90 research outputs found

    Uniscale and multiscale gait recognition in realistic scenario

    Get PDF
    The performance of a gait recognition method is affected by numerous challenging factors that degrade its reliability as a behavioural biometrics for subject identification in realistic scenario. Thus for effective visual surveillance, this thesis presents five gait recog- nition methods that address various challenging factors to reliably identify a subject in realistic scenario with low computational complexity. It presents a gait recognition method that analyses spatio-temporal motion of a subject with statistical and physical parameters using Procrustes shape analysis and elliptic Fourier descriptors (EFD). It introduces a part- based EFD analysis to achieve invariance to carrying conditions, and the use of physical parameters enables it to achieve invariance to across-day gait variation. Although spatio- temporal deformation of a subject’s shape in gait sequences provides better discriminative power than its kinematics, inclusion of dynamical motion characteristics improves the iden- tification rate. Therefore, the thesis presents a gait recognition method which combines spatio-temporal shape and dynamic motion characteristics of a subject to achieve robust- ness against the maximum number of challenging factors compared to related state-of-the- art methods. A region-based gait recognition method that analyses a subject’s shape in image and feature spaces is presented to achieve invariance to clothing variation and carry- ing conditions. To take into account of arbitrary moving directions of a subject in realistic scenario, a gait recognition method must be robust against variation in view. Hence, the the- sis presents a robust view-invariant multiscale gait recognition method. Finally, the thesis proposes a gait recognition method based on low spatial and low temporal resolution video sequences captured by a CCTV. The computational complexity of each method is analysed. Experimental analyses on public datasets demonstrate the efficacy of the proposed methods

    A new approach for multi-view gait recognition on unconstrained paths

    Get PDF
    Direction changes cause di culties for most of the gait recognition systems, due to appearance changes. We propose a new approach for multi-view gait recognition, which focuses on recognizing people walking on unconstrained (curved and straight) paths. To this e ect, we present a new rotation invariant gait descriptor which is based on 3D angular analysis of the movement of the subject. Our method does not require the sequence to be split into gait cycles, and is able to provide a response before processing the whole sequence. A Support Vector Machine is used for classifying, and a sliding temporal window with majority vote policy is used to reinforce the classi cation results. The proposed approach has been experimentally validated on \AVA Multi-View Dataset" and \Kyushu University 4D Gait Database" and compared with related state-of-art work. Experimental results demonstrate the e ectiveness of this approach in the problem of gait recognition on unconstrained path

    Gait analysis, modelling, and comparison from unconstrained walks and viewpoints : view-rectification of body-part trajectories from monocular video sequences

    Get PDF
    L'analyse, la modélisation et la comparaison de la démarche de personnes à l'aide d'algorithmes de vision artificielle a récemment suscité beaucoup d'intérêt dans les domaines d'applications médicales et de surveillance. Il y a en effet plusieurs avantages à utiliser des algorithmes de vision artificielle pour faire l'analyse, la modélisation et la comparaison de la démarche de personnes. Par exemple, la démarche d'une personne peut être analysée et modélisée de loin en observant la personne à l'aide d'une caméra, ce qui ne requiert pas le placement de marqueurs ou de senseurs sur la personne. De plus, la coopération des personnes observées n'est pas requise, ce qui permet d'utiliser la démarche des personnes comme un facteur d'identification biométrique dans les systèmes de surveillance automatique. Les méthodes d'analyse et de modélisation de la démarche existantes comportent toutefois plusieurs limitations. Plusieurs de ces méthodes nécessitent une vue de profil des personnes puisque ce point de vue est optimal pour l'analyse et la modélisation de la démarche. La plupart de ces méthodes supposent également une distance assez grande entre les personnes et la caméra afin de limiter les effets néfastes que la projection de perspective a sur l'analyse et la modélisation de la démarche. Par ailleurs, ces méthodes ne gèrent pas les changements de direction et de vitesse dans les marches. Cela limite grandement les marches pouvant être analysées et modélisées dans les applications médicales et les applications de surveillance. L'approche proposée dans cette thèse permet d'effectuer l'analyse, la modélisation et la comparaison de la démarche de personnes à partir de marches et de points de vue non contraints. L'approche proposée est principalement constituée d'une méthode de rectification du point de vue qui permet de générer une vue fronto-parallèle (vue de profil) de la trajectoire imagée des membres d'une personne. Cette méthode de rectification de la vue est basée sur un modèle de marche novateur qui utilise la géométrie projective pour faire les liens spatio-temporels entre la position des membres dans la scène et leur contrepartie dans les images provenant d'une caméra. La tête et les pieds sont les seuls membres nécessaires à l'approche proposée dans cette thèse. La position et le suivi de ces membres sont automatiquement effectués par un algorithme de suivi des membres développé dans le cadre de cette thèse. L'analyse de la démarche est effectuée par une nouvelle méthode qui extrait des caractéristiques de la démarche à partir de la trajectoire rectifiée des membres. Un nouveau modèle de la démarche basé sur la trajectoire rectifiée des membres est proposé afin de permettre la modélisation et la comparaison de la démarche en utilisant les caractéristiques dynamiques de la démarche. L'approche proposée dans cette thèse est premièrement validée à l'aide de marches synthétiques comprenant plusieurs points de vue différents ainsi que des changements de direction. Les résultats de cette étape de validation montrent que la méthode de rectification de la vue fonctionne correctement, et qu'il est possible d'extraire des caractéristiques de la démarche valides à partir de la trajectoire rectifiée des membres. Par la suite, l'analyse, la modélisation et la comparaison de la démarche de personnes sont effectuées sur des marches réelles qui ont été acquises dans le cadre de cette thèse. Ces marches sont particulièrement difficiles à analyser et à modéliser puisqu'elles ont été effectuées près de la caméra et qu'elles comportent des changements de direction et de vitesse. Les résultats d'analyse de la démarche confirment que les caractéristiques de la démarche obtenues à l'aide de la méthode proposée sont réalistes et sont en accord avec les résultats présentés dans les études cliniques de la démarche. Les résultats de modélisation et de comparaison de la démarche démontrent qu'il est possible d'utiliser la méthode proposée pour reconnaître des personnes par leur démarche dans le contexte des applications de surveillance. Les taux de reconnaissance obtenus sont bons considérant la complexité des marches utilisées dans cette thèse.Gait analysis, modelling and comparison using computer vision algorithms has recently attracted much attention for medical and surveillance applications. Analyzing and modelling a person's gait with computer vision algorithms has indeed some interesting advantages over more traditional biometrics. For instance, gait can be analyzed and modelled at a distance by observing the person with a camera, which means that no markers or sensors have to be worn by the person. Moreover, gait analysis and modelling using computer vision algorithms does not require the cooperation of the observed people, which thus allows for using gait as a biometric in surveillance applications. Current gait analysis and modelling approaches have however severe limitations. For instance, several approaches require a side view of the walks since this viewpoint is optimal for gait analysis and modelling. Most approaches also require the walks to be observed far enough from the camera in order to avoid perspective distortion effects that would badly affect the resulting gait analyses and models. Moreover, current approaches do not allow for changes in walk direction and in walking speed, which greatly constraints the walks that can be analyzed and modelled in medical and surveillance applications. The approach proposed in this thesis aims at performing gait analysis, modelling and comparison from unconstrained walks and viewpoints in medical and surveillance applications. The proposed approach mainly consists in a novel view-rectification method that generates a fronto-parallel viewpoint (side view) of the imaged trajectories of body parts. The view-rectification method is based on a novel walk model that uses projective geometry to provide the spatio-temporal links between the body-part positions in the scene and their corresponding positions in the images. The head and the feet are the only body parts that are relevant for the proposed approach. They are automatically localized and tracked in monocular video sequences using a novel body parts tracking algorithm. Gait analysis is performed by a novel method that extracts standard gait measurements from the view-rectified body-part trajectories. A novel gait model based on body-part trajectories is also proposed in order to perform gait modelling and comparison using the dynamics of the gait. The proposed approach is first validated using synthetic walks comprising different viewpoints and changes in the walk direction. The validation results shows that the proposed view-rectification method works well, that is, valid gait measurements can be extracted from the view-rectified body-part trajectories. Next, gait analysis, modelling, and comparison is performed on real walks acquired as part of this thesis. These walks are challenging since they were performed close to the camera and contain changes in walk direction and in walking speed. The results first show that the obtained gait measurements are realistic and correspond to the gait measurements found in references on clinical gait analysis. The gait comparison results then show that the proposed approach can be used to perform gait modelling and comparison in the context of surveillance applications by recognizing people by their gait. The computed recognition rates are quite good considering the challenging walks used in this thesis

    From motion capture to interactive virtual worlds : towards unconstrained motion-capture algorithms for real-time performance-driven character animation

    Get PDF
    This dissertation takes performance-driven character animation as a representative application and advances motion capture algorithms and animation methods to meet its high demands. Existing approaches have either coarse resolution and restricted capture volume, require expensive and complex multi-camera systems, or use intrusive suits and controllers. For motion capture, set-up time is reduced using fewer cameras, accuracy is increased despite occlusions and general environments, initialization is automated, and free roaming is enabled by egocentric cameras. For animation, increased robustness enables the use of low-cost sensors input, custom control gesture definition is guided to support novice users, and animation expressiveness is increased. The important contributions are: 1) an analytic and differentiable visibility model for pose optimization under strong occlusions, 2) a volumetric contour model for automatic actor initialization in general scenes, 3) a method to annotate and augment image-pose databases automatically, 4) the utilization of unlabeled examples for character control, and 5) the generalization and disambiguation of cyclical gestures for faithful character animation. In summary, the whole process of human motion capture, processing, and application to animation is advanced. These advances on the state of the art have the potential to improve many interactive applications, within and outside virtual reality.Diese Arbeit befasst sich mit Performance-driven Character Animation, insbesondere werden Motion Capture-Algorithmen entwickelt um den hohen Anforderungen dieser Beispielanwendung gerecht zu werden. Existierende Methoden haben entweder eine geringe Genauigkeit und einen eingeschränkten Aufnahmebereich oder benötigen teure Multi-Kamera-Systeme, oder benutzen störende Controller und spezielle Anzüge. Für Motion Capture wird die Setup-Zeit verkürzt, die Genauigkeit für Verdeckungen und generelle Umgebungen erhöht, die Initialisierung automatisiert, und Bewegungseinschränkung verringert. Für Character Animation wird die Robustheit für ungenaue Sensoren erhöht, Hilfe für benutzerdefinierte Gestendefinition geboten, und die Ausdrucksstärke der Animation verbessert. Die wichtigsten Beiträge sind: 1) ein analytisches und differenzierbares Sichtbarkeitsmodell für Rekonstruktionen unter starken Verdeckungen, 2) ein volumetrisches Konturenmodell für automatische Körpermodellinitialisierung in genereller Umgebung, 3) eine Methode zur automatischen Annotation von Posen und Augmentation von Bildern in großen Datenbanken, 4) das Nutzen von Beispielbewegungen für Character Animation, und 5) die Generalisierung und Übertragung von zyklischen Gesten für genaue Charakteranimation. Es wird der gesamte Prozess erweitert, von Motion Capture bis hin zu Charakteranimation. Die Verbesserungen sind für viele interaktive Anwendungen geeignet, innerhalb und außerhalb von virtueller Realität

    From motion capture to interactive virtual worlds : towards unconstrained motion-capture algorithms for real-time performance-driven character animation

    Get PDF
    This dissertation takes performance-driven character animation as a representative application and advances motion capture algorithms and animation methods to meet its high demands. Existing approaches have either coarse resolution and restricted capture volume, require expensive and complex multi-camera systems, or use intrusive suits and controllers. For motion capture, set-up time is reduced using fewer cameras, accuracy is increased despite occlusions and general environments, initialization is automated, and free roaming is enabled by egocentric cameras. For animation, increased robustness enables the use of low-cost sensors input, custom control gesture definition is guided to support novice users, and animation expressiveness is increased. The important contributions are: 1) an analytic and differentiable visibility model for pose optimization under strong occlusions, 2) a volumetric contour model for automatic actor initialization in general scenes, 3) a method to annotate and augment image-pose databases automatically, 4) the utilization of unlabeled examples for character control, and 5) the generalization and disambiguation of cyclical gestures for faithful character animation. In summary, the whole process of human motion capture, processing, and application to animation is advanced. These advances on the state of the art have the potential to improve many interactive applications, within and outside virtual reality.Diese Arbeit befasst sich mit Performance-driven Character Animation, insbesondere werden Motion Capture-Algorithmen entwickelt um den hohen Anforderungen dieser Beispielanwendung gerecht zu werden. Existierende Methoden haben entweder eine geringe Genauigkeit und einen eingeschränkten Aufnahmebereich oder benötigen teure Multi-Kamera-Systeme, oder benutzen störende Controller und spezielle Anzüge. Für Motion Capture wird die Setup-Zeit verkürzt, die Genauigkeit für Verdeckungen und generelle Umgebungen erhöht, die Initialisierung automatisiert, und Bewegungseinschränkung verringert. Für Character Animation wird die Robustheit für ungenaue Sensoren erhöht, Hilfe für benutzerdefinierte Gestendefinition geboten, und die Ausdrucksstärke der Animation verbessert. Die wichtigsten Beiträge sind: 1) ein analytisches und differenzierbares Sichtbarkeitsmodell für Rekonstruktionen unter starken Verdeckungen, 2) ein volumetrisches Konturenmodell für automatische Körpermodellinitialisierung in genereller Umgebung, 3) eine Methode zur automatischen Annotation von Posen und Augmentation von Bildern in großen Datenbanken, 4) das Nutzen von Beispielbewegungen für Character Animation, und 5) die Generalisierung und Übertragung von zyklischen Gesten für genaue Charakteranimation. Es wird der gesamte Prozess erweitert, von Motion Capture bis hin zu Charakteranimation. Die Verbesserungen sind für viele interaktive Anwendungen geeignet, innerhalb und außerhalb von virtueller Realität

    Automatic segmentation of the human thigh muscles in magnetic resonance imaging

    Get PDF
    Advances in magnetic resonance imaging (MRI) and analysis techniques have improved diagnosis and patient treatment pathways. Typically, image analysis requires substantial technical and medical expertise and MR images can su↵er from artefacts, echo and intensity inhomogeneity due to gradient pulse eddy currents and inherent e↵ects of pulse radiation on MRI radio frequency (RF) coils that complicates the analysis. Processing and analysing serial sections of MRI scans to measure tissue volume is an additional challenge as the shapes and the borders between neighbouring tissues change significantly by anatomical location. Medical imaging solutions are needed to avoid laborious manual segmentation of specified regions of interest (ROI) and operator errors. The work set out in this thesis has addressed this challenge with a specific focus on skeletal muscle segmentation of the thigh. The aim was to develop an MRI segmentation framework for the quadriceps muscles, femur and bone marrow. Four contributions of this research include: (1) the development of a semi-automatic segmentation framework for a single transverse-plane image; (2) automatic segmentation of a single transverseplane image; (3) the automatic segmentation of multiple contiguous transverse-plane images from a full MRI thigh scan; and (4) the use of deep learning for MRI thigh quadriceps segmentation. Novel image processing, statistical analysis and machine learning algorithms were developed for all solutions and they were compared against current gold-standard manual segmentation. Frameworks (1) and (3) require minimal input from the user to delineate the muscle border. Overall, the frameworks in (1), (2) and (3) o↵er very good output performance, with respective framework’s mean segmentation accuracy by JSI and processing time of: (1) 0.95 and 17 sec; (2) 0.85 and 22 sec; and (3) 0.93 and 3 sec. For the framework in (4), the ImageNet trained model was customized by replacing the fully-connected layers in its architecture to convolutional layers (hence the name of Fully Convolutional Network (FCN)) and the pre-trained model was transferred for the ROI segmentation task. With the implementation of post-processing for image filtering and morphology to the segmented ROI, we have successfully accomplished a new benchmark for thigh MRI analysis. The mean accuracy and processing time with this framework are 0.9502 (by JSI ) and 0.117 sec per image, respectively

    From wearable towards epidermal computing : soft wearable devices for rich interaction on the skin

    Get PDF
    Human skin provides a large, always available, and easy to access real-estate for interaction. Recent advances in new materials, electronics, and human-computer interaction have led to the emergence of electronic devices that reside directly on the user's skin. These conformal devices, referred to as Epidermal Devices, have mechanical properties compatible with human skin: they are very thin, often thinner than human hair; they elastically deform when the body is moving, and stretch with the user's skin. Firstly, this thesis provides a conceptual understanding of Epidermal Devices in the HCI literature. We compare and contrast them with other technical approaches that enable novel on-skin interactions. Then, through a multi-disciplinary analysis of Epidermal Devices, we identify the design goals and challenges that need to be addressed for advancing this emerging research area in HCI. Following this, our fundamental empirical research investigated how epidermal devices of different rigidity levels affect passive and active tactile perception. Generally, a correlation was found between the device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Based on these findings, we derive design recommendations for realizing epidermal devices. Secondly, this thesis contributes novel Epidermal Devices that enable rich on-body interaction. SkinMarks contributes to the fabrication and design of novel Epidermal Devices that are highly skin-conformal and enable touch, squeeze, and bend sensing with co-located visual output. These devices can be deployed on highly challenging body locations, enabling novel interaction techniques and expanding the design space of on-body interaction. Multi-Touch Skin enables high-resolution multi-touch input on the body. We present the first non-rectangular and high-resolution multi-touch sensor overlays for use on skin and introduce a design tool that generates such sensors in custom shapes and sizes. Empirical results from two technical evaluations confirm that the sensor achieves a high signal-to-noise ratio on the body under various grounding conditions and has a high spatial accuracy even when subjected to strong deformations. Thirdly, Epidermal Devices are in contact with the skin, they offer opportunities for sensing rich physiological signals from the body. To leverage this unique property, this thesis presents rapid fabrication and computational design techniques for realizing Multi-Modal Epidermal Devices that can measure multiple physiological signals from the human body. Devices fabricated through these techniques can measure ECG (Electrocardiogram), EMG (Electromyogram), and EDA (Electro-Dermal Activity). We also contribute a computational design and optimization method based on underlying human anatomical models to create optimized device designs that provide an optimal trade-off between physiological signal acquisition capability and device size. The graphical tool allows for easily specifying design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. Finally, taking a multi-disciplinary perspective, we outline the roadmap for future research in this area by highlighting the next important steps, opportunities, and challenges. Taken together, this thesis contributes towards a holistic understanding of Epidermal Devices}: it provides an empirical and conceptual understanding as well as technical insights through contributions in DIY (Do-It-Yourself), rapid fabrication, and computational design techniques.Die menschliche Haut bietet eine große, stets verfügbare und leicht zugängliche Fläche für Interaktion. Jüngste Fortschritte in den Bereichen Materialwissenschaft, Elektronik und Mensch-Computer-Interaktion (Human-Computer-Interaction, HCI) [so that you can later use the Englisch abbreviation] haben zur Entwicklung elektronischer Geräte geführt, die sich direkt auf der Haut des Benutzers befinden. Diese sogenannten Epidermisgeräte haben mechanische Eigenschaften, die mit der menschlichen Haut kompatibel sind: Sie sind sehr dünn, oft dünner als ein menschliches Haar; sie verformen sich elastisch, wenn sich der Körper bewegt, und dehnen sich mit der Haut des Benutzers. Diese Thesis bietet, erstens, ein konzeptionelles Verständnis von Epidermisgeräten in der HCI-Literatur. Wir vergleichen sie mit anderen technischen Ansätzen, die neuartige Interaktionen auf der Haut ermöglichen. Dann identifizieren wir durch eine multidisziplinäre Analyse von Epidermisgeräten die Designziele und Herausforderungen, die angegangen werden müssen, um diesen aufstrebenden Forschungsbereich voranzubringen. Im Anschluss daran untersuchten wir in unserer empirischen Grundlagenforschung, wie epidermale Geräte unterschiedlicher Steifigkeit die passive und aktive taktile Wahrnehmung beeinflussen. Im Allgemeinen wurde eine Korrelation zwischen der Steifigkeit des Geräts und den taktilen Empfindlichkeitsschwellen sowie der Fähigkeit zur Rauheitsunterscheidung festgestellt. Basierend auf diesen Ergebnissen leiten wir Designempfehlungen für die Realisierung epidermaler Geräte ab. Zweitens trägt diese Thesis zu neuartigen Epidermisgeräten bei, die eine reichhaltige Interaktion am Körper ermöglichen. SkinMarks trägt zur Herstellung und zum Design neuartiger Epidermisgeräte bei, die hochgradig an die Haut angepasst sind und Berührungs-, Quetsch- und Biegesensoren mit gleichzeitiger visueller Ausgabe ermöglichen. Diese Geräte können an sehr schwierigen Körperstellen eingesetzt werden, ermöglichen neuartige Interaktionstechniken und erweitern den Designraum für die Interaktion am Körper. Multi-Touch Skin ermöglicht hochauflösende Multi-Touch-Eingaben am Körper. Wir präsentieren die ersten nicht-rechteckigen und hochauflösenden Multi-Touch-Sensor-Overlays zur Verwendung auf der Haut und stellen ein Design-Tool vor, das solche Sensoren in benutzerdefinierten Formen und Größen erzeugt. Empirische Ergebnisse aus zwei technischen Evaluierungen bestätigen, dass der Sensor auf dem Körper unter verschiedenen Bedingungen ein hohes Signal-Rausch-Verhältnis erreicht und eine hohe räumliche Auflösung aufweist, selbst wenn er starken Verformungen ausgesetzt ist. Drittens, da Epidermisgeräte in Kontakt mit der Haut stehen, bieten sie die Möglichkeit, reichhaltige physiologische Signale des Körpers zu erfassen. Um diese einzigartige Eigenschaft zu nutzen, werden in dieser Arbeit Techniken zur schnellen Herstellung und zum computergestützten Design von multimodalen Epidermisgeräten vorgestellt, die mehrere physiologische Signale des menschlichen Körpers messen können. Die mit diesen Techniken hergestellten Geräte können EKG (Elektrokardiogramm), EMG (Elektromyogramm) und EDA (elektrodermale Aktivität) messen. Darüber hinaus stellen wir eine computergestützte Design- und Optimierungsmethode vor, die auf den zugrunde liegenden anatomischen Modellen des Menschen basiert, um optimierte Gerätedesigns zu erstellen. Diese Designs bieten einen optimalen Kompromiss zwischen der Fähigkeit zur Erfassung physiologischer Signale und der Größe des Geräts. Das grafische Tool ermöglicht die einfache Festlegung von Designpräferenzen und die visuelle Analyse der generierten Designs in Echtzeit, was eine Optimierung durch den Designer im laufenden Betrieb ermöglicht. Experimentelle Ergebnisse zeigen eine hohe quantitative Übereinstimmung zwischen den Vorhersagen des Optimierers und den experimentell erfassten physiologischen Daten. Schließlich skizzieren wir aus einer multidisziplinären Perspektive einen Fahrplan für zukünftige Forschung in diesem Bereich, indem wir die nächsten wichtigen Schritte, Möglichkeiten und Herausforderungen hervorheben. Insgesamt trägt diese Arbeit zu einem ganzheitlichen Verständnis von Epidermisgeräten bei: Sie liefert ein empirisches und konzeptionelles Verständnis sowie technische Einblicke durch Beiträge zu DIY (Do-It-Yourself), schneller Fertigung und computergestützten Entwurfstechniken

    Virtuaalse proovikabiini 3D kehakujude ja roboti juhtimisalgoritmide uurimine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneVirtuaalne riiete proovimine on üks põhilistest teenustest, mille pakkumine võib suurendada rõivapoodide edukust, sest tänu sellele lahendusele väheneb füüsilise töö vajadus proovimise faasis ning riiete proovimine muutub kasutaja jaoks mugavamaks. Samas pole enamikel varem välja pakutud masinnägemise ja graafika meetoditel õnnestunud inimkeha realistlik modelleerimine, eriti terve keha 3D modelleerimine, mis vajab suurt kogust andmeid ja palju arvutuslikku ressurssi. Varasemad katsed on ebaõnnestunud põhiliselt seetõttu, et ei ole suudetud korralikult arvesse võtta samaaegseid muutusi keha pinnal. Lisaks pole varasemad meetodid enamasti suutnud kujutiste liikumisi realistlikult reaalajas visualiseerida. Käesolev projekt kavatseb kõrvaldada eelmainitud puudused nii, et rahuldada virtuaalse proovikabiini vajadusi. Välja pakutud meetod seisneb nii kasutaja keha kui ka riiete skaneerimises, analüüsimises, modelleerimises, mõõtmete arvutamises, orientiiride paigutamises, mannekeenidelt võetud 3D visuaalsete andmete segmenteerimises ning riiete mudeli paigutamises ja visualiseerimises kasutaja kehal. Selle projekti käigus koguti visuaalseid andmeid kasutades 3D laserskannerit ja Kinecti optilist kaamerat ning koostati nendest andmebaas. Neid andmeid kasutati välja töötatud algoritmide testimiseks, mis peamiselt tegelevad riiete realistliku visuaalse kujutamisega inimkehal ja suuruse pakkumise süsteemi täiendamisega virtuaalse proovikabiini kontekstis.Virtual fitting constitutes a fundamental element of the developments expected to rise the commercial prosperity of online garment retailers to a new level, as it is expected to reduce the load of the manual labor and physical efforts required. Nevertheless, most of the previously proposed computer vision and graphics methods have failed to accurately and realistically model the human body, especially, when it comes to the 3D modeling of the whole human body. The failure is largely related to the huge data and calculations required, which in reality is caused mainly by inability to properly account for the simultaneous variations in the body surface. In addition, most of the foregoing techniques cannot render realistic movement representations in real-time. This project intends to overcome the aforementioned shortcomings so as to satisfy the requirements of a virtual fitting room. The proposed methodology consists in scanning and performing some specific analyses of both the user's body and the prospective garment to be virtually fitted, modeling, extracting measurements and assigning reference points on them, and segmenting the 3D visual data imported from the mannequins. Finally, superimposing, adopting and depicting the resulting garment model on the user's body. The project is intended to gather sufficient amounts of visual data using a 3D laser scanner and the Kinect optical camera, to manage it in form of a usable database, in order to experimentally implement the algorithms devised. The latter will provide a realistic visual representation of the garment on the body, and enhance the size-advisor system in the context of the virtual fitting room under study
    corecore