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Abstract: This paper presents a new methodology for optimal sizing of the energy storage system
(ESS), with the aim of being used in the design process of a hybrid electric (HE) refuse collector
vehicle (RCV). This methodology has, as the main element, to model a multi-objective optimisation
problem that considers the specific energy of a basic cell of lithium polymer (Li–Po) battery and the
cost of manufacture. Furthermore, optimal space solutions are determined from a multi-objective
genetic algorithm that considers linear inequalities and limits in the decision variables. Subsequently,
it is proposed to employ optimal space solutions for sizing the energy storage system, based on
the energy required by the drive cycle of a conventional refuse collector vehicle. In addition, it is
proposed to discard elements of optimal space solutions for sizing the energy storage system so as to
achieve the highest fuel economy in the hybrid electric refuse collector vehicle design phase.

Keywords: energy storage; fuel economy; genetic algorithms; optimisation

1. Introduction

In cities with high density of population, refuse collector vehicles (RCVs) are of vital importance
due to the need to maintain a healthy city. However, the overuse of these trucks leads to a negative
impact on the environment because high quantities of fuel are required and contribute to the pollution,
aggravated by the automotive industry [1,2].

Accordingly, hybrid electric vehicles (HEVs) and electric vehicles (EVs) offer a solution for the
environmental trade-off in terms of pollution problems. However, although HEVs and EVs have great
advantages, the HEV is a mature technology in comparison to EV [3,4].

In addition, the HEVs are more feasible for RCV because a larger autonomy is required. Among
the HEVs, the RCV is a specific application where the total weight variation, repetitive and aggressive
drive cycles are important parameters for its design due to the fact that, although HEVs can cover
large distances, a high fuel consumption is required [5]. Then, taking the last consideration on the RCV
design, the energy storage system in relation to fuel consumption can be addressed.

Different energy storage elements, such as batteries, supercapacitors or fuel cells, for the energy
storage system may be used. For instance, in [6], a hybrid heavy-duty trucks with battery is used,
in order to perform a life cycle analysis. In addition, in [7], an energy management strategy for plug-in
hybrid electric vehicles based on batteries is proposed.

On the other hand, the supercapacitors may also be used for applications of energy storage.
For instance, in [8], a balancing circuit for a hybrid energy storage system with supercapacitor
is proposed. In addition, in [9], a current-source converter for a hybrid energy storage system is
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performed to interface a supercapacitor (SC) module and a battery stack. Due to the supercapacitor
advantages, an increase in the charge/discharge rate and cycling life is achieved [10,11].

Essentially, there are three types of methodologies: sequential, simultaneous and nested, wherein
the main purpose is to achieve a HEV design optimisation [12]. The structure for each methodology
is based on levels such as topology, component sizing and control strategy. Although several layers
are defined, the components sizing and the control strategy can fulfil the requirements to achieve
the HEV optimal design, either for series, parallel or hybrid topology. In addition, taking previous
consideration, in several works, the nested methodology is more suitable to obtain a better HEV
design due to its advantage of low computational times [13,14]. However, for HEV design, if the
methodologies consider limited parameters to develop a high-performance HEV, then an optimal
design cannot be achieved.

Accordingly, interest in using more efficient optimisation methods has been increased because
the optimal solutions can be delimited through well-defined restrictions. Thereby, the number of
evaluations of the objective function decrease and the computational time is reduced [15].

Many optimisation methods have been presented based on a single objective [16–18]. For instance,
in [19], the optimal component sizing based on the weight sum method is achieved for a hybrid
refuse collector vehicle. In addition, in [20], the energy management of a serial hybrid electric bus
with the convex optimisation is performed. Furthermore, in [21], the component sizing of a parallel
hybrid electric powertrain by the genetic algorithm is proposed. In addition, the multi-objective
optimisation has been presented, wherein the multi-objective optimisation methods are more robust
because the space solutions can be delimited. It should be noted that, in the HEV design, multi-objective
optimisation is required due to the nature of the system, i.e., energy storage system and control strategy.

In accordance with the above, the sizing procedure is considered as a multi-objective problem
in [22,23]. For instance, in [24], the component sizing of hybrid hydraulic powertrain by non-dominated
sorting genetic algorithm II is performed. In addition, in [25,26], the optimal powertrain component
sizing with a multi-objective genetic algorithm is achieved. Nevertheless, real drive cycles are not
considered in the optimal sizing methodologies.

Various studies for the industrial vehicles (such as refuse collector vehicle, heavy duty vehicle)
have been developed [27–30]. For instance, in [31], the optimal sizing and control of a hybrid tracked
vehicle are performed. In addition, in [32], the optimisation problem for the sizing and control of
a heavy-duty vehicle is formulated, the solution through several methods (brute force, DIviding
RECTangles (DIRECT), sequential quadratic programming (SQP), genetic algorithms (GA) and particle
swarm optimisation (PSO)) is achieved. However, the industry demands new methodologies for
optimal powertrain sizing.

In this work, a new methodology is developed for optimal sizing of the energy storage system.
The manufacturing cost and the volume of a basic cell of lithium polymer (Li–Po) battery are considered
in the optimisation problem. A multi-objective genetic algorithm is used, with the purpose of obtaining
a space of local optimal solutions. Each item from the optimal set allows for sizing the energy storage
system, based on the real drive cycle of a conventional refuse collector vehicle. The validation of the
proposed methodology is performed through a quasi-static model of an HE–RCV, which considers
the real behaviour of a Li–Po cell. The fuel consumption is calculated, in order to select the energy
storage system with the lowest fuel consumption.

In Section 2, a hybrid electric refuse collector vehicle model is presented, taking into account
a control strategy. In Section 3, an electrochemical model for the energy storage system is presented.
In Section 4, an optimisation problem for sizing of the energy storage system is described. In Section 5,
the validation of the methodology is presented. Finally, Section 6 provides the main conclusions of
the paper.
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2. Hybrid Electric Refuse Collector Vehicle

The powertrain of the proposed HE–RCV is of the series type configuration, as shown in Figure 1.
It consists of one internal combustion engine, two electrical machines and the energy storage system.

RCV Drivetrain Motor-Generator PowerLink Generator ICE

ESS

Figure 1. Quasi-static model of an HE–RCV.

In this paper, a new methodology is proposed for the optimal sizing of the energy storage system
in order to reduce the consumption of the ICE, as shown in Figure 2. It is based on the application of
a multi-objective genetic algorithm with experimental data of real routes.

Start

Set topology

ESS model

ESS optimisation

Determining the
optimal set

Define a control
strategy

End

Select an item from the
optimal set

ESS sizing

Evaluate the ESS in the
defined topology

Calculated fuel
consumption

Are items without
evaluation?

Select the item with the
lowest fuel consumption

YES

NO

Optimisation

Optimisation

Figure 2. Methodology for optimal sizing of the energy storage system.

To apply this methodology, it is necessary to estimate the fuel consumption of the HE–RCV taking
into account a control strategy.

The well-known quasi-static model of the HE–RCV powertrain includes the longitudinal
dynamics [30,33]:

mRCV ·
d
dt

v(t) = Ft(t)− (Fa(t) + Fr(t) + Fg(t)), (1)

where mRCV is the mass of the vehicle, taking into account the dynamic load (2) as a characteristic of
an RCV, Fa is the aerodynamic resistance (3), Fr is the rolling resistance (4), and Fg is the force caused
by gravity during a route on a non-horizontal road (5):

mRCV = mVehicle + md(t) + mEM + mESS, (2)
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Fa =
1
2
· ρa · v2 · A f · Cd, (3)

Fr = mRCV · g · Cr · cos(α), (4)

Fg(α) = mRCV · g · sin(α). (5)

Based on the longitudinal dynamics, the power (6) and the energy (7) for the powertrain can
be determined:

PHE−RCV = Ft(t) · v(t) = mRCV ·
d
dt

v(t) + (Fa(t) + Fr(t) + Fg(t)) · v(t), (6)

EHE−RCV =
∫ t

0
PHE−RCV . (7)

The transmission plays an important role in the powertrain because there is a linear relationship
between torque (τin) and angular speed (ωin):

Pout =
τin ·ωin

γ
. (8)

In order to simplify the estimation of the ICE consumption, the efficiency of the electrical machines
is considered constant:

Pout = ηEM · Pin. (9)

The weight of the electrical machines is approximated with a linear dependency with the
input power:

mME = 1.685 · Pin. (10)

The minimum SOC of 20% and a maximum of 100% for the energy storage system is
considered [34,35], in order to formulate a rule-based control strategy (11): .

Psource =

{
ESS, if (Pin <= PESS) or (Pbody <= PESS),
ICE, if (Pin > PESS) or (Pbody > PESS).

(11)

In order to protect the ESS front aggressive energy demands, the following condition is imposed:

Pin
VESS · Cnom

≤ Cdischarge, (12)

where Cnom is the rated capacity and Cdischarge is the maximum discharge rate.

3. Energy Storage System

Although a generic ESS [36–38] may include several elements, such as batteries, supercapacitors [39,40],
fuel cells [41], etc., in this paper, only an ESS based on batteries is considered due to its specific energy,
energy density and discharge rate.

Several models have been proposed with the intention of reproducing the real electrical behaviour
of a battery-based ESS [42]. The proposed ESS is composed of a number of cells connected in series
and parallel, in order to provide the required voltage and current. Each cell may be approximated with
a first order electrical model, as shown in Figure 3 [43–45].

VL is the output voltage of the cell:

VL = VOC − R0 IL −
∫ ( IL

C1
−

VR1C1

R1C1

)
dt, (13)
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where VOC is the open circuit voltage of the cell. This voltage may be estimated by using the state of
charge (SOC) of the cell:

SOC = 100− 1
3600 · C

∫
IL(t)dt. (14)

C1

R1

R0

VL

IL
+

-

+
-

VOC

Figure 3. Electrochemical cell model.

The behaviour of the cell can be estimated by experimental measuring of the SOC based on 1C
discharge rate beginning at 100 % of SOC. A 1C rate means that the discharge current will discharge
the entire battery in one hour. As shown in Figure 4, VL is the voltage of the cell when the load is
connected with the constant current IL and V

′
L is the voltage when the load is disconnected.

Vo
lta

ge
 (V

)

Time (s)

VOC

VL

V´L

SOC = 100

VOCSOC = 90

Figure 4. Experimental current discharge in a cell.

It is possible to estimate the value of R0 (15), R1 (16) and C1 (17) for the considered model of the
cell (Figure 3) [42,46]:

R0 =
VOC −VL

IL
, SOC = 100, 90, ..., (15)

R1 =
VOC −V

′
L

IL
, SOC = 100, 90, ..., (16)

C1 =
τSOC−V′L

R1
, SOC = 100, 90, ... (17)

Once a cell is experimentally characterised, the parameters of the electric model of the ESS
considering Ns in series are:
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VOC = Ns ·VOCcell ,

R1 = Ns · R1cell ,

C1 =
1

Ns
· C1cell .

(18)

4. Optimal Sizing of the ESS

In the design of an HE–RCV, one of the most important points is the cost. However,
other magnitudes, such as weight, volume, autonomy and efficiency, may be taken into account
in order to design a more efficient vehicle. In this work, reduction of cost and volume of the ESS are
considered in the design of the powertrain.

For these objectives, it is possible to formulate a nonlinear multi-objective optimisation problem
under several restrictions, which allows for finding optimal space solutions with a trade-off between
the objectives (19):

min F(x) = ( f1(x), f1(x), ..., fn(x)),

s.t.

gi ≤ 0, i = 1, ..., m,

hi = 0, i = 1, ..., m.

(19)

Since it is not possible to correlate the manufacturing cost and the volume of a cell, in this work,
it is proposed to use the maximisation of the energy density as an objective in the optimisation problem.
Given this cost and density, a continuous nonlinear multi-objective optimisation problem with several
constraints is defined:

F(x) =

{
min cost(eD),
max eD(Cnom, Vnom, L),

s.t.

lbcost ≤ cost ≤ ubcost,
lbeD ≤ eD ≤ ubeD,

lbCnom ≤ Cnom ≤ ubCnom ,
lbL ≤ L ≤ ubL,

(20)

where the energy density is computed as:

eD =
Cnom ·Vnom

L
, (21)

where Cnom is the rate capacity, Vnom is the rate voltage and L the volume in a cell.
A multi-objective genetic algorithm is used, as shown in Figure 5, with the purpose to find a finite

space of local optimal solutions (S) in a limited interval of time. Each element in the optimal solution
space defines the characteristics of a cell (22), taking into account the constraints (18):

{Cnom, Vnom, L} = S(costi, eDi), i = 1, 2, ..., n

Cnom ∈ [lbCnom , ubCnom ]

L ∈ [lbL, ubL].

(22)

Considering the present Li-Po battery technology, the parameters for the multi-objective genetic
algorithm are displayed in Table 1.
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The number of cells is determined by each element of the optimal solution space:

Ns =
CESS

Cnom ·Vnom
, (23)

where CESS (24) is the energy consumed by the powertrain taking into account a real drive cycle:

CESS = λ · EHE–RCV . (24)

START

t = 0
P(t)(Cnom, Vnom, L)
P´(t)(Cnom, Vnom, L)
125 ≤ Cost ≤ 1300

295 ≤ eD ≤ 305
Popula�on = 10

Tol = 1x10E-9
gMax = 10

t = t + 1
P´(t) = Selec�on( P(t) )

P´(t) = CrossOver( P´(t) )

P´(t) = Muta�on( P´(t) )

constraints( P´(t), 0 )

P(t) = SelectPopula�on( P´(t) )

setPareto( P(t) )

Plot Pareto

Yes

END

No

fitness( P(t) )

P(t) = randomPopula�on()

|P(t)-P(t-1)| ≤ Tol
t < gMax

randomPopula�on()

P(i)(Cnom) = random(lbCnom, ubCnom)
P(i)(L) = random(lbL, ubL) 

i = i +1

Yes

No

i = 0
P(Popula�on)(Cnom, L) = Zeros()

return P

i < Popula�on

fitness( P(t) )

eD = P(i)(Cnom) * Vnom / P(i)(L)
cost = ((eD-lbeD)* ubcost) / (ubeD + lbcost)

Yes

No
i < Popula�on

return

constraints( eD, 1 ) constraints( cost, 2 )

i = i + 1

constraints( E, type )

lbeD ≤ E ≤ ubeD

1

2
Switch type

return

i = 0

i < Popula�on

0

lbCnom ≤ E(i)(Cnom) ≤ ubCnom
lbL ≤ E(i)(L) ≤ ubL

i = i +1

Yes

No

lbcost ≤ E ≤ ubcost

Figure 5. Multi-objective genetic algorithm to achieve a space of local optimal solutions.



Energies 2018, 11, 3279 8 of 17

The ESS model is defined by (18) using Ns cells in series.
Then, the final characteristic of ESS is determined through the optimal solution space, taking into

account the minimal consumption of the ICE:

ICEconsumption =
∫

τin ·ωin
LHV

, (25)

where LHV is the lower heating value of the fuel.

Table 1. Multi-objective genetic algorithm parameters.

Parameters Value

Manufacturing cost 125–1300 US/kWh
Energy density (eD) 295–305 Wh/L

Objectives 2 (Cost, dE)
Variables 3 (Cnom, Vnom, L)

Population 10
Crossover 0.8
Tolerance 1 × 10−9

5. Validation

To validate the proposed methodology, in this work, a real drive cycle from an RCV Iveco Stralis
GNC 270 (The vehicle is driven from Tarrega to La Faneca, both in the NE of Spain) is used, as shown
in Figure 6. To obtain a real drive cycle, a datalogger CANalyzer CANCase XL (Vector Informatik
GmbH, Stuttgart, Germany) with two CAN ports (SN 007130-011289) is used, allowing the storage of
torque and rpms of the ICE. These parameters are obtained from the ECM, through the communication
bus (CAN J1939) of an RCV during an 8-hour workday. The parameters of this RCV are displayed
in Table 2. Based on the maximum collection weight, a dynamic weight profile is proposed, as shown
in Figure 7, which distributes the maximum weight during traction moments of drive cycle.

Time (h)

0
0 1 2 3 4 5 6 7 8

20

40

60

80

100

Sp
ee

d 
(k

m
/h

)

Figure 6. Real RCV drive cycle.
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Table 2. RCV Characteristics.

Combustion engine 200 kW
Gears 6
Gear ratios (γ) 1 (4.59), 2 (2.25), 3 (1.54)

4 (1.000), 5 (0.75), 6 (0.65)
Weight (mVehicle)
(Empty/Full loaded) 15,000/25,000 kg
Frontal area (A f ) 7.5 m2

Drag coefficient (Cd) 0.6210
Rolling resistance (Cr) 0.009
Tire (Radius) 315/80/R22.5 (0.5455 m)

0 1 2 3 4 5 6 7 8
Time (h)

0

2000

4000

6000

8000

10000

12000
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Figure 7. Dynamic weight profile related to the refuse collector process of an RCV.

Using the quasi-static model described in Section 2, the power and the energy of RCV in a real
route is determined, as shown in Figure 8.

Power
Energy

194.3 x103

0
0 1 2 3 4 5 6 7 8 

200

400

Po
w

er
 (W

)

600

754.5 x 10³

0

50

100

Po
w

er
 (W

h)

Time (hr)

150

194.34x 10³

Figure 8. Power and energy for an HE–RCV taking into account a real drive cycle.

A Li-Po 3.7 V cell is characterised experimentally in order to set the parameters of the model
described in Section 3. The state of charge is determined as shown in Figure 9.
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Figure 9. SOC with the VOC, VL and V
′
L identification.

The parameters R0, R1 and C1 are determined by using the VOC, VL and V
′
L for an hour according

to 1C discharge rate, as shown in Figures 10–12, respectively.
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Figure 10. Behaviour of the resistance R0 for a Li-Po cell according to the VOC and VL identification.
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Figure 11. Behaviour of the resistance R1 for a Li-Po cell according to the VOC and V
′
L identification.
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Figure 12. Behaviour of the capacitance C1 for a Li-Po cell according to the VOC, V
′
L identification and

the R1 value.

The open circuit voltage Voc is approximated through the SOC using a lookup table, as shown
in Figure 13.

100 90 80 70 60 50 40 30 20 10 0
SOC (%)

2

3

4

5

V
ol

ta
ge

 (V
)

Figure 13. Voc approximation according to the SOC for a Li-Po cell.

Once the cell model has been obtained, the proposed ESS optimisation methodology is applied
to find the main parameters (energy density, volume, capacity) of the optimal solutions, taking into
account the following constraints:

lbCnom = 0.2 A ≤ Cnom ≤ ubCnom = 20 A,

lbL = 0.01 l ≤L ≤ ubL = 0.5 l.
(26)

The space of local optimal solution with the multi-objective genetic algorithm and the particle
swarm optimisation (as shown in Figure 14) are compared in Figure 15. Some optimal solution in both
optimisation methods are similar; however, based on the optimisation problem, the multi-objective
genetic algorithm allows for finding the space of local optimal solutions with a trade-off between
the objectives.
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START

t = 0
295 ≤ eD ≤ 305

125 ≤ Cost ≤ 1300
Popula�on = 10

Tolerance = 1x10E - 9
PSO(i)gBest = 0

obj = 0 

For i = 1 to Popula�on

PSO(i)velocity = randomVelocity()
PSO(i)posi�on = randomPosi�on()

PSOpBest = PSO(i)posi�on

PSOgBest = PSOpBest

fitness( PSOpBest ) < fitness( PSOgBest )

Yes

No

Tolerance || Popula�on

For i = 1 to Popula�on

Yes

End For

PSO(i)velocity = updateVelocity()
PSO(i)posi�on = updatePosi�on()

fitness( PSO(i)posi�on ) < fitness( PSOpBest )

PSOgBest = PSOpBest

Yes

fitness( PSOpBest ) < fitness( PSOgBest )

PSOgBest = PSOpBest

Yes

1

End For

No

No

fitness( P )

cost = ((P(eD)-lbeD)* ubcost) / (ubeD + lbcost)
Yes

No

i < Popula�on
i = i + 1

i = 0

No

eD = P(Cnom) * Vnom / P(L)

0

1

Switch obj

return

obj < 2

Yes

END1
No

obj = obj + 1

Figure 14. Particle swarm optimisation algorithm.

Multi-objective genetic algorithm
Particle swarm optimisation
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1.302

1.3
1.299
1.298

1.301
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Figure 15. Optimal solution space with the multi-objective genetic algorithm and the particle swarm
optimisation for the optimisation problem.

Then, the number of cells in series is calculated by using (24) for each element of the set of optimal
space solutions, as shown in Table 3. From the total energy required by the powertrain (Figure 8),
in order to validate the present methodology, it is proposed to cover 10% (λ = 0.1) equivalent to
a capacity of CESS = 19.434 kWh.

A fuel consumption of 30.12 kg was obtained in the conventional vehicle configuration. On the
other hand, the calculation was made of the fuel consumption of each element of the set of solutions,
as shown in Table 4. The final choice consists of the solution that presents a lower fuel consumption.
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Table 3. Optimal solution set.

# Cost eD (Wh/L) L (L) Cnom (Ah) Ns

1 1.300812 −305.006906 0.144788 11.93545 440
2 0.123982 −294.991340 0.115369 9.198045 571
3 0.927891 −301.833114 0.142080 11.59035 453
4 1.300812 −305.006906 0.144788 11.93545 440
5 0.241222 −295.989126 0.115397 9.231446 569
6 0.677771 −299.704430 0.127566 10.33298 508
7 1.180479 −303.982803 0.137194 11.27155 466
8 1.019624 −302.613820 0.142736 11.67404 450
9 0.851227 −301.180651 0.131935 10.73951 489
10 0.123982 −294.991340 0.115369 9.198045 571

Table 4. Fuel consumption of HE–RCV.

# Cnom (Ah) Ns Array Capacity (Wh) Consumption (kg)

1 11.93545 440 19,430.92 19.64
2 9.198045 571 19,432.71 19.61
3 11.59035 453 19,426.60 19.61
4 11.93545 440 19,430.92 19.64
5 9.231446 569 19,434.96 19.03
6 10.33298 508 19,421.88 19.06
7 11.27155 466 19,434.42 20.00
8 11.67404 450 19,437.28 20.00
9 10.73951 489 19,431.00 19.47
10 9.198045 571 19,432.71 19.61

To validate the found optimal solution, the charge/discharge of ESS is shown in Figure 16.

Time (h)

0

20

40

60

80

100

SO
C
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)

0 1 2 3 4 5 6 7 8

Figure 16. ESS state of charge.

6. Conclusions

A new methodology is developed for the optimal design of the energy storage system for
an HE–RCV, which has been validated using real routes from an Iveco Stralis GNC 270 RCV.

A model of a nonlinear multi-objective optimisation problem with constraints is achieved,
which allows for defining the characteristics of the cell that makes up the ESS.

In addition, the cost and volume were set as objectives in the optimisation problem in order to
obtain an optimal design of an ESS.
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To solve the problem, a multi-objective genetic algorithm was used to determine the optimal
solutions space and evaluated through an HE–RCV with serial topology so as to finally determine the
characteristics of the ESS that offer the lowest fuel consumption of an RCV.

A Li–Po cell characterisation is performed through experimental measuring in order to fit the
parameters of the cell model.

Furthermore, it was possible to define a control strategy based on rules, which considers the
discharge rate of the ESS. This allows for improving the design of an ESS avoiding the physical
damage by a peak discharge.

Finally, the proposed methodology results in an efficient optimal sizing of the ESS, achieving
a 36.82% reduction in fuel, through an optimal ESS that contains an array of 569 cells in series with
a capacity of 9.231446 Ah. The ESS covers 10% of the energy required by the RCV during a real driving
cycle. The energy required by the power train is defined as a parameter of the optimal sizing of the
ESS in the methodology.

The proposed methodology can be used to design an optimal ESS considering any percentage
of energy required by a hybrid electric vehicle. In addition, this methodology allows for finding the
characteristics of an ESS with the lowest possible cost and volume.
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Abbreviations

The following abbreviations are used in this manuscript:

RCV Refuse collector vehicle
HEV Hybrid electric vehicle
HE–RCV Hybrid electric refuse collector vehicle
EM Electric machine
ICE Internal combustion engine
ESS Energy storage system
ECM Engine control module
Ft Traction force
Fa Aerodynamic resistance
Fr Rolling resistance
Fg Force caused by gravity
mRCV RCV mass
mvehicle Vehicle mass
md Dynamic vehicle mass
mEM EM mass
mESS ESS mass
Pbody Body power
PESS ESS power
Pin In power
Pout Out power
Li–Po Lithium polymer battery
Cnom Nominal capacity
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CESS ESS capacity
VOC Open-circuit voltage
SOC State of charge
eD Energy density
lb Lower bound
ub Upper bound
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