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Abstract 

Electric vehicles are becoming more popular in the market.   To be competitive, 

manufacturers need to produce vehicles with low energy consumption, good 

range, and acceptable driving performance.  These are dependent on the 

choice of components and the topology in which they are used.   In a conven-

tional gasoline vehicle, the powertrain topology is constrained to a few well-

understood layouts: these typically comprise a single engine driving one or both 
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axles through a multi-ratio gearbox.  With electric vehicles, there is more flexibil-

ity and the design space is relatively unexplored.  In this paper, we explore sev-

eral different topologies: we consider a traditional topology using a single elec-

tric motor driving a single axle with fixed gear ratio; a topology using separate 

motors for the front and rear axles, each with its own fixed gear ratio; a topology 

using in-wheel motors on a single axle; and a four-wheel-drive topology using 

in-wheel motors on both axes.  Multi-objective optimisation techniques are used 

to find optimal component sizing for a given requirement set and to explore the 

trade-offs between energy consumption, powertrain cost and acceleration per-

formance.  The paper concludes with a discussion of the relative merits of the 

different topologies and their applicability to real-world passenger cars. 
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Nomenclature 

𝐴  vehicle drag area (m
2
) 

BEV battery electric vehicle 

𝐶d drag coefficient (dimensionless) 

𝐶r coefficient of rolling resistance (dimensionless) 

𝐸 energy required to complete a specified driving cycle (J) 

EM electric machine 

EV electric vehicle 

𝐹w  driving force at wheels (N) 

𝑓(𝑥) function of variable 𝑥 (units vary) 

𝑔 acceleration due to gravity (m/s
2
) 

𝐺F, 𝐺R front and rear gear ratios in double-axle vehicle (dimensionless) 

HEV hybrid electric vehicle 

HIL hardware-in-(the)-loop 

ICE internal combustion engine 

𝐼T,bat current out of battery terminals (A) 

IWM-DA in-wheel motor, double (driven) axle 

IWM-SA in-wheel motor, single (driven) axle 

𝐽𝑖(𝑋D) objective (cost) function 𝑖 parameterized on decision variables 𝑋D (units 

vary) 
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𝑀, 𝑀𝑥 vehicle mass (kg), mass of component 𝑥 (kg). 

NEDC New European Driving Cycle 

𝑃in,total total machine input power (W) 

𝑃M electric machine power (W) 

𝑃out,total total machine output power (W) 

𝑄 instantaneous charge in battery (C) 

𝑄bat  capacity of battery (C) 

𝑄initial initial instantaneous charge in battery (C) 

𝑅i,bat internal resistance of battery pack (ohm) 

𝑅i,cell internal resistance of battery pack (ohm) 

𝑟w  wheel radius (m) 

SOC state of charge (dimensionless) 

SM-DA single motor, double (driven) axle 

SM-SA single motor, single (driven) axle 

𝑡 time (s) 

𝑇F, 𝑇R torque at front and rear axles in a double-axle vehicle (Nm) 

𝑇M torque at machine axle (Nm) 

𝑇S torque-split between front and rear machines (dimensionless) 

𝑇SB torque-split during braking (dimensionless) 

𝑇w  torque at wheel axle (Nm) 
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𝑇100 time taken to accelerate from rest to 100 km/h (s) 

𝑉OCV,bat open-circuit voltage of a complete battery pack (V) 

𝑉OCV,cell open-circuit voltage of a single cell (V) 

𝑉T,bat voltage at battery terminals (V) 

𝑣vehicle vehicle speed (m/s) 

𝜂F, 𝜂R efficiency of front and rear electric machines in double-axle vehicles 

(rad/s) 

𝜂𝐺  efficiency of gearbox (dimensionless) 

𝜂M efficiency of electric machine (dimensionless) 

𝜌 density of air (kg/m
3
) 

𝜙F, 𝜙R power rating of front and rear machines in a double-axle vehicle (kW) 

𝜙M  power rating of electric machine (kW) 

𝜔M electric machine angular velocity (rad/s) 

𝜔M,front front machine angular velocities in a double-axle vehicle (rad/s) 

𝜔M,rear rear machine angular velocities in a double-axle vehicle (rad/s) 

𝜔w wheel angular velocity (rad/s) 
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1 Introduction 

In recent years environmental concerns have led many industries to focus on and adopt 

‘green’ products and services.  A good example of this is the passenger car, generally 

accepted as a major source of greenhouse gas emissions and air pollution. Governments 

have introduced legislation, taxation regimes and incentive schemes that force automo-

tive companies to control vehicle emissions [1] and to encourage consumers to use effi-

cient low-carbon vehicles. In the UK, for example, the government has subsidised 25% 

of the purchase price for ultra-low emission cars since early 2012 [2]. In response to all 

this, many automotive companies have attempted to reduce their fleet–averaged vehicle 

emissions by developing hybrid and electric vehicles.  

Hybrid electric vehicles (HEVs) represent relatively mature technology, and are 

readily available and affordable at the present time. Hybrid vehicles use two or more 

energy sources, with the intent of exploiting the advantages of each. As the most wide-

spread form of hybrid vehicle, HEVs combine the conventional internal combustion en-

gine (ICE) with electric machines (EM). The key advantage of this type of vehicle is its 

greater fuel efficiency than that of the conventional ICE vehicle, brought about by the 

ability to ‘downsize’ the engine and operate it nearer to optimal conditions and – in 

some driving conditions – the ability to recover kinetic energy during braking.  Assum-

ing a diesel hybrid electric powertrain, one study has noted the potential of the shift in 

operating point brought about by downsizing to reduce overall fuel consumption by as 
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much as 35%, and the potential of regenerative braking to bring a further 8% reduction 

[3, Sec. 3.3.4].   There are many results in the literature.  For example, one extended 

study showed that even without downsizing the engine, an operating point shift alone 

can produce a fuel savings of almost 30% on the New European Driving Cycle (NEDC) 

[4] and over 20% in experimental tests and real-world driving cycles [5].  Energy man-

agement systems continue to be a popular subject of research.    

The HEV still derives its energy from fossil fuels and, it still some pollution while 

driving on city roads.  Ideally, a passenger car would use pure electric energy and pro-

duce zero ‘tailpipe’ emissions.  If a significant portion of the electricity can be generat-

ed from renewable sources, there is potential for further reductions in the true ‘well to 

wheel’ carbon emissions.   One solution is the Battery Electric Vehicle (BEV).  There 

are others – such as the plug-in hybrid electric vehicle and the fuel-cell electric vehicle 

– but the BEV is the fundamental base for these.   

BEVs have been seen as a ‘niche’ product, but they are now establishing themselves 

in the mainstream market. Several automobile companies have included a BEV in their 

range: examples include the Nissan Leaf in the UK and US, the Tesla Roadster in the 

US, and the Mini E in Germany [6, 7]. BEVs are well-suited to everyday use since their 

battery capacity is sufficient for many consumers’ day-to-day needs.  Pearre et al [8] 

report that the majority of the US drivers covered a daily mileage of less than 100 miles, 

comparing well with the daily mileage capacity of the vehicles in the current market. 
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The typical BEV in today’s market differs from an ICE vehicle in that instead of 

having an engine and a fuel tank, the BEV has an electric machine and an electric ener-

gy storage unit [9, 10]. However, much of the rest of the vehicle is similar to a conven-

tional one: most BEVs still use a relatively conventional transmission system, including 

a clutch, a shaft drive, a gearbox and a differential.  As with an ICE, the transmission 

affects overall efficiency and vehicle mass [10].  Electric machines have rather different 

characteristics from ICEs: the typical EM provides its maximum torque at low speed, 

compared to an ICE’s ‘peak’ at a particular speed.  Consequently, EVs can be operated 

with a single or double ratio transmissions [9] rather than the five-or-more speed trans-

mission found in an ICE vehicle. The machines in today’s market use varied machine 

types – the Tesla Roadster and the Mini E use single induction motors while the Nissan 

Leaf uses a permanent magnet synchronised motor – but all three use single-speed 

transmissions [6, 7]. Apart from the number of gear ratios, the transmission in the typi-

cal BEV is remarkably similar to that of the conventional ICE vehicle. 

With a BEV, the designer is not constrained to use the ‘traditional’ powertrain lay-

out: there are several alternatives that would be impossible or impractical with an ICE 

vehicle, but are straightforward with an electric powertrain.  Rather than using a differ-

ential, it is possible to use in an independent wheel drive, discussed in the literature [11] 

and implemented in prototype cars: the Lightning GT uses rear-wheel-drive from twin 

traction motors, each with a single speed reduction gearbox [12].  By using multiple 
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machines, mechanical parts such as the differential can be eliminated and replaced by a 

‘virtual’ differential effect from electrical control. It is also possible to transfer energy 

‘by wire’ and locate electric machines close to their point of action, eliminating large 

mechanical transmission components: as well as reducing mass and adding flexibility, 

this can simplify mechanical layout and reduce space requirements.  There are disad-

vantages: if one uses independent wheel drive, one needs to take great care to design the 

complex non-linear control laws needed for stability and safety.  With a conventional 

vehicle, design of the differential and stability enhancements are to some extent ‘de-

coupled’ from overall torque delivery, but with independent wheel-drive, everything 

must be co-designed [13, 14]. In addition, some possibilities – such as integrating mo-

tors within the wheel hubs themselves – can add to a vehicle’s unsprung mass, which 

may cause problems with vehicle handling dynamics and vibration if not correctly dealt 

with [13].  

It is clear that electric vehicles have an advantage over traditional ICE vehicles in 

that the designer has considerably more choice in terms of powertrain architecture [10].  

Whereas a conventional vehicle must almost always be a ‘single drive’ configuration, a 

BEV can have a single drive motor, two independent drive motors with reducing gears, 

two independent motors with direct drive, or even in-wheel drive [9, 10]. There is more 

opportunity for optimizing an architecture for a particular usage pattern. At the present 

time, the key weakness of the BEV is its limited range [6].  This may in time be solved, 
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and efforts are currently underway into order to increase battery energy density [15], 

improve charging infrastructure [16], and reducing vehicle energy consumption. To get 

the most out of a BEV, it is important that powertrain layout and sizing is done in a way 

that is at least near-optimal in terms of minimising energy consumption, and there are 

established techniques for selecting appropriate vehicle parameters using suitable opti-

misation techniques [17]. 

There are several approaches to model-based powertrain optimization, and an excel-

lent overview can be found in Guzzella and Sciaretta’s text book on the subject [3].  

Broadly speaking, an author must make two choices: 

1. A decision must be made on the overall approach to modelling. 

2. A decision must be made on the overall approach to optimization. 

There are two broad approaches to modelling: the most ‘conventional’ is often de-

scribed as ‘forwards-facing’ modelling.  This is perhaps the most natural approach for 

engineers, taken by default.  In forwards-facing modelling, the ‘inputs’ are forces and 

torques; the ‘outputs’ are the resulting motions.  

In powertrain optimization, it is common to use models to predict the energy and 

fuel requirements associated with particular driving cycles.  In these cases, the effective 

inputs are not forces, but motions.   A forwards-facing model can be made to follow a 

driving cycle, but it is necessary to use some kind of feedback: a ‘driver model’ is es-
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sential.  This approach can be very effective, but – as with all simulation problems in-

volving feedback, it is slow in execution.  Forwards-facing models can be made arbi-

trarily complex, and are very good for relatively slow modelling exercises – such as 

Hardware-In-Loop (HIL) testing or calibration, but they are harder to use for exercises 

in optimization where it is necessary either to run a model many times or to perform 

analytic mathematics on the model. In such cases, it may be preferable to use an alterna-

tive ‘backwards-facing’ modelling approach, based on quasi-static component models. 

‘Backwards-facing’ models use motions as their ‘inputs’, and with the ‘outputs’ be-

ing the forces and torques required to produce such motions.  Generally, fast-acting dy-

namics are hard to model, and are usually approximated with ‘quasi-static’ models [3, 

Sec. 4.1.2]. Models of this kind generally offer less fidelity than their ‘forwards-facing’ 

equivalents, but as they do not require driver models or feedback, they are fast in execu-

tion.   Backwards models are used extensively in the literature, e.g. [19, 20] and there 

are also approaches that combine backwards models and forwards models, using back-

wards models for coarse-tuning and forwards models for fine-tuning [18, 21]. 

Having determined the approach to modelling, it is the necessary to determine an 

approach for optimization.  Some studies, e.g. [19, 22], attempt to derive an analytic 

approximation for their objective functions, then solve these approximations.  This can 

be used to optimize both component sizing and power-split strategy.  This has the ad-

vantage of computational speed, though it is not always easy to derive the mathematics.  
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For more complex problems, approaches based on parameter search methods are used.  

Popular algorithmic choices here are genetic algorithms, as used in [19] and [23]. 

The particular problem this paper addresses is that at present, while there are tech-

niques for optimizing a particular vehicle configuration – or even for comparing two or 

more configurations – there is at present no complete solution to for the choice of the 

most appropriate BEV architecture for the three key objectives: energy efficiency, per-

formance (acceleration) and affordability.  This paper uses multi-objective optimization 

to explore the trade-offs between these targets for a chosen usage scenario.  The ap-

proach taken will be to explore the trade-offs between pairs of objectives, ensuring that 

the ‘best possible’ powertrain configurations are chosen through the use of optimiza-

tion.  The result will be a set of guidelines showing how the conflicting objectives inter-

act, and indicating the best topology to choose in order to meet any single objective or 

any pair.  

This paper will start by presenting the different BEV topologies considered.  It will 

then describe the way in which the vehicle and components were modelled and the mul-

ti-objective optimization used.  It will then show the results of obtained and give guide-

lines on topology selection. 
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2 BEV powertrain topologies 

There are many possible electric vehicle topologies.  These will briefly be discussed, 

and a subset will be considered for more detailed analysis.  (The rationale for choosing 

this subset will also be described.) 

2.1 Single electric machine 

There are two possible technologies for a single-machine vehicle: a traditional power-

train formed by adapting a conventional ICE layout, or specialised design combining 

the single electric machine with a final drive gearbox. 

2.1.1. Traditional EV by converting an ICE vehicle.  The earliest BEVs were con-

verted from the ICE vehicles [24]. The ICE and fuel tank were replaced by an electric 

machine and battery pack. To transfer mechanical power from the machine to the 

wheels, ICE-type transmission components were retained, including a mechanical 

clutch a, multi-ratio gearbox, and a differential.  The gearbox could be manual or auto-

matic [14].  Some of the functions of this transmission are unnecessary with an electric 

vehicle, e.g. the use of the clutch between the motor and transmission, and the use of a 

complex multi-speed gearbox for matching the torque-speed characteristics of the power 

plant to the speed and torque required by the vehicle.  (The clutching is entirely unnec-

essary, and the torque-speed characteristics of the motor are very different from those of 
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an engine.)  With this topology, there is still a need for a differential to balance the trac-

tion force and speed between the left and right traction wheels when travelling along a 

curved path.  This topology was designed to be effective for an ICE, not an electric ma-

chine, and as an EV it has poor efficiency and excess mass [25].        

 

2.1.2 Single electric machine with final drive.  Electric motors have torque-speed 

characteristics close to the ideal performance of a vehicle traction power plant, and are 

able to provide near-maximum power at a wide range of speeds.  There is a maximum 

torque at low speeds, because motor flux is initially constant, but when the machine 

reaches a base speed, the machine flux weakens while the voltage remains constant. As 

a result, the motor torque reduces as the speed increases; overall, the power remains 

constant [9]. 

With an electric machine, a complex multi-speed transmission is not necessary, and 

as a result the complexity of the clutch and gearbox can be eliminated. It is possible to 

use a light motor, typically a small-sized high-speed low-torque motor, together with a 

single speed high reduction transmission [10, 14, 26]. For a further reduction in mass 

and inertia, the drive shaft, motor and transmission can be integrated as a single compo-

nent [9, 10], illustrated in Fig. 1(a).   This type of BEV is predominant in today’s mar-

ketplace [5]. However, a central-drive motor with a fixed-ratio still encounters mechan-
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ical loss. Without a variable gearbox, it is there is no possibility of operating the motor 

at its maximum efficiency [27].  

2.2 Multiple electric machine drive.   

Because electric powertrains are relatively simple, and because an electric machine can 

be controlled with good precision, it is possible to use more than one machine at a time 

for example, to have separate motors for each side of a vehicle and/or separate motors 

for each axle.  The following paragraphs describe topologies used in current research 

vehicles and prototypes. 

2.2.1 Double electric machine with double-axle drive.  Whereas a ‘conventional’ 

EV has a single machine, either at the front or the rear axle, each axle can be driven by a 

separate and independently controlled motor and gearbox.  When two traction sources 

are combined in a single vehicle in this way with an appropriate control strategy, the 

designer has more degrees of freedom and the flexibility to explore more effective and 

efficient operation methods.  This powertrain topology is presented in Fig. 1(b).  This 

topology has been sufficiently developed for use in a production vehicle: the Tesla 

Model X, to be introduced in late 2015, is configured this way, with separate front and 

rear motors, each with single-ratio gearboxes [28].  Vehicles with this topology are op-

erated with four-wheel drive, and are capable of strong acceleration performance. Tesla, 
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for example, claim that the Model X will be capable of accelerating from 0 to 100 km/s 

in less than 5 sec, about twice as quickly as a non-performance vehicle [28].  This EV 

topology still requires the use of a pair of differentials, one front and one rear, which 

adds mass.   

2.2.2 Multiple electric machines with independently-driven wheels.  It is possible 

to eliminate the use of differentials by using separate traction motors to drive wheels on 

the left and right of a vehicle independently: the speed and torque of left and right 

wheels can be equalised electronically.  This tends to improve overall efficiency by re-

ducing vehicle mass [29]. Without gearing, low-speed high-torque motors would be 

needed, but fixed gearing, belt drive or planetary gearbox can be connected between 

motor and wheel to provide a better match with commercially-available motors.   Even 

with such gearing, eliminating the differential makes more space available, which may 

be useful for additional battery capacity and longer range.  Moreover, electronic switch-

ing loss can be reduced and power electronics can be de-rated [14]. One of the key ad-

vantages of this powertrain architecture is an increase in the number of degrees of free-

dom. With an appropriate energy management strategy, differently-specified multiple 

motors can configured to spend most of their operating cycle in an more efficient oper-

ating envelope than a single motor could achieve, leading to a reduction in energy con-

sumption [27]. The torque balance between left and right wheels must be controlled by 
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an electronic differential, which may require complex non-linear control and robust de-

sign: failure to operate correctly will cause serious problem for vehicle stability and 

safety [14].  Furthermore, the cost of two small motors and the associated control units 

and power electronics is greater than the cost of single equivalently-powered motor and 

its associated hardware, adding to overall system cost [14, 25].  

2.2.3 In-wheel motor drive.  Having considered motors closely associated with each 

wheel, it is natural to wonder whether there would be further benefits integrating the 

motor into the wheel itself.  In-wheel motors for BEVs are the subject of current re-

search [11]; however few passenger cars are using in-wheel motors, and most of those 

that are still at the research and development stage. In-wheel motor wheels already have 

applications in mobile robotics [27, 30]. These applications demonstrate the benefits of 

in-wheel motors to achieve high mobility. However, such applications involve only at 

low speeds and focus on the motion of the vehicle rather than energy consumption.     

In terms of energy efficiency, the in-wheel motor is integrated into the vehicle wheel 

which then eliminates all the mechanical gears and the losses associated with transmis-

sion [25]. The in-wheel motor can therefore make a vehicle lighter.   All power is trans-

ferred by wire which gives further benefits in terms of space saving and the flexibility 

of component arrangement, and also lowers the centre of gravity [26, 31, 32]. In pub-

lished literature demonstrating the use of a wheel motor on a motorcycle, it has been 
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shown that with a wheel motor and using regenerative braking, the overall efficiency 

can be increased the range by 20% [33]. 

For a passenger car application, there are some disadvantages in terms of vehicle 

performance. As with a vehicle with independently driven non-integrated motors, the 

in-wheel motor requires an electronic differential to follow curved path; this necessi-

tates complex torque and speed control between the two sides of the vehicle. Moreover, 

an integrated in-wheel motor increases the wheel mass and inertia, adding to the un-

sprung mass with negative effects on stability, safety and comfort [13, 14, 31, 34].  

By contrast, there are some positive vehicle dynamics aspects of using in-wheel mo-

tors.  It has been shown that using in-wheel motors with direct drive can have ad-

vantages in terms of vehicle stability and control, brought about because the in-wheel 

motors have quick torque response and allow easy torque measurements [35]. This 

makes it easier to implement integrated vehicle dynamic control and features such as 

ABS and dynamic tracking control compared to conventional ICE vehicles [14, 35, 36, 

37]. In-wheel drives have been used in a four-wheel drive EV to implement an electri-

cally torque-assisted steering system and global torque control for a four-wheel-

independent-drive EV [38]. Because they do not use gearing, in-wheel motors need to 

be able to produce high torque at low speed, which may result in greater losses com-

pared to a traditional electric motor due to required higher currents. There are efforts to 

design appropriate machines for this application, such as the axial flux permanent mag-
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netic machine, and this will help in the design and selection of suitable in-wheel motors 

for use in BEVs [14, 26, 31].  

2.3 Selected BEV powertrain topologies    

The previous section has presented several architectures with their associated permuta-

tions.  A subset of these must be chosen for detailed analysis using multi-objective op-

timization, including a cost-benefit analysis.  The literature contains techniques for 

identifying parameter sets producing the greatest sensitivity in terms of energy con-

sumption [20], highlighting the importance of powertrain efficiency and suggesting that 

the benefits of multi-ratio transmissions are likely to be marginal. Consequently, varia-

ble-ratio gearing systems have not been considered in this work.  Four powertrain to-

pologies have been selected for detailed analysis, all using single ratio transmission 

where appropriate (the in-wheel drive version is naturally gearless so the ratio is unity).  

The topologies are: single-motor-single-axle (SM-SA) (the Nissan Leaf can be taken as 

a benchmark), double-motor-double-axle (DM-DA), in-wheel-motor-single-axle (IWM-

SA) and in-wheel-motor-double-axle (IWM-DA), illustrated in Fig. 1. The significant 

difference in terms of modelling will be explained next. 
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3 Vehicle model and simulation technique 

Vehicle modelling techniques can be classified in two ways: “forward-facing” and 

“backward-facing”. The literature discusses the advantages and disadvantages of these 

two simulation methods [18, 21], and a brief description is provided in the following 

sections. 

3.1 Forward-facing simulation 

Forward-facing simulation presents a realistic approach to vehicle simulation as it uses 

a driver model to control the vehicle speed, similar to a human driver controlling a car. 

Fig. 2 illustrates the structure of a generic forward-facing simulation. Starting from the 

driver model, the reference speed and actual vehicle speed are compared giving an “er-

ror” signal, and this is used to generate a control signal to control the torque used to 

power the vehicle. (Driver models normally use Proportional-Integral (PI) controllers).  

In practice, the source of power of the BEV is an electric motor, so an appropriate mod-

el is used to translate throttle and brake commands from the driver into torque and me-

chanical braking signals. Torque from the motor is passed through a model of the 

transmission and applied to as a force at the wheels. The vehicle’s longitudinal dynam-

ics are then modelled: it is usually assumed that we can consider the vehicle as a whole, 

ignoring separate inertias associated with wheels and machines. Lateral dynamics are 

ignored. 
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The advantage of the forward-facing simulation is that it is realistic because it is of 

higher fidelity. This method is used for designing vehicle hardware and detailed control 

development. However, this has to be traded-off against the computation overhead: 

simulations are expensive and time-consuming.  

3.2 Backward-facing simulation 

Backward-facing simulation uses an opposite approach.  Where in “forwards-facing” 

models, components’ inputs are generalized forces and the outputs are generalized mo-

tions, in “backwards” models, the generalized motions are the inputs and the general-

ized forces are the outputs.  Consequently, the speed references can drive the system 

model directly, and a driver model is not required.  One assumption made with the 

backward-facing simulation is that the vehicle will exactly follow the driving cycle as 

illustrated in Fig. 3.  In the diagram, the ‘driving profile’ is the speed the vehicle is re-

quired follow. The traction-resultant forces of the vehicle are calculated from the vehi-

cle model. The principle of conservation of power is applied from one component to the 

next. The resultant forces and speeds between tyre and road contact patch are converted 

to torque and angular velocity to the torque and speed required at the gearbox. Then 

power required from the gearbox, including gearbox losses, is then transferred to the 

electric motor and battery model.  
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Backward-facing simulations generally rely on quasi-static component maps rather 

than detailed dynamic models.  Electric machines are typically modelled using motor 

efficiency maps. These are look-up tables indicating the efficiency achieved for any re-

quired torque and speed pair. The data for this can be collected from the testing of a real 

electric machine (EM) at steady-state conditions. This simulation type cannot represent 

dynamical behaviour of components because it is not usually possible to invert the dy-

namics exactly; this is a disadvantage compared to forward-facing simulation. However, 

for energy efficiency calculations and optimisation, backward-facing simulations re-

quire less time and fewer computational steps compared to those required for forwards-

facing simulations. 

3.3 Vehicle body and environmental losses 

The vehicle model converts the velocity reference into angular velocity and torque at 

the wheels, as presented in Fig. 4. Angular velocity at the wheels can be calculated from 

equation (1) while torque at the wheels in equation (2) is calculated from the environ-

mental force – in equation (3) – that applies to the vehicle. Losses from the environmen-

tal force result from aerodynamic resistances, tyre rolling resistance and the vehicle 

climbing the slope. However, this simulation is applied only when the vehicle is moving 

on the flat road; accordingly, loss from hill climbing is neglected. 
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 𝜔w(𝑡) =
𝑣vehicle(𝑡)

𝑟w⁄  (1) 

 𝑇w(𝑡) = 𝐹vehicle(𝑡) ∙ 𝑟w  (2) 

 𝐹vehicle(𝑡) = 𝑀𝑔𝐶r +
1

2
𝜌𝐶d𝐴𝑣vehicle

2 (𝑡) + 𝑀
d𝑣vehicle(𝑡)

d𝑡
  (3) 

where 𝜔w the is angular velocity at the wheel, 𝑣vehicle is the vehicle velocity, 𝑟w is the 

wheel radius, 𝑇w is the torque at the wheel, 𝐹vehicle is the traction force at the centre-of-

gravity, 𝑀 is the vehicle mass, 𝑔 is the gravitational acceleration, 𝐶r is the vehicle roll-

ing resistance, and 𝜌 and 𝐶d are the air density and the drag coefficient.  

3.4 Transmission 

Like internal combustion engines, electric machines operate most efficiently within a 

particular speed-torque envelope.  With the notable exception of wheel motors, most of 

the machines used in electric vehicles operate best at higher speeds and lower torques 

than those encountered at the driveshaft; the transmission transforms the speed-torque 

pair at the machine to a different speed-torque pair at the driveshaft with equal power.  

The transmission normally includes several components, but in this work, we consider 

these using a single ‘lumped’ gear ratio which describes the overall behaviour.  As dis-

cussed earlier, there is no need for multiple ratios, and single-ratio transmissions are 

common on production vehicles [7, 28]. Single-speed transmissions are generally good 
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in terms of low drivetrain mass, low volume, high efficiency and low complexity [9, 

39].  

The calculations for the transmission are expressed as equations (4) and (5).  

 𝜔M(𝑡) = 𝜔W(𝑡) × (gear ratio) (4) 

 𝑇M(𝑡) =
𝑇W(𝑡)

(gear ratio)×𝜂𝐺
 (5) 

where 𝜔M and 𝜔W are angular velocity at motor and wheel, 𝑇M and 𝑇W are torque at 

motor and wheel, and 𝜂G is efficiency of the transmission.  

3.5 Electric machine modelling 

The electric machine acts as a motor-generator, providing traction torque during accel-

eration and steady-state driving, and then capturing kinetic energy that would otherwise 

be ‘lost’ during braking.  A schematic for a backwards model is shown in Fig. 5.  The 

relationship between the motor ‘input’ power and the ‘output’ torque-speed pair is given 

in Equation (6).  Note that the machine is not perfectly efficient.  When motoring, the 

machine output power is given by 𝜂M𝑃M where 𝑃M and 𝜂M are the power (kW) and effi-

ciency (dimensionless) of the motor.  When the equation is arranged as a ‘backwards’ 

model the efficiency term appears as a division, rather than a multiplication.  The effi-

ciency term 𝜂M < 1 when motoring.  (When generating, the equation can be kept the 
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same but the efficiency term will need to be set so that 𝜂M > 1.)  Note that this is a 

mathematic construct: the system is still ‘lossy’ in both directions. 

The use of a motor map for the backward-facing simulation has been described and 

for a quasi-static vehicle simulation, it is possible to calculate the energy consumption 

of the electric machine by using a static map as presented in [40]. Efficiency is calculat-

ed as a function of torque, speed and motor parameters (7).   (This will be described in 

greater depth in the next section).  The relevant formulae are: 

 𝑃M(𝑡) = 𝑇M(𝑡) ∙ 𝜔M(𝑡) 𝜂M⁄  (6) 

 𝜂M = 𝑓(𝑇M, 𝜔M, 𝜙M) (7) 

(Here 𝜙M is the motor rating in kW.)  

Electric machine modelling with efficiency maps 

A motor efficiency map is a 2D lookup table that contains the motor efficiency infor-

mation. The motor efficiency is a function of motor torque and speed as described in 

equation (7).  This motor map describes steady-state efficiency and this information is 

usually collected by measuring the power when motors are tested with a dynamometer.  

To model machines of different sizes, techniques adapted from the literature were used: 

in Guzzella et al [3], the machine efficiency map is made scalable to provide a represen-

tation of different-sized machines.  Guzzella et al’s toolbox contains a look-up table of 

the EM efficiency in both motor mode and generator mode. A similar approach was 
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taken in this work.  The starting point was the nominal machine map for the case-study 

vehicle’s machine: to scale it, the torque axis was scaled in proportion to the machine’s 

power rating: this principle is illustrated in Fig. 6.  

Fig. 7 shows the plot of motor efficiency map which is converted from the original 

80 kW motor of the Nissan Leaf [41]. This map has been used for the optimisation pro-

cess, this modification assumes that the speed of the motor is limited to 10,500 rpm in 

every size of motor. A peak torque and efficiency map was constructed for a standard 

size of the Nissan Leaf motor. The original motor power (80 kW) and peak torque (280 

Nm) are used as a ‘base’ map.  The torque axis is then scaled representing differently-

sized motors.  For example, a with a 60 kW motor, a scale factor of 0.75 is used.  A 

similar technique is used for both traction and regenerative braking. Where the positive 

torque present the motor efficiency in traction mode and negative torque present the re-

generative braking efficiency. 

Significant factors which affect the efficiency of electric motors include size, mass 

and motor cooling. Different powertrain architectures use different numbers of motors 

and motor sizes. For the same power requirement, the centre drive needs a single, high 

powered electric motor. On the other hand, the independent drive considers two or four 

small motors, the total power of which is equal to that requirement. As a result, size, 

mass and method of motor cooling may influence the powertrain design. In general, a 

larger motor is likely to be more efficient than a smaller one. When increasing the motor 
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power, an increase of the motor speed may result in better motor efficiency than that of 

motor torque. This is because the losses in the motor are directly proportional to the mo-

tor current which is related to torque rather than power. Hence at the same power, a low 

speed, high torque motor is more likely to have higher losses. In terms of motor size, a 

high speed motor with gear box is smaller than a low speed high torque motor alone 

[25].  

3.6 Modified motor map for in-wheel motors 

In the first two cases (SM-SA, DM-DA), a scalable motor map of the permanent magnet 

synchronous machine motor is used, as presented in Fig. 8. However, for the in-wheel 

motor vehicle (IWM-SA, IWM-DA), the torque and speed characteristics are different, 

as in-wheel motors require a high torque with low speed. For a reasonable comparison 

between a conventional and an in-wheel motor, the in-wheel motor efficiency map is 

based on the original map of the Nissan Leaf. The torque and speed scale were modified 

to match in-wheel motors available in the market [42, 43]. Specifications from a manu-

facturer of in-wheel motors shows a peak torque of around 700 Nm and a maximum 

speed around 2000 rpm: the original motor map provides a peak torque at 280 Nm, 

based on a speed of 280 rad/s and a max speed of 1100 rad/s and delivers up to 80 kW 

of power. For the in-wheel motor, the torque scale is extended by a factor of 2.5 at the 

torque axis to get the max torque to 700 Nm and based on a speed of 53 rad/s and a max 
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speed of 210 rad/s. The peak power becomes 38.5 kW as presented in Fig. 8. The scal-

ing has been chosen so that the in-wheel motor map represents half the power of the 

original map because the in-wheel vehicle requires at least two identical motor to drive 

each wheel (for single axis drive), and each only needs to provide half the overall pow-

er.  

3.7 Battery  

The battery is the main source of energy for the BEV. It is an electrochemical device 

that stores electrical energy in the form of chemical energy. In this research, a simple 

battery model is used. A static model of this battery model consists of an open-circuit 

voltage source and an internal resistance. A schematic is presented in Fig. 9. 

3.7.1 State-of-charge (SOC).  Battery SOC is the amount of charge  𝑄(𝑡) that re-

mains in the battery relative to the capacity of the battery 𝑄bat (Ah) as illustrated in 

equation (8). The initial charge of the battery is denoted by 𝑄initial. 

 SOC =
𝑄(𝑡)

𝑄bat
⁄  (8) 

 𝑄(𝑡) = 𝑄init − ∫ 𝐼T,bat(𝑡) 𝑑𝑡 (9) 

𝐼T,bat(𝑡) is the terminal current of the battery, where positive current discharges the bat-

tery and negative current charges it.  The current at the terminal of the battery can be 
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calculated as a function of power that is required from the battery and the terminal volt-

age of the battery, as described in equation (11). 

 𝐼T,bat(𝑡) =
𝑃M

𝑉T,bat
⁄  (10) 

 𝑉T,bat = 𝑉OCV,bat − 𝐼T,bat(𝑡) ∙ 𝑅i,bat (11) 

The terminal voltage 𝑉T,bat is calculated from the open circuit voltage 𝑉OCV,bat  as 

shown in Fig. 10 and the internal cell resistance 𝑅i,bat in equation (11). By substituting 

current 𝐼T,bat(𝑡) from equation (10)  into (11), the terminal voltage can be calculated as 

the function of power, open circuit voltage and internal resistance in equation (13).   

 𝑉T,bat
2 − 𝑉OCV,bat ∙ 𝑉T,bat + 𝑃M ∙ 𝑅i,bat = 0 (12) 

 𝑉T,bat =
𝑉OCV,bat+√𝑉OCV,bat

2 −4∙𝑃M∙𝑅i,bat

2
  (13) 

3.7.2 Pack-level calculations.  Battery terminal voltage and battery capacity are cal-

culated from the series-parallel combinations of battery cells, as shown in Fig. 10. The 

open circuit voltage of a battery pack is calculated from the open-circuit voltage of a 

cell and the number of cells in series, as shown in equation (14). Battery capacities can 

be calculated by equation (15)  

 𝑉OCV,bat = 𝑉OCV,cell ∙ 𝑁series  (14) 
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 (𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)𝑘𝑊ℎ = 𝑁𝑠𝑒𝑟𝑖𝑒𝑠𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 ∙ (𝑐𝑒𝑙𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)𝑘𝑊ℎ (15) 

where 𝑁series and 𝑁parallel are the number of cells in series and parallel. 

3.8 Motor torque split control 

To simultaneously drive a vehicle with more than one axle, for example a four-wheel-

drive vehicle, there is a need for a device to split the torque between the axles. For the 

conventional vehicle (ICE), this is achieved with a central differential. For the BEV, the 

a torque-split can also be used to maximise energy efficiency: for any given power de-

mand, there will be an optimally efficient way of splitting torque between front and rear 

machines.  When a quasi-static model is assumed, this optimal split can be achieved 

with a deterministic algorithm, which selects the most efficient operating point for each 

motor using the torque-speed curves and efficiency maps. The front and rear motors can 

be the same size or different sizes and the effects of transmission can be taken into ac-

count – it is possible to use different ratios for front and rear.  Calculation is easy, and 

does not require on-line optimization: in the model, the torque split function was im-

plemented using a look-up table to create a split ratio as presented in equations (16)–

(20)   

The total motor output is given by:  

 𝑃out,total = (𝑇F ∙ 𝜔M,front) + (𝑇R ∙ 𝜔M,rear) (16) 
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where 𝑇F, 𝜔M,front are the torque and speed of the front machine and 𝑇R𝜔M,rear are the 

torque and speed of the rear machine.  These can be related to the wheel speeds via the 

front and rear gear ratios 𝐺F and 𝐺R: 

 𝑃out,total = 𝑇F (
𝜔w

𝐺F
⁄ ) + 𝑇R (

𝜔w
𝐺R
⁄ ) ∙ (17) 

It is possible to express 𝑇F as a fraction 𝑇S of the required torque it would need to supply 

if only the front motor was used: 

 𝑇F = 𝑇S (
𝑃out,total

𝜔w/𝐺F
) (18) 

This then requires an equivalent relationship for the rear: 

 𝑇R = (1 − 𝑇S)
𝑃out,total

𝜔w/𝐺R
 (19) 

If the machine efficiencies are functions of torque and speed 𝜂F(𝑇F, 𝜔F) and 

𝜂R(𝑇R, 𝜔R), the problem becomes how to minimize the instantaneous power, i.e. 

𝑃in,total =
𝑇F ∙ 𝜔M,front
𝜂F(𝑇F, 𝜔F)

+
𝑇R ∙ 𝜔M,rear
𝜂R(𝑇R, 𝜔R)

 

which is given by 

𝑇S = argmin

(

 
 𝑇S ∙ 𝑃out,total

𝜂F (𝑇S (
𝑃out,total
𝜔w/𝐺F

)) , 𝜔w/𝐺F)

+
(1 − 𝑇S)𝑃out,total

𝜂R ((1 − 𝑇S)
𝑃out,total
𝜔w/𝐺R

) ,𝜔w/𝐺R)
)

 
 

 

  (20) 

This is a static relationship for any given output-power and wheel-speed pair, and can 

be precomputed as a look-up table for convenient implementation. 
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Fig. 11 presents the operating points of 48 kW front and 32 kW rear motors. The to-

tal of 100 Nm torque required from both motor. The torque split function select the op-

erating point of 60 Nm torque from the front motor and 40 Nm from the rear motor. At 

60% front split ratio, both motor operated at the minimum of energy consumption as 

presented in Fig. 12.   

The torque-splitting algorithm is used in traction mode only; the torque split in re-

generative braking remains constant, depending on the size of the motors, as presented 

in equation (21).  During braking, this approach cannot be used: vehicle stability could 

potentially become an issue, so there are strict legislative requirements governing the 

proportion of the braking force that can be applied at each axle.  The torque-splitting 

algorithm when accelerating the vehicle or maintaining constant speed.  During braking, 

the following formula is used: 

 𝑇SB =
𝜙F

𝜙F+𝜙R
 (21) 

where 𝑇SB is torque split in braking mode,  𝜙F  is the front motor rating (kW) and 𝜙R is 

the rear motor rating (kW).  This ensures that the braking force from the front wheels 

will always be greater than or equal to the braking force from the rear wheels. 
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3.9 Mass of vehicle 

In this section, we investigate the effect of different vehicle topologies, as discussed be-

fore, on energy consumption and acceleration performance.  One of the important vehi-

cle parameter which impacts energy consumption is vehicle mass [20]. The vehicle 

mass is calculated by consideration of three components: electric machine and transmis-

sion (combined), battery, and vehicle body. 

3.9.1 Mass of transmission and electric machine.  For mass calculations, the EM 

and its transmission are treated as a single unit. For the SM-SA and DM-DA, each axle 

is equipped with a single ratio transmission only and it is assumed that the difference in 

mass between gearboxes with different transmission ratios is negligible.  The mass of 

the motor is estimated by using the average mass of the permanent magnet motors 

available commercially [44]. Table 1 gives the formulae used. 

Table 2 details assumptions made on the mass of transmission components. In the 

DM-DA type, 30 kg of additional transmission is added to the total vehicle mass; a 25% 

mass reduction has been applied to the overall powertrain mass for in-wheel vehicles as 

they do not have a transmission and drive shaft. 

From these tables it can be seen that if the vehicle has a fixed EM power (80 kW 

SM-SA and 40 + 40 kW DM-DA) the DM-DA type is always heavier than the SM-SA.  

This is not a surprise, and if nothing else about a vehicle changed, a DM-DA powertrain 
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would need to be operated more efficiently to provide an advantage in terms of energy 

consumption relative to SM-SA. 

3.9.2 Mass of battery.  The mass of the battery pack was estimated from the number 

of cells in the battery. The cells and pack size used in the Nissan Leaf  [42] were used as 

a baseline: each cell has a mass of 0.787 kg;  there are four cells in one module and 48 

modules in a battery pack, giving a total cell mass of  0.787 x 4 x 48 = 151.1 kg.  It will 

be assumed that a battery will also require 0.06 kg/kW for the mass of thermal man-

agement system and 0.14 kg/kW for the mass of harness and bus bar [43]: this gives an 

effective total cell mass of 0.975 kg per cell.  Using these assumptions, the total mass of 

case-study Nissan Leaf was estimated at 187.2 kg.  In this work, the mass of the battery 

in every topology will be calculated using the same formula, since a similar type of bat-

tery pack will be assumed, though the number of cells will be allowed to vary. 

3.9.3 Calculation of vehicle kerb mass.  For these calculations, it was assumed that 

the vehicle would be of a similar type to the original case-study vehicle, a C-segment 

passenger car.  A vehicle’s mass can be considered to consist of the mass of the power-

train plus a ‘glider mass’, i.e. the fixed mass of the vehicle without the powertrain com-

ponents.  (This terminology comes from the aerospace domain: an aircraft without an 

engine is a ‘glider’ in a literal sense!)  The total mass of the case study vehicle, 𝑀orig, is 

1521 kg.  To estimate the ‘glider mass’ 𝑀glider, the mass of the case study vehicle’s 
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powertrain 𝑀PTorig was estimated using the formulas already presented; this was sub-

tracted from the total mass to get an estimate of the glider mass: 

 𝑀glider = 𝑀orig −𝑀PTorig (22) 

This calculation described assumes that the glider mass is unaffected by the choice of 

powertrain.  In practice, this is unlikely to be true: a heavier powertrain will probably 

require a stronger and heavier chassis, for example.  To model this, it was assumed that 

the chassis would be made heavier by 0.6 times the increase in powertrain mass: 

𝑀new = 𝑀glider +𝑀PTnew + 0.6(𝑀PTnew −𝑀PTorig) 

or, more simply: 

 𝑀new = 𝑀orig + 1.6(𝑀PTnew −𝑀PTorig) (23)  

3.10 Calculation of powertrain cost 

Table 3 gives the equations and the assumptions made for calculating the powertrain 

cost. These equations based on the long-term pricing estimates from the literature [44]. 

The pack cost is based on the capacity of the pack and the cell cost, itself dependent on 

the power-to-energy ratio of the cells, 𝑃/𝐸 – this has been taken as 4.0 based on the in-

formation available for the Nissan Leaf [45].   The formula for cost is 

 (cell cost)$/kWh = 11.1 × (
𝑃
𝐸⁄ ) + 221.1 (24) 



36 

 costbattery pack($) = ((cell cost)$/kWh + 13) × (𝑐𝑒𝑙𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)𝑘𝑊ℎ + 680  (25) 

Total powertrain mass and cost are calculated based on the mass and cost of the motor: 

 (cost)powertrain = (cost)motor + (cost)powertrain + (cost)battery pack  (26) 

Details of these calculations may be found in Table 3. 

3.11 Drivability (acceleration time) calculation 

Driveability is assessed through a simple calculation estimating the time taken to accel-

erate from rest to 100 km/h. 

Assume that the quasi-static representation of the system is correct.  Given a vehicle 

of constant mass 𝑀, let 𝑣(𝑡) be the vehicle’s instantaneous speed, and let 𝑓𝑤(𝑣) be the 

maximum tractive force at that speed.  Consider Newton’s second law applied over a 

small time window:   

 𝑓𝑤(𝑣) =
𝑀(𝑣+𝛿𝑣)−𝑀𝑣

𝛿𝑡
 (27) 

Rearranging this gives 

 𝛿𝑡 =
𝑀

𝑓𝑤(𝑣)
𝛿𝑣 (28) 

Summing both sides over the acceleration period and taking the limit gives: 

 𝑇 = ∫ 𝑑𝑡
𝑇

0
= ∫

𝑀

𝑓𝑤(𝑣)
𝑑𝑣

𝑉

0
 (29) 
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where 𝑉 is a specified speed and 𝑇 the time taken to reach that speed.  Thus, the time 

taken to reach a speed of 100 km/h (27.78 m/s) from rest can be estimated from equa-

tion (30): 

 (acceleration time)0−100 km/h = 𝑇100 = ∫
𝑀

𝑓w(𝑣)

27.78

0
 𝑑𝑣 (30) 

where 𝑇100 is the time taken to accelerate from rest to 100 km/h.  

4 Vehicle simulations without optimization 

In order to understand the implications of each chosen topology, two studies were car-

ried out.  In the first study, the properties of each topology with an 80 kW electric ma-

chine were considered.  The battery back was kept at the ‘case study’ size, and there 

were no attempts to optimize the powertrain.  The aim of this part of the study was to 

demonstrate that the basic methodology was sensible, and that the simulations gave rea-

sonable results. 

For the first topology, SM-SA, a single 80 kW motor at a front axle is used – as in 

the case-study vehicle. For the DM-DA topology, two identical motors are applied, one 

at the front and the other at the rear.  For the IWM-SA a two 40 kW in-wheel motors are 

used, one each at the left and right side of the front axle; for the IWM-DA, four 20 kW 

in-wheel motors are used. Table 4 shows the difference in powertrain masses: the DM-

DA will have the most extra mass because of it is using an additional motor and gear-
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box at the rear axle. For in-wheel topologies, four motors are used, but this is offset by 

the reduction in powertrain mass brought about by the omission of gearing. 

Table 5 shows the results of simulation: energy consumption, acceleration time and 

powertrain cost   It can be seen that both the in-wheel motor vehicles consume less en-

ergy than the original case study vehicle. The ‘worst’ is the DM-DA vehicle, though 

despite its mass increasing by over 3% or 50 kg added due to the rear axle motor and 

transmission, the energy consumption has only increased by around 1% compared to the 

case study vehicle – this is because of efficiencies arising from the motor torque split 

that divides the vehicle torque between the front and rear axles efficiently.  

5 Multi-objective optimization on different BEV topologies 

To get a ‘fair’ comparison of the benefits of each topology, it is important to assess it at 

its best.  This means optimizing the whole powertrain, with all significant parameters – 

machine power, battery sizing and – where appropriate - gear ratios.   For the DM-DA 

topology, the front and rear machines were permitted different motor sizing and gear 

ratios. 

The multi-objective optimisation problem chosen for this exploration considered the 

simultaneous minimisation of three objectives: firstly, ‘real-world’ energy consumption 

over the combined Artemis driving cycle (CADC); secondly, acceleration time from 0-

100 km/h; thirdly, powertrain cost. These three objective functions are equally 
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weighted. A constraint on range was applied: when using the NEDC – currently re-

quired for legislative statements in the UK – the range of the vehicle had to be at least 

175 km. This will ensure that any vehicle produced will give comparable range to the 

Nissan Leaf. Optimization was performed using readily-available genetic algorithm 

(GA) solvers from the MATLAB R2014a Global Optimization Toolbox’s ‘ga’ com-

mand; the user’s guide for this software goes into some depth on the details of the algo-

rithms used [46].   It is beyond the scope of this paper to describe the detail in depth, but 

it may aid the reader to recap the fundamentals here.  The essential idea of a genetic al-

gorithm is to mimic Darwinian ‘evolution by natural selection.’  In place of the usual 

objective function, GA theorists talk about a scalar-valued ‘fitness function.’  Any given 

point in the optimization space will have a fitness function.  The idea is to start with a 

random ‘population’ of points in the design space, to select the ‘fittest’ (i.e. those with 

the best objective function values), then to ‘cross-breed’ the selected points to create 

‘children’ with inherited properties which are a mix of those of their ‘parents’; to ensure 

that this is not too limiting, the children may also incorporate ‘mutations,’ introducing a 

degree of randomness into the process.  Over successive ‘generations’, the population 

will tend to become ‘fitter’, and eventually converge the ‘fittest’ possible.  As with all 

attempts at non-convex optimization (other than the impossible fully-exhaustive 

search), there is always a risk that the process will settle on a sufficiently attractive local 

minimum rather than the true global minimum, though the fact that the initial points are 
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distributed through the design space and the presence of mutations may help to reduce 

this risk.  A degree of confidence may be obtained from the fact that GAs have been 

successfully used in powertrain component sizing optimization, where they have con-

firmed the near-optimality of the Nissan Leaf [47].   

A mathematical formulation for the problem of this paper is given in equations (31) 

to (35): 

Minimize   

   𝐽1(𝑋D), 𝐽2(𝑋D), 𝐽3(𝑋D) (31) 

where 

 𝐽1(𝑋D) = 𝐸(𝑋D) = cycle energy consumption (32) 

 𝐽2(𝑋D) = (aceleration time)0−100 km  (33) 

 𝐽3(𝑋D) = (cost)powertrain (34) 

Subject to 

 range (NEDC) ≥ 175 km (35) 

where 𝑋D is a vector of vehicle parameters such as motor size, gear ratio and battery 

capacities. T is time of a driving cycle in second. The results of the multi-objective op-

timization are shown in Fig. 13 and 14.  Fig. 13 shows the trade-offs of between the en-

ergy consumption and acceleration time for each topology.  The solid line shows as a 

benchmark the acceleration of the Nissan Leaf, 9.9 sec for 0–100 km/h.  For each topol-
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ogy, it is possible to match or improve the original acceleration performance relative to  

the benchmark vehicle – this is most noticeable for the topologies using in-wheel mo-

tors.  Better acceleration naturally requires a large motor with more mass, and therefore 

consumes more energy. Table 6 shows the energy consumption at the benchmark accel-

eration.  To meet this performance whilst minimizing energy efficiency, the pareto-

optimal solutions for every topology required at least an 80 kW of motor. The IWM-DA 

gives the best energy efficiency result with an improvement of more than 3% compared 

to the benchmark vehicle. The optimized SM-SA vehicle type can be considered as the 

optimized form of the case study vehicle.  To obtain the same acceleration performance, 

the motor size remained the same, but the pareto-optimal efficiency was achieved using 

a slightly larger gear ratio and a smaller battery compare to the original vehicle.  This 

does not in any sense mean that the original case study vehicle was ‘wrong:’ it may well 

be that the manufacturers had slightly different objectives in mind for their design pro-

cess.  It is if anything reassuring for this methodology to find how close our optimal so-

lution is to their design . 

It is clear from this that if getting maximum efficiency for a given acceleration per-

formance is required, then the in-wheel motor topologies are the best choice.  In particu-

lar, the best trade-off is obtained with the IWM-DA configuration.  It should be noted 

however that this is also likely to be the most expensive powertrain. 
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So far, we have looked at the trade-offs between energy consumption and perfor-

mance.   

Fig. 14 shows another trade-off: energy consumption versus powertrain cost.  In this 

case, the incumbent SM-SA topology is gives the best trade-off curve, with the IWM-

SA topology the second best.    The lowest costs achievable relative to the benchmark 

vehicle’s energy consumption are shown in Table 7.  The cheapest powertrain was 

achieved with a slightly larger motor and gear ratio (84kW, 8.9:1) and a slightly smaller 

battery size.  The powertrain was 2.3% cheaper than the original case study vehicle. The 

other topologies produced more expensive vehicles, though the additional costs were 

not uniform: the IWM-SA was about 1% more expensive, while the IWM-DA was 

about 26% more expensive.  There is a clear conflict here: the IWM-DA machine was 

the best in terms of energy consumption versus acceleration, but it is the worst in terms 

of cost.  The SM-SA is the cheapest for a given efficiency, but the worst performing.  

The IWM-SA gives a reasonable compromise between all three objectives. The costs 

and benefits of each topology can be summarized: 

5.1 SM-SA 

The SM-SA is the simplest BEV powertrain, using a topology close to a traditional me-

chanical layout including a fixed ratio gearbox and a large single power source.  This is 

low cost, and simple to control.  The smallest motor size that could complete the com-
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plete Common Artemis Driving Cycle was 60 kW – this solution has poor acceleration 

but consumes minimum energy. This topology’s greatest benefit is its low cost, but it 

does not give a good trade-off between energy consumption and performance.  

5.2 DM-DA 

This BEV topology used two separate motors for front and rear axles. By allowing dif-

ferent motor sizing and gear ratios in front and rear, it was possible to achieve improved 

energy efficiency and acceleration performance compared to the baseline vehicle and 

the SM-SA type.  However, it was relatively expensive for any given energy consump-

tion.  It was much cheaper than the IWM-DA vehicle for a given acceleration.  The 

DM-DA is most useful for a ‘cheap’ performance car or 4WD vehicle: in both these 

scenarios, IWM-DA vehicle would give better performance but be much more expen-

sive: DM-DA is reasonable and more affordable. 

5.3 IWM-SA 

IWM-SA was slightly more expensive than the SM-SA vehicle.  It was able to give bet-

ter energy consumption and better acceleration performance.  This is good for passenger 

cars that do not need 4WD for very high performance. This topology may well be suita-

ble for the future small city car.  Complexity of control and consideration of electronic 
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differential algorithms were not considered, neither was the increased unsprung mass.  

These problems are likely to be surmountable with further work. 

5.4 IWM-DA 

IWM-DA produced a good acceleration time with minimum energy consumption, but 

was the most expensive topology.  It is excellent for efficient performance vehicles, but 

it is expensive.  Where 4WD is not required, IWM-SA may provide a better compro-

mise between all three objectives. 

Fig. 15 gives guidelines on the selection of an appropriate topology to meet any given 

combination of objectives.  For a general all-round vehicle, the IWM-SA and SM-SA 

topologies are likely to prove the best. 

5.5 Robustness of solutions 

In order to test the robustness of the solutions obtained, the optimization was repeated, 

but the vehicle’s maximum payload of 395 kg was assumed.   The results are shown in 

Fig. 16 and Fig. 17.  It will be seen that the results have changed significantly: 

 For the compromise between efficiency and driveability, the IWM-SA topology 

is the best choice.  The IWM-DA topology is second best. 
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 For the compromise between efficiency and powertrain cost, the SM-SA vehicle 

is still significant. 

 For the compromise between driveability and cost, the IWM-SA is still a good 

choice, but not significantly different to the SM-SA. 

Whether these results should take precedence over the results for the unladen vehicle 

will depend very much on the way the car manufacturers interpret consumer desires. 

6 Conclusions 

In this paper a study has been presented in which the properties of four possible battery 

electric vehicle topologies were studied.  The topologies used different combinations of 

in-body and in-wheel motors, driving axles and powertrain arrangements.  The back-

ground to the topologies was presented, and four topologies selected for detailed analy-

sis were described: single-motor single-axle (SM-SA), dual-motor dual-axle (DM-DA), 

in-wheel motor single axle (IWM-SA) and in-wheel motor dual axle (IWM-DA).   

These were modelled, and the calculations, and assumptions used by the authors were 

presented.  The results of the models were presented, first showing how each topology 

performed with a fixed 80 kW total motor power, and then after performing multi-

objective optimization.   The relative benefits of each topology were explored and pre-

sented with guidelines on the choice of topology for given objectives.  For pure energy 

efficiency or a good compromise between energy efficiency and driving performance, 
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the IWM-DA topology was best; for pure driving performance, the DM-DA topology 

was best; for a cheap vehicle or a good compromise between cost and efficiency, SM-

SA was best, and for a cheap vehicle with good performance, IWM-SA was best.  Also, 

there was significant sensitivity of the result to the problem formulation, as shown by 

the addition of a full payload to the vehicle.  These guidelines and the method used to 

obtain them may be useful for vehicle manufacturers in determining the best topologies 

to explore in the design of future BEVs. 

6.1 Future Work 

There are a number of potential avenues for future exploration: 

1. The impact of driverless cars on powertrain configuration could be considered.  

At present, powertrain sizing is constrained by a need to provide user-friendly 

‘driveability’ properties.  Broadly speaking, this requires powertrains to be sized 

for high torque capabilities, which perhaps are not strictly needed for satisfacto-

ry progression.  A planned study will consider an self-driving urban vehicle – 

perhaps a ‘future taxi’ – and understand the distinctive aspects of optimization 

of such a powertrain. 

2. The techniques used in this study can be applied to explore the powertrains best 

suited to non-traditional power sources (such as lithium-sulfur batteries), or for 

non-passenger (i.e. freight) road transport applications.  The fundamental princi-
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ples here will not be different, but the duty cycles and the relative importance of 

some of the vehicle properties will change dramatically. 

3. The metrics so far have been powertrain cost, efficiency and performance.  

There is a growing body of work that considers the relationship between usage 

and component lifespan.  This would be valuable to explore. 
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Fig. 1: Battery electric vehicle powertrain topologies considered in this study. 

 

 

 

 

 

Fig. 2: Backward-facing model of vehicle showing trajectory as input. 
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Fig. 3: Forward-facing model of vehicle showing driver feedback loop. 

 

 

Fig. 4: Inputs and outputs of backward-facing simulation of the vehicle. 
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Fig. 5: Inputs and outputs of backward-facing simulation of motor/machine. 

 

 

 

Fig. 6: Scalable motor map for permanent magnet synchronous motor. 
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Fig. 7: Motor efficiency map (implemented in model lookup table). 
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Fig. 8: Modified motor map assumed for in-wheel vehicles. 

 

 

 

Fig.9: Input and output of backward-facing simulation of battery. 
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Fig. 10: Cell and battery pack model for electric vehicle. 
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Fig. 11: Relationship of power requirement to torque split. 
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Fig. 12: Power consumption for two motors with torque splitting. 
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Fig. 13: Pareto front of acceleration time and energy consumption. 
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Fig. 14: Pareto front of energy consumption and powertrain cost. 
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Fig. 15: Trade-offs between different topologies and objective functions. 
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Fig. 16: Pareto front of acceleration time and energy consumption with full pay-

load assumed in optimization. 
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Fig. 17: Pareto front of energy consumption and powertrain cost with full pay-
load assumed in optimization.
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Table 1: Assumed motor masses for each topology. 

 

 

Topology 
Assumed masses of electric machines (kg) 

front rear 

SM-SA 0.532 × 𝑃motor,kW + 21.6 no motor 

DM-DA 0.532 × 𝑃motor,kW + 21.6 0.532 × 𝑃motor,kW + 21.6 

IWM-SA 
(0.532 × 𝑃motor,kW

+ 21.6) × 2 
no motor 

IWM-DA 
(0.532 × 𝑃motor,kW

+ 21.6) × 2 

(0.532 × 𝑃motor,kW + 21.6)

× 2 

 

 

 

Table 2: Assumed transmission masses for each topology. 
 

 

Topology Assumptions made regarding powertrain component mass 

SM-SA Default, unchanged from case-study vehicle 

DM-DA Front axle as SM-SA, additional 30 kg added for rear axle 

IWM-SA Reduction of 25% compared to SM-SA 

IWM-DA Reduction of 25% compared to SM-SA 
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Table 3: Assumed costs of powertrain components for each topology. 

 

 

Topology 
Assumed cost of motors and transmission (USD) 

front motor(s) rear motor(s) transmission 

SM-SA 16 × 𝑃motor,kW + 385 no motor as case study 

DM-DA 16 × 𝑃motor,kW + 385 16 × 𝑃motor,kW + 385 
second gearbox 

+5% 

IWM-SA 
(16 × 𝑃motor,kW + 385)

× 2 
no motor as case study 

IWM-DA 
(16 × 𝑃motor,kW + 385)

× 2 

(16 × 𝑃motor,kW + 385)

× 2 
as case study 

 
 
 
 

Table 4: Masses of powertrain components for each topology prior to any optimization, 
assuming 80 kW total motor power. 

 

 

Topology Front motor Rear motor 
Transmission 

mass 

Difference 

from LEAF 

(kg) 

SM-SA 
one motor @  

80 kW / 64.16 kg 
no motor as case study   ±0.0 

DM-DA 
one motor @  

40 kW / 42.88 kg 

one motor @ 

40 kW / 42.88 kg 

30 kg added 

(rear gearbox) 
+51.6 

IWM-SA 
two motors each @  

40 kW / 42.88 kg 
no motor 25% reduction +0.16 

IWM-DA 
two motors each @   

20 kW / 32.24 kg 

two motors each @  

20 kW / 32.24 kg 
25% reduction +32.6 
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Table 5: Energy efficiencies for each topology prior to optimization, assuming 80 kW 
total motor power. 

 

 

Topology 
Vehicle mass 

(kg) 

Acceleration 

time (s) 

Cost  

(USD) 

Energy cons. 

(kWh/100km) 

SM-SA 1520   9.9 8,900 16.5 

DM-DA 1570 10.5 9,300 16.6 

IWM-SA 1520 11.2 9,300 16.0 

IWM-DA 1550 11.5 10,100 16.1 

 
 

 

Table 6: Energy consumption for each topology after optimization, subject to a con-
straint of meeting a specified driveability 'benchmark' (0–100 km/h in 9.9 s). 

 

Topology motor size                          

(kW) 

front / rear 

transmission ra-

tio 

front/rear 

battery 

size 

(kWh) 

energy con-

sumption 

(kWh/100km) 

powertrain 

cost  

(USD) 

Case study 80 / —  7.9 / — 24.0 16.5   (±0.0%) 8,900 

SM-SA 80 / — 8.1 / — 23.0 16.4   (–0.5%) 8,600 

DM-DA 42 / 46 6.56 / 6.29 24.0 16.4   (–0.3%) 9,400 

IWM-SA  2×43 / —      direct drive 21.1 16.2  (–1.8%) 8,500 

IWM-DA 2×29 / 2×17 direct drive 22.3 16.0  (–3.3%) 9,800 
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Table 7: Powertrain cost for each topology after optimization, subject to a constraint of meeting 
a specified energy consumption 'benchmark' (16.45 kWh/100 km). 

 

 

Topology motor size 

(kW) 

front / rear 

Transmission 

ratio 

front / rear 

Battery size 

(kWh) 

Powertrain cost     

 (USD) 

0–100 

km/h 

(s) 

Case study  80 / — 7.9 / — 24.0   8,900    (±0.0%) 9.9 

SM-SA  84 / — 8.0 / — 23.0    8,700    (–2.4%) 9.3 

DM-DA  60 / 40 8.0 / 8.0 24.0   9,600    (+8.0%) 8.0 

IWM-SA 2×62 / —    direct drive 20.5   9,000    (+0.9%) 7.0 

IWM-DA 2×65 / 2×20 direct drive 23.3 11,300   (+26.0%) 6.0 
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