-edges nodes (e.g., τ6 (clutches),τ4 (PGS)), a significant number of
undesired loops can be obtained, if not restricted. By loop we refer to any part of the
graph in which the search can be more than unidirectional (there are multiple options for
transmitting power). These loops can result in an functional (yet redundant) HEV or in
an nonfunctional vehicle. Examples of loops related to the expected functionality of the
vehicle and its sub-components are depicted in Fig. 3.6. The depicted loops are counter
examples for their corresponding constraints and all c f

10 throughout c f
22 restrict similar

constructions.
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Table 3.2: Definition of the automatic generation of HEV topologies problem

Find all T f e(V,E)( Tp(V,E),
Subject to

No. Functional constraints No. Cost Constraints

c f∗
1

∑τ, j(V4n,Vτ j) = 3 ·V4n
∗similar constraints are implemented for all components.

cc
1 (V8i,V8 j)+(V8i,V8k)+(V8 j,V8k)< 3

c f
2 ∑τ, j(Vτ j,Vτ j) = 0 cc

2 (V6i,V6 j) = 0
c f

3
V11 +V21 +V51 +V61 = 4 cc

3 (V6p,V8i)+(V6p,V8 j)+(V6k,V8i)+(V6k,V8 j)< 4
c f

4
V41 +V81 > 0→V11 +V21 = 2 cc

4 ∑
3
i=1(V7i,V8 j)< 2

c f
5 (V11,V61) = 1 cc

5 (V31,V8i)+(V6p,V8i)+(V31,V6p)< 3
c f

6 (V6p,V41)+(V6p,V42)+(V6p,V51) = 0 cc
6 (V21,V8i)+(V22,V8i)≤ 2

c f
7 ∑k,s, j(V7k,Vs j) = 0 cc

7 (V21,V6p)+(V6p,V8i)+(V6 j,V8i)+(V22,V6 j) 6= 4
c f

8 (V11,V8i)+(V51,V8i)> 0→ (V7 j,V8i) = 0 cc
8 (V7n,V8i)+(V6p,V8i)+(V6k,V8i)< 3

c f
9 (V7i,V8 j) = 1→ (V41,V8 j)+(V42,V8 j) = 1 cc

9 (V8i,V8 j)+(V6p,V8i)+(V6p,V8 j)< 3
c f

10 (V4i,V8 j)+(V4i,V6p)+(V6p,V8 j)< 3 cc
10 (V6p,V8i)+(V6p,V8 j)+(V8 j,V8k)+(V8i,V8k)< 4

c f
11 ∑

3
p=1(V31,V6p)≤ 1 cc

11 (V6p,V8i)+(V6p,V4k)+(V31,V4k)+(V31,V8 j)+(V8i,V8 j)< 5
c f

12 (V4n,V8i)+(V4n,V8 j) = 2→ (V8i,V8k)+(V8 j,V8k) 6= 2 cc
12 (V6p,V8i)+(V6p,V8 j)+(V31,V8i)+(V31,V8 j)< 4

c f
13 (V4n,V8i)+(V4n,V8 j)+(V6p,V8i) = 3→ (V6p,V8 j) 6= 1 cc

13 (V31,V8i)+(V31,V8 j)+(V8i,V8 j))< 3
c f

14 (V4n,V8i) = 1→ (V31,V4n)+(V31,V8i)< 2 cc
14 (V31,V8i)+(V31,V8 j)+(V8i,V8k)+(V8 j,V8k))< 4

c f
15 (V8i,V8 j)+(V4n,V8i)+(V4n,V8 j)< 3 cc

15 (V8i,V8 j)+(V31,V8i)+(V31,V8 j)< 3
c f

16 (V4n,V8i)+(V31,V4n)+(V31,V6p)+(V6p,V8i)< 4 cc
16 V31 +V42 < 2

c f
17 (V4n,V8i)+(V4n,V8 j)+(V31,V8i)+(V31,V8 j)< 4 cc

17 (V21,V4n)+(V22,V4n)< 2
c f

18 (V4n,V8i)+(V8i,V8 j)+(V31,V8 j)+(V31,V4n)< 4 cc
18 (V31,V8i)+(V31,V6p)+(V6p,V8 j)+(V6k,V8 j)+(V6k,V8i)< 5

c f
19 (V31,V4n)+(V4n,V8i)+(V8i,V8 j)+(V8 j,V8k)+(V31,V8k)< 5 cc

19 (V6p,V8i)+(V6p,V8 j)+(V8 j,V8k)+(V31,V8k)+(V31,V8i)< 5
c f

20 (V8i,V8 j)+(V8 j,V4n)+(V4n,V8k) = 3→ (V31,V8i)+(V31,V8k)< 2 cc
20 (V6p,V8i)+(V6p,V31)+(V31,V8 j)+(V8 j,V8k)+(V8i,V8k)< 5

c f
21 (V41,V42)+(V41,V8i)+(V42,V8i)< 3 cc

21 (V6p,V8i)+(V6p,V8 j)+(V6k,V8 j)+(V6k,V8k)+(V8i,V8k)< 5
c f

22 ((V41,V42)+(V41,V8i)+(V42,V8 j)+(V8i,V8 j)< 4 cc
22 (V6p,V8i)+(V31,V6p)+(V31,V8 j)+(V6k,V8 j)+(V6k,V8k)+(V8i,V8k)< 6

c f
23 (V2k,V6n)+(V31,V6n)< 2 ∀ n ∈ {1,2}, i, j,k, p ∈ {1,2,3}, s ∈ {1, ..,7}

c f
24 (V2k,V31) = 0

c f
25

V22 = 0→V4n = 0
∀ τ ∈ {1, ..,8}, n ∈ {1,2}, i, j,k, p ∈ {1,2,3}, s ∈ {1, ..,7}
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Figure 3.6: Counter-examples for functionality constraints

To compel a more real representation of existing topologies in the current hybrids mar-
ket, we assume that the gearbox will not be used by the motor, constraining their direct
connection with c f

25 or their connection via a clutch c f
24. Given these 25 functionality

constraints, assuming that cost of components is not yet considered, all the topologies
obtained, T f e, are able to transfer power from sources to consumers.

Cost Constraints

Once a feasible candidate topology has been found, which satisfies the constraints c f
1,..,22,

it is important to analyse it further for redundant usability of components. Such construc-
tions are restricted using the cost constraints, cc ∈ C in (2.13), fully described in Table
3.2.

For instance, connecting three τ6 (clutches) in a row brings no extra functionality, in-
creases the system cost and complexity, and is eliminated by cc

2. More, connecting three
τ8 (virtual nodes) to each other creates another virtual node and can be restricted by cc

1.
Based on the same judgement, loops as depicted in Fig. 3.7 are also eliminated. Aside
of these unnecessary loops, a τ8 (virtual node) is not allowed to be connected to two τ7
(brakes) (cc

4) nor two τ2 (motors) (cc
6), the latter one being considered a sizing investiga-

tion.

Due to the typically high gearbox (τ = 3) efficiencies, constraints are built to restrict its
decoupling via clutches. Examples of these types of loops are graphically depicted in Fig.
3.8 and constrained by cc

9 throughout cc
22. By using cc

16 ,V31 +V42 < 2, the appearance
of the second τ4 (PGS) is not allowed if τ3 (gearbox) is present. This is enforced for
decreasing the amount of solutions and for reaching cost-wise realistic solutions.
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3.5 Search Algorithm and Implementation

Since the value of the variables in this synthesis problem is represented by integer num-
bers and there is a finite number of components, this CSP problem becomes a constraint
logic programming problem over finite domains (CLP(FD)) [108]. CLP(FD) are typi-
cally solved using a form of search and, among other used techniques, the most used are
variants of backtracking, constraint propagation, and local search. In [169] an evaluation
is done for constraint programming (CP) as a technique for solving CSP problems, and
compared with operational research (OR) methodologies as simulated annealing (SA),
genetic algorithms (GA), branch and bound (BB), tabu search (TS) and integer program-
ming (IP). These comparisons are used here to motivate the selection of CP for imple-
menting the topology generation problem.

According to [169], although computationally more expensive CP gives better quality
solutions than methods as genetic algorithms, simulated annealing or tabu search. More-
over, the computational burden of CP performance improves greatly if additional con-
straints are introduced (e.g., symmetry) as-well as additional problem-specific informa-
tion which is not always straight-forward in, for example, IP (Integer Programming).
When compared with local search heuristic algorithms as simulated annealing, CP is
more suitable for tightly constraints problems.

Comparing the method proposed in this chapter with previous methods (heuristic) choice
of topologies [6, 62, 68, 70, 96, 158–161], we can highlight that this method offers a sim-
ple and complete solution in a very short time, whereas previous methods do not. As
long as the constraints set, C, is well-defined, the search algorithm will converge to the
set of solutions. The calculation time greatly depends on the number of mechanical com-
ponents (elements) considered, the restrictiveness of the constraints and number, and the
search algorithm. The problem defined in this chapter, in Table 3.2, is solved in less than
5 minutes1.

3.6 Design Results

The proposed topology generation framework was implemented as a Constraint Logic
Programming over Finite Domains (CLP(FD)) [108] program in SWI c© (Prolog) [172]
and the results were graphically depicted using Matlabr. Examples of simple generated
topologies are depicted in Fig. 3.9, were current passenger HEV (Honda Civic IMA,
Opel Ampera) or heavier commercial vehicles (Mercedes Atego BlueTec Hybrid, DAF
LF Hybrid) can be identified, and examples of more complex topologies are depicted in
Fig. 3.10.

Comparing topologies can be done at different abstractization levels, as for example con-

1The computation was performed on a 64-bit Intel(R) Core(TM) i7 Computer @ 2.2 GHz and 8 GB RAM.
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Figure 3.9: Examples of simple generated topologies: (left) Mercedes Atego BlueTec
Hybrid, DAF LF Hybrid or Honda Civic IMA and (right) Chevrolet Volt / Opel Ampera
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Figure 3.10: Examples of more complex generated topologies

sidering their number of nodes, construction complexity, costs, efficiency or control flex-
ibility. In this chapter, the complexity of topologies is analysed as a function of their
number of nodes, which requires no vehicle application knowledge and maintains a more
general level of the methodology. Obviously, the larger the number of nodes and con-
nections, the greater complexity of the physical construction of these power trains. This
analysis can also indicate a directly proportional dependency to the control algorithms
complexity and system cost. The analysis of each topology efficiency, functionality and
cost will not be addressed as this stage, but it will be considered in the future.

Topologies or component variations will change the library of components defined in
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Table 3.1 on pg. 42. The methodology to generate topologies is robust against these
variations. For instance, with the addition of more electric machines or more batteries
(i.e., maximum number of instances of the existing components), the search problem will
be the same, and, most likely, the number of results will be bigger. At the addition of extra
components to the library, new constraints must be defined to reflect the functionality and
restrictions of these new components.

3.6.1 Design Space Complexity Analysis

By using the set of 47 constraints (conform Table 3.2) to solve (2.13) and by varying
the maximum number of appearances of each component (i.e., third column in Table
3.1) the design space can be further analysed. This study does not give any indication
of which topology is better for a vehicle (e.g., commercial or passenger vehicle), but
provides a clear picture of all the possibilities that a manufacturer has when constructing
a new hybrid car. In Fig. 3.11, several categories of topologies are identified based on
their main construction characteristics and in Fig. 3.12 the dependency of the number of
topologies on the number of connection points within a topology is shown.

7 89

599

4084

Top. with a gearbox and 1 EM

Topo. with a gearbox and 2 EMs

One PGS power-split topo., 2 EMs

2 PGSs power-split topo., 2 EMs

1367

1400

2012

Single clutch  topologies

Two clutches  topologies

Three clutches  topologies

Figure 3.11: Clustering of the total 4779 HEV generated topologies

Although some found solutions can be symmetric (i.e., equal in functionality), this as-
pect was not considered in this research and will implemented in future work as pre-
processing. Moreover, we observed from preliminary work that symmetry elimination
does not change the trends presented in this section.

From the analysis of the results presented in Fig. 3.11, one can observe that topologies
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Figure 3.12: The number of generated HEV topologies as a function of their number of
nodes.

which are very complex, including more than two planetary gear sets and two electric
machines, represent the majority of solutions. Recent hybrid topologies, used in passen-
ger vehicles, contain a transmission composed of a planetary gear set which combines
two electric motors for driving. This is not yet used in heavy vehicles, where direct drive
and manual or semi-automatic transmissions are widely used and effective. There exist 7
topologies with one gearbox and one electric machine (as for example one-motor parallel
hybrid electric vehicle exemplified in Fig. 3.9-left, cf. Fig. 3.12) and 81 topologies with
a gearbox and two electric motors. If no planetary gear set is allowed when having a
gearbox, then there exist a limited set of 88 topologies suitable for heavy duty vehicles.

3.6.2 Discussion on Further Selection or Optimization of Topologies

The group of solutions when planetary gear sets and multiple virtual elements are added
increases significantly. More than 4000 solutions contain more than 10 connection points,
making them quite complex topologies to construct, control and, potentially, too costly.
Complex topologies, as shown in Fig. 3.10, might not bring sufficient fuel efficiency to
overcome the relative large cost of hybridization, therefore resulting in a long return on
the investment for both the customer and the manufacturer. Thus, one option in reducing
further the set of solutions is to restrict their complexity in terms of the number of nodes.

When solving the search problem defined in this chapter, no preference is given to nodes
(all nodes are equally important). Yet, their importance, i.e., influence on the design re-
sults, can be analysed when looking at the complete set of generated power-train topolo-
gies, T f e. A node is more important in the complete solutions set if this node appears
predominately in the generated topologies. This can be seen in Fig. 3.13, where the
complete set T f e is depicted. Easily seen from Fig. 3.13, through the removal of a single
PGS or a Virtual component, T f e is significantly reduced (see also Fig. 3.11 and 3.12).
Hence, the dimensions of the solution set, T f e, increases with the increase of the maxi-
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Figure 3.13: Graphical representation of the importance of each node/component in the
topology graph for the whole family of generated topologies

mum number of element-instances in Table 3.1, but it depends also on the importance of
the node. In this reasoning, a node with a large number of edges will expand more the
set of results.

The analysis of topologies costs necessitates component cost models. Since these models
are application driven (the price for one kWh of an EM used in heavy duty HEV is dif-
ferent than the price for one kWh of an electric motor used in hybrid passenger vehicle),
the cost is not considered in this chapter. Although our aim was to provide a method
generally applicable, analysing the synthesised topologies also form a cost perspective
can be an improvement to the methodology.

Another way to further reduce the number of solutions (feasible topologies) may include,
besides cost analysis, the analysis of efficiency [173], complexity of construction, the
comparison of system’s functionalities, verifying the ability to follow a driving cycle and
so on. The analysis of the powertrain efficiency can be done, for instance, in a static
manner (similar to a cost analysis). Next, the complexity of construction can be related
to the importance of nodes. Using expert knowledge rule-base filters can be defined to
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eliminate topologies that are hard-to-build or control. Analysing system’s functionalities
can be done for eliminating architectures that have the same functioning modes, by using
a search algorithm (such as a combination of forward propagation and backtracking).
The latter solution, of analysing the ability of a topology to follow a driving cycle and
compare the results based on the fuel consumption, requires dynamic models that can, in
a more automatic way, model this large set of solutions. Additionally, a control algorithm
that can be applied to these topologies should be developed.

3.7 Conclusions

The contribution of this chapter is two-fold. First, we present a methodology to auto-
matically generate, easily and in a structured way, hybrid vehicle topologies and second,
we evaluate this method by investigating the results, classifying them and determining
important trends in HEV topologies development. To begin with, a platform (library of
components) was defined together with functionality and cost based principles. Using
such principles, we set-up and implement a constraint logic programming problem, re-
ducing the enormous original design space to a limited set of feasible topologies. The
strength of this method is the flexibility and modularity of its construction and the high
level of detail it provides for the construction of new hybrid vehicles.

It has been shown that, as a result of introducing new components the set of solutions
increases significantly, yet no conclusion can be drawn on their fuel or cost efficiencies.
Future work should address specific applications and how this generator can automati-
cally filter out unsuitable topologies. Furthermore, to obtain an optimal system, studies
to optimally size and control the components should be made.



CHAPTER

FOUR

BI-LEVEL OPTIMIZATION FRAMEWORKS FOR
SIZING AND CONTROL OF A HEV

Abstract / This chapter discusses the integrated design problem related to determin-
ing the power specifications of the main subsystems (sizing) and the supervisory control
(energy management) of a given hybrid electric vehicle. Different bi-level coordina-
tion schemes, with the outer loop using optimization algorithms as Sequential Quadratic
Programming, Particle Swarm Optimization, Genetic Algorithms, or Pattern Search (DI-
RECT) and the inner loop using Dynamic Programming, are benchmarked to optimally
size a parallel topology of a heavy duty vehicle. Herein, the main components of the
powertrain are investigated for the plant design, e.g., the engine, the electric machine
and the battery pack. The aim of this study is to find the optimal system design for
the lowest fuel consumption, for the lowest hybridization costs and for the combination
of both. Since the sizing and control of a hybrid vehicle is inherently a mixed-integer
multi-objective optimization problem, the Pareto analyses are also addressed. The re-
sults shows significant fuel reduction by hybridization and engine downsizing and offer
insights in the usability of these nested coordination schemes for system optimal design.

The results presented in this chapter are published in: E. Silvas, N.D. Bergshoeff, T. Hofman and M.
Steinbuch. Comparison of Bi-level Optimization Frameworks for Sizing and Control of a Hybrid Electric
Vehicle. IEEE Vehicle Power and Propulsion Conference, pp. 1-6, 2014.
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4.1 Introduction

More stringent emission legislations and oil-supply forecasts have motivated the devel-
opment of hybrid and electric vehicles. This partial or complete electrification of vehi-
cles has expanded the complexity of design, requiring nested optimization methods for
improved fuel consumption. Using these approaches in addition to a (sub-)optimal con-
trol algorithm, the vehicle parameters are also (sub-)optimally chosen, together resulting
in reduced fuel consumption or lower emissions levels [8, 155]. Moreover, these new
designs, with the combustion engine possible downsized, should meet the same perfor-
mance criteria (e.g., profile acceleration, top speed) and should be sufficiently inexpen-
sive to infiltrate the market. Consequently, this multi-objective optimization problem,
with both time dependent (e.g., power-split signal) and discrete variables (e.g., battery
size), puts challenges on which methods to be used in the outer loop (sizing design) and
inner loop (control design).

The first studies in this direction have used rule-based algorithms to control the hybrid
electric vehicle (HEV) and brute force approaches to investigate the effect of size vari-
ation on fuel consumption. Although the results have improved, this nested approach
was not resulting in an optimal vehicle-level solution neither an optimal control solution.
As described in more detail in Chapter 2, this led to the introduction and widely usabil-
ity of Dynamic Programming (DP) and Equivalent Consumption Minimization Strategy
(ECMS) for the (sub-)optimal HEV control [63, 174]. Moreover, because brute force
(BF) searches are very computationally time-consuming, the necessity of an optimization
algorithm in the outer loop appeared. For that reason various algorithms have been pro-
posed in literature, e.g., Sequential Quadratic Programming (SQP), Genetic Algorithms
(GA) [130, 175], Particle Swarm Optimization (PSO) [8, 68, 130, 176, 177], DIviding
RECTangles (DIRECT) [8, 148]. [8, 61, 62] or others [67, 178]. These approaches have
shown the benefit of explicitly addressing the coupling between different optimization
areas but they have not proven the global optimality of the solution. Thus, to chose one
or another approach requires a comparison of them against a benchmark case.

To perform this comparison, in this chapter we have selected four widely used global
optimization algorithms (SQP, PSO, GA and DIRECT) for sizing investigation and com-
pared them for a parallel HEV design, as similar in [8, 64]. In addition to these existing
studies, we compare the results with a brute force search and analyse the Pareto front for
multiple objectives (fuel and cost).

This chapter is organized as follows: Section 4.2 presents the parallel HEV to be used and
preliminary necessary information. Then, Section 4.3 introduces the nested optimization
problem and the bi-level framework used. Section 4.4 shows the results of using these
different algorithms and Section 4.5 summarizes conclusions based on the presented re-
sults.
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4.2 System Description and Preliminaries

The topology considered here is a parallel hybrid electric truck, fully loaded (40 ton), de-
picted in Fig. 4.1, used in a heavy duty long haul application. As the aim is to investigate
the hybridization potential of a conventional vehicle, the main powertrain components
(i.e., engine, motor and battery) are preconditioned to be scalable.

Transmission 
and Gearbox

EngineFuel Tank

MotorBattery

Figure 4.1: Parallel hybrid topology

The power demanded to propel the vehicle, Pv, is approximated by the sum of the required
power to achieve the desired velocity and all other power losses by

Pv(av,vv) = Pr +Pa +Pp +Pk,

= vv(cr ·m ·g+
ρa ·A f · cd · v2

v

2
+m ·g · sin(α)+m ·av).

(4.1)

Here Pr represents the rolling resistance losses, Pa represents the aerodynamic friction
losses, Pp represents the power loss caused by gravity in non-horizontal driving and Pk
represents the kinetic power need to achieve a desired acceleration av. Next, a 12-speed
automated manual gearbox is modeled by gear-dependent ratios, γi, and efficiencies, ηγi ,
for i ∈ [1, ...,12].

Both the 340 kW diesel engine and the 60 kW permanent magnet electric machine are
characterized by static efficiency maps, which are scaled, for sizing investigations, lin-
early in torque. The battery is modeled using an equivalent circuit model [12] and it’s
capacity is scaled by increasing or decreasing the number of parallel-connected battery
modules at a fixed voltage. The drive cycle used here is a typical long haul driving cycle,
where highway driving is more dominant (approx. 85%).

From literature, [61, 141] and current market trends analysis, the cost models (expressed
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in euros (e)) used in this problem are defined by

Ψm = 1000+20 ·Pm,

Ψi = 500+10 ·Pm,

Ψb = 1000+250 ·C,

Ψe = 250+25 ·Pe,

(4.2)

where Ψm is the cost of the electric motor, Ψi is the cost of the inverter, Ψb is the cost
of the battery, Pm is the maximum power of the motor, C is the battery capacity, Ψe
is the cost of the engine and Pe is the power of the engine. Weight and price of the
electric motor and battery are induced by the materials used to produce them, which can
be scaled linearly from a certain base value. The engine weight will be the same because
the volume will not change, but the price will also scale linearly because the prices do
differ per maximum power.

4.3 Problem Definition

In the most general statement, the design of a HEV, for optimal sizing and control, is an
multi-objective optimization problem as defined in (2.2), that can be written as,

min
x

J(x) = [J1(x),J2(x), ...,Jk(x)]T

s.t. g j(x)≤ 0, j = 1,2, ...,m,

hl(x) = 0, l = 1,2, ...,e.

(4.3)

where x ∈ Rn+z represents the design variable vector with n+ z the total number of in-
dependent n sizing variables and z control variables, J(x) ∈ Rk the vector of objective
functions, j the number of inequality constraints and l the number of equality constraints
on the complete vector of design variables x. Each Ji(x) : Rn+z→R1 represents one cost
function, as exemplified in (2.7). Among the examples in (2.7) the most used optimiza-
tion targets, that we will also used in this case study, are given by

Fuel consumption/CO2 : J1 =

t f

∑
i=0

Pf (i),

Hybridization costs : J2 = Ψm +Ψi +Ψb +Ψe,

(4.4)

where [0, t f ] is driving cycle length and Pf is the fuel consumption. Other cost functions
exemplified in (2.7) may include the minimization of the total energy of the vehicle, other
emissions, or performance targets, but they will not be addressed in this case study.

The HEV control problem requires fixed sizing of components which makes this, inher-
ently, a bi-level optimization problem [71] as depicted in Fig. 4.2. Here the outer loop
searches for plant variables and the inner loop searches for control variables.
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Figure 4.2: Bilevel sizing and control optimization problem

Then, the problem of optimal sizing is defined as

min
Pe,Pm,C∈D

Jp(Pe,Pm,C)

s.t. g j(Pe,Pm,C)≤ 0, j = 1,2, ...,m,

hl(Pe,Pm,C) = 0, l = 1,2, ...,e,

(4.5)

and the problem of optimal control is defined as

min
ups(t),γ(t)∈U

Jc(ups(t),γ(t),Λ)

s.t. ξ̇ (t) = f (ξ (t),ups(t),γ(t), t),

g j(ups(t),γ(t))≤ 0, j = 1,2, ...,m,

hl(ups(t),γ(t)) = 0, l = 1,2, ...,e,
γ ∈ {1,2, ...,12}, ups ∈ [−1,1].

(4.6)

Here Pe is the maximum power of the engine, ups is the power-split signal, γ is the gear
number, Λ is the input driving cycle characterized by slope, velocity and time and ξ (t)
is the state-of-charge of the battery over time. More, the cost function for the control
problem (4.6) is fuel consumption, i.e., Jc = J1, and the cost function for the sizing
problem (4.5) is the maximization of profit, i.e. Jp = Σ(w1J1−w2J2) with w1 = w2 = 1.
This type of scalarization of the multi-objective optimization problem is widely used
in this classes of problems and formulates a single-objective optimization problem such
that the optimal solutions to the single-objective optimization problem are Pareto optimal
solutions to the original multi-objective optimization problem.

4.3.1 Bi-level Optimization Frameworks

Due to the non-convex and sometimes noisy or discontinuous nature of the cost function
J1, various derivative-free global optimization algorithms have been proposed in existing
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literature to solve the bi-level sizing and control problem of a HEV. A larger overview
of these algorithms was introduced in Chapter 2. As a result of their wide usability
and good results, in this chapter PSO, GA and DIRECT have been selected and will
be compared for the outer loop of the design problem. Their advantage are that they
search the complete design space and they can find the global minima. More, a gradient
based method, namely SQP, and a brute force search will also be used to benchmark the
above mentioned algorithms. For this, pre-implemented Matlab algorithms and the PSO
from [103] have been used. The optimal control problem is solved using deterministic
dynamic programming (DP), [174], which ensure finding the global optimum for the
problem, i.e., it finds the control inputs ups(t) and γ(t) that globally minimize Jc for a
given driving cycle, Λ(t). Dynamic programming (DP) is a numerical method in which
the larger problem is solved by breaking it down into simpler sub-problems. Furthermore,
for every sub-problem all possible ways to solve it are examined, working backwards in
time from the final step of the control problem, t f , to the initial one t0 (given from the
driving cycle, Λ). Then, in the forward simulation direction the best solution will be
selected. As explained in Chapter 2, for off-line design studies this algorithm has been
widely used due to its ability of finding the global optimum solution of the given problem.

4.4 Optimization Results

To analyse the potential of both hybridization and engine downsizing, two case studies
have been build. The first is used to compare the bi-level optimization frameworks for
optimally choosing the electric motor and battery size and the second case shows the
benefits of downsizing the engine together with the hybridization step using BF search.

4.4.1 Case1: Hybridization Potential

The optimization problem constraints and the initial design variables values are given in
Table 4.1. A first optimization problem evaluation was done using BF search as shown
in Fig. 4.3, from which one can already observe the difference in the sizing design, when
two different cost functions are used. When considering only fuel consumption as an

Table 4.1: Initial design variables and boundary constraints

x0 xmin xmin
Max. motor power, Pm, [kW] 65 10 120

Battery capacity, C [kWh] 6.5 1 12
Normalized power-split signal, ups [-] n/a -1 1

Gear number, γ [-] n/a 1 12
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optimization target, the biggest battery and the biggest motor are chosen, however, this
is not the case when component costs are also considered. More, variation in the cost
models Ψm,Ψi, Ψb and Ψe, will shift the optimum point found for the multi-objective
optimization problem.
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Figure 4.3: Brute force design results for minimum fuel consumption (left), i.e., Jp = J1
and maximum profit (right), Jp = Σ(w1J1−w2J2) with w1 = w2 = 1.

To reach the results in Fig. 4.3, 144 function evaluations were computed on one PC1 in
8 hours. Because this search is computational exhaustive and not applicable to higher
dimensionality problems, the search direction through the design space of the four men-
tioned optimization algorithms above, are compared in Fig. 4.4 and 4.5 and their results
are compared in Fig. 4.6 and Table 4.2.

Table 4.2: Main characteristics of the considered algorithms

BF SQP PSO GA DIRECT

Computational burden - - ++ - - ++

Search complete design space ++ - - ++ ++ ++

Global optimum - - - ++ ++ ++

Reusability / Tuning effort n/a + - - - - ++

Derivative free n/a no yes yes yes

Suitable for high dimensions prob. no yes yes yes yes

1For all simulations a PC with Intel i7 processor at 3.2 GHz and 4 GB of memory has been used.
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Figure 4.4: (a) SQP and (b) PSO applied to HEV battery and motor optimal sizing:
function evaluation, convergence and fuel reduction percentage.

Given the driving cycle, the results indicate that up to approximately Pm = 60 kW, a big
part of the kinetic energy of the moving vehicle can be regenerated and used for later
usage. For even higher electric machine power, there are still fuel benefits from even
more regenerated braking energy and more freedom of the combustion engine operating
points. Yet, for very large motors the overall magnitude of these benefits is decreasing.
The fuel benefits of changing the battery capacity is explained by the maximum power
the battery can deliver: (i) at low battery capacity, up till approximately C = 5 kWh the
potential of the electric motor is limited due to the operating limits of the battery; (ii) at
higher battery capacity the potential of the electric motor is fully used and there is more
freedom in the state of charge trajectory.
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Figure 4.5: (c) GA and (d) DIRECT applied to HEV battery and motor optimal sizing:
function evaluation, convergence and fuel reduction percentage.

Although for only two variables the cost function has no visible or evident local minima
these results can be used to conclude on the usability of these algorithms in future similar
studies where more variables are introduced for more topologies. PSO, GA and DIRECT
use more function evaluations than SQP but they also benefit from the fact that they
search the complete design space. GA and PSO are more computationally expensive (10
hours simulation time) when compared with DIRECT (2 hours) and SQP (0.7 hours).
For Jp = J1 all algorithms converge to the vicinity of the same local optimum, which in
this case is also the global optimum, see Fig. 4.3, 4.4 and 4.5. Resulting from these type
of simulations, the advantages and disadvantages of using these algorithms for vehicle
sizing optimization, in nested frameworks, are presented in Table 4.2 and Fig. 4.6.
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Figure 4.6: Optimal values found and fuel consumption for each algorithm

The tuning effort and the high number of function evaluations make PSO and GA less
favourable than DIRECT or even SQP. Nonetheless, for highly nonlinear problems SQP
is likely to get stuck in local minima, which requires extra effort to avoid that. BF type
searches provide insights in the cost function shape but grant no optimality guarantee or
indication of possible minima. This kind of searches are mostly used in industry to derive
trends in the system design for discrete component choices.

4.4.2 Case 2: Hybridization and Engine Downsizing

When also downsizing of the engine is considered the fuel consumption of the driveline
can be decreased even more. Moreover, varying the maximum engine power, combined
with power from the electric part of the drivetrain, could give extra benefits in component
cost. Fig. 4.7 and 4.8 show the results for both minimum fuel consumption, Jp = J1 and
maximum profit, Jp = Σ(w1J1−w2J2). In Fig. 4.7, the white area at the bottom repre-
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sents the infeasible design area, since certain constraints are violated (e.g., the maximum
required power in the cycle cannot be ensured). For maximum profit over the vehicle
lifetime, both hybridization and engine downsizing are recommended.

From such a brute force search design trends can be identified. For instance, as depicted
in Fig. 4.7, for large fuel consumption reduction one might choose a downsized engine
of Pe ∈ [280,320] kW, combined with a large electric machine and battery pack, such as
Pm ∈ [80,120] kW and Cb ∈ [8,12] kWh. On the contrary, as depicted in Fig. 4.8, to
restrict the powertrain costs one might choose a downsized engine of Pe ∈ [280,320] kW,
combined with a medium electric machine and battery pack, such as Pm ∈ [20,60] kW
and Cb ∈ [2,8] kWh.

Based on these studies we can conclude that the current widely-used approaches, in
which components sizing are based on solely powertrain fuel consumption, are limited.
Such approaches will lead to the selection of large components (see Fig. 4.3), which in
turn will lead to expensive and uncompetitive vehicle. The introduction of a cost model,
for each component, can improve results and may also make it more realistic. This
can be used as part of the cost function or as a constraint. This study did not consider
auxiliary systems present in a vehicle, such as the steering system, the air condition-
ing compressors, the air compressors, the water pump, and so on. We have restricted
this case study since increasing the search space (i.e.,the dimensionality of the problem)
becomes too time consuming. These auxiliary systems, and their potential in terms of
electrified power trains, are addressed in the next chapter. For improved designs, these
design studies could be combined.

Pareto Set Analysis

In a multi-objective optimization problems there exist, typically, an infinite number of
optimal solutions as a function of the prior-defined preferences of the designer, w1 and
w2. In order to analyse this compromise, in Fig. 4.9 the Pareto Set is shown for this
problem, where each point is a (sub-) optimal solution, i.e., a certain component sizing
combination, to the bi-level optimization problem in (4.5) and (4.6). More, each point
indicates a certain articulation of preferences (choice of weights w1,w2), for the optimiza-
tion problem. This shows the trade-off of choosing between J1(x) (i.e., fuel consumption
/ operational costs) and J2(x) (hybridization costs) for the outer sizing loop.

Four cases are highlighted in Fig. 4.9, where the two cost functions are either minimum
or maximum, e.g. the cheapest system is denoted by (d) while the most fuel efficient sys-
tem is denoted by (c). Furthermore, (a) denotes the design for which J2(x) is maximized
(e.g., the most expensive vehicle), while (b) denotes the design for which J1(x) is maxi-
mized (e.g., the least fuel efficient vehicle). The design vector x∗ is a Pareto optimum if
and only if, for any x and

J1(x)≤ J1(x∗)⇒ J2(x)≥ J2(x∗). (4.7)
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Figure 4.9: Pareto Front approximation for J1 and J2

The distance between the non-reachable utopia point for minimization, (e), and the Pareto
set points gives an indication of which point should be chosen for design, as the Pareto
optimum. One simple method, used by [179], is to choose an x based on the values of
the design objectives and how well they match the preferred values. The curved gray line
represents the Pareto front approximation, that indicates the optimal trade-off between
operational and hybridization costs.

4.5 Conclusions

In this chapter several bi-level optimization frameworks (brute-force, SQP, DIRECT, GA,
PSO in the outer loop and DP in the inner loop) were used and compared to optimally size
and control a parallel hybrid heavy-duty vehicle. Although insightful, using brute force
search, to find the optimal sizing values becomes too computationally expensive and
insufficiently accurate. To this end, four other less exhaustive algorithms are compared
here to find the optimal design of a HEV. By hybridization up to 8% of fuel reduction
can be achieved at the expense of large, expensive components. More, when the engine
is downsized the fuel can be decreased more while the component costs are reduced.

Considering the multi-objective fashion of the problem a trade-off Pareto analysis is pre-
sented, where fuel and component cost are discussed. All algorithms performed well,
however from a computational perspective DIRECT is preferred for non-convex prob-
lems and SQP for convex problems. Further work involves increasing the design vari-
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ables number (e.g., gearbox sizing optimization), the number of topologies used and the
application of more driving cycles and/or usage conditions.

For the case study defined in this chapter, we used linear cost models that do not vary with
time. Considering the varying markets and the significant developments done to improve
technologies, one could forecast the changes of these models and include them in the
optimization problem. Moreover, since these cost models can vary with the application
studied (such as passenger cars, ships, buses, long-haul trucks and so on) their level of
detail could be improved to capture this information.



CHAPTER

FIVE

NESTED OPTIMAL DESIGN OF ELECTRIFIED
AUXILIARY UNITS

Abstract / The electrification of auxiliary systems represents a large potential to reduce
the emissions and fuel consumption in heavy hybrid vehicles, such as buses and trucks.
This potential comes mostly by eliminating the fixed-ratio dependency between the aux-
iliaries speed and engine speed, that induces high energy losses. For the electrification of
auxiliary systems there are many design options, such as the architecture, dimensioning
of components or the ability for control on demand. In this work, the nested design of
multiple auxiliaries is addressed, by looking at topologies, sizing and control in an inte-
grated manner. This nested design approach, where the plant and control parameters are
found together, has proven beneficial in other research fields and can be applied to auxil-
iaries as-well. First, by analyzing the potential of reducing fuel consumption of auxiliary
components in a heavy-duty truck two auxiliaries are chosen to be studied. Then, novel
topologies are introduced for these two auxiliary units, namely the power steering pump
and the air compressor. The optimal design is found, for each topology, using a nested
optimization coordination strategy. Then, for both auxiliaries a topology is chosen and

The results presented in this chapter are partially based on the following publications:
Silvas, E., Backx, E.A., Hofman, T., Voets, H. and M. Steinbuch. Design of Power Steering Systems for Heavy-
Duty Long-Haul Vehicles. 19th IFAC World Congress, pp. 3930-3935, 2014.
Silvas, E., Backx, E.A., Voets, H., Hofman, T. and M. Steinbuch. Topology Design and Size Optimization of
Auxiliary Units: A Case Study for Steering Systems. FISITA World Automotive Congress, pp. 1-8, 2014;
Silvas, E., Turan, O., Hofman, T. and M. Steinbuch. Modeling for control and optimal design of a power steer-
ing pump and an air conditioning compressor used in heavy duty trucks. IEEE Vehicle Power and Propulsion
Conference, pp. 1-6, 2013.
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more extensive simulation are shown to analyse the tradeoffs between different controls,
plant design and different driving conditions. The results of this study show that sig-
nificant energy gains can be obtained if auxiliary systems are electrified and optimally
designed. Moreover, the nested structure proposed in this chapter facilitates such studies,
reducing computation time and aiming at the system-level optimality.

5.1 Introduction

Auxiliary systems present in heavy vehicles, such as buses, trucks or construction ma-
chineries, consume significant amounts of fuel. In engine-only powered vehicles aux-
iliary systems are generally connected by a belt or a gear to the internal combustion
engine (ICE) as shown in Fig. 5.1. This connection induces energy losses and restricts
the independent control of these components. In fact, these components work all the time
when the ICE is on, not just when needed. The introduction of hybrid electric vehicles

Air-Cond. Compressor

Air Compressor

Steering Pump

Oil Pump

Alternator

...

Engine

Belts / Gears

Figure 5.1: Topologies of auxiliary units in engine-driven conventional vehicles.

offers flexibility for auxiliary systems positioning and operation. New architectures can
be built, to eliminate the fixed-ratio dependency, increasing the control flexibility and al-
lowing independent use of components when needed. Moreover, by combining the plant
and the control algorithm design, the energy efficiency of using these components can be
increased.

5.1.1 Auxiliary Units in Heavy-Duty Vehicles

Motivated by emission legislation and to decrease ownership costs, the reduction of fuel
consumption is one of the major targets of the truck industry for the coming decades.
From earlier studies it is known that the fuel consumption caused by auxiliary units
adds up to a significant amount of the total consumption. The exact numbers depend
especially on the vehicle usage, i.e., driving cycle and operating conditions, and cannot
be generalized.
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For example, for heavy-duty trucks (US vehicle classes 7 and 8), in [180] it is shown
that auxiliary units can consume between 3% and 11%. This variation is found by look-
ing at five standard different driving cycles, with mostly urban character and no slopes.
When using predominant highway driving, typical for long-haulage traffic in Europe, the
auxiliaries are found to consume between 4.7% and 7.3% [181] and up to 4% in [153]
(see Fig. 5.2). For buses, where the air is used a lot to provide cooled air for passages,
in [182] the authors report that the consumption can be up to 25% of the total power.
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Figure 5.2: Fuel economy improvement when auxiliary components are removed, esti-
mated in [181] (top) and, in the case of the parallel HD Truck under study in this Chapter
(results presented in [153]) (bottom).

This high consumption exists because auxiliary units are very inefficient at nominal op-
erating conditions. This is caused by the combination of the plant and control design,
chosen to meet worst-case requirements. To deal with these worst-case scenarios, highly
oversized components are used, dramatically reducing the overall efficiency. Hence, the
electrification of auxiliary units, would eliminate the fixed engine-auxiliary dependency,
being a potential for fuel reduction.
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A second benefit of electrifying auxiliary units is reducing ICE idling. During their rest
periods at truck stops, the ICE is idled to power the climate control (i.e., heater and
air conditioning) and the cabin accessories (e.g., refrigerator, microwave oven, televi-
sion), which requires, on average, 4-6 kW [183]. Moreover, the engine is also idled to
avoid start-up problems at cold weather. An idling engine has an efficiency of about 3%,
compared to 40% when driving on the highway [183] and involves disadvantages as air
pollution, excessive engine wear, discomfort and noise. The amount of engine idling is
not well known and it depends on various conditions, for instance geographic location
and season. Based on rough estimations made by industry, [184] reports an average of 6
hours/day in the US. For certain conditions (e.g. during winter) this may even be higher,
up to 40% of the time. Therefore, reducing the need for engine idling could decrease
energy consumption.

The entrance into future CO2 free zones of cities, requires also the electrification of cer-
tain auxiliary, as the steering system or the air brake compressor. As figure 5.2 shows, the
air compressor and the power steering system are some of the major energy consuming
auxiliaries. Therefore, these components are discussed in more detail in this chapter.

In the last decade, for various auxiliary units, isolated solutions with variations occurring
either in their topology, technology or control have been proposed. For example, in [153]
and [185] an electro-hydraulic steering system is compared with a conventional steering
system for a truck and a passenger car, respectively. But to design a hybrid vehicle, the
whole set of auxiliary systems must be designed optimally, not just a component. This
design problem becomes an optimization problem on multiple levels (plant and control)
which, when solved sequentially leads to sub-optimal designs.

5.1.2 Contribution and Outline of This Chapter

To find a system-optimal design for the auxiliary units, a multi-level optimization struc-
ture has to be implemented, where the dependency between different design layers is
explicitly considered (as previously discussed in Chapter 2). In this chapter the com-
plete plant (i.e., its topology, technology and component sizes) and the control algorithm
are optimized for the power steering system and the air compressor, taking into account
practical constraints of a conventional truck (Class 8). The choice of these two auxiliary
systems is based on a prior feasibility study made for a typical long-haulage truck with
different payloads, presented in [153]. Moreover, for defining a novel topology, we uses
the results presented in Appendix A [16], where six alternative power steering configu-
rations are investigated. The study in Appendix A considers also secondary aspects such
as added complexity and costs.

From these prior studies, i.e., [16] and [153], a more ideal topology is proposed for the
steering system. Then, the possible topologies for the air compressor are introduced
together with their models. Using a nested coordination strategy, the combined opti-
mization of the conventional power steering system and air compressor, in an alternative
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topology, is defined. In this nested optimization problem, Dynamic Programming is used
to find the continuous and discrete control inputs and Sequential Quadratic Program-
ming is used to find the discrete plant parameters, as gear ratios. The results shows
that a system-optimal design of these auxiliaries could potentially reduce the total fuel
consumption by approximately 0.3 L/100 km on long-haulage routes.

The remaining sections of this chapter are organized as follows. Section 5.2 introduce
steering system topologies and highlights their fuel benefits. Section 5.3 introduce the
air compressor system topologies and highlights their fuel benefits. Next, in Section 5.4
the problem of optimally design two auxiliary units is introduced, considering both the
plant and the control algorithm and optimization results are presented. In Section 5.5
conclusions are drawn.

5.2 Power Steering System Topologies

The power steering system is one of the major energy consuming auxiliaries in a long-
haul truck [153, 181]. The supporting steering force of a conventional hydraulic power
steering (HPS) system is delivered by an engine driven fixed displacement pump (FDP) as
depicted in Fig. 5.3. This has been designed to deliver sufficient oil flow and pressure for
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Figure 5.3: Simplified schematic representation of a conventional steering system

low speed manoeuvring, i.e., at engine idling. When the pressure level at the output side
becomes higher than the set value of the pressure relief valve, the pressure relief valve
opens and redirects the excess of flow back to the (low pressure) inlet. This overflow is
proportional to engine speed and introduces high parasitic losses, as graphically depicted
in Fig. 5.4. On the other hand, the actual required steering pressure decreases as vehicle
speed increases. Therefore, the parasitic loss, induced by the power steering system, is



78 Chapter 5: Nested Optimal Design of Electrified Auxiliary Units

relatively higher for long-haul trucks, that drive most of the time on the highway. In such
conditions the assistance from the power steering pump remains unused for 76% of the
time [185].
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Figure 5.4: Output power of the sized pump as a function of engine speed

To eliminate this fixed speed dependency, between the engine and the steering system,
a new topology has to be introduced. In Appendix A we introduced, modeled and in-
vestigated six topologies to find the design and control policy offering the minimum
fuel consumption. To design new architectures multiple components were used, as gears
(planetary, spur or ball-screw) and an electric machine. These six topologies depicted
in Fig. 5.5, where square boxes mark the component sizing parameters analysed in Ap-
pendix A. Here Pe is the electric machine rated power, i1 and i2 are fixed gear ratios
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Figure 5.5: Overview of the six possible topologies (one per line type) for the Power
Steering System. Red boxes mark the component sizing parameters analysed in [44].
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between the ICE and the pump and between electric machine (EM) and the pump, l,A
are the ball-screw lead and the steering house piston area, z is the fixed ratio of the plane-
tary gear set (PGS) and fn, fh are the minimum constant flow on highway and on national
roads used to develop the control strategy.

The purpose of the alternative power steering (PS) topologies is to increase the controlla-
bility, in order to reduce the parasitic losses indicated in Figure 5.4. In Fig. 5.5, the first
topology (topology no. 1) is the conventional hydraulic power steering. To introduce
the PS topology used in this work, the remaining topologies from Fig. 5.5 are briefly
described next.

5.2.1 Electro-Hydraulic Power Steering

In an electro-hydraulic power steering system (topology no. 2) the pump is not mechan-
ically coupled to the engine but instead it is driven by an EM. In this way, the angular
velocity of the pump (and volume flow within the hydraulic system with that) can be con-
trolled independent from the engine speed. This not only increases the efficiency at part
load, but also makes it easier to implement (efficient) speed dependent power steering.
To ensure that the power steering system responds adequately, the pump should not be
switched off completely when no steering power is required. Instead it has to be operated
at a certain stand-by speed to be able to build up pressure quickly. Hence, there are still
parasitic pumping losses involved and, steering force ”on demand” is not possible. To
further increase the efficiency, combining several small electro-hydraulic pumps may be
favorable.

5.2.2 Electric Power Steering

In an electric power steering system (topology 6), the hydraulic system is completely
omitted. Instead, the steering force is delivered by an electric motor, which can be located
at different locations in between the steering wheel and the wheels. The required motor
torque, in an electric PS system can be independently controlled. This is based on the
torque sensor output, vehicle speed and the angular position of the steering wheel. In this
way the characteristics of the steering system can be adjusted to the driving conditions to
provide the desired level of comfort and feedback to the driver. An additional benefit of
an electric PS system is that the power steering system can be used actively for stability
control, lane keeping assistant, side wind compensation and collision avoidance.

The electric PS system enables true steering ”on demand” and seems to be the most effi-
cient way of power steering. Moreover, the system implementation is simpler when com-
pared with hydraulic PS, due to the absence of the hydraulic circuit.The overall system
weight and size may be advantageous as-well over a conventional hydraulic PS system.
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Unfortunately, there are additional issues, which especially hold for trucks. For instance,
the required power to drive the electric motor has to be delivered by the battery. This
is a major limitation for an engine-only driven truck, where the relatively low battery
voltage, results in a maximum electrical power draw of 2,4 kW. Moreover, the EM has
to be powerful enough to steer the wheels at vehicle standstill which requires a very
high torque output. Since it has a significantly lower power density than its hydraulic
counterpart, it may also be heavier than the conventional pump.

5.2.3 Hybrid Topologies

As proposed in [186], the combination of an electro-hydraulic system and a downsized
conventional engine-driven pump is also a topology candidate (topology no. 3 in Fig.
5.5). As mentioned before, in case of a hydraulically actuated PS system, a stand-by flow
is required to achieve the desired response. Because an electro-hydraulic system involves
a dual energy conversion (from mechanical to electrical and vice-versa), the efficiency
of a gear driven hydraulic pump itself is usually higher. By combining both systems,
the parasitic loss caused by the overflow can be minimized, while hydraulic pressure is
delivered by the mechanically driven pump as much as possible. Since the output flow
of the pump increases linearly with pump shaft speed, the flow at engine speeds below
cruise speed will be insufficient (see Fig. 5.4). The electro-hydraulic system can be
controlled such that it delivers the remainder of the required flow. The pump size can be
optimized for specific duty cycles, e.g. highway driving.

A second implementation of such a ”hybrid” topology, using an electro-hydraulic system
and a downsized conventional engine-driven pump, can be constructed using a Planetary
Gear Set (PGS) (topology 4). Here, a single pump can be driven both by the ICE and the
EM simultaneously, which reduces leakage and bearing losses. The combination of gear
ratios should be optimally chosen, such that the overall power consumption is minimized.
In this manner the efficient FDP configuration is utilized at highway speeds without in-
troducing the parasitic losses of overflow. At lower speeds, the EHPS configuration is
used to deliver the remainder of the flow (see Fig. 5.4). Due to the capability to split the
required input power of a single pump, it is called power split EH-HPS.

A third hybrid topology (topology 5), can be represented by a combined hydraulic PS
with an electric power-steering. Again, the fixed displacement pump is scaled such that
the delivered flow meets the request at high speeds. An EM delivers the remainder of the
requested power at lower speeds. Due to the presence of hydraulic PS, the torque demand
on the electric machine is reduced. This may make (topology 5) a more viable solution
for heavy duty trucks compared to pure electric PS. As a result of the dual force delivery,
the force induced on the ball nut rack by the hydraulic PS system can be reduced. This
allows a reduction of the frontal area of the hydraulic cylinder, which inherently reduces
the required oil flow and thus energy consumption of the hydraulic PS system.

Without going further in detail, one can conclude that, to reduce the fuel consumption of
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the PS system a more flexible topology is essential [16, 154]. Yet, since solely electric
PS can require very large EM and it’s limited by the battery size, the hydraulic power
delivery could be maintained. The hydraulic power delivery, in itself, is very efficient.
However, due to the gear ratio that has been selected to meet the worst case require-
ments, the parasitic losses introduced in the system (at nominal operating conditions)
are high. The optimal design studies presented in Appendix A show that up to 80% of
fuel consumption can be reduced if variable flow is applied intensively. In this chapter
we propose an architecture for the PS system that can overcome the disadvantages of
the conventional system. This novel topology depicted in Fig. 5.6, consists of a two
speed-gearbox which drives the conventional fixed displacement pump. This two-speed
gearbox is chosen since a stand-by flow is always required from the power steering pump
(as it can never be completely switched off). Moreover, using such a gearbox the high

Engine
Fixed 

Pump

2-Speed

Gearbox

Figure 5.6: Novel power steering system topology.

efficient mechanical connection between the auxiliary and the engine is maintained. The
optimal design of the gear ratio will be discussed in Section 5.4. The technical imple-
mentation of the variable gears is not considered at this point.

To develop the optimum design for the power steering system, modular and scalable mod-
els of components are required. The analytical model used here is proposed in Appendix
A, [16]. This model include both leakage losses and torque losses, and it is characterized
by a volumetric, ηv, and a hydro-mechanical efficiency, ηhm,

ηtot = ηhm ·ηv. (5.1)

We assume the 2-speed gearbox as fixed gear ratios, i, between the input and the output
shaft, for which i = ωo

ωi
holds (where ωo and ωi are the angular speeds of the output and

input shaft respectively). Similar to Chapter 4, the ICE is modelled with an engine map,
containing the fuel consumption as a function of output torque and angular speed.

The duty cycle used here is drive cycle dependent and therefore the optimal solution for
inner city driving will not always equal the optimal solution for highway driving. For the
results presented here, focused on long-haul usage, a mixed cycle measured on a fully
loaded tractor-trailer is used, that combines various road segments, with a predominant
(85%) highway driving.
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5.3 Air Compressor Topologies Design

This section introduces the air compressor system, analyzes its conventional topology
and introduces two new possible topology. The aim is to select a possible topology that
can decrease fuel consumption for this auxiliary. Similar to the power steering pump,
the air compressor is permanently driven by the internal combustion engine and at a
fixed ratio to it. In this pneumatic system, compressed air is stored in vessels that serve
as buffers and supply pressurized air to the air consumers. The main air consumers on
board are the service brakes, the clutch and the gearbox. Other air consumers are the
Emission Aftertreatment System (EAS), which uses air pressure to supply AdBlue to the
engine, and the turbo waste gate.

The air compressor is modelled through 2D look-up tables that contain the required input
torque and the resulting intake flow as a function of the outlet pressure and angular speed
from [187]. Then on/off switching of the air compressor is controlled based on the
pressure level at the inlet of the air buffers. Reaching the upper pressure limit switches
the compressor off while reaching the lower pressure limit switches the compressor on.
The compressor is said to be in idle mode when it does not deliver pressurized air to the
vessels but still introduces drag losses as a function of its angular speed. The pressure in
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Figure 5.7: Schematic overview of the pneumatic system.

the vessel, pa, is determined from the ideal gas law as

pa =
ma ·R ·Θa

V
, (5.2)

where ma is the air mass, R is the gas constant, Θa is the air temperature and V is the
volume of the vessel. For solving the optimal sizing and control problem, we further
assume the temperature in the vessels to be constant and equal the ambient temperature,
and we lump all air buffers into one. These are not restrictive assumptions since, for the
optimization study, one should know only the total air consumption (given that all the air
has to be delivered by a single compressor).

Since the air compressor can be switched off completely, a maximum flexibility would be
achieved with the implementation of a variable gear and a clutch. To gain insight in the
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efficiency improvements caused by these components, in Fig. 5.8, three different topolo-
gies are defined. Since this is a more idealistic design, based on these three categories,
five cases are build. The first topology (cases 1 and 2) is the conventional topology that is

Topology 3

Case 4 and 5

Topology 2

Case 3

Topology 1

Case 1 and 2

Compressor

Engine Fixed Gear

Engine Fixed Gear

Engine

CompressorClutch

Clutch
Variable 

Gear
Compressor

Figure 5.8: The three air compressor topologies analysed, with an increasing level of
flexibility.

typically used in trucks. Case 1 is the reference situation, where the on/off switching of
the compressor is determined by the minimum and maximum pressure of the air buffer.
In case 2, the air compressor is also used as an extra engine brake when the vehicle slows
down or drives downhill. Hence, the idle mode of the compressor can be activated when
the pressure in the air buffer has not reached the lower limit yet, resulting in more flexi-
bility (i.e., idle control). To increase the controllability of the air compressor, in topology
two a clutch is added (case 3). In topology 3 (case 4 and 5), the controllability is further
increased by means of a variable gear. In case 4, a gear efficiency of 99% is assumed,
whereas in case 5 the gear efficiency is assumed to be 80%.

For these 5 cases the control variables xc are

xc = {c1, i(t)}, (5.3)

with c1 the closing and opening of the clutch and i(t) the variable gear ratio. For topology
3, where both the clutch and the variable gear are present, the optimal control problem
becomes,

min
u(t)∈U

Φ(u(t)) = min
u(t)={c1(t),i1(t)}∈U

∫ t f

0
ṁ f (c1(t), i1(t))dt,

s.t. i1(t) ∈ [0.5,1.5],
pb ∈ [pb,min, pb,max],

pb(0) = pb,max,

ṗb(t) = F(pb(t),c1(t), t),

c1(t) ∈ {0,1}.

(5.4)
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Table 5.1 shows the fuel consumptions that resulted from simulations of the 5 cases. The
optimal control inputs, such as the clutch opening and closing, is guaranteed by the DP
algorithm. In the reference case, the air compressor consumes 0.1496 L/100km, i.e.,
average power consumption of 617 W. The second case (topology 1 with idle control)

Case Clutch
[Y/N]

Gear Gear eff.
[%]

Idle Con-
trol
[Y/N]

Fuel
Cons.
[L/100km]

Improvement
[%]

1 N 1.412 99 N 0.1496 Ref.
2 N 1.412 99 Y 0.1355 9
3 Y 1.412 99 Y 0.0151 90
4 Y Var. 99 Y 0.0133 91
5 Y Var. 80 Y 0.0159 89

Table 5.1: Fuel consumption of an optimally controlled, engine driven air compressor for
different cases

results in a fuel economy improvement of 9% compared to the reference case. Although
the speed of the air compressor is still completely dictated by engine speed in case 3, the
compressor can be switched off completely, which removes the drag losses in idle mode.
The fuel economy improvement that has been achieved with this topology is 90%. The
additional improvement of the fourth case, providing full flexibility due to a variable gear
(η= 99%), is only 1%. When the variable gear efficiency is lowered to a more realistic
80% (case 5), the resulting improvement is worse than that of case 3, where only a clutch
was added. Therefore, it will not be beneficial to implement such a variable gear for the
air compressor, especially since it also increases system complexity.

We investigate the improvement of adding a clutch to the air compressor topology also
for the SAE J1343 duty cycles [188]. These cycles are often used in literature for studies
on auxiliary units and are presented in Table 5.2. Although these standards have been

Type of
Operation

Duty Cycle
[%]

Pumping
Power [kW]

Unloaded
Power [kW]

Average
Power [kW]

Long-Haulage 5 6 2.4 2.6
Short-Haulage 10 6 2.4 2.8
Local-Haulage 30 6 2.4 3.5

Table 5.2: Overview of the SAE J1343 duty cycles as in [188].

defined in the year 2000, the duty cycle of 5% that was defined for long-haul cycles is
in good correspondence with the 4% that resulted from our simulations. In particular,
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the defined average power consumption of the air compressor is much higher than the
average 617 W that resulted from our simulations. Therefore, the focus should be on
the relative improvement that one can achieve with a novel topology. Fig. 5.9 shows
the duty cycles as they are defined in the SAE standards [188] and the improvement that
could be achieved when a clutch is added between the engine and the air compressor.
The 88% improvement on the long-haul cycle is in good correspondence with the 90%
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Figure 5.9: Improvement of the air compressor power consumption when a clutch is
used, for the SAE J1343 standard cycles

that resulted from previous simulations listed in Table 5.1. Based on these results, for the
integrated optimization study in Section 5.4, topology 2 will be used.

5.4 Integrated Sizing and Control

To come to a system-optimal design, the optimization of individual auxiliary topologies
should be combined into a single, integrated optimization, to take dependencies among
various auxiliaries into account. Based on Sections 5.2 and 5.3, in this section the power
steering pump and the air compressor are considered in the topology depicted in Fig.
5.10. This approach could be in a similar fashion applied for more or other auxiliaries.
The goal of this section is to find the system-optimal design and controller for the engine
driven power steering pump and air compressor of a conventional truck. We aim at
optimizing the design and control of both auxiliaries in a combined nested coordination
structure.

This topology has 2 discrete gears to drive the power steering pump and a clutch between
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Figure 5.10: Topology used for the combined optimization of the clutch (actuation) and
the gearbox (design and actuation)

the engine and the air compressor. The idea behind the 2 discrete gears, detailed in
Section 5.2, is that the hydraulic power steering system has a cruising state and a steering
state, which is very much as any variable flow principle. In this way, the flow of the fixed
displacement pump can be efficiently reduced at highway driving.

To ensure the required steering assistance can be delivered in all situations, the first gear
of the gearbox, ig1, is constraint to be equal to the gear ratio used in he conventional
system, i.e. 1.412 (see Appendix A). The second gear, ig2, must be optimally found.
For this, we define three different minimum flows cases, namely qmin = 6, qmin = 8 and
qmin = 10 L/min. A minimum flow constraint is necessary for safety reasons, as it takes
some time before the pump delivers the required flow and pressure when it is accelerated
from a stand-by mode [16].

The nested optimization problem of this combined optimization is formulated as shown
in Fig. 5.11, where the continuous control variable γ(t) (i.e., the gear number) is deter-
mined from the discrete design parameter ig2 (i.e., second gear ratio). In this figure qs is
the system flow and qmin is the minimum flow as introduced before.

We use Sequential Quadratic Programming (SQP) to solve the plant optimization prob-
lem and Dynamic Programming to solve the clutch control problem. The selection of
gears γ(t)⊂ {ig1, ig2} is solved by

γ(t) =

{
ig1 if qs(ig2, t)< qre f (t),
ig2 if qs(ig2, t)≥ qre f (t).

(5.5)

When the second gear is sufficient to deliver the required minimum flow, this gear is
selected. Otherwise the first gear is selected. This first gear is typically oversized to
comply to worst case scenarios. For instance, for the long-haulage route used here the
required gear range is ig ∈ [0.13,0.56], which is much lower then the fixed ratio used in
the conventional system ig = 1.412.

The results of the gear design optimization problem is depicted in Fig. 5.12 where the
Brute Force (BF) search results are included as well. Fig. 5.12 shows that the plant opti-
mization cost function is convex, which ensures SQP is able to find the global optimum
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min
𝑖gb2∈𝐷

 𝑚𝑓 𝑖g2, Λ 𝑑𝑡
𝑡𝑓

0

𝑠. 𝑡. 𝑖g2 ∈ [0.2,0.8] 

Λ 

min
𝑐1 𝑡 ,𝛾(𝑡)∈𝑈

 𝑚𝑓 𝑐1 𝑡 , 𝛾(𝑡), Λ 𝑑𝑡
𝑡𝑓

0

𝑠. 𝑡.    𝑝b 0 = 𝑝b,max  

𝑝b 𝑡 ∈ [𝑝b,min, 𝑝b,max]  

𝑐1 𝑡 ⊂ {0,1} 

𝑖g1 = 1.412 

𝑝b 𝑡 = 𝐹(𝑝b 𝑡 , 𝑐1 𝑡 , 𝑡) 

𝛾 𝑡 =  
𝑖g1 if   

𝑖g2 if   

𝑞𝑠(𝑖g2, 𝑡) < 𝑞𝑟𝑒𝑓(𝑡)

𝑞𝑠(𝑖g2, 𝑡) ≥ 𝑞𝑟𝑒𝑓(𝑡)
 

𝑖g20 

𝑞min

 

Figure 5.11: Nested optimal design for the 2-speed gearbox and clutch from Fig. 5.10.

value. This behaviour can be explained by: (i) when ig2 is chosen to small, ig1 is selected
more frequently to meet the minimum ow constraint; and (ii) when ig2 is chosen too high
the fixed displacement pump delivers more flow than the required minimum flow which
increases the fuel consumption.
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qmin = 6 L/min (BF)

qmin = 6 L/min (SQP - iter.)

qmin = 6 L/min (SQP - opt.)

qmin = 8 L/min (BF)

qmin = 8 L/min (SQP - iter.)

qmin = 8 L/min (SQP - opt.)

qmin = 6 L/min (BF)

qmin = 6 L/min (SQP - iter.)

qmin = 6 L/min (SQP - opt.)

Figure 5.12: Gear design optimization using SQP Optimization and BF Search.
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Furthermore, Table 5.3 shows the required number of function evaluations, the optimal
ratio for ig2 and the resulting fuel consumptions of the combined optimization for the
three minimum flow levels.

Constraint
min. flow

Initial
value
ig20

Optimal
value

i∗g2

Function
evaluations

Combined fuel
consumption [L/100 km]

[and improvement %]
6 L/min 0.35 0.29 19 0.0495 [84%]
8 L/min 0.50 0.37 30 0.0575 [82%]

10 L/min 0.45 0.45 28 0.0656 [79%]

Table 5.3: Resulting optimal gear sizing and combined fuel consumption, for different
required minimum flows of the nested optimization.

From these results it can be concluded that the potential fuel economy improvement, that
can be achieved with the addition of a clutch for the air compressor and two discrete gears
for the power steering pump is high (reaching 84% for the most optimistic minimum
flow). In this particular case, the low torque demanded by the power steering pump
and air compressor makes that the coupling in the combined optimization is small, i.e.
the optimal control policy or design of one of these auxiliaries does not influence the
optimal solution of the other auxiliary. When the optimization problem is extended to
more auxiliaries, the coupling between the auxiliaries should be more evident. So far, the
physical implementation of a variable gear or 2-speed gearbox has not been considered.
One may envision this implementation to be done in a mechanical way, with a small CVT
or gearbox.

5.5 Conclusions

Through this chapter the integrated design problem, for sizes and control, of two en-
gine driven auxiliary units has been discussed. This has been implemented in a nested
optimization approach using a hybrid algorithm, namely a combination of SQP for the
size optimization and DP for optimal control. The optimality of the solutions found by
this algorithm is ensured. It was shown that adding a variable gear to the air compres-
sor topology does not improve the fuel consumption on sub-system level or may even
make it worse depending on the gear efficiency. However, extending the current power
steering and air compressor topologies with two discrete gears and a clutch respectively,
can reduce the combined fuel consumption of these auxiliaries significantly. A combined
optimization resulted in an improvement of about 84%, depending on the minimum ow
of the power steering system.
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To come to a system-optimal design, a combined optimization has been performed for
an alternative, more flexible topology of the engine driven power steering pump and air
compressor. The power steering topology was extended with a 2-speed gearbox. In this
topology, the first gear is used for low speed maneuvering, while the second gear is used
for highway cruising. It turned out that with this configuration, the fuel consumption
could be reduced by about 80% compared to the conventional system. Controllable ac-
tuation of a variable displacement pump was proposed as a way to compactly implement
such a 2-speed gearbox. The air compressor, as it is currently implemented, introduces
drag losses in its idle mode. Although the drag torque is relatively low, it is continu-
ously felt by the engine while the duty cycle of the compressor is only about 5%. The
combined optimization showed that adding a clutch between the engine and the air com-
pressor could reduce the fuel consumption of this auxiliary by about 90 %. Due to the
low driving torques demanded by the power steering pump and air compressor, the opti-
mal solution that resulted from a combined optimization was equal to the optimal solu-
tion resulting from individual optimizations. When more auxiliaries are included in the
system-optimization, the coupling between the different auxiliaries may be more evident.
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CHAPTER

SIX

SYNTHESIS OF REALISTIC DRIVING CYCLES
INCLUDING SLOPE INFORMATION

Abstract / This chapter describes a new method to synthesize driving cycles, where
not only the velocity is considered, yet also the road slope information of the real-world
measured driving cycle. Driven by strict emission regulations and tight fuel targets, hy-
brid or electric vehicle manufacturers aim to develop new, more energy and cost efficient,
powertrains. To enable and facilitate this development, short, yet realistic, driving cycles
need to be synthesized. The developed driving cycle should give a good representation
of measured driving cycles in terms of velocity, slope, acceleration and so on. Current
methods use only velocity and acceleration, and assume a zero road slope. The heav-
ier the vehicle is, the more important the road slope becomes in powertrain prototyping
(as with component sizing or control design), hence neglecting it leads to unrealistic,
sub-optimal or limited designs. To include the slope, we extend existing methods and
propose an approach based on multi-dimensional Markov chains. The validation of the
synthesized driving cycle, is based on a statistical analysis (as the average acceleration or
maximum velocity) and a frequency analysis. This new method demonstrates the ability
of capturing the measured road slope information in the syntesized driving cycle. Fur-
thermore, results show that the proposed method outperforms current methods in terms
of accuracy and speed.

The results presented in this chapter will be published in: E. Silvas, K. Hereijgers, H. Peng, T. Hofman and
M. Steinbuch. Synthesis of Realistic Driving Cycles with High Accuracy and Computational Speed, Including
Slope Information. Submitted for journal publication, under review.
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6.1 Introduction

Designing efficient hybrid electric vehicles (HEVs) with low ownership costs requires
detailed feasibility studies before building prototypes. In the design process of a HEV,
at least one driving cycle is necessary for evaluating its fuel consumption, emissions
and performance. Furthermore, once this driving cycle is known, one can determine the
mission of the vehicle, the optimal component sizes and the costs of hybridization. These
characteristics make the driving cycle selection an important step in the design of new
HEVs [44].

From country to country, or built by various parties, standardized driving cycles are nu-
merous and exist in two forms. Transient cycles, such as the VAIL2NREL driving cycle,
and modal cycles such as the New European Driving Cycle (NEDC), depicted both in
Fig. 6.1. The primary difference is that transient cycles involve many velocity variations,
typical of on-road driving conditions, whereas modal cycles are a compilation of con-
stant acceleration, deceleration, and possibly constant velocity segments. For example,
the NEDC consists of a succession of acceleration and deceleration segments that repre-
sent city driving (velocity up to 15 m/s) and an acceleration to highway velocity (up to 35
m/s). Modal cycles can easily highlight per-segment, vehicle performance criteria (e.g.,
acceleration or deceleration) and are often used for testing power train components (e.g.,
emission tests). Yet, since they are not very realistic, in powertrains design, transient
cycles are preferred.
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Figure 6.1: Examples of a (left) modal (NEDC), with no slope information, and (right) a
transient driving cycle (VAIL2NREL).

Since driving cycles are considerably different, a HEV optimally designed using one
cycle, will not be optimally designed with respect to another cycle. Therefore, having a
realistic cycle that reflects real-world driving scenarios, is crucial for design. To avoid
this drawback (of designs based on a single cycle), in [47–50] several cycles are used
and the sensitivity of the design is investigated. Although this is an improved approach
for the cycle selection, using two or a very limited amount of cycles, will not reach a

See Dieselnet [https://www.dieselnet.com/standards/cycles/].
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HEV design robust to all real-life driving scenarios. Moreover, when sizing and control
studies are done with optimization algorithms, as Dynamic Programming, long cycles
will increase the simulation times significantly.

To decrease the length of several cycles, in [189], micro-trips from several cycles are
combined to create a typical driving cycle, i.e., one that has certain statistical character-
istics similar to the original cycles (percentage of city, highway and suburban driving,
average speed and idling time).

In recent years, to improve the quality of the synthesized cycle speed, other methods
have been proposed [51–53]. Besides matching the driving cycle statistics, these include
also the random nature of a driving cycle. These methods are primely based on Markov
Chains and show better results than previous methods. In [54] the authors introduce a
two-dimensional Markov chain that considers also information of acceleration. How-
ever, no method so far considers information about road slope. This is an important
characteristic of the driving cycle, and neglecting it leads to unrealistic HEV designs.

In this chapter, we introduce and compare two cycle synthesis methods, which considers
also altitude information. Building upon existing methods we discuss the usability of
two-dimensional or three-dimensional Markov chains for cycle generation. Furthermore,
we use both statistical and spectral analysis, to identify good cycle candidates. As proven
by results, the proposed method can create a new cycle, representing measured cycles
well.

The remaining of this chapter is organized as follows. In Section 6.2, existing meth-
ods for driving cycle synthesis are explained. Then, in Section 6.3 a detailed descrip-
tion is presented for the used methods, based on single and multi-dimensional stochastic
Markov chain. Next, in Section 6.3 two new methods are introduced that also contain
road slope information; and, in Section 6.4 results of extensive simulations of the chosen
method are discussed. Finally, in Section 6.5, conclusions on the synthesis of driving
cycles with road slope information are drawn.

6.2 Existing Driving Cycle Synthesis Methods

In recent years several methods were proposed for driving cycle synthesis. Starting from
concatenating measured cycles [48–50], to cut-and-clip type of methods [189] and, later
on, to Markov Chain based-methods [54, 55], all methodologies have in general the fol-
lowing the structure

Step 1: Pre-processing of input (measured) cycles, i.e. segmentation into micro trips
[52, 53, 190]

Step 2: Synthesis of a new driving cycle, by using rule-based [189] or using Markov
Chains [51–54, 56, 191].
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Step 3: Validation of the results, i.e., each generated cycle, by using a statistical, spec-
tral or time domain analysis. Often a combination of multiple criteria is used.

Most often and when needed, this procedure is an iterative one as it will be exemplified
also later on. Every existing method to synthesize driving cycles that will be discussed
here, uses measured, real world, driving data as input.

Note that, given one measured cycle, Λm,

Λm =

[
v(t)
θ(t)

]
, ∀ t ∈ [0, t f ], (6.1)

with v the velocity, θ the slope of the driving cycle and t f the final time of the driving
cycle, current methods assume

θ(t) = 0, ∀ t ∈ [0, t f ]. (6.2)

Moreover, as mentioned before, some methods use also the acceleration, a(t), either
measured or found by a = dv

dt . The first and third steps are not included in all existing
driving cycle procedures, whereas the synthesis procedure is always present.

6.2.1 Data Preprocessing

Before using the real world driving data for driving cycle synthesis, in several works
the data is preprocessed. A first way to do this is by segmenting the velocity values
into different classes [51, 54]. For instance, all velocities can be segmented into discrete
velocity classes, referred to also bins, with a constant bin width. For example, for a 0.2
m/s (0.72 km/h) bins width, all v(t) ∈ [0,0.2] m/s are in the first velocity class, C1, all
velocities v(t) ∈ [0.2,0.4] m/s are in the second class, C2, and so forth. Thus, prior to
the cycle synthesis method, the velocity vector is ordered and defined as

v(t) = [[0, ...,0.2︸ ︷︷ ︸
C1

], [0.2, ...,0.4︸ ︷︷ ︸
C2

], ..., [vmax−0.2, ...,vmax︸ ︷︷ ︸
CN

]]. (6.3)

A second method to preprocess the measured driving data is to divide the original velocity
profile into microtrips. These form different modal events, such as cruising, idle time,
acceleration and deceleration, based on velocity and acceleration characteristics [52,53].
Thus,

v(t) = [

Variable bin width︷ ︸︸ ︷
[v1min , ...,v1max︸ ︷︷ ︸

Cacceleration

], [v2min , ...,v2max︸ ︷︷ ︸
Cdeceleration

], ..., [vmmin , ...,vmmax︸ ︷︷ ︸
Ccruising

]] (6.4)

The superscript 1 does not refer to ’C to the power 1’, but indicates the first velocity class
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Every modal event collection contains microtrips of the original driving cycle, having
the same velocity and acceleration characteristics, but can be different in duration (i.e.,
the bin width is variable). The process of segmenting the original driving cycle into
microtrips is usually rule-based (engineering knowledge).

A more elaborated driving condition recognition tool (DCR) is introduced in [53]. In this
method several steps are performed prior to the driving cycle synthesis step. Smoothing
of the instantaneous acceleration, computed directly from the measured velocity data,
was done using Epanechnikov density kernel smoothing algorithm [53]. This was done
to eliminate numerical differentiation errors. Next, using statistical values and a neu-
ral network, the authors apply data segmentation and classification. The microtrips are
glued together, such that parts of the original driving cycle are retained in the synthesized
driving cycle.

6.2.2 Synthesis Procedure

The different synthesis and compression processes use rule-based, statistical or stochas-
tic methods to synthesize a driving cycle that resembles the original driving cycle. Rule-
based methods rely on expert opinion and target at matching a limited number of charac-
teristics from the measured driving cycles [189, 192]. Such a criteria can be represented
by the percentages of city, suburban and highway speeds.

Statistical methods aim at matching statistical parameters on velocity and acceleration,
such as percentage time in positive acceleration, percentage of standstill time, average
velocity. The synthesis procedure of a driving cycle is based on an improvement in
matching those parameters, by connecting segments of the original driving cycle. This is
done to maintain the same characteristics as in real-world driving [193, 194].

To enhance the probabilities of the driving cycle synthesis procedure (in terms of ran-
domness and choosing an arbitrary length for the synthesized driving cycle) a combina-
tion of statistic and stochastic methods for combining different segments of a real world
driving cycle is explained in [52, 195]. Stochastic methods use Markov chain theory to
capture a model of the input driving cycles and to generate a representative driving cy-
cle. For better results, in [51] and [54] the acceleration is added as an extra dimension
for the transition probability matrix (TPM). This TPM is computed from velocity (and
acceleration) classes with fixed bin width as described in (6.3), whereas in [52] and [53]
the transition probability matrix is computed from the probabilities of segments from the
original driving cycle, as described in (6.4). In the latter two works, instead of computing
the probabilities of transitions between velocities, the probabilities of transitions between
different modal events [52] or microsegments [53] are computed. Modal events are, for
example, acceleration, deceleration, cruising, and so on, whereas microsegments are seg-
ments of real world driving, separated by consecutive stops. At every time step, instead
of using velocity values and combining them to a driving cycle, this method works with
segments of the original driving cycle. Therefore, this method generates a driving cycle
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which contains parts of the original driving cycle. Yet, it has the big disadvantage that
it does not capture the characteristics of the complete measured cycles, as done in [51]
and [54].

Thus far, the stochastic method that uses velocity and acceleration classes and generates a
purely synthetic driving cycle, from [54,196], has shown better results than other existing
methods. Likewise, using stochastically obtained Markov chain driving cycles, in [56]
it is shown that one can reach improved vehicle designs at reduced computational costs.
These results motivate the incorporation of stochastic driving cycles in HEV optimization
studies [56].

6.2.3 Post-Processing and Validation

Several different ways to validate the synthesized driving cycle exist. These are based on
the comparison of the generated cycle with the input data (measured cycles). One such
method is used in [51–53], where the distributions of velocity and optionally, accelera-
tion, within the cycle are analysed.

A second method is to compare statistical parameters of both the measured cycles and the
synthesized cycle [52,196]. For instance, these parameters are average velocity, maximal
velocity, standard deviation of acceleration, and so on. In [196] an analysis is made on
which of these are more crucial for obtaining a good synthesised cycle for HEV design.
Ultimately, as done in [51], one can analyse the power spectra resemblance of the velocity
(and optionally acceleration), between the original and synthesized driving cycle.

6.3 Driving Cycle Synthesis including Slope Information

Motivated by the existing methods and the desire to include altitude information in
the synthesized driving cycle, in this work we investigate the applicability of multi-
dimensional (multi-states) Markov chains for driving cycle synthesis. In addition, to
eliminate the rule-based approach, we apply a post-processing method based on fixed
width classes for both velocity and slope. For validation we combine all of the above
described methods (e.g., statistical analysis, spectral analysis) to select a candidate cycle,
validate the proposed method and analyse the quality of the result.

The desired outcome of a newly developed synthesis procedure is a driving cycle with a
velocity, v(t), acceleration, a(t), and road slope profile, θ(t). These characteristics are
all important in control and design studies of hybrid electric vehicles HEVs, with slope
being, especially, important for heavier vehicles. To introduce such a methodology one
should be aware of the inherited dependency between these parameters and capture this
it in the newly developed cycle.
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6.3.1 Correlation Between Velocity, Acceleration and Slope

The longitudinal dynamics of a vehicle, are given by mv
d
dt v(t) = Ft− (Fr + Fa + Fg),

where Ft represents the traction force, Fr represents the rolling resistance force, Fa rep-
resents the aerodynamic friction force, Fg represents force loss caused by gravity in non-
horizontal driving and mv

d
dt v(t) represents the kinetic force need to achieve desired accel-

eration d
dt v(t). From this it can be deducted that a change in the road angle, θ , produces

a change in Fg, which influences the vehicle speed [12].

Considering existing methods [51–53, 196] for driving cycle synthesis, two parallel syn-
thesis processes can be performed, one to synthesize a velocity profile, v̂(t), and one to
synthesize a road slope profile, θ̂(t). An example of the resulting velocity and road slope
profile is depicted in Fig. 6.2. This is an undesired, unrealistic output, since in this case
there is no dependency between v̂(t) and θ̂(t). When the road slope is positive (driving
uphill), the acceleration will be slower than for a road slope that is zero or even negative
(downhill driving). Furthermore, it is very likely that the maximum velocity is reached at
θ ≤ 0, not for θ > 0. This dependency is obvious in real-life measured cycles, as it will
illustrated later on, in our results Section 6.4. Therefore, the velocity profile and road
slope profile should be synthesized together, such that their dependency is retained in the
synthesized driving cycle.
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Figure 6.2: (Unrealistic) Example of independently synthesized velocity and road slope
profile using parallel one-dimensional Markov Chains (one for v(t) and another one for
θ(t))

.

6.3.2 Driving Cycle Models based on Discrete Markov Chains

A Markov chain is a random process on a discrete state space for which the Markov
property holds. This implies that the probability of an event to occur, given that another
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event has occurred, at any future time depends only on its value at the current time.
In other words, the future and the past are conditionally independent given the present.
The description of the present state at time fully captures all the information that could
influence the future step.

One-dimensional Markov Chain

As shown in [196] and [55], a driving cycle, Λm, defined in (6.1) can be characterized
through a discrete-time Markov chain. Thus, from here onwards, we restrict ourselves to
the discrete-time case [197]. For this, the Markov property is defined as follows.

Definition 2 Let {Xk} be a discrete-time stochastic process which takes its values in a
space S = {s1,s2, ...,sr}. Let s j ∈ S. If

P{(Xk+1 ∈ s j)|X0,X1, ...,Xk}= P{(Xk+1 ∈ s j)|Xk}, (6.5)

then {Xk} is said to be a discrete-time Markov process.

Definition 3 The probability, P, of taking a step from current state si ∈ S to a next state
s j ∈ S, denoted as Pi j, is

Pi j = P(Xk+1 = s j | Xk = si), (6.6)

All transition probabilities Pi j, ∀ si,s j ∈ S are captured in a transition probability matrix
(TPM), denoted by F. This matrix F has the property that all its entries Pi j ≥ 0 and all its
row sum (i.e., all probabilities of leaving a state) are unity,

∑
j

Pi j = ∑
j

P(Xk+1 = s j | Xk = si) = 1 (6.7)

The speed vector of a driving cycle, post-processed as in (6.3) or (6.4), will become

F =




v ∈C1 . . . v ∈CN

v ∈C1 Computed
... f rom v(t)
v ∈CN o f Λm (6.1)


 (6.8)

We denote this as a one-dimensional (1D) Markov chain that models the speed of one or
more given cycles. To compute this matrix, in the one dimensional case, the measured
velocities of various driving cycles are structured in one vector. Then, a small enough
grid is selected (as shown in 6.3) and the transition probability matrix F is computed.
The incorporation of acceleration or slope increases the dimensionality of F , and will
be discussed next. Moreover, the construction of a new cycle, using one or multiple
dimensional Markov models will be addressed in Section 6.3.4.
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6.3.3 Two-Dimensional Markov Chain

Building a driving cycle synthesis method that considers besides velocity, also slope or
acceleration, requires a 2D Markov Chain to be considered. In the 2D case, the states in
F are defined by two parameters, for instance v(t) and θ(t). Thus, every state s ∈ S is
a combination of the velocity class Cv

i and the road slope class Cθ
i . Now F contains the

probabilities to go to Cv
j and Cθ

j at the next time step.

Such a framework is applied in [55,196] to synthesise a driving cycle considering veloc-
ity and acceleration. In many real world driving cycles the acceleration is not measured
directly, but obtained from differentiating the measured velocity. Furthermore, real world
velocity signals are often measured only every second. This large sampling time leads
to an imprecise acceleration signal where specific acceleration information (e.g., the ag-
gressiveness of the driver while driving) is lost. Thus, generating an acceleration profile
is not necessary in the driving cycle synthesis method. Motivated by these, in this work
we will use a 2D Markov chain based method to capture the velocity and the slope infor-
mation, rather than the velocity and the acceleration.

Analog to (6.8), to construct F , v(t) and θ(t) from (6.1) are segmented into classes. As
motivated in Section 6.2 we assume for these fixed class width, with a predefined number
of classes N for slope and M for velocity, defined by ∆v = (vmax− vmin)/M and ∆θ =
(θmax− θmin)/N. The subscripts ()min and ()max represent the minimum and maximum
values of these parameters in Λm. The driving cycle now has M velocity classes and N
road slope classes. Every road slope value and every velocity value falls in a class Cv and
Cθ ,

v(t) ∈Cv ∈ {C1,C2, ...,CM},
θ(t) ∈Cθ ∈ {C1,C2, ...,CN}.

(6.9)

The transition probability matrix is a two-dimensional matrix F ∈ RM×N , with M rows
for the velocity classes and N columns for the road slope classes. Every element of F
consists of a (M×N) matrix containing the probabilities of going from the current state
si at tk to the next state s j, at time tk+1.

6.3.4 Selecting Synthesized Driving Cycle Samples

To synthesize a new driving cycle, Λs = [v̂(t) θ̂(t)]T , an initial state, si, and F are used to
compute future states s j. To this purpose, a Monte Carlo sampling method [198], based
on a Poisson distribution of the probabilities, is used. This Markov Chain Monte Carlo
(MCMC) technique has been successfully used in earlier driving cycle synthesis meth-
ods [51], as well as in weather forecasting (e.g., wind speed estimation models [199]).

To apply MCMC, the matrix F is transformed into a new matrix T, using two steps. First,
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all the probabilities within each element of the matrix F (i.e., Fiv,iθ ( jv, jθ ), ∀ i, j , are
transformed in a vector T̃iv,iθ ∈ R1,M×N as

T̃iv,iθ =
[[

Fiv,iθ (1,1), ...,Fiv,iθ (M,1)
]T ‖

[
Fiv,iθ (1,2), ..., Fiv,iθ (M,2)

]T ‖...
‖
[
Fiv,iθ (1,N), ...,Fiv,iθ (M,N)

]T ]
(6.10)

with ‖ representing the concatenation of two vectors. This results into a matrix T̃ in-
which each element is a vector. Then, for each element of T̃ , the cumulative sum is
determined and the vector is augmented with 0, as

Tiv,iθ (q) = [0,
q

∑
p=1

T̃iv,iθ (p)], ∀ q ∈ [1,2, ...,M ·N],

= [0, T̃iv,iθ (1), T̃iv,iθ (1)+ T̃iv,iθ (2), ...].

(6.11)

By doing this two-step transformation of the matrix F, every element in the newly ob-
tained matrix T is represented by a vector with values starting at 0 and ending at 1.
Given the construction from (6.11), it holds that the difference between two consecutive
elements of Tiv,iθ , is equal to the probability of going to this state s j in F . For instance,

Fiv,iθ (6,1) = Tiv,iθ (6)−Tiv,iθ (5). (6.12)

Therefore, the probability that a transition to Fiv,iθ (6,1) occurs, is equal to the probability
that a randomly generated number µ ∈ [0,1] falls in the interval between Tiv,iθ (5) and
Tiv,iθ (6). In Monte Carlo sampling a repeated random sampling µ ∈ [0,1] is selected to
generate new samples. When selecting µ ∈ [0,1], the first index in the corresponding row
of Tiv,iθ for which

µ ≤ Tiv,iθ (z), (6.13)

holds, is the index which should be selected, i.e., the upper limit of the interval in which
µ falls. In (6.13), iv, iθ stand for the classes (Cv

i and Cθ
i ) at the current time tk, and the

parameter z indicates the index of the sample which will be selected. Thereafter, the cor-
responding classes of jv and jθ in the next time step t j, can be derived from this index
z. For example, given a randomly generated µ ∼= 0.25, assume that the corresponding in-
dices of cell T3,7 are T3,7(37) and T3,7(38). Therefore, at tk+1, Cv

j and Cθ
j that correspond

to this index, z = 38, will be chosen. This process, of selecting a sample for driving
cycle synthesis, is graphically shown in Fig. 6.3. Converting the index of Tiv,iθ (z) into
respectively the velocity class, Cv

j , and the road slope class, Cθ
j , of the new driving cycle

sample, is done by

Cv
j = Tiv,iθ (z)−b

Tiv,iθ (z)
M

c ·M,

Cθ
j = d

Tiv,iθ (z)
N

e.
(6.14)

Fi,i is an equivalent representation of FCv
i ,C

θ
i

for a 2D Markov model;
For the velocity classes Cv, i, j ∈ (1, ..,M), while for the slope classes Cθ , i, j ∈ (1, ..,N).
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Figure 6.3: Selection method of driving cycle samples with the use of a random number
generator.

Note. In (6.14) the operators bc and de stand for floor and ceil functions, i.e. bTiv,iθ (z)
M c=

{α ∈ Z | α ≤ Tiv,iθ (z)
M } and dTiv,iθ (z)

M e= {β ∈ Z | β ≥ Tiv,iθ (z)
M }.

When Cv
j and Cθ

j are known, the new velocity value v̂ and road slope value θ̂ are obtained
from taking the average value of the lower and upper limit of the class, assuming a normal
distribution within each class,

v̂ = vavg(η),∀η ∈Cv
j ,

θ̂ = θavg(η),∀η ∈Cθ
j .

(6.15)

This procedure, to select driving cycle samples for drive cycle synthesis, is a step in the
cycle synthesis method. This complete method is depicted in Fig. 6.4 for a 2D case, and
holds for one or multi-dimensional Markov chains.

In addition to the method presented here for sample selection, updating the probabil-
ity based on the selected samples, improves the resulting synthesized driving cycle. By
doing this, for sufficiently long synthesized driving cycles, the distribution of v̂(t) and
θ̂(t) will approach asymptotically the original distribution. This update is made by sub-
stracting the transitions already selected from the transition probability matrix. Once the
update is applied, the matrix T from 6.11 is recalculated and the process is re-iterated as
shown in Fig. 6.4.

6.3.5 Cycle Evaluation and Validation

The initial state of the velocity and the road slope, si, are selected randomly from the
transition probability matrix. In this way the starting point of the newly synthesized
driving cycle is always different. The remaining instances are selected as described in
Section 6.3.4 and by Fig. 6.4. Due to the stochastic characteristic of the process, the
newly created cycle will not always end at a velocity v = 0 m/s. This can pose a problem
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Figure 6.4: Structural outline for the 2D driving cycle synthesis procedure for velocity
and slope, using a Monte Carlo sampling method and a cumulative Poisson distribution
function.

for hardware testing, as for example on a dynamometer, but should not pose a problem
for simulations. Furthermore, the process should be iterated until the synthesized driving
cycle is validated, i.e., matching the original driving cycle(s) according to predefined
requirements on similarity.

The validation of a new cycle is often done based on matching statistical parameters
between the original and the synthesized driving cycle in time domain [52, 53, 55]. Ex-
amples include parameters based on velocity (e.g., average velocity, maximal velocity,
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and so on) and acceleration. The second criteria is to compare the newly developed cycle
to the input data in frequency domain. Using the power spectral density, one can conclude
if the cycles match in the interest frequency band (< 0.2 Hz) [51].

In this work, to validate a newly developed cycle and to keep or reject a solution, we use
all the above mentioned methods. The parameters considered are:

Mean velocity va =
1
n

n
∑

i=1
vi

Standard deviation velocity sv =

√
1

n−1

n
∑

i=1
|vi− va|2

Maximal velocity vmax = maxn
i=1(vi)

Mean acceleration aa =
1
n

n
∑

i=1
ai

Standard deviation positive acc. sa =

√
1

n−1

n
∑

i=1
|ai−aa|2,∀ai > 0

Maximal acceleration amax = maxn
i=1(ai)

Maximal decceleration dmax = |minn
i=1(ai)|, ∀ai < 0

We restrict these parameters of each candidate cycle to match the ones of the measured
driving cycle within maximum 10% difference, as used also in the work of Brady et
al. [53]. This, in order to guarantee that a particular synthesized cycle satisfactorily
represents the input, real-world, driving cycle. In the works of [52, 55] these parameters
are used to analyse the synthesised cycle but not in the generation process.

Additionally, as this method considers road slope information, we introduced statistical
parameters for road slope as bellow and constrain them to match within a 15% bound.

Mean slope θa =
1
n

n
∑

i=1
θi

Standard deviation slope θa =

√
1

n−1

n
∑

i=1
|θi−θa|2

Maximal slope θmax = maxn
i=1(θi)

Minimal slope θmax = minn
i=1(θi)

Besides these parameters, to compare the 2D method to the 3D method (described in
Section 6.3.6), we analyse also computational time. Parameters such as Percentage of
idle time and Number of stops are excluded from our analysis, since they are not present
in the available measured cycle.
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6.3.6 Three-Dimensional Markov Chain

When available, besides the velocity and the slope, one can use the acceleration as an
input to the Markov chain. This requires a 3D Markov model, which can be an extended,
more complex form of the two parameter case. To construct the new matrix F , the ac-
celeration, a(t), v(t) and θ(t) information are segmented into classes Cv, Cθ , and Ca. By
choosing the number of classes M, N and O, the intervals are defined similiar to the 2D
case, by ∆v = (vmax− vmin)/M, ∆θ = (θmax−θmin)/N and ∆a = amax−amin

O . The driving
cycle now has M velocity classes, N road slope classes, and O acceleration classes. Ev-
ery velocity, every road slope, and every acceleration falls in a class Cv, Cθ , Ca and a
transition probability matrix F ∈RM×N×O can be build. Moreover, every element of this
matrix is composed of a (M×N×O) matrix again. Each of these (M×N×O) matrices
contain the probabilities of going from the curent state si at tk to a next state s j at tk+1.
An example of such a matrix is depicted in Fig. 6.5, where the probabilities for leaving a
state with classes Cv

i = 2, Cθ
i = 5, and Ca

i = 1, is shown. This matrix is denoted by F2,5,1
and from it one can observe that the probability of staying in the same velocity, road slope
and acceleration class, is the highest, namely F2,5,1(2,5,1) = 0.1538. The probability of
going to Cv

j = 3, Cθ
j = 4, and Ca

j = 2 is F2,5,1(3,4,2) = 0.0308, and the probability of a
transition to a state with Cv

j = 1, Cθ
j = 6, and Ca

j = 3 is F2,5,1(1,6,3) = 0.
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Figure 6.5: Example of three-dimensional transition probability matrix, F , from state si
to s j

To synthesise a new driving cycle, new samples are selected using the procedure ex-
plained in Section 6.3.4. Note that the dimensionality of the matrices F and T have



6.4: Results 105

increased, with each elemet of T ∈ R1,M×N×O being defined as

Tvi,θi,ai =
[[

Fvi,θi,ai(1,1,1), ...,Fvi,θi,ai(M,1,1)
]T ‖

[
Fvi,θi,ai(1,2,1), ..., Fvi,θi,ai(M,2,1)

]T ‖..

‖
[
Fvi,θi,ai(1,N,O), ..,Fvi,θi,ai(M,N,O)

]T ]
(6.16)

Sequentially, the cumulative sum is determined over all these probabilities,

Tvi,θi,ai(q) = [0,
q

∑
p=1

Tvi,θi,ai(p)],∀ q ∈ [1,2, ...,M ·N ·O]. (6.17)

By following the process described in Fig. 6.4, the index z is found with the use of a
randomly generated number µ , by µ ≤ Tvi,θi,ai(z). The corresponding classes, with index
z, of velocity and road slope are found as in (6.14) and for acceleration by

Ca
j = d

Tiv,iθ ,ia(z)
M ·N

e. (6.18)

The procedure is then completed by the steps explained in Section 6.3.4 and Fig. 6.4.

6.4 Results

Given measured cycles, to determine which method is most suitable for the construction
of a new driving cycle, in this section we compare the 2D Markov Chain based method
and the 3D Markov Chain based method.

To validate the two proposed methods, one measured driving cycle has been used, which
is representative for heavy-duty long-haul routes across Europe (Fig. 6.6). The length of
this cycle is 29282 data points that corresponds to 8.1 hours of driving (with a sampling
time of 1 second). In this cycle both the road slope and the velocity are measured.

For this analysis, v(t), θ(t) and a(t) are segmented into 50 classes, hence M = N = O =
50. For the particular input cycle this results respectively in class widths of

∆v = 0.50 [m/s], ∆θ = 0.28 [◦], ∆a = 0.072 [m/s2]. (6.19)

Next, the desired driving cycle length is chosen to be 4500 data points.

6.4.1 2D Method Compared to the 3D Method

In this section the methods described in Section 6.3.3 and Section 6.3.6 are compared
as schematically depicted in Fig. 6.7. This is done to highlight the results accuracy and
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Figure 6.6: Measured driving cycle velocity and speed profiles, in Europe, used as input
for the synthesis method.

speed of using one or another method. As explained in Section 6.3, increasing the driv-
ing cycle synthesis method, from two to three parameters, also increases the transition
probability matrices from being two-dimensional to three-dimensional. This greatly ef-
fects both the complexity of calculations and the computation time needed to synthesize
a complete new driving cycle. By averaging the results on the computation time and re-

Input Cycle(s)

2D Synthesis Method 3D Synthesis Method

Compute a(t) = d
dtv(t)

New Driving Cycle New Driving Cycle

v(t), θ(t)

v̂(t), θ̂(t) v̂(t), θ̂(t), â(t)

Compute â(t) = d
dtv̂(t)

Analysis based on

v̂(t), θ̂(t), â(t)

Analysis based on

v̂(t), θ̂(t), â(t)

Figure 6.7: Schematic representation of the compared methods.

semblance between the original and the synthesized driving cycle gives a good indication
of the performance of both methods. For each of the two methods, the resemblance of
the two cycles can be improved when performing more iterations. However, since the
process is purely stochastic, there is no guarantee that if a particular cycle generate with
one method (after q iterations) is a good candidate, the other method will also output
a good cycle in iteration q. Therefore, in this sub-section, we use three iterations for
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comparing the two methods and after every iteration the results are analysed.

In Table 6.1 the error percentage (for all the parameters introduced in Section 6.3.5)
between the measured and the synthesized cycle is shown. From Table 6.1 one can

Variable Name (Criteria) 2D Markov chain
using v(t) and θ(t)

3D Markov chain
using v(t), θ(t) and
a(t)

Mean velocity 12.66% 13.04%
Standard deviation velocity 60.71% 56.18%
Maximal velocity 1.87% 2.16%
Mean slope 1.58% 1.50%
Standard deviation slope 12.64% 16.07%
Maximal slope 5.15% 7.30%
Minimal slope 16.69% 17.32%
Mean acceleration 0.015% 0.08%
Standard deviation positive 24.36% 44.16%
Maximal acceleration 18.10% 21.71%
Maximal deceleration 24.18% 32.57%
Computation time 0.52 seconds 27.43 seconds

Table 6.1: Comparison of the 2D and 3D methods using statistical results for velocity,
v(t), slope, θ(t), and acceleration, a(t) with respect to the error percentage.

observe that not all the criteria match the 10% or 15% bounds imposed, such as Standard
deviation velocity. For that, more iterations need to be done, as it will be exemplified
next.

These results show that the 3D method is outperformed in the majority of statistical cri-
teria by the 2D parameter method. Furthermore, the computation time of the 3D method
is more than 50 times higher than the computation time of the 2D method. Therefore,
when the acceleration is not measured, a 2D method is better and faster in constructing
a synthetic driving cycle form measured cycles. To reach this conclusion we performed
further and detailed time and frequency domain analysis.

A limitation of the 3D method is given by the number of classes, M, N and O. With their
increase, the matrix T from (6.5) increases significantly, and poses computational chal-
lenges (for instance Matlab memory problems). The presence of a measured acceleration
signal, with a small enough sampling time, could possibly improve the results of the 3D
method.

The calculations have been performed by using Matlab R2013a on a 64bit system having an Intel i7-
4700MQ processor at 2,40 GHz.
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6.4.2 Enhanced Performance Analysis for the 2D Method

To evaluate further the 2D proposed method, and to find a valid synthetic cycle, the
number of road slope classes N and velocity classes M are set to 200 classes. The desired
length of the synthesized driving cycle, n, is chosen again at n = 4500. Given a measured
driving cycle of 29282 datapoints (29282 seconds) depicted in Fig. 6.6, this implies that
the original driving cycle is reduced in length by approximately a factor of six. In 5433
iterations a valid cycle is found as depicted in Fig. 6.8. In this cycle the correlation (inter-
dependency) between the velocity and slope is evidentiated. This is particular important,
since neglecting it leads to a generated cycle with a significantly higher power demand
for the powertrain.
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Figure 6.8: The velocity and the road slope of the synthesized driving cycle.

Validation Criteria Deviation Values from the Input Cycle
Mean velocity 4.69 %
Standard deviation velocity 9.15 %
Maximal velocity 0.28 %
Mean slope 1.32 %
Standard deviation slope 13.45 %
Maximal slope 0 %
Minimal slope 0 %
Mean acceleration 0.13 %
Standard deviation positive acc. 1.19 %
Maximal acceleration 7.75 %
Maximal deceleration 0.6 %
Number of iterations 5433
Computation time 104487 seconds

Table 6.2: Selection of a candidate cycle based on statistical results for velocity, v(t),
slope, θ(t), and acceleration, a(t).

Table 6.2 shows the error percentage between the measured and the synthesized cy-
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cle, where all the velocity and acceleration criteria ≤ 10% and all slope related criteria
≤ 15%. To compare further the matching of the velocity, the road slope, and the acceler-
ation of the generated and the measured cycle, in Fig. 6.9 - 6.11 the distribution of these
is shown. Furthermore,in Fig. 6.12 the power spectra for both the road slope and the
velocity are depicted. The results demonstrate the resemblance of the real-life driving
cycle with high accuracy.
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Figure 6.9: Histogram of measured and synthesized velocity using the 2D method and
iterative evaluation of candidate cycles.
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Figure 6.10: Histogram of measured and synthesized road slope using the 2D method
and iterative evaluation of candidate cycles.

This resemblance is shown also in Fig. 6.13 and Fig. 6.14, where the current velocity,
v(k), and current slope, θ(k), are depicted and compared with v(k− 10) and θ(k− 10)
(10 seconds in the past). With increasing time delay, these figures shift from a straight
line to a scatter plot between zero and the maximum velocity. The shorter the generated
cycle is required to be, the more difficult it is to obey the ≤ 15% slope related criteria.
Nonetheless, the length of the desired cycle is not the purpose of this study, and will
not be considered here. Increasing the number of classes M and N leads to a better



110 Chapter 6: Synthesis of Realistic Driving Cycles Including Slope Information

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Acceleration, a, [m/s2]

N
o
rm

a
li
ze
d
n
u
m
b
er

o
f
d
a
ta
p
o
in
ts

[-
]

 

 

Measured acceleration
Synthesized acceleration

Figure 6.11: Histogram of the acceleration (measured and synthesized) using the 2D
method and iterative evaluation of candidate cycles.
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Figure 6.12: Power spectra of the velocity (measured and synthesized) and road slope
using the 2D method and iterative evaluation of candidate cycles.

accuracy of the results, yet in the same time increases the computational time. The same
trade-off holds for choosing the synthesized driving cycle length n closer to the original
driving cycle length. Whereas in this example only one driving cycle is used as input,
also multiple driving cycles can be used as input, such that the syntesized driving cycle
contains characteristics of every input cycle.

These results demonstrate that the proposed 2D method to generate driving cycles is able
to synthesize a good new driving cycle. The outcome of the process is a synthetic driving
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Figure 6.13: Relation between current velocity and velocity 10 seconds in the past, for
the measured and synthesized cycle.
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Figure 6.14: Relation between slope and slope 10 seconds in the past, for the measured
and synthesized cycle.

cycle that represents its original in terms of time and frequency domain performance cri-
teria. Moreover, the use of acceleration, as a third parameter in the Markov process does
not bring a significant improvement in the resemblance, yet increases the computational
burden significantly (for a cycle with 1 second sampling time). The high accuracy ob-
tained with the 2D method on the acceleration performance criteria motivates the usage
of the 2D method over the 3D method even when better measurement are available (i.e,
with lower sampling time).

To further improve the results, the optimal number of velocity and road slope classes M
and N can be found. Moreover, depending on the designer, the choice of the synthesized
driving cycle length can be changed.
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6.5 Conclusions

The possibility of creating a synthetic driving cycle, short and representative of a mea-
sured driving cycle, is very important in hybrid or electric vehicle design. By using a
synthetic driving cycle, design simulation time can be significantly decreased. Moreover,
the characteristics of the driving cycle used immediately influence the size and control
parameters of the vehicle. Using a short synthetic cycle, which is representative of more
real driving cycles, eliminates the need to iteratively simulate and analyze power train de-
signs for several driving cycles, such as driving in the city or on the highway. Hence, the
use of one compact driving cycle that reflects all real-world driving, is preferred above
the use of multiple driving cycles or one very long driving cycle.

This work introduces two novel methods to synthesize a driving cycle, required as in-
put in powertrain design studies. Besides the attributes considered so far in literature
(i.e., velocity and acceleration), this methods consider also road the slope information
from the measured driving cycle. Using Markov chain theory and building upon existing
methods (Monte Carlo sampling and the cumulative Poisson distribution function), two
methods were introduced and compared using measured data. Both time domain and
frequency domain analyses were used to validate the results. In this regard, we show that
the proposed two-dimensional method is able to synthesize or compress driving cycles
fast and with high accuracy. Moreover, the method is independent of the input cycle
length or number, and it is therefore widely applicable. Further work will address the in-
fluence of this driving cycle and its specific parameters on the optimal design and control
of hybrid electric vehicles (HEV). More insight in the effect of, for example, average ve-
locity or standard deviation of velocity on the component sizes of a HEV, could improve
the robustness of HEV design and reduce the effect of cycle beating (where a vehicle is
designed based on a driving cycle that does not reflect real-world driving).
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SEVEN

CONCLUSIONS AND RECOMMENDATIONS

Abstract / This chapter reviews and discusses the main conclusions of this thesis. Based
on these, recommendations for future developments are given.

7.1 Conclusions

The research objective addressed in this thesis was to develop a design methodology that
yields an optimal hybrid vehicle with respect to imposed usability conditions and various
design targets. To design an optimal system, both the plant and its controller can be
varied. Previous approaches in literature have already presented methods and results that
addressed this challenge. In the latest and most promising approaches, the hybrid vehicle
architecture is fixed and the problem of plant and controller co-design results in finding
the optimal components sizing and control inputs. Moreover, the driving cycle used to
design and evaluate the fuel consumption was singular and region-dependent (such as the
NEDC in EU and the EPA in USA). To improve the speed and quality of the design, and
to allow the exploration of multiple vehicle configurations (topologies), we formulated
and addressed five topics of research:

O1 Identify what are the main challenges in designing hybrid electric vehicles and what
interactions between the various design levels influence the optimality of the de-
signed system.

O2 Develop a method of construction and automatic selection of hybrid topologies.

113



114 Chapter 7: Conclusions and Recommendations

O3 Investigate the potential of reducing the operational and component costs by power-
train hybridization.

O4 Analyse the potential benefits of electrification of auxiliary systems present in a ve-
hicle, such as the steering system, the air-conditioning system and so on.

O5 Build a method to synthesize a short driving cycle representative of real driving cy-
cles, in which the characteristics of speed, acceleration and road altitude variations
are accurately captured.

In what follows we will conclude on these topics independently.

O1: Interaction between the design levels in a HEV
Chapter 2 highlights four possible levels in the design of a hybrid vehicle: the gen-
eration of hybrid architectures, topology optimization, optimal sizing and technology,
and optimal control design. This is a multi-level mix-integers optimization problem that
is usually non-linear, non-convex and that has more than one optimization target. To
solve this, a designer should choose a coordination strategy and search/optimization al-
gorithms. We identified the bi-level nested strategy as the most used one, with Dynamic
Programming algorithm often used to find the optimal control inputs. This methodology
is suitable and often applied to powertrain sizing and control studies, where the coupling
is unidirectional.

O2: Automatic generation and selection of HEV topologies
To enable topology optimization studies, in Chapter 3, we presented a methodology to au-
tomatically generate (all possible and all feasible) hybrid vehicle topologies. This novel
method uses a pre-defined set of components (platform) on which functionality and cost
constraints are defined. By using these principles we define and implement a constraint
satisfaction problem over finite domains. Solving this problem reduces the enormous
original design space of 5.7 · 1045 possible topologies, to 4779 feasible topologies, all
of which are hybrid electric vehicles, with one or two electric machines. Moreover, we
analyse the resulted configurations and present trends in HEV development, highlighting
the flexibility and modularity of the method. This is an important step in enabling much
faster design studies where more cost efficient hybrid vehicles can be found.

O3: Powertrain components sizing and control
In Chapter 4, several bi-level optimization algorithms were compared to optimally size
and control a parallel hybrid heavy-duty vehicle. These included brute-force, SQP, DI-
RECT, GA and PSO for component sizing and DP as a control algorithm. The optimiza-
tion targets considered in this case study were fuel consumption and costs, which were
presented for the hybridization and the engine downsizing cases. Results show that brute
force search algorithms are too computationally expensive and insufficiently accurate,
making optimization algorithms preferable. Moreover, we show using this case study,
that only by powertrain hybridization up to 8% of fuel reduction can be achieved on a
representative driving cycle, which for long haulage heavy duty trucks is a considerable
amount.



7.2: Recommendations 115

Considering the multi-objective fashion of the problem a Pareto trade-off analysis is pre-
sented, where fuel and component cost are discussed. All algorithms performed well,
however from a computational perspective DIRECT is preferred for non-convex prob-
lems and SQP for convex problems. Further work involves increasing the design vari-
ables number (e.g., gearbox sizing optimization), the number of topologies used and the
application of more driving cycles and/or usage conditions.

O4: Potential in electrification of auxiliary systems
The hybridization of a conventional vehicle allows flexibility in the design of the auxil-
iary units. In Chapter 5, we investigated the fuel consumption of the conventional auxil-
iary units and the possibilities of hybridization. We proposed several topologies for the
power steering system and for the air compressor that can achieve, per-component, up
to 80% fuel consumption reduction. Results showed that variable discrete gears and/or
clutches, used for auxiliary units bring flexibility for control on-demand and eliminate
the high parasitic losses these components have. To arrive at a system optimal design we
further investigated the benefits of including more auxiliary units in the same optimiza-
tion problem. Using SQP and DP, we solved a nested optimization problem, to optimally
size the gear ratios and control the clutch operation and gear shifting. Depending on
the minimum flow of the power steering system, the results of this case study showed
an fuel consumption improvement of 84%, highlighting the benefits of more integrated
system-level design.

O5: Driving cycle synthesis
To eliminate cycle-beating, powertrain designs are iteratively simulated over multiple
driving cycles and the results are analysed, which increases simulation times signifi-
cantly. Moreover, most available driving cycles do not contain road slope information.
In Chapter 6, we introduce a method based on Markov chains, that synthesizes a new
driving cycle of a length chosen by the designer. As input, this method requires at least
one measured driving cycle. Additional to existing methods, this method synthesizes a
driving cycle in which the slope is also considered and is correlated to the velocity pro-
file. Results show that by using the proposed two-dimensional Markov Chain method,
one can synthesize or compress driving cycles fast and with high accuracy. The charac-
teristics of the generated cycle match within 10% for the velocity and accelerations and
within 15% for the road altitude. Moreover, the method is independent of the input cycle
length or number, and it is therefore widely applicable.

7.2 Recommendations

This thesis has addressed various topics in the field of optimal design of a hybrid vehicle.
Through this study some relevant lines of future research have been identified and are
discussed next.
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Algorithms and optimization frameworks for HEV design
The choice of topologies to be analysed, so far, has been mainly dictated by practical
experience rather than by a topology optimization procedure. A computational tractable
method for combined topology and component sizing optimization of the plant design
is an open research question. Furthermore, using optimization algorithms, to solve dif-
ferent optimization layers, have proven beneficial for design. These could be further
used, in more extended coordination methods to include the selection of topologies and
technologies. For instance, these extended coordination methods might include: (i) (si-
multaneous topology and sizing design) alternating with controller design; (ii) controller
design nested with respect to simultaneous topology and sizing, (iii) topology alternating
with sizing alternating with control; or (iv) simultaneous topology, sizing, and control
design.

Optimal plant and control design for HEVs
In Chapter 3, a method to find topologies was introduced. It has been shown that, as
a result of introducing new components the set of solutions increases significantly, yet
no conclusion was drawn on their fuel or cost efficiencies. How to find the optimal
topology, in an (more) automatic way, from multiple topologies with a large variety in
the components types and numbers, remains an open question. Further, the topology
automatic construction and optimization problem creates challenges in the control algo-
rithm development that has to handle various topologies in an automatic way. In this
respect, easy-to-use methodologies must be developed, to help developers, and industry
in general, to reach better designs in the early steps of HEV development process. These
holistic design methodologies are crucial for creating market-competitive vehicles, that
are suitable for our continuously changing mobility sector.

To reach the optimal system-level design and to make the results more realistic, besides
designing the main components of the power train (i.e., battery pack, electric machine
and engine), the variation of other sub-components can also be integrated in design stud-
ies. Several case studies have been show in Chapter 5 and Appendix A for auxiliary
systems, but these should be further extended. One direction here is to investigate the
implementability of these novel proposed architectures. Another direction is to integrate
more auxiliary units, the transmission or other components in the design study.

Driving cycles synthesis
A short realistic cycle can be generated as shown in Chapter 6 and can decrease the sim-
ulation times tremendously. Further work should investigate the influence of this driving
cycle and its specific parameters on the optimal design and control of a hybrid electric
vehicle (HEV). More insight in the effect of, for example, average velocity or standard
deviation of velocity on the component sizes of a HEV, could improve the robustness of
HEV design and reduce the effect of cycle beating.



APPENDIX

A

TOPOLOGY OPTIMIZATION STUDIES FOR THE
POWER STEERING SYSTEM

A.1 Optimal Design of Steering Systems

For the truck considered here, in [153] the power consumption of the auxiliary units is
presented and can add up to 4% for a long-haul predominant usage. Figure A.1 shows
the six possible configurations that have been build for the steering system based on a
given set of components (i.e., EM, ICE, planetary gear set, alternator and belts/gears).
Each configuration is represented by a certain color/lines characteristics and present the
following working principles: (1) combustion engine directly driven Hydraulic Steering
(fixed displacement) Pump (H-SP), (2) Electro-Hydraulic Power Steering (EH-PS), (3)
power Split Hydraulic Steering Pump (SH-PS), i.e. the combination of H-SP and EH-PS
via a planetary gear set, (4) Electro-Hydraulic in combination with a Hydraulic Power
Steering (EHH-PS), (5) Electric assisted Hydraulic Power Steering (E-H-PS) and finally
(6) Electric Power Steering (E-PS).

In a EHH-PS topology, a H-SP can be combined with a EH-PS to lower the fuel con-
sumption at higher speeds at the expense of fuel consumption at low speeds. To ease the
understanding of Figure A.1, the SH-PS topology is depicted in Figure A.4 from Section
A.4, which enables the same functionality as the EHH-PS system, but requires only one
pump. Introducing a battery pack to supply electric power is also possible, yet this is
not considered here as it would increase the design space for the plant and the controller
design. For reasons of comparison, in all cases, the electrical power is generated by a
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Figure A.1: Overview of the six possible topologies (one per line type) for the steering
system

belt driven alternator with a constant efficiency of ηa = 0.70, for the alternator; and,
ηb = 0.80, for the belt is assumed respectively.

A.2 Optimization Problem

The objective of each configuration is to minimize the fuel consumption, denoted as Φ,
(or produced CO2 emissions) over a representative drive cycle, Λ ⊆ R3×n, defined as
Λ = [s(n) d(n) v(n) c(n)]T and consisting of n = [1, t f ] data points, where s(·) is the
slope, d(·) is the distance, v(·) is the speed, c(n) is the curvature and t f is the final time
value of the driving cycle. Next, the sizing and control optimization problem can be
defined, in the most general sense, as a co-design problem defined in [200, 201],

min
xc,xd⊆X ⊆R1×n

J = min
xc,xd⊆X

∫ t f

0
Φc,d(xc(t),xd)dt,

s.t. gd,c(xc(t),xd)≤ 0,
hd,c(xc(t),xd) = 0.

(A.1)

Here (·)d denotes a parametric sizing variable and (·)c denotes a control variable. De-
pending on the topology, the design variables (xc,xd), detailed in Table 1, and the objec-
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tive to be minimized, Φc,d , are

xc = { fh, fn}, (A.2)
xd = {i1, i2,Pe,z, l,A}, (A.3)

fd,c = Φ(xc,xd) = ṁ f , (A.4)

fd,c : R1xn×R1xn 7→ R1xn, (A.5)

with ṁ f the fuel mass flow ratdde.

Table 1. Optimization Design Variables
Design variable Symbol Units
Fixed gear ratio (ICE-pump) i1 −
Electric machine rated power Pe kW
Fixed gear ratio (EM-pump) i2 −
Fixed gear ratio PGS z −
Ball-screw lead l m/rev
Steering house piston area A m2

Min. const. flow on highway fh L/min
Min. const. flow on national roads fn L/min

In Table 2 the set of design variables, for each topology, are depicted. The set of inequal-
ity constraints, gd,c, and equality constraints, hd,c, are dictated by the physical properties
of the system and they must be defined for each configuration in Figure A.1. An exam-
ple, for a complex topology is shown in the results section. When xc 6= /0 the output flow
( fh and fn) of the electrically driven pump can be varied. For example, when there is
no input at the steering wheel while driving on the highway, the flow can be reduced in
order to save energy.

Table 2. Design Variables for each topology
Variable i1 Pe i2 z l A fh fn
Topology 1 �
Topology 2 � � � �
Topology 3 � � � � � �
Topology 4 � � � � �
Topology 5 � � � �
Topology 6 � � �

Ideally, this problem can be solved by a simultaneous optimization problem which, if any,
will provide the global optimum value for the control and sizing parameters searched at
the cost of high computational time. Here, next, this problem is split into a nested (bi-
level) optimization problem, concept defined by [71], where the optimal sizing is solved
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by

min
xd⊆X ⊆R1×n

Jd =

min
i1,i2,Pe,z,l,A⊆X

∫ t f

0
ṁ f (i1, i2,Pe,z, l,A)dt,

s.t. gd(i1, i2,Pe,z, l,A)≤ 0,
hd(i1, i2,Pe,z, l,A) = 0,

(A.6)

and the control problem is solved by

min
xc⊆X ⊆R1×n

Jc = min
fh, fn⊆X

∫ t f

0
ṁ f ( fh, fn)dt,

s.t. gc( fh, fn)≤ 0,
hc( fh, fn) = 0.

(A.7)

To avoid the optimization algorithm getting stuck in a local minimum, a derivative free
optimization algorithm is most suitable for these design problems. The downside of these
algorithms is that they generally require (very) large computation times. To overcome the
problem of (non)convergence of the global optimal solution, for the sizing problem, we
solve (A.6) using a brute-force search over the design vectors. Then, with the same ap-
proach, in a nested manner, for each chosen set of xd the control problem is solved for
a discrete grid of fh and fd . When using a brute-force search method the design space
is subdivided into an equidistant grid for each dimension and the objective function is
evaluated for all feasible points in this grid. Although this method will not provide as
output, the true global minimum, it will enable one to make a comparison between dif-
ferent designs. Moreover, the method is straightforward, suitable for low-dimensional
optimization problems where only indicative values are require and represents a good
starting method to fully understand the complexity of the problem. Given the high num-
ber of design variables, insights on the optimal design problem should be given in a
Pareto distribution form. This offers insight into the optimal design set and leaves a
certain degree of freedom to the designer as-well.

A.3 Modeling of Power Steering Topologies

In general, there exist three types of pump models: (i) empirical models, based on mea-
sured data, are particularly useful when an accurate representation of a particular, existing
pump is required, (ii) physical models, sometimes less accurate for a particular pump but
more uniform, and hence more useful for new pump development, and (iii) analytical
(or coefficient) models, that can be seen as a combination of the first two. In this latest
model type only a limited amount of measurement data is used to determine coefficients
that result from physical relations.
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Due to limited amount of available data from the real pump, here, the analytical models
will be built that include both leakage losses, (caused by the small gaps between the vanes
and the housing) and torque losses, Tl , (induced by friction). The required, effective
torque, Te, and the hydro-mechanical efficiency, ηhm, of the pump are defined by

Te = Ti +Tl , (A.8)
ηhm = Ti

Te
, (A.9)

where Ti is the ideal pump torque, a function of pressure and angular speed. The amount
of leakage flow, ql , and friction torque (and therewith volumetric and hydro-mechanical
efficiency) depend on operating conditions, i.e.

ql = ql(∆p,ω,θ , p,µ, ...),

Tl = Tl(∆p,ω,θ , p,µ, ...),
(A.10)

where ∆p is the pressure difference across the pump, θ is the operating temperature and
µ is the dynamic viscosity of the fluid.

The hydro-mechanical efficiency, ηhm, and the total efficiency from mechanical to hy-
draulic power, ηtot , are further deduced from a four-pole notation as

Pm = T ·ω (A.11)
= ∆p ·1/ηhm ·D ·ω, (A.12)

ηhm =
∆p ·D

T
, (A.13)

Ph = ∆p ·q (A.14)
= ∆p ·D ·ηv ·ω, (A.15)

ηtot = Ph/Pm (A.16)

=
∆p ·D ·ηv ·ω
∆p · 1

ηhm
·D ·ω

(A.17)

= ηhm ·ηv, (A.18)

where Pm is the mechanical input power, Ph is the hydraulic output power of the pump,
D is the instantaneous displacement volume and ηv is the volumetric efficiency. Next,
this structure, consisting of a volumetric and a hydro-mechanical efficiency, is used to
describe the fixed displacement pump for all topologies. Results for modeling and vali-
dation of a fixed displacement pump have been shown by the authors in [153].

Mathematical descriptions of these PS systems are build and validated. Scaling of the EM
is done using linear scaling. When there are no variables to be controlled, the optimal
design problem boils down to a one degree of freedom optimization problem (PSP, E-
HPS and EPS topologies).

For each topology, the solution to the design optimization problem depends on the duty
cycle of the PS system. Sequentially, the duty cycle is drive cycle dependent and there-
fore the optimal solution for inner city driving will not always equal the optimal solution
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for highway driving. For the results presented here, focused on long-haul usage, a mixed
cycle measured on a fully loaded tractor-trailer is used, that combines various road seg-
ments, with a predominant (85%) highway driving.

A.4 Simulation Results

A.4.1 Variable Flow Control for the Hydraulic Pump

The EH-PS, SH-PS and the EHH-PS topologies enable a controlled oil flow, which means
that the output flow of the electrically driven pump, φ , can be varied depending on driving
conditions. For example, when there is no input at the steering wheel while driving on
the highway, the flow can be reduced in order to save energy. The minimum flow ( fh, fn)
at certain driving conditions is restricted by safety reasons as it takes some time before
the pump delivers the required flow and pressure when it is accelerated from a stand-by
mode. Since the flow reduction capability is an important benefit of these topologies, it
has been included by means of different use cases. In the first three use cases, the flow is
varied when driving on highways and national roads as: (flow I) fh = 11, fn = 16, (flow
II) fh = 6, fn = 16 and (flow III) fh = 6, fn = 11 . On the drive cycles that are used for the
simulations, these flows are sufficient throughout the cycles. The fourth use case serves
as a lower bound of what is achievable when the flow could be varied exactly according
to the steering wheel input. This use case (flow IV) is applied on all the drive cycles and
can be described mathematically as

φ =

〈
φr, for φr > 6 L/min;

6 L/min for φr ≤ 6 L/min, (A.19)

with φr the required flow.

A.4.2 Pareto Analysis per-Topology

For the first given topology (H-PS), the results for using this method are graphically
depicted in Figure A.2, where one can observe that the lowest feasible gear ratio results
in the lowest average fuel consumption. As this topology has no control freedom, solving
(A.1) boils down to a one degree of freedom optimization problem (A.2), with xd = {i1}
and an active constraints given by

qmin−D · i1 ·ωi + kl · psh ≤ 0, (A.20)

where qmin is the minimum flow, ωi is the CE idling speed, psh is the steering house
pressure and kl is the leakage flow coefficient. For this optimization the grid size per
dimension is 20 and the simulation time is 15 minutes. The minimum flow at certain
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driving conditions is restricted by safety reasons. It is assumed that variable flow can
only be applied when driving on highway or national road, since on other roads the
steering duty cycle is much higher. When more variables are to be optimized a Pareto
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Figure A.2: Pareto front for optimal gear selection in the H-SP Topology

frontier set for the design solutions can be found. This implies that it is impossible to
chose for a more optimal solution for one design variable without making another design
variable worse. Such a result is depicted in Figure A.3 for the second topology, EH-PS.
This tradeoff is by itself a result and can help in creating a prediction of how would
the fuel consumption change with an increase in the gear ratio or the motor power. For
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Figure A.3: Optimal size selection of the EH-PS topology with respect to optimal fuel
consumption

this case, one could observe that with an increase of EM power also an increase in the
gear used is required in order to keep the low fuel consumption. When these results
are compared to the fuel consumption of the conventional PS system, it shows that the
EH-PS system is only beneficial when variable flow is applied intensively (flow IV). In
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more detail, the dual energy conversion reduces the overall efficiency, and the electric
motor has to be sized such that it can deliver enough power at the worst case scenario,
i.e. high steering pressures, while mostly the required hydraulic pressure is much lower.
This implies that the torque demand on the EM is relatively low most of the time and the
EM is not operated in its high-efficiency region. The resulting average efficiency of the
electric motor/controller is 30% for this use case. For this reason, the hybrid topologies
are advantageous solutions as an efficient engine driven pump is combined with variable
flow.

A complete sizing example for the optimal design problem can be built for the complex
topology SH-PS depicted in Figure A.4, as

min
i1,i2,Pe,z⊆X

∫ t f

0
ṁ f (i1, i2,Pe,z)dt,

s.t.

qmin−D(
z+1

z
i1ωi−

1
z

ωui2)+ kl psh ≤ 0,

Tr
i2
z
−Tuηiηpgs ≤ 0,

(z+1)ωc− zωr

i2
−ωu ≤ 0.

(A.21)

Here ωu is the maximum electric motor angular speed, Tr is the required pump torque, Tu
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Figure A.4: Schematic representation of the SH-PS topology from Fig. A.1

is the maximum electric motor torque, ωr is the required pump speed, ηi is the efficiency
of the fixed i2 gear and ηpgs is the efficiency of the planetary gear set. These three
constraints define the feasible design space for this topology. Solving (A.21) for xd =
{i1(k), i2(k),Pe(k),z(k)}, where k is the number of grid points per dimension yields xd =
{0.38 0.34 4.8 7.6}. This subset of the attainable set is called a Pareto set and consists
of Pareto optimal points. A point xdχ

⊆X is Pareto optimal if and only if there is no
other xd ⊆X such that xd < xdχ

, in this case with an extra (equality) constraint that
fixes the planetary gear ratio. From this Pareto plot, one can conclude that there is a
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range of planetary gear ratio’s within the attainable set X resulting in about the same
fuel consumption. Therefore the planetary gear set can be chosen according to secondary
aspects, such as availability or packaging restrictions. Because of the large flexibility in
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Figure A.5: Pareto graph for the optimal planetary gear ratio, z, in the SH-PS topology

gear combinations it is not known what combinations are likely to result in a low fuel
consumption. Therefore, the design space of the planetary gear set was chosen according
to constructional (in)feasibility.

A.4.3 Comparison of the Six Topologies

The comparison of these 6 topologies for all defined oil flows and the optimal set xdχ
⊆

X is depicted in Figure A.6. When variable flow is applied intensively on all roads
(use case IV), the fuel consumption of the EHH-PS may even be reduced by up to 80%
compared to the conventional system. The simulation time to simulate one complex
topology (e.g., SH-PS) goes up to 7 hours and 30 minutes. The benefit of E-PS, enabling
true steering on demand, makes this solution very attractive for passenger cars but cannot
overcome the arising issues when E-PS is applied to heavier vehicles. First, the required
power to drive the electric motor has to be delivered by the battery and second, the
the electric motor has to be powerful enough to steer the wheels at vehicle standstill.
This would require a very high torque output and might also bring a weight increase
when compared with its hydraulic counterpart. The brute-force search showed that the
analyzed E-PS topology is not feasible for a conventional truck, having a 24 V battery.
An E-H-PS could be a good alternative, combining the benefits of ’power on demand’
with the conventional hydraulic steering system. The resulting benefit of this topology is
not impressive since the of the pump is still sized for the worst case scenario. Another
benefit of E-H-PS topology is that the piston area of the steering house can be reduced,
such that less oil flow is required. Compared to the H-SP topology, the average fuel
consumption has been reduced by 15% with the use of a 2.4 kW motor.
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Figure A.6: Influence of the minimum flow for different topologies

From Figure A.6 one can conclude that, for all topologies, lowering the minimum flow
improves the fuel efficiency. The topologies and the approach shown here offer both
insights on the functionality of the system and enable the visualisation of trade-offs be-
tween choosing one or another value (see Figures A.2, A.3 and A.5) for different param-
eters explained in Table 1. The results show that, depending on the duty cycle, complex
topologies can reduce fuel consumption by more than 80% when compared with conven-
tional, hydraulic steering systems. Moreover, they can also enable functions as start/stop
and zero emission driving. These benefits are achieved also due to the possibility to con-
trol the oil flow and they can be improved with the decrease of the minimum constant
flow.
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