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Abstract 

“System design oriented methodologies” are discussed in this paper through the comparison of 
multiobjective optimization methods applied to heterogeneous devices in electrical engineering. 
Avoiding criteria function derivatives, direct optimization algorithms are used. In particular, 
deterministic geometric methods such as the Hooke & Jeeves heuristic approach are compared with 
stochastic evolutionary algorithms (Pareto genetic algorithms). Different issues relative to 
convergence rapidity and robustness on mixed (continuous/discrete), constrained and multiobjective 
problems are discussed. A typical electrical engineering heterogeneous and multidisciplinary system 
is considered as a case study: the motor drive of an electric vehicle. Some results emphasize the 
capacity of each approach to facilitate system analysis and particularly to display couplings between 
optimization parameters, constraints, objectives and the driving mission. 
 
Keywords : Heterogeneous systems, design, optimization, evolutionary algorithms, Hooke & Jeeves, 
electric vehicle. 

 
I. Introduction 
 
Today, an overall viewpoint in the design of devices, a so called "system approach", is imposed by 
couplings between physical fields and the existence of multiple interactions between sub-systems. 
Indeed, concerning static and electromechanical converters or control systems, numerous design issues 
are more and more mastered when each element is separately designed. However, where the system 
design of heterogeneous devices is concerned, global optimization with respect to multiple objectives 
is useful and often necessary to achieve the best trade offs.  
This paper then concerns the multiobjective optimization of electrical engineering systems by direct 
methods not related to the analytical calculation of the gradient. These techniques are applied to the 
drive part of a typical electric vehicle. 
After a state of art classification of optimization methods is proposed, two completely different direct 
optimization methods are described in section III. To compare these approaches, we propose to apply 
them to a typical case study in electrical engineering: the embedded part of an electric vehicle. For that 
purpose, a system oriented modeling is presented whose characteristics (accuracy, validity domain) are 
directly linked to the optimization problem. The parameters (supply voltage, switching frequency, and 
geometrical motor parameters) can be fitted to all parts of the system with the view to obtaining a 
global optimum. The considered objectives are based on system losses, embedded mass and the cost of 
filtering devices. 
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This case study is strongly non-linear. Thus, considering that the process can not be analytically 
derived, the objectives and the constraints have to be evaluated in a simulation procedure. The use of 
direct optimization methods then appears to be suitable to this problem.  
In the last section, a deterministic geometric optimization algorithm (i.e. the Hooke and Jeeves 
algorithm [1]) is compared with a global and stochastic evolutionary algorithm (i.e. the second version 
of the Non-dominated Sorting Genetic Algorithm [2]). Some optimization results obtained with Hooke 
and Jeeves are presented. It enables underlining couplings between sub-systems which constitute a 
significant issue of the system analysis. They also show the interest of a global approach in the design 
of electrical engineering systems. 
Finally, several performance issues are discussed and compared such as implementation costs 
(normalization and aggregation of objectives, constraints handling), the spread of optimal solutions in 
the objective space and the accuracy of results. 
 
II. Multiobjective Optimization Problems 
 
Multiobjective optimization seeks to simultaneously minimize n objectives where each of them is a 
function of a vector x of m parameters (or design variables). These parameters may also be subject to k 
inequality constraints, so that the optimization problem may be expressed as :  
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For this kind of problem, objectives typically conflict with each other. Thus, in most cases, it is 
impossible to obtain the global minimum at the same point for all objectives. Therefore, the problem 
has no single optimal solution but a set of efficient solutions representing the best trade-offs. These 
solutions consist of all design variable vectors for which the corresponding objective vectors cannot be 
improved in any dimension without disimprovement in another. They are known as Pareto-optimal 
solutions in reference to the famous economist. Mathematically, Pareto-optimality can be expressed in 
terms of Pareto dominance. Consider two vectors x and y from the design variable space. Then, x is 
said to dominate y if and only if [7] : 
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All design variable vectors which are not dominated by any other vector of a given set are called non-
dominated regarding this set. The design variable vectors that are non-dominated over the entire 
search space are Pareto-optimal solutions and constitute the Pareto-optimal front. 
 

III. Multiobjective optimization Methods 
 
Multiobjective optimization methods aim at finding one or multiple Pareto-optimal solutions to a 
particular optimization problem. Various multiobjective approaches can be used to guide the Decision 
Maker to a final solution among the Pareto-optimal set. A classification of these approaches is given 
below. 
• A priori approaches (decide → search) for which the decision maker combines the different 
objectives into a scalar function then searches for only one Pareto optimal solution using single-
objective optimization methods. In particular, we will see how the geometric algorithms presented 
hereafter are based on an aggregation of all objectives. 
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• Progressive approaches (decide ↔ search) for which decision making and optimization are 
intertwined. The preferences of the decision maker are sequentially updated; 
• A posteriori approaches (search → decide) for which the decision maker is presented with a set 
of efficient candidate solutions and chooses from that set. Pareto based Evolutionary Algorithms 
considered in this paper can be classified in this branch. 
For optimization of heterogeneous systems, a fully analytical derivation is difficult, sometimes even 
impossible. Furthermore, electrical engineering systems include devices such as static or 
electromechanical converters whose noise level cannot be neglected. For both reasons, we have 
chosen to use direct search optimization methods to avoid numerical differentiation of objectives. In 
particular, we compare two opposite techniques in terms of decision making and optimization 
procedure (see Fig.1). 
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Fig.1: Investigated optimization methods 

III.1. Multiobjective optimization with deterministic geometric algorithms and 
objective aggregation  

 
The pattern search method of Hooke and Jeeves (HJ) [1] has been tested as geometrical method. Its 
principle involves two successive steps: 
• The exploration step: From an initial parameter vector x0 (i.e. the reference point in parameter 
space), the algorithm processes an exploration search, displacing each parameter one by one with an 
increment (+i) while other parameters remain fixed. If the cost (i.e. objective) function is decreased 
(i.e. improved), then the new value of the parameter is preserved. On the contrary, if the objective 
function is disimproved, a negative increment (-i) is proposed to move this parameter; if both 
increments (+i and -i) do not offer any improvement of the objective function, each parameter 
remains unchanged. At the end of the process, each component of the parameter vector has been 
moved at least once and the cost function must be either decreased or unchanged. In this latter case, 
the process is reiterated with a smaller increment (typically i/2). 
• The extrapolation step: when the exploration step is successful (i.e the objective function has been 
decreased by at least one positive or negative increment i) a new point xe is obtained and used with 
the last reference point to define the new reference point as follows: 

 00 2 xxx  e  (3) 

These steps are iterated until all increments i have reached a given accuracy.  



 

4 

In addition, we have to face a multiobjective problem [4]. It is advisable to scale the objectives so that 
they vary between 0 and 1 (see Fig. 2). 
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Fig.2: Objective scaling 

Note that the same process applies for design variables and scaled parameters must be replaced by 
their physical values after the optimization step (i.e. physical process earlier represented in Fig 10). 
Moreover, searching minimum fjmin and maximum fjmax function values may require as many single-
objective optimizations as objectives. Aggregating each objective can be made by using weighting 
coefficients (j) to achieve a global quality function.  
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where n denotes the number of objectives. Generally, and more especially as electrical engineering 
heterogeneous systems are concerned, many constraints must be handled in non-linear programming 
problems. The Constrained Problem (CP) can be transformed into an Unconstrained Problem (UP) 
using the exterior penalty method (see Fig.3). 
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Fig.3: Transformation of a constrained problem (CP) into an unconstrained problem (UP) using the exterior penalty method 

 
A simple heuristic to calculate penalty coefficients (r) has been put forward in [5] to increase the 
algorithm robustness. Using this procedure, a scalar objective function (x) which integrates all 
constraints is then obtained and constitutes the input of the optimization procedure.  
 
III.2. Multiobjective optimization with Pareto Genetic Algorithms 
 
Contrary to the previous approach, Pareto Genetic Algorithms (GAs) lead to a formulation of the 
optimization problem without aggregating and normalizing objective functions. In the same way, 
integration of constraints is done independently of objective functions. GAs have been applied 



 

5 

successfully to solve multiobjective optimization problems [6], [7]. Multiple solutions can be explored 
in parallel thanks to selection and evolution operators [8], [9]. Standard GAs can be modified to find 
the Pareto-optimal front of a multiobjective problem by using a specific selection method based on 
Pareto dominance rules (typically based on (2)). For constraint problems, these rules are generally 
extended to characterize the dominance of a candidate solution in relation to another solution of the 
search space. In our work, constraints are taken into account as follows: 
• if the two candidate solutions are non-feasible, the Pareto-dominance is evaluated in the 
constraint space;  
• if the two candidate solutions are feasible, the Pareto-dominance is evaluated in the objective 
space; 
• if one candidate solution is feasible and the other not, the feasible solution dominates the non-
feasible solution. 
From a randomly initialized population (i.e. set of individuals), a Pareto GA evaluates the non-
dominated solutions and preserves them in a specific archive (non-dominated set). For each 
generation, Pareto tournaments are used to select individuals from the archive to create the mating 
pool (parents of the current generation). Parents are crossed and mutated [8] to explore new solutions 
(children of the current generation). In this way, the population of children and the archive are merged 
to assess the non-dominated set of the next generation. If the number of non-dominated individuals is 
higher than the size of the archive, a clustering method is used to preserve most representative 
solutions and eliminate others in order to keep a constant archive size. Note also that niching is used in 
the selection scheme when individuals involved in a tournament have the same Pareto dominance 
ranking. The structure of a Pareto GA is depicted in Fig. 4. 
 

archive
(non-dominated set) 

Selection + Niching

Mating pool
(parents) 

archive
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Fig.4: Structure of a Pareto GA (one step generation) 
 
In this work, we have used a particular Pareto GA, which is the second version of the Non-dominated 
Sorting Genetic Algorithm (NSGA-II). This algorithm is based on the principles of Pareto GA’s 
previously explained. In the NSGA-II, selection is performed with Pareto ranking tournaments 
associated with a crowded comparison operator to induce niching in the objective space. NSGA-II 
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determines all successive fronts in the population (the best front corresponding to the non-dominated 
set). Moreover, a crowding distance is used to estimate the density of solutions surrounding each 
individual on a given front. In a tournament, if individuals belong to the same front, the selected 
individual is the one with the greater crowding distance. This niching index is also used in the 
clustering operator to uniformly distribute the individuals on the Pareto-optimal front. All details of 
this algorithm can be found in [2]. We have suggested some adaptations [10], more particularly 
devoted to increase the robustness from a self-adaptive recombination scheme used for crossover 
operators. 
 
IV. System Modeling and Requirements 
 
A representative electromechanical device has been chosen as a case study in order to discuss the 
interest of optimization methods for the system design in electrical engineering. This section also 
allows emphasizing the complexity of establishing a whole model valid inside the overall parameter 
range and achieving a trade-off between low cost computation and accuracy respecting physical 
meaning: based on this trade-off “just enough accurate modeling” must be defined. For that purpose, 
we have selected the device represented in Fig.5, whose behavior is relatively well known and which 
allows understanding relations between system parameters, constraints, design objectives and the 
driving mission. Thus, we have considered an assembly including a battery supply, a low-pass input 
filter, a Voltage Source Inverter (VSI) feeding a PM brushless synchronous machine with trapezoidal 
electromotive forces (e.m.f) driving a mechanical load through a gearbox (speed reducer). This system 
is rated for a typical full electric vehicle application even if its modeling is simplified. This process is 
specified and optimized for a given driving mission (a urban mission has been chosen) that defines a 
speed reference and a loading torque (see Fig.6). 
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Fig.5: Synoptic of a the motor drive part of an electric vehicle 
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Fig.6: The urban driving mission 
 

IV.1. Definition of a urban driving mission 
 
An urban mission has been chosen to optimize this system. The vehicle speed is not greater than 50 
km/h. A speed control loop which “simulates” the driver is included to impose the speed cycle 
represented in Fig. 6. 
 
IV.2. The Battery Model 
 
Being the most commonly used in electric vehicles, a pack of 160Ah lead acid battery is considered 
[18]. The model is simplified to be compatible with a global optimization process. One simplification 
hypothesis deals with the internal resistance which can be considered as constant if the discharge 
depth is limited to 75%. Based on the vehicle requirements (see Fig.6) and on an average system 
efficiency, a preliminary analysis shows that 20kWh of energy are required for one hour of operation, 
which involves a minimum of 57 elementary cells. Given that an integer number of cells must be 
placed in a serial/parallel architecture, a variable DC voltage causes a non-linear variation of the cell 
number as illustrated in Fig 7.b. 
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Fig.7: (a) Battery model and ratings  (b) Number of cells versus DC voltage 
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IV.3. The Input Filter 
 

If the circuit model of the input filter is rather simple, its sizing is more complex when variable 
switching frequency, DC voltage and current have to be automatically handled during the convergence 
of the optimization procedure. Indeed, it is demanded that this element remains stable throughout the 
parameter range. But it is not a priori certainty since the torque controlled drive leads to drawing a 
constant power at a given speed, which can provoke instability of such systems. Furthermore, the 
rating of filter parameters is tuned on line with respect to constraints on the capacitor voltage and 
inductance current ripples. The oscillations constraints (6), (7) should be added with a frequency 
constraint (5): indeed, a sufficient ratio is demanded between the filter frequency and the switching 
frequency of the VSI (fCVS). For the considered modulation mode (see section IV.4), these constraints 
can be analytically derived: 
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where Ich denotes the motor current amplitude. 
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A sufficient k  factor must be chosen to ensure the filtering quality. The choice of L and C values 
results from the waveform quality requirement. 

Finally, a global cost of the input filter devices can be estimated regarding the cost / energy ratio: 
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In fact, it is necessary to consider the input filter related criteria in order to establish a trade-off with 
the constraints of (5), (6), (7). 
 
IV.4. The VSI fed PMSM Motor with Trapezoidal EMF 
 

A Permanent Magnet Synchronous Motor (PMSM) with trapezoidal electromotive forces (emf) is 
considered. This kind of motor drive is widely used in traction applications due to its efficiency and its 
simplicity (low cost mechanical sensors…). In such a structure, 120° rectangular currents must be 
imposed by the control unit. We have chosen a one transistor modulation which leads to minimizing 
switching losses and current ripple in the inverter. In order to simplify the model and to make it 
compatible with a system optimization procedure, space harmonic effects have been neglected in the 
machine. This latter hypothesis is acceptable with magnets whose shape perfectly creates trapezoidal 
emf. In the same way, current switching times (120° currents) are neglected, so that the PMSM 
behavior is similar to that of a “simple DC motor”. In fact, these simplifications are fulfilled with 
respect to the considered optimization criteria (losses, mass…) which are described below.  
An average model of the PWM based on the duty cycle () is chosen to limit the computation time. A 
classical cascaded speed – current control is implemented to simulate the driving decisions satisfying 
the mission. Switching and conducting losses are estimated with reference to data sheets 
corresponding with the power switches (IGBT). Note that the switch class could be changed relatively 
to the DC voltage/current evolution during the optimization procedure. 
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Fig.8: VSI fed PMSM with trapezoidal emf 

 
IV.5. The Permanent Magnet Brushless DC Motor Model 
 
From a given driving mission, changing some of the optimization parameters, as in particular the 
reducer ratio, also implies modifying the machine ratings by adapting the torque-speed characteristic. 
Including field computation from a Finite Element Analysis (FEA) in the optimization procedure is 
too expensive in computation time. It has led us to define a “Model of Synthesis based on Similarity” 
laws (MSS) which uses analytical equations and provides the advantage of being able to re-size a 
machine without using the F.E.A. The design process follows two steps: 

• First, a “classical” analytical design or so called “Reference design” of the machine is made, 
fulfilling the torque-speed characteristic for the load requirements (reducer ratio and driving mission 
being given). Then, the FEA is used once to check these specifications. 

• Secondly, from the “Reference machine”, the MSS allows designing a new machine having the 
same structure, but including new geometrical dimensions (i.e. core radius rs and length lr ). The aim 
of the MSS is to give dimensions and characteristics of a new machine which fulfills the required 
specifications such as torque-speed characteristic for the load. 

The equations of the MSS are given in (9) 
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where the “ref” index applies for parameters of the reference design and with  

N : reducer ratio 
T : machine torque 
Ns : number of conductors 
E : DC voltage 
I/ : stator current/flux 
R/L : stator resistance/inductance 
rs/ls: core radius/machine length 

With respect to the “reference machine”, per unit geometrical parameters r and l are defined in (9). 
The global similarity relations take into account the variations of the conductor number and 
geometrical dimensions, and obviously enable fulfilling the chosen operating point in the torque-speed 
plane. Fig. 9 gives an overview of the MSS structure. A detailed description of this model is given in 
[12]. Its validation process from FEA is also proved. 
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Fig.9: MSS Structure 

 

An estimation of motor losses (copper, iron, and mechanical losses) is added to this model. It is based 
on analytical expressions. For the copper losses, the expression is rather classical: 

 2)(.2)( tIRtPMach
copper   (10) 

where R and I are respectively the motor resistance and current. On the contrary, estimating iron losses 
(hysteresis and eddy currents) is very complex and research is still being carried out on this issue [13]. 
For the optimization process, hypothesis are made to simplify the analytical derivation: i.e. only stator 
losses are considered, the first harmonic approximation is made, hysteresis and Eddy current losses are 
globally estimated and a mathematical interpolation gives the following analytical equation : 

 91.1
max

45.1 ..0025.0 BfPiron   (11) 

Finally, a thermal constraint is verified for each criteria evaluation, by means of an equivalent thermal 
model of the machine. This model takes into account copper and iron losses as inputs. 
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V. System Optimization  
 
V.1. Optimization Framework 

Based on the “system oriented model” previously described, different criteria allow qualifying the 
system’s performance. 

• global mass  : battery + motor + vehicle (this latter part being fixed at 650kg); 
• total losses (copper and iron losses, conducting and switching losses, mechanical losses); 
• estimated cost of the input filter; 

The six system optimization parameters are: 

• the DC supply voltage (E), 
• the capacitor Cf and the inductor Lf (input filter’s devices), 
• the switching frequency of the semiconductors (FCVS), 
• the stator core radius rs and the length ls of the motor, 
 
and their limit in the optimization process are given in Table 1. 
 

Table 1: Optimization parameter range 

Design Variables Range 
Battery Voltage E  [20, 500]  [V] 
Filter Inductance Lf  [10-5, 0.005]  [H] 
Filter Capacitor Cf  [10-4, 0.003]  [F] 

Converter Switching Frequency FCVS  [500, 10 000]  [Hz] 
Motor Core Radius  rs  [0.05, 0.2]  [m] 

Motor Length ls  [0.05, 0.4]  [m] 
 

Many constraints are also added to complete the optimization framework: 

• constraints on parameter domain; 
• constraints linking parameters between each other : for example Cf, Lf, FCVS are linked by 
constraints (see (5), (7)) relative to stability criteria and voltage/current ripples ; 
• constraints resulting from the simulation : for example thermal constraint that verifies if a 
given machine can satisfy the driving mission from a thermal point of view (i.e. the 
temperature on copper windings should be lower than 150°). 

This process of constraints handling is summarized in Fig. 10 in the case of the Hooke and 
Jeeves algorithm. The optimization process has almost a similar structure for evolutionary 
algorithm, except for normalization, constraint penalties and objective weightings. 
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Fig.10: Synoptic of the optimization process (HJ method) 

 
V.2. Electric Vehicle Optimization with HJ  
 
Before comparing geometrical and evolutionary algorithms in the context of direct and 
multiobjective system optimization, let us begin with the HJ method and see how it has been 
practically applied to this system and its requirements [5]. The system analysis is certainly the 
most complex task during the optimization process, due to the important number of couplings 
between parameters – constraints – objectives – mission. In addition, representing results 
graphically is more and more complex as the criteria number increases. In order to facilitate 
this analysis, a 2-dimensional representation has been considered by limiting the optimization 
to only 3 weighting factors for the input filter cost : i.e. filter = 0, 0.33 and 0.66. Thus, the 
following results can be represented in the objective plane with respect to losses and mass 
criteria. The evolution of global mass and losses is obtained from several optimizations of the 
aggregated cost function with different balances of the two objectives: a sort of Pareto-
optimal solutions is then obtained. Fig. 11 superposes the three different Pareto-optimal fronts 
corresponding to the three different weighting factors of the input filter. It can be seen that 
this latter does not lead to significant changes of the Pareto-optimal front shape. 
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Fig.11: Pareto-optimal front for given weighting of input filter criterion 
 

Fig.11 shows also that objective variations are significant: 

• variation of losses from 1000 to 3400W 
• global mass from 900kg till 1350kg (embedded mass from 250 to 700kg). 

Note that the optimization problem statement is convenient and leads to significant trade-offs. 
We can observe that this latter issue is not so easy to obtain, as complex heterogeneous 
systems are considered in relation to several objectives. Each optimization of the aggregated 
criteria function (one point of the Pareto front) needs 1295 objective function evaluations on 
average with the HJ method. Considering that 14 different weighting coefficients are 
necessary to accurately define the Pareto front, more than 18 000 objective function 
evaluations of the one-hour mission are necessary. In fact, this multiobjective optimization 
process is equivalent (in terms of computation cost) to the analysis of the electric vehicle 
system simulated for more than 2 years! At this level, a rigorous analysis of all provided 
information must be carried out: 
• first, the global objective analysis is not sufficient and relative variations of “partial 
criteria” have to be considered. For the whole loss objective, the partial criteria are battery 
losses, the switching and conducting losses in the VSI, iron and copper losses, and finally 
mechanical losses (see Fig.12). In fact, examining amplitudes as well as the directions of 
these variations is very informative. For example, the shape of motor copper losses reveals a 
local optimum in the medium part of the Pareto-optimal front, so that it increases in the right 
part of the front while all other losses decrease in the same region like the global losses. More 
generally, this example emphasizes that the global optimum is rarely equivalent to the sum of 
local optima. 
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Fig.12: Partial criteria of Pareto-optimal solutions 

 
• Secondly, the parameter evolution should be analyzed. Fig. 13 illustrates two of the 
optimization parameters for a null weighting factor of the input filter. Only the machine core 
radius and the input voltage have a significant influence. In fact, the others (i.e. the machine 
length and the switching frequency) are fixed by the optimizer to their minimum value. 
Machines with large radius over length ratio are naturally preferred to optimize the loss–mass 
trade-off. Let us note that wheel motors recently designed in traction systems have the same 
kind of geometry. On these particular tests, it can also be observed that the battery voltage 
rises in a linear way when the global mass is increased (battery mass increase) while losses 
are reduced. This latter fact can be explained by the reduction of the current level, which 
decreases converter and machine losses. Some parameters are close to constraints: the 
switching frequency is in this case decreased to minimize switching losses and is only limited 
by the frequency constraint (see (5)). 
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Fig.13: Motor core radius and input voltage evolution of Pareto-optimal solutions 

 
The analysis of such results is really interesting for designers because it directly reveals 
system couplings between parameters – objectives – constraints and the driving mission. For 
example, we have observed that motor copper losses and embedded mass are coupled with 
each other through the driving mission and the vehicle dynamic. Indeed, following the 
frequency spectrum of the driving mission, frequent and high variations of the vehicle speed 
are provoked. The acceleration force (M.dV/dt) is then all the more important that the 
embedded mass M is high. Finally, resulting torques (i.e. current levels) lead to copper losses 
coupled with the mass which is embedded during the mission. This latter example emphasizes 
the interest of the so called “systemic design” which consists in an overall approach of the 
design including the system finality (mission). 
 
V.3. Geometric versus Evolutionary Optimization Algorithms  
 
In this section, both very different optimization methods are compared: 
• for geometrical algorithms, the deterministic direct search pattern algorithm of Hooke & 
Jeeves is considered as presented in section II.A. 
• for multiobjective evolutionary algorithms, the NSGA-II with self-adaptive recombination 
used for crossover operators has been implemented as explained in section II.B. 
The main differences between both approaches have been described in section II, particularly 
for differences between aggregative (a priori) and Pareto (a posteriori) search methods. Only 
comparing both algorithms in terms of convergence would be insufficient as a conclusion. 
The present objective is also to compare the results quality as well as complexity of 
algorithms implementation. Their radically different natures (deterministic versus stochastic) 
also have to be discussed. 

1) Implementation 

• HJ Method: 

Conditioning of the optimization problem needs: 
- tuning weighting coefficients; 
- determining normalization factors (objectives and constraints); 
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- tuning penalty coefficients; 

The determination of normalization factors for objectives can be problematic as variation 
domains of objectives are a priori unknown or inaccurately predictable. This process 
generally needs preliminary single-objective optimizations to determine minimum and 
maximum values of each objective function. For issues related to constraints, different 
handling methods exist (exterior/interior penalties). Whatever the approach, choosing both 
constraint function H(x) and penalty coefficient r (see Fig.3), is often complex and sometimes 
affects the algorithm robustness. It also depends on the optimization problem characteristics. 
Furthermore, penalty coefficient and function could be different if constraints are relative to 
variation domain on design variables or to constraints involving several parameters of the 
objective function. Considering that the variation of constraints is difficult to predict in certain 
cases, constraint normalization also constitutes an obstacle in the algorithmic implementation. 
The spread of the solutions in the objective space must also be analyzed. Indeed, this latter 
issue depends on the distribution of weighting coefficient when aggregative methods are 
implemented. In fact, a linear variation of weighting coefficients does not guarantee a uniform 
distribution of solutions in the objective space. 

• Multiobjective evolutionary algorithm NSGA-II: 

In this case, optimization problem conditioning appears simpler than previously: neither 
normalization nor weighting coefficients are required thanks to the Pareto-dominance 
concept. In the same way, no penalty function or coefficient is necessary.  Indeed, if a given 
constraint is not fulfilled, specific Pareto-dominance rules are applied (see section II.B). 
Contrary to aggregation based methods, the solutions are naturally spread along the Pareto-
optimal front thanks to the niching procedure. Furthermore, variation domains of optimization 
parameters are directly included in the algorithm: if a design variable goes beyond its validity 
range during a genetic operation (crossover or mutation), this variable is automatically 
adjusted according to the corresponding boundary. 

2) Comparative results 
 
The stochastic nature of the evolutionary algorithm requires performing the same 
optimization problem several times to assess the reproducibility of the results. For one 
optimization run, the number of objective function evaluations must be shared among the 
individual number (Nind) and the generation number (Ngen). Consequently, the total number of 
objective function evaluations for Ntest independent runs is Ntest×Nind×Ngen. Thus, the tuning 
parameters of Table 2 have been selected for the NSGA-II leading to 17 500 objective 
function evaluations for a fair comparison with the HJ procedure (remind that 14 optimization 
runs have been carried out with the HJ method leading to 18 000 objective function 
evaluations). 
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Table 2: NSGA-II tuning parameters 

Number of independent runs (Ntest) 5 
Population size (Nind) 50 
Generation number (Ngen) 70 
Mutation rate for m design variables 1/m 
Mutation rate for the crossover X-gene (see [10]) 5% 

 
Fig. 14 shows that both methods converge to the same Pareto-optimal front. Note that the 
NSGA-II Pareto-front plotted in this figure corresponds to a concatenation of the five Pareto-
fronts obtained from the five independent runs. However, these runs have provided similar 
results. Therefore, NSGA-II requires 50×70=3500 objective function evaluations to obtain 
fifteen Pareto-optimal solutions on this design problem. With the same number of objective 
function evaluations, the HJ procedure only offers two Pareto-optimal solutions. This 
confirms the greater exploration capability of the NSGA-II in comparison with local 
optimization methods.  
The efficiency in the determination of the boundary solutions was almost equivalent with both 
investigated methods since the minimum loss solution has been found by the NSGA-II while 
the HJ procedure has detected the minimum mass solution. The performance of both 
optimization methods was also characterized by two quantitative criteria. The spacing 
factor used in [2], [10] has been evaluated in each case to assess the quality in terms of 
distribution homogeneity along the Pareto-optimal front. This criterion is based on 
consecutive distances among the solutions of the Pareto-optimal front. It characterizes the 
capability of the optimization method to distribute its solutions uniformly along the Pareto-
optimal front. A value of zero for this metric indicates all non-dominated solutions found are 
equally spaced. Concerning the solution accuracy, the coverage index used in [6] was 
considered to compare NSGA-II and HJ efficiency. 
 
The comparative results for both performance criteria are summarized in table 3. They show 
that NSGA-II ensures a better spread of Pareto-optimal solutions along the Pareto-optimal 
front thanks to the efficiency of its clustering operator. On the contrary, HJ procedure is 
characterized by a bad spread as a reason of a non-linear relation between weighting 
coefficients and Pareto-optimal solution distribution. Low coverage indexes indicate that 
NSGA-II and HJ fronts are non-covered. Most solutions found by the two different 
approaches are non-dominated. Consequently, the accuracy in the determination of Pareto-
optimal solutions was almost similar. 
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Fig.14: Pareto-optimal solution distribution in the objective space with HJ and NSGA-II 

 
Table 3: Comparative results (spread and accuracy) 

Performance criterion NSGA-II HJ 
Spacing  0.744 1.219 

Coverage index (see [6]) C(NSGA-II/HJ) = 0.07  C(HJ/NSGA-II) = 0.08 
 

VI. Conclusion 
 
In this paper, we have presented very different optimization techniques for constrained and 
multiobjective problems. These two families of methods have been applied to a typical 
(heterogeneous, non linear, including mixed variables) electrical engineering system: an embedded 
electrical actuator. For that purpose, a system-oriented whole model of the vehicle has been put 
forward. This model respects the trade-off between validity domain and constraints which have to be 
faced where a system optimization is concerned. Indeed, the optimization process has required a high 
number of objective function evaluations which correspond to more than two years of simulated time! 
The results given by each direct optimization method (i.e. the Hooke and Jeeves and evolutionary 
algorithms) show strong properties of convergence and robustness. The performance of each approach 
has been analyzed in terms of convergence, accuracy and diversity. With the same number of 
objective function evaluations, results have shown the NSGA-II superiority concerning the exploration 
capability and its tendency to find well spread Pareto-optimal solutions. Moreover, the NSGA-II 
accuracy was comparable with the well-known efficiency of the HJ deterministic procedure.  
The adaptation of this approach on more complicated systems (e.g. hybrid vehicles) essentially 
concerns modeling aspects. Optimization algorithms such as genetic algorithms can be easily applied 
on this kind of systems with combinatorial features. In this case, we recommend adding, in the 
optimization process, discrete parameters related to architecture variations and energy management 
strategies to sizing design variables. 
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