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Résumé

L’analyse, la modélisation et la comparaison de la démarche de personnes à l’aide d’algo-

rithmes de vision artificielle a récemment suscité beaucoup d’intérêt dans les domaines

d’applications médicales et de surveillance. Il y a en effet plusieurs avantages à utiliser

des algorithmes de vision artificielle pour faire l’analyse, la modélisation et la compa-

raison de la démarche de personnes. Par exemple, la démarche d’une personne peut

être analysée et modélisée de loin en observant la personne à l’aide d’une caméra, ce

qui ne requiert pas le placement de marqueurs ou de senseurs sur la personne. De

plus, la coopération des personnes observées n’est pas requise, ce qui permet d’utili-

ser la démarche des personnes comme un facteur d’identification biométrique dans les

systèmes de surveillance automatique.

Les méthodes d’analyse et de modélisation de la démarche existantes comportent

toutefois plusieurs limitations. Plusieurs de ces méthodes nécessitent une vue de profil

des personnes puisque ce point de vue est optimal pour l’analyse et la modélisation

de la démarche. La plupart de ces méthodes supposent également une distance assez

grande entre les personnes et la caméra afin de limiter les effets néfastes que la projec-

tion de perspective a sur l’analyse et la modélisation de la démarche. Par ailleurs, ces

méthodes ne gèrent pas les changements de direction et de vitesse dans les marches.

Cela limite grandement les marches pouvant être analysées et modélisées dans les ap-

plications médicales et les applications de surveillance.

L’approche proposée dans cette thèse permet d’effectuer l’analyse, la modélisation

et la comparaison de la démarche de personnes à partir de marches et de points de vue

non contraints. L’approche proposée est principalement constituée d’une méthode de

rectification du point de vue qui permet de générer une vue fronto-parallèle (vue de pro-

fil) de la trajectoire imagée des membres d’une personne. Cette méthode de rectification

de la vue est basée sur un modèle de marche novateur qui utilise la géométrie projective

pour faire les liens spatio-temporels entre la position des membres dans la scène et leur
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contrepartie dans les images provenant d’une caméra. La tête et les pieds sont les seuls

membres nécessaires à l’approche proposée dans cette thèse. La position et le suivi de

ces membres sont automatiquement effectués par un algorithme de suivi des membres

développé dans le cadre de cette thèse. L’analyse de la démarche est effectuée par une

nouvelle méthode qui extrait des caractéristiques de la démarche à partir de la trajec-

toire rectifiée des membres. Un nouveau modèle de la démarche basé sur la trajectoire

rectifiée des membres est proposé afin de permettre la modélisation et la comparaison

de la démarche en utilisant les caractéristiques dynamiques de la démarche.

L’approche proposée dans cette thèse est premièrement validée à l’aide de marches

synthétiques comprenant plusieurs points de vue différents ainsi que des changements

de direction. Les résultats de cette étape de validation montrent que la méthode de

rectification de la vue fonctionne correctement, et qu’il est possible d’extraire des ca-

ractéristiques de la démarche valides à partir de la trajectoire rectifiée des membres.

Par la suite, l’analyse, la modélisation et la comparaison de la démarche de personnes

sont effectuées sur des marches réelles qui ont été acquises dans le cadre de cette thèse.

Ces marches sont particulièrement difficiles à analyser et à modéliser puisqu’elles ont

été effectuées près de la caméra et qu’elles comportent des changements de direction et

de vitesse. Les résultats d’analyse de la démarche confirment que les caractéristiques

de la démarche obtenues à l’aide de la méthode proposée sont réalistes et sont en ac-

cord avec les résultats présentés dans les études cliniques de la démarche. Les résultats

de modélisation et de comparaison de la démarche démontrent qu’il est possible d’uti-

liser la méthode proposée pour reconnâıtre des personnes par leur démarche dans le

contexte des applications de surveillance. Les taux de reconnaissance obtenus sont bons

considérant la complexité des marches utilisées dans cette thèse.



Abstract

Gait analysis, modelling and comparison using computer vision algorithms has recently

attracted much attention for medical and surveillance applications. Analyzing and

modelling a person’s gait with computer vision algorithms has indeed some interesting

advantages over more traditional biometrics. For instance, gait can be analyzed and

modelled at a distance by observing the person with a camera, which means that no

markers or sensors have to be worn by the person. Moreover, gait analysis and mod-

elling using computer vision algorithms does not require the cooperation of the observed

people, which thus allows for using gait as a biometric in surveillance applications.

Current gait analysis and modelling approaches have however severe limitations.

For instance, several approaches require a side view of the walks since this viewpoint

is optimal for gait analysis and modelling. Most approaches also require the walks to

be observed far enough from the camera in order to avoid perspective distortion effects

that would badly affect the resulting gait analyses and models. Moreover, current ap-

proaches do not allow for changes in walk direction and in walking speed, which greatly

constraints the walks that can be analyzed and modelled in medical and surveillance

applications.

The approach proposed in this thesis aims at performing gait analysis, modelling and

comparison from unconstrained walks and viewpoints in medical and surveillance ap-

plications. The proposed approach mainly consists in a novel view-rectification method

that generates a fronto-parallel viewpoint (side view) of the imaged trajectories of body

parts. The view-rectification method is based on a novel walk model that uses projec-

tive geometry to provide the spatio-temporal links between the body-part positions in

the scene and their corresponding positions in the images. The head and the feet are the

only body parts that are relevant for the proposed approach. They are automatically

localized and tracked in monocular video sequences using a novel body parts track-

ing algorithm. Gait analysis is performed by a novel method that extracts standard
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gait measurements from the view-rectified body-part trajectories. A novel gait model

based on body-part trajectories is also proposed in order to perform gait modelling and

comparison using the dynamics of the gait.

The proposed approach is first validated using synthetic walks comprising different

viewpoints and changes in the walk direction. The validation results shows that the

proposed view-rectification method works well, that is, valid gait measurements can be

extracted from the view-rectified body-part trajectories. Next, gait analysis, modelling,

and comparison is performed on real walks acquired as part of this thesis. These walks

are challenging since they were performed close to the camera and contain changes

in walk direction and in walking speed. The results first show that the obtained gait

measurements are realistic and correspond to the gait measurements found in references

on clinical gait analysis. The gait comparison results then show that the proposed

approach can be used to perform gait modelling and comparison in the context of

surveillance applications by recognizing people by their gait. The computed recognition

rates are quite good considering the challenging walks used in this thesis.
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Chapter 1

Introduction

“Our similarities are different.”

Dale Berra

Walking is one of the most common daily actions performed by human beings.

Despite its ubiquitousness, human locomotion is a complex action and it has been

studied in great detail over the past century [1]. One of the first precise description of the

normal human locomotion was made a century ago by A. A. Marks, an American who

analyzed the walking process and illustrated it using eight different poses. Since then,

the analysis of human locomotion has led to a terminology and collection of concepts

that now constitute a wide field of study known as gait analysis and modelling. Today,

this field of study is not only of interest to physicians, but also to physical therapists,

neuroscientists, psychologists and engineers.

1.1 Definition of Gait

According to the Oxford Dictionary of English, gait is defined as “a person’s manner of

walking”. One could also define gait as the set of movements performed when a person

is walking. Interestingly, it was found that a person’s gait can be represented by the

motion of a set of 20 anatomical components [2]. Since the motion of these components

is repeated over time, gait is said to be cyclic, that is, walking is a cyclic activity. This

makes possible the temporal description of a person’s gait by a sequence of events, or

“key” times, that refer to specific spatial positions of some the components.
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Figure 1.1 – Gait cycle temporal divisions. This is inspired of a figure presented in [3].

1.1.1 Terminology

A gait cycle is bounded temporally by the occurrence of two identical events during

the walk. For instance, a gait cycle can be defined between the times where the right

heel touches the ground (heel strike) as shown in Figure 1.1. This event is known as

the initial contact, and is commonly used in the literature to define when a gait cycle

begins and ends [1, 3]. The duration of a gait cycle is usually normalized to represent

the percentage of completion of the cycle, that is, 0% refers to the beginning of the

cycle, and 100% refers to the end.

The most important divisions (or phases) of the gait cycle are shown in Figure 1.1

and are discussed in detail in [1]. The double support phase (also called double stance)

represents the time interval where both feet are in contact with the ground. It is followed

by a swing phase of the left foot while the right foot is in a single stance phase. Another

double support phase begins with the initial contact of the left foot, which occurs at

around 50% of the gait cycle. The last half of the gait cycle is similar to the first half,

with the right foot being in a swing phase and the left foot in a single stance phase. The

swing phase accounts approximately for 38% of the gait cycle duration, while a stance

phase, which includes two double support phases and a single stance phase, accounts

for 62% of the gait cycle duration. It is worth noting that the double support phase

duration decreases as the walk velocity increases. Moreover, the gait cycle of a running

person consists only in swing phases and single stance phases, that is, there is no double

support phases.
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The most important spatial parameters of the gait are the step length and the stride

length. The step length is the distance (in meters) between feet (heal to heal) at an

initial contact, whereas the stride length is the distance (in meters) covered by a foot

during a gait cycle (i.e. between two consecutive initial contacts). The cadence is a

temporal parameter of the gait that is usually defined in steps per minute. It is used

along with the step length to compute the velocity in meters per second (a spatio-

temporal parameter of the gait). Regarding the direction of walk, it is usually referred

to as the line of progression.

1.1.2 Gait Covariates

A person’s gait can be influenced by the action of external factors, which are usually

referred to as covariates. This means that movements performed during the walk will

not always be the same because of the influence of these covariates. The most important

gait covariates are [4, 5]:

� clothes (tight or loose clothes);

� footwear;

� surface type (grass, concrete, gravel, etc.);

� carried weight (backpack, suitcase, briefcase, bag, etc.);

� walk velocity;

� time (gait change over an extended period of time);

� emotional state [6].

The viewpoint from which gait is observed is also considered in the literature as a

covariate [4, 5]. Although the viewpoint does not affect the gait itself, it does affect the

way the gait appears in the images acquired from a fixed camera. This can have side

effects on gait analyses that are performed using video sequences. Due to the perspective

projection that is inherent in cameras, a person’s gait can indeed appear distorted in

the images. On the other hand, the perspective projection effects are negligible for the

side view of a person walking relatively far away from a camera. The side view of a

person, which is referred to as the fronto-parallel view in the literature, is actually the

view from which most of the movements related to the gait are visible. It is therefore

the viewpoint that is preferred for gait analysis. However, the fronto-parallel view is

not always available, which is why the viewpoint is considered as a gait covariate.
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1.2 Gait Modelling Applications

Gait modelling consists in extracting characteristics or a representation of the gait of

a person or population. The nature of the characteristics or the representation can be

application-dependent but usually takes the form of a set of parameters or a parametric

function. The main purpose of building a gait model is to draw a general trend from

the observations and to remove the small variations among the gait cycles of a person

or population. Gait models are usually compared using some metrics (similarity or

distance) in order to perform an application-dependent task.

Gait modelling and comparison is a very active research area and has found many

practical applications. Medical applications are certainly the most common ones, al-

though gait modelling has recently been considered for use in automatic surveillance

applications. Some of these medical and surveillance applications are discussed in the

following sections.

1.2.1 Medical Applications

Most medical applications consist in helping in the diagnosis of pathologies related to

the human locomotion function. Some abnormalities in the gait patterns can be in fact

considered as signs of the progression of some diseases [7, 8, 9]. The work presented

in [7] proposes an approach based on computer vision to analyze the silhouettes of a

walking person in order to categorize the walk style as normal walk, limping walk, line

walk, swaying walk, or bending walk. Another computer vision-based approach [8] uses

the silhouettes observed from a frontal view to build a model of the gait that makes

possible the detection of subtle irregularities. By contrast, the method in [9] uses a

motion capture system to extract gait features from joint motion trajectories, which

are used to classify the gait as either with or without locomotion impairments.

Since the risk of fall in the elderly is more than ever a concern, some gait analysis

methods were proposed to estimate the risks of falls and eventually to prevent it. The

method proposed in [10] analyzes the gait of at risk elderlies by using a treadmill and

a motion capture system. The minimum foot clearance1 is analyzed in order to detect

balance impairment and thus estimating the fall risks. In [12], the proposed method

aims at building a remote system that would use computer vision techniques to analyze

1The minimum foot clearance (MFC) is the minimal distance between the foot and the ground

when the velocity of the foot is at its maximum during the swing phase [11].
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the gait of the elderly in their home and eventually to detect the moments when the

risk of fall is high.

Some pathologies or physical conditions are directly associated with locomotion

impairments, which affect the mobility and the posture of a person. This is the case for

cerebral palsy [13] and knee osteoarthritis [14]. In [13], automatic gait analysis using

a motion capture system is proposed as a way to assist in the diagnosis of cerebral

palsy in early childhood. In the case of the method proposed in [14], knee osteoarthritis

is detected and its severity is scored by analyzing gait data obtained from a force

platform and an infrared camera system (special markers need to be placed on the

subject’s joints).

1.2.2 Surveillance Applications

Gait modelling and comparison has recently been considered in surveillance applications

mainly because of the results shown by some early studies. A psychological study

[15] first showed that people are able to recognize some biological activities (walking,

running, bicycling, dancing, etc.) only by observing the motion of the moving lights

(point-light displays) that are attached to the body joints of a person. Another study

[16] using the same point-light displays system showed that it is also possible for people

to recognize their friends by their walk, and more generally, the gender of a person.

This is latter confirmed in the study presented in [17], which additionally concludes

that gait can be used as a cue to the identity of a person. By modelling the gait of

people using data obtained from various acquisition devices, one can compare the gait

models and eventually matches the models corresponding to the same person. Since

then, gait is considered as a biometric, like the fingerprints or the face of a person.

There are several works on surveillance applications that use gait as a way to recog-

nize or classify people. In [18], human subjects are categorized as either “authorized” or

“unauthorized” using the model of their gait, which is build using data from shoes with

a pressure sensor, a tilt angle sensor, a gyroscope, a bend sensor and an accelerometer.

A similar application is presented in [19], but it only uses the 3-D acceleration data

acquired from a wearable device to model the gait. The method presented in [20] at-

tempts to recognize people by their gait using foot motion data acquired from a motion

capture system.

Gait modelling and recognition is also used in surveillance applications in combina-

tion with other biometrics. Some automatic surveillance systems, like the one presented

in [21], are specifically designed to combine multiple biometrics in order to recognize
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people. One of the main objectives of the system presented in [21] is to track pedestrians

across a network of surveillance cameras using biometric such as face, appearance and

gait. Gait and face recognition are usually combined together [22, 23] in surveillance

applications since they are complementary to each other. Face recognition algorithms

are indeed better suited for near frontal views, whereas gait recognition algorithms

perform better with fronto-parallel views.

1.3 Computer Vision based Gait Modelling

Most of the medical and some surveillance applications discussed before rely on devices

such as wearable sensors [14, 18, 19] or motion capture systems [9, 10, 13, 20]. The use

of these devices complicates the acquisition process for both type of applications and

absolutely necessitates cooperating subjects. Consequently, computer vision techniques

have gained much interest due to their capability of performing gait analysis and mod-

elling “at a distance”. Acquiring gait data using a camera is indeed less intrusive (no

wearable sensors or markers need to be placed on the subjects) and the cooperation of

the subjects is not required in the case of surveillance applications.

Gait analysis and modelling approaches based on computer vision techniques can

be divided in two categories: the model-free approaches (Section 1.3.1) and the model-

based approaches (Section 1.3.2). Most of these gait modelling approaches are designed

for surveillance applications, but some of them could be eventually extended in order to

be used in medical applications (especially the model-based ones). Both model-free and

model-based approaches are usually developed and tested using well established gait

databases, which are specifically designed for computer vision-based gait modelling

(Section 1.3.3).

1.3.1 Model-Free Approaches

Model-free approaches, which are also known as low-level, holistic, or appearance-based

approaches, are mainly characterized by their gait model which often consists in a repre-

sentation of low-level data. Most of these approaches model the gait as a representation

of the binary silhouettes sequences obtained from a background subtraction algorithm.

Although such low-level data contain information on both the gait and the appearance

of a person, there is usually no effort made by model-free approaches to distinguish

between the two kinds of information.
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There are usually some post-processing steps performed on the obtained foreground

binary images. For most of the model-free approaches, the biggest connected region in a

foreground images is considered as the person’s silhouette. These silhouettes are usually

scaled to a predefined height H while maintaining the aspect ratio of their bounding

box. Once they are scaled, the silhouettes are horizontally centred in a H ×W image

by either horizontally centring their scaled bounding box, or by centring the horizontal

component of the silhouette’s centroid. The scaled and centred silhouettes are typically

contained within 128× 88 pixels images.

One of the most well known gait model is the Gait Energy Image (GEI), which was

first presented2 in [25] and detailed in [26]. This gait model simply consists in an image

defined as the average of all the silhouettes in a gait cycle. GEI is said to be a compact

model and is robust to silhouette segmentation errors. The method in [27] proposes

both supervised and unsupervised methods to select the most relevant parts of GEI in

order to optimize gait recognition. In addition, some authors developed gait models

that are inspired of or derived from GEI. This is the case of the method proposed in

[28], which uses the variance of the silhouettes as a the gait model instead of the average

of the silhouettes. The Energy Deviation Images are proposed as a model in [29] and

are defined as the differences between the silhouettes and the GEI for a given gait cycle.

The Gait History Image (GHI) proposed in [30] is another gait model that is similar

to the GEI. In the GHI, the intensity value of a pixel depends on how many time the

pixel changes for a foreground value and when those changes occur in the gait cycle.

There are some methods that consider key silhouettes [31] or even all the silhouettes

[32] as a gait model, while other methods use low-level features extracted from the

silhouettes. An example of the latter is the method described in [33], where a set of

binary masks is used to compute the changes in the area of the silhouettes. Rather than

using binary masks, the method in [34] defines an angular transform that computes

the average pixels distance to the silhouette’s centroid within angular sections. A

more refined method presented in [35] first transforms the silhouettes non-linearly into

a low-dimensional embedding using a Gaussian process latent variable model. The

transformed silhouettes are then used to train a Hidden Markov Model (HMM), which

is used as the gait model.

Some gait models are based on the contour of the silhouettes. A silhouette’s contour

is sometimes represented as a set of complex numbers obtained by sampling the silhou-

ette’s contour3 at regular interval. The method presented in [36] uses this representation

2The model was also proposed at the same time by different authors under the name Averaged

Silhouettes [24].
3The silhouette is centred beforehand on its centroid in the complex plane.
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directly as a gait model, whereas the methods in [37] and [38] use the descriptors ob-

tained respectively from Discrete Fourier Transforms (DFT) and Wavelets Transforms

of each contour in a gait cycle. By contrast, the method in [39] computes the Discrete

Fourier Transform on the set of complex contours in a gait cycle, and the gait model

is defined as a Fourier Key Descriptor obtained by finding the component of the DFT

having the maximum absolute value.

Some methods propose even simpler representations of the silhouettes to compute a

model of the gait. The method proposed in [40] simply models the gait as the number of

foreground pixels in each silhouette in a gait cycle. In [41], each silhouette is represented

by a “width” vector (width of the silhouette at each row of the image), whereas in [42]

and [43], the representation of the silhouette is the number of foreground pixels on each

of row of the image. Another similar representation presented in [44] defines the gait

model as the set of distances to the silhouette from the four borders of the bounding

box.

There are some methods that use the silhouettes at their original size and position

in the images. These methods use a volumetric representation from which a gait model

is extracted. Each foreground frame in a gait cycle is usually kept to form a X-Y-

T volume, where X and Y are the original image axis, and T is the time axis. The

method presented in [45] proposes a gait model consisting in Gait Energy Images that

are computed in the X-T plane over three different ranges of y values on the Y axis.

X-Y-T volumes are used in [46] in order to perform frontal gait recognition. In this

method, a X-Y-T volume is defined with the silhouette’s edges over a gait cycle, and

3-D moments invariants of the volume are computed and used as a gait model.

Very few model-free methods do not use silhouettes to obtain a gait model. The

method presented in [47] defines a gait model as a set of phase features that are ob-

tained by optical-flow analysis. The method presented in [48] first uses the Laplacian

of Gaussians operator to compute an edge map for each frame of a gait cycle, and then

models the gait as the average of the Hough transform performed on each edge map.

1.3.2 Model-Based Approaches

In opposition to the model-free approaches, the model-based approaches model the gait

using high-level data. These approaches define a spatial model of a person, that is,

a model that represents the location of some of the body joints (neck, hips, knees,

ankles, shoulders, elbows, wrists, etc.) and/or the location of some of the body parts

(head, arms, legs, trunk, feet, hands, etc.). Some approaches also put constrains on the



Chapter 1. Introduction 9

location of the model parts with respect to each other. The model-parts locations are

found in each frame by using low level data, and in some case, by using the previous

model-parts locations. A gait model is then obtained by extracting features from the

set of model-parts locations in a gait cycle.

Some model-based approaches only consider a limited number of body parts in order

to model the gait. A typical example of this is the method proposed in [49], which only

extracts the head, pelvis, and feet positions from predefined regions of the silhouettes. A

gait model is then defined using the silhouette’s height and the following distances : the

distance between head and pelvis, the distance between feet, and the distances between

the pelvis and each foot. A similar method presented in [50] analyzes the silhouette’s

contour shape and the bounding box in order to compute a gait model based on the

person’s height, strides length, and cadence. Using the silhouettes’ skeleton, the method

in [51] finds the position of some joints (head, neck, shoulder, pelvis, knees, and ankles),

and computes angles between consecutive joints to model the gait of a person. The more

sophisticated method presented in [52] (and further used in [53, 54, 55]) automatically

extracts the ankles, the knees, and the hips positions using a motion template of the

joints and a heel strike position detector. This motion template is derived from joints

positions that are manually labelled in video sequences of many subjects. The angles

between the joints are then computed and used as a gait model. In [56], the Velocity

Hough Transform is proposed as a way to retrieve from the images the angle of the

thigh, which is used as a gait model.

There exist model-based methods that consider many body parts in their spatial

models. This is the case of the method described in [36], which models the gait by the

fusion of the results obtained from a model-free and model-based method (see Section

1.3.1). The model-based method uses a spatial model consisting in 14 rigid parts that

are positioned in the image with the help of learned motion and constrains models.

However, only the angles of the legs and the thighs are used for gait modelling. The

method described in [57], which is also used in [58], simply splits the silhouettes in

seven regions representing the head, one of the arm, the torso, the thighs, and the

legs. A gait model is build by first fitting an ellipse on each region, and then by

computing the centroid, the orientation, and the aspect ratio of each ellipse. A five-

links biped locomotion model is used in [59] to extract the ankles elevation, the ankles

stride width, the knees elevation, and the knees stride width. A HMM is trained

with these features and is used as the gait model. The method in [60] proposes a

full-body layered deformable model that provides 22 parameters describing the human

body (width, length, position, and orientation) over time. Other methods, as the one

described in [61], simply uses manually defined binary masks representing the pixels

belonging to body parts on the silhouettes. The gait model consists in the collection of
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those binary masks and are directly used for gait comparison.

Other model-based approaches use a 3-D model of the human body to extract gait

characteristics. The method in [62] represents each silhouette as a linear combination

of prototype silhouettes, which in turn are used to compute the position of each of the

17 parts of a 3-D spatial model. The angles of the trunk, the thighs and the legs are

computed and used as a gait model. Another method using a 10 joints 3-D model is

presented in [63]. The luminance, edges and silhouettes acquired from multiple cameras

are used in order to retrieve the position and the size of each part of the 3-D model,

and a gait model is built by extracting the body parts length and the motion trajectory

of the lower limbs.

1.3.3 Gait Databases

Many of the model-free and the model-based methods presented in the previous sec-

tions were tested on common gait databases. These gait databases consist in many

video sequences of subjects walking in a given environment and under different walk

conditions.

The HumanID Gait Challenge dataset4 [5] is by far the most known and used gait

database for computer vision based gait modelling and recognition. The database

consists in a total of 1870 outdoor video sequences of 122 subjects who walk on an

elliptic path. The acquisition setup is shown in Figure 1.2. The sequences are acquired

by two cameras located at a distance of 15.85 m of the major axis of the path. The angle

between the optical axis of the cameras is about 30 degrees. As reported by the authors,

the view for the rear portion of the elliptic path is approximately fronto-parallel. Many

gait covariates are considered in this database in order to provide realistic challenges

to gait modelling and recognition algorithms. These covariates are the surface type

(grass, concrete), the shoe-wear type (2), the weight carried (with or without carrying

a briefcase), the viewpoint (2 cameras), and the time between the acquisitions (two

different dates, six months apart). Moreover, twelve experiments of increasing difficulty

are defined in the form of gallery/probe pairs, where a probe is a set of sequences that

will be matched by a gait recognition algorithm to sequences in the gallery. Each

experiment is defined such as the gallery sequences and the probe sequences differ with

respect to one or more covariates.

The CASIA database [64] is also used by many researchers to develop and test gait

4It is sometime referred to as the USF gait database (University of South Florida).
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Figure 1.2 – The HumanID Gait database acquisition setup.

modelling and recognition algorithms. It consists in three parts, which are labelled

Database A, Database B, and Database C. The Database A consists in 240 indoor

video sequences of 20 subjects (12 sequences per subjects), where each subject walks

in a straight line and is observed simultaneously from three cameras (4 sequences from

a fronto-parallel view (90 degrees), 4 sequences from a frontal view (0 degree), and

4 sequences from a 45 degrees view). The Database B, which seems to be the most

used of the three, consists in indoor video sequences of 124 subjects who are observed

simultaneously from 11 cameras (0 degree to 180 degrees views) while walking on a

straight line path. Three covariates are considered: the view, the clothing, and the

carrying condition. Finally, the Database C consists in infra-red video sequences of 124

subjects observed from a fronto-parallel view at night. Four different walk conditions

are considered: normal walk, normal walk with a bag, slow walk, and fast walk.

Another gait database that is extensively used is the SOTON [65] database (Uni-

versity of Southampton, UK). It consists in a small database and a large database.

For the small database, 12 subjects walking on a straight line path are observed from

four different views (fronto-parallel, frontal, oblique, and elevated). Some covariates

are considered: slow/normal/fast walk, foot wears, worn coats, and carried bags. In

the case of the large database, 116 subjects are observed repeatedly in both indoor

and outdoor environments from two cameras (fronto-parallel and oblique views) while

walking on a straight line path. The subjects are also observed from a fronto-parallel

and an oblique view while walking on a treadmill.

The University of Maryland Database (UMD) [66] is worth noting since it was used

by early works on gait modelling and recognition. The database #1 is comprised of

outdoor video sequences of 25 subjects walking on a straight line. Two cameras are

used to obtain four views of the walks: fronto-parallel views (toward left and toward
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left) and frontal views (toward and away). The acquisition conditions of database #2

are similar to the ones in database #1 (outdoor, straight line walk), except that it

involves 55 subjects observed from a fronto-parallel view and a frontal view.

Early gait modelling and recognition methods were also designed and tested on the

CMU MoBo database [67] (Carnegie Mellon University Motion of Body Database). In

this database, the subjects walk on a treadmill and are observed by six synchronized

cameras, thus providing six different views (including the fronto-parallel view and the

frontal view). The database provides the video sequences of the following four experi-

ments for all of the 25 subjects: slow walk, fast walk, inclined walk, and walking with

a ball.

1.4 Motivations

One may see that much effort has been made to model the gait under different acquisi-

tion conditions and gait covariates. Despite this progress, there are still some lingering

issues and hypotheses that keep these methods from being used in real life scenar-

ios, especially in the case of surveillance applications. The most important issues and

hypotheses are:

Acquisition conditions : As most of computer vision-based algorithms, gait mod-

elling and comparison methods usually suppose a controlled lighting and a static

background. These assumptions usually come from the background subtraction

algorithm that is used in most methods.

Number of people : Current methods rely on the fact that there is only one per-

son observed at a time, that is, only one person is visible in an analyzed video

sequence. A similar assumption is that a low-level person tracking algorithm is

used beforehand in order to find and track people in the images over time. In real

surveillance scenario, it is very likely that many people are going to be visible in

the field of view of the camera. This is less an issue for medical applications since

one person is usually considered at a time for gait analysis.

Inputs manipulation : For some databases (at least for the HumanID, CASIA, and

SOTON databases), the silhouettes sequences for each subject are provided. How-

ever, those sequences were temporally segmented to only include frames where the

silhouettes are complete, i.e. the frames where a subject enters and exits the field

of view of the camera(s) were removed.

Gait features interpretability : Most gait modelling approaches do not extract gait
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features that are interpretable, that is, features that have a physical meaning. This

is especially true in the case of the model-free approaches. However, model-based

approaches usually extract gait features that are interpretable, as seen in Section

1.3.2. Gait features interpretability is considered as an important characteristic

[13] for medical applications that are used for the diagnosis of some pathologies.

Walking conditions : It is usually assumed that the observed people are always

walking (they do not stop walking) and that their walk velocity is nearly constant.

Moreover, subjects are usually asked to walk on a straight line (no change in

the walk direction), on a predefined path, or on a treadmill5. Therefore, the

gait models are extracted and compared using data coming from the same walk

conditions, which is very unlikely in a real world scenario.

Viewpoint : Many gait modelling approaches consider the gait of a person observed

at a distance from a fronto-parallel viewpoint, which is not always the case in real

life scenarios. This issue is directly related to the “viewpoint“ covariate that was

discussed previously in Section 1.1.2.

Very few works have been made to tackle directly some of those issues. This is

especially the case of the viewpoint issue, which is often underestimated or ignored by

most of the gait modelling and comparison approaches. Indeed, most of the approaches

are at best view-dependent, that is, they compare gait models extracted from the same

view (or a similar view) and for the same walking path. Moreover, subjects are usually

considered walking on a straight line since a change in the walk direction would lead to

a change in the viewpoint. This can been seen in the design of most of the gait database

(CASIA, SOTON, UMD), excepted for the HumanID Gait Challenge database in which

the subjects walk on an elliptic path. However, it seems6 that only the rear portion of

the elliptic path is used, and as reported by the authors of the database, the view for

that portion of the path is approximately fronto-parallel.

Another assumption made by most approaches is that subjects are observed “at

a distance”, i.e. the distance between them and the camera is such that they can be

considered as planar objects by computer vision algorithms. This assumption is referred

to as weak perspective and can be considered valid for most of the outdoor surveillance

scenario. However, weak perspective cannot be assumed in the case where subjects

are close to the camera, as in most indoor surveillance and medical applications. Most

of the approaches for gait modelling and comparison are not designed to cope with

5It is unclear whether a treadmill could impose a certain gait as well as a certain velocity.
6The authors of the USF database present the results of their gait recognition algorithm (baseline)

only for the rear portion of the elliptic path. It is unclear if the whole elliptic path is used by other

works in the literature since their results are usually compared to the ones obtained with the baseline

algorithm.
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Figure 1.3 – Example of perspective distortion in the silhouettes of a subject. In (a), the

subject walks close to the camera on a straight line. In (b) the subject performs a smooth

change of direction, and in (c), a more marked change of direction. The silhouette’s contour

colour represents its temporal occurrence in a gait cycle, as indicated in the legend (% of gait

cycle duration).

perspective projection effects that are present in such conditions.

An example of this is shown in Figure 1.3, where the silhouettes of a person are shown

for three different experiments. The first experiment, shown in Figure 1.3(a), consists

in a person walking close to the camera on a straight line. In the second experiment

(Figure 1.3(b)), the person walks close to the camera but performs a smooth change in

the walk direction. In the last experiment (Figure 1.3(c)), the person walks away from

the camera and performs at some point a more marked change in the walk direction.

The silhouettes’ contour are coloured so that they represent the time they occur in a

gait cycle. Silhouettes that have the same contour colour should have a similar shape

since they represent the same posture of the person but for different gait cycles. One

may verify that the posture is the same by closely examining the legs and the arms

positions in the image. The silhouettes’ shape would be very similar in the case of weak

perspective, that is, when the person is observed far away from the camera and that the

angle between the line of progression and the camera optical axis is perpendicular (i.e.

a fronto-parallel view). However, one may see that this is not the case in the examples

shown here since weak perspective does not apply; The silhouettes’ shape appears

different for the same postures. Differences in the silhouettes’ shapes are even present

in the first experiment where the view is almost fronto-parallel. These differences are

even more marked across the gait cycles of the different experiments. The “distortion”

effect can be explained by the fact that the person continuously exposes a different

portion of her body as she moves across the field of view of the camera. Therefore, the

projected silhouette’s contours are different.
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In such conditions, model-free approaches would build “distorted” gait models since

most of them rely on the whole silhouettes or on the silhouettes’ contour. This means

that the gait models of the same person would not be necessarily similar, even if the

models are built from different views of the same walk (i.e. from synchronized views).

Only the model-based methods that recover the 3-D positions of the body parts are

intrinsically immune to the perspective projection effects. However, some of these 3-D

methods require more than one camera while others do not recover 3-D positions of

the body parts in real-time. These may be seen as limitations in both surveillance and

medical applications given that real-time is often a requirement and that using more

than one camera is complex as well as expensive. The model-based methods that recover

2-D positions of the body parts in the image are also affected by perspective projection

effects. Nonetheless this thesis will show, among other things, that is it possible to

remove projective distortion from the 2-D positions of body parts, thus allowing gait

modelling and comparison between different views.

1.5 Contributions

This thesis aims at addressing some of the issues that were discussed in the previous

section. The emphasis is mainly on addressing the viewpoint issue, which is considered

here as the most important issue in current gait analysis, modelling and comparison

approaches. An aspect of the walking conditions issue is also addressed since the changes

in the walk direction are handled in this thesis. Moreover, some efforts are made

to develop fully automatic algorithms that do not require manual intervention, thus

addressing the inputs manipulation issue. Finally, the gait features interpretability issue

is also addressed in this work by proposing gait models consisting of features that have

a physical meaning.

Given that very few works in the literature have addressed these issues directly, the

present work provides several significant contributions. The first contribution consists

in a novel walk model based on projective geometry that provides the spatio-temporal

links between a normal walk performed in the scene and the corresponding imaged

walk. This walk model is used in a novel, automatic view-rectification method that

generates a metric fronto-parallel viewpoint of body-part trajectories. Another contri-

bution consists in generating two novel gait models based on the body-part positions and

velocities extracted from the view-rectified body-part trajectories. The features used in

these models have a physical meaning, which allows for both human and machine-based

interpretations. A method for generating 3-D synthetic walks with changes in the walk

direction is also proposed in order to validate the view-rectification method. Finally,
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a novel gait database consisting in real unconstrained walks is proposed in this thesis.

The walks in the gait database include changes in the walk direction as well as changes

in the walking speed.

1.6 Proposed Approach Overview

Figure 1.4 shows an overview of the proposed approach. It consists in five different

steps: Acquisition, tracking, view-rectification, gait analysis, and gait modelling and

comparison.

In the acquisition step, colour frames from a camera are first acquired and then

processed by a background subtraction algorithm. This means that a certain amount

of static frames representing the scene background have to be acquired before a person

shows up in the field of view of the camera. The outputs of this block are the colour

frames and the foreground binary frames obtained from the background subtraction

algorithm and morphological filtering. The image presented in the acquisition block

shows the colour frames that correspond to a key time in the double support phase of

each gait cycles.

The tracking step first consists in analyzing the binary foreground frames in order

to extract the silhouettes of the person. Next, the position of the feet and the head

is found by analyzing the resulting silhouette. Feet correspondence is then performed

using the current and the past positions of the feet. The outputs of this block are

the 2-D imaged trajectories of the head and the feet, that is, the 2-D positions in the

frames over time. The image in the tracking block shows the complete trajectories of

the person’s head and feet.

The most important contributions of this thesis lie in the view-rectification step. A

fronto-parallel view of the body part trajectories is generated (left graphics) by first

determining the image of the “motion planes” (right image). An imaged motion plane

is defined as the projection in the camera image of the plane in the scene in which the

motion of a body part lies. In the case of the head, the imaged motion planes are shown

in transparency in the view-rectification block (the imaged motion planes of the feet are

not shown here). A body-part’s motion plane is defined in each gait half-cycle, where

a gait half-cycle is defined between the occurrences of two consecutive double support

phases. A metric, view-rectifying transformation is then computed for each motion

plane by performing projective geometry calculations. This transformation makes an

imaged motion plane appear as if it was observed from a fronto-parallel view. Applying
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Figure 1.4 – Approach overview.

these transformations to the corresponding body-part trajectories effectively generates

a fronto-parallel view of the walk. The left graphics of the view-rectification block shows

the view-rectified feet and head trajectories as well as the view-rectified head motion

planes. The output of this block is the view-rectified body-part trajectories, which are

used by the gait analysis step and the gait modelling and comparison step.

In the gait analysis step, gait measurements are extracted from the view-rectified

body-part trajectories. Gait measurements such as stride lengths, displacements, and

height are computed on a gait half-cycle basis using the view-rectified body-part ex-

tremities. Other gait measurements such as the half-cycle durations and cadence are

computed using the number of detected gait half-cycles and the time intervals in which

they are defined. The walking speed is obtained from the computed displacements and
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gait half-cycle durations.

The last step consists in performing gait modelling and comparison using the view-

rectified body-part trajectories. Two gait models are computed from the view-rectified

trajectories. The first gait model is based on the view-rectified positions of the head

and feet, while the second gait model is based on the velocities of the head and feet

(only the velocity-based gait model is shown in the gait modelling and comparison

block). Each gait model is formed of two parts, each part representing the gait when

the left and the right foot is moving, respectively. An improved representation of the

gait models is then learned from a subset of walks using a off-the-shelf machine learning

technique. The improved gait models are then compared by computing the Euclidean

distance between each corresponding model part. Gait modelling and comparison can

be used to perform gait recognition and identification, that is, recognizing people by

their gait (surveillance applications).

1.7 Document Structure

This thesis is organized so that it closely follows the structure of the proposed approach

presented in the previous section. The Chapter 2 first describes both the acquisition

and the body parts tracking steps. The view-rectification method is next detailed in the

Chapter 3, followed by the gait analysis, modelling and comparison methods in Chapter

4. The experimental results are then presented and discussed in Chapter 5. Finally,

Chapter 6 concludes by outlining the thesis contributions and by proposing directions

for the future work.



Chapter 2

Body Parts Tracking

“Our nature consist in motion;

complete rest is death.”

Blaise Pascal

As discussed in Section 1.4, model-based approaches are better suited than model-

free approaches to perform gait modelling and comparison. Indeed, model-based ap-

proaches only retrieve gait information, unlike the model-free approaches where appear-

ance information is also retrieved. Moreover, it will be shown latter in this thesis that

it is possible with a model-based approach to perform gait analysis, modelling, and

comparison from unconstrained walks and viewpoints.

Model-based approaches needs the body parts to be localized and tracked in each

frame of a video sequence according to a predefined part-based human model. This

chapter therefore presents the body parts tracking algorithm that was developed as

part of this thesis in order to perform model-based gait modelling and comparison.

The acquisition and pre-processing step outlined in Section 1.6 is also presented in this

chapter since it provides the inputs used by the proposed body parts tracking algorithm.

A short literature review on body parts tracking approaches is first presented. It is

followed by a brief overview of the pre-processing step and the body parts tracking algo-

rithm. The proposed algorithm is subsequently detailed along with the pre-processing

steps. The last part of this chapter describes some post-processing operations per-

formed on the body-part trajectories obtained using the proposed body parts tracking

algorithm. The chapter is concluded by discussing the real-time performance and limi-

tations of the body parts tracking algorithm.
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2.1 Literature Review

Localizing and tracking the body parts of people in video sequences is a research area

in itself [68]. Most approaches in the literature targets a wide range of applications by

recovering the pose of people either in single images [69] or in video sequences. The poses

are intended to be used for motion analysis, activity recognition, and human-computer

interaction. The approaches discussed here are the ones that focus on recovering body-

part positions during walking or similar activities.

The first step of a body parts tracking algorithm consists in determining the initial

positions of the body parts in the first frame of a video sequence. Given that the initial

positions accuracy can greatly influence the tracking process, some algorithms require

manual initialization of the body-part positions [70, 71] or require user feedback [72]

during the body parts tracking process. The method presented in [70] requires the user

to specify the positions of 18 predefined joints in the first image of a video sequence.

Similarly, the body part model used in [71] must be rescaled according to the size

of the body parts in the image, which are manually measured by a human operator

beforehand. Human intervention is necessary in the method presented in [72], where

the user has to manually correct the algorithm estimates of the body-part positions

during the first few seconds of a video sequence. Manual initialization or intervention

from a human operator for a body parts tracking algorithm is clearly inappropriate in

typical gait modelling applications.

In most cases, considering all the possible configurations of a complex human model

in each frame of a video sequence might not be possible nor desirable. This is why

some approaches consider a side-view human model in order to limit the number of

possible configurations [36, 51, 56, 57, 59, 60, 73, 74]. However, these approaches provide

meaningful body part positions only when the viewpoint is fronto-parallel, which is not

practicable in the case of unconstrained walks.

Some approaches locate the body-part positions on a frame-by-frame basis without

establishing body parts correspondence between consecutive frames [49, 50, 57]. These

tracking approaches can only be used to extract static gait characteristics since the

motion performed by each body parts cannot be recovered.

Motion templates are used in some approaches in order to track the body parts

for a normal walk [52, 73, 74, 71, 75]. These motion templates typically represent

the positions over time of some (or all) the body parts for a normal walk. A motion

template is defined by manually labelling the typical position of the body parts during
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a gait cycle for several video sequences of normal subjects. Once the motion template

has been defined, it is “fitted” onto the walk of an individual using cues from some

low level data such as silhouettes [71, 75], edges [73, 71], or interest points [52, 74]

obtained with feature points detectors. Approaches using motion templates are said to

be robust to temporary self-occlusion1 and to noisy low level data. Besides the learning

phase that must be undergone in such approaches, the use of a motion template in gait

modelling applications has other drawbacks. For instance, motion template approaches

cannot easily cope with walk velocity variations occurring in unconstrained walk, which

can lead to inaccurate body-part positions. Moreover, most of these approaches are

limited to a fronto-parallel viewpoint since their motion template is strictly learned

from fronto-parallel sequences [52, 73, 74, 71]. The approach presented in [75] addresses

this viewpoint issue by using a mixture of view-dependent motion templates, but it

requires for the learning phase many video sequences of each considered view. Finally,

motion template approaches somehow make the obtained body-part positions follow an

averaged motion that might not necessarily reflects all the peculiarities of a person’s

gait.

2.2 Body Parts Tracking Approach

The body part tracking approach proposed in this thesis is designed in such a way that

it does not suffer from the drawbacks of the previously discussed approaches. It is based

on a three parts human model (head and two feet) where the parts are detected and

tracked across the frames of a monocular video sequence. The proposed body parts

tracking approach has the following properties:

� No manual initialization or motion template are needed

� Body-part positions can be found for wide range of viewpoints

� Foot occlusions are handled and body parts correspondence between frames is

established

� Body-part positions are found in real-time

Four assumptions are made in the proposed approach. The first one is that the

subjects are observed in a scene with a static background. The second assumption is

that the subjects appear upright in the image. Also, the walking surface is assumed to

be planar and level. Finally, it is assumed here that there is only one subject visible

at any time in the field of view of the camera. These are common assumptions made

in body part tracking approaches as well as gait analysis, modelling and comparison

1A self-occlusion means that a body part is partly of fully hidden by another body part.
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Figure 2.1 – Acquisition, pre-processing, and body parts tracking approaches.

approaches [64, 65].

An overview of the proposed body parts tracking approach is presented in Figure

2.1, along with an overview of the acquisition and pre-processing approach. The later

is included here since it consists only in a few standard steps and its output is only

used by the body parts tracking approach. The first step of the acquisition and pre-

processing algorithm consists in acquiring colourRGB frames from a monocular camera.

The acquired colour RGB frames are then converted in another colour space to ease
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background subtraction and morphological filtering performed in step 2. The output

of step 2 is a binary image where black and white pixels belong to background and

foreground respectively.

The first step of the body parts tracking method consists in determining the fore-

ground region corresponding to the silhouette of the subject (step 3). Two regions are

then defined in the silhouette, which are used in step 4 to locate and track the head

and the feet respectively. It is possible to perform step 1 to 4 in real-time in order

to acquire the head and the foot positions as soon as a frame has been acquired from

the camera. Step 5 to 7 are considered as post-processing of the obtained body-part

positions and hence are performed when the subject is no longer visible in the field of

view of the camera. In step 5, the positions of the body parts are grouped into intervals

of contiguous tracking of the head and the feet. The set of positions of a body part in

such intervals are referred here to as the trajectory of the body part. Body-part trajec-

tories can then be corrected for radial and tangential distortion (step 6). Finally, the

body-part trajectories are filtered in step 7 in order to compensate for noisy body-part

positions.

The acquisition and pre-processing steps (step 1 and 2) are presented in Section 2.3,

while step 3 is described in Section 2.4. The head and the feet tracking algorithms are

presented in Section 2.5 and 2.6 respectively (step 4). The post-processing steps 5, 6,

and 7 are presented in Section 2.7.

2.3 Acquisition and Pre-processing

The specific colour space, background subtraction algorithm and morphological oper-

ators that are presented in the following sections have been found experimentally to

provide the best results on the video sequences of the gait database used in this thesis.

For instance, shadows or reflections on the floor are mostly absent from the obtained

binary images, and the obtained silhouettes are sharp.

2.3.1 Colour Space Conversion

The colour frames acquired from the camera are represented in the RGB (Red Green

Blue) colour space. Many colour spaces were tested in this work in order to facili-

tate background subtraction [76]: Grey scale, RGB, normalized RGB, Y CbCr (Luma,
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blue Chroma, red Chroma), HSI (Hue, Saturation, Intensity), CIE2 XY Z, and CIE

L∗a∗b∗. Experiments on the video sequences used in this thesis showed that the CIE

L∗a∗b∗ colour space provides sharper silhouettes when used along with the background

subtraction algorithm described in Section 2.3.2.

Each frame of a video sequence is converted [76] from the RGB colour space to the

L∗a∗b∗ colour space before being processed by the background subtraction algorithm.

Figure 2.2 shows the result of the conversion of the RGB frame shown in step 1 of Figure

2.1. The L∗, a∗, and b∗ channels are shown in 2.2(a), 2.2(b), and 2.2(c) respectively,

while a colour representation of the converted frame is shown in 2.2(d).

(a) (b) (c) (d)

Figure 2.2 – Colour conversion from RGB space to CIE L∗a∗b∗ space. The L∗, a∗ and b∗

channels for the image in step 1 in Figure 2.1 are shown in (a), (b), and (c) respectively.

In (d), a colour representation of the L∗a∗b∗ image is shown, where the red, green and blue

channels represent the L∗, a∗ and b∗ channels respectively.

2.3.2 Background Subtraction and Morphological Filtering

Many background subtraction algorithms were also tested here: Adaptive Median [77],

Running Gaussian Average [78], Gaussian Mixture Model [79], Eigenbackground [80],

Adaptive Gaussian Mixture Model [81], and Temporal Median [82]. The combination of

the Adaptive Median algorithm with the L∗a∗b∗ colour space provided the best results

on the video sequences used in this thesis. Indeed, the obtained silhouettes are sharp

and cast shadows are not detected as foreground.

The Adaptive Median algorithm [77] basically consists in dynamically modelling the

scene background at frame n using an estimated median image IM[x, y, c, n], where x

and y represent a pixel position in the image and c is the channel number (c = 1→ L∗,

c = 2 → a∗, and c = 3 → b∗). For each colour frame I[x, y, c, n], n = 1, 2, . . . , N , a

2CIE: Commission Internationale d’Éclairage.
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binary image IB[x, y, n] can be obtained in the following way:

IB[x, y, n] =

{
1 if

∣∣I[x, y, c, n]− IM[x, y, c, n]
∣∣ > ξB ∀c ∈ {1, 2, 3}

0 otherwise,
(2.1)

where ξB is a threshold that must be manually adjusted for a given scene background

and lightning conditions, and 1 and 0 represent foreground and background respectively.

The median background model is computed for each frame n in the following way:

IM[x, y, c, n] =


I[x, y, c, n] if n = 1

IM[x, y, c, n− 1] + 1 if I[x, y, c, n] > IM[x, y, c, n] and IU[x, y, n]

IM[x, y, c, n− 1]− 1 if I[x, y, c, n] < IM[x, y, c, n] and IU[x, y, n]

IM[x, y, c, n− 1] otherwise,

(2.2)

where the update condition IU[x, y, n] is defined as

IU[x, y, n] =

{
true if (n mod fU) = 0 and (n ≤ fL or IB[x, y, n] = 0)

false otherwise.
(2.3)

The algorithm parameters fU and fL represent respectively the update frequency and

the number of frames to be considered in the initial learning phase. Hence, the value

of a pixel at position (x, y) in the median background model can be updated each fU

frame if either the algorithm is still in its learning phase (n ≤ fL) or the pixel was

labelled as background in the current frame (IB(x, y, n) = 0).

The value of a pixel for a given channel in the median model image is increased by

one if the corresponding pixel in the current image has a greater value, or decreased

by one if it has a smaller value. This simple procedure estimates the median of the

observed pixel values since about half of the values will be smaller than the estimated

value and the other half will be greater than the estimated value. This background

subtraction algorithm is robust to outliers (median estimate) and its low complexity

makes it a good choice to perform background subtraction in real-time. It is important

to note that the first fL frames must represent a static scene, that is, no subject is

visible in the field of view of the camera.

Figure 2.3 shows an example of background subtraction. An input frame in the

L∗a∗b∗ colour space is shown in Figure 2.3(a). The binary image obtained with the

background subtraction algorithm is shown in Figure 2.3(b), and the relevant portion

of the binary image is shown in Figure 2.3(c). Morphological operations are performed

on this binary image in order to remove isolated pixels and connected regions that are

too small. First, two morphological erosions followed by two morphological dilatations
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(a) (b) (c) (d) (e)

Figure 2.3 – Background subtraction and morphological filtering. In (a), a frame represented

in the L∗a∗b∗ colour space. In (b), binary image obtained from background subtraction with

its relevant portion shown (c). In (d), the result of applying morphological dilatations and

erosions on the binary image, and in (e), the remaining connected regions after area filtering.

154 160 166 172 178 184 190 196 202 208 214 220 226 232 238

244 250 256 262 268 274 280 286 292 298 304 310 316 322 328

Figure 2.4 – Results of background subtraction and morphological filtering for 30 frames of

a video sequence. Only the relevant portion of the binary frames are shown.

are performed using a 3 × 3 square structural element (Figure 2.3(d)). Next, the 8-

connected pixels regions are filtered according to their area (number of pixels), that is,

connected components having an area smaller than ξA = 50 pixels are removed (Figure

2.3(e)). Results of background subtraction and morphological filtering are shown for

many frames in Figure 2.4.

2.4 Silhouette and Regions Definition

The first step of the body parts tracking approach consists in determining whether a

person silhouette is analyzable in each binary image obtained from the previous step.

First, the silhouette of the person is obtained as the largest connected region in the

binary image. Moreover, this largest connected region is a valid silhouette only if the

size of its bounding box is at least 3% of the image width and 15% of the image height

(ξIW = 0.03 and ξIH = 0.15). This permits to reject the frames where the silhouette of

a subject would be too small to be able to locate and track the head and the feet. A
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(a)

head
region

legs
region

(b)

Figure 2.5 – Silhouette and regions definition. In (a), the silhouette is defined as the largest

connected region in a binary image obtained from the acquisition and pre-processing steps.

In (b), two regions of the silhouette are defined according to the bounding box height.

frame is also rejected if the silhouette has some of its pixels on the image border, which

could mean that the subject is not completely visible in the field of view of the camera.

Figure 2.5(a) shows the silhouette that is found for the colour frame shown in step 1 of

Figure 2.1.

Once a valid silhouette and its bounding box are found, two regions are defined with

respect to the bounding box height (see Figure 2.5(b)). The first region corresponds

to the region where one would expect the head to be located given that the person is

assumed upright in the image. The height of the head region is defined as one fifth of the

bounding box height starting from the top (ξHR = 1
5
). The second region corresponds

to the part of the silhouette where the legs are located, and its height is defined as one

third of the bounding box height starting from the bottom (ξLR = 1
3
). Each body part

will be searched in its corresponding region. The thresholds ξIW, ξIH, ξHR, and ξLR were

found by observations.

2.5 Head Location

The head position only needs to be determined on a frame-by-frame basis since it does

not occlude or interact with other body parts during the walk. The head position

can be represented in two simple ways: As the position of the highest pixel of the

silhouette, or as a centroid of a region corresponding to the head. The latter position

has some advantages over the former one. For instance, the position of the highest pixel

is less robust to spurious pixels in the silhouette contour than the head region centroid.

Moreover, the position of the head region centroid can be seen as an approximation of

the projection in the image of the centroid of the 3-D volume occupied by the head.
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(a) (b)

Figure 2.6 – Head location. In (a), a close-up on the upper region of the silhouette. In (b),

two third of silhouette foreground pixels in the head region were counted (shown in grey).

The centroid of this subset of foreground pixels represents the head position (black circle).

By contrast, the position of the highest pixel might represent quite different positions

on the head depending on the viewpoint. Therefore, the centroid of the head region

provides a more robust representation of the head position across the frames of a video

sequence.

For a frame n, the head position pH[n] is obtained by computing the centroid of a

subset of the foreground pixels in the head region of the silhouette as shown in Figure

2.6. The head bounding box is computed as well and is represented by the four corners

bH,TL[n] (top-left), bH,TR[n] (top-right), bH,BL[n] (bottom-left), and bH,BR[n] (bottom-

right) of the pixels subset bounding box. This pixel subset is obtained by counting the

foreground pixels row by row from the top until two third (ξHP = 2
3
) of the foreground

pixels in the head region is reached (see Figure 2.6(b)). This “pixels counting” algorithm

will also be used for computing the foot positions.

2.6 Foot Location and Tracking

Unlike the head, the feet need to be tracked since they occlude each other during the

swing phase of a gait cycle. This means that the correspondence between the foot

positions in consecutive frames must be established. Therefore, a specific algorithm

was developed in order to locate and track the feet.

The foot location and tracking method is presented in Figure 2.7. The legs region

is used as input, and the output for the current frame n is the positions of the two feet

p1[n] and p2[n] (foot 1 and foot 2) along with the four corners of their bounding box:

{b1,TL[n],b1,TR[n],b1,BL[n],b1,BR[n]} and {b2,TL[n],b2,TR[n],b2,BL[n],b2,BR[n]}. The first

step of the method is to divide the legs region into two parts, each part containing a leg

(legs separation, Section 2.6.1). The failure or the success of this operation determines



Chapter 2. Body Parts Tracking 29

Legs separation Feet position
from silhouette

Correspondence
initialized ?

Feet found in
previous frame ?

Correspondence
initialization

Correspondence
using proximal 

uniformity

Foot position
from optical flow

Correspondence 
delayedTracking reset

Compute
optical flow

no

Foot position
extrapolation

Enough
motion ?

yes

yes

yes

no

Legs
separated ?

yes

yes

no

no

no

Correspondence
initialized and not 
max. occlusions?

Occlusion case

Figure 2.7 – Foot location and tracking method.

whether the feet are considered in occlusion or not.

If the legs can be successfully separated (no occlusion), then a foot position is found

for each leg using the same pixels counting method that is used for the head (Section

2.6.2). Next, the correspondence is established using proximal uniformity [83] in the

case where foot correspondence is already initialized. Foot correspondence is initialized

only if the feet were found in the previous frame. Otherwise, foot correspondence

initialization is delayed until the next frame.

In the case where the legs cannot be separated, the feet are considered in occlusion.

If foot correspondence is not initialized or the feet have been in occlusion for more than

a certain number of frames, the tracking algorithm is reset, that is, foot positions will

not be found until the legs can be separated again. Otherwise, an attempt to find the

position of the moving foot is made by computing optical flow in the legs region, and

the still foot is assigned the position it had in the previous frame (Section 2.6.3). The

moving foot position is determined using the pixels counting algorithm on the moving

part of the silhouette in the legs region only if there is enough motion. If there is not

enough motion in the legs region, the moving foot position is linearly extrapolated.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.8 – Legs separation process for a noisy legs region. In (a), the gaps in four rows

y1, y2, y3, and y4 are shown in green, with their starting and ending positions represented by

a red and a blue point respectively. In (b), the gaps belonging to the path P1
y1

in row y1 are

shown in red. The gaps belonging to the three paths P1
y3

, P2
y3

, and P3
y3

in row y3 are shown

in (c), (d), and (e) respectively. In (f) and (g), the gaps belonging to the two paths P1
y4

and

P2
y4

in row y4 are shown. The path P1
y4

is the longest path among all the paths of all rows.

It is used to find the position where the legs region will be divided in two parts, as shown in

(h).

2.6.1 Legs Separation

Figure 2.8 shows an example with the different steps of the legs separation process.

Separating the legs is achieved by scanning each row of pixels of the legs region and

searching for foreground-background-foreground transition patterns. The background

in these patterns potentially represents the gaps between the legs, which can be further

used to separate the legs. A gap is represented in each row by an interval of consecutive

background pixels delimited by foreground pixels at both ends. Denoting IB(x, y) as the

value of the pixel at position (x, y) in the legs region, which is defined for x = XL . . . XR

and y = YT . . . YB, the set Gy of background gaps in row y is defined as :

Gy :

{
[xjS,y, x

j
E,y] | IB(xjS,y − 1, y)− IB(xjS,y, y) = 1 and

IB(xjE,y + 1, y)− IB(xjE,y, y) = 1 and

∀x ∈ [xjS,y, x
j
E,y] IB(x, y) = 0

} (2.4)



Chapter 2. Body Parts Tracking 31

Algorithm 2.1: Paths detection

1: for y = YT, YT + 1, . . . , YB do

2: Qy ← {}
3: for j = 1, 2, . . . , |Gy| do

4: Flag = 0

5: for k = 1, 2, . . . , |Qy−1| do

6: if [xjS,y, x
j
E,y] overlaps with [xkS,y, x

k
E,y] then

7: Qy ← Qy ∪ {Pky−1 ∪ {[x
j
S,y, x

j
E,y]}}

8: Flag = 1

9: end if

10: end for

11: if Flag = 0 then

12: Qy ← Qy ∪ {{[xjS,y, x
j
E,y]}}

13: end if

14: end for

15: end for

where xjS,y and xjE,y are the starting and ending position of the jth gap in row y. The

first two conditions make a gap start on a foreground-background transition and end on

a background-foreground transition (foreground positions are not part of the gap). The

last condition defines a gap as an interval of consecutive background pixels. The gaps

that are found in this way for row y are denoted [xjS,y, x
j
E,y], where j = 1, 2, . . . , |Gy|.

Figure 2.8(a) shows the gaps that are found for four rows in a noisy region of the legs.

Once all the gaps are found on each row y of the legs region, overlaps between these

gaps and the ones of the previous row (y−1) are searched in order to identify vertically

connected background gaps. At a given row y, the upward connected gaps form a path

Py. The longest path among all paths of all rows will be considered as representing the

main background gap between the legs, and a position will be computed from this path

in order to divide vertically the legs region in two parts. Algorithm 2.1 is used to detect

all the paths in all the rows of the legs region. In this algorithm, a set Qy of paths is

defined for each row y, and each path is denoted Pky , k = 1 . . . |Qy|. An example of

paths that are found using this algorithm is shown in Figures 2.8(b) to 2.8(g) for three

rows y1, y3, and y4. The background gap represented by a path at a given row is shown

by colouring all the gaps belonging to it.

In the path detection algorithm, the gap [xkS,y−1, x
k
E,y−1] belonging to a path Pky−1

(in row y− 1) is checked for an overlap with a gap [xjS,y, x
j
E,y] in current row y. If there

is an overlap, then a path consisting in the gap [xjS,y, x
j
E,y] and the gaps in path Pky−1 is

added to the set of paths Qy. A path Pky−1 that overlaps with more than one gap in row
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y is thus “duplicated”. In Figures 2.8(c) and 2.8(d), the paths P1
y3

and P2
y3

have many

gaps in common since there is a row between y2 and y3 where a gap was overlapping

with two gaps in the next row.

Once all the paths are found in all rows, the longest path, P∗ must be found in

order to divide the legs region in two parts :

P∗ = arg max
Pky

(∣∣Pky ∣∣) , y ∈ [YT, YB] , k ∈ [1, |Qy|] (2.5)

where
∣∣Pky ∣∣ is the number of gaps in the path Pky , that is, the “length” of the path. In

Figure 2.8, the longest path among all paths in all rows is the path P∗ = P1
y4

, which

is shown in Figure 2.8(f). The path P∗ is considered as representing the gap between

the two legs only if it has a length that is greater than a fraction ξP = 0.2 of the height

(YB−YT) of the legs region. If |P∗| < ξP(YB−YT), then legs are not separated and the

feet are considered to be in occlusion. Otherwise, the path is used to find a position

where the legs region will be vertically divided in two parts, each part being meant

to contain one leg. The position is computed by first determining the minimum and

maximum x position xmin and xmax among all the gaps belonging to the path P∗:

xmin = min
r

(xrS) r = 1, 2, . . . , |P∗|

xmax = max
r

(xrE) r = 1, 2, . . . , |P∗|
(2.6)

where [xrS, x
r
E] is a gap in P∗. Then, an optimal separation position x∗ is searched in

the range [xmin, xmax] by maximizing the output of an objective function O for all gaps

belonging the longest path P∗:

x∗ = arg max
x∈ [xmin,xmax]

( |P∗|∑
r=1

O(x, xrS, x
r
E)

)
(2.7)

where the objective function O(x, xrS, x
r
E) is defined as

O(x, xrS, x
r
E) =

{
x− xrS if |x− xrS| < |xrE − x|
xrE − x otherwise.

(2.8)

For a given gap [xrS, x
r
E], the objective function O is designed to have a maximal value

at the position x = 1
2
(xrS +xrE), that is, the middle of the gap. The value of the function

for a position x is simply the signed distance to the closest gap end. This means that

the distance is negative if the x position is outside the gap. The x∗ position obtained

with Equation 2.7 is considered as the best position in the background gap between

the legs to divide of the legs region in two parts. It actually represents a vertical line

whose position is a trade-off between maximizing the distance to foreground pixels and

minimizing the number of foreground pixels the vertical line intercepts. The first part

of the legs region is then defined in the range [XL, x
∗] while the second part is defined

in the range [x∗ + 1, XR]. An example of legs separation is shown in Figure 2.8(h).



Chapter 2. Body Parts Tracking 33

Figure 2.9 – Foreground pixels counting from the bottom of each leg region until 25% of

the number of foreground pixels in the legs region is reached. The centroid of the obtained

pixels subset is considered as the foot position. The pixels subset of each leg region is shown

in green and in yellow, along with its centroid (red and blue circles).

2.6.2 Foot Location and Correspondence without Occlusion

In the case where the legs region is successfully divided in two parts, a foot position

if computed in both parts. This case correspond to the right branch in Figure 2.7,

which begins with the “Feet position from silhouette” step. The same pixels counting

algorithm used for the head (Section 2.5) is used here to compute the centroid of a

subset of the foreground pixel in each leg region. As for the head, the centroid is

considered here has an estimation of the projection in the image of the 3-D centroid of

the volume occupied by a foot.

Figure 2.9 shows the foot positions that are obtained with this algorithm. The pixels

are counted from the bottom of a leg region until one fourth (ξLP = 1
4
) of the number

of foreground pixels in the legs region in reached. The centroids obtained from the leg

regions are then considered as the foot positions, which are denoted here as p1[n] and

p2[n] for current frame n. A bounding box is also computed from each pixels subset in

order to represent the rectangular area occupied by each foot.

Once the foot positions are found in the current frame n, foot correspondence must

be established with the foot positions obtained in the previous frame n − 1. A dif-

ferent correspondence algorithm is used depending on whether foot correspondence is

established between frames n−1 and n−2 or not. One of this algorithm (proximal uni-

formity) needs the correspondence to be established between frame n−1 and frame n−2

in order to establish correspondence between frame n and n − 1. The correspondence

thus needs to be initialized at some point by another algorithm (see “Correspondence

using proximal uniformity” and “Correspondence initialization” in Figure 2.7).

In the case where the correspondence was not established in the previous frame,
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an attempt is made to initialize foot correspondence in the current frame n only if

the foot positions were found in the previous frame n − 1. Otherwise, correspondence

initialization is not possible for the current frame and is delayed until the next frame

(see “Correspondence delayed” in Figure 2.7). The correspondence initialization is per-

formed by associating the closest foot positions in current and previous frames (closest

point algorithm). The foot positions p1[n] and p2[n] are swapped if necessary to reflect

this foot association:

p1[n]←→ p2[n] if∥∥p1[n]− p2[n− 1]
∥∥ < ∥∥p2[n]− p2[n− 1]

∥∥ and∥∥p1[n]− p2[n− 1]
∥∥ < ∥∥p1[n]− p1[n− 1]

∥∥
or if∥∥p2[n]− p1[n− 1]

∥∥ < ∥∥p1[n]− p1[n− 1]
∥∥ and∥∥p2[n]− p1[n− 1]

∥∥ < ∥∥p2[n]− p2[n− 1]
∥∥

(2.9)

where ‖ · ‖ is the vector norm. In the unlikely case where p1[n] and p2[n] are at equal

distance from p1[n−1] and p2[n−1], the correspondence initialization is simply delayed

until the next frame to avoid a wrong correspondence. The correspondence initialization

algorithm provides good correspondence if the feet are far enough from each other

and if the motion between the two frames is small. This is the case here since the

correspondence initialization is performed only when the legs are separated in two

consecutive frames. The feet are therefore relatively far from each other in both frames,

and the motion between the frames is relatively small.

In the case where the foot correspondence is established between frames n− 1 and

n−2 (correspondence is initialized), the motion correspondence algorithm developed by

Rangarajan & Shah [83] is used to establish foot correspondence between frames n and

n−1. As for the correspondence initialization, the foot positions p1[n] and p2[n] will be

swapped (if necessary) according to the association made by the motion correspondence

algorithm.

Moving feature points correspondence is established in [83] by assuming that a point

follows a smooth trajectory and has a small spatial displacement between each frame.

These two assumptions hold here since 1) the typical frame rate used for gait analysis

and modelling is about 30 frames per second, which lead to small spatial displacement,

and 2), a foot motion is smooth during walking. The motion correspondence algorithm

provides some robustness to the proposed approach since foot correspondence can be

preserved in case of a noisy silhouette (e.g. the bottom part of a leg is not present in

the silhouette).

Figure 2.10 shows examples of foot location and tracking for frames where the feet
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316 317 318 319 320 321

322 323 324 325 326

Figure 2.10 – Examples of foot location and tracking without occlusion. The silhouette is

overlaid in pink in the frames, and the foot positions are represented by a blue square and a

red diamond. One can see that foot correspondence is established in all frames, that is, the

blue square and the red diamond belong to the same foot across the frames.

are not in occlusion. The legs in these frames can be separated since there are a valid

background paths. One may see that foot correspondence is established in each frame,

that is, a foot position is represented by the same symbol across the frames.

2.6.3 Foot Location and Correspondence with Occlusion

Feet are considered to be in an occlusion state in the current frame n when the legs

can not be separated with the method presented in Section 2.6.1. An attempt is made

to find a position for the moving foot only if the foot correspondence is initialized

and if the feet have not been been in occlusion for more than ξOF consecutive frames.

Otherwise, foot positions will not be found until the legs can be separated again in

the following frames (see “Tracking reset” in Figure 2.7). Foot correspondence must

have been initialized in the occlusion case since the foot positions for frame n− 1 and

n− 2 are needed in order to determine which foot is moving in the current frame. The

maximum number of consecutive frames is set to ξOF = 10 in this thesis in order to

limit the number of extrapolations that are made when there is not enough motion in

the legs region.

As discussed in Section 1.1.1, there is only one foot moving at a time during human

locomotion. Moreover, the velocity of the moving foot is maximal during the time

interval where occlusion is most likely to happen, that is, when the feet are the closest

to each other. It is then possible to detect parts of the moving foot by analyzing

the optical flow of the legs region. In order to determine which foot is moving in the

previous frame, the difference between each foot x coordinate in the frames (n− 1) and
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311 312 313 314 315

Figure 2.11 – Examples of foot location and tracking with occlusion. The silhouette is

overlaid in pink in the frames, and the foot positions are represented by a blue square and

a red diamond. In frames 311 and 315, the feet are not in occlusion since the legs can be

separated by analyzing the legs region of the silhouette. Frame 312 to 314 correspond to

occlusion frames since there is no background gaps between the legs (frame 313), or the

height of the background paths is not long enough (frames 312 and 314).

(n− 2) are compared:

m =

{
1 if

∣∣p1,x[n− 1]− p1,x[n− 2]
∣∣ > ∣∣p2,x[n− 1]− p2,x[n− 2]

∣∣
2 otherwise,

(2.10)

where m is the label of the moving foot. In the case of the still foot, which is denoted

m̄, its position in frame n is simply considered as its position in frame n− 1: pm̄[n] =

pm̄[n − 1]. The pixels belonging to the moving foot are found by first computing

the optical flow in the legs region using the method developed by Horn & Schunck

[84] (“Compute optical flow” in Figure 2.7). Since this method only works for grey

scale data, a grey scale conversion of the original RGB image in the legs region is

performed for the current and the previous frames. A binary mask of the legs region

is then computed by finding the pixel positions where the optical flow norm is greater

than ξON = 10 pixels. Two morphological dilations are applied to the resulting mask

followed by a logical and operator with the silhouette legs region of the current frame.

The final mask consist in pixels positions where there is significant motion in the legs

region of the silhouette.

The position of the moving foot pm[n] is obtained by using the pixels counting

algorithm on the mask (“Foot position from optical flow” in Figure 2.7). Up to 25% of

the number of pixels in the silhouette legs region are counted in the mask, starting from

the bottom (ξOP = 1
4
). The centroid of the counted pixels is used as the position of the

moving foot only if the number of counted pixels is at least 0.2% of the number of pixels

in the silhouette legs region (ξOM = 0.002). Otherwise, the moving foot position will be

linearly extrapolated using its two previous positions: pm[n] = 2 pm[n− 1]− pm[n− 2]

(“Foot position extrapolation” in Figure 2.7).

Figure 2.11 shows examples of foot location and tracking for some frames where the

feet are in occlusion. Frames 311 and 315 represent the positions of the feet before and

after the occurrence of feet occlusion in frames 312 to 314. The positions computed
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Figure 2.12 – Body-part positions post-processing. In (a), the body parts positions are

grouped to form trajectories which are defined for a time interval of continuous tracking. In

(b), radial and tangential distortion are removed from the body part trajectories. In (c),

Gaussian filtering is used to smooth the body-part trajectories.

for the moving foot are consistent with the ones obtained when there is no occlusion.

Foot correspondence is implicit in the case of feet occlusion since only the moving foot

is searched in the legs region.

2.7 Body Parts Positions Post-processing

Figure 2.12 shows the results of each of the post-processing step performed on the

body-part positions obtained for the example presented in Figure 2.1. The first post-

processing step, which is detailed in Section 2.7.1, consist in grouping the body-part

positions into continuous tracking intervals. Distortion removal is the second post-

processing step and is described in Section 2.7.2. Finally, the body part trajectories

filtering step is presented in Section 2.7.3.

2.7.1 Grouping Positions into Continuous Tracking Intervals

In order to facilitate the analysis and the modelling of the gait, the body-part posi-

tions are grouped into continuous tracking intervals, which are defined temporally as

contiguous frames intervals where both the head and the feet are successfully localized

and tracked. A video sequence can be temporally segmented into a set of I continuous

tracking intervals, where each interval is defined as [nS,i, nE,i], with nS,i and nE,i being

the interval starting and ending frame number respectively (i = 1, 2, . . . , I). An interval
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i is defined as too short if (nE,i − nS,i)/fs < ξI, where fs is the acquisition frame rate

(in frames per second), and ξI is a threshold in seconds. In this thesis, an interval is

considered too short if its duration is less than one second (ξI = 1).

The time serie consisting in the positions of a body part for a given frame range is

referred here to as the body part trajectory. Thus, the body part trajectory of the body

part ` ∈ {H, 1, 2} for the continuous tracking interval i is defined as the set of ordered

positions T`,i :
{
p`[n]

∣∣n ∈ [nS,i, nE,i]
}

. In the rest of this thesis, a body part trajectory

will be referred to as the positions p`[n] for a given frame range.

Figure 2.12(a) shows an example where continuous tracking intervals are identified

for a complete video sequence. The first event that causes an interval to be defined in

this example is the reset at some point of the feet tracking algorithm. Interval #1 is

then defined from the time where the first positions of the body part are found (when

the subject was completely in the field of view of the camera) to the time where the feet

tracking is reset. In the case of interval #2, it is defined from the time where the feet

tracking recovered to the time where the subject exited the field of view of the camera.

The positions in each trajectory in Figure 2.12(a) are plotted with a symbol specific to

each body part. Each plotted position is linked by a line segment with the previous

and the next positions. This helps to see the progression in time of a body part as well

its relative velocity in the image.

2.7.2 Removing Radial and Tangential Distortion

Radial and tangential distortions can be removed from the body part trajectories if the

camera was properly calibrated, that is, radial and tangential distortions were taken

into account during the calibration process. This step could be performed instead

on the whole frames acquired from the camera, but that would require to perform a

transformation for all pixel positions in the frames as well as interpolating pixel values.

It is therefore faster and simpler to locate and track the body parts in the distorted

frames and then to remove the distortion from the body part trajectories.

The distortion model used here is the one proposed by Heikkilä [85], where the

radial and tangential distortion parameters are each represented by two coefficients.

Distortion removal is performed on all the body part trajectories of each interval in a

video sequence. Figure 2.12(b) shows body part trajectories for which radial and tan-

gential distortion are removed. The trajectories seem to have been stretched outwards

with respect to the image centre compared to the original trajectories shown in Figure

2.12(a).
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2.7.3 Body Parts Trajectory Filtering

Filtering permits to compensate for the noise that may be present in the body-part

trajectory. This is especially true for the feet trajectories where the quality of the

positions computed by the tracking algorithm during feet occlusion depends on the

degree of occlusion in the legs region.

Each body part position p`[n] is filtered using a Gaussian kernel of size Ψ and

standard deviation σ as follow:

p̆`[n] =

ψ∑
j=−ψ

p`[n+ j] e
−j2

2σ2

ψ∑
j=−ψ

e
−j2
2σ2

, n ∈ [nS,i + ψ, nE,i − ψ] , ψ = bΨ/2c , (2.11)

where p̆`[n] denotes the filtered position. The kernel size Ψ is computed such as the

filter covers about 98.76% of the area of a Gaussian with standard deviation σ, that is,

Ψ = 5σ. In this thesis, a standard deviation of σ = 1 is used for the Gaussian kernel,

which leads to a kernel size of Ψ = 5. The positions in intervals [nS,i, nS,i + ψ) and

(nE,i − ψ, nE,i] are not filtered, that is, they remain unchanged: p̆`[n] = p`[n]. The

filtered body-part positions will simply be referred as to p`[n] in the rest of this thesis.

2.8 Conclusion

The body parts tracking algorithm presented in this chapter permits to obtain the

positions of the head and the feet for frames in which there is a valid silhouette. Foot

correspondence is established between each consecutive frames of a video sequence, thus

allowing identification of each foot with arbitrary labels 1 (foot 1) and 2 (foot 2) for

the whole sequence. Post-processing step provides filtered and undistorted body-part

trajectories that are defined for continuous tracking interval.

The proposed algorithm can compute the position of the body parts in each frame

of a video sequence in real-time. Table 2.1 shows the performance statistics of a C++

implementation of the algorithm on the database used in this thesis. The processing

times do not include the pre-processing and the post-processing steps described in this

chapter. A total of 95438 frames having a resolution of 1024×768 were used to compute

these statistics. One may see that the mean processing time is below 33 ms (30 fps),

the frame rate at which the video sequences were acquired.
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Mean Std Median Min Max

ms/frame 8.9 19.4 5.9 1.3 171.6

Table 2.1 – Real-time performance statistics of the body parts tracking algorithm.

There are some limitations to the proposed body parts tracking algorithm. For

instance, the algorithm is not able to compute the positions of the body parts for view-

points in the range [−40◦, 40◦], where 0◦ is the frontal view. This range of viewpoints is

problematic since the legs cannot be separated most of the time and the feet occlusion

last for too many frames. An example of this can be seen for the frames 214 to 238 in

Figure 2.4. A second limitation is that the algorithm relies heavily on the silhouettes

in order to find the position of the body parts. In the case where a silhouette does

not contains one of the body parts (e.g. the pixels belonging to a body part are not in

the silhouette), the computed position will not be representative of the real body part

position. The position errors can be diminished to some degree by the filtering step

discussed in Section 2.7.3, but cannot be completely eliminated.

Gait analysis, modelling and comparison will be performed using the trajectories

of the body parts. Since these trajectories are view-dependent, they must be first

transformed so that they appear to be observed from a fronto-parallel view. This is the

main subject of the next chapter.



Chapter 3

View-rectification

“Sometimes only a change of viewpoint

is needed to convert a tiresome duty

into an interesting opportunity.”

Alberta Flanders

As discussed in Section 1.4, invariance to the viewpoint is one of the most important

issue of gait analysis and modelling approaches. Indeed, most approaches consider only

a fronto-parallel view of people walking at a distance since this viewpoint is well suited

for gait analysis and modelling. Moreover, the fronto-parallel viewpoint permits to

perform gait analysis and modelling at a distance without being affected too much by

the perspective projection effects.

However, perspective projection effects cannot be ignored for arbitrary viewpoints

or for walks that are performed close to the camera. Silhouette-based gait analysis and

modelling approaches are especially affected in these cases since the observed contour

points on the silhouettes may not correspond to the same physical points for two differ-

ent frames (see Section 1.4). Model-based approaches are also affected by perspective

projection effects, but the body-part positions mostly correspond to the same physical

positions for two different frames. This is the main reason for the use of a model-based

approach in this thesis as well as for the development of a body parts tracking algorithm

in Chapter 2.

It will be shown in this chapter that it is possible to recover a fronto-parallel view

of imaged body-part trajectories obtained for non-frontal walks. A view-rectification

process is performed to make the imaged body-part trajectories appear as if they were
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observed from a fronto-parallel view. The view-rectification process requires some hy-

potheses on how the walk is performed, along with the knowledge of the camera intrinsic

parameters, the ground vanishing line, and, optionally, the ground scale factor.

In this chapter, a literature review on viewpoint invariant gait analysis and modelling

is first presented. It is followed by a brief overview of the proposed approach. Each

step of the view-rectification algorithm is then subsequently detailed. The chapter

is concluded by discussing the properties, the advantages, and the limitations of the

proposed approach.

3.1 Literature Review

As discussed previously in Section 1.4, very few gait analysis, modelling and comparison

approaches are designed to cope with viewpoint changes. Some of the approaches

that are specifically designed to perform view-invariant gait analysis, modelling and

comparison are based on multi-view acquisition systems [86, 87]. For instance, the

approach in [86] decomposes the view factor, the body configuration factor and the

gait style of walking people using data acquired from multiple views (from four to six

views). A supervised manifold learning algorithm is used in [87] in order to maximize the

difference between the subjects while minimizing the effects of the different viewpoints

(from two to eleven views). Unfortunately, the use of a multiple views acquisition system

to learn a view-independent model of each person’s gait is not a practical option in the

case of real-time surveillance in public area since there is usually only one camera per

observed area. Although it is possible to use a multiple views acquisition system in the

case of medical applications, this is undesirable since those systems are expensive and

can be difficult to operate for a physician.

In other approaches, predefined static gait features are instead extracted from

monocular video sequence using knowledge of the environment and the camera [49, 50].

The approach in [49] extracts measurements (distance between the head and the pelvis,

distance between the feet and bounding box height) directly from the silhouettes and

then applies a depth compensation factor to these measurements. However, this depth

compensation factor is only valid for a given view and has to be estimated using a

subject with known height. A camera calibrated with respect to the ground is used

in [50] in order to estimate the strides length, the cadence and the height of a person

from an arbitrary view. However, the extrinsic camera parameters must be known in

order to estimate those gait features directly from the camera image. Moreover, the

approaches of [49, 50] are limited to the extraction of static, predefined features, and
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thus cannot be easily adapted to the extraction of dynamic gait features.

View-invariant gait modelling and comparison is performed in [88] by considering

only the frame range in the compared gait video sequences where the viewpoint range

is the same. Although this approach avoids some of the problem due to perspective

distortion, one cannot assumes that a common viewpoint range between two given

video sequences always exists. Moreover, this approach does not fully exploit all the

gait cycles in the video sequences in order to perform gait modelling and comparison.

Generation of a fronto-parallel view of the silhouettes has been proposed by a number

of authors in the literature [58, 89, 90]. In these works, the silhouettes computed from

a video sequence are transformed using either rotations [89, 90] or homographies [58].

The transforms are computed by either estimating the direction of the walk in the

image [89, 90], or by estimating the homography induced by the pair of parallel lines

that represent the trajectory of the upper and lower points of the silhouettes [58]. These

approaches assume that the walk is performed on a straight line, and that the observed

person can be considered as a planar object, that is, the walk is performed far from the

camera. These assumptions do not hold for walks with changes in direction or for walks

that are performed close to the camera. As discussed in Section 1.4, the silhouettes in

such conditions are distorted by perspective projection and thus should not be used for

gait features extraction.

The most comprehensive view-invariant gait analysis, modelling and comparison

approach to date is the one described in [55, 91, 92, 93]. A fronto-parallel view of the

positions of the ankle, knee and hip joints is recovered using a single non-calibrated

camera. The approach is based on the following assumptions: the subjects walk in a

straight line at a constant velocity, the joints of a leg lie in a plane in the scene, and the

distance between adjacent joints remains constant during walk. Since gait is a cyclic

motion, the observation of multiple gait cycles from a single camera is similar to the

observation of a single gait cycle from multiple cameras related by a translation in the

direction of the walk. Therefore, the positions of the joints in the images lie in an

auto-epipolar configuration. A fronto-parallel view of the joint trajectories can then be

generated by using epipolar geometry. The earliest version [91, 92, 93] of this method

relied on marker placed on the subject’s legs in order to recover the positions of the joints

in the images. As for the most recent version [55], it uses a joint tracking algorithm [52]

based on a motion template, which was discussed previously in Section 2.1. Although

this approach is perfectly sound, it restricts the possible surveillance scenarios since

it relies on assumptions such as constant velocity and straight line walks. Although

this approach could be used in medical scenarios, it could be problematic to have some

patient walk at a constant velocity in restrained acquisition room.
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3.2 View-rectification Approach Overview

The approach proposed in this thesis consists in performing a view-rectification of the

imaged body-part trajectories, that is, a fronto-parallel view of imaged body-part tra-

jectories is generated. These generated body-part trajectories are referred to as the

view-rectified body-part trajectories, and are suitable for view-invariant gait analysis

and modelling. The proposed method does not suffer from the limitations of the meth-

ods discussed in the previous section since

� only a single camera is necessary;

� static and dynamic features can be extracted from the rectified body-part trajec-

tories;

� all complete gait half-cycles can be used for gait analysis and modelling;

� subjects are not considered as planar objects;

� walk can be performed close to the camera as well as far from the camera;

� changes in the walking direction are handled;

� changes in the walking speed are also handled.

The following assumptions are made in the proposed view-rectification approach :

1. The camera is fixed;

2. The surface of walk is flat and level, i.e. people are not walking on an inclined or

uneven surface;

3. People walk normally, i.e. people are not walking backwards, running, jumping,

or doing any other activity that is not related to walking;

4. People stay upright while they are walking, i.e. they do not bend;

5. The motion of each body part is planar during each gait half-cycle, i.e. the body-

part positions lie in a plane during a given half-cycle.

Assumptions 1, 2, 3, and 4 are common to most approaches that perform gait analysis

and modelling using computer vision techniques. Assumption 5 is similar to the one in

[55, 91, 92, 93], but is assumed here to be true only within each gait half-cycle instead

of the whole walk. In the case of the proposed approach, these five assumptions also

provide constraints that are used to define a model of a typical walk, which will be

discussed in Section 3.3.

Figure 3.1 shows an overview of the proposed view-rectification approach. The

approach uses as input the head and the feet trajectories obtained, e.g. using the

body parts tracking method described in Chapter 2. The first step of the proposed
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Figure 3.1 – Overview of the view-rectification approach. The plain arrows show the order

in which each step must be performed, while the dashed arrows point to the steps that need

a certain parameter of the proposed approach.

approach consists in temporally segmenting the trajectories into gait half-cycles. Next,

the constraints provided by the walk model are considered in Step 2 and 3 in order to

compute the imaged head and foot motion planes, which are the image of the two scene

planes in which the head and the foot motion is performed for each gait half-cycle. The

label of the foot trajectories (left or right) are then deduced in Step 4 using the imaged

head motion planes. In Step 5, each head and foot motion planes is metrically rectified

in order to make it appear as if it was observed from a fronto-parallel view. Finally, the

view-rectified body-part trajectories are computed in Step 6 by using the homography

induced by the imaged motion planes and their rectified counterpart.
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The parameters that are needed for the proposed approach are estimated in Step 0.

This step needs to be performed only once for a given camera setup, and thus can be

performed once the camera is fixed and calibrated. The main parameter to be estimated

is the ground vanishing line, which is defined as the line in the image representing the

horizon of the ground plane. It is estimated automatically by using the imaged body-

part trajectories obtained from a small set of walks. An optional parameter that can be

estimated is the ground scale factor, which permits to compute the view-rectified body-

part trajectories in scene units, that is, in meters. The estimation of the ground scale

factor necessitates some known distance(s) between points on the ground plane, and

these points must be manually identified in the image. This is an optional parameter

since scene units are not needed for the comparison of measurements or gait models.

The remainder of this chapter is organized as follows. The proposed walk model

is presented in Section 3.3. Next, the method for gait half-cycles detection (Step 1) is

presented in Section 3.4. Computation of the head and the feet motion planes (Step 2

and 3) is described in Section 3.5, followed by the presentation of the foot trajectories

labelling method (Step 4) in Section 3.6. The rectification of the motion planes and the

rectification of the body-part trajectories are presented in Section 3.7 and Section 3.8

respectively. Finally, the estimation of the parameters (Step 0) is presented in Section

3.9.

3.3 Walk Model

The proposed view-rectification approach is based on a model of the walk that describes

some of the constraints imposed on the body-part positions for a typical walk. The walk

model is mainly used here in order to compute the imaged motion planes in which each

body-part motion is performed during a gait half-cycle. Using the walk model described

in this section along with projective geometry concepts provides a spatio-temporal link

between a normal walk performed in the scene and the corresponding imaged walk. The

walk model will also be used to compute gait measurements such as the strides length,

the steps length, and the displacement (the distance a person has travelled).

Figure 3.2 presents the proposed 3-D walk model, which was defined on the basis of

human walk observations made in medical references [94, 95, 96, 97]. In order to simplify

its visualization, the walk model is shown from a side view in Figure 3.2(a) and a top

view in Figure 3.2(b). The positions shown in the model are 3-D points representing

either a body-part extremity (top of the head or a foot contact point on the ground)

or a position derived from body-part extremities (feet middle points). Here, these 3-D
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(a) Side view (b) Top view

Figure 3.2 – The proposed walk model is shown from two different viewpoints for a straight

line walk performed from left to right. The positions of the body-part extremities (EH, EL,

and ER) are defined for the three key times of a gait cycle, that is, the beginning (t1), the

middle (t2) and the end (t3). A stick model shows how the body parts relate to each other

at each key times of the gait cycle. Features related to the gait are also shown: stride length

(δs), step length (δp), displacement (δd), and stride width (δw).

positions are referred to as extremities and are denoted E`, where ` represent the label

of the extremities (` ∈ {H, L,R,M}, i.e. “Head”, “Left foot”, “Right foot”, “Middle

point”). A stick model shows how these extremities relate to each other at some key

times in a gait cycle. The trunk and the head are shown as a grey segment and a grey

circle respectively, whereas the left leg and the right leg are shown as a red dashed line

and a blue line respectively. The positions of the head and the feet mass centre are

not shown here since only the positions of extremities are needed in the proposed walk

model. Also, the notation used in this thesis consists in using bold capital letter for

3-vector representing 3-D points (i.e. positions) in the scene, and bold small letter for

2-vector representing 2-D imaged points. For instance, the 3-D extremity position E`

would be imaged as a 2-D position e`

The extremities positions in Figure 3.2 are shown for three key times, namely at the

beginning (t = t1), the middle (t = t2) and end (t = t3) of a gait cycle. As explained

in Section 1.1.1, these key times represent the beginning of double support phases,

which are the time interval where both feet are in contact with the ground. Since the
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beginning of a double support phase might occur between two frames, that is, at a

non-integer frame number, the continuous variable t is used here instead of the discrete

variable n in order to make this distinction clear. The position of an extremity for the

kth key time tk is denoted E`[k], since the extremities are only defined for key times.

At times t1 and t3, the right leg is the leading leg and the left leg is the trailing leg,

whereas the left leg is leading and the right leg is trailing at time t2 [94]. In the first

gait half-cycle, which is defined within the time interval [t1, t2], the left foot moves from

position EL[1] to position EL[2], whereas the right foot position remains unchanged,

that is, ER[1] = ER[2]. During the second gait half-cycle, which is defined within the

time interval [t2, t3], the right foot moves from position ER[2] to position ER[3], and

the left foot position remains unchanged (ER[2] = ER[3]). During both gait half-cycles,

the head and the trunk are continuously moving forward. One should note that there

is no assumption in the walk model regarding the shape of the body-part trajectories

during a gait half-cycle. Indeed, only the positions of specific body-part extremities are

considered at specific key times.

Important gait features are also depicted in Figure 3.2, namely the step lengths (δp),

stride lengths (δs), and the stride width (δw). A step length is defined as the distance on

the ground between the leading and the trailing foot, and is computed in the direction

of the walk [94] as shown in Figure 3.2(b). A step length is denoted δp[k] since it can

be computed on a key time basis, that is, it can be computed for each key time tk in

a walk. A stride length is defined as the distance travelled by the moving foot during

a gait half-cycle. It is denoted here as δs[c], that is, the stride length for the cth gait

half-cycles. The variable c is used here instead of variable k to stress the fact that a

stride length can only be computed on a gait half-cycle basis, and not on a key time

basis. One may see that the variables k and c are closely related: if one considers

that there are K key times for a given walk (k = 1, 2, . . . , K), then there are exactly

C = K − 1 gait half-cycles, since a gait half-cycle is bounded by two consecutive key

times (c = 1, 2, . . . , C). In Figure 3.2, δs[1] denotes the stride length for the left foot,

which is the foot moving in half-cycle c = 1, and δs[2] denotes the stride length for

the right foot, which is the foot moving in half-cycle c = 2. The stride width, δw[k], is

defined as the distance between the feet in the direction perpendicular to the direction

of walk at each key time, as shown in Figure 3.2(b). The stride width is presented here

only for completeness and won’t be used in the proposed method.

Some relations can be established between the gait features and extremities posi-

tions. For instance, the head-trunk position at a key time is about half a step length

behind the leading foot [94], and therefore half a step length in front of the trailing

foot (see Figure 3.2(a)). From a top view, the symmetry of the body during the double

support phase makes the head and the feet positions collinear, as shown by the black
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dashed lines in Figure 3.2(b). Thus, the perpendicular projection on the ground of the

head extremity corresponds to the middle point between the feet extremity, which is

denoted here as EM[k]. This projection is represented by the vertical green dashed lines

in Figure 3.2(a). The feet middle points can be used to compute a person’s displacement

δd[c] during the gait half-cycle c as

δd[c] =
∥∥EM[c+ 1]− EM[c]

∥∥. (3.1)

One should note here that the variable c needs to be used to index the feet middle

points in order to define this relation, albeit the feet middle points are defined on

a key time basis. One may convince oneself that this relation holds by noting that

δd[1] =
∥∥EM[2]−EM[1]

∥∥ in Figure 3.2. It is also possible to see from Figure 3.2(b) that

the displacement is half the stride length δs[c]:

δd[c] =
δp[c]

2
+
δp[c+ 1]

2
=
δs[c]

2
. (3.2)

This result can be deduced by observing that in the case of a straight line walk, the

stride length is the sum of the step lengths δp[c] and δp[c+ 1].

An important property of human walk is that the step lengths can be different for

the left and the right foot, but the strides length must be the same for both feet in

order to perform a straight line walk [94, 96]. This implies that there is a change in the

direction of walk when the left and the right strides are not of the same length. The

foot that is moving during a gait half-cycle travels towards the direction aimed at, or

towards an intermediate direction in the case of a smooth change of direction. A walk

can thus be segmented into linear walk segment on a gait half-cycle basis. Since the

proposed walk model is defined on a gait half-cycle basis, it is valid for straight line

walks as well as walks with changes in direction.

Figure 3.3 shows a top view of the walk model in the case of a walk with changes

in direction. Here, the extremities positions are shown for 5 key times, that is, 2

complete gait cycles (4 half-cycles). The direction of walk is changed by 30◦ at each

half-cycle. One may notice that the left strides length (red dashed lines) are shorter

than the right strides length (blue dashed lines). Compared to the strides performed

for a straight line walk, a person actually has to perform shorter strides with her left

foot and longer strides with her right foot in order to change the direction of walk to

the left. Another observation that can be made is that a stride length is no longer the

sum of two step lengths, as the step lengths are computed in the direction of the walk

for the corresponding half-cycle. Since the direction of the walk changes at each gait

half-cycle, a stride length is indeed function of both the step lengths and the stride

width for a given half-cycle. Apart from this, the relations between the strides length

and the extremities positions discussed previously still hold in the case of a walk with
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Figure 3.3 – Top view of the walk model for a walk with changes in direction. The extremities

positions are shown for 5 key times. The direction of walk (black arrows) is changed by 30◦

at each gait half-cycle.

changes in direction. For instance, the displacement during a half-cycle is still half

the stride length. This can be seen in Figure 3.3 by first observing that the triangles

4EL[c]EL[c+1]ER[c] and4EM[c]EM[c+1]ER[c], are always similar (here c ∈ {1, 2, 3, 4}).
Given that the base of those triangles is defined as

δs[c] =
∥∥EL[c+ 1]− EL[c]

∥∥ and δd[c] =
∥∥EM[c+ 1]− EM[c]

∥∥, (3.3)

and that the relations between the two other sides are, from Equation 3.1,∥∥EM[c]− ER[c]
∥∥ =

1

2

∥∥EL[c]− ER[c]
∥∥ and∥∥EM[c+ 1]− ER[c]

∥∥ =
1

2

∥∥EL[c+ 1]− ER[c]
∥∥, (3.4)

it follows that δd[c] = 1
2
δs[c]. Moreover, it is possible to see from this result that the

direction of the displacement will always be parallel to the direction aimed at by the

person’s moving foot. Thus, the head and the moving foot trajectories in the scene are

parallel during a gait half-cycle. This observation is used thoroughly in the proposed

view-rectification approach.

The proposed walk model, which consists in the relations and the constraints dis-

cussed in this section, will be used to compute, on a half-cycle basis, the image of the

planes in which each imaged body-part motion is performed. In order to do so, the gait

half-cycles must first be detected using the imaged body-part trajectories.
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3.4 Gait Half-Cycles Detection

As mentioned previously, a gait half-cycle is defined as a time interval bounded by the

starting time of two consecutive double support phases. Therefore, detecting the gait

half-cycles in a walk implies detecting the starting time of the double support phases.

By definition, the double support phase starts at the moment in time when the heel

of the moving foot makes contact with the ground. However, detecting the moment in

time where the heel touches the ground is a not a trivial computer vision task. Another

noticeable moment in time during the double support phase is the one where the feet

are furthest apart. This moment in time, which is referred here to as key time, can be

detected by analyzing the time-series of the distance between the imaged feet positions

in a video sequence. The key times can be obtained by first computing the distance

between the feet in each frame, and then by determining the K key frames nk for which

the distance is maximal when compared to neighbouring frames. The key times tk,

which are non integer frame numbers, can then be interpolated from the obtained key

frames nk, k = 1, 2, . . . , K.

Foot extremity
trajectories computation

Feet distance
computation

Distance maxima
detection

Sub-frame
interpolation

Figure 3.4 – Gait half-cycles detection algorithm.

Figure 3.4 shows the four steps of the proposed gait half-cycles detection algorithm,

which is detailed in the following subsections. The first step consists in computing

the foot extremity trajectories in each continuous tracking interval. Next, the foot

extremity trajectories are used to compute the distance between the feet, which is then

analyzed in order to find the key frames. Finally, the key times are computed using

sub-frame interpolation and are used to define the gait half-cycles.

3.4.1 Foot Extremity Trajectories Computation

As discussed in Chapter 2, the body parts tracking method provides for each frame n

the position of the head and the feet pH[n], p1[n], and p2[n], as well as the bound-

ing box of the region where each body part is located, b`,c[n], ` ∈ {H, 1, 2} and

c ∈ {TL,TR,BL,BR}. However, the body part tracking algorithm does not provide

the trajectory of each foot extremity. Therefore, the trajectory of each foot extremity,

which is denoted as p`B[n], ` ∈ {1, 2} , is computed directly from the position of the
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foot 1

foot 2

bbox 1

bbox 2

ext 1

ext 2

Figure 3.5 – Example of foot extremity computation for a frame. The foot positions are

represented by a square and a diamond, and the computed foot extremity positions are rep-

resented as triangles. The foot bounding boxes are shown using plain lines.

foot centre of mass along with the corresponding foot bounding box:

p̃`B[n] =

 1

0

−p`,x[n]


︸ ︷︷ ︸

lv

×
(
b̃`,BL[n]× b̃`,BR[n]

)
︸ ︷︷ ︸

lh

= lv × lh, (3.5)

where the operator × denotes the cross product, and the tilde denotes that the positions

are in homogeneous coordinates [98], that is,

p̃`B[n] = λ

[
p`B[n]

1

]
for any λ 6= 0. (3.6)

One must note that a line can also be represented in homogeneous coordinates, that is,

a line l1x + l2y + l3 = 0 in the image can be represented as a vector l = λ[l1 l2 l3]T for

any λ 6= 0. Moreover, a line joining two points can be defined as the cross product of

the homogeneous representation of the two points. Also, the intersection point of two

lines can be defined as the cross product of the homogeneous representation of the lines.

These two results come from the duality of points and lines in the projective space P2

[98], which is the projective space considered when working in the camera image plane.

The position of a foot extremity is thus simply computed as the intersection point of

two lines lv and lh. The line lv is the vertical line x = p`,x[n] that passes through the

point p`[n](i.e. the foot position), whereas the line lh is defined as the line joining the

bottom corners of the foot bounding box, b`,BL[n] and b`,BR[n]. The line lh represents

the bottom of the foot region and the foot extremity can be considered as a point on

this line. The foot extremity position for a given frame n is thus computed by finding

the point on line lh that has the same abscissa as the foot position.

Figure 3.5 shows the foot extremity positions obtained using Equation 3.5 for an
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example frame. The foot positions are shown along with the bounding boxes and the

computed foot extremity positions. One should note that the line lh, representing

the bottom side of the bounding box, might not be perfectly horizontal in some case,

especially for bounding boxes close to the image border. This is due to the distortion

removal that is performed on bounding boxes corners position (Section 2.7.2). As

discussed in the following sections, the foot extremity trajectories are used to compute

the distance between the feet as well as to define the planes of motion.

3.4.2 Feet Distance Computation

The distance between the feet for a frame n is defined within a continuous tracking

interval i as the discrete function d[n]:

d[n] =

ψ∑
j=−ψ

∥∥p1B[n+ j]− p2B[n+ j]
∥∥ e−j22σ2

ψ∑
j=−ψ

e
−j2
2σ2

, n ∈ [nS,i + ψ, nE,i − ψ] , (3.7)

where ψ = bΨ/2c, Ψ is the size of a Gaussian kernel used for filtering, and nS,i and nE,i

are respectively the starting and the ending frame of the continuous tracking interval

i. The filtering parameters used here are the same as for the body-part trajectory

filtering described in Section 2.7.3, that is, σ = 1, Ψ = 5. For the frame ranges

[nS,i, nS,i + ψ) and (nE,i − ψ, nE,i], the distance is unfiltered and is simply defined as

d[n] =
∥∥p1B[n] − p2B[n]

∥∥. The unfiltered distances correspond to frames that can not

be detected as key frames by the algorithm described below.

Figure 3.6 shows an example of feet distance computation for the walk shown in

step 1 of Figure 3.1. The filtered and the unfiltered distances between the feet are

shown in order to see the effect of filtering. One thing that can be noticed is the effect

of perspective projection on the imaged distance between the feet, that is, the distance

between the feet becomes larger as the person walks closer to the camera. Fortunately,

this will have no impact on the maxima detection as the maxima clearly stand out in

the distance time-series.

3.4.3 Distance Maxima Detection

The detection of the distance maxima is performed by finding the frames for which the

distance is maximal in a search window. The size W of this window is defined as a



Chapter 3. View-rectification 54

140 160 180 200 220 240 260 280 300 320 340
0

25

50

75

100

125

150

Frame number

D
is

ta
n

c
e

 (
p

ix
e

ls
)

Filtered and unfiltered distance between the feet positions

 

 

Unfiltered

Filtered

Figure 3.6 – Example of feet distance computation. The unfiltered and the filtered distances

between the feet are shown for two continuous tracking intervals. The gaps from frame 222

to frame 242 represents the time range where the feet could not be tracked.
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Figure 3.7 – Search window for distance maxima detection. In (a), the size of the search

window is shown as a function of the cadence for fs = 30 fps. In (b), a search window of size

W = 15 is centred on frames 189 and 246 for the filtered distance previously shown in Figure

3.6. The size of the search window was computed with fc = 240 steps/min.

function of the frame sampling rate fs (in frames per second) and a maximal bound on

the cadence fc (in steps per minute):

W = odd (2× 60fs/fc) = 2

⌈
(2× 60fs/fc) + 1

2

⌉
− 1, (3.8)

where the function odd( · ) rounds up to the nearest odd number in order to obtain a

more convenient window that can be centred on a frame. The value 60fs/fc simply

represents the minimal (non-integer) number of frames between two steps, that is, the

minimal number of frames between two feet distance maxima. For a cadence greater

than fc, this means there would be more than one distance maxima in the window,

and thus only one of the distance maxima would be detected. A search window defined

in function of a maximum bound on the cadence will detect feet distance maxima for

walks with cadence up to fc.

Figure 3.7(a) shows the size of a search window as a function of the cadence for
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a standard frame rate of 30 fps (fs = 30). The window size computed as 120fs/fc is

shown as a blue continuous curve, whereas the window size computed with Equation

3.8 is shown as a red discontinuous curve. It is possible to see that for a given maximal

bound fc, the actual maximal cadence that can be detected using a odd sized window

is less than or equal to fc. For instance, the maximal cadence that can be detected

with fc = 150 is 120fs/W = 120× 30/25 = 144 steps/min. Although it is theoretically

possible to detect distance maxima that are w = bW/2c frames apart from each other

using a search window of size W , it might not be possible in practice if the distance

value of the maxima are not equal. For this reason, one would set the maximal bound

fc to a value greater that the maximum expected cadence. A safe value for fc is two

times the maximal expected cadence since the search window borders would fall close

to distance minima in the case of a walk with the maximal expected cadence. This can

be seen in Figure 3.7(b), which shows a search window centred on two frames for the

filtered distance previously shown in Figure 3.6. Here, a window size of W = 15 has

been obtained by setting fc = 240 steps/min, that is, two times the subject’s cadence,

which is in the order of 120 steps/min. If a window size of W = 31 (fc = 120) was used

instead, one may see in Figure 3.7(b) that no distance maximum could be detected

at frame 189 because of the presence of greater distances within the search window

(e.g. frames 174 and 204). By setting fc to two times the maximal expected cadence,

one may see that both window borders effectively fall on the minimum between the

consecutive maxima, and thus all the distance maxima can be detected.

Using two times the expected cadence value for fc increases the possibility of de-

tecting noisy distances as maxima, however. To overcome this possibility, the detected

maxima are accessed by verifying that they are also maximal in a median-filtered ver-

sion of the distance time series. The median filtering removes isolated distance maxima

that would have been smoothed, but not removed, by the Gaussian filtering. The

median-filtered distance, denoted dmed[n], is computed from the filtered distance signal

d[n] as

dmed[n] = median
j

(d[j]) , j ∈ [n− wmed, n+ wmed], n ∈ [nS,i, nE,i] , (3.9)

where wmed = bWmed/2c, and Wmed = bW/2c, that is, half the search window size. Zero-

padding is performed on the distance signal d[n] in order to obtain a median distance

dmed[n] for each frame n ∈ [nS,i, nE,i] in a continuous tracking interval i.

Algorithm 3.1 shows the detailed procedure to perform distance maxima detection

on each continuous tracking interval of a walk. The frame on which the search window is

first centred is nS,i+bW/4c, and not nS,i+bW/2c as one would expect. The main reason

for this is that the first distance maximum occurring in an interval would mostly never

be detected, as the feet tracking always starts after a feet occlusion, that is, close to a feet
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Algorithm 3.1: Distance maxima detection.

1: w = bW/2c
2: for i = 1, 2, . . . , I do ⇒ for each continuous tracking interval

3: Ki = 0

4: j = nS,i + bW/4c ⇒ initial search frame

5: while j ≤ (nE,i − bW/4c) do

6: α = max (nS,i, j − w) ⇒ first frame in search window

7: β = min (j + w, nE,i) ⇒ last frame in search window

8: d∗ = max
l

(d[l]) for l ∈ [α, β] ⇒ distance maximum

9: d∗m = max
l

(dm[l]) for l ∈ [α, β] ⇒ median distance maximum

10: if d[j] = d∗ and dm[j] = d∗m then ⇒ distance maximum detected

11: Ki = Ki + 1, k = Ki

12: nk,i = j ⇒ key frame number

13: j = j + w + 1

14: else ⇒ no distance maximum detected

15: j = j + 1

16: end if

17: end while

18: end for

19: return Ki for i = 1, 2, . . . , I ⇒ number of key frames in each interval

20: return nk,i for k = 1, 2, . . . , Ki ⇒ key frames for each interval

distance maximum (see Section 2.6.2). For instance, the distance maximum at frame

249 in Figure 3.7 would not be detected if the search started at frame nS,i + bW/2c =

243+7 = 250. But by starting the search at nS,i+bW/4c = 243+3 = 246, as shown by

the window centred on this frame in Figure 3.7, the distance maximum at frame 249 is

detected when the search window is centred on it. The same reasoning holds in the case

of the last frame searched in an interval, which is frame nE,i − bW/4c. Only the frame

for which a distance exists are considered in the search window, hence the computation

at lines 6 and 7 of the first and the last valid frame number (α and β) within the search

window. One may also note that a maximum distance is detected at a given frame only

if it is a maximum distance within the search window for both the Gaussian filtered

distance and the median filtered distance (line 10). Once a maximum is detected, the

search is continued w+1 frames further, as there cannot be another distance maximum

in the following w frames (line 13). Otherwise, the search is performed on the next

frame (line 15). Finally, the algorithm returns the detected maximum distance frames,

nk,i, as well as the number Ki of detected maxima for a given interval i.

Figure 3.8 shows the distance maxima detected for two walks performed by two
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Figure 3.8 – Examples of detected distance maxima for two walks performed by two different

subjects. Both the Gaussian filtered (blue curve) distance and the median filtered (red curve)

distance are shown, along with the frames (key frames) for which a distance maximum was

detected (vertical dashed lines).

different subjects. It is possible to see that all maxima were correctly detected in both

cases, and that false maxima were discarded. For instance, no maximum was detected

around frame 217 in Figure 3.8(a) and around frame 411 in Figure 3.8(b) since the

search window is wide enough to filter them out. Moreover, the noisy distance around

frame 270 in Figure 3.8(b) was discarded because the median distance is not maximal

for this frame. Indeed, the median filtered distance is useful in cases where the feet

distance is highly noisy for a few consecutive frames.

3.4.4 Sub-frame Interpolation

The key times tk,i can be computed once the key frames nk,i (maximum distance frames)

have been obtained. Each key frame nk,i is refined to non-integer key times tk,i by

performing a parabolic (second order polynomial) interpolation:

tk,i = nk,i +
d[nk,i − 1]− d[nk,i + 1]

2
(
d[nk,i + 1]− 2d[nk,i] + d[nk,i − 1]

) . (3.10)

The distance values at the previous frame nk,i − 1 and the next frame nk,i + 1 are

used along with the distance value at frame nk,i to fit a parabola on the three points(
−1, d[nk,i − 1]

)
,
(
0, d[nk,i]

)
and

(
1, d[nk,i + 1]

)
, as shown in Figure 3.9(a). The use of

-1, 0, and 1 instead of nk,i − 1, nk,i, and nk,i + 1 simplifies the parabola fitting process

and permits to compute the location of the parabola’s maximum with respect to the

key frame nk,i. This relative location is represented by the second term of Equation

3.10 and its value is a fraction of a frame number. For instance, the maximum of the

fitted parabola in Figure 3.9(a) is located at −0.35 frame of the key frame 249, that
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Figure 3.9 – Example of key times obtained from sub-frame interpolation for the key frames

shown in Figure 3.8(a). In (a), sub-frame interpolation for the key frame 249. The feet

distance for frames 248, 249 and 250 are shown as red circles. The fitted parabola is shown

as a continuous blue curve, and its maximum is shown as a green triangle. The obtained key

time is 248.65 (black vertical dashed line) as the parabola maximum is located at −0.35 frame

from the key frame 249. In (b), the obtained key times are shown as black vertical dashed

lines.

is, at key time 248.65. The obtained sub-frame values are named key times in order

to differentiate them from the discrete, integer-valued frame numbers. Figure 3.9(b)

shows the key times obtained with sub-frame interpolation for the key frames in Figure

3.8(a).

Once the Ki key times in the continuous tracking interval i have been obtained,

the gait half-cycles can be defined as the time intervals [tc,i, tc+1,i], for c = 1, 2, . . . , Ci.

Thus, there is exactly Ci = Ki − 1 gait half-cycles, and exactly bCi/2c complete gait

cycles. Defining the gait half-cycle as a function of the key times instead of the key

frames simplifies the assignment of the frames that falls on the half-cycle boundaries.

For instance, the frames assigned to half-cycle [tc,i, tc+1,i] are the frames in discrete

interval [dtc,ie , btc+1,ic]. This is useful for the definition of the motion planes as well as

for the rectification of the body-part trajectories.

3.5 Motion Planes Computation

As discussed previously, the approach proposed in this thesis consists in rectifying the

imaged body-part trajectories on a gait half-cycle basis. It is assumed that the motion

of a body part is planar during a gait half-cycle, that is, the positions of the body part

in each frame of the gait half-cycle lie in a plane in the scene (Assumption no.5). Two
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Figure 3.10 – Planes of motion during a gait half-cycle. In (a), the head motion plane,

and in (b), the moving foot motion plane. The points lying in these planes are linked using

dashed lines in order to show that they form a rectangle in the scene. The head motion plane

is perpendicular to the ground plane, whereas the foot motion plane is slightly slanted with

respect to the head motion plane.

motion planes are considered during a gait half-cycle, that is, the head motion plane

and the moving foot motion plane. These motion planes are depicted in Figure 3.10

from a side view and a top view. The head motion plane is perpendicular to the ground

plane and passes through the head extremities and the feet middle points for the two

key times t1 and t2. As for the foot motion plane, it is slightly slanted with respect

to the head motion plane and it passes through the head extremities and two points

lying on the stride line, which is the line joining the foot extremity at key times t1 and

t2. These two points are actually the projection of the feet middle points on the stride

line, as shown in Figure 3.10(b). Also, one can see that the four points in both motion

planes form a rectangle in the scene.

Although no motion plane can be computed for the still foot in a given gait half-

cycle (the foot is not moving), the positions of this foot can be considered to lie in both

the previous and the next foot motion plane, that is, the motion planes defined in the

previous and the next gait half-cycle. More details will be provided on the definition of

the scene motion planes in the following subsections.

The main idea of the proposed approach is to identify the image of the motion

planes for each gait-half-cycle of a walk. The imaged motion planes are obtained by

identifying the image of four points that are known to lie on them. The arrangement
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of the four imaged points in the image will, in general, be a trapezoid, which provides

information on the orientation of the plane in the scene with respect to the camera.

This information can be used to compute an homography that transforms the imaged

plane (trapezoid) into a rectified plane for which the four points form a rectangle with

the same proportions as the rectangle in the scene. This homography can then be used

in order to get a rectified view of the corresponding body-part trajectory.

The method used to compute the imaged motion planes on a gait half-cycle basis

is presented in Figure 3.11. Three steps must first be performed in order to compute

the head motion plane. The obtained head motion plane is then used along with the

result of two other steps in order to compute the plane of motion of the moving foot.

In both cases, the knowledge of the intrinsic camera parameters is necessary, as well

as the ground vanishing line. The computation of the head motion plane and the foot

motion plane is described in Section 3.5.1 and 3.5.2, respectively.

Foot extremity
computation

Middle point
projection

Feet middle point
computation

Head extremity 
computation

Vanishing points
computation

Foot motion plane computation

Head motion plane computation

Figure 3.11 – Method for the computation of the planes of motion on a gait half-cycle basis.

3.5.1 Head Motion Plane Computation

The actual motion of the head during a gait cycle is quite complex: it has a sinusoidal

component for each of the three orthogonal directions of motion, which are the vertical

direction, the lateral direction, and the direction of walk [95]. Since the lateral motion

of the head is mainly visible from a frontal view, it will be ignored here. The motion

of the head is thus considered to lie entirely in the plane of progression, which is the

vertical plane aligned with the direction of walk that corresponds closely to the body

sagittal plane [94]. The four 3-D points that are known to lie in this motion plane during

a gait half-cycle c are the head extremities EH[c] and EH[c + 1], and the feet middle

points EM[c] and EM[c + 1] (see walk model in Figure 3.2). One may see that the two

vertical lines joining the points EM[c], EH[c] and EM[c+ 1], EH[c+ 1] are parallel lines,

which are perpendicular to the ground plane. Similarly, the two horizontal lines joining
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Figure 3.12 – Computation of the head motion plane for a gait half-cycle. Here, m and m̄

represent the label of the moving foot and the still foot respectively.

the points EM[c], EM[c+1] and EH[c], EH[c+1] are parallel lines, which are also parallel

to the ground plane. These lines form a rectangle in the scene and will be imaged as

as trapezoid, unless the viewpoint is exactly fronto-parallel, in which case it will be

imaged as a rectangle. Computing the imaged head motion plane thus corresponds to

computing the position of the imaged points eM[c], eM[c+1], eH[c], and eH[c+1]. It will

be shown shortly that the position of these four imaged points, along with the imaged

lines they support, provides all the information needed to compute the orientation of

the plane of motion with respect to the camera.

Figure 3.12 presents a schematic of an imaged head motion plane and the four

imaged points that lie into it for a gait half-cycle c. The imaged head motion plane

is shown as a green trapezoid, which is defined by the imaged points eM[c], eM[c + 1],

eH[c], and eH[c + 1]. The imaged feet middle points eM[c] and eM[c + 1] are computed

using the ground vanishing line l∞, a cross ratio that is deduced from the walk model,

and the imaged feet extremities em[c], em[c+ 1], em̄[c], and em̄[c+ 1], where m and m̄

represent respectively the label of the moving foot and the still foot for gait half-cycle

c. The head extremities eH[c] and eH[c + 1] are then computed using the obtained

feet middle points, the interpolated positions of the head mass centre at time tc and

tc+1, and the interpolated head bounding boxes. Figure 3.12 will be referenced in the

following sections, which present the details of the steps for computing the four imaged

points of the imaged head motion plane.
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3.5.1.1 Foot Extremity Computation

In order to compute the position of the imaged feet middle points eM[c] and eM[c+1], the

positions of the imaged foot extremities e1[c], e1[c+ 1], e2[c], and e2[c+ 1] must first be

determined. One could simply determine the imaged foot extremities by interpolating

them at non-integer key times tc and tc+1 from the foot extremity trajectories p1B[n]

and p2B[n] obtained with Equation 3.5. However, in practice, these interpolated foot

extremity positions would not satisfy the walk model constraint em̄[c] = em̄[c+ 1], that

is, the still foot extremities would not be exactly the same at times tc and tc+1. This is

because the still foot in a gait half-cycle actually moves a little bit between time tc and

tc+1. The imaged foot extremities thus have to be determined so that the walk model

constraint em̄[c] = em̄[c + 1] is satisfied in all gait half-cycles, while ensuring that the

computed foot extremities are reliable.

In order to compute each foot extremity in a gait half-cycle c, the label m and m̄

of the moving and the still foot must first be determined:

(m, m̄) =

{
(1, 2) if ‖p1B[dtce]− p1B[btc+1c]‖ > ‖p2B[dtce]− p2B[btc+1c]‖
(2, 1) otherwise,

(3.11)

The moving foot is thus simply identified as the foot for which the distance between the

foot extremity positions at frames dtce and btc+1c is the greatest. One must note that

whenever the variable m and m̄ are used, they are referring to the label of the moving

and the still foot in the gait half-cycle c.

The extremity position of the still foot at time tc and tc+1 is computed as the average

position of the foot extremity positions in the gait half-cycle c:

em̄[κ] =
1

Nc

btc+1c∑
n=dtce

pm̄B[n], for κ ∈ {c, c+ 1}, (3.12)

where Nc = btc+1c − dtce+ 1 (the number of frames in gait half-cycle c), and pm̄B[n] is

the extremity position of the foot with the label represented by m̄ (the still foot in gait

half-cycle c) at frame n. The variable κ is used here to stress that the extremity position

is defined as a function of c, the index of the considered gait half-cycle. Moreover, there

are only two values of κ that can be used with this function for a given gait half-cycle

c, that is, κ = c, and κ = c + 1. One can see that the constraint em̄[c] = em̄[c + 1] is

imposed here.

Similarly, the extremity position of the moving foot at time tc and tc+1 is computed
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as follows:

em[κ] =
1

β − α + 1

β∑
n=α

pmB[n], for κ ∈ {c, c+ 1}, (3.13)

where pmB[n] is the extremity position of the foot with the label represented by m (the

moving foot in gait half-cycle c), and α, β are defined as

α =



dtce −min(bNc/2c , dtce − nS,i) if c = 1, κ = c

dtc+1e if c = 1, κ = c+ 1

dtc−1e if c = C, κ = c

dtc+1e if c = C, κ = c+ 1

dtc−1e if 1 < c < C − 1, κ = c

dtc+1e if 1 < c < C − 1, κ = c+ 1

(3.14)

and

β =



btcc if c = 1, κ = c

btc+2c if c = 1, κ = c+ 1

btcc if c = C, κ = c

btc+1c+ min(bNc/2c , nE,i − btc+1c) if c = C, κ = c+ 1

btcc if 1 < c < C − 1, κ = c

btc+2c if 1 < c < C − 1, κ = c+ 1.

(3.15)

The computed extremity position is the average of the moving foot extremity positions

from frame α to frame β. Since the foot is moving in the gait half-cycle c, the foot

extremity positions from frame dtce to frame btc+1c cannot be used to compute the

moving foot extremities at times tc and tc+1. Therefore, the foot extremities at times

tc and tc+1 are computed using the foot extremity positions in the previous and the

next gait half-cycle, respectively. Indeed, the foot that is moving in gait half-cycle c is

not moving in the previous gait half-cycle c− 1 and the next gait half-cycle c+ 1. The

frame indexes α and β are thus defined according to the different cases. For instance,

when κ = c, the average of the foot extremity positions of the previous gait half-cycle

c− 1 is computed, whereas the average of the foot extremity positions of the next gait

half-cycle c+ 1 is computed when κ = c+ 1. There are two special cases, that is, when

c = 1, κ = c, and when c = C, κ = c+ 1. The frame range used in these cases depends

on how many frames are available before the first gait half-cycle or after the last gait

half-cycle. Since these frames are not part of a complete gait half-cycle, caution is taken

by considering only at most bNc/2c of them. By choosing this number of frames, one

assumes that the duration of the incomplete gait half-cycle is at least half the duration

of gait half-cycle c = 1 or c = C. The exact number of considered frames depends on

the first frame nS,i or the last frame nE,i of the continuous tracking interval i.
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Using Equations 3.12 and 3.13 thus permits to obtain the foot extremity positions

e1[c], e1[c + 1], e2[c], and e2[c + 1] for a given gait half-cycle c by considering which

foot is moving during the gait half-cycle. These equations will give consistent results

across the gait half-cycles. For instance, if the foot 1 is moving and foot 2 is still in

gait half-cycle c, then the foot 1 was still and the foot 2 was moving in gait half-cycles

c− 1. This means that:

� For gait half-cycle c − 1, the foot extremity positions e1[c − 1] and e1[c] are

computed with Equation 3.12, and foot extremities e2[c−1] and e2[c] are computed

with Equation 3.13.

� For gait half-cycle c, the foot extremity positions e1[c] and e1[c+ 1] are computed

with Equation 3.13, and foot extremities e2[c] and e2[c + 1] are computed with

Equation 3.12;

One can see that the foot extremity positions e1[c] computed for gait cycles c− 1 and

c are the same, since the same foot extremity positions from frame dtc−1e to frame btcc
are used to compute the average extremity position. Also, the foot extremity positions

e2[c] computed for gait cycle c − 1 and c are the same, since the same foot extremity

positions from frame dtce to frame btc+1c are used to compute the average extremity

position.

Figure 3.13 shows some examples of computed foot extremities. In Figure 3.13(a),

the computed foot extremities are shown for a given key time. The foot extremities

for each key time of a walk are shown in 3.13(b). One can see that the computed

extremities represent well the ground position of the feet at each key time of the walk.

3.5.1.2 Feet Middle Point Computation

The imaged feet middle point at time tc can be computed once the foot extremities

positions have been interpolated. One should recall that the feet middle point get

its name from the fact that it is located on the middle of the line segment joining

the foot extremity positions (Figure 3.2(b)). However, the feet middle point is not

necessarily imaged as the middle point of the line segment passing through the imaged

foot extremities because of the perspective projection. The imaged feet middle point

must then be computed by using projective geometry techniques.

It is possible from the walk model to compute a projective invariant, that is, a

measurement that does not change under perspective projection. This means that the
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(a) (b)

Figure 3.13 – Example of foot extremities computation. In (a), the computed foot ex-

tremities for key time 305.74 are shown as a cyan and magenta triangles over a silhouette

interpolated from frames 305 and 306. In (b), the computed foot extremities are shown for

each key time of a walk.

measurement is the same in both the scene and the images obtained from a camera.

This projective invariant is named the cross-ratio, which is a ratio of ratio of lengths

usually computed from the position of four collinear points [98]. One should note that

the points dimensionality (1-D, 2-D or 3-D) is irrelevant when computing the cross-ratio

since only the relative distance between the points is considered.

Given four points x1, x2, x3, x4, the cross-ratio R is computed as

R =
∆13/∆23

∆14/∆24

=
∆13∆24

∆14∆23

, (3.16)

where ∆ab = ‖xa − xb‖. In the case where the points x1, x2, x3, and x4 are imaged

under a projective transformation as the points x′1, x′2, x′3, and x′4 respectively, the

cross-ratio R′ computed on the imaged points will be the same, that is, R′ = R. One

should note that the cross-ratio permits one of the points to be at infinity. For instance,

if the point x4 was located at infinity, it can be shown that the cross-ratio would simply

be defined as R = ∆13/∆23.

Figure 3.14(a) presents an arrangement of the four collinear points x1, x2, x3, and

x4. This arrangement correspond to the one in the walk model, that is, the points

x1 and x3 represents the foot extremities positions, and the point x2 represents the

feet middle point. It is possible to compute the cross-ratio of this point arrangement

by assuming the existence of a point x4 located at infinity on the ground plane and

collinear with the three other points. The cross-ratio value of the points arrangement

is

R =
∆13∆24

∆14∆23

=
∆13∞
∞∆23

=
∆13

∆13/2
= 2 (3.17)

since ∆23 = ∆13/2 according to the walk model. Knowing the cross-ratio of this ar-
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(a) Collinear points arrangement (b) Perspective view

Figure 3.14 – Cross-ratio of four collinear points, with one of the point being located at

infinity. In (a), the points x1, x2, x3 are arranged as in the walk model. The points x1 and x3

represent the foot extremities positions, and the point x2 represents the feet middle points.

The point x4 is at infinity and is considered collinear with the three other points. In (b), a

possible perspective view of the points shown in (a). The point x4 has a finite position in this

view (x′4) and can be computed as the crossing point between the vanishing line l∞ of the

ground plane and the line joining the imaged points x′1 and x′3.

rangement of points in the walk model is useful since the cross-ratio will be the same

for the imaged points. Moreover, it is possible to determine the position of a point in

the arrangement given the position of the three other points and the cross-ratio of the

points arrangement.

Figure 3.14(b) shows a possible perspective view of the points arrangement presented

in Figure 3.14(a). It is supposed here that the position of the imaged point x′2 cannot

be computed from the image, and thus must be computed using the known cross-ratio

and the position of the imaged points x′1, x′3, and x′4. The position of the imaged points

x′1 and x′3 are known since they represent the positions of the foot extremities. The

point x4, which is located at infinity on the ground plane, is imaged as a finite point

x′4 in this perspective view. Under a projective transformation, all points located at

infinity are indeed imaged as finite points, which are called vanishing points. Moreover,

the points located at infinity on a plane in the scene are imaged on a line, which is

called the vanishing line (or the horizon line) of the plane [98]. Also, a projective

transformation preserves the points collinearity, which means that collinear points in

the scene are imaged as collinear points in the image. Therefore, the location of the

imaged point x′4 can be computed as the intersection point of the ground vanishing line

and the line joining the points x′1 and x′3.

Since the relative order of collinear points are in practice preserved under a projective

transformation, the imaged point x′2 will be located somewhere between the imaged

points x′1 and x′3. Using the known cross ratio R′ = R = 2 of this points arrangement,
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the distance ∆′12 between the point x′1 and x′2 can be computed as follow:

R′ = 2 =
∆′13∆′24

∆′14∆′23

2 =
∆′13(∆′14 −∆′12)

∆′14(∆′13 −∆′12)

2∆′13∆′14 − 2∆′14∆′12 = ∆′13∆′14 −∆′13∆12

−2∆′14∆′12 + ∆′13∆12 = −2∆′13∆′14 + ∆′13∆′14

∆′12(−2∆′14 + ∆′13) = −∆′13∆′14

∆′12 =
∆′13∆′14

2∆′14 −∆′13

. (3.18)

This algebraical development is based on the substitution of ∆′24 and ∆′23 by ∆′14−∆′12

and ∆′13 −∆′12 respectively. Once obtained, the distance ∆′12 can be used to compute

the position of the point x′2 as

x′2 = x′1 + ∆′12

x′4 − x′1
‖x′4 − x′1‖

. (3.19)

The point x′2 is thus simply defined as the point at a distance of ∆′12 from point x′1 in

the direction of point x′4. As one may see in Figure 3.14(b), the point x′2 is not the

middle point of points x′1 and x′3. Because of the perspective effect, the point x′2 is

closer to the point x′3 than the point x′1.

In order to compute the position of the feet middle point eM[c] using Equation 3.19,

one must first determine the image of the point at infinity that is collinear with the

foot extremities em[c] and em̄[c] for a half-cycle c. This point is denoted w[c] in the

schematic presented in Figure 3.12 and is defined as the intersection point between the

ground vanishing line l∞ and the line joining the foot extremities em[c] and em̄[c]:

w̃[c] = l∞ ×
(
ẽ1[c]× ẽ2[c]

)
(3.20)

Next, one must determine which feet extremity acts as the point x′1 and x′3 in the

collinear points arrangement. This is necessary because the order of the points is

important when using cross-ratios. Since the point x′1 in the arrangement is the fur-

thermost from the point x′4, one can simply determine the labels z and z̄ of the foot

extremity corresponding respectively to points x′1 and x′3 as

(z, z̄) =

{
(1, 2) if ‖w[c]− e1[c]‖ > ‖w[c]− e2[c]‖
(2, 1) otherwise.

(3.21)

The foot extremities positions acting as x′1 and x′3 are thus ez[c] and ez̄[c] respectively.

It is now possible to compute the distance of the imaged feet middle point with respect
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305.74

(a) (b)

Figure 3.15 – Example of feet middle points computation. In (a), the computed feet middle

point for key time 305.74 is shown as an upward yellow triangle, along with the foot extremities

(cyan and magenta triangles). In (b), the computed feet middle points are shown for each

key time of a walk.

to the foot extremity position ez[c] using Equation 3.18:

∆′zM = ‖eM[c]− ez[c]‖ =
‖ez̄[c]− ez[c]‖ ‖w[c]− ez[c]‖

2 ‖w[c]− ez[c]‖ − ‖ez̄[c]− ez[c]‖
. (3.22)

Finally, the position of the feet middle point eM[c] at time tc can be computed using

Equation 3.19:

eM[c] = ez[c] + ∆′zM

w[c]− ez[c]

‖w[c]− ez[c]‖
, (3.23)

and by substituting Equation 3.22 in Equation 3.23, one obtains

eM[c] = ez[c] +
(
w[c]− ez[c]

) ‖ez̄[c]− ez[c]‖
2 ‖w[c]− ez[c]‖ − ‖ez̄[c]− ez[c]‖

. (3.24)

An example of a feet middle point computed using Equation 3.24 is shown in Figure

3.15(a). Since the viewpoint for the frame in this example is close to a fronto-parallel

view, the obtained feet middle point seems to be located close to the middle point of

the two imaged foot extremities. One should note that this would not be the case for

viewpoints that are not fronto-parallel. The feet middle points computed at each key

time of a walk are shown in Figure 3.15(b).

3.5.1.3 Head Extremity Computation

The computation of the head extremity at a key time tc can be performed once the

feet middle point has been obtained. From the walk model, on can see that the feet

middle point corresponds to the orthogonal projection of the head extremity on the

ground plane. Therefore, the feet middle point, the head mass centre and the head
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extremity are collinear and are joined by a vertical line that is perpendicular to the

ground plane. The image of this line, which is referred here to as the vertical orientation

line, can already be computed since the imaged feet middle point and the imaged head

mass centre are already known at this stage. Since the position of the imaged head

extremity lie on this line, it can be computed as the intersection point between the

vertical orientation line and the line passing through the position of the top of the

silhouette in the image. The position of the top of the silhouette is defined here as

the x component of the head mass centre and the y component of the topmost point

on the silhouette. One must notice that in the general case, the position of the top

of the silhouette in the image does not correspond to the imaged head extremity since

the silhouette does not necessarily appear vertical in the image. The method proposed

here provides a more realistic position for the head extremity and does not consider it

merely as the top position of the silhouette.

The trajectory of the top of the silhouette pHT[n] is first computed from the head

mass centre and the head bounding box:

p̃HT[n] =

 1

0

−pH,x[n]

× (b̃H,TL[n]× b̃H,TR[n]
)
, (3.25)

where b̃H,TL[n] and b̃H,TR[n] are the top-left and top-right corner of the head bounding

box (in homogeneous coordinates), and pH,x[n] is the abscissa of the position of the head

mass centre. This equation is very similar to Equation 3.5, which is used to compute

the foot extremity position. The top of the silhouette pHT[n] obtained with Equation

3.25 represents the intersection point between the vertical line passing through the

head mass centre and the line joining the top corners of the head bounding box. Figure

3.16(a) shows an example of position of the top of a silhouette obtained with Equation

3.25 for two consecutive frames.

Next, the position of the head mass centre and the position of the top of the silhou-

ette is determined at time tc. Since the head does not move a lot between two frames,

a linear interpolation is used to compute these positions. The head mass centre at time

tc is thus defined as

pH(tc) = pH [btcc] + (tc − btcc) (pH [dtce]− pH [btcc]) , (3.26)

and the position of the top of the silhouette is defined as

pHT(tc) = pHT [btcc] + (tc − btcc) (pHT [dtce]− pHT [btcc]) . (3.27)

An example of the interpolated mass centre and the position of the top of the silhouette

is presented in Figure 3.16(b).
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305 − 306

(a)

305.74

(b)

305.74

(c) (d)

Figure 3.16 – Computation of the imaged head extremity. In (a), the positions of the head

mass centre and the top of the silhouette for frames 305 and 306 are shown as green circles

and orange diamond respectively. In (b), the interpolated positions of the head mass centre

and the top of the silhouette are shown over an interpolated silhouette at key time 305.74. In

(c), the computed head extremity is shown as an downward yellow triangle. The green line

represents the y component of the top of the silhouette. In (d), the computed head extremities

are shown for each key time of a walk (one of the extremities is too close to the image border

to be shown here).

Finally, the head extremity position eH[c] at time tc is computed as the intersection

point of the horizontal line passing through pHT(tc) and the line joining the feet middle

point eM[c] and the head mass centre pH(tc) :

ẽH[c] =

 0

1

−pHT,y(tc)

× (ẽM[c]× p̃H(tc)
)
, (3.28)

where ẽH[c] is the homogeneous coordinates representation of eH[c], and pHT,y(tc) is the

y component of the top of the silhouette at time tc. An example of head extremity

position is shown in Figure 3.16(c). One may see that the line joining the feet middle

point, the head mass centre, and the head extremity represents quite well the vertical

orientation of the person in the image. Figure 3.16(d) shows the head extremities

obtained at each key time of a walk.

The imaged head motion planes are defined once the head extremity positions and

the feet middle points have been computed for all key times in a continuous tracking

interval. The notation i will be omitted here since the continuous tracking interval is

implicit. Thus, for each gait half-cycle c = 1, 2, . . . , C, an imaged head motion plane

ΠH[c] is defined by the set

ΠH[c] :
{
πH,BS[c],πH,BE[c],πH,TS[c],πH,TE[c]

}
≡
{
eM[c], eM[c+ 1], eH[c], eH[c+ 1]

}
,

(3.29)

where πH,BS[c], πH,BE[c], πH,TS[c], πH,TE[c] are new variable names that refer respectively

to the bottom-start (BS), bottom-end (BE), top-start (TS), and top-end (TE) points.
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Figure 3.17 – Example of the head motion planes obtained for a walk. The head motion

planes are shown for the two continuous tracking intervals obtained from the video sequence

of this walk. The planes are outlined as trapezoids of different colours, where the colour shade

correspond to the order of occurrence in time (from blue to red). A trapezoid is defined by

the head extremities and feet middle points obtained for two consecutive key times.

One should note that as for the head motion planes in the scene, two ‘consecutive’

imaged planes ΠH[c] and ΠH[c + 1] share two points, that is, the feet middle point

eM[c+ 1] and the head extremity eH[c+ 1].

Figure 3.17 presents the head motion planes that were computed for the walk used as

an example so far. The trapezoidal-shaped planes are shown as four line segments, that

is, two line segments joining the head extremities with the feet middle points computed

at the same key time, and two line segments joining consecutive head extremities and

feet middle points. The colour used to outline a plane represents its order of occurrence

in time such that the blue and the red colours represents the beginning and the ending

of the walk respectively. One must note that only one of the line segments joining a

head extremity point to a feet middle point is visible for a given plane (excepted for

the last plane) since consecutive planes have these points in common. The planes in a

continuous tracking interval look like a ‘folding screen’ that one could ‘unfold’ in order

to remove all changes in the walk direction and to observe it from a fronto-parallel view.

This is actually what will be performed by the plane rectification process, which will be

described latter in Section 3.7. The plane rectification process can be performed once

the head and the foot motion planes are computed for a walk.
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(a) (b)

Figure 3.18 – Top view of the walk model for a gait half-cycle c. In (a), the step length at

key time tc is equal to the step length tc+1. In (b), the step length tc+1 is greater than the

step length tc.

3.5.2 Foot Motion Plane Computation

The motion of a foot during a gait half-cycle is more complex than the head motion,

as one may have noticed so far in the figures showing the body-part trajectories. As

for the head motion, the directions of motion for the foot are the vertical direction and

the direction of walk. Therefore, the foot moves along a line joining the foot extremity

position Em[c] and Em[c+ 1] during a gait half-cycle. Also, during the same gait half-

cycle, the head moves along a line from position EH[c] to position EH[c+1]. The former

line is referred here to as the stride line, whereas the latter line is referred to as the

head displacement line. These two lines are parallel in the scene, and one may assume

that the motion of the moving foot is performed in the plane where both of these lines

lie. This motion plane is thus slightly slanted compared to the head motion plane, and

it is assumed here that the departure of the foot motion from this plane is negligible

for walks with smooth changes in the walk direction. There are already four 3-D points

that are known to lie on the foot motion plane, that is, the points EH[c], EH[c + 1],

Em[c], and Em[c + 1]. One pair of parallel lines can be obtained from these points,

that is, the head displacement line and the stride line. However, one needs to observe

two pairs of lines in the image to define an imaged plane, with the lines in each pair

representing parallel lines in the plane (the reason for this will be discussed in Section

3.7).

One way of obtaining another pair of parallel lines in the foot plane is to consider

two new points that lie on the stride line. These two new points are denoted EQa [c]

and EQb
[c], and correspond to the perpendicular projection of the feet middle points on

the stride line, as shown in Figures 3.18(a) and 3.18(b). The new points are positioned

according to the length of the steps at key times tc and tc+1. The case where the step

length at key time tc is equal to the step length at tc+1 is depicted in Figure 3.18(a).

The points EQa [c] and EQb
[c] are located at a distance of a quarter of the stride length
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from the points Em[c] and Em[c + 1] respectively (hence the labels Qa and Qb). In

the more general case where the steps length are different at key times tc and tc+1,

the points position on the stride line will depend on the difference between the steps

length, as depicted in Figure 3.18(b). One should note that the distance between the

points EQa [c] and EQb
[c] is half the stride length in both cases since this is the distance

between the feet middle points EM[c] and EM[c+1] (see Equation 3.3 and 3.4 in Section

3.3).

Although the points EQa [c] and EQb
[c] do not directly represent a characteristic of

the gait or a body-part position, they will be useful here for two reasons. First, it is

possible with these points to define two parallel lines lying in the foot motion plane:

one line joining the points EQa [c] and EH[c], and another line joining the points EQb
[c]

and EH[c+ 1]. The image of the foot motion plane can thus be defined using the image

of this pair of lines along with the image of the head displacement line and the image of

the stride line. Secondly, the points EQa [c] and EQb
[c], along with the head extremities

EH[c] and EH[c + 1], help resolve the issue of determining the relative position of the

head and the feet trajectories once they have been independently view-rectified. This

issue will be discussed in more details in Section 3.7.

Figure 3.19 presents a schematic of the computation of the imaged foot motion

plane for a gait half-cycle c occurring in time interval [tc, tc+1]. As for the head motion

plane, computing the imaged foot motion plane corresponds to computing the position

of the imaged points eQa [c], eQb
[c], eH[c], and eH[c + 1]. Here, only the points eQa [c]

and eQb
[c] need to be computed, as the points eH[c] and eH[c + 1] have already been

computed in Section 3.5.1.3. The imaged point eQa [c] and eQb
[c] are computed by first

determining the vanishing point of the ground displacement line ld[c], which is the line

joining eM[c] and eM[c + 1], using the ground vanishing line l∞. The vanishing point

v[c] is common to all lines in the image that are parallel in the scene with the ground

displacement line, which includes the stride line ls[c]. Next, the vanishing point v⊥[c],

which is common to all lines that are perpendicular to the ground displacement line

in the scene, is determined using the calibration matrix K and the ground vanishing

line l∞. Using the vanishing point v⊥[c], it is possible to define two lines lQa [c] and

lQb
[c] that pass through the feet middle points eM[c] and eM[c + 1] respectively. The

intersection point of these two lines with the stride line finally provide the imaged point

eQa [c] and eQb
[c]. These steps are detailed in the following sections.
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Figure 3.19 – Computation of the foot motion plane for a gait half-cycle. The foot motion

plane is shown in blue. The head motion plane for the same gait half-cycle is shown in green.

Here, the viewpoint and the direction of walk (black arrow) makes the head motion plane

appear behind the foot motion plane.

3.5.2.1 Vanishing Points Computation

The main idea of determining the vanishing points v[c] and v⊥[c] is to perform a pro-

jection of the feet middle points on the stride line as depicted in Figure 3.18. The

knowledge of the vanishing point v⊥[c] permits to determine the image of the dashed

lines in Figure 3.18, which represent the direction of the projection of the feet mid-

dle points on the stride line. This direction of projection is perpendicular in the walk

model, but will not appear perpendicular in the image because of the perspective effect.

The first step consists in computing the ground displacement line ld[c], which is the

line joining the imaged points eM[c] and eM[c+ 1]:

ld[c] = ẽM[c]× ẽM[c+ 1]. (3.30)

This line lies on the ground place in the scene since it joins two foot extremities, which

are positions defined on the ground plane. The point at infinity on this line also lies on

the ground plane, and is thus imaged as a vanishing point v[c] on the ground vanishing

line. The vanishing point v[c] can then be defined as the intersection point between the

ground vanishing line l∞ and the ground displacement line ld[c]:

ṽ[c] = ld[c]× l∞, (3.31)

where ṽ[c] is the homogeneous representation of the vanishing point. One should note

that this vanishing point is common to all imaged lines that are parallel to the ground
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displacement line in the scene, which also includes lines that do not lie on the ground

plane.

There is in the scene an infinity of parallel line sets that are perpendicular to the

ground displacement line, and thus there is an infinity of vanishing points representing

directions perpendicular to ground displacement line. The vanishing point that is of

interest here,v⊥[c] , is the vanishing point that represents a direction perpendicular to

the ground displacement line and that is located on the ground plane. The vanishing

point v⊥[c] is thus a point on the ground vanishing line l∞, that is,

l∞ · ṽ⊥[c] = lT
∞ ṽ⊥[c] = 0, (3.32)

where the operator ( · ) denotes the inner product. This relation provides one constraint

on the unknown vanishing point v⊥[c], but two constraints are needed. The other con-

straint needed here is that the vanishing point v⊥[c] represents a direction perpendicular

to the direction represented by the vanishing point v[c]. It is known from projective

geometry [98] that two vanishing points representing orthogonal directions must satisfy

to the following constraint:

ṽT[c] Ω ṽ⊥[c] = 0, (3.33)

where Ω is a 3 × 3 matrix called the Image of the Absolute Conic (IAC), which is an

imaged complex points conic that is related to the camera intrinsic parameters by the

following relation:

Ω = (KKT)−1, (3.34)

where K is a 3× 3 matrix representing the camera intrinsic parameters. The vanishing

point v⊥[c] can then be determined by solving a linear system of the form A x = 0:[
lT
∞

ṽT[c] Ω

] x1

x2

x3

 =

[
0

0

]
, (3.35)

where ṽ⊥[c] = x and A is a 2× 3 matrix of rank 2. One must note that only two equa-

tions are needed here since the vanishing point is defined up to a scale in homogeneous

coordinates. An exact solution can be obtained for x by performing a Singular Value

Decomposition of the matrix A, that is, A = UDVT, and then taking as the solution

the singular vector (a column vector of matrix V) that corresponds to the smallest

singular value in diagonal matrix D.

3.5.2.2 Middle Points Projection

Once the vanishing point v⊥[c] has been determined, the imaged points eQa [c] and eQb
[c]

can easily be computed as the intersection between the stride line ls[c] and the lines
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Figure 3.20 – Example of the foot motion planes obtained for a walk. The foot motion planes

are shown for the two continuous tracking intervals obtained from the video sequence of this

walk. The planes are displayed for foot 1 and 2 as cyan and magenta trapezoids respectively.

lQa [c] and lQb
[c] respectively. The lines lQa [c] and lQb

[c] are first determined as the lines

joining the vanishing point v⊥[c] and the foot middle points eM[c] and eM[c+ 1]:

lQa [c] = ṽ⊥[c]× ẽM[c], (3.36)

lQb
[c] = ṽ⊥[c]× ẽM[c+ 1]. (3.37)

The imaged points eQa [c] and eQb
[c] are then computed as

ẽQa [c] = ls[c]× lQa [c], (3.38)

ẽQb
[c] = ls[c]× lQb

[c]. (3.39)

Finally, a foot motion plane ΠF[c] is defined for the gait half-cycle c as the set

ΠF[c] :
{
πF,BS[c],πF,BE[c],πF,TS[c],πF,TE[c]

}
≡
{
eQa [c], eQb

[c], eH[c], eH[c+ 1]
}
. (3.40)

One must remember that only one foot plane is defined for each gait-half-cycle c. If

foot 1 is moving in half-cycle c, then its motion plane is ΠF[c], and ΠF[c + 1] is the

motion plane of foot 2, ΠF[c+ 2] the motion plane of foot 1, etc.

Figure 3.20 shows the foot motion planes that were obtained for the walk used as

an example so far. The trapezoidal-shaped planes are shown as four line segments, that

is, two line segments joining the head extremities with the corresponding projected feet

middle points, and two line segments joining consecutive head extremities and projected

feet middle points. The colour used to outline a plane represents its foot label, that is,

cyan for foot 1 and magenta for foot 2. One may see that the bottom part of consecutive

foot motion planes are not connected, since consecutive planes correspond to different

feet, and each foot moves in a different plane.
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Figure 3.21 – Schematic for foot trajectories labelling. The imaged positions of the foot

extremities e1, e2, and the feet middle points eM are depicted for three key times. k − 1, k,

and k+ 1. The imaged direction of the walk between two key times is represented by a vector

d. The vectors u1 and u2 represent the position of the corresponding foot extremity with

respect to the feet middle point. See text for details.

Once the head and the foot motion planes are computed, the imaged motion planes

can be view-rectified in order to make them appear as from a fronto-parallel view. Before

entering into the details of the view-rectification process, an algorithm that performs

foot trajectories labelling will be presented since it can be performed as soon as the

motions planes are computed for a given continuous tracking interval.

3.6 Foot Trajectories Labelling

As mentioned previously, the foot trajectories were arbitrarily labelled as 1 or 2 for each

continuous tracking interval by the body part tracking method. However, it is often

useful for gait analysis and modelling to know which foot is the right foot and which

foot is the left foot. A method is therefore proposed in this thesis to automatically

determine the label R (right) or L (left) for the foot trajectories in a given continuous

tracking interval. This method can be performed as soon as the head motion planes

have been computed for a continuous tracking interval. Foot trajectories labelling is

thus performed independently on each continuous tracking interval (the notation i will

be dropped here for clarity).

Figure 3.21 presents how one can infer on a key time basis the label of a foot trajec-

tory directly from the imaged foot extremities and feet middle points. One must first

recall that the feet middle points were also considered as the imaged ground positions

of a walker at a given key time k. Thus, it is possible to define the imaged displacement

direction as the vector d[k] = eM[k + 1] − eM[k] between key times k and k + 1. For

a key time k, the right foot extremity should then be located on the right side of the



Chapter 3. View-rectification 78

vector d[k] (with respect to the direction pointed to). For instance, the foot extremity

e1[k] in Figure 3.21 is clearly on the right side of vector d[k], whereas the foot extremity

e2[k] is on the left side. Since the foot extremities e1[k] and e2[k] are relevant for the

time interval [tk−1, tk]], the foot label can also be inferred by considering the displace-

ment vector d[k− 1]. In this case, the foot extremity e1[k] is on the right side of vector

d[k−1], and the foot extremity e2[k] is on the left side. One may conclude here that the

foot trajectories 1 and 2 correspond to the right and left foot trajectories respectively.

The side on which the foot extremities e1[k] and e2[k] are located with respect to

the vector d[k] (or d[k − 1]) can be determined by performing an inner product of

two vectors. As shown in Figure 3.21, two vectors can be computed from the foot

extremities and the foot middle point at key time k:

u1[k] = e1[k]− eM[k], (3.41)

u2[k] = e2[k]− eM[k]. (3.42)

Also, the perpendicular vector pointing toward the right side of the displacement vector

d[k] can be computed as the vector

d⊥[k] =

[
dy[k]

−dx[k]

]
, (3.43)

where dx[k] and dy[k] are the x and y components of vector d[k]. The vector d⊥[k]

thus corresponds to a 90◦ clockwise rotation of the vector d[k]. One may see that if

a foot extremity e`[k] (` ∈ {1, 2}) is located on the right side of the vector d[k], then

the inner product u`[k] ·d⊥[k] is greater than 0, whereas the inner product u`[k] ·d⊥[k]

is less than 0 if it is located on the left side. It is possible to see in Figure 3.21

that u1[k] ·d⊥[k] > 0, u1[k] ·d⊥[k − 1] > 0, u2[k] ·d⊥[k] < 0, and u2[k] ·d⊥[k − 1] < 0.

Therefore, a foot trajectory ` corresponds to the right foot trajectory if u`[k] ·d⊥[k] > 0,

or corresponds to the left foot trajectory if u`[k] ·d⊥[k] < 0.

The foot trajectories labelling process would not be robust if it was based solely on

one or two observations performed at one key time in a continuous tracking interval.

Indeed, bad foot labelling can happen at some key times when the foot extremities are

noisy, or when there is a sudden change in the direction of walk. The main idea of

the proposed foot trajectories labelling method is to consider the labelling performed

for all key times in a continuous tracking interval. A voting process is performed in

order to determine which of the foot trajectory 1 or 2 is more likely to be the right foot

trajectory. The proposed voting process is detailed in Algorithm 3.2. Two accumulators

A1 and A2 are used to count the number of times the foot extremities 1 and 2 have been

labelled as the right foot. Also, a variable V is used to count the number of consistent

labellings that has been performed. A consistent labelling has been performed at key
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Algorithm 3.2: Voting process for foot trajectories labelling.
1: V = 0

2: A1 = 0, A2 = 0

3: for k = 1 . . .K do

4: if k = 1 then ⇒ special case: first key time

5: if u1[1] ·d⊥[1] > 0 and u2[1] ·d⊥[1] < 0 then

6: A1 = A1 + 1, V = V + 1

7: else if u2[1] ·d⊥[1] > 0 and u1[1] ·d⊥[1] < 0 then

8: A2 = A2 + 1, V = V + 1

9: end if

10: else if k = K then ⇒ special case: last key time

11: if u1[K] ·d⊥[K − 1] > 0 and u2[K] ·d⊥[K − 1] < 0 then

12: A1 = A1 + 1, V = V + 1

13: else if u2[K] ·d⊥[K − 1] > 0 and u1[K] ·d⊥[K − 1] < 0 then

14: A2 = A2 + 1, V = V + 1

15: end if

16: else ⇒ general case: 1 < k < K

17: if u1[k] ·d⊥[k − 1] > 0 and u2[k] ·d⊥[k − 1] < 0 then

18: A1 = A1 + 1, V = V + 1

19: else if u2[k] ·d⊥[k − 1] > 0 and u1[k] ·d⊥[k − 1] < 0 then

20: A2 = A2 + 1, V = V + 1

21: end if

22: if u1[k] ·d⊥[k] > 0 and u2[k] ·d⊥[k] < 0 then

23: A1 = A1 + 1, V = V + 1

24: else if u2[k] ·d⊥[k] > 0 and u1[k] ·d⊥[k] < 0 then

25: A2 = A2 + 1, V = V + 1

26: end if

27: end if

28: end for

time k if one of the foot extremities has been labelled as the right foot and the other

extremity has been labelled as the left foot. In the general case 1 < k < K, the location

of foot extremities at key time k are determined with respect to displacement vectors

d[k] and d[k − 1]. There are two special case, namely the case where k = 1, and the

case k = K, where the location of the foot extremities are determined with only one

displacement vector, that is, vector d[1] if k = 1 and vector d[K − 1] if k = K.

Once the voting process is performed, the foot trajectories can be labelled as follow:

(1, 2)→

{
(R, L) if A1

V
≥ A2

V
,

(L,R) if A1

V
< A2

V
.

(3.44)

The ratios A1/V and A2/V corresponds to the probability of the foot trajectories 1 and

2 to be the right foot trajectory respectively. In the case where the both probabilities

are equal, an arbitrary labelling is performed, as nothing better can be performed with
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the information at hand. The labelling of the foot trajectories will be used to perform

gait analysis and modelling in Chapter 4.

3.7 Metric Motion Planes Rectification

The view-rectification approach proposed in this thesis aims at making the imaged

body-part trajectories appear as if observed from a fronto-parallel view. In order to

achieve this, the imaged motion planes of the body parts were computed for each gait

half-cycle in Section 3.5. Each imaged motion plane is defined by four points, which

are the images of four points that are known to lie in these planes in the scene. It

is known that these four points form a rectangle in the scene, and that the image of

these four points form a trapezoid shape in the image if observed from a non fronto-

parallel viewpoint. The first step of the proposed view-rectification approach is thus

to generate, for each imaged motion plane, a fronto-parallel view of the motion plane.

This step is referred here to as the metric rectification of the motion planes. The term

metric means that measurements performed on a rectified plane will correspond to the

measurements that one could performs on the original plane in the scene. By default,

the rectified motion planes will be defined up to a scale, that is, the units in the rectified

plane will be arbitrary. This means that angles and ratio of lengths measured in the

rectified plane will correspond to the measurements that could be made in the scene.

For instance, the four known points lying in a rectified plane will form a rectangle for

which the aspect ratio will correspond to the aspect ratio of the corresponding rectangle

in the scene. It will be seen later that the scale factor can be fixed in order to define

the rectified motion planes in scene units (e.g. in meters).

Figure 3.22 presents an overview of the proposed method for metric rectification of

the motion planes. The steps of the proposed method are shown as yellow boxes and

are performed on a video sequence basis, that is, after the imaged motion planes are

computed for all continuous tracking intervals in a video sequence. A preliminary step

is shown as a blue box and consists in performing a metric rectification of the ground

plane. Although the ground plane rectification is simply performed once for a given

camera setup, it is presented here since it helps presenting the view-rectification process

of the motion planes. The first step of the proposed method consists in estimating the

metric information of each motion plane, that is, the aspect ratio, the width, and the

height in either arbitrary units or scene units. The second step of the proposed method

consists in computing the rectified planes while ensuring their position with respect to

each other reflect what would be observed in the scene from a fronto-parallel viewpoint.

The last step consists in computing the transformation (homography) that maps each
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Ground plane
rectification

Planes metric
estimation

Rectified planes
computation

Method for motion planes rectification

Planes homography
computation

Figure 3.22 – Method for the rectification of the planes of motion for a complete walk.

imaged motion planes to its rectified counterpart.

3.7.1 Ground Plane Rectification

The method proposed for motion planes rectification needs the transform that rectifies

the imaged ground plane. The ground plane rectification process only depends on the

camera setup, that is, it depends on the camera intrinsic parameters, the orientation

of the camera with respect to the ground plane, and optionally, the scale factor that

permits to make measurements in scene units. Therefore, the rectification of the ground

plane can be performed as soon as the ground vanishing line and the camera intrinsic

parameters are known. The rectification of the ground plane is detailed here as it is

closely related to the process of motion plane rectification.

It is known in projective geometry [98] that an imaged plane can be metrically

rectified if one knows the camera intrinsic parameters and the plane’s vanishing line in

the image. First, the plane’s normal vector n with respect to the camera’s Euclidean

coordinate frame must be computed as follow:

n =
KTl

‖KTl‖
, (3.45)

where K is the 3× 3 matrix representing the camera intrinsic parameters, and l is the

vanishing line of the considered plane in the image. A plane can be metrically rectified

by considering a synthetic pure rotation of the camera that makes the plane parallel to

the camera image plane. This 3-D synthetic rotation of the camera can be described

by an homography H defined as

H = KRK−1, (3.46)

where H is a 3× 3 matrix, and R is a 3× 3 rotation matrix defined as

R =
[

r1 r2 n
]T

. (3.47)
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The rotation matrix is designed such that Rn = [0 0 1]T, that is, the normal n is rotated

to lie along the camera optical axis, which can be described by the vector [0 0 1]T in

the camera’s Euclidean coordinate frame. The vectors r1, r2, and n in the rotation

matrix must form a triad of orthonormal vectors. Two arbitrary vectors r1 and r2 can

be found to satisfy this condition by first performing the Singular Value Decomposition

nT = UDVT and then by defining r1 and r2 as the last two column vectors of matrix

V. One must note that the homography H will metrically rectify the plane up to a

similarity transform, that is, up to an isotropic1 scale factor and a rigid transformation

(2-D rotation and translation) in the image plane. If one has a way to determine the

scale factor, which is denoted λ, the homography H can be further refined as

H = ΛKRK−1, (3.48)

where the 3× 3 matrix Λ is defined as

Λ =

 λ 0 0

0 λ 0

0 0 1

 . (3.49)

The plane can be rectified up to a rigid transformation in this case.

The homography that metrically rectifies the ground plane is denoted HG and is

obtained using Equation 3.48. One should note that the ground vanishing line l∞ is

considered to be known here. Also, if the ground scale factor is unknown, then λ = 1,

Λ = I3×3 (the identity matrix), and thus Equation 3.48 becomes identical to Equation

3.46. The method to compute the ground vanishing line and the ground scale factor

will be described later in Sections 3.9.1 and 3.9.2 respectively.

An example of ground plane rectification is shown in Figure 3.23. In Figure 3.23(a),

a frame from the camera is shown, and the ground vanishing line is depicted as a blue

line. Also, four points were manually specified in the image and represents the image

of four corners of a group of 3× 3 square tiles on the floor. These points are used here

only to show the effect of the rectification on the ground plane, and thus are not used in

anyway in the rectification process. One may see that because of perspective projection,

the group of tiles does not appear as a square in the image. The computed homography

HG was applied on the image and on the four points in order to show the effect of the

ground plane rectification, and the result is shown in Figure 3.23(b). The resulting

image was cropped in order to show only the pixels that belong to the floor. One may

see that the resulting image is a top view of the floor and that the group of tiles now

appears as a square. The ground plane is said to be metrically rectified since ratios

1A scale factor that is the same for all axes.
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(a) (b)

Figure 3.23 – Example of metric rectification of the ground plane. In (a), the ground

vanishing line is shown as a blue line. Given the orientation of the camera with respect to the

ground plane and its field of view, the ground vanishing line is located above the image. Four

points are shown over the image and represents the four corners of a 3 × 3 group of square

tiles on the ground. In (b), the image from the camera is rectified according to the rectifying

homography. The image was cropped to show only the part of the image representing the

floor. The four corners points were also rectified according to the same homography. The

rectification is metric since the 3×3 group of tiles appears as a square on the rectified ground

plane.

of lengths and angles on the rectified ground plane are recovered. The transform that

rectifies the ground plane will be used in the proposed method to compute the distance

travelled on the ground plane for each gait half-cycle. This distance corresponds to the

width of the rectangle formed by the four points that are known to lie in the head and

the foot motion planes.

3.7.2 Motion Planes Metric Estimation

As mentioned in the previous section, the motion planes rectification process is closely

related to the ground plane rectification process. The difference lies in the fact that

the motion planes are all related in some way, and therefore the rectification process

must preserve the relations between the motion planes. For instance, a given head

motion plane ΠH[c] is related to the previous head motion plane ΠH[c − 1] and the

next head motion plane ΠH[c+ 1] since πH,BS[c] = πH,BE[c− 1], πH,TS[c] = πH,TE[c− 1],

πH,BE[c] = πH,BS[c+1], and πH,TE[c] = πH,TS[c−1] (see Equation 3.29 in Section 3.5.1.3).

Also, a given foot motion plane ΠF[c] is related to the other foot motion planes ΠF[c−1]

and ΠF[c + 1] since πF,TS[c] = πF,TE[c − 1] and πF,TE[c] = πF,TS[c + 1]. A foot motion

plane ΠF[c] is related to the head motion plane ΠH[c] as well since πF,TS[c] = πH,TS[c]
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and πF,TE[c] = πH,TE[c] (see Equation 3.40 in Section 3.5.2.2). These relations can be

preserved by combining the metric information of all the motion planes in a walk. The

metric information of a motion plane consists in the aspect ratio and either the width

or the height of the corresponding rectangle in the scene. The first step of the proposed

plane rectification method thus consists in estimating the metric information of each

motion plane.

The aspect ratio of a motion plane’s rectangle can be estimated after having per-

formed a local rectification of the plane by applying a homography transform computed

using Equation 3.46. A local rectification means here that the plane is rectified only in

order to estimate its rectangle aspect ratio. In order to perform a local rectification, the

vanishing line l`[c] of a given motion plane Π`[c], ` ∈ {H,F}, must be first computed:

l`[c] =
(
l`,S[c]× l`,E[c]

)
×
(
l`,B[c]× l`,T[c]

)
, (3.50)

where the lines l`,S[c], l`,E[c], l`,B[c], and l`,T[c] are computed from the four imaged points

of the motion plane. These lines correspond to the “starting” (S) line, the “ending”

(E) line, the “bottom” line (B), and the “top” line (T) in the motion plane, and are

computed as follow:

l`,S[c] = π̃`,BS[c]× π̃`,TS[c], (3.51)

l`,E[c] = π̃`,BE[c]× π̃`,TE[c], (3.52)

l`,B[c] = π̃`,BS[c]× π̃`,BE[c], (3.53)

l`,T[c] = π̃`,TS[c]× π̃`,TE[c], (3.54)

where π̃`,BS[c], π̃`,BE[c], π̃`,TS[c], and π̃`,TE[c] are the homogeneous coordinates represen-

tation of the points. The lines l`,B[c] and l`,T[c] are known to be the image of horizontal

parallel lines in the scene, and thus intersect on a vanishing point. Similarly, the lines

l`,S[c] and l`,E[c] are known to be the image of vertical parallel lines in the scene, and

intersect on a different vanishing point. These two observations are true for head planes

as well as foot planes. One should notice these specific four points were chosen in the

head and foot motion planes since they lead to two pairs of parallel lines. These pairs

of lines provide two vanishing points, which are used to compute the vanishing line of

the motion plane. Figure 3.24 shows an example of the obtained vanishing line for a

head motion plane. The two pairs of parallel lines (dashed lines) are shown along with

the two vanishing points. As for the ground plane, one may think of the vanishing line

of a motion plane as its “horizon” line.

Once the vanishing line of a motion plane Π`[c] has been obtained, the locally rectified

motion plane Π̂`[c] can be computed using the homography transform Ĥ`[c]. This

homography is computed with Equation 3.46 by using the vector normal to the motion
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Figure 3.24 – Example of vanishing line for a head motion plane. The vanishing line is defined

using the horizontal and the vertical vanishing points (yellow circles), which are respectively

the intersection of the horizontal lines and the vertical lines (dashed lines) of the motion plane

shown in blue.

plane:

n`[c] =
KTl`[c]

‖KTl`[c]‖
. (3.55)

The locally rectified plane Π̂`[c] is defined by computing the rectified points π̂`,o[c],

o ∈ {TS,TE,BS,BE}: ˜̂π`,o[c] = Ĥ`[c] π̃`,o[c], (3.56)

where ˜̂π`,o[c] is the homogeneous coordinates representation of the point π̂`,o[c]. One

must note that the locally rectified plane is defined up to a similarity transformation,

which means that the distances between the rectified points are defined in arbitrary

units. Nevertheless, the aspect ratio of the corresponding rectangle in the scene can be

computed from locally rectified points since an aspect ratio is invariant to a similarity

transformation. The aspect ratio is computed as

ρ`[c] =
‖π̂`,TS[c]− π̂`,BS[c]‖
‖π̂`,BE[c]− π̂`,BS[c]‖

, (3.57)

that is, the ratio of the rectangle’s height and width in the locally rectified motion

plane.

One should note that the locally rectified motion planes are each defined on a differ-

ent, arbitrary scale, and thus the lengths that are computed in a locally rectified motion

plane (rectangle width and height for instance) are not comparable with the lengths

computed in another locally rectified motion plane. In order to get metric information

on a common scale for all motion planes, the width of each motion plane’s rectangle is
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computed on the rectified ground plane. Indeed, the imaged points π`,BS[c] and π`,BE[c]

are known to lie in the motion planes and in the ground plane. It is thus possible to

compute the position π`,BS[c] and π`,BE[c] of these two points in the rectified ground

plane as follow:

π̃`,BS[c] = HG π̃`,BS[c], (3.58)

π̃`,BE[c] = HG π̃`,BE[c]. (3.59)

The distance between these two points thus corresponds to the rectangle’s width of the

motion plane Π`[c] on the rectified ground plane and is defined as

ω`[c] = ‖π`,BE[c]− π`,BS[c]‖ . (3.60)

Given the aspect ratio and the rectangle’s width of a motion plane, the rectangle’s

height of a motion plane, υ`[c], can be computed as

υ`[c] = ρ`[c]ω`[c]. (3.61)

One must notice that the size of the motion plane’s rectangle is defined in the units

of the ground plane. As mentioned previously, these units are either scene units or

arbitrary units, depending on whether the ground scale factor was determined or not.

Once again, it is important to note that the local rectification is performed here

only to recover the metric information of each motion plane in a video sequence. The

locally rectified motion planes cannot be used as the final rectified planes since local

rectification does not preserve the relations between adjacent motion planes. Therefore,

the metric information recovered from each motion plane needs to be combined in order

to compute the rectified motion planes.

3.7.3 Rectified Motion Planes Computation

As seen previously, the four points that are known to lie in each motion plane form a

rectangle in the scene, and this rectangle is imaged as a rectangle if the viewpoint is

fronto-parallel. This means that the four points must form a rectangle in the rectified

motion planes since the rectification process consists in generating a fronto-parallel view

of the walk. Also, the motion planes must be rectified such that the relations with the

neighbouring motion planes are preserved, that is, the points they have in common in

the scene must still be common points once the motion planes are rectified. Defining

the rectified motion planes thus consists in computing the rectified position of the four

points by combining the metric information computed for each plane.
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It is possible to see from the walk model that the motion planes’ rectangles can

be considered of the same height during a walk. Indeed, the person’s height does not

change during the walk (hypothesis no.4, page 44), but the apparent height, that is, the

distance from the top of the head to the floor, slightly changes according to the step

length at each gait half-cycle. The maximal height difference consists in the difference

between the real person’s height (when the person stands still) and the apparent height

for the longest step the person can take. Since it is assumed here that the person is

always walking (hypothesis no.3, page 44), the difference in the rectangle’s height will

be neglected, which means that the apparent height will be considered the same for all

gait half-cycles in all intervals of a walk.

Another observation that can be made from the walk model is that the height of

a foot motion plane’s rectangle is not much greater than the height of a head motion

plane’s rectangle. The foot motion plane is only slightly slanted with respect to the

head motion plane. Moreover, the foot motion plane’s rectangle and the head motion

plane’s rectangle in a given gait half-cycle coincide when imaged from a fronto-parallel

view (see Figure 3.10). This means that these two rectangles will be the same in the

rectified head and foot motion planes, that is, the rectangles will share the same four

rectified points. Therefore, the rectified foot motion plane for a gait half-cycle c, which

is denoted Π′F[c], is equal to the rectified head motion plane Π′H[c].

Given the previous observations, the rectified motion planes for both the head and

the foot are computed as follows. First, a common height must be determined for all

the motion planes’ rectangles. This common height, which is denoted here as υmed, is

defined as the median of the height of all the planes’ rectangles of a walk:

υmed = median
i,c,`

υ`[i, c], (3.62)

where i = 1, 2, . . . , I, c = 1, 2, . . . , Ci, and ` ∈ {H,F}. The notation υ`[i, c] is used here

since the interval number must be made explicit (the same will apply in the following).

The median height is chosen over the average height since it provides more robustness

to outliers, which can occur when metric information is computed from imaged planes

with noisy points positions.

The next step consists in defining the rectified planes by computing their rectified

points using Algorithm 3.3. In this algorithm, the rectified head plane Π′H[i, c] and the

rectified foot plane Π′F[i, c] for a gait half-cycle c in interval i are defined with rectangles

that are υmed tall and ωH[i, c] wide. Here, the width that was obtained in Section 3.7.2

for the head plane’s rectangle is chosen as the width for both head and foot planes’

rectangle. The reason is that the rectangle width obtained for the head and the foot

planes are equal by definition, that is ωH[i, c] = ωF[i, c] (see Section 3.5.2).
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Algorithm 3.3: Rectified Motion Planes Computation.
1: for i = 1, 2, . . . , I do ⇒ For all intervals

2: δ = 0 ⇒ The first plane starts at position x = 0

3: for c = 1, 2, . . . , Ci do ⇒ For all gait half-cycles in interval i

4: π′
H,BS[i, c] = π′

F,BS[i, c] =

[
δ

0

]
⇒ Bottom start point

5: π′
H,TS[i, c] = π′

F,TS[i, c] =

[
δ

υmed

]
⇒ Top start point

6: π′
H,BE[i, c] = π′

F,BE[i, c] =

[
δ + ωH[i, c]

0

]
⇒ Bottom end point

7: π′
H,TE[i, c] = π′

F,TE[i, c] =

[
δ + ωH[i, c]

υmed

]
⇒ Top end point

8: δ = δ + ωH[i, c] ⇒ Next plane starts where the current plane ends

9: end for

10: end for

One should note that the rectified planes are defined in a 2-D Euclidean space. The

abscissa represents the displacement of the subject, from left to right, with the starting

position being zero. The ordinate represents the height, from bottom to top, with zero

being the ground level. For each interval, the plane in the first half-cycle has its point

πH,BS at the origin (0, 0). It is important to stress again that the rectified head and

foot planes in a gait half-cycle are the same, that is, the rectangles coincide. The four

points of the planes in a gait half-cycle c of interval i are defined such that the relation

with the previous and the next planes are preserved:

π′`,BS[i, c] = π′`,BE[i, c− 1], π′`,TS[i, c] = π′`,TE[i, c− 1],

π′`,BE[i, c] = π′`,BS[i, c+ 1], π′`,TE[i, c] = π′`,TS[i, c+ 1], (3.63)

for ` ∈ {H,F}. One may see that the rectified motion planes in each interval are defined

from left to right and that their position reflect the order of occurrence of the gait half-

cycles. This means that each walk will be rectified such that it appears to have been

observed from a fronto-parallel and performed from left to right for the complete video

sequence. This common representation will facilitate gait analysis and comparison.

Figure 3.25 presents the rectified motion planes obtained for the imaged head and

foot motion planes shown in Figures 3.17 and 3.20, respectively. The rectified head and

foot motion planes (rectangles) are shown separately since they coincide. The colour

of each plane corresponds to the colour used for the imaged planes of Figures 3.17 and

3.20. One may see that the rectified planes are defined from left to right, even in the

case of the interval #2 where the walk was performed from right to left.

The axes in this example are in meters since the scale factor of the ground plane
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Figure 3.25 – Example of rectified head and foot motion planes. The top row shows the

rectified head planes for the two intervals of the example video sequence, while the bottom

row shows the corresponding rectified foot motion planes.

is known, which permits to perform real measurements on the walk. For instance, the

person’s apparent height in this example is about 1.75 m, and the displacement for the

first gait half-cycle of interval #1 is about 0.75 m. In the case where the scale factor

is unknown, the axes have arbitrary units, given the unknown scale. Although real

measurements cannot be performed in that case, comparison can be performed between

rectified walks. For instance, it would be possible to determine that a given person

appears to be x times taller than another person, or that her average displacement per

half-cycle is y times shorter than another person.

As one may see, the rectified plane already provides some information about a

person’s gait. More information can be extracted if the body-part trajectories are also

rectified. In order to obtain the rectified body-part trajectories, the homography that

maps a given imaged plane to its rectified counterpart must first be computed.

3.7.4 Motion Planes Homography Computation

The transform that maps the points in a plane into another plane is called an homog-

raphy and can be mathematically represented by a 3× 3 matrix when a 2-D Euclidean

space is considered [98]. For a given gait half-cycle c in interval i, an imaged motion

plane Π`[i, c], ` ∈ {H,F}, can be mapped to its corresponding rectified motion plane
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Π′H[i, c] by a homography H`[i, c] defined such that

π̃′`,o[i, c] = H`[i, c] π̃`,o[i, c], ∀ o ∈ {TS,TE,BS,BE}. (3.64)

Each of the four pairs of corresponding points between the imaged and the rectified

planes provides two constraints on the homography, which has 8 degrees of freedom.

It is thus possible to build a linear system Ah = 0, where h is the vector form of the

homography matrix, and A is the 8× 9 matrix defined [98] as

A =



πBS,x πBS,y 1 0 0 0 −πBS,xπ
′
BS,x −πBS,yπ

′
BS,x −π′BS,x

0 0 0 πBS,x πBS,y 1 −πBS,xπ
′
BS,y −πBS,yπ

′
BS,y −π′BS,y

πTS,x πTS,y 1 0 0 0 −πTS,xπ
′
TS,x −πTS,yπ

′
TS,x −π′TS,x

0 0 0 πTS,x πTS,y 1 −πTS,xπ
′
TS,y −πTS,yπ

′
TS,y −π′TS,y

πBE,x πBE,y 1 0 0 0 −πBE,xπ
′
BE,x −πBE,yπ

′
BE,x −π′BE,x

0 0 0 πBE,x πBE,y 1 −πBE,xπ
′
BE,y −πBE,yπ

′
BE,y −π′BE,y

πTE,x πTE,y 1 0 0 0 −πTE,xπ
′
TE,x −πTE,yπ

′
TE,x −π′TE,x

0 0 0 πTE,x πTE,y 1 −πTE,xπ
′
TE,y −πTE,yπ

′
TE,y −π′TE,y


(3.65)

One must first note that `, i, and c have been dropped here for clarity. Also, the

variables πo,x and πo,x are respectively the x and y component of the point πo, with

o ∈ {TS,TE,BS,BE}. The linear system can be solved for h by performing a Singular

Value Decomposition of the matrix A, that is, A = UDVT, and then taking as the

solution the singular vector (a column of matrix V) that correspond to the smallest

singular value in diagonal matrix D. The head and the foot planes homography matrices

HH[i, c] and HF[i, c] are thus computed in this way for each gait half-cycles c in each

interval i of a video sequence. Each homography matrix will be used to rectify the

corresponding body-part trajectories in the corresponding gait half-cycle and interval.

3.8 Body-part Trajectories Rectification

As discussed previously, it is assumed here that each body-part trajectory lies in a plane

(Hypothesis no.5, Section 3.2). The image of the head and the foot motion planes were

defined for each gait half-cycle c in each interval i. Thus, each motion plane is defined

for the time interval [ti,c, ti,c+1]. The rectified planes were defined using the metric

information computed for the imaged planes. Finally, the homography that maps an

imaged motion plane to its rectified counterpart was computed. Therefore, rectifying a

body-part trajectory within a gait half-cycle c consists in applying the corresponding

homography on each imaged position of the body part in the discrete frame interval

[dti,ce , bti,c+1c].
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Algorithm 3.4: Still Foot Rectification.
1: if c = 1 then

2: p̃′
m̄[n] = HF[i, c+ 1] p̃m̄[n], n ∈ [dti,ce , bti,c+1c]

3: else if c = Ci then

4: p̃′
m̄[n] = HF[i, c− 1] p̃m̄[n], n ∈ [dti,ce , bti,c+1c]

5: else

6: a = b(dti,ce+ bti,c+1c)/2c
7: p̃′

m̄[n] = HF[i, c− 1] p̃m̄[n], n ∈ [dti,ce , a]

8: p̃′
m̄[n] = HF[i, c+ 1] p̃m̄[n], n ∈ [a+ 1, bti,c+1c]

9: end if

The rectification of head and the moving foot trajectories is straightforward. The

rectified trajectory of the head p′H[n] within gait half-cycle c of interval i is computed

as

p̃′H[n] = HH[i, c] p̃H[n], n ∈ [dti,ce , bti,c+1c] , (3.66)

where p̃′H[n] is the homogeneous representation of the rectified head trajectory, c =

1, 2, . . . , Ci, and i = 1, 2, . . . , I. The rectified trajectory of the moving foot p′m[n]

within gait half-cycle c of interval i is computed as

p̃′m[n] = HF[i, c] p̃m[n], n ∈ [dti,ce , bti,c+1c] . (3.67)

where p̃′m[n] is the homogeneous representation of the rectified trajectory of the moving

foot.

The positions of the still foot within a given gait half-cycle c can be rectified using

the homography of the previous gait half-cycle c− 1, the homography of the next gait

half-cycle c + 1, or both homographies. One should note that even if the still foot is

considered as not moving in a given gait half-cycle, it will in practice move a little bit

at the beginning and at the end of the gait half-cycle. This is due to the fact that at

the beginning of the gait half-cycle, the foot just touched the ground, and thus still has

to move a little more to be in full contact with the ground. The opposite event occurs

at the end of the gait half-cycle, that is, the foot starts to move until it completely gets

off the ground. It is therefore better to compute the rectified positions of the still foot

since it permits to obtain continuous, rectified trajectories for each foot. The rectified

positions p̃′m̄[n] of the still foot in a given gait half-cycle c of interval i is computed

using Algorithm 3.4. This algorithm mainly deals with the cases of the first and the

last gait half-cycles, where the homography of the next and the previous gait half-cycle

is used, respectively, to compute the rectified positions. In the normal case, the rectified

positions of the first half of the gait half-cycle c are computed with the homography of

the previous gait half-cycle c− 1, while the rectified positions of the second half of the

gait half-cycle c are computed with the homography of the next gait half-cycle c + 1.

This is consistent with the fact that the foot still moves a little bit at the beginning of
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the gait half-cycle c and that this motion is performed in the previous motion plane in

gait half-cycle c − 1, whereas the motion performed at the end of the gait-half-cycle c

is performed in the foot motion plane computed in the next gait half-cycle c + 1. One

must note that the still foot positions can be rectified only if there is at least two gait

half-cycles in the considered interval i.

It is also possible to rectify the trajectory of the top of the head pHT[n] using

Equation 3.66 since the positions of the top of the head are in the same motion plane

as the head mass centre. The rectified trajectory of the top of the head will be referred

to as p′HT[n]. Also, the two positions of the moving foot extremity in gait half-cycle

c of interval i, em[i, c] and em[i, c + 1], are rectified using the foot plane homography

HF[i, c] as follow:

ẽ′FS[i, c] = HF[i, c] ẽm[i, c], (3.68)

ẽ′FE[i, c] = HF[i, c] ẽm[i, c+ 1], (3.69)

where ẽm[i, c], ẽm[i, c+1] are the homogeneous coordinates of the moving foot extremity

positions at the beginning and at the end of the gait half-cycle c in interval i, and

ẽ′FS[i, c], ẽ′FE[i, c] are the corresponding homogeneous coordinate of the rectified foot

extremity positions (F for foot, S for start, and E for end). The variables e′FS[i, c] and

e′FE[i, c] thus represent the rectified extremity positions of the foot that is moving (the

foot with the label represented by m) in gait half-cycle c if interval i. The rectified

trajectory of the top of the head and the rectified moving foot extremity positions are

used in Chapter 4 to perform gait analysis.

Figure 3.26 shows the rectified head and foot trajectories corresponding to the im-

aged trajectories shown in Figure 3.17. Here, only the trajectories for the head and the

foot mass centre are shown. By comparing the imaged and the rectified trajectories,

one may see that the rectified trajectories appears to have been observed from a fronto-

parallel viewpoint, and that the walk appears to be performed from left to right. Also,

it is possible to see that the stride lengths appear more similar for the rectified foot

trajectories than for the imaged foot trajectories. Finally, the rectified head trajectory

has the typical sinusoidal shape that one would expect by observing a walk from a

fronto-parallel viewpoint.

3.9 Parameters Estimation

The proposed view-rectification approach necessitates the use of a few parameters that

need to be determined beforehand. These parameters are the camera intrinsic param-
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Figure 3.26 – Example of rectified head and foot trajectories. The rectified trajectories are

shown separately for each interval of the example video sequence.

eters, the imaged ground vanishing line, and optionally the ground scale factor. The

camera intrinsic parameters, along with the radial and tangential distortion parameters,

are obtained by conventional camera calibration. More details about this calibration

process are provided in Section B.3. The imaged ground vanishing line and the ground

scale factor are determined by using the methods proposed in Sections 3.9.1 and 3.9.2,

respectively. One must note that the parameters are totally independent of the walks

that are going to be observed through the camera setup. Nonetheless, some of these

parameters can be estimated automatically from the observation of a number of walks

as it will be seen shortly.

3.9.1 Ground Vanishing Line Estimation

One could estimate the ground vanishing line by determining at least two vanishing

points in the image that represent points at infinity on the ground plane in the scene.

As seen previously, a vanishing point can be found in the image as the intersection

point of a group of imaged lines that are parallel with each others in the scene. If these

lines are parallel to the ground plane in the scene, then the vanishing point lies on the

vanishing line of the ground plane. Therefore, at least two groups of lines are necessary

to estimate the ground vanishing line. The direction of the groups of lines must be

different in order to obtain different vanishing points from which the vanishing line can

be estimated.

Although the ground vanishing line could be estimated by manually determining

groups of lines in the image, a fully automatic method is proposed here. The proposed

method uses the imaged body-part trajectories from several walk sequences, which can

be walk sequences from the same subject or from different subjects. In this thesis, a

subset of the video sequences from the proposed gait database2 are used to estimate

2The proposed gait database will be presented in Chapter 5 and detailed in Appendix B



Chapter 3. View-rectification 94

 

 

Stride line

Head line

Vanishing point

Figure 3.27 – Example of vanishing point computation for a gait half-cycle. The blue and

the green line segments represent respectively the stride line and the head displacement line.

The line segments’ endpoints are the moving foot contact points and the position of the top

of the head.

the ground vanishing line. One should note that the ground vanishing line needs only

to be estimated once for a fixed camera setup since the location and the orientation of

this line in the camera image depends only on the position and the orientation of the

camera with respect to the ground plane.

It is possible to see from a walk model that for a gait half-cycle c, the stride line,

which is joining the moving foot extremities Em[c] and Em[c+1], and the head displace-

ment line, which is joining the head extremities EH[c] and EH[c + 1], are both parallel

to the ground plane in the scene and are parallel to each other. This means that the

image of these two lines can be used to compute a vanishing point corresponding to a

point at infinity on the ground plane in the scene. A vanishing point vG[c] can therefore

be computed for each gait half-cycle as follows:

ṽG[c] =
(
p̃HT(tc)× p̃HT(tc+1)

)︸ ︷︷ ︸
head line

×
(
em[c]× em[c+ 1]

)︸ ︷︷ ︸
stride line

, (3.70)

where ṽG is the homogeneous coordinates representation of vG, em[c] is the homoge-

neous coordinates representation of the moving foot extremity at time tc, and p̃HT(tc)

is the interpolated position of the top of the silhouette at time tc. One should note that

both pHT(tc) and em[c] were computed only from the raw, imaged body-part trajectories

and the body-part bounding boxes, and thus, neither of them depends on the knowledge

of the ground vanishing line. The position of the top of the silhouette acts here as an

approximation of the head extremity, as the latter depends on the foot middle points,

which in turn depends on the ground vanishing line. Figure 3.27 shows an example of

a ground vanishing point obtained for a gait half-cycle. The line segments defined by

the positions of the top of the head and the foot contact points on the floor are shown

along with the point were the head displacement line and the stride line intersect, that

is, a ground vanishing point.
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Figure 3.28 – Robust fitting of the ground vanishing line over the ground vanishing points.

In (a), the computed vanishing line is shown with respect to the camera image, along with

some of the ground vanishing points, the ground truth vanishing line and the vanishing line

computed using a simple least squares fitting (LSQ). In (b), more of the ground vanishing

points are shown along with the lines, without the camera image. One can see that the LSQ

line is influenced by outlier vanishing points, while the computed line is not.

Many ground vanishing points can thus be obtained by considering several walks,

that is, by computing a vanishing point for each gait half-cycle in each interval of

each walk. Computing these vanishing points for a given walk only necessitates a few

processing steps, which consists mainly in detecting the gait half-cycles (Section 3.4) in

each interval, and then computing the position of the top of the head (Equation 3.27)

and the foot extremities (Section 3.5.1.1) at each key times tc. The vanishing points

obtained from several walks are used in a line fitting process in order to estimate the

ground vanishing line. One must note that the computed vanishing points are prone to

the noise that might be present in the body-part trajectories. The ground vanishing line

is thus fitted on the ground vanishing points using a robust regression method based on

iteratively reweighted least squares [99]. The method implementation used in this thesis

is the robustfit MATLAB® function, which uses a bi-square weighting function by

default.

The ground vanishing line obtained with the proposed method for the gait database

used in this thesis is presented in Figure 3.28. Here, 100 video sequences (10 walks

performed by 10 different subjects) were used to obtain a total of 558 ground vanishing

points. One must note that only a subset of the vanishing points could be shown in

Figures 3.28(a) and 3.28(b) as some of them have a large abscissa value. Figure 3.28(a)

shows the computed line and the vanishing points with respect to the camera image

whereas Figure 3.28(b) shows more vanishing point but without the camera image. For

comparison and validation purposes, the ground truth vanishing line of the ground plane

is shown along with the line that can be obtained with a simple least squares line fitting
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on the vanishing points. The ground truth line was obtained by first manually fitting

lines on some of the floor tiles in the image. The two groups of lines that are found

represent perpendicular directions on the floor (the tiles are square), which permits to

compute the two vanishing points necessary to obtain the ground truth vanishing line.

One can see from these Figures that the computed vanishing line is very close to the

ground truth one. The computed vanishing line is y = −0.0219x − 87.2, the ground

truth line is y = −0.0192x − 91.7, and the line obtained with a simple least squares

fitting is y = 5.72 × 10−5x − 1284. As one would expect, the leverage of the outlier

points made the least squares fitted line very different from the ground truth line.

One can see from these results that it is possible to automatically estimate the

ground vanishing line for a given camera setup. The proposed method will work as

long as the input walks lead to different vanishing points, that is, the walk directions

are not all the same. Otherwise, the vanishing points would be located in the same

area of the image space since they coarsely represent the same direction, and thus the

line fitting process would not be reliable.

3.9.2 Ground Scale Factor Estimation

The estimation of the ground scale factor is the only part of the proposed view-

rectification method that needs manual input from a user. This only needs to be

performed once for a given camera setup, and can thus be easily performed along with

camera calibration. As discussed previously, the ground scale factor is an optional pa-

rameter that is used by the proposed method to obtain rectified trajectories in scene

units, that is, in meters. In the case where the ground scale factor is not defined,

the view-rectified trajectories are in arbitrary units, which means that only relative

comparison of the trajectories obtained from the camera setup can be performed. The

ground scale factor is thus useful to obtain real measurements as well as to compare

rectified trajectories obtained from different camera setups (each camera setup has its

own ground scale factor).

The ground scale factor can be determined if one can identify in the image some

points that are known to lie on the ground plane and for which the distance to each

other is known in the scene. In the case of the database used in this thesis, such points

in the image can be found by considering the tiles on the floor, as shown in Figure 3.29.

Using a graphical user interface, a user fits lines on each side of a floor tile in the image

by manually adjusting two endpoints (cyan points). These lines, which are denoted l1,

l2, la, and lb, are then used to compute the position in the image of the four corners

of the tile u1a, u1b, u2a, and u2b (red points). As it will be shown shortly, the ground
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Figure 3.29 – Identification of points in the image on ground plane. Here, a user fits a line

on each side of an imaged tile by manually specifying two points for each line (cyan points)

using a graphical user interface. The lines l1, l2, la, and lb are then used to compute position

of the tile’s corners in the image (red points), which are denoted u1a, u1b, u2a, and u2b.

scale factor can be determined using these four points since the distance between them

is known in the scene, that is, the tile side length is 304.8 mm (12 inches). One should

note that the user is asked to fit lines on the tile sides instead of fitting points directly

on the tile corners since lines are easier to fit and to assess visually than points.

The points uxα, where x = {1, 2} and α = {a, b}, are computed as the intersection

of lines lx and lα:

ũxα = lx × lα, (3.71)

where ũxα is the homogeneous coordinate representation of uxα. The rectified position

uxα of each point uxα can then be computed in the rectified ground plane using Equation

3.46:

ũxα = KRGK−1 ũxα, (3.72)

where ũxα is the homogeneous coordinate representation of uxα. The rotation matrix

RG is defined as in Equation 3.47,

RG =
[

r1 r2 nG

]T

, (3.73)

where the ground normal vector nG is defined as in Equation 3.45, that is,

nG =
KTl∞
‖KTl∞‖

, (3.74)

using the ground vanishing line l∞ that can be obtained as described in Section 3.9.1.

One can see that the rectification process is defined up to a similarity transform, and

thus the distance between the rectified tile corners uxα are defined in arbitrary units.
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Since the length of the tile side is known in the scene, one can compute the ground scale

factor λG converting these arbitrary units to the scene units as

λG =
εG
ε̄
, (3.75)

where εG is the known length of a tile side in scene units (here, εG = 0.3048 m), and ε̄

is the length in arbitrary units of the tile side on the rectified ground plane. Since the

tile on the rectified ground plane will most likely not be perfectly square, the length ε̄

is defined as the average length of the four sides of the tile:

ε̄ =
1

4

(
‖u1a − u1b‖+ ‖u1a − u2a‖+ ‖u2a − u2b‖+ ‖u1b − u2b‖

)
. (3.76)

Given the ground scale factor λG, it is possible to compute the homography HG that

directly rectifies the ground plane in scene units as in Equation 3.48:

HG = ΛGKRGK−1, (3.77)

where the 3× 3 scale matrix ΛG is defined here as

ΛG =

 λG 0 0

0 λG 0

0 0 1

 . (3.78)

Any imaged point that is known to lie on the ground plane can thus be directly rectified

using the homography HG. The position of the rectified points will be in scene units,

and the distance computed between any pair of rectified points will be equal to the

distance that could be measured in the scene. This is actually what is performed in

Section 3.7.2 with the bottom points of the motion plane, which are known to lie on

the ground plane.

The proposed method for the estimation of the ground scale factor can be used in

any camera setup ans scene. One only needs to identify in the camera image at least two

points that are known to lie on the ground plane and for which the distance is known in

the scene. For instance, one could place a ruler on the ground and identify the position

in the camera image of the ruler endpoints. Then, the endpoints are rectified using

Equation 3.72, and the ground scale factor is computed with Equation 3.75 using the

known ruler length in the scene and the distance between the two rectified endpoints.

3.10 Conclusion

The view-rectification approach presented in this chapter permits to rectify imaged

body-part trajectories so that they appear to have been observed from a fronto-parallel
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viewpoint. The proposed method first determines the key times in the walk, that is,

the times when the feet are furthest apart. These key times are then used to define

the gait half-cycles. The imaged head and foot motion planes are determined for each

gait half-cycles using the body-part extremities computed from the imaged head and

foot trajectories. The rectified body-part trajectories are obtained by transforming

the imaged body-part trajectories using the homographies that metrically rectify the

motion planes.

The proposed method has many advantages over previous ones that can be summa-

rized as follows:

� it only requires a few common assumptions compared to the existing methods in

the literature;

� it makes use of a walk model that is mostly based on observations from clinical

studies. The walk model defines constraints on how the walk can be performed

and thus permits to compute the motion planes;

� it deals with changes in the walk direction as well as changes in walking speed

since no assumptions are made on either the speed or the walk direction;

� it only requires as input data the imaged trajectories of the head and the feet

along with the bounding box of each body part at each frame;

� it does not depend on a specific body parts tracking algorithm, that is, any body

parts tracking algorithm could be used as long as it provides both the trajectories

and the bounding box of the head and the feet;

� it requires only a small number of parameters that are easily set:

� the vanishing line can be estimated directly from the imaged body-part tra-

jectories of a set of walks;

� the camera intrinsic parameters can be obtained using a off-the-shelf camera

calibration method;

� the optional ground scale factor can be estimated using manual inputs from

the user during the camera calibration process. This computation is per-

formed only once for a given camera setup;

� the maximum cadence fc of the walks can be set to the maximum expected

cadence on the walks that will be processed;

� the standard deviation σ of the Gaussian filtering process can be set accord-

ing to the level of noise in the body-part trajectories;

� it permits to express the rectified body-part trajectory in scene units in the case

the ground scale factor is determined;

� it is entirely automatic and does not necessitate any input from a human user in

order to process a walk sequence obtained from a calibrated camera.
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The proposed method could be extended in order to perform a view-rectification of

other body-part trajectories as well. For instance, if one could determine the imaged

position of the knees at each frame, it would be possible to perform a view-rectification

of their trajectories using the homographies of the foot motion planes since the knees

are known to lie in the foot motion planes. Also, if one could determine the imaged

positions of the hands at each frame, it would be possible to define hand motion planes3

for each hand as it was done for each foot.

An obvious limitation of the proposed method is that it cannot work on perfectly

frontal walks since the imaged motion plane would appear as a line in the image, and

thus the planes metric could not be computed (the plane’s vanishing line is confounded

with the plane itself). In practice, view-rectification of near frontal view would also

not work well since the imaged body-part positions are close the plane’s vanishing line

in the image, which means that even weak noise in the imaged body-part positions

could result in strong noise in the rectified body-part positions. In this thesis, there is

no body parts tracking performed in most such cases, and thus no view-rectification is

performed.

The proposed walk model has another limitation regarding fast changes in walk

direction. Indeed, a fast change in walk direction leads to motions that are not lying

in planes in the scene. For instance, the motion of the moving foot cannot lie in a

plane in such a case since the foot has to avoid colliding with the still foot. Moreover,

the moving foot cannot pass on the other side of the still foot since this is physically

impossible. Therefore, the 3-D trajectory of the moving foot in such case is not planar,

and the imaged trajectory does not lie in the motion planes computed by the proposed

view-rectification method. This means that in the case of a fast change in the walk

direction, the resulting rectified trajectories will be deformed and thus will not represent

the motion that has actually been performed in the scene. In this thesis, it is assumed

that changes of direction may be present but are limited in speed and intensity.

Finally, one should notice that in the case of a walk with changes in walk direction,

there may be discontinuities in the rectified foot trajectories. Although this may sound

like a limitation, it is actually a feature of the proposed method. The reason is the

proposed method has been designed to recover the actual motion performed by the

head and the feet along with the spatial relation of the moving foot with respect to the

head during each gait half-cycle. The proposed rectification method thus recovers the

stride lengths along with the person displacement on the ground plane. Since the left

and right strides length are not equal when a person changes its walk direction, it is not

3Further assumptions would have to be made on the hands motion since this motion is not as

constrained as the foot motion during walking.
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Figure 3.30 – Schematic representation of the foot trajectories discontinuities. The original

extremities positions on the ground plane according the walk model are shown in the top

figure for two gait cycles of a walk with two changes in the walk direction. The extremities

positions are the right foot extremities (blue points), the left foot extremities (red points),

the feet middle points (green points), and the projected middle points (magenta and cyan

points). The stride lines and the displacement lines are also shown as red, blue and green

dashed lines. Blue and red trapezoids are used here to link all the points for which the spatial

relation is maintained by the rectification process. The schematic presenting the effect of the

view-rectification method is shown on the bottom figure. There is a gap for the left foot during

cycle 2, and an overlap for the right foot during cycle 3, since the left strides are shorter than

the right strides.

possible to generate a side view of the feet trajectories that would not be disconnected

between consecutive gait half-cycles.

Figure 3.30 depicts how such discontinuities may result from the view-rectification

process. A top view of the positions of the extremities on the ground plane is shown,

along with a top view of the position of these rectified extremities. Here, the strides

length of the left foot are shorter than the strides length of the right foot. As mentioned

previously, the effect of the rectification process is to “unfold” the walk with respect

to the head planes, which are represented here by the displacement lines (green dashed

lines). In order to preserve the spatial relation between the extremities and the strides

length at each gait half-cycle, the foot extremities must be “detached”. Here, the left

foot (red) extremity is detached during cycle 2, which leads to two different positions of

that foot extremity in the rectified walk. This thus forms a discontinuity, which occurs

in the rectified left foot trajectory as a sudden gap in the middle of cycle 2. A similar

effect occurs for the right foot, that is, the right foot (blue) extremity is detached during

cycle 3. In that case, the discontinuity occurs in the right foot trajectory as a sudden
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Figure 3.31 – Example of discontinuities in the rectified foot trajectories. In (a), the original

foot trajectories of a walk where the subject continuously change its walk direction are shown.

The strides length of the left foot (foot 1) are shorter than the strides lengths of the right foot

(foot 2). In (b), the complete rectified foot trajectories obtained with the proposed method

are shown in the top figure, with magenta ellipses showing where discontinuities occur in the

foot trajectories. A magnification of the discontinuities of the rectified foot trajectories is

shown in the bottom figure.

overlap in the middle of cycle 3.

Figure 3.31 shows an example of such discontinuities for a real walk with a slow

change in the walk direction. The imaged foot trajectories are shown in Figure 3.31(a).

In this walk, the left strides are shorter than the right strides since the person performs

a left change in walk direction. The complete rectified foot trajectories are shown at

the top of Figure 3.31(b). Two magenta ellipses indicate the positions where the dis-

continuities occur in the rectified trajectories. The bottom part of Figure 3.31(b) shows

a magnification of the trajectories to make the discontinuities more visible. The gap in

left foot trajectory (blue) and the overlap in the right foot (red) trajectory are visible.

It is important to realize that nothing can be done to remove these discontinuities if

the stride lengths and the spatial relation of the head and the feet are to be preserved

on a gait half-cycle basis. The proposed view-rectification method has been purposely

designed on the basis that gait analysis and modelling is usually performed on a gait

cycle basis or a gait half-cycle basis.

View-rectification of body-part trajectories using the proposed method will permit to

perform view-invariant gait analysis and comparison since the rectified trajectories are

free of the perspective distortion effect arising from observing people walking from non

fronto-parallel viewpoints. The following chapter describes gait analysis and modelling

methods that use as input the view-rectified body-part trajectories.



Chapter 4

Gait Analysis, Modelling, and

Comparison

“I still believe in the possibility of a

model of reality - that is to say, of a

theory which represents things

themselves and not merely the

probability of their occurrence.”

Albert Einstein

As previously discussed in Section 1.2, there are two main applications for gait

analysis and modelling: medical applications and surveillance applications. In medical

applications, an individual’s gait is analyzed in order to detect pathologies related to

human locomotion. This can be done by extracting measurements for each gait cycle,

or by modelling the gait and comparing it to specific gait models that represent dif-

ferent pathologies or different conditions of a pathology. In surveillance applications,

an individual’s gait is modelled and compared to other individuals’ gait for recognition

purposes. Most of the gait analysis and modelling approaches in the literature target

surveillance applications. This make these approaches hardly applicable to medical

applications since they focus only on the extraction of gait features with high discrim-

inating power.

It will be shown in this chapter that the rectified trajectories of the head and the

feet, along with the rectified extremities and the rectified motion planes, are well suited

for performing gait analysis, modelling, and comparison, and thus that the approach

proposed in this thesis can be used in both medical and surveillance applications. Gait

analysis is performed by extracting typical gait measurements (cadence, stride length,

displacement, speed) from the rectified body-part extremities and the rectified motion
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planes. Also, a dynamic gait model is computed from the view-rectified body-part

trajectories. Gait models are then compared using off-the-shelf machine learning tech-

niques.

This chapter is structured as follows. Section 4.1 presents the proposed gait analysis

method. Next, a method for building a dynamic gait model is presented in Section 4.2.

The method for comparing gait models is then described in Section 4.3. The chapter

is concluded in Section 4.4.

4.1 Gait Analysis

Gait analysis is discussed here as a collection of gait measurements that are used in

clinical gait analysis [3, 94, 95, 96, 97]. The purpose of this section is to show that

the most common gait measurements can be extracted from the rectified body-part

extremities and the rectified motion planes, and thus that the approach proposed in

this thesis can be used for gait analysis.

The most common gait measurements that are considered here are the stride length,

the cadence, and the walking speed. Other gait measurements are also considered,

such as the displacement and the gait half-cycle duration, since they are needed to

compute the cadence and the walking speed. Although a person’s height is not a

gait characteristic, its calculation is performed here since it is a useful measurement.

The method used to compute these gait measurements are presented in the following

sections.

4.1.1 Stride Length Computation

As mentioned previously in Section 3.3, the stride length δs is defined as the distance

travelled by a foot during a gait half-cycle. It can be computed for a gait half-cycle c

in interval i as

δs[i, c] = ‖e′FS[i, c]− e′FE[i, c]‖ , (4.1)

where e′FS[i, c] and e′FE[i, c] are the view-rectified moving foot extremity position at the

beginning and at the end of the gait half-cycle c of interval i, respectively. The stride

length is thus the distance between the view-rectified extremities of the moving foot for

a given half-cycle in a tracking interval.
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4.1.2 Displacement Computation

The displacement of a person corresponds to the distance travelled by the person’s

body in a gait half-cycle. The displacement δd during a gait half-cycle is defined as the

distance between the rectified feet middle points, which are defined at the beginning

and at the end of the gait half-cycle. As explained in Section 3.5.1.3, the feet middle

points are used to define the head motion plane, that is, the bottom-start point πH,BS

and the bottom-end point πH,BE. Thus the rectified feet middle points correspond to the

points π′H,BS and π′H,BE of the rectified head motion plane. The person’s displacement

during gait half-cycle c in interval i is then computed as

δd[i, c] =
∥∥π′H,BE[i, c]− π′H,BS[i, c]

∥∥ , (4.2)

that is, the distance between the rectified feet middle points.

4.1.3 Gait Half-cycle Duration Computation

The duration of a gait half-cycle c in interval i could be computed as ti,c+1 − ti,c.

However, the resulting duration would be expressed as a non-integer number of frames,

which is not convenient since one needs to consider the camera frame rate to interpret

the computed duration. It is thus better to compute the gait half-cycle duration in

usual units, that is, in seconds.

Some cameras provide a timestamp for each acquired frame. Each timestamp rep-

resents either the elapsed time in seconds since the acquisition process started, or the

actual time when each frame was acquired. These timestamps can thus be used to

compute the gait-half cycle duration in seconds. The timestamp for a frame index n is

denoted here as T [n]. In the case where no timestamp are provided by the camera, a

timestamp can then be approximated as

T [n] =
(n− 1)

fs

, (4.3)

where fs is the known camera acquisition frame rate. In this case, the timestamps for

frames n = 1, 2, . . . , N are 0, 1
fs
, 2
fs
, . . . , N

fs
.

Since the timestamps are only known for integer frame indexes, an interpolation

must be performed in order to obtain the timestamps for non-integer frame indexes.

A linear interpolation can be performed to obtain a timestamp at a non-integer frame

index t as follows:

T (t) = T [btc] + (t− btc)(T [dte]− T [btc]). (4.4)
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As usual, the notation T ( · ) denotes the fact that the timestamps are expressed as a

function of a continuous variable, while the notation T [ · ] denotes the fact that the

timestamps are expressed as a function of a discrete variable.

Finally, the duration of gait half-cycle c in interval i is computed using the interpo-

lated timestamps at key times ti,c and ti,c+1:

δt[i, c] = T (ti,c+1)− T (ti,c). (4.5)

4.1.4 Cadence Computation

A person’s cadence is usually expressed as the number of steps performed in one minute

(steps/min). One must note that one step is performed for each gait half-cycle, and

thus the total number of steps performed during a walk is
∑I

i=1Ci, where Ci is the

number of gait half-cycle in the continuous tracking interval i. Therefore, the cadence

η for a given walk is computed as

η = 60

I∑
i=1

Ci

I∑
i=1

Ci∑
c=1

δt[i, c]

, (4.6)

where the denominator is the duration of the walk in seconds, and the factor 60 is used

to convert units from steps/s to steps/min.

4.1.5 Speed Computation

Similarly to the cadence, a person’s walking speed is usually expressed as the distance

travelled in one minute, which is expressed in m/min. The walking speed φ for a given

walk is computed as

φ = 60

I∑
i=1

Ci∑
c=1

δd[i, c]

I∑
i=1

Ci∑
c=1

δt[i, c]

, (4.7)

where the numerator is the total distance travelled during the walk in meters, and the

denominator is the total duration of the walk in seconds. The factor 60 is used to

convert the units from m/s to m/min.
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4.1.6 Height Computation

A person’s height can be computed for each gait half-cycle c of interval i. Height is

usually measured as the distance from the ground to the extremity of the head while the

person stands up still. Here, since the person is walking, the distance from the ground

to the extremity of the head is always changing. The height is minimal at the key times

(when the feet are furthest apart), and maximal somewhere close to the middle of a

gait half-cycle (when the feet are the closest to each others). The height h of a person

can then be approximated on a gait half-cycle basis as the maximum observed height:

h[i, c] = max
n

(
p′HT,y[n]

)
, n ∈ [dti,ce , bti,c+1c] , (4.8)

where p′HT,y[n] is the y component of the rectified position of the top of the head at frame

n. The rectified trajectory of the top of the head is considered here as an approximation

to the head extremity since the latter can only be computed at each key time. One must

note that the y component of the position pHT,y[n] directly approximates the height for

frame n since the rectified motion planes were defined such that their bottom points

have their y component equal to zero. Thus, the y component of the positions in all

rectified trajectories and extremities directly represents the distance from the ground.

4.2 Gait Modelling

In this thesis, a novel gait model is proposed in order to perform gait modelling and

comparison. The proposed gait model is based on the extraction of features from

rectified body-part trajectories. This makes the proposed model unique since most gait

models proposed in the literature are based on features extracted from silhouettes, as

discussed in Section 1.3. The gait model described here will be used to show that the

approach proposed in this thesis, which consists in using a metric view-rectification of

the imaged body-part trajectories, is well suited for gait modelling and comparison.

The proposed gait model is defined on a gait half-cycle basis and is made of two

parts: the first part models the gait half-cycles where the left foot is moving (part A),

and the second part models the gait half-cycles where the right foot is moving (part B).

Therefore, all gait half-cycles of a walk where the left foot is moving are used to build

the part A, and all gait half-cycles of a walk where the right foot is moving are used

to build the part B. Defining the gait model this way allows for detecting potential

differences in the movement of the right and left body parts. For instance, this can be

useful to model the gait of a limping person, or of a patient rehabilitating from stroke.



Chapter 4. Gait Analysis, Modelling, and Comparison 108

Trajectories
sampling

Gait model 
definition

Velocity-based
features computation

Position-based 
features computation

or

Figure 4.1 – Gait modelling overview.

An overview of the proposed method for gait modelling is presented in Figure 4.1.

The first step consists in sampling the body-part trajectories in order to get the same

number of positions in each gait half-cycle. Next, gait features are extracted using one

of the two proposed methods, that is, gait features are either based on the position

or on the velocity of the body parts. Finally, the gait model is defined using the

extracted features. The method for body-part trajectories sampling is described in

Section 4.2.1, and the methods for gait features extraction are described in Section

4.2.2. The definition of the gait model is detailed in Section 4.2.3.

4.2.1 View-rectified Body-part Trajectories Sampling

In order to obtain gait features that have the same number of components for all gait

half-cycles, the body-part trajectories must be sampled, and a fixed, predetermined

number of samples must be used for all gait models. Thus, Q sampled positions will be

computed for the rectified head trajectory and the rectified moving foot trajectory in

each gait half-cycle c of each tracking interval i. It must be noted that the trajectory

of the still foot is not used in the proposed gait model, and therefore it is not sampled.

The sampled positions computed from the head and the moving foot trajectories are

respectively denoted sH[i, c, q] and sF[i, c, q], where i = 1, 2, . . . , I, c = 1, 2, . . . , Ci, and

q = 1, 2, . . . , Q. They are computed by first temporally dividing the frame range of gait

half-cycle c into Q− 1 equal parts, which leads to Q frame indexes denoted γi,c,q:

γi,c,q = dti,ce+ (q − 1)
bti,c+1c − dti,ce

Q− 1
, (4.9)

for q = 1, 2, . . . , Q. One should note that γi,c,1 = dti,ce and γi,c,Q = bti,c+1c, that is, the

first and the last frame indexes of gait half-cycle c (integer frame indexes), whereas the

frames indexes γi,c,q for q = 2, 3, . . . , Q − 1 are in general non-integer frame indexes.

The view-rectified head and foot trajectories are interpolated for these frame indexes
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Figure 4.2 – Example of sampled head and foot trajectories for a gait half-cycle. In (a), the

sampled head trajectory, and in (b), the sampled foot trajectory. The view-rectified positions

are shown as blue dots, the spline is shown as a continuous blue curve, and the sampled

positions are shown as red circles. In this example, there are Q = 16 sampled positions.

using a cubic spline interpolation [100]:

sH[i, c, q] = spline
(
T ′H,i, γi,c,q

)
, (4.10)

sF[i, c, q] = spline
(
T ′m,i, γi,c,q

)
, (4.11)

where T ′H,i and T ′m,i are defined as

T ′H,i :
{
p′H[n] | n ∈ [nS,i, nE,i]

}
, (4.12)

T ′m,i :
{
p′m[n] | n ∈ [nS,i, nE,i]

}
, (4.13)

which are the whole view-rectified trajectories in interval i for the head and the foot

with label m, where m is defined as the label (L or R) of the foot moving in gait half-

cycle c. The operator spline(T , γ) interpolates a 2-D position at non-integer frame γ by

computing a cubic spline on the ordered set of 2-D positions in trajectory T . One must

note that a 2-D cubic spline interpolation simply consists in performing two independent

1-D cubic spline interpolations on the components x and y of the 2-D positions.

Figure 4.2 shows an example of sampled head and foot positions for a gait half-cycle

where the number of samples per gait half-cycle is set to Q = 16. It is possible to see

that the first and last samples in each case correspond to the first and the last positions

of the body part in the given gait half-cycle, respectively. Also, one must note that the

samples were designed to be equally spaced on the time axis, which makes them not

necessarily equally spaced on the x and y axes. One may think of the qth sample as

the position of the body part at 100 q−1
Q−1

% of a gait half-cycle.
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4.2.2 Gait Features Computation

Gait features are extracted on a gait half-cycle basis from the sampled positions obtained

with the method discussed in Section 4.2.1. Two types of features are proposed in this

thesis: position-based features, and velocity-based features. These two types of features

are designed to represent the dynamics of the gait, and thus, only the sampled positions

of the head and the moving foot in a gait half-cycle are considered. The positions of

the still foot in a gait half-cycle are not used to extract gait features since there is no

motion performed by the foot, and thus there is no features representing the dynamic

aspect of the gait to extract from them. The computation of the position-based features

is described in Section 4.2.2.1, while the computation of the velocity-based feature is

described in Section 4.2.2.2.

4.2.2.1 Position-based Features Computation

The position-based features are actually the sampled head and moving foot positions

for which the mean position is removed:

s′`[i, c, q] = s`[i, c, q]−
1

Q

Q∑
q=1

s`[i, c, q], (4.14)

where ` ∈ {H,F}, and q = 1, 2, . . . , Q. It is possible to see that the mean of the positions

s′`[i, c, q] is [0, 0]T. The positions s′`[i, c, q] in a given gait half-cycle c are used as gait

features since they are no more related to the origin of the rectified trajectory space.

It is possible for instance to compare the qth sampled position s′`[i, c1, q] in half-cycle

c1 to the corresponding qth sampled position s′`[i, c2, q] in gait half-cycle c2.

4.2.2.2 Velocity-based Features Computation

The velocity-based features are computed from the sampled head and moving foot

positions as

ṡ`[i, c, q] =
s`[i, c, q + 1]− s`[i, c, q]

T (γi,c,q+1)− T (γi,c,q)
for q = 1, 2, . . . , Q− 1, (4.15)

where T (γi,c,q+1) and T (γi,c,q) are the timestamps computed with Equation 4.4 at non-

integer frames γi,c,q+1 and γi,c,q, respectively. The velocity vector ṡ`[i, c, q] thus repre-

sents both the speed and the travelling direction of the body part from the qth sampled

position to the (q + 1)th sampled position.
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Algorithm 4.1: Gait feature vectors definition.

1: GA = 0

2: GB = 0

3: for i = 1, 2, . . . , I do ⇒ for each continuous tracking interval

4: for c = 1, 2, . . . , Ci do ⇒ for each gait half-cycle

5: if m = L then ⇒ moving foot is the left foot

6: GA = GA + 1

7: gA[GA] = cat
(
{ṡH[i, c, q]}q, {ṡF[i, c, q]}q

)
8: else if m = R then ⇒ moving foot is the right foot

9: GB = GB + 1

10: gB[GB] = cat
(
{ṡH[i, c, q]}q, {ṡF[i, c, q]}q

)
11: end if

12: end for

13: end for

4.2.3 Gait Model Definition

Once the gait features have been computed from the sampled body-part positions

(position-based or velocity-based features), it is possible to define the two-part gait

model. The proposed gait model is said to be constituted of two parts since there is

a gait model defined for each type of gait half-cycle, that is, one model for gait half-

cycles where the left foot is moving (part A) and one model for gait half-cycles where

the right foot is moving (part B). Each part of the gait model will always be considered

independently, since they are considered here as potentially different.

For a given walk sequence, the first step for the definition of the two-part gait

model is to create a feature vector for each gait half-cycle. A gait feature vector is

created according to Algorithm 4.1, and is denoted either gA or gB depending on the

type of gait half-cycle it comes from. There are GA gait features vectors for part A

and GB gait feature vectors for part B defined for a given walk sequence, and thus

GA + GB =
∑I

i=1Ci. Each gait feature vector is defined as the concatenation of the

sampled gait features (here the velocity-based gait features are used) for the head and

for the moving foot. The notation {ṡ`[i, c, q]}q denotes the set of all velocity samples

for the body part ` ∈ {H,F} in gait half-cycle c of interval i, where q = 1, 2, . . . , Q− 1.

One must note that the gait feature vectors can also be defined using the position-based

gait features by using s′` instead of ṡ`, and by considering q = 1, 2, . . . , Q. The operator

cat({ · }, { · }) concatenates the velocity-based gait feature samples for the head and the
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foot into a single vector as follows:

cat
(
{ṡH[i, c, q]}q, {ṡF[i, c, q]}q

)
=
(
ṡH,x[i, c, 1], . . . , ṡH,x[i, c, Q− 1],

ṡH,y[i, c, 1], . . . , ṡH,y[i, c, Q− 1],

ṡF,x[i, c, 1], . . . , ṡF,x[i, c, Q− 1],

ṡF,y[i, c, 1], . . . , ṡF,y[i, c, Q− 1]
)T

, (4.16)

where ṡ`,x and ṡ`,y are the x and y sampled velocity components of the body part ` ∈
{H,F}. In the case of the position-based gait features, the concatenation is performed

as follows:

cat
(
{s′H[i, c, q]}q, {s′F[i, c, q]}q

)
=
(
s′H,x[i, c, 1], . . . , s′H,x[i, c, Q],

s′H,y[i, c, 1], . . . , s′H,y[i, c, Q],

s′F,x[i, c, 1], . . . , s′F,x[i, c, Q],

s′F,y[i, c, 1], . . . , s′F,y[i, c, Q]
)T

, (4.17)

where s′`,x and s′`,y are the x and y sampled position components of the body part

` ∈ {H,F}. The gait feature vectors gA, gB have D = 4(Q − 1) components when the

velocity-based gait features are used, and D = 4Q components when the position-based

gait features are used.

Once the gait feature vectors are obtained for all the gait half-cycles of a walk, the

two-part gait model is defined as the two average gait feature vectors gA and gB:

gA =
1

GA

GA∑
α=1

gA[α], (4.18)

gB =
1

GB

GB∑
β=1

gB[β]. (4.19)

For a walk performed by a given subject, the two-part gait model is thus defined as an

average gait half-cycle of type A and an average gait half-cycle of type B, which are

based on either the position or the velocity of the body parts.

Figure 4.3 shows an example of a position-based gait model and an example of a

velocity-based gait model, both of which were computed from the view-rectified body-

part trajectories shown in Figure 3.26. The two-part gait model obtained using position-

based gait features is shown in Figures 4.3(a) and 4.3(b), and the two-part gait model

obtained using velocity-based gait features is shown in Figures 4.3(c) and 4.3(d). Part

A of a gait model (gA) is shown as a red curve , whereas part B of a gait model (gB) is
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Figure 4.3 – Example of a position-based gait model and a velocity-based gait model. Parts

A and B of the position-based gait model are shown in (a) and (b), respectively. Parts A and

B of the velocity-based gait model are shown in (c) and (d), respectively. Each black curve

represents a gait feature vector (gA[α] or gB[β]) computed for a gait half-cycle. The average

gait feature vectors gA and gB are shown as a red curve and a blue curve, respectively. The

red curve in (a) and the blue curve in (b) form the position-based gait model for the walk,

while the red curve in (c) and the blue curve in (d) form the velocity-based gait model for the

walk.

shown as a blue curve. Each black curve in the figures represents a gait feature vector

(gA[α] or gB[β]) computed for a gait half-cycle of the walk. It is possible to see that

the part A and the part B of a gait model are similar in the case of this walk. Also, one

can notice that there is more variance across the gait half-cycles for the velocity-based

features. One of the reasons for this is that the derivative is sensitive to the noise in

the body-part positions. Another reason is that the walking speed was not constant,

that is, the person had to decelerate in order to turn, and then had to accelerate to

continue walking on a straight line (see Figure 3.17).
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4.3 Gait Model Comparison

Gait model comparison consists in computing a distance between two gait models. A

gait model is usually compared to many other gait models in order to classify it in one

of a certain number R of known classes (categories), where each class is represented by

one or more gait models. The gait model to be classified is called the probe, whereas the

set of gait models representing the different classes is called the gallery. For surveillance

applications, there would be one class for each person to recognize, and thus the gait

model(s) associated to each class would represent a specific person’s gait. A probe gait

model, which comes from a person to be identified, would then be compared to the gait

model(s) of each subject (class), and the class for which the distance is the smallest

would be assigned to the probe model. In the case of medical applications, each class

could represents, for instance, a different pathology related to the gait. Therefore, each

class would be represented by a gait model that represents a representative gait for the

given pathology. The pathology associated with a given probe gait model would be

the one for which the distance would be the smallest. These surveillance and medical

applications apply to the case where no new classes are encountered during the classi-

fication process, that is, the set of people or pathologies to recognize is fixed. This is

known as closed set classification, whereas the case where new classes are encountered

during the classification process is known as opened set classification. The latter is

much more complicated, and is thus not considered in most of the work on gait analysis

and recognition.

For both surveillance and medical applications, there can be a learning phase where

an improved representation for the gait models is learned. Learning an improved rep-

resentation for the gait models can be performed by using one of the many machine

learning techniques that are available in the literature [101, 102, 103]. Linear Dis-

criminant Analysis (LDA) is used here since it provides a transform that projects the

gait models into a lower dimensional feature space where the overall separability of

the classes is optimal. Indeed, LDA deals directly with multi-class problems, unlike

other methods (e.g. Support Vector Machines) that only works on two-class problems,

and thus requires a one-against-all or one-against-one strategy when they are used on

multi-class problems.

Figure 4.4 shows an overview of the gait model comparison method used in this

thesis. Without loss of generality, the gait comparison method will be described here in

the context of surveillance applications. First, a LDA is performed on the set of all gait

models in the gallery in order to learn an improved and more efficient representation

of the gait models. A probe gait model is then compared to a gait model in the gallery
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Figure 4.4 – Gait models comparison overview.

by computing a distance between the improved representation of both the gallery gait

model and the probe gait model. The learning process is described in Section 4.3.1,

while the gait models distance computation is detailed in Section 4.3.2.

4.3.1 Linear Discriminant Analysis

An improved representation for the gait models is learned from all the gait models in

the gallery using the LDA method. The gallery consists in a two-part gait model for

each of the R considered subjects (classes) in a surveillance systems. The two-part gait

model in the gallery for subject r is denoted (gA,r,gB,r), where gA,r and gB,r are the

parts A and B of the gait model, respectively. As mentioned previously, each part of

the gait model is defined as the average gait feature vectors computed from half-cycles

of type A and B:

gA,r =
1

GA,r

GA,r∑
α=1

gA,r[α], (4.20)

gB,r =
1

GB,r

GB,r∑
β=1

gB,r[β], (4.21)

where gA,r[α] and gB,r[β] are gait feature vectors, and GA,r and GB,r are the number of

gait feature vectors of type A and B, respectively. One must note that the gait feature

vectors may be obtained from more than one walk for a given subject.

The LDA method consists in determining a transform matrix W that projects the

feature vectors of all subjects into a lower dimensional feature space where the overall

linear separability between the subjects is optimal. Here, two transform matrices, WA

and WB, will be determined independently for parts A and B of the gait models. These

transform matrices will project the gait feature vectors of part A and B into two new
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feature spaces as follows:

g′A,r[α] = WT
A gA,r[α], α = 1, 2, . . . , GA,r, (4.22)

g′B,r[β] = WT
B gB,r[β], β = 1, 2, . . . , GB,r, (4.23)

where g′A,r[α] and g′B,r[β] are the projected gait feature vectors, and r = 1, 2, . . . , R.

Since the matrices WA and WB are determined independently in the same way, the

notation A and B will be temporarily dropped in the following.

The transform matrix that leads to the optimal linear separability between the

subjects is the matrix W∗ such that

W∗ = arg max
W

(
det
(
WT SB W

)
det (WT SW W)

)
, (4.24)

where det( · ) is the determinant operator, and where SB and SW are respectively the

between-subject scatter matrix and the within-subject scatter matrix, which are going to

be defined shortly. The matrix W∗ is D×(R−1) in size, where D is the dimensionality

of the gait feature vectors (number of components), and R is the number of subjects.

This matrix is comprised of the eigenvectors of S−1
W SB that corresponds to its R − 1

largest eigenvalues.

The within-subject scatter matrix SW, which is known in the literature as the within-

class scatter matrix, is defined as

SW =
R∑
r=1

Sr, (4.25)

where the scatter matrix Sr for subject r is defined as

Sr =
Gr∑
j=1

(gr[j]− gr) (gr[j]− gr)
T , (4.26)

with gr being the mean of the gait feature vectors gr[j] for subject r, which is the gait

model of subject r as well:

gr =
1

Gr

Gr∑
j=1

gr[j]. (4.27)

The between-subject scatter matrix SB, which is known in the literature as the

between-class scatter matrix, is defined as

SB =
R∑
r=1

Gr (gr − µ) (gr − µ)T , (4.28)
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where Gr is the number of gait feature vectors for subject r, and µ is the mean of the

gait feature vectors of all the subjects, that is,

µ =

R∑
r=1

Grgr

R∑
r=1

Gr

. (4.29)

Once the matrices WA and WB are obtained, the two-part gait model (gA,r,gB,r)

of each subject is projected into the lower dimensional feature spaces as follows:

g′A,r = WT
A gA,r, (4.30)

g′B,r = WT
B gB,r. (4.31)

The two-part projected gait models (g′A,r,g
′
B,r) will be used in the following for gait

model distance computation.

4.3.2 Gait Model Distance Computation

As mentioned previously, gait comparison is performed by computing distances between

a probe gait model and the gait models in the gallery. The main objective of gait

comparison is the classification of a probe gait model for which the class (i.e subject

identity) is presumably unknown. First, the two parts of the probe gait model, which

is denoted (xA,xB), are projected in their respective lower dimensional feature space as

follows:

x′A = WT
A xA, (4.32)

x′B = WT
B xB. (4.33)

A distance ∆
(
(g′A,r,g

′
B,r); (x′A,x

′
B)
)

between the projected probe gait model and the

projected gait model of subject r in the gallery can be computed as

∆
(
(g′A,r,g

′
B,r); (x′A,x

′
B)
)

=
∥∥g′A,r − x′A

∥∥+
∥∥g′B,r − x′B

∥∥ , (4.34)

where ‖ · ‖ denotes the Euclidean distance. One can see here that the distance is defined

as the sum of the Euclidean distances computed independently on the part A and B of

the gait models. Therefore, each of the two parts of the probe gait model is compared

with the corresponding part of a gait model in the gallery. As discussed previously,

this permits to take into account the possible differences between the gait half-cycles

of types A and B.
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4.4 Conclusion

The gait analysis, modelling and comparison methods presented in this chapter show

that it is possible to extract useful measurements and features from the view-rectified

body-part trajectories. Gait is analyzed by extracting gait measurements from the view-

rectified extremities and other intermediate results from the view-rectification process.

Gait modelling is performed by extracting dynamic gait features from two types of gait

half-cycles. Gait models are compared by first performing a LDA to learn an improved

representation for which the overall separability of the different gait classes is optimal,

and then by computing a distance between gait models projected in the learned feature

space.

It is important to see that the computed gait measurements and gait models will be

expressed in the same units that are used in the view-rectification process described in

Chapter 3. Performing the view-rectification process in scene units (in meters) provides

a physical meaning for the gait measurements and allows for the comparison of gait

models obtained from different camera setups. If the units are arbitrary, the gait

measurements lose their physical meaning but can still be used for comparison with

other gait measurements obtained from the same camera. For instance, it is possible

to determine that a certain subject has strides lengths that are x times greater than

another subject. Also, the gait models obtained with arbitrary units can still be used for

gait comparison as long as the gait models have been extracted from the same camera

setup.

The following chapter presents the experimental results obtained from the gait anal-

ysis, modelling and comparison methods presented in this chapter. Although the gait

modelling and comparison experiments are performed in the context of surveillance ap-

plications, one must note that the proposed methods apply to medical applications as

well since the only difference is the nature of the classes.



Chapter 5

Experimental Results

“In a very large part of morphology,

our essential task lies in the

comparison of related forms rather

than in the precise definition of each.”

D’Arcy Thompson

“On Growth and Form”, 1917

This chapter presents the results of the experiments that were performed as part of

this thesis. The experimental results presented here show that the approach proposed in

this thesis is well suited for gait analysis, modelling and comparison from unconstrained

walks and viewpoints. In order to do so, both synthetic and real walks are used.

Overall, the experiments are aimed at validating and characterizing the performance

and the robustness of the view-rectification method presented in Chapter 3, as well

as the suitability of the gait analysis, modelling, and comparison methods presented

in Chapter 4. The quality of the body-part trajectories produced by the body-part

tracking method presented in Chapter 2 is indirectly assessed in experiments involving

real walks.

The proposed view-rectification method is first validated using synthetic walks, that

is, walks that are generated so that both the 3-D positions of the body parts and their

imaged counterpart are known. This permits to confirm that the view-rectified body-

part trajectories represent what can be observed from a fronto-parallel viewpoint, and

that the gait measurements extracted from them correspond to the measurements in the

synthetic scene. The validation results of the view-rectification method using synthetic

walks are presented and discussed in Section 5.1.
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Secondly, the view-rectification method is tested on a gait database consisting in

real walks performed by several subjects observed from a single fixed camera. This gait

database consists in walks with changes in the walk direction, and thus the subjects are

viewed from an extensive range of viewpoints. The view-rectified body-part trajectories

obtained from these real walks is then used to perform gait analysis, modelling and

comparison. Firstly, the gait measurements extracted from the view-rectified body-

part trajectories is presented and discussed. Gait models is then learned for all subjects

and gait comparison experiments is performed with the goal of identifying the subjects

using their gait. The experimental results obtained on the real walks are presented and

discussed in Section 5.2.

5.1 Validation of the View-rectification Method

The view-rectification method is validated using synthetic walks since it is the most

convenient way to assess its performance and the validity of the view-rectified body-

part trajectories. Indeed, the validation of the view-rectification using real walks would

imply that the 3-D positions of each body parts are known, along with the corresponding

imaged body-part positions. This would necessitate the use of an expensive motion

capture system, and one would have to ensure that there is a correspondence between

the acquired 3-D body-part positions and the imaged body-part positions, which is not

a trivial task. Therefore, the generation of synthetic walks in a synthetic scene is the

selected approach.

A synthetic walk consists in generated 3-D body-parts trajectories that are realistic

enough to be processed by the proposed view-rectification algorithm. Here, “realistic

enough” means that the generated body-part trajectories are designed to represent as

much as possible real body-part trajectories, but without being a perfect reproduction

of the motion made by real body-parts. As it will be shown shortly, these synthetic 3-D

body-parts trajectories, along with their synthetic imaged counterpart, are suitable for

validating the view-rectification method.

The validation of the view-rectification method consists in extracting gait measure-

ments from the view-rectified body-part trajectories and comparing these measurements

with the corresponding ground truth measurements, that is, the gait measurements per-

formed on the generated 3-D body-part trajectories. This first validation is performed

for different noise levels added to the imaged body-part trajectories. A second valida-

tion process consists in computing error statistics between the view-rectified body-part

positions and the ground truth positions in the scene. Finally, the ground vanishing
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Figure 5.1 – The three synthetic walks used for the validation of the proposed view-

rectification method. The first row shows the body-part trajectories in the synthetic scene,

along with the orientation (blue pyramid) and the position of the synthetic camera (magenta

point, pyramid’s apex). The second row shows the imaged body-part trajectories for each

walk.

line estimated in the step 0 of the proposed view-rectification method (see Section 3.9)

is compared to the ground truth vanishing line for the different noise levels.

The synthetic walks that were generated for this thesis are presented in Section

5.1.1. The validation results of the view-rectified body part-trajectories are presented

in Section 5.1.2, while the validation results of the estimated ground vanishing line are

presented in Section 5.1.3.

5.1.1 Synthetic Walks Generation

Synthetic walks are generated using the method detailed in Appendix A, which was

developed as part of this thesis. This method first generates the 3-D trajectories of the

head and the feet using user-provided parameters describing the desired walk path and

the “synthetic walker” gait parameters. The 2-D imaged body-part trajectories are then

generated using a synthetic camera in the synthetic scene. As explained in Appendix A,

the method generates the trajectory of body-part extremities. Thus, minor changes are

required to the view-rectification method since no body-part mass centres and bounding
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boxes are generated (see Section A.4).

The validation process is performed using the three synthetic walks presented in

Figure 5.1. The first row of Figure 5.1 shows the 3-D body-part trajectories in the

synthetic scene. The Y axis in the scene represents the vertical direction, while the

X −Z plane (Y = 0) represents the ground plane. The orientation and the position of

the synthetic camera is depicted as a blue pyramid for which the apex represents the

camera position in the scene. The second row of Figure 5.1 shows the images generated

using this synthetic camera. One may see the perspective distortion in the imaged

body-part trajectories, which is induced by the camera viewpoint and the changes in

the walk direction.

The parameters of each synthetic walk are summarized in Table 5.1. These synthetic

walks are designed to provide different viewpoints from which the effects of perspective

distortion cannot be neglected. For instance, the first walk consists in a straight walk

defined at an angle of 45◦ with respect to the camera optical axis. In the second walk,

there is one smooth change in the walk direction, whereas in the third walk, the direction

of walk is continuously changing.

Walk Leading foot Initial position Motion directions

(#) l ∈ {L,R} O {θj}

1 R (1.25, 0, 2.5)T {0◦, 0◦, 0◦, 0◦}
2 L (1.5, 0, 3.75)T {10◦, 0◦,−20◦,−30◦,−30◦}
3 R (1.5, 0, 4.5)T {−75◦,−55◦,−35◦,−15◦}

Table 5.1 – Synthetic walk parameters.

The gait parameters for the three walks of the “synthetic walker” are summarized in

Table 5.2. These parameters represent a realistic gait and are supported by the values

reported in clinical studies [94, 95]. For instance, the average parameters for a normal

person are a stride length of 1.41 m, a stride width between 5 cm and 13 cm, a vertical

amplitude of 4.2 cm for the head (here the vertical amplitude is about 3.5 cm), and a ca-

dence of 113 steps/min (here, the cadence is 60/(δt/fs) = 60/(15/30) = 120 steps/min).

For the walker’s height, it is set to an arbitrary, but realistic value of 1.8 m. The vertical

foot amplitude is set to 3% of the walker’s height.

Height Stride length Stride width Duration Head amplitude Foot amplitude

h (m) δs (m) δw (m) δt (frames) νH (%) νF (%)

1.80 1.35 0.12 15 1.94 3.00

Table 5.2 – Synthetic gait parameters.

The synthetic camera parameters are summarized in Table 5.3. The position and
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the orientation parameters are chosen so that the three walks fit within the field of view

of the synthetic camera. The camera is positioned at 2 m from the ground plane and

it is oriented to look downward, with a slight roll component. The focal length, image

size, frame rate, and principal point have realistic values for a camera. One must note

that radial and tangential distortion are not included in the synthetic camera model.

focal length fps image size principal point pixel size orientation position

f fs width× height (u0, v0) ζ (αy , αx, αz) Xc

8 mm 30 1024× 768 (512, 384) 10 µm (−45◦,−15◦,−10◦) (0, 2, 0)T

Table 5.3 – Synthetic camera intrinsic and extrinsic parameters.

5.1.2 Validation of the View-rectified Trajectories

The validation aims at confirming that the proposed view-rectification method works as

intended using imaged body-part trajectories for which the ground truth (3-D) body-

part trajectories are known. It also aims at evaluating the robustness of the proposed

view-rectification method in case of noisy imaged body-part trajectories. The added

noise simulates the noise coming from the acquisition process of the imaged body-

part trajectories, that is, the noise induced by the background subtraction and the

body-part tracking methods described in Chapter 2. For completeness purposes, the

proposed view-rectification method is also evaluated on filtered and unfiltered versions

of the body-part trajectories in order to see if filtering can improve the results.

Six experiments are performed on each of the generated synthetic walks. The first

two experiments consist in view-rectifying the imaged body-part trajectories without

added noise (σN = 0), with and without filtering of the body-part trajectories (see first

and second row of Figure 5.2). In the third and fourth experiments, Gaussian noise (zero

mean) with standard deviation of σN = 5 pixels is added to each body-part position in

each imaged body-part trajectory (see third and fourth rows of Figure 5.2). Similarly,

Gaussian noise with standard deviation of σN = 10 pixels is added to each body-part

position in each imaged body-part trajectory in the fifth and sixth experiments (see fifth

and sixth rows of Figure 5.2). In the second, fourth, and sixth experiments, the body-

part trajectories are post-filtered using the filtering process described in Section 2.7.3.

One must note that the filter parameters are the same for these three experiments, that

is, the kernel size is fixed to Ψ = 5 and the standard deviation is σ = 1 pixel.

The body-parts trajectories in the six experiments are processed using the proposed

view-rectification method described in Chapter 3 along with the minor modifications to
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the method described in Section A.4. These modifications simply ensure that the view-

rectification method treats the body-part trajectory points as extremities and not as

mass centres. The computation of the head and foot extremities is thus simplified since

the synthetic body-part trajectories already represent body-part extremity positions.

The fixed parameters that are used for the view-rectification method are the same

as the ones mentioned in Chapter 3, that is, the maximum cadence parameter is set

to fc = 240 steps/min and the feet distance filter is a Gaussian kernel with Ψ = 5

and σ = 1. The ground vanishing line is estimated for each experiment using the

corresponding synthetic walks (see Section 3.9.1). The validation of the obtained ground

vanishing lines are presented in Section 5.1.3. In the case of the ground scale factor,

it is computed once for all experiments by defining four 3-D points representing a one

meter square on the ground plane in the synthetic scene, and the image of each point is

computed using the camera projection matrix (see Equation A.14 and Section 3.9.2).

5.1.2.1 Imaged Body-part Trajectories and Head Motion Planes

In Figure 5.2, the head motion planes computed by the view-rectification method are

shown along with the imaged body-part trajectories for the six experiments. First, one

may notice that filtering has almost no visible effect on the computed motion planes

with noise-free imaged body-part trajectories. However, the filtering has a clear effect

on both the body-part trajectories and the head motion planes in the presence of noise,

even when the fixed standard deviation of the filter is much smaller than the standard

deviation of the added noise. Indeed, the head motion planes of the noisy body-part

trajectories become more similar to the head motion planes of the noise-free body-part

trajectories after filtering. It is also possible to notice that one gait half-cycle is not

detected in experiments 5 and 6 (indicated by arrows). The last gait half-cycle is not

detected for walks #1 and #2 (experiments 5 and 6), and the first gait cycle is not

detected for walk #3 (experiment 6). In the case of walks #1 and #2, the last gait

half-cycle is performed far from the camera. Moreover, the viewpoint for the last gait

half-cycle in walk #1 is almost frontal. Given that the noise level is the same across

all gait-half-cycles, this means that the signal-to-noise ratio is low in the body-part

trajectories, which makes the last gait half-cycle harder to detect and analyze. In the

case of the first cycle of walk #3, it is possible to see that in the case of the first

gait half-cycle, the two “blobs” of points (indicated by magenta ellipses) representing

the feet extremities at the first key time are very close, which makes the feet distance

maximum hard to detect. In conclusion, the effect of noise on the detection of the gait

half-cycles increases when the distance to the camera increases, and when the viewpoint

gets close to a frontal view.
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Figure 5.2 – Imaged body-part trajectories of synthetic walks with three different levels of

noise (0, 5, and 10 pixels), filtered and non-filtered. The head motion planes obtained with

the view-rectification method are also shown.
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5.1.2.2 View-rectified Body-part Trajectories and Head Motion Planes

Figure 5.3 shows the rectified body-part trajectories along with the rectified head motion

planes for the six experiments. In the first two experiments, there is no visible difference

between the rectified motion planes and the rectified body-part trajectories. This means

that the filtering of the noise-free trajectories does not change the behaviour of the view-

rectification method. Besides, the rectified body-part trajectories in all experiments

appear as if they where observed from a fronto-parallel viewpoint. However, the imaged

body-part positions that are farthest from the camera appear more noisy in the rectified

body-part trajectories than they are in the imaged body-part trajectories. This is what

one would expect since the same level of noise was added to all imaged body-part

positions regardless of the position they represent in the scene. Therefore, the relative

noise amplitude is scaled down for imaged positions representing points close to the

camera, and scaled up for imaged positions representing points far from the camera.

5.1.2.3 Average Error in the View-rectified Trajectories

The ground truth fronto-parallel body-part trajectories can be obtained on a half-cycle

basis since the generated motion of each body part is designed to lie in a known plane

in the scene (see Section A.2). Therefore, one can compare the computed view-rectified

body-part trajectories to the ground truth fronto-parallel body-part trajectories at each

gait half-cycle of a synthetic walk. In order to perform this comparison on a gait half-

cycle basis, each detected gait half-cycle must be assigned to a ground truth gait half-

cycle. Here, a ground truth half-cycle is assigned to the detected gait half-cycle for

which the temporal overlap is the greatest.

Table 5.4 presents the point-to-point distance statistics that were computed on a

gait half-cycle basis between the view-rectified body-part trajectories and the ground

truth fronto-parallel body-part trajectories. In order to compute these error statistics

for a given body-part, a least-squares fitting process is performed between the view-

rectified body-part trajectory and its corresponding ground truth counterpart. The

least-squares fitting process corresponds to an optimal alignment between an ordered

set of view-rectified positions and the corresponding set of ground truth positions. This

is performed using the algorithm presented in [104], which was adapted to work on

sets of 2-D points. This algorithm finds the optimal rigid transformation (rotation and

translation) aligning two sets of ordered points by minimizing the sum of the squared

distances between the pairs of corresponding points. Here, the two sets of ordered points

are defined as the positions for the overlapping frames of the detected gait half-cycle
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Figure 5.3 – The view-rectified body-part trajectories corresponding to the imaged body-part

in Figure 5.2. The view-rectified head motion planes are also shown.
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Walk Noise Filtered Head (mm) Feet (mm)

# (pixels) (Y/N) mean std median min max mean std median min max

1

0 N 1.422 1.781 0.810 0.038 8.515 0.189 0.160 0.157 0.014 0.685

0 Y 2.294 2.063 1.684 0.526 15.729 8.325 3.542 8.388 1.690 13.608

5 N 44.534 32.571 34.533 4.978 169.779 47.092 28.376 41.256 3.793 141.262

5 Y 22.208 14.192 19.333 2.194 55.447 25.533 14.641 22.304 1.714 63.770

10 N 111.778 77.872 88.102 8.609 398.850 123.401 76.383 108.462 20.223 486.962

10 Y 72.770 63.354 47.574 6.785 277.982 62.166 44.771 52.685 2.845 264.643

2

0 N 0.640 0.825 0.337 0.006 4.032 0.091 0.073 0.073 0.004 0.335

0 Y 1.733 1.423 1.422 0.480 11.799 8.214 3.512 8.426 1.924 13.090

5 N 46.306 29.473 41.713 1.189 142.739 49.542 30.948 41.855 5.809 209.974

5 Y 20.950 12.589 19.467 1.459 56.860 24.715 13.921 23.229 2.305 78.482

10 N 80.043 40.746 71.224 7.754 198.295 104.643 58.846 95.152 11.795 307.808

10 Y 40.559 20.787 37.045 3.761 123.290 54.657 31.607 51.254 3.009 138.718

3

0 N 1.735 1.546 1.322 0.018 6.871 0.206 0.139 0.186 0.007 0.569

0 Y 2.608 2.221 1.743 0.428 15.030 8.162 3.512 8.607 1.736 13.275

5 N 37.149 22.811 33.211 3.574 113.859 47.515 26.938 40.714 8.070 145.961

5 Y 17.523 10.800 14.856 2.752 44.385 19.332 9.924 19.085 3.136 53.020

10 N 65.216 37.716 61.453 1.304 171.361 98.660 52.070 88.179 17.402 222.092

10 Y 34.533 19.657 33.015 3.543 88.216 38.856 20.833 35.819 2.562 95.229

Table 5.4 – Point to point distance statistics of the view-rectified body-part trajectories and

the ground truth fronto-parallel body-part trajectories. The statistics are computed over the

point-to-point distance of the optimally aligned view-rectified trajectories and ground truth

fronto-parallel trajectories.

and its assigned ground truth gait half-cycle.

The values presented for each experiment in Table 5.4 are statistics computed over

the point-to-point distance of the view-rectified trajectories and their corresponding

ground truth fronto-parallel trajectories. The statistics were computed independently

for the head and the feet. In the case of the feet, the statistics were computed from the

point-to-point distances of both feet. The feet point-to-point distances are computed for

the moving foot in each gait half-cycle. The view-rectified trajectory and the ground

truth trajectory of the still foot were not aligned since the foot positions in these

trajectories are all equal in the case of the synthetic walks (the foot is really, completely

still).

The point-to-point distance statistics are presented in order to show that the view-

rectified body-part trajectories correspond on a point-to-point basis to what can be

observed in the scene from a fronto-parallel viewpoint. This means that the view-

rectified trajectories are suitable for gait analysis and modelling. For instance, the

point-to-point distance statistics in the case of the first experiment (no noise, no fil-

tering) is at most of the order of 10 mm. In the case of the second experiment, the

point-to-point distance statistics is slightly greater since the body-part trajectories are

filtered. The statistics for the experiments with added noise in the imaged body-part

trajectories are shown here for completeness. As one would expect, the view-rectified

trajectories in these experiments do not fit well to the ground truth fronto-parallel

trajectories. Nonetheless, the statistics show that for a given amount of noise in the

acquisition process, the point-to-point distance between the view-rectified trajectories
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Walk Exp. Noise Filtered Half-cycles Duration Stride Displacement Height

# # (pixels) (Y/N) (detected/real) (%) (%) (%) (%)

1

1 0 N 6/6 0.988 ± 0.851 0.006 ± 0.005 0.006 ± 0.005 0.020 ± 0.013

2 0 Y 6/6 1.323 ± 1.159 0.028 ± 0.016 0.028 ± 0.016 0.038 ± 0.019

3 5 N 6/6 5.818 ± 3.309 2.401 ± 1.542 2.349 ± 1.611 1.353 ± 0.578

4 5 Y 6/6 5.212 ± 3.018 1.966 ± 1.492 1.903 ± 1.425 1.105 ± 0.750

5 10 N 5/6 24.704 ± 37.868 9.051 ± 4.209 8.740 ± 4.276 7.395 ± 2.576

6 10 Y 5/6 22.091 ± 38.655 9.312 ± 10.011 8.990 ± 9.620 1.744 ± 1.864

2

1 0 N 8/8 0.624 ± 0.855 0.004 ± 0.001 0.004 ± 0.001 0.022 ± 0.011

2 0 Y 8/8 0.854 ± 1.216 0.017 ± 0.012 0.017 ± 0.012 0.040 ± 0.016

3 5 N 8/8 3.478 ± 2.374 4.344 ± 1.206 4.368 ± 1.231 2.455 ± 1.461

4 5 Y 8/8 3.306 ± 1.892 1.810 ± 1.424 1.801 ± 1.413 1.520 ± 0.798

5 10 N 7/8 5.288 ± 5.098 11.263 ± 8.631 11.311 ± 8.628 3.527 ± 2.375

6 10 Y 7/8 3.847 ± 4.428 4.549 ± 3.411 4.575 ± 3.469 1.337 ± 1.145

3

1 0 N 6/6 1.055 ± 0.558 0.003 ± 0.002 0.003 ± 0.002 0.095 ± 0.030

2 0 Y 6/6 1.389 ± 0.724 0.011 ± 0.006 0.011 ± 0.006 0.027 ± 0.018

3 5 N 6/6 3.424 ± 2.529 5.802 ± 3.670 5.852 ± 3.642 0.855 ± 0.483

4 5 Y 6/6 2.814 ± 1.982 1.172 ± 1.419 1.165 ± 1.423 0.933 ± 0.719

5 10 N 5/6 7.585 ± 3.579 15.916 ± 9.977 15.777 ± 10.103 6.089 ± 2.908

6 10 Y 6/6 5.388 ± 3.421 4.764 ± 3.103 4.817 ± 3.132 2.701 ± 1.379

Table 5.5 – Gait analysis results on the synthetic walks. The results are the average ±
standard deviation percentage of difference with respect to the corresponding ground truth

values. The number of detected gait half-cycles is also shown along with the real number of

gait half-cycles.

and the ground truth fronto-parallel trajectories is higher for body-part positions that

are far from the camera or from a viewpoint that is close to a frontal view.

5.1.2.4 Gait Measurements

Gait measurements were extracted from the rectified body-part trajectories and com-

pared to their known ground truth values. Table 5.5 shows the results for the six

experiments. The number of detected gait half-cycles are shown along with the actual

number of gait half-cycles for each synthetic walk. For each detected gait half-cycle,

the duration, the stride length, the displacement, and the height were computed from

the view-rectified body-part trajectories. The percentage of difference between the

computed gait measurements and corresponding ground truth gait measurements was

computed on a gait half-cycle basis. A ground truth gait-half-cycle was assigned to each

detected gait half-cycle, as described previously in Section 5.1.2.3. The values shown in

the table are the averages and the standard deviations of the percentage of difference

for all detected gait half-cycles.

One may notice that the results are quite good given the amount of noise that was

added to the trajectories. Indeed, the performance of the view-rectification method

degrades quite gracefully when the noise level is increased. As one would expect, filtering

the body-trajectory, even with a narrow band Gaussian kernel, limits the degradation of

the performance in most cases. Filtering noise-free body-part trajectories leads however
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to a small error in the gait measurements. One can also notice that the percentage

of difference of the stride lengths and the displacements for walk #1 are greater in

experiment #6 (filtered) than in experiment #5 (unfiltered). This is due to the fact

that the gait measurement errors in the last gait half-cycle are greater in the sixth

experiment than in the fifth experiment. These erroneous measurements coming from

one gait half-cycle greatly affects the average values.

Overall, the above results confirm that the view-rectification method works as in-

tended; that is, it generates a fronto-parallel view of the imaged body-part trajectories.

The reason the percentages of difference are not zero even when there is no noise and no

filtering is that the key times are not precisely recovered since the feet distance signal is

computed from the imaged position of the feet, which are under perspective projection.

Thus, the times when the feet are at maximum distance in the image do not exactly

correspond to the times when feet are at maximum distance in the scene. Nonetheless,

the estimated times only lead to small errors on the gait half-cycle durations and the

other gait measurements. For instance, a 2% error on a 15-frame (500 ms) gait half-

cycle corresponds to an error of 0.3 frame or 10 ms (15× 0.02/30). The error incurred

by the other gait measurements is, on average, less than 0.1%.

5.1.3 Validation of the Ground Vanishing Line

The ground vanishing line is used several times in the view-rectification method. As

described in Section 3.9.1, the ground vanishing line is estimated using multiple walks.

It is thus important to validate the estimation process of the ground vanishing line

as well as to assess its performance in the presence of noise in the imaged body-part

trajectories. The validation of the estimation process is performed by comparing the

estimated vanishing line in each experiment with the ground truth vanishing line. The

latter can be precisely computed as follow:

l∞ = K−T R nG, (5.1)

where nG is the normal vector of the ground plane in the scene’s Euclidean coordinate

frame, R is the rotation matrix representing the orientation of the camera in the scene,

and K is the matrix of the camera’s intrinsic parameters. Here, the ground plane’s

normal vector in the synthetic scene is defined as nG = (0, 1, 0)T, that is, a unit vector

pointing in the same direction as the Y axis.

Table 5.6 shows the validation results of the estimation of the ground vanishing line

on each experiment. As mentioned previously in Section 5.1.2, the three synthetic walks

were used to estimate the ground vanishing line for a given experiment. The value of
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Experiment (#) Noise Filtered l̂a l̂b l̂c
〈

(la, lb)
T, (l̂a, l̂b)

T
〉 ∣∣∣ l̂c−lclc

∣∣∣× 100

Ground truth line l∞ 0.174 -0.985 74.899 – –

1 0 N 0.174 -0.985 74.976 1.00000 0.103

2 0 Y 0.174 -0.985 75.017 1.00000 0.158

3 5 N 0.137 -0.991 142.785 0.99930 90.637

4 5 Y 0.181 -0.984 68.863 0.99997 8.058

5 10 N 0.069 -0.998 225.094 0.99447 200.530

6 10 Y 0.147 -0.989 113.653 0.99963 51.741

Table 5.6 – Results of the validation of the ground vanishing line. An estimated line is

represented by the parameters (l̂a, l̂b, l̂c)
T, and the ground truth vanishing line is represented

by the parameters (la, lb, lc)
T. The ground truth vanishing line parameters are presented

along with the estimated line’s parameters for each experiment. The inner product between

the estimated line’s normal and the ground truth line’s normal are present in the next to last

column. The percentage of difference between the parameters lc and l̂c is shown in the last

column.

the estimated line’s parameters are presented for each experiment. The parameters of

the ground truth vanishing line computed using Equation 5.1 are also shown. In order

to compare an estimated line l̂∞ = (l̂a, l̂b, l̂c)
T to the ground truth line l∞ = (la, lb, lc)

T,

both the estimated and the ground truth lines are multiplied by the normalizing factor

1/‖(l̂a, l̂c)T‖ = 1 and 1/‖(la, lb)T‖, respectively. Therefore, the vector (l̂a, l̂b)
T of a

normalized line represents a unit vector normal to the line, while the parameter l̂c
directly represents the distance of the line to the origin (the top-left corner of the

synthetic camera image). The orientation of the estimated line is compared to the

orientation of the ground truth line by computing the inner product between the lines’

normals. The distance to the origin of the estimated line is compared to the ground

truth by computing the percentage of difference between the parameters l̂c and lc.

One may first notice that in the case of the first and second experiments (no added

noise), the parameters are very close to the ground truth parameters, thus showing that

the estimation process works as intended. The differences with the ground truth can

be explained again by the slight errors made in the estimation of the key times, which

lead to small errors in the computation of the body-part extremity positions at these

key times. The experiments with added noise in the imaged body-part trajectories

show that the parameter that is the most influenced by the presence of noise is the

parameter l̂c. This means that the distance of the line to the origin is more influenced

by the presence of noise in the imaged body-part trajectories than the orientation of

the line in the image. As before, filtering improves the estimated parameters.
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5.2 Gait Analysis, Modelling and Comparison on

Real Walks

The experiments on gait analysis, modelling, and comparison using the view-rectified

body-part trajectories were performed on a gait database that was designed as part of

this thesis. As discussed in Sections 1.3.3 and 1.4, the databases that are commonly used

in the literature mostly consist in outdoor walks observed at a distance or walks that

are performed on straight lines. The perspective distortion induced by the viewpoints

in some of these databases is limited since the distance between the subject and the

camera is such that the weak perspective assumption holds. Moreover, there are no

significant changes in viewpoints for walks performed on a straight line. These public

databases are thus not appropriate to test all the unique aspects of the view-rectification

method proposed in this thesis.

The acquisition process and the characteristics of the proposed gait database are

described in detail in Appendix B. The gait database is comprised of 520 video sequences

each representing a walk performed by a subject following a given path. Five walking

tracks were designed to provide a wide range of viewpoints induced by both the distance

range and the changes in the walk direction. Each of the 52 subjects walked twice on

each track, that is, once in each direction. There are thus 10 paths that were followed

by each subject. A path is denoted by the track number (1 to 5) and the direction

(1 or 2): paths 1-1, 1-2, 2-1, 2-2, 3-1, 3-2, 4-1, 4-2, 5-1, and 5-2. All the walks were

observed by a single, fixed, and calibrated camera that was positioned as in a typical

surveillance scenario. The body part tracking method was performed on each of the 520

walks using the parameters and thresholds mentioned in Chapter 2. The parameters

used for the view-rectification method are the same as in the validation process, that

is, the maximum cadence parameter is set to fc = 240 steps/min and the feet distance

filter is a Gaussian kernel with Ψ = 5 and σ = 1. The ground scale factor was estimated

as explained in Section 3.9.2, and the ground vanishing line was estimated using all the

walks from subjects 1 to 10 (100 walks).

The acquisition conditions for the gait database were controlled in order to limit

as much as possible some perturbing factors that are of no interest in this thesis, as

the changes in lighting and complex, dynamic backgrounds. Indeed, the gait database

was designed to test the proposed approach on challenging walks, not on challenging

acquisition conditions. Thus, the lighting was maintained constant and the background

was simple and static during the acquisition process. However, these factors could not

be completely eliminated. For instance, the white curtains used as the background

were not completely static since they were moving a little bit when the subjects were
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walking in the acquisition room. Also, the floor of the acquisition room was highly

specular, which led to reflections of the subjects on the floor and cast shadows. These

remaining factors have led in some cases to errors in the foreground segmentation by

either adding or subtracting parts of the subject’s silhouette. The body-part tracking

method is thus the part of the proposed approach that is directly influenced by these

factors. The view-rectification method and the gait analysis, modelling and comparison

methods are thus indirectly influenced by these factors.

The results of the experiments performed on the gait database show that the pro-

posed approach is able to perform gait analysis, modelling, and comparison on uncon-

strained walks. The experiments performed on the gait database and the results that

were obtained are presented as follows. First, qualitative results depicting both the

imaged and the view-rectified trajectories are presented in Section 5.2.1. Next, Section

5.2.2 presents the gait analysis results of all the walks in the gait database. Finally, the

gait modelling and comparison results are presented in 5.2.3.

5.2.1 View-Rectification Results

A set of 20 walks were selected from the database in order to visually assess the

behaviour of the body-part tracking and the view-rectification methods. Figure 5.4

presents the imaged body-part trajectories and the computed head motion planes of

these walks. The foot motion planes are not shown here since the head motion planes

provide all the visual information needed to assess the behaviour of the view-rectification

method with respect to the motion planes. The results in each row present two example

walks for each of the two paths of a given walking track. For instance, the first row

shows two example walks for path 1-1, and two example walks for path 1-2. The 20

walks belong to ten different subjects in order to have each subject appearing twice

in the results. Each continuous tracking interval is identified by a label of the form

“int. #”, which is located close the corresponding imaged body-part trajectories. It is

also possible to visually assess the result of the foot labelling process since each foot

trajectory is coloured according to the foot label that was assigned to it: blue for the

right foot, red for the left foot.

The results presented in Figure 5.4 show that both the body-part tracking method

and the view-rectification method performed well on real walks. Indeed, the body-part

trajectories and the head motion planes are realistic and provide enough visual infor-

mation to easily deduce the motion performed and the path followed by the subjects.

Moreover, one can verify that the foot trajectories were correctly labelled by considering

the direction of walk and the respective location of the foot trajectories. For instance,
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Figure 5.4 – Imaged body-part trajectories and computed head motion planes for 20 walks

of the gait database. Each row presents two examples for each of the two paths on a given

walking track: paths 1-1 and 1-2, 2-1 and 2-2, 3-1 and 3-2, 4-1 and 4-2, 5-1 and 5-2. The

walks presented here come from 10 subjects of the gait database (subjects 1, 3, 13, 21, 24,

31, 36, 43, 45, and 51). Each subject appears twice in these walk examples. The blue and

red trajectories represent the foot that was labelled “right and ”left“ by the view-rectification

method, respectively. Each continuous tracking interval is identified directly in the sub-figure

(int.1, int.2, etc).
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if the walk is performed from left to right in the image, the right foot trajectory should

be located a little bit lower in the image than the left foot trajectory, especially for the

points representing the positions of each foot when they are still (blobs of positions).

One can also observe the qualitative differences in the way subjects are walking on the

same path, that is, the body-part trajectories are somewhat different.

It is possible to see that in general, the track 3 and 5 are harder than the other

track when it comes to body-part tracking. At some positions on these two tracks, the

viewpoint is close to the frontal viewpoint, which makes the feet occlusion last several

frames. The feet tracking is thus lost until both legs can be separated again. This leads

to many continuous tracking intervals that are not long enough to contain a complete

gait half-cycle. Some tracking errors and erroneous positions are also visible for the

walk of subject 36 on path 1-2, and for the walk of subject 45 on path 4-2. In the

former, the correspondence between the feet was swapped just before the beginning

of the first gait half-cycle because of an erroneous position found for one of the feet.

This has no impact on the view-rectified trajectories since it occurred before the first

detectable gait half-cycle. In the latter, the part of the silhouette representing the head

was lost for more than a gait half-cycle, which led to a series of erroneous positions

in the head trajectories (see the head trajectory, close to the upper right corner of the

image). It will be shown shortly that these erroneous positions only have an effect on

the gait half-cycles to which they belong.

Figure 5.5 presents the view-rectified body-part trajectories and the view-rectified

head motion planes that correspond to the imaged body-part trajectories and the com-

puted head motion planes presented in Figure 5.4. The trajectories and the motion

planes for the different continuous tracking intervals are shown in the same sub-figure

but are separated by a gap. Only the continuous tracking intervals that were not dis-

carded by the view-rectification method are presented (intervals with at least one gait

half-cycle). It is possible to see that the body-part trajectories appear to have been

observed from a fronto-parallel viewpoint. Also, the view-rectified walks appear to have

been performed from left to right, even if the direction of walk changed. One may no-

tice that some parts of the head and/or the foot trajectories are distorted for some gait

half-cycles in the following view-rectified walk: subject 1, path 3-2; subject 36, path

4-1; subject 45, path 4-2; subject 43, path 5-1. Except for subject 45 on path 4-2, the

distortion can be explained by first noticing that the viewpoint during the problematic

gait half-cycles was almost frontal (see corresponding sub-figures in Figure 5.4). Also,

the body parts were successfully tracked in these cases since the change in direction was

very sharp, and thus the feet occlusion did not last long. As one may recall, the view-

rectification of body-part trajectories for nearly frontal views is problematic since the

view-rectifying homography matrix is almost singular. The view-rectified trajectories
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for these problematic gait half-cycles are distorted. In the case of subject 45 on path

4-2, the erroneous head positions led to erroneous head and foot planes from which

an erroneous rectifying homography was defined. Is is important however to note that

these distortions effects are confined to the gait half-cycles were they occurred, and

thus the view-rectified trajectories in the unaffected gait half-cycles reflects what would

have been observed from a fronto-parallel viewpoint.
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Figure 5.5 – The view-rectified body-part trajectories and view-rectified head motion planes corresponding to the examples presented

in Figure 5.4. All the intervals of a walk are shown on the same sub-figure and are separated by a gap in the head motion planes and

the trajectories. For presentation purposes, the vertical and the horizontal axes were not made equal.
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The imaged body-part trajectories and the view-rectified body-part trajectories can-

not be quantitatively assessed in the case of real walks since the ground truth 3-D

body-part trajectories are not available. Hence, it is not possible to directly evaluate

the performance of the body-part tracking method. Similarly, the view-rectified tra-

jectories and the measurements performed on them cannot be directly evaluated as it

was done for synthetic walks in Section 5.1). Nonetheless, the results of gait analy-

sis, modelling, and comparison show that the body-part tracking and view-rectification

methods provide valid results on real walks.

5.2.2 Gait Analysis Results

Gait analysis was performed on each walk for each subject of the gait database using

the methods described in Section 4.1. The 520 sets of gait measurements thus obtained

is presented in a table of Appendix C. Other information provided in this table are:

� the number of frames where the subject is entirely visible during the walk;

� the percentage of these frames that are part of a detected gait half-cycle;

� the number of continuous tracking intervals;

� the total number of detected gait half-cycles across all tracking intervals.

Since gait measurements such as the stride lengths, the displacement, the duration and

the height are computed on a gait half-cycle basis, the mean and the standard deviation

of these measurements are given for a specific subject’s walk. The table also presents

the stature (height) that each subject reported during the acquisition process. The

precision of the stature values is thus variable from a subject to another. The percentage

of difference between the stature and the computed mean height is presented in the last

column of the table in appendix C. The processing time required for analyzing the gait

of the 520 walks was about 4 seconds on a computer with a dual core 2.66 GHz CPU

running non-optimized and non-parallelized MATLAB� code. Gait analysis can thus

be performed in real time since the processing time is about 8 ms per walk.

Tables 5.7 and 5.8 present gait measurement statistics on a subject basis and on

a path basis, respectively. The results presented in Table 5.7 are the mean and the

standard deviation of the gait measurements over all the walks performed by a given

subject. The total number of gait half-cycles across all walks is presented, as well as

the percentage of difference between the stature and the computed mean height. In

the case of Table 5.8, the presented results are the mean and standard deviation of the

gait measurements over all subjects for a given path. The statistics on the number of

detected gait half-cycles for each path is also reported in this table.
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Subject Gender Stature ½Cycles Cadence Speed Duration Strides Displacement Height ∆Height

(ID) (M/F) (m) (num.) (steps/min) (m/min) (s) (m) (m) (m) (%)

1 F 1.78 53 125.4 ± 2.5 95.5 ± 3.5 0.477 ± 0.016 1.528 ± 0.064 0.763 ± 0.033 1.777 ± 0.034 0.19

2 M 1.75 56 105.6 ± 1.9 79.4 ± 2.1 0.569 ± 0.019 1.508 ± 0.081 0.753 ± 0.041 1.738 ± 0.019 0.68

3 M 1.73 49 109.6 ± 4.0 76.3 ± 5.8 0.547 ± 0.030 1.398 ± 0.089 0.699 ± 0.045 1.752 ± 0.021 1.25

4 M 1.85 52 106.9 ± 2.2 78.3 ± 3.7 0.560 ± 0.024 1.467 ± 0.077 0.733 ± 0.039 1.822 ± 0.019 1.51

5 M 1.62 65 108.1 ± 3.9 67.0 ± 4.4 0.556 ± 0.022 1.237 ± 0.049 0.618 ± 0.024 1.646 ± 0.034 1.63

6 M 1.83 46 102.9 ± 2.6 79.4 ± 4.7 0.583 ± 0.021 1.568 ± 0.083 0.774 ± 0.037 1.777 ± 0.275 2.91

7 M 1.83 63 98.1 ± 2.9 67.3 ± 4.0 0.611 ± 0.028 1.371 ± 0.101 0.685 ± 0.051 1.797 ± 0.020 1.80

8 M 1.70 54 107.6 ± 2.7 76.7 ± 3.8 0.557 ± 0.023 1.439 ± 0.099 0.719 ± 0.050 1.649 ± 0.022 3.00

9 M 1.80 68 95.6 ± 1.7 68.2 ± 4.0 0.625 ± 0.036 1.453 ± 0.136 0.726 ± 0.066 1.865 ± 0.185 3.63

10 M 1.73 50 102.7 ± 2.4 71.3 ± 3.5 0.584 ± 0.025 1.386 ± 0.075 0.693 ± 0.038 1.758 ± 0.016 1.65

11 M 1.82 53 100.1 ± 4.0 63.9 ± 5.1 0.597 ± 0.032 1.278 ± 0.067 0.639 ± 0.034 1.809 ± 0.013 0.58

12 M 1.74 56 109.3 ± 2.3 79.1 ± 3.6 0.547 ± 0.022 1.457 ± 0.100 0.727 ± 0.057 1.744 ± 0.034 0.21

13 M 1.68 71 115.6 ± 1.8 70.9 ± 2.9 0.517 ± 0.022 1.236 ± 0.144 0.618 ± 0.070 1.663 ± 0.019 1.04

14 M 1.85 55 98.1 ± 2.4 86.0 ± 3.3 0.609 ± 0.025 1.760 ± 0.050 0.880 ± 0.026 1.889 ± 0.046 2.11

15 M 1.80 51 97.7 ± 2.4 73.5 ± 2.6 0.618 ± 0.027 1.504 ± 0.085 0.752 ± 0.043 1.831 ± 0.016 1.72

16 M 1.75 53 98.8 ± 5.4 71.5 ± 5.9 0.602 ± 0.037 1.456 ± 0.061 0.728 ± 0.030 1.776 ± 0.017 1.49

17 M 1.74 62 104.4 ± 2.5 64.7 ± 3.2 0.575 ± 0.029 1.245 ± 0.044 0.623 ± 0.022 1.736 ± 0.018 0.24

18 M 1.63 54 111.8 ± 2.6 77.8 ± 4.7 0.538 ± 0.023 1.391 ± 0.072 0.695 ± 0.035 1.630 ± 0.031 0.00

19 M 1.70 62 99.7 ± 3.0 69.1 ± 3.8 0.597 ± 0.024 1.383 ± 0.067 0.691 ± 0.033 1.727 ± 0.035 1.61

20 M 1.85 61 94.6 ± 4.2 67.6 ± 6.5 0.640 ± 0.032 1.408 ± 0.187 0.704 ± 0.091 1.874 ± 0.008 1.29

21 M 1.77 58 102.2 ± 3.2 77.4 ± 2.7 0.586 ± 0.075 1.530 ± 0.115 0.765 ± 0.058 1.792 ± 0.047 1.22

22 F 1.63 83 93.1 ± 1.8 51.9 ± 2.8 0.646 ± 0.024 1.114 ± 0.080 0.557 ± 0.039 1.594 ± 0.035 2.18

23 M 1.71 60 85.0 ± 2.6 55.0 ± 4.1 0.705 ± 0.033 1.289 ± 0.095 0.644 ± 0.047 1.728 ± 0.028 1.08

24 M 1.77 65 84.0 ± 6.3 59.7 ± 3.5 0.704 ± 0.090 1.420 ± 0.112 0.710 ± 0.056 1.736 ± 0.020 1.92

25 M 1.78 61 113.8 ± 2.6 84.5 ± 5.0 0.528 ± 0.033 1.472 ± 0.146 0.730 ± 0.076 1.779 ± 0.149 0.05

26 M 1.64 71 106.2 ± 3.5 67.7 ± 4.9 0.568 ± 0.090 1.299 ± 0.174 0.648 ± 0.086 1.645 ± 0.213 0.30

27 F 1.57 67 96.9 ± 4.1 55.7 ± 4.0 0.616 ± 0.033 1.155 ± 0.046 0.578 ± 0.023 1.570 ± 0.012 0.03

28 M 1.88 46 104.5 ± 4.0 81.6 ± 5.1 0.571 ± 0.027 1.571 ± 0.056 0.785 ± 0.028 1.888 ± 0.013 0.43

29 F 1.57 70 119.0 ± 4.2 73.6 ± 4.0 0.500 ± 0.027 1.242 ± 0.062 0.621 ± 0.031 1.550 ± 0.015 1.25

30 F 1.68 74 105.5 ± 3.1 66.9 ± 6.0 0.568 ± 0.028 1.286 ± 0.094 0.643 ± 0.047 1.675 ± 0.015 0.28

31 F 1.62 66 112.7 ± 3.2 75.0 ± 3.7 0.536 ± 0.021 1.325 ± 0.066 0.662 ± 0.033 1.620 ± 0.010 0.02

32 M 1.65 57 105.1 ± 3.2 75.9 ± 4.3 0.569 ± 0.021 1.442 ± 0.057 0.721 ± 0.029 1.661 ± 0.010 0.64

33 M 1.85 58 110.2 ± 5.5 90.7 ± 7.7 0.544 ± 0.097 1.671 ± 0.186 0.836 ± 0.093 1.856 ± 0.032 0.34

34 M 1.78 44 90.8 ± 12.1 73.4 ± 19.2 0.662 ± 0.191 1.698 ± 0.716 0.844 ± 0.349 1.738 ± 0.066 2.34

35 F 1.75 70 122.4 ± 4.6 93.1 ± 3.8 0.493 ± 0.063 1.521 ± 0.101 0.760 ± 0.050 1.784 ± 0.034 1.93

36 M 1.83 60 103.4 ± 3.1 70.6 ± 3.6 0.582 ± 0.036 1.366 ± 0.156 0.692 ± 0.037 1.889 ± 0.366 3.22

37 M 1.80 60 99.0 ± 1.7 74.6 ± 1.7 0.605 ± 0.018 1.511 ± 0.064 0.755 ± 0.032 1.827 ± 0.030 1.52

38 F 1.70 66 105.0 ± 3.6 71.4 ± 3.4 0.571 ± 0.027 1.371 ± 0.090 0.685 ± 0.045 1.690 ± 0.030 0.61

39 F 1.62 76 112.2 ± 2.5 71.2 ± 3.7 0.537 ± 0.029 1.271 ± 0.140 0.635 ± 0.067 1.607 ± 0.013 0.80

40 F 1.65 65 107.0 ± 6.4 73.9 ± 6.2 0.557 ± 0.033 1.383 ± 0.070 0.691 ± 0.035 1.683 ± 0.018 2.00

41 M 1.85 58 103.3 ± 2.4 74.7 ± 3.5 0.583 ± 0.026 1.435 ± 0.074 0.717 ± 0.037 1.868 ± 0.019 0.98

42 F 1.67 76 108.6 ± 3.1 67.2 ± 3.0 0.553 ± 0.030 1.234 ± 0.093 0.615 ± 0.047 1.642 ± 0.101 1.70

43 F 1.70 67 113.5 ± 1.9 78.8 ± 2.6 0.526 ± 0.019 1.396 ± 0.049 0.698 ± 0.024 1.711 ± 0.019 0.63

44 F 1.65 79 104.2 ± 2.9 61.1 ± 2.1 0.574 ± 0.024 1.167 ± 0.055 0.583 ± 0.028 1.614 ± 0.013 2.19

45 F 1.65 80 105.2 ± 3.5 64.0 ± 3.1 0.570 ± 0.050 1.220 ± 0.065 0.610 ± 0.033 1.718 ± 0.102 4.13

46 F 1.68 58 102.8 ± 6.4 67.2 ± 7.0 0.582 ± 0.040 1.336 ± 0.088 0.654 ± 0.032 1.575 ± 0.239 6.23

47 F 1.68 69 118.4 ± 4.0 73.7 ± 4.9 0.504 ± 0.022 1.249 ± 0.046 0.625 ± 0.023 1.685 ± 0.018 0.30

48 F 1.55 80 110.5 ± 3.0 67.7 ± 3.4 0.539 ± 0.017 1.228 ± 0.055 0.614 ± 0.028 1.557 ± 0.016 0.48

49 F 1.70 51 111.1 ± 1.7 77.6 ± 3.4 0.540 ± 0.017 1.402 ± 0.057 0.701 ± 0.029 1.631 ± 0.017 4.09

50 F 1.55 76 116.8 ± 6.7 71.6 ± 3.4 0.519 ± 0.119 1.236 ± 0.154 0.618 ± 0.077 1.590 ± 0.016 2.58

51 F 1.76 47 111.6 ± 15.8 97.7 ± 12.1 0.532 ± 0.088 1.811 ± 0.723 0.898 ± 0.332 1.764 ± 0.051 0.24

52 F 1.54 61 111.7 ± 3.7 74.0 ± 4.7 0.538 ± 0.022 1.330 ± 0.070 0.662 ± 0.034 1.595 ± 0.076 3.58

Table 5.7 – Gait measurement statistics for each subject. The column “½Cycles” presents

the total number of detected gait half-cycles in the database for a given subject. The column

“∆Height” presents the percentage of difference between the stature and the mean height in

the first to last column.

The percentage of difference between the stature and the computed mean height

can be used to some extent to determine the validity of the other gait measurements.

One must recall that the height is computed from the view-rectified positions of the top

of the silhouette, which in turn depends on the height of the view-rectified head motion

planes (see Section 4.1.6). The width of the head motion planes on the ground plane is

used along with the aspect ratio to compute the height of the motion plane in the scene

(see Section 3.7.3). Ultimately, the computed subject’s height depends on the imaged
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Path ½Cycles Cadence Speed Duration Strides Displacement Height

(ID) (num.) (steps/min) (m/min) (s) (m) (m) (m)

1-1 3.5 ± 0.7 105.3 ± 9.0 72.4 ± 9.6 0.574 ± 0.055 1.361 ± 0.172 0.679 ± 0.083 1.692 ± 0.110

1-2 3.4 ± 0.8 106.1 ± 9.8 74.4 ± 10.1 0.572 ± 0.074 1.381 ± 0.156 0.689 ± 0.078 1.700 ± 0.110

2-1 4.7 ± 0.9 101.8 ± 9.3 67.9 ± 10.3 0.594 ± 0.060 1.314 ± 0.148 0.656 ± 0.073 1.689 ± 0.123

2-2 4.7 ± 0.9 102.7 ± 9.6 69.4 ± 10.2 0.589 ± 0.059 1.329 ± 0.148 0.664 ± 0.074 1.683 ± 0.109

3-1 5.8 ± 1.9 106.2 ± 8.2 72.9 ± 11.0 0.569 ± 0.076 1.371 ± 0.253 0.684 ± 0.125 1.716 ± 0.105

3-2 5.3 ± 1.6 105.8 ± 8.6 72.1 ± 9.7 0.568 ± 0.069 1.368 ± 0.233 0.682 ± 0.116 1.720 ± 0.142

4-1 11.1 ± 2.3 107.0 ± 8.7 75.9 ± 11.3 0.564 ± 0.063 1.400 ± 0.261 0.699 ± 0.121 1.721 ± 0.167

4-2 10.7 ± 2.4 106.4 ± 9.0 75.1 ± 10.6 0.568 ± 0.067 1.386 ± 0.213 0.692 ± 0.104 1.728 ± 0.124

5-1 6.6 ± 2.0 107.0 ± 11.4 76.7 ± 9.3 0.565 ± 0.081 1.421 ± 0.214 0.709 ± 0.106 1.732 ± 0.143

5-2 5.8 ± 2.0 107.6 ± 8.7 74.5 ± 9.8 0.561 ± 0.051 1.373 ± 0.145 0.686 ± 0.072 1.712 ± 0.097

Table 5.8 – Gait measurement statistics for each path. The column “½Cycles” presents the

statistics on the number of detected gait half-cycles in the database for a given path.

head and feet extremities at each key time, which are used to compute the stride lengths

and the displacement, among other things. Therefore, a low percentage of difference

between the stature and the computed height indicates that the body-part extremity

positions were correctly estimated and view-rectified, which in turn indicates that the

other gait measurements that are derived from the extremity positions are presumably

representative of the real gait measurements. The stature can thus act as a ground truth

measurement for gait analysis, although one must keep in mind there is an inherent

error in the value reported by the subjects. Moreover, a high percentage of difference

for a given walk does not necessarily means that all the other gait measurements are

erroneous. Indeed, this difference in height might be due to erroneous head extremities

positions, which does not have an influence on the computed gait half-cycle durations,

strides lengths, displacement, cadence and speed.

The percentage of differences in the table of Appendix C vary from a minimum of

5.3×10−3% to a maximum of 26.4%, with an average value of 1.9%, a standard deviation

of 2.8%, and a median of 1.2%. The results thus suggest that the gait analysis results

are quite good, considering that these measurements were automatically extracted from

unconstrained walks, without using any markers on the subjects’ body parts. Another

observation that indicates that the gait measurements are valid is the fact that gait

measurements obtained on different paths for a given subject are similar, minus small,

normal variations across the paths. These variations are visible in Table 5.8, where the

speeds are lower or higher on some paths. For instance, the subjects clearly walked

slower on the paths 2-1 and 2-2, which can be explained by the continuous change in

the walk direction that had to be performed by the subjects. Also, the walks were

performed faster for the paths 4-1, 4-2, 5-1, and 5-2. Indeed, the changes in direction

on these two tracks are performed close to the beginning or close to the end of the

tracks, which make the walk divided in a short and a long walk on a straight line. The
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Gender Type Cadence Speed Strides

(M/F/A) (R/C) (steps/min) (m/min) (m)

Males
reference 111.0 86.0 1.46

computed 102.4 ± 8.2 73.4 ± 9.1 1.43 ± 0.20

Females
reference 117.0 77.0 1.28

computed 110.2 ± 9.1 72.8 ± 12.2 1.31 ± 0.21

All
reference 113.0 82.0 1.41

computed 105.6 ± 9.4 73.1 ± 10.5 1.38 ± 0.21

Table 5.9 – Comparison between reference and computed gait measurements. The reference

gait measurements are the average values reported in [95]. The computed gait measurements

were obtained using all the walks of all the subjects in the gait database. The gait measure-

ments are also shown for male and females separately.

subjects thus had more space to accelerate on the long straight line walk. One can also

see in Table 5.7 some differences between the gait measurements of different subjects.

These differences already indicate that each subject has his own way of walking and

that to some extent it will be possible to recognize some subjects by the dynamics of

their gait.

The consistency of the gait measurements can also be assessed to some extent by

performing a comparison with the normal gait measurements found in clinical gait

analysis references [95]. Table 5.9 presents the cadence, the speed and the stride lengths

statistics computed over all paths and subjects, as well as over all males and females

separately. The reference gait measurements shown in the table represent the average

measurements that can be found in [95] (no standard deviations were reported in that

study). One may see that the cadence and the speed obtained from the gait database

are lower than the ones reported in [95]. This can be explained by the fact that the

subjects could not reach their natural walking speed and cadence because of the short

length of the paths and the changes in the walk direction the subjects had to perform.

Nonetheless, one can see that the cadence difference between male and female is of the

same order of magnitude. Also, the stride lengths are very close to the reference values.

This observations indicates that the gait measurements computed with the proposed

approach are valid.

There is only one walk in the whole gait database that could not be analyzed, which

is the walk of subject 34 on the path 5-2. No gait half-cycle could be detected in

this walk, as shown in Figure 5.6(a). The feet could not be tracked correctly because

of repeated silhouette segmentation errors that are due to the colour of the subject’s

clothes. Indeed, the subject’s shorts are of a colour similar to the background, which

leads to silhouettes with missing parts. This was also problematic for the path 5-1, as

shown in Figure 5.6(b), where gait half-cycles were detected but erroneous foot position
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Figure 5.6 – Example of a problematic subject in the gait database (subject 34). In (a)

the subject’s feet could not be continuously tracked because of silhouettes segmentation error

due to the subject’s white cloths overlapping with the white curtains. In (b), the subject’s

foot positions are erroneous because of the same kind segmentation errors than in (a). The

resulting view-rectified body-part trajectories are presented in (c).

were computed from the erroneous silhouettes. As one would expect in such a case, the

view-rectified body-part trajectories are erroneous, as shown in Figure 5.6(c). There

are other problematic walks in the gait database, as one may see by looking at the

percentage of difference between the stature and the computed mean height in the

table of Appendix C. For instance, there are some walks where segmentation errors led

to erroneous height measurements for the following subjects: 6, 25, 46, and 51. In some

cases, this segmentation errors had an erroneous effect on the other gait measurements

as well. Another cause for erroneous gait measurements comes from the view-rectified

body-part trajectories in gait half-cycles where the viewpoint is almost frontal, as shown

previously in Figure 5.5 (subject 1, path 3-2; subject 36, path 4-1; subject 45, path 4-2;

subject 43, path 5-1). It might be possible in future work to discard some gait half-

cycles from the gait analysis, modelling and comparison process by evaluating if the

height computed in those gait half-cycles is too different from the mean height, or if

the normal vector of the head motion plane indicates that the viewpoint is too frontal.

5.2.3 Gait Modelling and Comparison Results

Gait modelling and comparison was performed on the gait database using the methods

described in Sections 4.2 and 4.3, respectively. As one may recall, the proposed gait

model is computed on a walk basis using either the position-based gait feature vectors

or the velocity-based gait feature vectors. Also, a gait model consists in two parts,

where the first part (part A) represents the gait when the left foot is moving, and the

second part (part B) represents the gait when the right foot is moving. An improved

representation for the gait models is learned using the gait feature vectors coming from
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a subset of the walks for each subject and the LDA1 algorithm. A gait model is then

defined for each subject using the improved representation. The obtained models are

part of what is called the gallery. The gait model of each walk not used in the learning

process is called a probe and is compared to each gait model in the gallery using the

improved representation. A gallery gait model and a probe gait model are compared by

computing the sum of the Euclidean distance between the corresponding model parts

(parts A and B). In the case where the gallery gait model and the probe gait model

come from the same subject, the distance between the models should be low. Otherwise,

the distance should vary according to the similarity between the gaits of the compared

subjects.

Gait modelling was performed on the gait database using the position-based and the

velocity-based gait models. In each case, 520 gait models were obtained, that is, one

gait model for each walk of each subject. For each walk, the view-rectified body-part

trajectories where sampled with the method described in Section 4.2.1, using Q = 16

samples. Using a higher number of samples did not lead to better results, whereas the

performance started to degrade with a smaller number of samples. Computing a gait

model for a walk takes on average 0.1 second on a computer with a dual core, 2.66

GHz CPU running non-optimized and non-parallelized MATLAB� code. It would be

realistic to perform gait modelling in real-time, by either performing it each x seconds

or performing it once the subject exits the field of view of the camera.

Figures 5.7 and 5.8 present examples of gait models obtained for 4 different subjects

and 4 different walks. A gait model is shown by plotting the value of each component of

its feature vector. The vector of a position-based gait model has 64 components, while

the vector of a velocity-based gait model has 60 components. In the case of position-

based gait models, the components 1 to 16 and 17 to 32 are the x and y components of

the head position, respectively, whereas the components 33 to 48 and 49 to 64 are the

x and y components of the moving foot position, respectively. For the velocity-based

gait models, the range are 1 to 15, 16 to 30, 31 to 45, and 46 to 60, respectively, and

the components’ value represents the x and y component of the velocity instead of the

position.

One can see that the gait models are relatively similar in Figures 5.7 and 5.8. The

parts A and B of the gait models also look similar. This is expected since the subjects

are all performing the same action (walk) and all subjects in the database seemed to

have a normal walk at acquisition time. The differences between the subjects’ gait are

subtle, but still visible. For instance, it is possible to see in the position-based gait

models in Figure 5.7 that the amplitude of motion for subject 1 is higher than for

1The implementation of the LDA algorithm available in [105] was used in this thesis.
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Figure 5.7 – Example of position-based gait models for four different subjects (rows) and

four different paths (columns). Parts A and B of the gait models are shown on the same

graphic. Each gait model a is 64-vector, which is shown by plotting the value of each vector’s

component. The paths are, from left to right, 1-2, 2-1, 3-1, and 5-2. The subjects are, from

top to bottom, 1, 13, 30, and 43.

the other three subjects (longer head displacement, longer strides). The amplitude of

motion for subject 43 is higher than for subject 13 and 30, and the amplitude of motion

for subject 30 is higher than subject 30. In the case of velocity-based gait models, the

velocity of subject 1 is the highest (fastest head and foot displacement), followed by

subject 43. The two other subjects have similar velocity.

Gait modelling and comparison is difficult to assess since there is no ground truth

available for the subjects gait similarity. The only ground truth that can be used here

is the person identity. The comparison results are thus presented in the context of

subjects recognition by their gait. The usual way of presenting gait recognition results

consists in using Cumulative Match Curves (CMCs) [5]. A CMC shows recognition
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Figure 5.8 – Example of velocity-based gait models for four different subjects (rows) and

four different paths (columns). Parts A and B of the gait models are shown on the same

graphic. Each gait model a is 60-vector, which is shown by plotting the value of each vector’s

component. The paths are, from left to right, 1-2, 2-1, 3-1, and 5-2. The subjects are, from

top to bottom, 1, 13, 30, and 43.

rate as a function of the rank, which is ranging from 1 to 52 (the number of subjects in

the database). The subject corresponding to a given probe gait model is considered as

recognized at rank k if the gallery gait model of the subject is in the k closest matches.

The subject is also necessarily considered recognized for ranks greater than k. The

CMC is thus a curve for which the value can only increase or remain the same between

rank k and rank k+1. One must note that the recognition rate at rank 52 is necessarily

100%.

Figures 5.9(a) and 5.9(b) present examples of CMCs for position-based and velocity-

based gait models, respectively. In these examples, the gait feature vectors from path

2-2 and 4-2 were used to obtain the gallery gait models. The gait model of the other
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Figure 5.9 – Examples of Cumulative Match Curves (CMCs) obtained using the paths 2-2

and 4-2 as the gallery, and the other paths as the probes. In (a), the CMCs for the position-

based gait models, and in (b), the CMCs for the velocity-based gait models. In (c) and (d),

the CMC statistics of the CMCs in (a) and (b), respectively. The standard deviation is shown

as error bars around be mean.

paths were used as probes, and the CMCs were computed on a path basis. For instance,

the CMC for path 1-2 was obtained by computing the distance between each of the 52

probe gait models and the 52 gallery gait models, thus leading to 52× 52 = 2704 gait

model distances. Figures 5.9(c) and 5.9(d) present the statistics on the CMCs for the

position-based and velocity-based gait models, respectively. These curves show the gait

recognition statistics obtained at each rank from the CMCs of Figures 5.9(a) and 5.9(b).

It is possible to see from these results that the recognition rates are on average

better for the velocity-based gait models than for the position-based gait models. One

can also notice that recognition rates are lower for some probe paths than other ones.
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For instance, the results for the probe paths 5-1 and 5-2 are significantly different, even

if these two paths are on the same track. Indeed, the former has one of the lowest

recognition rate, while the latter has the best recognition rate. It is possible to see in

Table 5.8 that there is a significant difference between paths 5-1 and 5-2 with respect to

the average strides lengths and cadence standard deviation. The values for the path 5-2

are close to the values of the paths 2-2 and 4-2 (the paths used for the gallery), while

they are significantly different for path 5-1. This means there are significant difference

between the probe gait model of path 5-1 and the gallery gait models, which makes the

subjects harder to recognize by their gait. This is an expected conclusion since neither

the position-based models nor the velocity-based models were designed to be invariant

to changes in the cadence or in the stride length.

The above results have shown that the obtained recognition rates most likely depend

on the paths used for the gallery. Therefore, all galleries formed by the combinations of

2, 3, and 4 paths where experimented independently for the position-based gait models

and the velocity-based gait models. For each case, the number of experimented galleries

is
(

10
2

)
+
(

10
3

)
+
(

10
4

)
= 375, where

(
n
k

)
is the number of subsets of k elements in a set

of n elements, without ordering (binomial coefficient). The total number of obtained

CMCs is
4∑
i=2

(
10

i

)
(10− i) = 2460, (5.2)

where (10 − i) is the number of probe paths, which depends on the number of paths

used for the gallery. The total number of gait model comparisons is thus 2460× 522 =

6 651 840. This high number of galleries and comparisons allows for obtaining a good

estimate of the average time to perform the learning phase of a gallery, as well as the

average time to make the 52×52 comparisons. On a computer with a dual core 2.66 GHz

CPU running non-optimized and non-parallelized MATLAB� code, the learning phase

took on average 0.6 second, while 52 × 52 gait model comparisons took on average 28

seconds. Although the gait comparison process is the heaviest part of the whole process,

it could still be performed in a real-time surveillance system since it doesn’t need to be

performed after each frame, as for the gait modelling process.

Figures 5.10 and 5.11 present the CMC statistics for the position-based gait model

and the velocity-based gait model, respectively. The CMC statistics are shown inde-

pendently for galleries formed with two paths, three paths and four paths. The overall

CMC statistics is also presented. These results clearly show that the velocity-based gait

model leads on average to higher recognition rates than the position-based gait model.

Also, one may see that the use of more paths to form the gallery leads on average to

slightly better recognition rates.
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Figure 5.10 – Cumulative match curve statistics for position-based gait models. In (a), (b),

and (c), the CMC statistics of using as the gallery all the combinations of two, three and four

paths, respectively. In (d), the combined CMC statistics from (a), (b), and (c). The standard

deviation is shown as error bars around be mean.

Overall, the above results highlight the fact that it is quite challenging to recognize

people simply by their gait. Indeed, the differences between gaits of normal subjects is

subtle, and the variations that are due to changes in walking speed make the recognition

process even more difficult. Different combinations of paths for the gallery/probes also

lead to different recognition rates. As mentioned previously, there is no ground truth

available that could confirm that some subjects have similar gaits and thus cannot be

easily set apart solely by their gait.

In terms of the robustness of the proposed method, there are cases where the

view-rectified body-part trajectories are erroneous, as seen in Section 5.2.2. The view-

rectified body-part trajectories in these cases clearly have a bad effect on the obtained
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Figure 5.11 – Cumulative match curve statistics for velocity-based gait models. In (a), (b),

and (c), the CMC statistics of using as the gallery all the combinations of two, three and four

paths, respectively. In (d), the combined CMC statistics from (a), (b), and (c). The standard

deviation is shown as error bars around be mean.

gait models for some subjects. The gait models are thus harder to match against other

gait models of the same subjects. Fortunately, the gait half-cycles where these cases

occur could potentially be discarded by analyzing the height and the orientation of the

head motion plane. It might also be possible to discard the gait half-cycles for which

the view-rectified trajectories do not lead to a realistic or possible motion. These two

post-processing steps would help improving the results obtained with the gait analysis,

modelling and comparison methods presented in this thesis.

The results presented here for gait modelling and comparison methods are quite

good considering the difficult conditions in which they were obtained. For instance,

these results were obtained only by considering the motion of the head and the feet.
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There is thus no global appearance information used in the approach proposed in this

thesis, which is in contrast with most of the gait modelling and comparison methods in

the literature. As discussed previously in Section 1.3.1, it is still unclear to what extent

the appearance-based methods benefit from the appearance information provided by the

subjects’ silhouettes. It is however clear that these methods would hardly work on the

gait database used in this thesis since many of their assumptions would not hold. Indeed,

in the proposed gait database the viewpoint is not fronto-parallel most of the time and

it is continuously changing given the distance of the subjects to the camera. The

silhouettes at the basis of the modelling and comparison in standard gait recognition

methods are thus severely distorted by the perspective distortion. Moreover, these

silhouettes could not be properly rectified since their contour points do not represent

the same physical points on the scene from one gait cycle to another. The standard

methods proposed in the literature are not invariant to changes in walk directions and

walking speed. Although the gait models proposed in this thesis are not invariant to

changes in walking speed, the view-rectification method is not influenced by them, and

thus it returns a valid fronto-parallel view of the body-part trajectories. Therefore, it

could be possible in future works to develop a gait model that is invariant to the walking

speed by using the view-rectified body-part trajectories provided by the proposed view-

rectification method.
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Conclusion

“I may not have gone where I intended

to go, but I think I have ended up

where I needed to be.”

Douglas Adams

The approach proposed in this thesis aims at performing gait analysis, modelling,

and comparison from unconstrained walks and viewpoints. Since the fronto-parallel

viewpoint is optimal for gait analysis, modelling and comparison, a novel view-rectification

method has been proposed in order to generate a fronto-parallel view of a person’s walk

from a monocular video sequence. The view-rectified walk can then be analyzed, mod-

elled and compared as if the walk was continuously observed from a fronto-parallel

viewpoint.

The proposed approach first consists in determining the imaged trajectory of the

head and the feet from the monocular video sequence that represents a person’s walk.

This is performed by tracking the positions of the head and feet in each frame of the

video sequence. The imaged feet trajectories are used to detect the gait half-cycles

by detecting the times when the distance between the feet is maximal. The imaged

motion planes, which are the image of the planes in which each body part motion is

performed during a gait half-cycle, are determined using the estimated head and feet

extremities at the beginning and end of the gait half-cycle. A fronto-parallel viewpoint

of each motion plane is then computed using the camera intrinsic parameters and the

estimated ground vanishing line. The homography that maps an imaged motion plane

to its view-rectified counterpart is used to compute the view-rectified trajectory of the

corresponding body part in a gait half-cycle. The obtained view-rectified trajectories

thus represent what could be observed from a fronto-parallel view point.
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View-rectified trajectories are used to perform gait analysis by extracting common

gait measurements as cadence, speed, stride length, displacement, gait half-cycle dura-

tion, and height. Two gait models that are computed from the view-rectified trajectories

are also proposed. The first gait model is based on the view-rectified position of the

head and the feet, while the second gait model is based on the velocity of the head and

the feet. Each gait model is formed of two parts, each part representing the gait when

the left and the right feet are moving, respectively. An improved representation of the

gait models is then learned using the LDA method on a subset of the available walks.

The improved gait models are then compared by computing the Euclidean distance

between each corresponding model part.

The proposed approach was first validated using synthetic walks comprising different

viewpoints and changes in the walk direction. The validation results showed that the

proposed view-rectification method works as expected, that is, valid gait measurements

can be extracted from the view-rectified body-part trajectories. The proposed approach

was used next to perform gait analysis, modelling, and comparison on real unconstrained

walks, which were acquired as part of this thesis. The results first showed that the

obtained gait measurements are realistic and correspond to the gait measurements

found in references on clinical gait analysis. The gait comparison results then showed

that the proposed approach can be used to perform gait modelling and comparison in

the context of surveillance applications. The obtained recognition rate are quite good

considering the challenging walks of the gait database.

6.1 Contributions

The approach proposed in this thesis provides significant contributions. These contri-

butions are categorized here as theoretical, algorithmic and experimental:

1. Theoretical contributions

(a) A novel walk model based on projective geometry that provides the spatio-

temporal links between a normal walk performed in the scene and the cor-

responding imaged walk. The walk model only requires the knowledge of

the imaged head and feet extremities at the beginning and at the end of the

gait half-cycles. This walk model is used by the view-rectification method in

order to compute view-rectified body-part trajectories.

(b) Two novel gait models based on the view-rectified body-part positions and

velocities, which are interpretable features (have a physical meaning). The
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gait models are formed of two parts, each part representing the gait during a

gait half-cycle. Features that are extracted from body-part trajectories have

not been used before for gait modelling and comparison. Also, gait models

in the literature are based on complete gait half-cycles and uses features that

are not easily interpretable.

2. Algorithmic contributions

(a) An automatic view-rectification method that generates a metric fronto-parallel

viewpoint of body-part trajectories. The view-rectified body-part trajecto-

ries allow for extracting gait measurements and models in scene units. The

proposed method works for non-frontal viewpoints as well as for walks with

changes in direction and in speed. The obtained view-rectified body-part

trajectories can be used for medical applications as well as for surveillance

applications. The methods found in the literature are restricted to one of

these applications.

(b) An automatic, real-time body parts tracking method that tracks the head

and the feet positions in the images while maintaining correspondence be-

tween the feet. It is based on silhouette analysis and motion correspondence.

(c) A method for generating 3-D synthetic walks with changes in the walk di-

rection. Synthetic 3-D body-part trajectories are generated and are imaged

using a synthetic camera. The synthetic body-part trajectories are useful for

validating a model-based, view-invariant gait analysis method.

3. Experimental contribution

(a) A novel gait database consisting of walks containing changes in the walk

direction and in the walk speed. Ten walks were performed by 52 subjects,

leading to 520 walks. In comparison to existing database, the walks are less

constrained in the proposed gait database and thus are more similar to a

real indoor surveillance scenario.

6.2 Future Work

Future work would be focused on improving some aspects of the proposed approach,

using it in other contexts, and performing further validation experiments on it. More

precisely, the following elements could be part of future work:

� Validating the view-rectification method on real walk for which ground truth

body-part positions are obtained with a motion capture system (e.g. a Vicon�
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system). This would imply much work for the acquisition process since one would

have to synchronize the motion capture system with the camera and define the

camera position in the Euclidean coordinates frame of the motion capture system.

Moreover, some methods would have to be developed to detect the gait half-cycles

in the 3-D body-part trajectories obtained with the motion capture system. This

would be necessary in order to validate the view-rectified body-part trajectories

obtained with the view-rectification method proposed in this thesis.

� Performing gender recognition using the gait. A male gait model and a female

gait model could be learned using a subset of walks in the gait database proposed

in this thesis. The gender of a subject would be determined by comparing his or

her gait model (probe) to the two gait models in the gallery.

� Performing gait modelling and comparison in the context of medical applications.

This would require to learn a gait model for each considered gait pathology using

a representative set of walks. A subject’s gait pathology would then be identified

by comparing his gait model (probe) to each gait pathology model in the gallery.

� Performing view-rectification of other body parts such as knees and hips. These

two body parts could indeed be view-rectified with the foot motion planes since

their motion is performed in those motion planes.

� Extending the gait models to include new body-parts as knees and hips. New gait

models based on the angles between the foot, knee and hip could also be defined.

� Detecting and discarding bad gait half-cycles, that is, gait half-cycles for which

the view is too frontal or for which the body-part trajectories do not represent a

possible motion. Viewpoints that are too frontal would be detected by analyzing

the orientation of the normal vector of the head motion plane. Impossible motion

would be detected by putting constraints on the difference in position that is

possible to obtained between two consecutive body-part positions in the view-

rectified body-part trajectories.

� Performing automatic camera calibration using a subset of walks. This would be a

extension of the parameters estimation process of the view-rectification method.

Camera intrinsic parameters can by estimated by computing the Image of the

Absolute Conic (IAC). The IAC can be computed using constraints defined using

the horizontal and the vertical vanishing points obtained from the subset of walks.

6.3 Related Publications

The proposed approach led to several publications in peer-reviewed conference proceed-

ings and in journals. These publications cover some parts of the proposed approach,

and some of them are earlier attempts for the methods proposed in this thesis.
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The body-part tracking method is presented in [106]. A method for tracking the

hands is also proposed in this publication, but it is not used in this thesis since the

hands can not be reliably used for gait modelling. Indeed, the hand motion is not

constrained during walk, that is, the subjects can do many different actions with their

hands while walking.

The first version of the view-rectification method is presented in [107, 108]. This

method doesn’t use the concept of gait half-cycle. It computes one plane for each

linear walk direction and uses it to perform view-rectification on both the head and feet

trajectories. The obtained view-rectified trajectories are not metric, and the relative

position of the head and feet in the scene is not recovered because their motion was

considered as performed in the same plane.

The second version of the view-rectification method was presented in [109, 110].

This version of the method introduced the concept of view-rectification on a gait half-

cycle basis. As in the first version of the method, only one plane was used to perform

view-rectification of both head and feet trajectories.

The view-rectification method proposed in this thesis is presented in [111]. The

proposed gait analysis, modelling and comparison methods will constitute the subject

of future publications.



Appendix A

Generation of a Synthetic Walk

This appendix describes the method used to generate synthetic walks. Synthetic walks

are used in Section 5.1 in order to validate the view-rectification method proposed in

Chapter 3.

The generation of a synthetic walk consists in three steps: (i) synthetic path defi-

nition (Section A.1), (ii) 3-D body-part trajectories generation (Section A.2), and (iii),

synthetic camera viewpoint definition (Section A.3). The method proposed here is

based on the walk model presented in Section 3.3. The 3-D body-part trajectories are

thus generated so that they lie in the motion planes described in the walk model.

In order to generate a 3-D synthetic walk, several parameters must be defined:

� h, the height of the synthetic walker;

� l, the label of the leading foot (l ∈ {R, L}), which is the foot that will move first

in the synthetic walk;

� δs, the stride length of the leading foot;

� δw, the stride width;

� δt, the duration in frames of a gait half-cycle;

� νH, the vertical amplitude of the head motion as a percentage of the height h;

� νF, the vertical amplitude of the foot motion as a percentage of the height h;

� O, the initial 3-D position of the leading foot;

� {θj}, j = 1, 2, · · · , J , the angles representing the direction of motion of the leading

foot for each gait half-cycle in which it is moving.
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Algorithm A.1: Extremity positions of the leading foot.

1: El[1] = O ⇒ initial extremity position

2: El[2] = O +
(
δs
2

cos θ1, 0, δs
2

sin θ1

)T ⇒ foot is moving, half stride

3: El[3] = El[2] ⇒ foot is still

4: K = 3

5: for j = 2, . . . , J do

6: K = K + 1

7: El[K] = El[K − 1] + (δs cos θj, 0, δs sin θj)
T ⇒ foot is moving

8: K = K + 1

9: El[K] = El[K − 1] ⇒ foot is still

10: end for

Also, some parameters are needed in order to define a synthetic camera viewpoint:

� f , the focal length of the camera (in meters);

� ζ, the size (in meters) of a pixel on the synthetic camera sensor (pixels are square);

� (u0, v0), the coordinate of the camera principal point in the image (in pixels);

� Xc, the 3-D position of the camera in the scene;

� (αy, αx, αz), the orientation of the camera in the scene, defined as the rotation

angles around the scene axes Y , X, and Z (in that order).

Each required step for the generation of a synthetic walk is presented in the following

sections. This appendix is then concluded by describing the minor modifications to some

of the steps of the view-rectification method so that synthetic body-part trajectories

can be processed.

A.1 Synthetic Path Definition

The first step of the generation of a synthetic walk consists in defining a synthetic

path followed by the “synthetic walker”; that is, the direction of motion of the head

and the feet are defined in the scene for each key time of a walk. This is performed

by first defining on a key time basis the extremity positions of the leading foot on

the ground plane using the provided 3-D initial position O and the set of J directions

{θj}, j = 1, 2, · · · , J . One must note that the leading foot is defined here as the foot

that moves in the first gait half-cycle. It is the foot for which the initial position

and the direction of motion are specified as parameters. All the other 3-D body-part

extremities and trajectories will be defined with respect to the leading foot extremity
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Algorithm A.2: Extremity positions of the trailing foot.

1: if l = L then ⇒ leading foot is the left foot

2: ε = 1

3: else if l = R then ⇒ leading foot is the right foot

4: ε = −1

5: end if

6: D = unit (El[2]− El[1]) ⇒ unit vector on the leading foot stride line

7: D⊥ = perp (D) ⇒ perpendicular vector in the X − Z plane

8: El̄[1] = El[1] + εδwD⊥ ⇒ position for first key time

9: for k = 2, . . . , K − 1 do

10: if k is even then ⇒ trailing foot is still

11: El̄[K] = El̄[K − 1]

12: else if k is odd then ⇒ trailing foot is moving

13: D = unit (El[k + 1]− El[k])

14: D⊥ = perp (D)

15: El̄[k] = 1
2

(El[k] + El[k + 1]) + εδwD⊥ ⇒ position for kth key time

16: end if

17: end for

18: D = unit (El[K − 1]− El[K − 2])

19: D⊥ = perp (D)

20: El̄[K] = El[K] + εδwD⊥ ⇒ position for last key time

positions. Also, the coordinates in the synthetic scene are defined using three axes, X,

Y , and Z, where the Y axis represents the vertical direction and the plane Y = 0 (the

X − Z plane) represents the ground plane.

The definition of the leading foot extremity position at each key time is performed

using Algorithm A.1, and an example of defined extremity positions is shown in Figure

A.1(a). One should note that the length of the first stride performed by the leading

foot is δs/2 since the walk is simulated from a standing position where both feet are side

by side and are in contact with the ground plane. Beside the initial extremity position

El[1] and the extremity position El[2], the other extremity positions of the leading foot

are defined as per the walk model described in Section 3.3 (if the leading foot is moving

in a given gait half-cycle, then it is still in the previous and the next gait half-cycles).

One must note that by providing J directions for the leading foot, the synthetic walk

will consist in K = 2J + 1 key times, and therefore C = K − 1 = 2J gait half-cycles.

The extremity positions of the trailing foot l are computed using Algorithm A.2,

and an example of the computed trailing foot extremity positions is shown in Figure

A.1(b). The extremity positions of the trailing foot for the first and the last key times
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Figure A.1 – Example of computed 3-D body-part extremities. The parameters that are

used in this example are h = 1.8 m, δs = 1.35 m, δw = 0.12 m, and the leading foot is

the right foot (l = R). In (a), the extremity positions of the leading foot on the ground

plane X − Z are computed for an initial position O = (1.5, 0, 4.5)T and for direction angles

{−75◦,−55◦,−35◦,−15◦}. In (b), the computed trailing foot extremity positions are shown

along with the extremity positions of the leading foot, and in (c), the computed feet middle

point are shown. In (d), the computed feet extremity positions, the feet middle points and

the head extremity positions are shown in the synthetic scene.

are computed such that the synthetic walker stands still; that is, the trailing foot

position is at a distance δw (the stride width) from the leading foot, in the direction

perpendicular to the motion of the leading foot in the first and the last gait half-cycles.

Besides these two cases, the kth trailing foot extremity position is computed such that

it is at a distance of δw from the middle point on the line segment joining the kth and

the (k + 1)th leading foot extremity positions.

Once the extremity positions of both feet are computed, it is possible to compute

the feet middle point positions EM[k] as

EM[k] =
1

2
(EL[k] + ER[k]) . (A.1)

The head extremity positions are then computed as the positions at a distance of
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h(1− νH) above the feet middle point positions:

EH[k] = EM[k] +
(
0, h(1− νH), 0

)T
. (A.2)

As described in the walk model, the head is not at its highest position with respect to

the ground plane at each key time since the feet are further apart at these times, and

thus the walker should appear a little bit shorter. Examples of computed feet middle

positions and head extremity positions are shown in Figures A.1(c) and A.1(d).

Finally, the key times are defined as follow:

tk =

{
1 if k = 1,

tk−1 + δt otherwise.
(A.3)

One must note that a key time might not be an integer frame number depending on

the value of the duration parameter δt.

A.2 3-D Body-part Trajectories Generation

The 3-D body-part trajectories are generated on a gait half-cycle basis once the head

and the feet extremity positions are determined at each key time. The body-part

positions that are going to be generated at each frame in a gait half-cycle will represent

the body-part extremity positions at each frame, and not the body-part mass centre as

in the case of a real walk. This simplifies the synthetic walk generation process by only

having to generate one position per frame per body part, instead of having to generate

a mass centre position along with a bounding box for each body part at each frame.

The implications of this simplification on the use of the view-rectification method with

the synthetic imaged body-part trajectories will be discussed in Section A.4.

A.2.1 3-D Head Trajectory Generation

A 3-D head trajectory is generated as a 3-D curve having a sinusoidal motion component

in the direction of the walk as well as a sinusoidal motion component in the vertical

direction. There is no lateral motion component, which means that the 3-D head

trajectory lies in a plane perpendicular to the ground plane and parallel to the direction

of the walk for a given gait half-cycle (i.e the head trajectory lies in the head motion

plane as defined in the walk model). For a gait half-cycle c, the normalized position of
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Figure A.2 – Example of 3-D head trajectory for a gait half-cycle c that starts at key time

tc = 1.5 and ends at key time tc+1 = 16.5 (δt = 15). The parameters are the same as in Figure

A.1, and νH = 0.0278. In (a), the normalized positions of the head on the head displacement

line. This represents the sinusoidal motion component in the direction of walk. The vertical

motion component of the head is shown in (b), and the 3-D head trajectory is shown in (c).

the head on the head line segment defined by the extremity positions EH[c] and EH[c+1]

(i.e. the head displacement line) is defined as

ρH[n] =
8τ [n] + cos (πτ [n])− 1

6
, (A.4)

where τ [n] is the normalized time in gait half-cycle c and is defined as

τ [n] =
n− dtce
btc+1c − dtce

, dtce ≤ n ≤ btc+1c . (A.5)

The normalized time τ [n] represents the percentage of the gait cycle c in function of the

frame number such that τ [dtce] = 0 and τ [btc+1c] = 1. Similarly, ρH[n] represents the

normalized position of the head on the head displacement line such that ρH[dtce] = 0 and

ρH[btc+1c] = 1. This represents the head sinusoidal motion component in the direction

of the walk and it is designed so that the velocity of the head is faster at the beginning

and at the end of the gait half-cycle, and slower in the middle of the gait half-cycle. An

example of the normalized position of the head is shown in Figure A.2(a).

The 3-D head trajectory PH[n] in gait half-cycle c starting at key time tc and ending

at key time tc+1 is then computed using the normalized time and the normalized position

of the head on the head displacement line as

PH[n] =

 EH,x[c] + ρH[n]
(
EH,x[c+ 1]− EH,x[c]

)
EH,y[c] + hνH

2

(
1− cos (2πρH[n])

)
EH,z[c] + ρH[n]

(
EH,z[c+ 1]− EH,z[c]

)
 , (A.6)

where EH,x[c], EH,y[c], and EH,z[c] are the X, Y , and Z component of the head extremity

position at key time tc, and dtce ≤ n ≤ btc+1c. It is possible to see that the vertical
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component of the head trajectory is designed such that it is maximal at the middle of

the gait half-cycle (equals to h), and minimal at the beginning and at end of the gait

half-cycle (equals to h(1 − νH)). An example of the vertical component of the head is

shown in Figure A.2(b), and the 3-D trajectory of the head is shown in Figure A.2(c).

A.2.2 3-D Foot Trajectory Generation

The 3-D foot trajectory is generated such that the motion component in the direction

of the walk is at a complete stop at the beginning and at the end of the gait half-cycles,

and at a maximum velocity in the middle of the gait half-cycle. The vertical component

of the foot is designed such that it is at the ground level (Y = 0) at the beginning and

at the end of the gait half-cycle, and at a maximal height in the middle of the gait

half-cycle. There will be no lateral motion component, which means that the 3-D foot

trajectory will lie in a plane slightly slanted with respect to the vertical (i.e the foot

trajectory lies in the foot motion plane as defined in the walk model).

For a gait half-cycle c, the positions of the still foot (with label m̄) are defined as

Pm̄[n] = Em̄[c], dtce ≤ n ≤ btc+1c , (A.7)

that is, all the foot positions in the gait half-cycle are equal to the foot extremity

position at the beginning of the gait half-cycle. In the case of the moving foot (with

label m), the normalized position of the foot on the stride line is defined as

ρF[n] =
1− cos (πτ [n])

2
, (A.8)

where τ [n] is the normalized time in the gait half-cycle c, as defined in Equation A.4.

An example of the normalized positions of the foot is shown in Figure A.3(a).

The 3-D foot trajectory for the moving foot in gait half-cycle c is defined using the

normalized time τ [n] and the normalized foot positions on the stride line ρF[n]:

Pm[n] =

 Em,x[c] + ρF[n]
(
Em,x[c+ 1]− Em,x[c]

)
0

Em,z[c] + ρF[n]
(
Em,z[c+ 1]− Em,z[c]

)
+

hνF

(
1− cos (2πρF[n])

)
2

V[c],

(A.9)

where the vector V[c] is defined for a gait half-cycle c as

V[c] = unit
{

EH[c]− Em[c]−〈
EM[c]− Em[c], unit (Em[c+ 1]− Em[c])

〉
unit

(
Em[c+ 1]− Em[c]

)}
, (A.10)
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Figure A.3 – Example of 3-D foot trajectory for a gait half-cycle c that starts at key time

tc = 1.5 and ends at key time tc+1 = 16.5 (δt = 15). The parameters are the same as in

Figure A.1, and νF = 0.03. In (a), the normalized positions of the foot on the stride line. The

vertical motion component of the foot is shown in (b), and the 3-D foot trajectory is shown

in (c).

where unit(X) = X/ ‖X‖, and 〈X,Y〉 is the inner product of vectors X and Y. The

first term of Equation A.9 defines a position on the X − Z plane (ground plane),

which is also a position on the stride line. The second term of Equation A.9 defines a

vector perpendicular to the stride line but slightly slanted with respect to the vertical

direction such that it points towards the head displacement line. The length of this

vector is defined according to the factor 1
2
hνF

(
1 − cos (2πρF[n])

)
, which equals zero at

the beginning and at the end of the gait half-cycle, and equals hνF in the middle of

the gait half-cycle. An example of the values taken by this factor is shown in Figure

A.3(b), and an example of a 3-D foot trajectory is presented in Figure A.3(c).

An example of the 3-D body-part trajectories obtained for a synthetic walk are

presented in Figure A.4. The synthetic walk consists in 8 gait half-cycles where the

synthetic walker changes the direction of walk by about 10◦ for each gait half-cycle

(except the last one). The vertical component of the head motion is sinusoidal and

is similar to what can be observed from a real walk. Moreover, the foot trajectories

respect the typical dynamics of the walk pattern, that is, when a foot is moving, the

other foot is still. The synthetic walk starts and ends with the two feet side by side,

and thus, the first and the last “half-cycles” are not complete.

A.3 Synthetic Camera Viewpoint Definition

An image of the 3-D body-part trajectories can be generated from a given position and

orientation by defining a synthetic camera viewpoint in the synthetic scene. This is
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Figure A.4 – Example of generated 3-D body-part trajectories obtained for a synthetic

walk. The parameters are h = 1.8 m, δs = 1.35 m, δw = 0.12 m, δt = 15, l = R, νH = 0.0194,

νF = 0.03, O = (1.5, 0, 4.5)T and the direction angles are {−75◦,−55◦,−35◦,−15◦}.

performed by defining a projection matrix M that transforms the 3-D points in the

scene into 2-D points in the synthetic camera image [98]. The matrix M is defined as

M = K R
[
I3×3

∣∣−Xc

]
, (A.11)

where K is the synthetic camera intrinsic parameters, Xc is the 3-D position of the

camera in scene coordinates, I3×3 is a 3× 3 identity matrix, and R is a rotation matrix

that defines the orientation of the camera in the scene. The camera intrinsic parameters

matrix is defined as

K =

 fζ−1 0 u0

0 −fζ−1 v0

0 0 1

 , (A.12)

where f is the camera focal length (in meters), ζ is the size of a pixel (in meters), and

(u0, v0) is the coordinate in pixels of the principal point. One must note here that the

synthetic camera has square pixels (no skew). The rotation matrix R is defined as the

product of three rotation matrices Rz, Rx, and Ry:

R =

 cosαz − sinαz 0

sinαz cosαz 0

0 0 1


︸ ︷︷ ︸

Rz

 1 0 0

0 cosαx − sinαx
0 sinαx cosαx


︸ ︷︷ ︸

Rx

 cosαy 0 sinαy
0 1 0

− sinαy 0 cosαy


︸ ︷︷ ︸

Ry

,

(A.13)

where αy, αx, and αz are the rotation angle to apply to the scene axes Y , X, and Z in

order to define the orientation of the camera.

Once the synthetic camera projection matrix is defined, the imaged position p`[n]

of each 3-D position P`[n] of a body part ` ∈ {H, L,R} is computed as

p̃`[n] = M P̃`[n], (A.14)
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Figure A.5 – Example of 3-D and imaged body-part trajectories. In (a), the 3-D body-part

trajectories of a synthetic walk are shown along with the camera position (magenta point)

and orientation (blue pyramid). In (b), the imaged body-part trajectories are shown in the

synthetic camera image (1024 × 768). The synthetic walk parameters are the same as in

Figure A.4. The synthetic camera parameters are Xc = (0, 2, 0)T, f = 8 mm, ζ = 10 µm,

(u0, v0) = (512, 384), and (αy, αx, αz) = (−45◦,−15◦,−10◦).

where P̃`[n] and p̃`[n] are the homogeneous coordinates representation of P`[n] and

p`[n], respectively. An example of 3-D body-part trajectories and their imaged coun-

terpart is shown in Figure A.5.

A.4 Conclusion

The proposed method for generating a synthetic walk is used in Section 5.1 in order

to validate the view-rectification method. The view-rectified body-part trajectories

are obtained using the proposed view-rectification method on the synthetic imaged

body-part trajectories. Validation of the view-rectified body-part trajectories is possi-

ble since all the ground truth gait measurements (stride lengths, gait half-cycle dura-

tions, displacements, heights, cadence, speed) can be obtained from the generated 3-D

body-part extremities and the parameters of the synthetic walk. Moreover, the ground

truth fronto-parallel body-part trajectories can be obtained from the 3-D body-part

trajectories since the plane in which each 3-D body-part trajectory lie is known. The

view-rectified body-part trajectories can thus be validated on a gait half-cycle basis by

performing a point to point comparison with the ground truth body-part trajectories.

There are two remarks to make on the processing of the synthetic body-part tra-
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jectories by the proposed view-rectification method. Firstly, one should note that the

first and the last gait half-cycle are not complete, and thus are not be processed by

the view-rectification method. Indeed, the first and the last “key times” t1 and tK are

not valid key times, that is, the feet distance is not maximal at these times. Thus,

the view-rectification method will process the body-part trajectories from t2 to tK−1.

Secondly, minor changes to the view-rectification method are also needed since the gen-

erated body-part trajectories represent body-part extremity positions instead of mass

centre positions, and no body-part bounding boxes are generated. For these reasons,

the foot extremity position (Section 3.5.1.1) at frame n is now defined as p`B[n] = p`[n],

` ∈ {L,R}. Similarly, the position of the top of the silhouette (Section 3.5.1.3) at frame

n is now defined as pHT[n] = pH[n]. The head extremity at key time tc is thus defined

as eH[c] = pHT(tc), which is a linear interpolation of the position of the top of the sil-

houette. All other steps of the proposed view-rectification method remain unchanged.



Appendix B

Gait Database Acquisition Setup

This appendix presents the gait database that was acquired in the context of this

thesis. The acquisition process was performed in the acquisition room of the Computer

Vision and Systems Laboratory at Université Laval. As discussed in section 1.3.3, this

database has some characteristics not found in other gait databases, and as such, it is

a contribution of the thesis. The main characteristic of the database is the wide range

of viewpoints that is induced by the direction of the walks and the direction change

during the walks with respect to the camera optical axis.

The remaining of this appendix is structured as follow. The acquisition room layout

is presented in Section B.1 and the hardware used in the acquisition process is described

in Section B.2. The camera calibration procedure is detailed in Section B.3. The

walk tracks on which the subjects walked and the data that was acquired during the

acquisition process are described in Sections B.4 and B.5 respectively.

B.1 Acquisition Room Layout

The acquisition room layout is presented in Figure B.1, and some photos are presented

in Figure B.2. Since this thesis in not focused on improving background subtraction

algorithms, a simple white background was used in order to get good contrast between

the background and the subjects. The white background was obtained by using curtains

that delineate the workspace needed for the acquisition process. The curtains were

attached to the ceiling and were fixed to the floor in order to limit their motion when

a subject walked in the workspace (see Figures B.2(a), B.2(b), and B.2(c)). The same
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Figure B.1 – A scale representation of the acquisition room layout with position of the

camera and the walk start/stop points. The approximated line of sight and field of view of

the camera are also shown.

clothing was used just below the strip lighting in order to decrease the specular effect on

the floor induced by the direct lighting. The camera was positioned close to the ceiling

(see Figures B.2(b) and B.2(d)) in order to simulate the view obtained by surveillance

cameras. The walk start/stop points (where the subject starts or stops walking) were

positioned in order to obtain the greatest number of non-frontal gait cycles in the

camera field of view.

B.2 Hardware

The camera used in the acquisition process is a Dragonfly®2 model DR2-HICOL-

CSBOX from Point Grey Research, mounted on a Manfrotto 161MK2 tripod with

a Manfrotto 329RC4 3-way head. This camera uses a 1/3" Sony® CCD sensor and is

connected to a computer through a Firewire 400 bus.

The acquisition of the video sequences were made at a resolution of 1024 × 768
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(a) (b) (c) (d)

Figure B.2 – Photos of the acquisition room setup. In (a), a photo taken close to the camera

position towards start/stop point C and in (b), a photo taken close to the start/stop point C

towards the camera. A photo toward start/stop point B is shown in (c). The photo in (d)

shows a close-up of the camera that is positioned close to the ceiling, as it can be seen in (b).

pixels and at an approximate frame rate of 30 fps. To obtain colour video sequences

at the mentioned resolution and frame rate, one have to use this camera in a special

mode where frames are sent unprocessed to the computer in BAYER pattern format

(1024 × 768, 8 bits per pixel). The frames have to be post-processed by software

(using some functions provided by the PGRFlyCapture library) upon reception by the

computer in order to obtain RGB colour frames.

The computer used for the acquisition process is a Windows® XP PC with two Dual

Core AMD Opteron� at 1.81 GHz. An in-house software was developed in order to the

perform the acquisitions since it is the only way to perform it at the desired resolution

and frame rate. The software is built in C++ and uses the PGRFlyCapture library

provided by Point Grey Research. It performs the acquisition at the maximum speed

permitted by a Firewire 400 bus (which is about 30 fps for the wanted resolution) and

also extract a timestamp for each of the acquired frame (more details in section B.5).

B.3 Camera Calibration

The camera calibration process consists in computing the camera intrinsic parameters

along with some distortion parameters. The method necessitates the use of a calibration

target on which a grid of black dots is printed. In this work, the target that was used

is a print laminated on a piece of MDF (Medium Density Fibreboard). The dots are

of the same size and are equidistant, except for a special dot pattern in the middle of

the target used to determine the target orientation (those dots are bigger and closer

than the normal ones). An image collection of the calibration target is acquired with

the camera, and each image represents the target in a different pose with respect to the
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Figure B.3 – Different camera images of the calibration target.

camera. Examples of the calibration target images acquired with the camera are shown

in Figure B.3.

The algorithm presented in [85] is used in order to compute the camera intrinsic and

distortion parameters from the collected images of the target. The intrinsic parameters

computed by this algorithm1 are the focal length f (in pixels), the pixel aspect ratio

s, and the coordinates of the principal point (u0, v0). It is known from the camera

specifications that the camera has a pixel size of ζ = 10 µm. The calibration algorithm

also accounts for two sorts of distortion induced by the lens system, namely the radial

distortion and the tangential distortion. The former is represented by two coefficients,

k1 and k2, and the latter is represented by two coefficients, p1 and p2. The camera

intrinsic and distortion parameters obtained from the camera calibration process are

presented in Table B.1. The underlying method for estimating all those parameters

from the collected images of the target is out of the scope of this thesis. The interested

reader may refer to [85] for more details.

f u0 v0 s k1 k2 p1 p2

762.72 528.83 402.31 1.00027 4.36×10−3 2.26×10−5 2.77×10−5 -2.51×10−4

Table B.1 – Camera intrinsic and distortion parameters obtained by camera calibration.

B.4 Walk Tracks

Figure B.4 shows the layout of the tracks, that is, the approximate “paths” on which

the subjects were asked to walk. The tracks were not “drawn” on the floor; they were

indicated to the subject by the start/stop points and a control point at the position

of highest curvature of the track shape. This was made in order to have the subjects

execute a normal walk while having the wanted changes in walk direction and viewpoints

1It is supposed that the pixels are not skewed, that is, the intrinsic skew parameter is zero.
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Figure B.4 – Walk tracks layout.

for the gait database. The track’s control point was indicated on the floor using a piece

of white tape. The subjects were asked to walk normally at a constant pace from a

given start point to a given stop point while changing smoothly their walk direction to

pass close to the indicated control point.

The track #1 provides a close fronto-parallel view of the subjects, that is, the angles

between the track and the camera optical axis is about 90◦and the subjects walked very

close to the camera. It is worth noting that there is no control point for track #1 since

it represents a straight line walk. Track #2 has the subjects change constantly but

smoothly their walk direction while remaining close to the camera. For the tracks #3,

#4, and #5, the subjects are close to the camera at one end point and are far from

the camera at the other end point. This makes the apparent height of a subject very

different (by a factor of 2) within the same video sequence. These three tracks contain

a change in the walk direction that occurs at different positions in the acquisition room.

The smoothness of the direction change is also different in each of these tracks.
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Label Track From To Duration (frames) Duration (seconds)

path 1-1 1 A B 297± 40 9.8± 1.3

path 1-2 1 B A 276± 34 9.1± 1.1

path 2-1 2 A B 311± 37 10.2± 1.2

path 2-2 2 B A 305± 41 10.0± 1.3

path 3-1 3 B C 429± 47 14.1± 1.5

path 3-2 3 C B 443± 51 14.6± 1.7

path 4-1 4 B C 436± 48 14.4± 1.6

path 4-2 4 C B 456± 54 15.0± 1.8

path 5-1 5 B C 381± 43 12.6± 1.4

path 5-2 5 C B 399± 45 13.1± 1.5

Table B.2 – Acquired video sequences with details about corresponding tracks, origin and

destination points, and average duration statistics.

B.5 Acquired Data

The proposed database consists in 52 volunteers (31 males, 21 females) who walked on

each of the tracks presented in Figure B.4. Each subject was given an ID number from

1 to 52. The subjects were aged from 20 to 55, with an average2 of 29.5 ± 8.1 years

old. The average subject height3 was 1.72 m±0.09 m (males: 1.76 m±0.08 m; females:

1.65 m± 0.09 m).

For each subject, ten separate video sequences were acquired. The Table B.2

presents the label given to each of the video sequences along with the track number and

the origin/destination point to which they correspond. The average duration statistics

are also presented for each sequence and were computed by considering the sequence

duration of the 52 subjects. The subjects walked twice on each track, one time in a

direction and the other time in the opposite direction. This makes 10 sequences per

subject, for a total of 520 video sequences.

Each video sequence starts with at least 100 frames (∼3 seconds) of static back-

ground, that is, frames in which the acquisition room is observed while nobody is

visible in the field of view of the camera. This is necessary for the background sub-

traction algorithms considered in this work (see section 2.3.2). Finally, a timestamp

was retrieved for each frame of each video sequence, with an accuracy of 1 ms. The

timestamps are used by the proposed view-rectification method presented in Chapter

3 and by the proposed gait analysis and modelling methods presented in 4.

2The notation used here for the statistics is defined as average ± standard deviation.
3Statistics based on approximate heights reported by the subjects.
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Gait Analysis Results

This appendix presents the gait analysis results for all the walks in the gait database

described in Appendix B. The results are presented in the table in the following pages.

Each row of the table presents the gait analysis results for a given subject and a given

walk (path). Each column of the table represent a different information or result as

follow:

Subject : The unique ID of the subject, which is a number between 1 and 52;

Gender : The gender of the subject, either male (M) or female (F);

Stature : The subject’s stature, which is the height reported by the subject during

the gait database acquisition process;

Path : The label of the path, which corresponds to a walk defined by a track num-

ber and an origin and a destination point (see Table B.2); The walk is entirely

contained in a video file;

Frames : The number of frames in the walk where the subject is completely visible in

the field of view of the camera;

Use : The percentage of the number of frames in the walk that are part of a detected

gait half-cycle;

Intervals : The number of continuous tracking intervals in the walk;

½Cycles : The total number of detected gait half-cycles in the walk (all intervals);

Cadence : The cadence computed for the whole walk using Equation 4.6;
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Speed : The speed computed for the whole walk using Equation 4.7;

Duration : The mean and the standard deviation of the gait half-cycle durations,

where the duration of a gait half-cycle is computed using Equation 4.5;

Strides : The mean and the standard deviation of the stride lengths, where the stride

length for a gait half-cycle is computed using Equation 4.1;

Displacement : The mean and the standard deviation of the displacements, where

the displacement for a gait half-cycle is computed using Equation 4.2;

Height : The mean and the standard deviation of the computed subject’s heights,

where the subject’s height for a gait half-cycle is computed using Equation 4.8.

∆Height : The percentage of difference between the computed mean height and the

stature, which is computed as

100× |height− stature|
stature

,

where | · | is the absolute value.

The gait analysis results are further analyzed and discussed in Section 5.2.2.
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Subject Gender Stature Path Frames Use Intervals ½Cycles Cadence Speed Duration Strides Displacement Height ∆Height

(ID) (M/F) (m) (ID) (num.) (%) (num.) (num.) (steps/min) (m/min) (s) (m) (m) (m) (%)

1 F 1.78

1-1 61 72.1 1 3 123.4 92.98 0.486 ± 0.009 1.507 ± 0.012 0.754 ± 0.006 1.764 ± 0.013 0.89

1-2 53 54.7 1 2 125.0 98.31 0.480 ± 0.029 1.573 ± 0.038 0.786 ± 0.019 1.786 ± 0.014 0.35

2-1 85 70.6 1 4 121.1 88.36 0.496 ± 0.008 1.460 ± 0.043 0.730 ± 0.021 1.744 ± 0.015 2.09

2-2 81 72.8 1 4 122.5 91.82 0.490 ± 0.009 1.500 ± 0.060 0.750 ± 0.030 1.738 ± 0.006 2.40

3-1 181 39.2 1 5 127.0 94.15 0.472 ± 0.006 1.483 ± 0.117 0.741 ± 0.059 1.759 ± 0.012 1.20

3-2 179 63.1 1 8 128.7 97.46 0.466 ± 0.022 1.522 ± 0.080 0.757 ± 0.047 1.766 ± 0.032 0.80

4-1 196 73.0 2 10 127.2 98.02 0.472 ± 0.011 1.542 ± 0.049 0.771 ± 0.025 1.836 ± 0.004 3.05

4-2 201 64.7 2 9 125.5 98.38 0.478 ± 0.017 1.568 ± 0.033 0.784 ± 0.017 1.765 ± 0.009 0.84

5-1 148 39.2 1 4 125.5 97.63 0.478 ± 0.007 1.556 ± 0.035 0.778 ± 0.017 1.774 ± 0.010 0.35

5-2 150 38.0 1 4 128.1 98.05 0.468 ± 0.011 1.530 ± 0.030 0.765 ± 0.015 1.777 ± 0.007 0.16

2 M 1.75

1-1 76 69.7 1 3 104.2 76.07 0.576 ± 0.001 1.460 ± 0.053 0.730 ± 0.027 1.736 ± 0.012 0.81

1-2 65 80.0 1 3 106.3 82.06 0.565 ± 0.005 1.544 ± 0.015 0.772 ± 0.008 1.751 ± 0.009 0.08

2-1 101 68.3 1 4 105.0 78.51 0.572 ± 0.009 1.496 ± 0.044 0.748 ± 0.022 1.723 ± 0.009 1.59

2-2 90 76.7 1 4 104.9 82.02 0.572 ± 0.021 1.564 ± 0.051 0.782 ± 0.026 1.719 ± 0.008 1.80

3-1 226 29.2 1 4 109.9 80.20 0.546 ± 0.012 1.463 ± 0.179 0.730 ± 0.093 1.726 ± 0.015 1.42

3-2 215 47.9 1 6 105.8 80.33 0.567 ± 0.019 1.530 ± 0.034 0.759 ± 0.029 1.768 ± 0.038 1.03

4-1 245 70.2 2 10 105.4 79.82 0.570 ± 0.023 1.515 ± 0.106 0.758 ± 0.053 1.737 ± 0.011 0.77

4-2 252 69.4 2 10 104.0 79.71 0.577 ± 0.015 1.533 ± 0.042 0.766 ± 0.021 1.741 ± 0.007 0.51

5-1 191 62.3 2 7 107.2 79.17 0.560 ± 0.023 1.477 ± 0.100 0.738 ± 0.050 1.729 ± 0.006 1.21

5-2 203 43.3 1 5 103.0 75.90 0.583 ± 0.022 1.474 ± 0.032 0.737 ± 0.016 1.743 ± 0.007 0.41

3 M 1.73

1-1 78 66.7 1 3 106.0 69.92 0.566 ± 0.022 1.319 ± 0.036 0.659 ± 0.018 1.750 ± 0.017 1.15

1-2 71 69.0 1 3 112.1 80.64 0.535 ± 0.015 1.438 ± 0.057 0.719 ± 0.029 1.736 ± 0.004 0.37

2-1 100 70.0 1 4 104.5 70.21 0.574 ± 0.005 1.344 ± 0.044 0.672 ± 0.022 1.713 ± 0.013 0.99

2-2 98 72.4 1 4 103.4 71.61 0.580 ± 0.035 1.385 ± 0.070 0.692 ± 0.035 1.733 ± 0.008 0.16

3-1 249 33.3 1 5 109.6 70.12 0.548 ± 0.024 1.282 ± 0.148 0.640 ± 0.076 1.742 ± 0.013 0.69

3-2 223 22.0 1 3 110.8 77.76 0.542 ± 0.015 1.404 ± 0.037 0.702 ± 0.018 1.779 ± 0.009 2.77

4-1 231 71.9 2 10 109.7 77.06 0.547 ± 0.035 1.406 ± 0.080 0.703 ± 0.040 1.762 ± 0.008 1.80

4-2 220 59.5 2 8 111.0 80.59 0.540 ± 0.027 1.452 ± 0.045 0.726 ± 0.022 1.778 ± 0.008 2.67

5-1 192 40.6 1 5 116.7 87.40 0.514 ± 0.023 1.498 ± 0.024 0.749 ± 0.012 1.748 ± 0.005 1.01

5-2 198 32.8 1 4 112.5 77.57 0.533 ± 0.031 1.379 ± 0.046 0.689 ± 0.023 1.742 ± 0.013 0.69

4 M 1.85

1-1 74 70.3 1 3 104.6 78.16 0.574 ± 0.017 1.494 ± 0.025 0.747 ± 0.012 1.820 ± 0.018 1.65

1-2 61 55.7 1 2 108.0 79.96 0.556 ± 0.026 1.482 ± 0.029 0.741 ± 0.014 1.834 ± 0.025 0.85

2-1 98 72.4 1 4 103.2 73.62 0.582 ± 0.019 1.427 ± 0.052 0.714 ± 0.026 1.812 ± 0.017 2.10

2-2 98 71.4 1 4 104.3 75.53 0.575 ± 0.018 1.449 ± 0.061 0.724 ± 0.031 1.807 ± 0.014 2.40

3-1 240 28.3 1 4 107.0 75.25 0.561 ± 0.006 1.408 ± 0.039 0.703 ± 0.020 1.808 ± 0.015 2.30

3-2 258 32.9 1 5 107.1 73.82 0.560 ± 0.034 1.378 ± 0.099 0.689 ± 0.049 1.807 ± 0.017 2.39

4-1 241 84.2 2 12 108.1 79.14 0.555 ± 0.026 1.466 ± 0.107 0.732 ± 0.054 1.846 ± 0.009 0.22

4-2 250 67.6 2 10 107.8 80.85 0.557 ± 0.025 1.500 ± 0.025 0.750 ± 0.012 1.822 ± 0.009 1.51

5-1 177 37.3 1 4 110.4 84.88 0.543 ± 0.019 1.538 ± 0.021 0.769 ± 0.010 1.821 ± 0.010 1.61

5-2 187 35.8 1 4 108.4 82.03 0.553 ± 0.022 1.513 ± 0.033 0.757 ± 0.017 1.804 ± 0.008 2.53

5 M 1.62

1-1 85 55.3 1 3 114.8 74.72 0.523 ± 0.016 1.302 ± 0.012 0.651 ± 0.006 1.635 ± 0.008 0.94

1-2 95 71.6 1 4 106.1 66.11 0.565 ± 0.014 1.246 ± 0.015 0.623 ± 0.008 1.647 ± 0.009 1.64

2-1 124 72.6 1 5 101.7 59.33 0.590 ± 0.017 1.167 ± 0.074 0.584 ± 0.037 1.622 ± 0.012 0.12

2-2 121 71.9 1 5 104.7 63.04 0.573 ± 0.021 1.204 ± 0.065 0.602 ± 0.032 1.564 ± 0.010 3.59

3-1 271 37.3 1 6 107.5 66.37 0.558 ± 0.015 1.235 ± 0.057 0.618 ± 0.029 1.639 ± 0.006 1.16

3-2 272 31.2 1 5 107.3 65.70 0.559 ± 0.010 1.225 ± 0.012 0.613 ± 0.006 1.619 ± 0.011 0.04

4-1 288 76.0 2 13 107.7 66.64 0.557 ± 0.020 1.238 ± 0.028 0.619 ± 0.014 1.668 ± 0.007 2.85

4-2 289 69.2 2 12 109.2 67.42 0.550 ± 0.016 1.235 ± 0.049 0.618 ± 0.024 1.684 ± 0.010 3.82

5-1 219 43.8 1 6 113.9 73.17 0.527 ± 0.009 1.285 ± 0.022 0.643 ± 0.011 1.632 ± 0.003 0.71

5-2 231 43.7 1 6 108.6 67.60 0.552 ± 0.018 1.245 ± 0.014 0.622 ± 0.007 1.664 ± 0.008 2.67
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Subject Gender Stature Path Frames Use Intervals ½Cycles Cadence Speed Duration Strides Displacement Height ∆Height

(ID) (M/F) (m) (ID) (num.) (%) (num.) (num.) (steps/min) (m/min) (s) (m) (m) (m) (%)

6 M 1.83

1-1 85 85.9 1 4 99.7 69.04 0.602 ± 0.025 1.418 ± 0.044 0.692 ± 0.014 1.506 ± 0.191 21.51

1-2 77 68.8 1 3 102.3 80.26 0.586 ± 0.018 1.568 ± 0.014 0.784 ± 0.007 1.837 ± 0.012 0.40

2-1 99 74.7 1 4 98.1 76.37 0.612 ± 0.027 1.586 ± 0.061 0.779 ± 0.011 1.846 ± 0.214 0.86

2-2 94 56.4 1 3 103.0 79.18 0.582 ± 0.020 1.537 ± 0.042 0.769 ± 0.021 1.793 ± 0.007 2.05

3-1 208 34.1 1 4 102.8 79.32 0.584 ± 0.010 1.558 ± 0.059 0.772 ± 0.019 1.468 ± 0.142 24.63

3-2 210 41.4 1 5 103.6 77.46 0.579 ± 0.024 1.496 ± 0.076 0.748 ± 0.038 1.829 ± 0.013 0.06

4-1 221 38.9 1 5 105.4 85.58 0.569 ± 0.015 1.636 ± 0.044 0.812 ± 0.018 1.537 ± 0.195 19.09

4-2 243 72.8 2 10 103.1 81.21 0.582 ± 0.017 1.631 ± 0.081 0.787 ± 0.032 2.012 ± 0.389 9.04

5-1 168 40.5 1 4 107.2 85.69 0.560 ± 0.010 1.598 ± 0.016 0.799 ± 0.008 1.823 ± 0.009 0.40

5-2 181 38.7 1 4 103.6 80.13 0.579 ± 0.011 1.547 ± 0.010 0.773 ± 0.005 1.829 ± 0.008 0.05

7 M 1.83

1-1 101 57.4 1 3 94.5 62.80 0.635 ± 0.021 1.329 ± 0.038 0.665 ± 0.019 1.810 ± 0.022 1.11

1-2 88 86.4 1 4 96.5 68.70 0.622 ± 0.017 1.425 ± 0.025 0.712 ± 0.013 1.795 ± 0.014 1.95

2-1 120 80.8 1 5 93.8 59.91 0.640 ± 0.022 1.278 ± 0.058 0.639 ± 0.029 1.811 ± 0.013 1.08

2-2 110 85.5 1 5 96.6 65.64 0.621 ± 0.023 1.359 ± 0.047 0.679 ± 0.024 1.787 ± 0.018 2.41

3-1 274 67.2 2 10 98.6 65.32 0.609 ± 0.033 1.326 ± 0.169 0.663 ± 0.086 1.780 ± 0.011 2.82

3-2 261 28.0 1 4 100.1 68.59 0.600 ± 0.018 1.371 ± 0.017 0.685 ± 0.008 1.787 ± 0.013 2.39

4-1 288 70.8 2 11 98.2 68.46 0.611 ± 0.023 1.395 ± 0.053 0.697 ± 0.027 1.793 ± 0.014 2.09

4-2 278 73.4 2 11 98.4 68.18 0.610 ± 0.032 1.386 ± 0.084 0.693 ± 0.042 1.806 ± 0.029 1.34

5-1 206 51.5 1 6 103.0 71.90 0.583 ± 0.023 1.397 ± 0.165 0.698 ± 0.083 1.813 ± 0.010 0.94

5-2 210 34.3 1 4 101.1 73.23 0.593 ± 0.015 1.448 ± 0.010 0.724 ± 0.005 1.802 ± 0.010 1.57

8 M 1.70

1-1 83 80.7 1 4 107.9 75.12 0.556 ± 0.017 1.393 ± 0.030 0.696 ± 0.015 1.666 ± 0.018 2.07

1-2 74 44.6 1 2 110.2 80.57 0.545 ± 0.019 1.464 ± 0.018 0.731 ± 0.009 1.652 ± 0.013 2.93

2-1 102 68.6 1 4 104.3 72.18 0.575 ± 0.012 1.384 ± 0.033 0.692 ± 0.017 1.639 ± 0.024 3.74

2-2 100 71.0 1 4 102.6 71.91 0.585 ± 0.011 1.402 ± 0.057 0.701 ± 0.029 1.626 ± 0.012 4.52

3-1 222 29.3 1 4 111.7 72.65 0.537 ± 0.041 1.304 ± 0.243 0.651 ± 0.123 1.686 ± 0.019 0.85

3-2 214 47.7 1 6 107.1 75.09 0.560 ± 0.018 1.406 ± 0.046 0.701 ± 0.026 1.623 ± 0.018 4.75

4-1 227 66.1 2 9 109.4 82.50 0.548 ± 0.023 1.509 ± 0.040 0.754 ± 0.020 1.661 ± 0.014 2.37

4-2 236 64.4 2 9 108.4 79.46 0.553 ± 0.020 1.466 ± 0.027 0.733 ± 0.014 1.658 ± 0.007 2.53

5-1 212 55.7 2 7 107.3 79.70 0.559 ± 0.019 1.488 ± 0.139 0.743 ± 0.068 1.644 ± 0.008 3.41

5-2 195 43.1 1 5 107.6 77.98 0.558 ± 0.026 1.450 ± 0.044 0.725 ± 0.022 1.633 ± 0.015 4.08

9 M 1.80

1-1 98 59.2 1 3 93.8 64.24 0.640 ± 0.023 1.370 ± 0.058 0.685 ± 0.029 1.823 ± 0.016 1.28

1-2 90 84.4 1 4 95.4 67.96 0.629 ± 0.011 1.424 ± 0.013 0.712 ± 0.006 1.826 ± 0.011 1.43

2-1 120 80.8 1 5 93.5 63.78 0.642 ± 0.019 1.365 ± 0.039 0.682 ± 0.020 1.818 ± 0.015 0.98

2-2 118 82.2 1 5 93.0 63.58 0.645 ± 0.017 1.367 ± 0.071 0.684 ± 0.035 1.825 ± 0.009 1.36

3-1 265 42.6 1 6 96.2 68.48 0.624 ± 0.016 1.424 ± 0.043 0.712 ± 0.021 1.834 ± 0.015 1.85

3-2 265 28.3 1 4 96.2 66.50 0.624 ± 0.014 1.383 ± 0.023 0.691 ± 0.011 1.840 ± 0.015 2.18

4-1 276 93.8 1 14 98.3 76.04 0.610 ± 0.049 1.551 ± 0.250 0.774 ± 0.120 1.843 ± 0.012 2.36

4-2 273 76.6 2 11 95.6 69.44 0.628 ± 0.049 1.452 ± 0.071 0.726 ± 0.034 1.902 ± 0.150 5.35

5-1 223 67.7 1 8 96.4 69.65 0.622 ± 0.030 1.444 ± 0.046 0.722 ± 0.023 2.008 ± 0.512 10.34

5-2 213 70.4 1 8 97.2 72.66 0.617 ± 0.045 1.498 ± 0.085 0.748 ± 0.043 1.837 ± 0.012 2.02

10 M 1.73

1-1 88 61.4 1 3 101.1 71.61 0.594 ± 0.010 1.417 ± 0.023 0.708 ± 0.011 1.739 ± 0.002 0.51

1-2 75 68.0 1 3 106.4 77.76 0.564 ± 0.021 1.462 ± 0.012 0.731 ± 0.006 1.755 ± 0.006 1.43

2-1 100 75.0 1 4 98.1 67.69 0.612 ± 0.017 1.381 ± 0.019 0.690 ± 0.009 1.744 ± 0.006 0.80

2-2 96 74.0 1 4 101.6 70.45 0.590 ± 0.010 1.387 ± 0.076 0.693 ± 0.038 1.742 ± 0.009 0.69

3-1 243 36.2 1 5 103.3 66.33 0.581 ± 0.035 1.284 ± 0.173 0.642 ± 0.087 1.739 ± 0.013 0.52

3-2 242 29.3 1 4 102.3 70.30 0.586 ± 0.015 1.374 ± 0.020 0.687 ± 0.010 1.763 ± 0.005 1.88

4-1 255 69.8 2 10 101.7 70.35 0.590 ± 0.029 1.383 ± 0.047 0.692 ± 0.024 1.770 ± 0.007 2.28

4-2 249 62.7 2 9 105.5 73.63 0.569 ± 0.025 1.397 ± 0.042 0.698 ± 0.021 1.777 ± 0.006 2.63

5-1 206 34.0 1 4 104.2 75.81 0.576 ± 0.012 1.455 ± 0.035 0.728 ± 0.018 1.752 ± 0.009 1.28

5-2 217 32.7 1 4 102.3 69.37 0.586 ± 0.023 1.357 ± 0.024 0.678 ± 0.012 1.762 ± 0.005 1.82
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Subject Gender Stature Path Frames Use Intervals ½Cycles Cadence Speed Duration Strides Displacement Height ∆Height

(ID) (M/F) (m) (ID) (num.) (%) (num.) (num.) (steps/min) (m/min) (s) (m) (m) (m) (%)

11 M 1.82

1-1 91 61.5 1 3 97.8 60.98 0.614 ± 0.013 1.248 ± 0.035 0.624 ± 0.018 1.812 ± 0.006 0.43

1-2 92 79.3 1 4 98.8 64.85 0.607 ± 0.029 1.313 ± 0.063 0.656 ± 0.031 1.802 ± 0.012 1.01

2-1 125 76.0 1 5 95.4 57.94 0.629 ± 0.028 1.215 ± 0.042 0.608 ± 0.021 1.800 ± 0.008 1.11

2-2 135 85.9 1 6 93.9 56.89 0.639 ± 0.020 1.212 ± 0.052 0.606 ± 0.026 1.791 ± 0.005 1.61

3-1 275 25.5 1 4 103.5 68.95 0.580 ± 0.018 1.332 ± 0.072 0.666 ± 0.036 1.797 ± 0.006 1.28

3-2 270 26.3 1 4 101.7 67.10 0.590 ± 0.032 1.319 ± 0.021 0.660 ± 0.011 1.799 ± 0.005 1.19

4-1 299 58.5 2 10 104.2 68.24 0.576 ± 0.021 1.310 ± 0.071 0.655 ± 0.035 1.826 ± 0.005 0.35

4-2 297 59.9 2 10 102.5 65.76 0.585 ± 0.022 1.283 ± 0.037 0.642 ± 0.018 1.816 ± 0.007 0.22

5-1 230 30.0 1 4 105.9 70.60 0.566 ± 0.022 1.333 ± 0.023 0.667 ± 0.011 1.814 ± 0.006 0.35

5-2 249 22.5 1 3 97.6 57.57 0.615 ± 0.029 1.179 ± 0.031 0.590 ± 0.015 1.816 ± 0.004 0.23

12 M 1.74

1-1 77 66.2 1 3 106.1 72.10 0.565 ± 0.019 1.359 ± 0.013 0.679 ± 0.006 1.742 ± 0.010 0.13

1-2 70 71.4 1 3 108.3 79.18 0.554 ± 0.008 1.463 ± 0.027 0.731 ± 0.013 1.732 ± 0.009 0.44

2-1 94 72.3 1 4 106.3 75.38 0.564 ± 0.014 1.418 ± 0.030 0.709 ± 0.015 1.715 ± 0.011 1.47

2-2 88 77.3 1 4 106.7 78.07 0.562 ± 0.005 1.463 ± 0.036 0.732 ± 0.018 1.728 ± 0.006 0.70

3-1 222 51.8 2 7 110.0 80.48 0.545 ± 0.013 1.463 ± 0.025 0.731 ± 0.012 1.739 ± 0.007 0.05

3-2 213 45.5 1 6 112.2 77.89 0.535 ± 0.057 1.425 ± 0.286 0.694 ± 0.167 1.791 ± 0.087 2.82

4-1 223 66.4 2 9 110.6 81.99 0.543 ± 0.008 1.483 ± 0.040 0.742 ± 0.020 1.756 ± 0.007 0.90

4-2 236 63.1 2 9 109.7 79.56 0.547 ± 0.015 1.450 ± 0.059 0.725 ± 0.030 1.727 ± 0.010 0.75

5-1 184 53.3 1 6 111.8 85.40 0.537 ± 0.009 1.528 ± 0.024 0.764 ± 0.012 1.752 ± 0.008 0.66

5-2 176 46.0 1 5 111.7 80.88 0.537 ± 0.014 1.449 ± 0.040 0.724 ± 0.020 1.736 ± 0.008 0.24

13 M 1.68

1-1 90 71.1 1 4 112.9 67.27 0.531 ± 0.002 1.192 ± 0.019 0.596 ± 0.010 1.668 ± 0.011 0.74

1-2 81 58.0 1 3 117.1 73.54 0.512 ± 0.015 1.256 ± 0.022 0.628 ± 0.011 1.656 ± 0.013 1.48

2-1 108 74.1 1 5 113.8 68.08 0.527 ± 0.008 1.197 ± 0.049 0.598 ± 0.024 1.665 ± 0.009 0.89

2-2 106 75.5 1 5 114.2 67.93 0.525 ± 0.016 1.189 ± 0.049 0.595 ± 0.024 1.620 ± 0.011 3.72

3-1 263 24.0 1 4 115.7 72.48 0.519 ± 0.007 1.253 ± 0.070 0.627 ± 0.035 1.658 ± 0.008 1.30

3-2 260 30.8 1 5 113.7 68.05 0.528 ± 0.021 1.197 ± 0.008 0.599 ± 0.004 1.660 ± 0.007 1.20

4-1 273 79.1 2 14 118.2 72.57 0.508 ± 0.023 1.228 ± 0.137 0.614 ± 0.068 1.674 ± 0.019 0.36

4-2 274 79.6 2 14 117.2 75.71 0.512 ± 0.026 1.294 ± 0.268 0.646 ± 0.129 1.668 ± 0.007 0.71

5-1 229 47.2 2 7 117.4 72.86 0.511 ± 0.013 1.244 ± 0.151 0.621 ± 0.072 1.641 ± 0.006 2.36

5-2 222 70.7 2 10 115.5 70.99 0.519 ± 0.031 1.229 ± 0.040 0.614 ± 0.020 1.676 ± 0.006 0.22

14 M 1.85

1-1 80 72.5 1 3 93.4 78.19 0.642 ± 0.025 1.674 ± 0.058 0.837 ± 0.029 1.871 ± 0.009 1.12

1-2 64 57.8 1 2 98.1 85.61 0.612 ± 0.010 1.745 ± 0.032 0.873 ± 0.016 1.868 ± 0.010 0.97

2-1 92 60.9 1 3 97.1 84.14 0.618 ± 0.017 1.733 ± 0.040 0.866 ± 0.020 1.861 ± 0.009 0.57

2-2 90 62.2 1 3 97.1 85.75 0.618 ± 0.028 1.767 ± 0.012 0.883 ± 0.006 1.848 ± 0.007 0.11

3-1 218 60.6 2 7 96.7 85.52 0.620 ± 0.016 1.768 ± 0.051 0.884 ± 0.025 1.868 ± 0.006 0.96

3-2 212 52.4 2 6 98.0 87.73 0.613 ± 0.012 1.791 ± 0.059 0.896 ± 0.029 1.864 ± 0.009 0.73

4-1 222 66.7 2 8 99.0 87.80 0.606 ± 0.013 1.773 ± 0.027 0.887 ± 0.013 1.883 ± 0.004 1.77

4-2 226 73.9 2 9 98.4 85.99 0.610 ± 0.029 1.748 ± 0.059 0.874 ± 0.029 1.873 ± 0.012 1.24

5-1 183 88.0 1 9 101.4 89.84 0.592 ± 0.031 1.775 ± 0.047 0.886 ± 0.026 1.987 ± 0.025 6.88

5-2 173 51.4 1 5 101.8 89.25 0.589 ± 0.022 1.753 ± 0.042 0.877 ± 0.021 1.871 ± 0.008 1.13

15 M 1.80

1-1 81 67.9 1 3 99.7 75.44 0.602 ± 0.008 1.514 ± 0.024 0.757 ± 0.012 1.828 ± 0.007 1.52

1-2 80 68.8 1 3 98.7 77.09 0.608 ± 0.023 1.563 ± 0.018 0.781 ± 0.009 1.812 ± 0.016 0.67

2-1 94 78.7 1 4 97.8 76.06 0.614 ± 0.021 1.556 ± 0.024 0.778 ± 0.012 1.820 ± 0.009 1.09

2-2 101 75.2 1 4 95.5 73.60 0.628 ± 0.011 1.542 ± 0.053 0.771 ± 0.026 1.815 ± 0.020 0.85

3-1 247 36.0 1 5 101.7 70.10 0.590 ± 0.049 1.382 ± 0.227 0.689 ± 0.117 1.823 ± 0.016 1.27

3-2 244 23.4 1 3 95.6 70.24 0.628 ± 0.006 1.469 ± 0.018 0.735 ± 0.009 1.837 ± 0.001 2.00

4-1 276 68.5 2 10 96.4 72.08 0.622 ± 0.028 1.495 ± 0.041 0.748 ± 0.021 1.836 ± 0.011 1.97

4-2 268 72.0 2 10 94.6 71.85 0.634 ± 0.027 1.519 ± 0.039 0.759 ± 0.019 1.830 ± 0.013 1.62

5-1 205 35.1 1 4 100.4 76.44 0.598 ± 0.006 1.522 ± 0.014 0.761 ± 0.007 1.844 ± 0.011 2.39

5-2 207 45.9 1 5 96.2 72.55 0.624 ± 0.012 1.508 ± 0.029 0.754 ± 0.014 1.852 ± 0.005 2.79
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Subject Gender Stature Path Frames Use Intervals ½Cycles Cadence Speed Duration Strides Displacement Height ∆Height

(ID) (M/F) (m) (ID) (num.) (%) (num.) (num.) (steps/min) (m/min) (s) (m) (m) (m) (%)

16 M 1.75

1-1 86 67.4 1 3 94.3 66.99 0.636 ± 0.022 1.420 ± 0.024 0.710 ± 0.012 1.782 ± 0.019 1.78

1-2 79 49.4 1 2 95.1 67.06 0.631 ± 0.036 1.411 ± 0.043 0.705 ± 0.022 1.789 ± 0.019 2.19

2-1 115 87.0 1 5 91.4 63.05 0.657 ± 0.021 1.381 ± 0.026 0.690 ± 0.013 1.754 ± 0.012 0.24

2-2 113 69.9 1 4 91.4 65.61 0.657 ± 0.013 1.436 ± 0.012 0.718 ± 0.006 1.753 ± 0.015 0.15

3-1 244 36.5 1 5 102.1 71.61 0.588 ± 0.016 1.403 ± 0.066 0.701 ± 0.033 1.763 ± 0.011 0.72

3-2 260 42.7 2 6 98.5 69.73 0.609 ± 0.023 1.416 ± 0.070 0.708 ± 0.035 1.786 ± 0.008 1.99

4-1 256 68.8 2 10 103.3 76.42 0.581 ± 0.022 1.480 ± 0.026 0.740 ± 0.013 1.780 ± 0.007 1.69

4-2 248 64.1 2 9 102.7 78.21 0.584 ± 0.024 1.523 ± 0.026 0.761 ± 0.013 1.786 ± 0.008 2.02

5-1 193 44.6 1 5 106.2 79.40 0.565 ± 0.026 1.496 ± 0.023 0.748 ± 0.011 1.794 ± 0.004 2.46

5-2 199 35.2 1 4 103.1 76.70 0.582 ± 0.024 1.489 ± 0.058 0.744 ± 0.029 1.763 ± 0.009 0.74

17 M 1.74

1-1 98 71.4 1 4 104.9 63.77 0.572 ± 0.011 1.217 ± 0.022 0.608 ± 0.011 1.727 ± 0.020 0.73

1-2 99 70.7 1 4 103.1 61.69 0.582 ± 0.016 1.197 ± 0.036 0.599 ± 0.018 1.747 ± 0.013 0.38

2-1 129 83.7 1 6 100.9 59.43 0.595 ± 0.020 1.178 ± 0.030 0.589 ± 0.015 1.731 ± 0.014 0.52

2-2 125 71.2 1 5 102.1 62.17 0.587 ± 0.015 1.217 ± 0.033 0.609 ± 0.017 1.713 ± 0.010 1.56

3-1 293 41.6 2 7 105.1 65.84 0.571 ± 0.035 1.254 ± 0.052 0.627 ± 0.026 1.755 ± 0.011 0.84

3-2 286 24.5 1 4 102.7 63.84 0.584 ± 0.020 1.243 ± 0.019 0.622 ± 0.009 1.754 ± 0.019 0.78

4-1 300 63.3 2 11 105.5 67.19 0.569 ± 0.029 1.274 ± 0.034 0.637 ± 0.017 1.733 ± 0.008 0.41

4-2 308 74.0 2 13 103.6 65.50 0.579 ± 0.037 1.264 ± 0.025 0.632 ± 0.013 1.745 ± 0.011 0.31

5-1 226 29.6 1 4 109.2 70.42 0.549 ± 0.017 1.290 ± 0.009 0.645 ± 0.004 1.712 ± 0.010 1.61

5-2 219 31.1 1 4 107.1 67.47 0.560 ± 0.040 1.261 ± 0.025 0.630 ± 0.013 1.719 ± 0.014 1.24

18 M 1.63

1-1 78 82.1 1 4 113.3 80.31 0.530 ± 0.017 1.418 ± 0.035 0.709 ± 0.017 1.626 ± 0.024 0.22

1-2 71 69.0 1 3 111.9 80.30 0.536 ± 0.023 1.435 ± 0.058 0.717 ± 0.029 1.622 ± 0.030 0.50

2-1 104 80.8 1 5 109.0 71.01 0.550 ± 0.022 1.303 ± 0.052 0.651 ± 0.026 1.619 ± 0.017 0.71

2-2 95 68.4 1 4 110.8 75.38 0.542 ± 0.023 1.361 ± 0.037 0.680 ± 0.019 1.580 ± 0.023 3.19

3-1 219 28.8 1 4 116.3 83.89 0.516 ± 0.010 1.444 ± 0.029 0.721 ± 0.015 1.660 ± 0.018 1.82

3-2 239 35.1 1 5 108.0 69.76 0.556 ± 0.030 1.291 ± 0.130 0.646 ± 0.064 1.625 ± 0.019 0.29

4-1 252 57.9 2 9 111.6 78.63 0.538 ± 0.019 1.412 ± 0.058 0.705 ± 0.026 1.610 ± 0.012 1.26

4-2 248 66.1 2 10 110.5 77.40 0.543 ± 0.020 1.401 ± 0.039 0.700 ± 0.020 1.628 ± 0.014 0.12

5-1 187 42.2 1 5 115.3 83.30 0.520 ± 0.012 1.445 ± 0.018 0.723 ± 0.009 1.687 ± 0.015 3.39

5-2 197 41.6 1 5 111.0 77.65 0.540 ± 0.032 1.399 ± 0.026 0.699 ± 0.013 1.653 ± 0.010 1.41

19 M 1.70

1-1 87 63.2 1 3 99.5 74.97 0.603 ± 0.010 1.511 ± 0.137 0.754 ± 0.066 1.708 ± 0.011 0.49

1-2 86 64.0 1 3 99.1 70.97 0.606 ± 0.007 1.433 ± 0.033 0.716 ± 0.016 1.714 ± 0.009 0.82

2-1 118 65.3 1 4 94.1 61.72 0.638 ± 0.006 1.313 ± 0.010 0.656 ± 0.005 1.724 ± 0.007 1.38

2-2 109 68.8 1 4 96.1 65.48 0.624 ± 0.020 1.363 ± 0.016 0.681 ± 0.008 1.714 ± 0.011 0.83

3-1 253 36.8 1 5 97.5 66.53 0.615 ± 0.013 1.365 ± 0.051 0.682 ± 0.025 1.711 ± 0.008 0.67

3-2 231 45.9 1 6 102.9 68.22 0.583 ± 0.016 1.326 ± 0.063 0.663 ± 0.032 1.724 ± 0.010 1.42

4-1 265 61.1 2 9 101.1 69.40 0.593 ± 0.012 1.373 ± 0.059 0.686 ± 0.030 1.719 ± 0.007 1.12

4-2 252 69.8 2 10 103.3 71.95 0.581 ± 0.016 1.394 ± 0.045 0.697 ± 0.022 1.733 ± 0.009 1.89

5-1 208 69.2 2 8 101.3 70.95 0.592 ± 0.017 1.401 ± 0.078 0.701 ± 0.039 1.749 ± 0.093 2.83

5-2 212 84.0 2 10 102.0 70.99 0.588 ± 0.033 1.392 ± 0.038 0.696 ± 0.019 1.738 ± 0.006 2.18

20 M 1.85

1-1 79 67.1 1 3 101.3 78.55 0.592 ± 0.013 1.551 ± 0.032 0.775 ± 0.016 1.864 ± 0.013 0.77

1-2 74 73.0 1 3 101.8 79.62 0.590 ± 0.012 1.565 ± 0.017 0.782 ± 0.009 1.882 ± 0.006 1.68

2-1 116 69.8 1 4 90.1 61.06 0.666 ± 0.012 1.355 ± 0.035 0.678 ± 0.017 1.867 ± 0.008 0.89

2-2 112 71.4 1 4 91.3 63.95 0.657 ± 0.019 1.401 ± 0.070 0.701 ± 0.035 1.874 ± 0.008 1.27

3-1 269 58.0 2 8 93.5 64.24 0.642 ± 0.030 1.374 ± 0.064 0.687 ± 0.032 1.866 ± 0.007 0.85

3-2 290 49.0 2 7 89.4 67.56 0.671 ± 0.038 1.518 ± 0.528 0.755 ± 0.255 1.882 ± 0.005 1.70

4-1 297 71.0 2 11 94.8 65.97 0.633 ± 0.020 1.392 ± 0.047 0.696 ± 0.023 1.872 ± 0.004 1.16

4-2 318 74.2 2 12 92.5 61.77 0.648 ± 0.031 1.335 ± 0.047 0.667 ± 0.023 1.876 ± 0.005 1.37

5-1 218 44.0 1 5 95.4 68.32 0.629 ± 0.013 1.432 ± 0.024 0.716 ± 0.012 1.882 ± 0.004 1.71

5-2 241 31.5 1 4 95.7 64.85 0.627 ± 0.021 1.355 ± 0.009 0.678 ± 0.004 1.873 ± 0.006 1.23
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Subject Gender Stature Path Frames Use Intervals ½Cycles Cadence Speed Duration Strides Displacement Height ∆Height

(ID) (M/F) (m) (ID) (num.) (%) (num.) (num.) (steps/min) (m/min) (s) (m) (m) (m) (%)

21 M 1.77

1-1 80 66.2 1 3 103.2 76.48 0.581 ± 0.008 1.482 ± 0.013 0.741 ± 0.007 1.772 ± 0.011 0.13

1-2 76 68.4 1 3 103.2 76.74 0.581 ± 0.011 1.487 ± 0.032 0.743 ± 0.016 1.782 ± 0.012 0.66

2-1 99 73.7 1 4 100.0 71.66 0.600 ± 0.017 1.433 ± 0.056 0.717 ± 0.028 1.745 ± 0.011 1.45

2-2 96 76.0 1 4 100.8 77.87 0.595 ± 0.013 1.545 ± 0.060 0.772 ± 0.030 1.756 ± 0.011 0.81

3-1 235 29.8 1 4 103.5 76.75 0.580 ± 0.013 1.483 ± 0.069 0.741 ± 0.035 1.779 ± 0.013 0.50

3-2 239 22.6 1 3 100.9 75.14 0.595 ± 0.006 1.490 ± 0.041 0.745 ± 0.020 1.777 ± 0.007 0.38

4-1 261 67.4 2 10 103.6 78.03 0.579 ± 0.017 1.507 ± 0.040 0.753 ± 0.020 1.780 ± 0.010 0.57

4-2 253 73.9 2 11 106.3 80.24 0.564 ± 0.010 1.509 ± 0.069 0.755 ± 0.034 1.777 ± 0.007 0.38

5-1 197 87.3 1 9 95.3 79.77 0.630 ± 0.189 1.676 ± 0.213 0.837 ± 0.108 1.892 ± 0.034 6.47

5-2 198 60.6 2 7 105.7 81.09 0.568 ± 0.012 1.534 ± 0.059 0.767 ± 0.029 1.775 ± 0.009 0.25

22 F 1.63

1-1 135 72.6 1 5 92.5 53.11 0.649 ± 0.028 1.149 ± 0.028 0.574 ± 0.014 1.584 ± 0.006 2.93

1-2 123 78.9 1 5 93.4 55.46 0.643 ± 0.011 1.188 ± 0.022 0.594 ± 0.011 1.587 ± 0.007 2.71

2-1 164 86.0 1 7 90.2 47.86 0.665 ± 0.011 1.061 ± 0.032 0.531 ± 0.016 1.579 ± 0.005 3.20

2-2 162 86.4 1 7 90.9 47.98 0.660 ± 0.012 1.055 ± 0.056 0.528 ± 0.028 1.579 ± 0.007 3.22

3-1 357 26.6 1 5 95.0 53.95 0.631 ± 0.006 1.135 ± 0.038 0.568 ± 0.019 1.590 ± 0.007 2.55

3-2 369 31.7 1 6 93.3 49.80 0.643 ± 0.011 1.068 ± 0.014 0.534 ± 0.007 1.593 ± 0.004 2.32

4-1 385 86.8 2 17 92.4 53.46 0.649 ± 0.029 1.159 ± 0.120 0.579 ± 0.058 1.624 ± 0.064 0.40

4-2 394 85.0 2 17 92.3 49.75 0.650 ± 0.029 1.078 ± 0.072 0.539 ± 0.036 1.595 ± 0.025 2.17

5-1 286 60.5 2 9 94.8 54.33 0.633 ± 0.023 1.147 ± 0.041 0.573 ± 0.021 1.583 ± 0.007 3.00

5-2 287 32.8 1 5 96.0 52.97 0.625 ± 0.009 1.103 ± 0.012 0.552 ± 0.006 1.580 ± 0.004 3.14

23 M 1.71

1-1 122 69.7 1 4 85.4 54.86 0.702 ± 0.020 1.285 ± 0.021 0.642 ± 0.010 1.714 ± 0.019 0.26

1-2 97 86.6 1 4 87.3 64.58 0.687 ± 0.027 1.477 ± 0.160 0.740 ± 0.081 1.674 ± 0.014 2.18

2-1 152 75.0 1 5 79.9 49.53 0.751 ± 0.023 1.239 ± 0.042 0.620 ± 0.021 1.703 ± 0.014 0.41

2-2 144 77.8 1 5 81.0 51.58 0.741 ± 0.033 1.274 ± 0.032 0.637 ± 0.016 1.718 ± 0.014 0.47

3-1 337 49.0 2 8 87.9 54.38 0.682 ± 0.025 1.236 ± 0.096 0.618 ± 0.048 1.775 ± 0.013 3.67

3-2 336 25.6 1 4 84.7 52.00 0.708 ± 0.020 1.228 ± 0.014 0.614 ± 0.007 1.727 ± 0.014 0.99

4-1 364 58.8 2 10 84.7 54.50 0.708 ± 0.024 1.287 ± 0.026 0.643 ± 0.013 1.725 ± 0.009 0.89

4-2 364 58.0 2 10 86.4 55.60 0.695 ± 0.022 1.288 ± 0.035 0.644 ± 0.018 1.731 ± 0.010 1.19

5-1 293 43.3 2 6 85.8 57.88 0.699 ± 0.051 1.351 ± 0.171 0.675 ± 0.083 1.749 ± 0.013 2.24

5-2 280 30.0 1 4 86.6 54.76 0.693 ± 0.014 1.266 ± 0.020 0.633 ± 0.010 1.721 ± 0.012 0.66

24 M 1.77

1-1 99 86.9 1 4 84.7 60.14 0.708 ± 0.034 1.420 ± 0.041 0.710 ± 0.021 1.762 ± 0.020 0.44

1-2 95 85.3 1 3 67.9 58.07 0.883 ± 0.388 1.708 ± 0.334 0.855 ± 0.168 1.716 ± 0.016 3.14

2-1 133 85.7 1 5 79.8 52.94 0.752 ± 0.032 1.326 ± 0.078 0.663 ± 0.039 1.716 ± 0.015 3.13

2-2 129 69.0 1 4 82.0 55.48 0.732 ± 0.043 1.354 ± 0.062 0.677 ± 0.031 1.717 ± 0.017 3.11

3-1 274 29.6 1 4 89.1 63.54 0.673 ± 0.025 1.426 ± 0.028 0.713 ± 0.014 1.731 ± 0.010 2.24

3-2 293 28.7 1 4 86.3 58.84 0.695 ± 0.022 1.363 ± 0.027 0.682 ± 0.013 1.718 ± 0.017 3.05

4-1 323 76.8 2 12 87.9 62.67 0.683 ± 0.037 1.426 ± 0.071 0.713 ± 0.035 1.748 ± 0.009 1.24

4-2 308 81.2 2 12 87.4 62.89 0.686 ± 0.034 1.439 ± 0.050 0.719 ± 0.025 1.742 ± 0.009 1.59

5-1 257 64.6 2 8 87.5 61.96 0.686 ± 0.063 1.416 ± 0.102 0.708 ± 0.051 1.757 ± 0.010 0.73

5-2 268 70.5 2 9 87.1 60.91 0.689 ± 0.043 1.399 ± 0.073 0.699 ± 0.037 1.717 ± 0.011 3.07

25 M 1.78

1-1 61 50.8 1 2 117.3 91.71 0.511 ± 0.004 1.608 ± 0.083 0.782 ± 0.010 1.389 ± 0.089 28.17

1-2 61 80.3 1 3 113.0 89.61 0.531 ± 0.015 1.587 ± 0.025 0.793 ± 0.012 1.769 ± 0.018 0.60

2-1 83 80.7 1 4 109.9 81.93 0.546 ± 0.013 1.491 ± 0.029 0.745 ± 0.015 1.747 ± 0.019 1.87

2-2 85 76.5 1 4 111.9 83.59 0.536 ± 0.015 1.496 ± 0.055 0.747 ± 0.027 1.714 ± 0.011 3.88

3-1 218 22.5 1 3 112.5 84.39 0.533 ± 0.003 1.529 ± 0.039 0.750 ± 0.007 1.761 ± 0.021 1.08

3-2 204 53.4 2 7 116.6 76.73 0.515 ± 0.068 1.314 ± 0.240 0.658 ± 0.119 1.845 ± 0.022 3.52

4-1 229 91.7 1 13 113.0 80.90 0.531 ± 0.023 1.467 ± 0.101 0.716 ± 0.074 1.767 ± 0.236 0.71

4-2 229 85.2 1 12 111.8 81.57 0.537 ± 0.041 1.464 ± 0.106 0.730 ± 0.060 1.822 ± 0.124 2.29

5-1 176 43.8 1 5 117.6 91.89 0.510 ± 0.012 1.583 ± 0.042 0.782 ± 0.017 1.819 ± 0.148 2.16

5-2 182 69.8 2 8 114.7 82.87 0.523 ± 0.028 1.444 ± 0.217 0.723 ± 0.107 1.807 ± 0.014 1.52
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Subject Gender Stature Path Frames Use Intervals ½Cycles Cadence Speed Duration Strides Displacement Height ∆Height

(ID) (M/F) (m) (ID) (num.) (%) (num.) (num.) (steps/min) (m/min) (s) (m) (m) (m) (%)

26 M 1.64

1-1 90 56.7 1 3 107.6 65.40 0.558 ± 0.015 1.216 ± 0.022 0.608 ± 0.011 1.631 ± 0.038 0.55

1-2 95 87.4 1 5 109.5 70.02 0.548 ± 0.014 1.278 ± 0.097 0.640 ± 0.049 1.601 ± 0.015 2.41

2-1 147 74.1 1 6 99.8 58.62 0.601 ± 0.026 1.174 ± 0.052 0.587 ± 0.026 1.615 ± 0.013 1.53

2-2 125 84.8 1 6 102.9 60.84 0.583 ± 0.027 1.182 ± 0.051 0.591 ± 0.025 1.599 ± 0.011 2.56

3-1 267 43.4 1 7 109.6 68.48 0.548 ± 0.018 1.250 ± 0.056 0.625 ± 0.028 1.644 ± 0.010 0.27

3-2 265 44.5 1 7 107.7 66.97 0.557 ± 0.050 1.255 ± 0.081 0.622 ± 0.031 1.863 ± 0.682 11.99

4-1 271 77.1 2 12 104.4 72.76 0.574 ± 0.151 1.394 ± 0.194 0.697 ± 0.097 1.620 ± 0.009 1.23

4-2 275 77.5 2 12 102.6 71.68 0.585 ± 0.154 1.397 ± 0.268 0.698 ± 0.134 1.637 ± 0.010 0.19

5-1 239 41.8 2 6 109.2 73.11 0.549 ± 0.043 1.347 ± 0.253 0.669 ± 0.118 1.623 ± 0.008 1.03

5-2 231 50.6 1 7 108.6 69.13 0.553 ± 0.032 1.273 ± 0.035 0.637 ± 0.017 1.604 ± 0.009 2.27

27 F 1.57

1-1 135 74.8 1 5 90.8 49.75 0.661 ± 0.021 1.095 ± 0.023 0.548 ± 0.012 1.571 ± 0.008 0.04

1-2 134 73.1 1 5 92.6 51.13 0.648 ± 0.024 1.104 ± 0.023 0.552 ± 0.012 1.570 ± 0.008 0.01

2-1 125 76.8 1 5 95.3 53.90 0.629 ± 0.037 1.131 ± 0.043 0.565 ± 0.022 1.578 ± 0.010 0.48

2-2 137 70.1 1 5 94.5 52.62 0.635 ± 0.023 1.113 ± 0.050 0.557 ± 0.025 1.570 ± 0.009 0.01

3-1 297 32.0 1 5 96.4 55.21 0.622 ± 0.016 1.145 ± 0.065 0.573 ± 0.033 1.557 ± 0.009 0.86

3-2 316 29.7 1 5 96.7 55.81 0.621 ± 0.012 1.155 ± 0.032 0.577 ± 0.016 1.571 ± 0.005 0.08

4-1 319 69.0 2 12 99.0 58.63 0.606 ± 0.034 1.185 ± 0.034 0.592 ± 0.017 1.588 ± 0.006 1.11

4-2 333 61.6 2 11 97.7 56.95 0.614 ± 0.020 1.166 ± 0.021 0.583 ± 0.010 1.560 ± 0.006 0.63

5-1 238 51.3 2 7 104.3 62.59 0.575 ± 0.029 1.200 ± 0.031 0.600 ± 0.015 1.560 ± 0.006 0.62

5-2 259 48.3 1 7 102.0 59.97 0.589 ± 0.019 1.176 ± 0.021 0.588 ± 0.010 1.564 ± 0.005 0.39

28 M 1.88

1-1 74 68.9 1 3 105.8 80.96 0.567 ± 0.024 1.530 ± 0.010 0.765 ± 0.005 1.896 ± 0.006 0.86

1-2 71 77.5 1 3 99.4 76.88 0.604 ± 0.015 1.547 ± 0.031 0.774 ± 0.015 1.890 ± 0.009 0.55

2-1 93 78.5 1 4 99.9 75.68 0.601 ± 0.026 1.516 ± 0.065 0.758 ± 0.033 1.879 ± 0.008 0.06

2-2 96 77.1 1 4 97.8 72.89 0.613 ± 0.026 1.490 ± 0.033 0.745 ± 0.017 1.862 ± 0.009 0.99

3-1 205 24.9 1 3 106.4 81.18 0.564 ± 0.006 1.526 ± 0.019 0.763 ± 0.009 1.874 ± 0.008 0.29

3-2 224 30.8 1 4 105.6 83.65 0.568 ± 0.004 1.584 ± 0.023 0.792 ± 0.012 1.889 ± 0.004 0.47

4-1 220 67.7 2 9 109.9 88.93 0.546 ± 0.016 1.619 ± 0.047 0.809 ± 0.024 1.899 ± 0.009 1.02

4-2 227 45.4 2 6 105.9 83.69 0.567 ± 0.022 1.581 ± 0.035 0.790 ± 0.018 1.895 ± 0.003 0.79

5-1 181 46.4 1 5 108.2 85.81 0.554 ± 0.007 1.586 ± 0.040 0.793 ± 0.020 1.885 ± 0.009 0.28

5-2 173 49.7 1 5 105.9 85.88 0.566 ± 0.020 1.622 ± 0.029 0.811 ± 0.015 1.892 ± 0.003 0.62

29 F 1.57

1-1 85 77.6 1 4 110.8 67.96 0.542 ± 0.013 1.227 ± 0.019 0.613 ± 0.009 1.548 ± 0.007 1.39

1-2 84 72.6 1 4 119.0 74.43 0.504 ± 0.012 1.251 ± 0.038 0.625 ± 0.019 1.551 ± 0.007 1.23

2-1 100 79.0 1 5 115.6 70.79 0.519 ± 0.011 1.225 ± 0.036 0.612 ± 0.018 1.537 ± 0.007 2.13

2-2 107 89.7 1 6 114.2 67.19 0.525 ± 0.027 1.177 ± 0.056 0.588 ± 0.028 1.525 ± 0.004 2.98

3-1 229 39.3 1 6 122.5 74.55 0.490 ± 0.022 1.217 ± 0.120 0.609 ± 0.060 1.558 ± 0.008 0.77

3-2 226 40.3 1 6 119.8 72.11 0.501 ± 0.025 1.204 ± 0.089 0.602 ± 0.045 1.561 ± 0.019 0.55

4-1 252 76.2 2 13 123.8 79.42 0.485 ± 0.022 1.284 ± 0.045 0.642 ± 0.023 1.550 ± 0.005 1.28

4-2 261 74.3 2 13 121.7 75.95 0.493 ± 0.034 1.249 ± 0.041 0.624 ± 0.021 1.568 ± 0.006 0.14

5-1 197 45.2 1 6 121.4 77.60 0.494 ± 0.008 1.278 ± 0.024 0.639 ± 0.012 1.553 ± 0.004 1.12

5-2 204 51.5 1 7 121.1 75.79 0.495 ± 0.019 1.251 ± 0.025 0.626 ± 0.012 1.532 ± 0.003 2.50

30 F 1.68

1-1 106 66.0 1 4 104.0 60.75 0.577 ± 0.009 1.168 ± 0.040 0.584 ± 0.020 1.673 ± 0.010 0.40

1-2 104 70.2 1 4 99.6 57.35 0.603 ± 0.014 1.152 ± 0.015 0.576 ± 0.008 1.666 ± 0.013 0.84

2-1 122 86.9 1 6 103.2 60.64 0.581 ± 0.027 1.175 ± 0.050 0.588 ± 0.025 1.660 ± 0.008 1.23

2-2 118 89.0 1 6 104.4 62.40 0.575 ± 0.014 1.196 ± 0.096 0.598 ± 0.048 1.646 ± 0.009 2.05

3-1 252 46.4 2 7 109.0 72.01 0.551 ± 0.009 1.322 ± 0.047 0.661 ± 0.024 1.678 ± 0.010 0.15

3-2 263 44.9 2 7 107.8 71.07 0.557 ± 0.040 1.319 ± 0.046 0.659 ± 0.023 1.691 ± 0.005 0.67

4-1 279 93.2 1 15 105.0 68.89 0.572 ± 0.028 1.313 ± 0.080 0.656 ± 0.040 1.673 ± 0.009 0.44

4-2 277 74.7 2 12 105.1 70.06 0.571 ± 0.023 1.334 ± 0.048 0.667 ± 0.024 1.689 ± 0.005 0.55

5-1 219 37.9 1 5 110.1 73.43 0.545 ± 0.012 1.333 ± 0.120 0.667 ± 0.060 1.679 ± 0.010 0.03

5-2 226 60.2 2 8 107.1 72.54 0.560 ± 0.037 1.355 ± 0.070 0.678 ± 0.035 1.681 ± 0.006 0.05
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Subject Gender Stature Path Frames Use Intervals ½Cycles Cadence Speed Duration Strides Displacement Height ∆Height

(ID) (M/F) (m) (ID) (num.) (%) (num.) (num.) (steps/min) (m/min) (s) (m) (m) (m) (%)

31 F 1.62

1-1 80 78.8 1 4 116.0 78.35 0.517 ± 0.013 1.351 ± 0.014 0.676 ± 0.007 1.623 ± 0.011 0.19

1-2 80 80.0 1 4 113.3 77.29 0.529 ± 0.012 1.364 ± 0.015 0.682 ± 0.008 1.637 ± 0.008 1.07

2-1 108 75.0 1 5 112.2 71.51 0.535 ± 0.013 1.275 ± 0.043 0.637 ± 0.021 1.612 ± 0.008 0.48

2-2 93 66.7 1 4 116.9 79.92 0.513 ± 0.006 1.367 ± 0.040 0.683 ± 0.020 1.609 ± 0.006 0.70

3-1 263 45.2 2 7 106.6 68.73 0.563 ± 0.032 1.290 ± 0.072 0.645 ± 0.036 1.615 ± 0.008 0.32

3-2 263 25.1 1 4 111.0 74.68 0.541 ± 0.007 1.346 ± 0.024 0.673 ± 0.012 1.621 ± 0.007 0.07

4-1 261 74.3 2 12 112.5 73.90 0.533 ± 0.012 1.314 ± 0.073 0.657 ± 0.036 1.627 ± 0.006 0.41

4-2 274 66.8 2 11 109.5 71.78 0.548 ± 0.020 1.311 ± 0.076 0.655 ± 0.038 1.620 ± 0.005 0.01

5-1 216 67.1 2 9 112.5 74.40 0.533 ± 0.018 1.322 ± 0.084 0.661 ± 0.042 1.627 ± 0.004 0.41

5-2 200 47.0 1 6 116.0 79.68 0.517 ± 0.012 1.373 ± 0.030 0.687 ± 0.015 1.606 ± 0.006 0.85

32 M 1.65

1-1 78 67.9 1 3 102.9 77.54 0.583 ± 0.006 1.507 ± 0.034 0.753 ± 0.017 1.659 ± 0.008 0.51

1-2 77 64.9 1 3 107.4 79.14 0.559 ± 0.015 1.474 ± 0.006 0.737 ± 0.003 1.660 ± 0.011 0.61

2-1 98 74.5 1 4 99.5 71.89 0.603 ± 0.005 1.445 ± 0.024 0.722 ± 0.012 1.661 ± 0.011 0.65

2-2 104 86.5 1 5 101.0 68.70 0.594 ± 0.015 1.362 ± 0.016 0.680 ± 0.008 1.645 ± 0.008 0.32

3-1 229 52.8 2 7 105.3 76.36 0.570 ± 0.025 1.450 ± 0.049 0.725 ± 0.024 1.665 ± 0.007 0.91

3-2 232 30.2 1 4 105.0 73.31 0.572 ± 0.006 1.397 ± 0.041 0.698 ± 0.020 1.660 ± 0.005 0.57

4-1 244 69.7 2 10 107.0 77.61 0.561 ± 0.016 1.451 ± 0.041 0.725 ± 0.020 1.666 ± 0.005 0.94

4-2 241 49.0 2 7 107.9 80.10 0.556 ± 0.008 1.484 ± 0.022 0.742 ± 0.011 1.670 ± 0.007 1.18

5-1 199 49.7 1 6 110.1 82.36 0.545 ± 0.010 1.497 ± 0.024 0.748 ± 0.012 1.659 ± 0.003 0.52

5-2 243 57.2 2 8 104.9 72.35 0.572 ± 0.022 1.379 ± 0.048 0.689 ± 0.024 1.655 ± 0.010 0.30

33 M 1.85

1-1 84 88.1 1 4 99.3 73.14 0.604 ± 0.015 1.473 ± 0.026 0.737 ± 0.013 1.832 ± 0.013 0.96

1-2 72 68.1 1 3 111.6 88.99 0.538 ± 0.009 1.595 ± 0.034 0.797 ± 0.017 1.826 ± 0.011 1.33

2-1 95 71.6 1 4 107.5 83.73 0.558 ± 0.013 1.557 ± 0.036 0.779 ± 0.018 1.821 ± 0.010 1.59

2-2 91 72.5 1 4 111.0 86.99 0.540 ± 0.009 1.567 ± 0.060 0.783 ± 0.030 1.832 ± 0.011 0.97

3-1 206 53.4 3 7 115.1 93.01 0.521 ± 0.049 1.616 ± 0.159 0.808 ± 0.079 1.853 ± 0.009 0.16

3-2 203 45.8 2 6 115.5 97.64 0.520 ± 0.015 1.691 ± 0.037 0.846 ± 0.018 1.834 ± 0.008 0.87

4-1 206 83.5 2 10 105.6 95.73 0.568 ± 0.175 1.813 ± 0.220 0.907 ± 0.110 1.874 ± 0.007 1.28

4-2 209 67.9 2 9 115.1 95.75 0.521 ± 0.007 1.664 ± 0.050 0.832 ± 0.025 1.851 ± 0.007 0.04

5-1 169 60.9 2 6 106.0 97.07 0.566 ± 0.200 1.830 ± 0.368 0.916 ± 0.186 1.935 ± 0.010 4.40

5-2 166 47.6 1 5 115.3 94.54 0.520 ± 0.010 1.640 ± 0.031 0.820 ± 0.016 1.852 ± 0.005 0.13

34 M 1.78

1-1 105 55.2 1 3 93.6 80.74 0.641 ± 0.117 1.760 ± 0.828 0.863 ± 0.385 1.777 ± 0.015 0.16

1-2 107 47.7 1 3 106.5 64.93 0.564 ± 0.051 1.220 ± 0.022 0.610 ± 0.011 1.784 ± 0.005 0.23

2-1 146 47.3 1 3 79.3 51.85 0.756 ± 0.144 1.309 ± 0.181 0.654 ± 0.090 1.799 ± 0.005 1.04

2-2 156 59.0 1 4 79.1 49.49 0.759 ± 0.047 1.255 ± 0.203 0.626 ± 0.100 1.754 ± 0.009 1.50

3-1 269 27.9 1 4 96.5 58.80 0.621 ± 0.026 1.218 ± 0.052 0.609 ± 0.026 1.791 ± 0.007 0.60

3-2 247 72.9 1 10 100.7 83.99 0.596 ± 0.178 1.676 ± 0.697 0.834 ± 0.346 1.640 ± 0.015 8.54

4-1 228 54.8 1 7 101.8 93.33 0.589 ± 0.164 1.854 ± 0.759 0.917 ± 0.379 1.753 ± 0.017 1.56

4-2 244 42.2 1 5 88.4 105.89 0.679 ± 0.341 2.413 ± 1.205 1.198 ± 0.569 1.821 ± 0.026 2.23

5-1 218 58.7 1 5 70.9 71.78 0.846 ± 0.230 2.035 ± 0.422 1.013 ± 0.205 1.691 ± 0.012 5.25

5-2 171 0.0 0 0 – – – – – – –

35 F 1.75

1-1 73 80.8 1 4 122.5 91.99 0.490 ± 0.006 1.502 ± 0.016 0.751 ± 0.008 1.776 ± 0.012 1.44

1-2 61 70.5 1 3 127.0 100.38 0.472 ± 0.005 1.581 ± 0.009 0.790 ± 0.005 1.739 ± 0.008 0.65

2-1 89 84.3 1 5 121.2 89.97 0.495 ± 0.008 1.484 ± 0.032 0.742 ± 0.016 1.764 ± 0.009 0.82

2-2 85 70.6 1 4 122.8 93.53 0.489 ± 0.011 1.524 ± 0.048 0.762 ± 0.024 1.744 ± 0.007 0.32

3-1 212 78.3 2 11 120.7 90.20 0.497 ± 0.032 1.494 ± 0.052 0.747 ± 0.026 1.831 ± 0.011 4.41

3-2 213 69.5 2 9 110.6 87.15 0.543 ± 0.168 1.576 ± 0.251 0.788 ± 0.125 1.768 ± 0.013 1.01

4-1 213 68.1 2 10 124.9 95.10 0.480 ± 0.009 1.523 ± 0.039 0.761 ± 0.019 1.787 ± 0.006 2.05

4-2 217 67.3 2 10 124.1 93.86 0.483 ± 0.010 1.513 ± 0.034 0.756 ± 0.017 1.780 ± 0.004 1.69

5-1 180 63.9 2 8 126.4 97.16 0.475 ± 0.019 1.538 ± 0.094 0.768 ± 0.046 1.783 ± 0.009 1.85

5-2 190 46.3 1 6 124.0 92.07 0.484 ± 0.020 1.490 ± 0.029 0.743 ± 0.019 1.794 ± 0.079 2.46
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Subject Gender Stature Path Frames Use Intervals ½Cycles Cadence Speed Duration Strides Displacement Height ∆Height

(ID) (M/F) (m) (ID) (num.) (%) (num.) (num.) (steps/min) (m/min) (s) (m) (m) (m) (%)

36 M 1.83

1-1 79 43.0 1 2 104.2 70.56 0.576 ± 0.019 1.354 ± 0.019 0.677 ± 0.010 1.854 ± 0.010 1.30

1-2 79 63.3 1 3 108.9 70.64 0.551 ± 0.027 1.297 ± 0.080 0.648 ± 0.040 1.857 ± 0.005 1.43

2-1 116 78.4 1 5 99.5 65.18 0.603 ± 0.030 1.310 ± 0.035 0.655 ± 0.018 1.828 ± 0.007 0.09

2-2 116 77.6 1 5 100.8 66.44 0.595 ± 0.014 1.318 ± 0.048 0.659 ± 0.024 1.807 ± 0.004 1.29

3-1 249 34.9 1 5 104.8 69.79 0.572 ± 0.016 1.332 ± 0.057 0.666 ± 0.029 1.842 ± 0.008 0.65

3-2 264 27.7 1 4 99.7 67.14 0.602 ± 0.008 1.346 ± 0.052 0.673 ± 0.026 1.840 ± 0.006 0.56

4-1 266 80.8 2 12 101.6 71.64 0.590 ± 0.067 1.326 ± 0.320 0.705 ± 0.019 2.084 ± 0.817 12.20

4-2 254 69.7 2 10 103.5 74.02 0.580 ± 0.023 1.431 ± 0.047 0.715 ± 0.023 1.846 ± 0.007 0.89

5-1 205 66.8 2 8 106.9 77.02 0.561 ± 0.021 1.441 ± 0.096 0.720 ± 0.048 1.849 ± 0.012 1.05

5-2 218 48.6 2 6 103.7 73.10 0.578 ± 0.015 1.409 ± 0.059 0.705 ± 0.030 1.840 ± 0.008 0.54

37 M 1.80

1-1 78 70.5 1 3 99.2 75.39 0.605 ± 0.005 1.521 ± 0.009 0.760 ± 0.004 1.811 ± 0.015 0.61

1-2 80 68.8 1 3 98.1 74.53 0.612 ± 0.003 1.520 ± 0.024 0.760 ± 0.012 1.812 ± 0.009 0.69

2-1 100 76.0 1 4 95.1 71.40 0.631 ± 0.012 1.502 ± 0.033 0.751 ± 0.016 1.797 ± 0.013 0.15

2-2 101 73.3 1 4 97.8 72.28 0.613 ± 0.005 1.477 ± 0.053 0.739 ± 0.027 1.803 ± 0.010 0.17

3-1 229 40.2 1 5 99.2 74.48 0.605 ± 0.007 1.502 ± 0.076 0.751 ± 0.038 1.803 ± 0.010 0.18

3-2 226 31.9 1 4 100.5 74.59 0.597 ± 0.016 1.485 ± 0.031 0.742 ± 0.015 1.799 ± 0.011 0.06

4-1 246 96.3 1 13 99.6 75.69 0.602 ± 0.022 1.520 ± 0.092 0.760 ± 0.046 1.864 ± 0.009 3.45

4-2 255 71.4 2 10 99.8 75.49 0.601 ± 0.016 1.513 ± 0.079 0.756 ± 0.039 1.815 ± 0.011 0.82

5-1 193 85.5 1 9 99.6 75.55 0.602 ± 0.023 1.518 ± 0.063 0.758 ± 0.033 1.856 ± 0.027 3.02

5-2 192 46.9 1 5 100.9 77.00 0.595 ± 0.013 1.527 ± 0.028 0.763 ± 0.014 1.813 ± 0.012 0.74

38 F 1.70

1-1 86 77.9 1 4 108.9 75.96 0.551 ± 0.013 1.396 ± 0.008 0.698 ± 0.004 1.680 ± 0.008 1.22

1-2 82 84.1 1 4 104.8 71.92 0.573 ± 0.009 1.373 ± 0.019 0.687 ± 0.009 1.707 ± 0.007 0.40

2-1 108 65.7 1 4 102.2 66.31 0.587 ± 0.009 1.297 ± 0.034 0.649 ± 0.017 1.709 ± 0.009 0.50

2-2 105 88.6 1 5 97.7 65.11 0.614 ± 0.015 1.333 ± 0.033 0.666 ± 0.017 1.666 ± 0.009 2.05

3-1 239 34.3 1 5 110.3 71.07 0.544 ± 0.040 1.290 ± 0.177 0.644 ± 0.090 1.690 ± 0.008 0.58

3-2 244 34.8 1 5 106.5 72.44 0.563 ± 0.009 1.361 ± 0.015 0.680 ± 0.008 1.654 ± 0.006 2.75

4-1 260 78.8 2 12 107.1 74.68 0.560 ± 0.032 1.397 ± 0.152 0.697 ± 0.076 1.683 ± 0.007 1.01

4-2 263 65.8 2 10 104.9 72.51 0.572 ± 0.023 1.385 ± 0.037 0.692 ± 0.017 1.703 ± 0.048 0.18

5-1 225 69.3 2 9 105.3 72.67 0.570 ± 0.019 1.380 ± 0.048 0.690 ± 0.024 1.707 ± 0.008 0.43

5-2 223 63.7 2 8 102.2 71.73 0.587 ± 0.011 1.405 ± 0.048 0.702 ± 0.023 1.686 ± 0.050 0.84

39 F 1.62

1-1 88 72.7 1 4 113.9 75.94 0.527 ± 0.013 1.333 ± 0.014 0.667 ± 0.007 1.602 ± 0.006 1.11

1-2 86 73.3 1 4 114.0 74.48 0.526 ± 0.013 1.307 ± 0.024 0.653 ± 0.012 1.625 ± 0.004 0.31

2-1 121 82.6 1 6 109.5 65.36 0.548 ± 0.023 1.194 ± 0.043 0.597 ± 0.022 1.591 ± 0.007 1.85

2-2 112 85.7 1 6 113.2 68.81 0.530 ± 0.031 1.216 ± 0.047 0.608 ± 0.023 1.586 ± 0.006 2.14

3-1 282 54.3 2 9 107.2 65.13 0.560 ± 0.043 1.215 ± 0.086 0.608 ± 0.043 1.610 ± 0.005 0.59

3-2 258 36.8 1 6 115.1 72.16 0.521 ± 0.049 1.257 ± 0.142 0.627 ± 0.074 1.629 ± 0.007 0.56

4-1 293 82.6 2 15 112.7 74.14 0.532 ± 0.019 1.320 ± 0.268 0.658 ± 0.127 1.607 ± 0.005 0.79

4-2 291 78.7 2 14 111.1 70.50 0.540 ± 0.025 1.269 ± 0.094 0.635 ± 0.047 1.612 ± 0.006 0.47

5-1 214 44.4 1 6 114.0 73.42 0.526 ± 0.013 1.288 ± 0.015 0.644 ± 0.007 1.612 ± 0.007 0.50

5-2 225 43.6 1 6 110.9 71.76 0.541 ± 0.026 1.294 ± 0.049 0.647 ± 0.024 1.591 ± 0.006 1.82

40 F 1.65

1-1 83 60.2 1 3 109.6 77.74 0.547 ± 0.004 1.418 ± 0.006 0.709 ± 0.003 1.673 ± 0.011 1.35

1-2 84 76.2 1 4 113.0 78.06 0.531 ± 0.009 1.381 ± 0.010 0.691 ± 0.005 1.678 ± 0.007 1.66

2-1 117 65.0 1 4 94.7 63.01 0.634 ± 0.025 1.331 ± 0.049 0.665 ± 0.024 1.651 ± 0.009 0.05

2-2 117 81.2 1 5 96.2 64.44 0.624 ± 0.010 1.340 ± 0.033 0.670 ± 0.017 1.672 ± 0.011 1.32

3-1 255 53.3 2 8 106.7 71.35 0.562 ± 0.030 1.338 ± 0.100 0.669 ± 0.050 1.707 ± 0.009 3.32

3-2 252 40.1 1 6 107.6 70.13 0.558 ± 0.009 1.304 ± 0.131 0.652 ± 0.066 1.674 ± 0.018 1.44

4-1 259 75.3 2 12 111.5 79.07 0.538 ± 0.010 1.419 ± 0.027 0.709 ± 0.013 1.690 ± 0.009 2.37

4-2 260 69.6 2 11 110.1 76.73 0.545 ± 0.012 1.394 ± 0.033 0.697 ± 0.016 1.694 ± 0.007 2.57

5-1 197 58.4 1 7 111.4 79.71 0.539 ± 0.006 1.431 ± 0.022 0.716 ± 0.011 1.665 ± 0.010 0.90

5-2 219 37.9 1 5 109.1 78.26 0.550 ± 0.022 1.434 ± 0.017 0.717 ± 0.008 1.688 ± 0.006 2.25
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Subject Gender Stature Path Frames Use Intervals ½Cycles Cadence Speed Duration Strides Displacement Height ∆Height

(ID) (M/F) (m) (ID) (num.) (%) (num.) (num.) (steps/min) (m/min) (s) (m) (m) (m) (%)

41 M 1.85

1-1 82 63.4 1 3 104.8 78.44 0.573 ± 0.011 1.498 ± 0.014 0.749 ± 0.007 1.850 ± 0.008 0.01

1-2 72 69.4 1 3 108.1 82.30 0.555 ± 0.006 1.522 ± 0.046 0.761 ± 0.023 1.864 ± 0.017 0.76

2-1 106 67.0 1 4 102.3 73.10 0.586 ± 0.012 1.429 ± 0.047 0.715 ± 0.024 1.843 ± 0.006 0.37

2-2 103 69.9 1 4 101.2 73.65 0.593 ± 0.014 1.456 ± 0.048 0.728 ± 0.024 1.852 ± 0.016 0.12

3-1 250 27.6 1 4 104.7 76.42 0.573 ± 0.005 1.460 ± 0.029 0.730 ± 0.015 1.854 ± 0.011 0.21

3-2 243 29.6 1 4 101.0 71.97 0.594 ± 0.013 1.426 ± 0.024 0.713 ± 0.012 1.855 ± 0.007 0.24

4-1 282 70.2 2 11 100.8 71.63 0.595 ± 0.020 1.422 ± 0.057 0.711 ± 0.028 1.875 ± 0.006 1.35

4-2 268 72.4 2 11 103.0 74.15 0.582 ± 0.014 1.440 ± 0.040 0.720 ± 0.020 1.863 ± 0.008 0.69

5-1 218 71.1 2 9 105.3 73.31 0.570 ± 0.053 1.393 ± 0.150 0.696 ± 0.075 1.897 ± 0.013 2.50

5-2 218 41.3 1 5 101.6 71.57 0.590 ± 0.023 1.409 ± 0.027 0.704 ± 0.013 1.880 ± 0.007 1.57

42 F 1.67

1-1 88 73.9 1 4 111.6 70.68 0.538 ± 0.010 1.266 ± 0.045 0.633 ± 0.022 1.636 ± 0.006 2.10

1-2 89 75.3 1 4 108.4 69.62 0.553 ± 0.025 1.284 ± 0.013 0.642 ± 0.007 1.641 ± 0.007 1.77

2-1 112 75.0 1 5 107.3 67.04 0.559 ± 0.017 1.249 ± 0.051 0.625 ± 0.026 1.599 ± 0.016 4.42

2-2 119 87.4 1 6 104.4 64.02 0.575 ± 0.017 1.226 ± 0.046 0.613 ± 0.023 1.616 ± 0.017 3.34

3-1 259 45.6 1 7 108.6 68.39 0.552 ± 0.012 1.288 ± 0.063 0.630 ± 0.052 1.683 ± 0.208 0.74

3-2 277 24.5 1 4 107.8 66.82 0.556 ± 0.006 1.239 ± 0.019 0.620 ± 0.010 1.616 ± 0.005 3.32

4-1 287 80.5 2 14 110.4 69.51 0.543 ± 0.031 1.261 ± 0.075 0.630 ± 0.038 1.616 ± 0.060 3.33

4-2 305 78.4 2 14 106.5 64.18 0.564 ± 0.037 1.209 ± 0.091 0.603 ± 0.047 1.686 ± 0.153 0.93

5-1 229 62.0 2 9 115.1 69.82 0.521 ± 0.021 1.210 ± 0.114 0.607 ± 0.052 1.618 ± 0.049 3.24

5-2 248 62.9 2 9 105.5 61.78 0.569 ± 0.038 1.173 ± 0.165 0.586 ± 0.080 1.660 ± 0.086 0.61

43 F 1.70

1-1 82 58.5 1 3 112.7 77.80 0.532 ± 0.009 1.381 ± 0.026 0.690 ± 0.013 1.699 ± 0.010 0.06

1-2 86 75.6 1 4 111.7 75.20 0.537 ± 0.013 1.346 ± 0.020 0.673 ± 0.010 1.715 ± 0.004 0.85

2-1 101 82.2 1 5 110.3 74.72 0.544 ± 0.012 1.355 ± 0.043 0.677 ± 0.022 1.692 ± 0.007 0.46

2-2 97 84.5 1 5 111.6 77.78 0.538 ± 0.010 1.395 ± 0.032 0.697 ± 0.016 1.689 ± 0.004 0.67

3-1 220 35.9 1 5 114.9 80.66 0.522 ± 0.015 1.404 ± 0.042 0.702 ± 0.021 1.705 ± 0.004 0.29

3-2 230 27.8 1 4 114.3 78.20 0.525 ± 0.016 1.368 ± 0.035 0.684 ± 0.017 1.700 ± 0.010 0.01

4-1 238 72.3 2 11 116.1 83.27 0.517 ± 0.013 1.434 ± 0.025 0.717 ± 0.012 1.703 ± 0.005 0.16

4-2 248 69.8 2 11 115.1 80.80 0.521 ± 0.015 1.404 ± 0.027 0.702 ± 0.014 1.715 ± 0.007 0.90

5-1 202 86.6 1 11 114.0 79.55 0.526 ± 0.031 1.396 ± 0.073 0.698 ± 0.037 1.731 ± 0.032 1.81

5-2 197 64.5 2 8 114.5 80.10 0.524 ± 0.018 1.399 ± 0.061 0.700 ± 0.030 1.723 ± 0.007 1.34

44 F 1.65

1-1 88 77.3 1 4 107.7 64.41 0.557 ± 0.010 1.197 ± 0.021 0.598 ± 0.011 1.628 ± 0.008 1.34

1-2 90 78.9 1 4 102.5 62.16 0.586 ± 0.012 1.213 ± 0.011 0.607 ± 0.006 1.608 ± 0.005 2.62

2-1 138 78.3 1 6 100.9 57.77 0.595 ± 0.013 1.145 ± 0.033 0.573 ± 0.017 1.595 ± 0.008 3.48

2-2 135 80.7 1 6 100.0 58.50 0.600 ± 0.012 1.170 ± 0.021 0.585 ± 0.011 1.591 ± 0.006 3.73

3-1 305 33.8 1 6 105.9 61.05 0.567 ± 0.009 1.153 ± 0.028 0.576 ± 0.014 1.609 ± 0.006 2.56

3-2 309 40.1 2 7 102.4 60.80 0.586 ± 0.032 1.188 ± 0.079 0.594 ± 0.039 1.609 ± 0.006 2.55

4-1 318 73.9 2 14 108.3 62.71 0.554 ± 0.021 1.158 ± 0.086 0.579 ± 0.043 1.627 ± 0.006 1.39

4-2 334 79.3 2 15 103.1 59.23 0.582 ± 0.019 1.149 ± 0.036 0.575 ± 0.018 1.614 ± 0.005 2.24

5-1 268 64.2 2 10 105.5 62.24 0.569 ± 0.024 1.180 ± 0.053 0.590 ± 0.026 1.611 ± 0.005 2.42

5-2 271 44.3 2 7 106.1 61.78 0.565 ± 0.028 1.164 ± 0.061 0.582 ± 0.030 1.631 ± 0.005 1.16

45 F 1.65

1-1 102 68.6 1 4 103.7 63.68 0.578 ± 0.027 1.228 ± 0.034 0.614 ± 0.017 1.699 ± 0.003 2.86

1-2 109 81.7 1 5 102.3 61.89 0.586 ± 0.015 1.210 ± 0.058 0.605 ± 0.029 1.696 ± 0.003 2.69

2-1 128 85.9 1 6 99.3 57.18 0.604 ± 0.026 1.152 ± 0.061 0.576 ± 0.031 1.688 ± 0.006 2.24

2-2 117 91.5 1 6 102.6 62.69 0.585 ± 0.020 1.222 ± 0.041 0.611 ± 0.020 1.707 ± 0.006 3.34

3-1 268 31.0 1 5 109.1 67.25 0.550 ± 0.017 1.234 ± 0.071 0.617 ± 0.036 1.693 ± 0.006 2.56

3-2 281 42.3 2 7 107.1 65.04 0.560 ± 0.046 1.214 ± 0.025 0.607 ± 0.013 1.698 ± 0.004 2.85

4-1 301 79.4 2 14 106.8 66.28 0.562 ± 0.029 1.242 ± 0.043 0.621 ± 0.021 1.703 ± 0.005 3.09

4-2 302 87.7 1 15 103.0 62.57 0.582 ± 0.099 1.217 ± 0.103 0.607 ± 0.053 1.784 ± 0.222 7.53

5-1 222 75.7 2 10 108.2 66.52 0.554 ± 0.022 1.230 ± 0.072 0.615 ± 0.036 1.715 ± 0.004 3.78

5-2 230 57.8 1 8 110.0 67.33 0.546 ± 0.009 1.228 ± 0.028 0.612 ± 0.016 1.713 ± 0.086 3.66
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Subject Gender Stature Path Frames Use Intervals ½Cycles Cadence Speed Duration Strides Displacement Height ∆Height

(ID) (M/F) (m) (ID) (num.) (%) (num.) (num.) (steps/min) (m/min) (s) (m) (m) (m) (%)

46 F 1.68

1-1 100 73.0 1 4 99.6 64.00 0.602 ± 0.018 1.323 ± 0.079 0.642 ± 0.010 1.589 ± 0.214 5.71

1-2 81 81.5 1 4 110.7 74.53 0.542 ± 0.013 1.422 ± 0.122 0.673 ± 0.016 1.397 ± 0.235 20.23

2-1 127 87.4 1 6 97.8 61.31 0.614 ± 0.015 1.291 ± 0.075 0.627 ± 0.023 1.237 ± 0.144 35.86

2-2 128 73.4 1 5 95.9 60.04 0.626 ± 0.012 1.291 ± 0.077 0.626 ± 0.025 1.376 ± 0.206 22.05

3-1 262 43.1 1 6 96.9 60.02 0.619 ± 0.017 1.276 ± 0.104 0.620 ± 0.026 1.665 ± 0.260 0.91

3-2 265 35.8 1 5 95.2 58.90 0.630 ± 0.027 1.249 ± 0.035 0.619 ± 0.008 1.763 ± 0.176 4.72

4-1 227 45.8 1 6 104.9 70.12 0.572 ± 0.015 1.358 ± 0.062 0.669 ± 0.009 1.409 ± 0.190 19.26

4-2 225 44.0 1 6 110.8 76.70 0.542 ± 0.016 1.404 ± 0.033 0.692 ± 0.009 1.740 ± 0.081 3.46

5-1 178 92.7 1 10 110.1 74.51 0.545 ± 0.028 1.378 ± 0.095 0.677 ± 0.028 1.705 ± 0.118 1.47

5-2 179 57.5 1 6 106.4 71.54 0.564 ± 0.023 1.344 ± 0.008 0.672 ± 0.004 1.729 ± 0.006 2.82

47 F 1.68

1-1 103 77.7 1 5 113.7 65.06 0.528 ± 0.014 1.144 ± 0.021 0.572 ± 0.010 1.671 ± 0.006 0.55

1-2 89 69.7 1 4 117.1 73.37 0.512 ± 0.010 1.253 ± 0.027 0.626 ± 0.013 1.674 ± 0.008 0.37

2-1 113 86.7 1 6 111.4 66.47 0.539 ± 0.015 1.194 ± 0.036 0.597 ± 0.018 1.661 ± 0.007 1.12

2-2 103 76.7 1 5 115.5 72.04 0.520 ± 0.008 1.248 ± 0.025 0.624 ± 0.012 1.661 ± 0.007 1.13

3-2 242 31.8 1 5 117.2 72.37 0.512 ± 0.023 1.235 ± 0.009 0.617 ± 0.004 1.682 ± 0.002 0.10

3-1 237 57.8 2 9 119.8 75.62 0.501 ± 0.015 1.262 ± 0.037 0.631 ± 0.018 1.719 ± 0.007 2.26

4-1 260 74.2 2 13 122.5 77.31 0.490 ± 0.015 1.262 ± 0.033 0.631 ± 0.016 1.690 ± 0.007 0.58

4-2 255 58.8 2 10 121.2 76.79 0.495 ± 0.018 1.267 ± 0.021 0.633 ± 0.011 1.693 ± 0.006 0.76

5-1 201 44.8 1 6 122.4 78.01 0.490 ± 0.016 1.274 ± 0.026 0.637 ± 0.013 1.680 ± 0.012 0.01

5-2 187 47.1 1 6 123.0 79.87 0.488 ± 0.023 1.299 ± 0.019 0.650 ± 0.010 1.681 ± 0.005 0.05

48 F 1.55

1-1 103 82.5 1 5 108.2 64.10 0.555 ± 0.009 1.185 ± 0.011 0.593 ± 0.006 1.535 ± 0.009 0.97

1-2 106 65.1 1 4 105.7 68.78 0.568 ± 0.011 1.299 ± 0.134 0.651 ± 0.066 1.537 ± 0.005 0.87

2-1 132 77.3 1 6 106.1 60.80 0.566 ± 0.011 1.147 ± 0.024 0.573 ± 0.012 1.537 ± 0.004 0.85

2-2 121 82.6 1 6 109.2 65.86 0.549 ± 0.007 1.206 ± 0.025 0.603 ± 0.012 1.532 ± 0.003 1.16

3-1 273 30.0 1 5 111.6 67.75 0.538 ± 0.004 1.214 ± 0.032 0.607 ± 0.016 1.558 ± 0.004 0.53

3-2 277 52.0 2 9 112.9 68.21 0.531 ± 0.017 1.209 ± 0.036 0.604 ± 0.018 1.577 ± 0.005 1.69

4-1 290 77.9 2 14 112.5 69.36 0.533 ± 0.010 1.233 ± 0.031 0.617 ± 0.015 1.558 ± 0.005 0.49

4-2 274 75.9 2 13 114.0 72.49 0.526 ± 0.014 1.272 ± 0.037 0.636 ± 0.018 1.575 ± 0.007 1.59

5-1 230 56.5 2 8 112.6 70.81 0.533 ± 0.014 1.258 ± 0.030 0.629 ± 0.015 1.557 ± 0.003 0.46

5-2 225 71.6 2 10 112.5 68.44 0.533 ± 0.011 1.217 ± 0.048 0.608 ± 0.024 1.563 ± 0.007 0.86

49 F 1.70

1-1 80 81.2 1 4 112.0 76.72 0.536 ± 0.013 1.371 ± 0.013 0.685 ± 0.007 1.617 ± 0.009 5.16

1-2 74 66.2 1 3 112.0 79.82 0.536 ± 0.008 1.426 ± 0.010 0.713 ± 0.005 1.641 ± 0.012 3.59

2-1 96 86.5 1 5 109.4 73.11 0.548 ± 0.008 1.336 ± 0.063 0.668 ± 0.031 1.599 ± 0.006 6.32

2-2 93 73.1 1 4 107.8 74.64 0.557 ± 0.011 1.385 ± 0.046 0.692 ± 0.023 1.619 ± 0.009 5.02

3-1 217 30.4 1 4 111.2 79.66 0.540 ± 0.011 1.433 ± 0.071 0.716 ± 0.036 1.630 ± 0.008 4.28

3-2 216 30.6 1 4 110.3 71.82 0.544 ± 0.020 1.302 ± 0.051 0.651 ± 0.025 1.617 ± 0.007 5.14

4-1 232 63.4 2 9 111.5 79.70 0.538 ± 0.021 1.429 ± 0.040 0.715 ± 0.020 1.633 ± 0.008 4.11

4-2 221 59.7 2 8 110.3 78.34 0.544 ± 0.022 1.420 ± 0.032 0.710 ± 0.016 1.651 ± 0.007 2.97

5-1 181 44.2 1 5 114.0 82.36 0.526 ± 0.007 1.444 ± 0.014 0.722 ± 0.007 1.634 ± 0.007 4.05

5-2 180 45.0 1 5 112.4 80.28 0.534 ± 0.015 1.429 ± 0.024 0.714 ± 0.012 1.647 ± 0.006 3.20

50 F 1.55

1-1 94 79.8 1 5 121.2 74.18 0.495 ± 0.015 1.224 ± 0.041 0.612 ± 0.021 1.576 ± 0.008 1.63

1-2 92 66.3 1 4 120.0 72.60 0.500 ± 0.017 1.210 ± 0.029 0.605 ± 0.015 1.579 ± 0.007 1.83

2-1 110 74.5 1 5 111.3 66.18 0.539 ± 0.006 1.189 ± 0.011 0.594 ± 0.006 1.579 ± 0.008 1.86

2-2 108 86.1 1 6 117.0 68.80 0.513 ± 0.013 1.176 ± 0.034 0.588 ± 0.017 1.557 ± 0.008 0.46

3-1 258 77.5 2 11 100.3 68.86 0.598 ± 0.309 1.372 ± 0.382 0.687 ± 0.191 1.602 ± 0.012 3.24

3-2 260 48.1 2 8 115.8 67.61 0.518 ± 0.020 1.168 ± 0.047 0.584 ± 0.023 1.606 ± 0.009 3.47

4-1 263 63.9 2 11 118.8 72.81 0.505 ± 0.011 1.226 ± 0.020 0.613 ± 0.010 1.585 ± 0.006 2.22

4-2 256 75.8 2 13 121.2 74.57 0.495 ± 0.020 1.230 ± 0.033 0.615 ± 0.016 1.599 ± 0.007 3.04

5-1 200 53.0 1 7 119.9 73.87 0.500 ± 0.013 1.232 ± 0.013 0.616 ± 0.006 1.600 ± 0.006 3.12

5-2 198 44.9 1 6 122.4 76.12 0.490 ± 0.018 1.243 ± 0.019 0.622 ± 0.009 1.587 ± 0.008 2.33
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Subject Gender Stature Path Frames Use Intervals ½Cycles Cadence Speed Duration Strides Displacement Height ∆Height

(ID) (M/F) (m) (ID) (num.) (%) (num.) (num.) (steps/min) (m/min) (s) (m) (m) (m) (%)

51 F 1.76

1-1 67 68.7 1 3 118.4 96.79 0.507 ± 0.004 1.635 ± 0.053 0.817 ± 0.026 1.741 ± 0.011 1.07

1-2 64 48.4 1 2 115.6 93.67 0.519 ± 0.001 1.620 ± 0.033 0.810 ± 0.016 1.790 ± 0.008 1.65

2-1 79 78.5 1 4 118.5 96.04 0.506 ± 0.023 1.622 ± 0.059 0.811 ± 0.029 1.734 ± 0.008 1.53

2-2 81 79.0 1 4 113.1 84.48 0.531 ± 0.002 1.494 ± 0.043 0.747 ± 0.022 1.758 ± 0.005 0.11

3-1 194 53.1 2 6 106.4 118.04 0.564 ± 0.093 2.242 ± 1.126 1.109 ± 0.552 1.742 ± 0.008 1.04

3-2 190 32.1 1 4 119.3 94.11 0.503 ± 0.013 1.580 ± 0.109 0.789 ± 0.053 1.744 ± 0.006 0.94

4-1 200 76.0 2 10 119.7 120.13 0.501 ± 0.027 2.058 ± 1.209 1.004 ± 0.529 1.763 ± 0.008 0.19

4-2 196 63.8 2 8 117.0 93.42 0.513 ± 0.011 1.598 ± 0.044 0.799 ± 0.022 1.766 ± 0.007 0.34

5-1 161 33.5 1 2 68.0 84.65 0.882 ± 0.162 2.508 ± 0.534 1.245 ± 0.280 1.995 ± 0.012 11.77

5-2 158 38.6 1 4 119.7 95.44 0.501 ± 0.018 1.594 ± 0.036 0.797 ± 0.018 1.744 ± 0.005 0.92

52 F 1.54

1-1 80 78.8 1 4 115.4 79.70 0.520 ± 0.016 1.397 ± 0.043 0.690 ± 0.011 1.585 ± 0.058 2.84

1-2 83 77.1 1 4 112.1 75.94 0.535 ± 0.012 1.354 ± 0.036 0.677 ± 0.018 1.571 ± 0.010 1.95

2-1 113 77.0 1 5 103.7 64.67 0.579 ± 0.024 1.267 ± 0.043 0.624 ± 0.015 1.684 ± 0.176 8.55

2-2 110 76.4 1 5 107.6 68.47 0.558 ± 0.009 1.273 ± 0.038 0.636 ± 0.019 1.567 ± 0.009 1.71

3-1 231 34.2 1 5 114.0 75.77 0.526 ± 0.010 1.329 ± 0.053 0.664 ± 0.027 1.583 ± 0.011 2.69

3-2 222 29.3 1 4 112.6 72.38 0.533 ± 0.010 1.302 ± 0.053 0.643 ± 0.017 1.614 ± 0.091 4.56

4-1 242 68.2 2 10 110.7 73.30 0.542 ± 0.017 1.336 ± 0.087 0.662 ± 0.038 1.617 ± 0.117 4.78

4-2 254 77.2 2 12 111.0 72.95 0.541 ± 0.025 1.316 ± 0.095 0.657 ± 0.048 1.580 ± 0.012 2.55

5-1 197 56.3 1 7 114.4 78.88 0.525 ± 0.011 1.380 ± 0.010 0.690 ± 0.005 1.580 ± 0.005 2.53

5-2 202 39.1 1 5 115.3 77.95 0.520 ± 0.003 1.352 ± 0.009 0.676 ± 0.005 1.573 ± 0.007 2.07
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