

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Anisotropic 3D texture synthesis with application to volume rendering

Laursen, Lasse Farnung; Ersbøll, Bjarne Kjær; Bærentzen, Jakob Andreas

Published in:
WSCG' 2011 Communication Papers Proceedings

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Laursen, L. F., Ersbøll, B. K., & Bærentzen, J. A. (2011). Anisotropic 3D texture synthesis with application to
volume rendering. In WSCG' 2011 Communication Papers Proceedings (pp. 49-57)

http://orbit.dtu.dk/en/publications/anisotropic-3d-texture-synthesis-with-application-to-volume-rendering(d00ee939-f493-4133-934c-d05598b6940c).html

The 19th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision

in co-operation with

EUROGRAPHICS

W S C G ' 2011

Communication Papers Proceedings

University of West Bohemia
Plzen

Czech Republic

January 31 – February 3, 2011

Co-Chairs
Gladimir Baranoski, University of Waterloo, Canada

Vaclav Skala, University of West Bohemia, Czech Republic

Edited by
Gladimir Baranoski, Vaclav Skala

 Vaclav Skala – Union Agency

WSCG’2011 Communication Papers Proceedings

Editor-in-Chief: Vaclav Skala

c/o University of West Bohemia, Univerzitni 8
CZ 306 14 Plzen
Czech Republic
skala@kiv.zcu.cz

Managing Editor: Vaclav Skala

Published and printed by:

Vaclav Skala – Union Agency
Na Mazinách 9
CZ 322 00 Plzen
Czech Republic

Hardcopy: ISBN 978-80-86943-82-4

WSCG 2011

International Program Committee

Balcisoy, S. (Turkey)

Baranoski, G. (Canada)

Benes, B. (United States)

Benoit, C. (France)

Bilbao, J. (Spain)

Biri, V. (France)

Bittner, J. (Czech Republic)

Bouatouch, K. (France)

Buehler, K. (Austria)

Coquillart, S. (France)

Daniel, M. (France)

de Geus, K. (Brazil)

Debelov, V. (Russia)

Feito, F. (Spain)

Ferguson, S. (United Kingdom)

Flaquer, J. (Spain)

Gallo, G. (Italy)

Gavrilova, M. (Canada)

Gudukbay, U. (Turkey)

Gutierrez, D. (Spain)

Havemann, S. (Austria)

Havran, V. (Czech Republic)

Chmielewski, L. (Poland)

Chover, M. (Spain)

Jansen, F. (Netherlands)

Klosowski, J. (United States)

Lee, T. (Taiwan)

Max, N. (United States)

Molla Vaya, R. (Spain)

Murtagh, F. (Ireland)

Pasko, A. (United Kingdom)

Pedrini, H. (Brazil)

Platis, N. (Greece)

Puppo, E. (Italy)

Purgathofer, W. (Austria)

Rojas-Sola, J. (Spain)

Rokita, P. (Poland)

Rosenhahn, B. (Germany)

Rudomin, I. (Mexico)

Sakas, G. (Germany)

Segura, R. (Spain)

Schumann, H. (Germany)

Skala, V. (Czech Republic)

Slavik, P. (Czech Republic)

Sochor, J. (Czech Republic)

Stroud, I. (Switzerland)

Teschner, M. (Germany)

Theoharis, T. (Greece)

Tokuta, A. (United States)

Vergeest, J. (Netherlands)

Wu, S. (Brazil)

Wuethrich, C. (Germany)

Zara, J. (Czech Republic)

Zemcik, P. (Czech Republic)

Zitova, B. (Czech Republic)

W

Sprin

NV

ZONE

WSCG 2

nx Systems

VIDIA Cor

ER Softwar

2011

s a.s.

rp.

re, a.s.

 was s

suppo

SILICO

Mi

Faculty

Dept. of

orted b

ON GRAP

icrosoft, s.r

y of Applie

f Compute
Engineeri

by

PHICS s.r

r.o. ČR

ed Sciences

r Science &
ing

r.o

s

&

WSCG 2011

Board of Reviewers

Akleman, E. (United States)

Ariu, D. (Italy)

Assarsson, U. (Sweden)

Aveneau, L. (France)

Balcisoy, S. (Turkey)

Battiato, S. (Italy)

Benes, B. (United States)

Benoit, C. (France)

Biasotti, S. (Italy)

Bilbao, J. (Spain)

Biri, V. (France)

Bittner, J. (Czech Republic)

Bosch, C. (France)

Bouatouch, K. (France)

Boukaz, S. (France)

Bouville, C. (France)

Bruni, V. (Italy)

Buehler, K. (Austria)

Cakmak, H. (Germany)

Camahort, E. (Spain)

Capek, M. (Czech Republic)

CarmenJuan-Lizandra, M. (Spain)

Casciola, G. (Italy)

Coquillart, S. (France)

Correa, C. (United States)

Cosker, D. (United Kingdom)

Daniel, M. (France)

de Amicis, r. (Italy)

de Geus, K. (Brazil)

Debelov, V. (Russia)

Domonkos, B. (Hungary)

Drechsler, K. (Germany)

Duke, D. (United Kingdom)

Dupont, F. (France)

Durikovic, R. (Slovakia)

Eisemann, M. (Germany)

Erbacher, R. (United States)

Erleben, K. (Denmark)

Farrugia, J. (France)

Feito, F. (Spain)

Ferguson, S. (United Kingdom)

Fernandes, A. (Portugal)

Flaquer, J. (Spain)

Fontana, M. (Italy)

Fuenfzig, C. (France)

Gallo, G. (Italy)

Galo, M. (Brazil)

Garcia Hernandez, R. (Spain)

Garcia-Alonso, A. (Spain)

Gavrilova, M. (Canada)

Giannini, F. (Italy)

Gonzalez, P. (Spain)

Grau, S. (Spain)

Gudukbay, U. (Turkey)

Guggeri, F. (Italy)

Gutierrez, D. (Spain)

Habel, R. (Austria)

Hall, P. (United Kingdom)

Hansford, D. (United States)

Haro, A. (United States)

Hasler, N. (New Zealand)

Havemann, S. (Austria)

Havran, V. (Czech Republic)

Hernandez, B. (Mexico)

Herout, A. (Czech Republic)

Horain, P. (France)

House, D. (United States)

Chaine, R. (France)

Chaudhuri, D. (India)

Chmielewski, L. (Poland)

Chover, M. (Spain)

Iwasaki, K. (Japan)

Jansen, F. (Netherlands)

Jeschke, S. (Austria)

Jones, M. (United Kingdom)

Jones, M. (United States)

Juettler, B. (Austria)

Kheddar, A. (Japan)

Kim, H. (Korea)

Klosowski, J. (United States)

Kohout, J. (Czech Republic)

Kurillo, G. (United States)

Kyratzi, S. (Greece)

Lanquetin, S. (France)

Lay Herrera, T. (Germany)

Lee, T. (Taiwan)

Lee, S. (Korea)

Leitao, M. (Portugal)

Liu, D. (Taiwan)

Liu, S. (China)

Lutteroth, C. (New Zealand)

Madeiras Pereira, J. (Portugal)

Maierhofer, S. (Austria)

Manzke, M. (Ireland)

Marras, S. (Italy)

Maslov, O. (Russia)

Matey, L. (Spain)

Matkovic, K. (Austria)

Max, N. (United States)

Meng, W. (China)

Mestre, D. (France)

Michoud, B. (France)

Mokhtari, M. (Canada)

Molla Vaya, R. (Spain)

Montrucchio, B. (Italy)

Muehler, K. (Germany)

Murtagh, F. (Ireland)

Nishio, K. (Japan)

OliveiraJunior, P. (Brazil)

Oyarzun Laura, C. (Germany)

Pan, R. (China)

Papaioannou, G. (Greece)

Pasko, A. (United Kingdom)

Pasko, G. (Cyprus)

Patane, G. (Italy)

Patow, G. (Spain)

Pedrini, H. (Brazil)

Peters, J. (United States)

Pina, J. (Spain)

Platis, N. (Greece)

Puig, A. (Spain)

Puppo, E. (Italy)

Purgathofer, W. (Austria)

Reshetov, A. (United States)

Richardson, J. (United States)

Richir, S. (France)

Rojas-Sola, J. (Spain)

Rokita, P. (Poland)

Rosenhahn, B. (Germany)

Rudomin, I. (Mexico)

Sakas, G. (Germany)

Salvetti, O. (Italy)

Sanna, A. (Italy)

Segura, R. (Spain)

Sellent, A. (Germany)

Shesh, A. (United States)

Schultz, T. (United States)

Schumann, H. (Germany)

Sirakov, N. (United States)

Skala, V. (Czech Republic)

Slavik, P. (Czech Republic)

Sochor, J. (Czech Republic)

Sousa, A. (Portugal)

Srubar, S. (Czech Republic)

Stroud, I. (Switzerland)

Subsol, G. (France)

Sundstedt, V. (Sweden)

Tang, M. (China)

Tavares, J. (Portugal)

Teschner, M. (Germany)

Theoharis, T. (Greece)

Theussl, T. (Saudi Arabia)

Tokuta, A. (United States)

Tomori, Z. (Slovakia)

Torrens, F. (Spain)

Trapp, M. (Germany)

Umlauf, G. (Germany)

Vazques, P. ()

Vergeest, J. (Netherlands)

Vitulano, D. (Italy)

Vosinakis, S. (Greece)

Walczak, K. (Poland)

Weber, A. (Germany)

Wu, S. (Brazil)

Wuensche, B. (New Zealand)

Wuethrich, C. (Germany)

Yoshizawa, S. (Japan)

Yue, Y. (Japan)

Zara, J. (Czech Republic)

Zemcik, P. (Czech Republic)

Zhu, Y. (United States)

Zhu, J. (United States)

Zitova, B. (Czech Republic)

WSCG 2011

Communication Papers Proceedings

Contents

• Foulds,H., Drevin,G.R.: Three-dimensional shape descriptors and
matching procedures

 1

• Mendez,J., Lorenzo,J., Castrillon,M.: Comparative Performance of GPU,
SIMD and OpenMP Systems for Raw Template Matching in Computer
Vision

 9

• Paulano,F., Jimenez,J., Martinez,A., Pulido,R.: Approximate
reconstruction of meshes after material removing

 17

• Voronov,A., Vatolin,D., Smirnov,M.: Novel trilateral approach for depth
map filtering

 25

• Hnidek,J.: Network Protocols for Applications of Shared Virtual Reality 31

• Kondo,K., Inaba,T., Sakurai,H., Ohno,M., Tsumura,T., Matsuo,H.:
RaVioli: a GPU Supported High-Level Pseudo Real-time Video Processing
Library

 39

• Laursen,L., Ersboell,B., Baerentzen,J.: Anisotropic 3D texture synthesis
with application to volume rendering

 49

• Juan,M.C., Carrizo,M., Gimenez,M., Abad,F.: Using an Augmented
Reality game to find matching pairs

 59

• Vergeest,J.S.M., Kooijman,A, Song,Y.: Setting the Parameters of the LFT
Shape Matching Algorithm

 67

• Peschel,F., Scheer,F.: Plausible Visualization of the Dynamic Digital
Factory with Massive Amounts of Lights

 75

• Yamanaka,K., Yano, A., Morishima,S.: Example-based Deformation with
Support Joints

 83

• Hotta,K.: Integration of Reconstruction Error Obtained by Local and
Global Kernel PCA with Different Role

 91

• Hofmann,M., Sural,S., Rigoll,G.: Gait Recognition in the Presence of
Occlusion: A New Dataset and Baseline Algorithms

 99

• Getto,R., Hildenbrand,D.: Improved Algorithm for Principal Curvature
Estimation in Point Clouds due to Optimized Osculating Circle Fitting
based on Geometric Algebra

 105

• Svensson,L., Nystrom,I., Svensson,S., Sintorn,I.-M.: Investigating
measures for transfer function generation for visualization of MET
biomedical data

 113

• Kanaya,T., Taniguchi,T., Teshima,Y., Nishio,K., Kobori,K.: A Method for
Storing Clustering Information of Model Simplification in GPUs

 121

• Werneck,N., Costa,A.H.R.: Speeding up probabilistic inference of camera
orientation by function approximation and grid masking

 127

• Elzobi,M., Al-Hamadi,A., Al Aghbari,Z.: Off-line Handwritten Arabic
Words Segmentation Based on Structural Features and Connected
Components Analysis

 135

• Balinsky,A., Mohammad,N.: Chroma Reconstruction from Inaccurate
Measurements

 143

• Peciva,J., Zemcik,P., Navratil,J.: Mimicking POV-Ray Photorealistic
Rendering with Accelerated OpenGL Pipeline

 149

• Yamashita,Ch., Nishio,K., Kobori,K.-I.: Automated 3D Visualization of
Electron Microscope Tomograms

 157

• Cardwell,O., Mukundan,R.: Visualization and Analysis of Inverse
Kinematics Algorithms Using Performance Metric Maps

 163

• Gonzalez,M.J., Lucena,M., Fuertes,J.M., Segura,R., Rueda,A.J.:
Detecting Unstructured Elements in 3D Scanned Scenes

 169

• Kalia,R., Jaikar,A.: Rain Removal from Videos using the temporal-Spatial
Statistical Properties

 173

• Berger,M.: Approximate Importance Sampling of Functions
Reconstructed from Spherical Harmonics

 181

• Wiemann,P., Wenger,S., Magnor,M.: CUDA Expression Templates 185
• Hapala,M., Karlik,O., Havran,V.: When It Makes Sense to Use Uniform

Grids for Ray Tracing
 193

• Kolcun,A.: Biquadratic S-patch in Bezier form 201

Three-dimensional shape descriptors

and matching procedures

H. Foulds

School of Computer, Statistical and
Mathematical Sciences

North-West University
Potchefstroom, 2531,

South Africa
Henry.Foulds@nwu.ac.za

G.R. Drevin

School of Computer, Statistical and
Mathematical Sciences

North-West University
Potchefstroom, 2531,

South Africa
Gunther.Drevin@nwu.ac.za

ABSTRACT
Shape descriptors are used to identify objects in the same way that human fingerprints are used to identify

people. Features of an object are extracted by applying functions to the digital representation of the object.

These features are structured as a vector which is known as the shape descriptor (feature vector) of that object.

The objective when constructing a shape descriptor is to find functions that will yield shape descriptors that can

be used to uniquely identify or at least classify an object. A measure of similarity is required to identify or

classify an object. The similarity between two objects is computed by applying a distance function to the shape

descriptors of the two objects.

The objective of this paper is to examine two of the possible techniques in three-dimensional shape descriptor

construction based on Fourier analysis, and to find a descriptor that is able to not only classify, but also identify

objects.

Keywords
Shape descriptor, Fourier transform.

1. INTRODUCTION
The Fourier transform has long been used in image

and signal processing to convert data from the spatial

domain to the frequency domain. Applying the

Fourier transform to spatial data results in a set of

coefficients that represent different frequency

variations in the data. Lower order coefficients

represent low frequency variations that normally

have large amplitudes while higher order coefficients

represent high frequency variations that normally

have small amplitudes. The Fourier transform is

normally used on data consisting of one dimension

(signal processing) or two dimensions (image

processing), but can also be applied to three

dimensions as seen in Zhang & Chen [Zha01a] and

Vranic & Saupe [Vra01a].

Fourier coefficients form conjugate pairs, except for

the lowest order coefficient. To create a descriptor

from Fourier coefficients the magnitudes of the

coefficients are calculated. The first K of these

values, corresponding to the K lowest Fourier

coefficients, are used. K is a threshold value to

establish the smallest number of coefficients needed

to identify each object.

In this paper two methods are developed that can be

used with the Fourier transform to identify objects.

In both methods a θφ-matrix is created to which a

Fourier transform is applied to create feature vectors.

The data used in this project are in the form of three-

dimensional triangle mesh models. In a triangle

mesh model each object is approximated by a

collection of structured triangles. The triangles

represent the faces of the mesh model and each face

has three vertices. Some of the faces share common

vertices or sides. The faces are represented by an

N×3 matrix with N the number of faces. The vertices

are represented by an M×3 matrix with M the number

of unique vertices. The three values in each row in

the faces matrix represent the three vertices of a face.

Each value is the row number of a vertex in the

vertices matrix. The first step in calculating the

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2011 Communication Papers 1

descriptor of an object is to obtain the N×3 matrix

representing the N faces and the M×3 matrix

representing the M vertices that approximate the

object.

Matching objects when they do not have the same

pose causes a serious problem. To solve this

problem the descriptor has to be translation and

rotation invariant. The most frequent used method to

solve this problem is to apply Principle Component

Analysis (PCA, Hotelling transform, Karhunen-

Loeve transform) to the triangle mesh of an object

before the descriptor is calculated [Zha01a, Vra01a,

Vra03a, Pap06a]. The result of doing PCA is that all

objects that are similar will have similar orientations

and the descriptors that are calculated will have a

smaller match distance. PCA can be used as a

second step in calculating a descriptor to ensure

rotation and translation invariance when the

descriptor technique itself is not invariant to rotation

and translation. An example of PCA can be seen in

Figure 1. When classifying objects scale invariance

is required. The objective of this project was to solve

an exact matching problem, therefore scale variance

was not considered.

The PCA method uses the eigenvalues and

eigenvectors, calculated from the covariance matrix

of the vertices matrix, to rotate an object in such a

way that the first principal axis aligns with the x-axis,

the second principal axis with the y-axis and the third

principal axis with the z-axis. On completion of

PCA the largest variance of mass is in the x-axis

direction. For highly symmetrical objects the

eigenvalues are very similar. The small differences

in symmetrical objects cause errors during PCA

because the eigenvalues are similar and a small

change in the eigenvalues causes the eigenvectors to

change dramatically. Figure 2 shows the result of

applying PCA on symmetrical objects. Using PCA

to normalize pose when objects are symmetrical is

not very successful.

2. REPRESENTATION
Centroid distance is defined as the distance from the

centroid of an object to the surface of that object.

The object is centred and orientated using PCA.

After PCA the centroid distance is calculated for

angles θ and φ with θ[0,π] and φ[0,2π]. θ is the

polar angle from the z-axis and φ the azimuthal angle

in the xy-plane from the x-axis. The centroid of the

object is located at the origin of the coordinate

framework. A two-dimensional θφ-matrix is created

where the rows represent θ-values and the columns

represent φ-values. The value located at index [θ,φ]

of the matrix is the distance from the centroid, in the

direction (θ,φ), to the surface of the object. If the

surface of the object is intersected more than once,

the maximum value is used. In the result for

θ[0,2π] the elements in the matrix for θ[π,2π] will

be a mirror of the values for the elements with

θ[0,π]. For this reason θ[0,π] is used.

The discrete Fourier transform (DFT) of the θφ-

matrix is calculated and the result used to create the

feature vector. The feature vector is created by

applying a method, similar to the process used by

Vranic & Saupe [Vra01a], to the Fourier coefficients.

For a chosen integer value K, the (2K+1)×(2K+1)

matrix centred on the lowest frequency coefficient is

returned. Except for the lowest frequency

coefficient, all other coefficients form conjugate

pairs. The feature vector is defined as the

magnitudes of the Fourier coefficients. The

coefficients are ordered according to distance from

the lowest frequency coefficient.

Algorithm:

1. Get faces matrix and vertices matrix

2. Do PCA

3. Centroid is located at origin after PCA.

Figure 2. The top row shows three different

orientations of a symmetrical object. The

bottom row shows the result of applying PCA

to the top row.

Figure 1. The top row shows three different

orientations of the same object. The bottom

row shows the result of applying PCA to the

top row.

WSCG 2011 Communication Papers 2

4. Get θφ-matrix by calculating distance from

centroid to last triangle intersected for each

[θ,φ] (Two different methods are discussed in

paragraph 2.1 and 2.2)

5. Calculate 2D Fourier transform of θφ-matrix

6. Set the number of Fourier coefficients by

choosing value for K

7. Get the feature matrix by calculating the

absolute value of the elements in the

(2K+1)×(2K+1) matrix in the centre of the

Fourier transformed θφ-matrix (centred on the

lowest frequency coefficient)

8. Calculate the 2D Euclidean distance of each

element in the feature matrix from the centre

9. Reorder the elements in the feature matrix into a

one-dimensional array, sorting them according

to the distance calculated in step 8 (For

elements at the same distance, the same order is

used for each object as they are orientated with

PCA)

10. The result is the feature vector.

Two techniques to calculate the distance from the

centroid to the surface of an object were evaluated.

2.1. Method 1
In this technique four θφ-matrices are created with

θ[0,π] and φ[0,2π]. Increments of 1, 4, 9 and 18

degrees for θ and φ are used for each of the four

matrices respectively. Larger increments will result

in smaller matrices. For each of the directions (θ,φ)

in the θφ-matrix the distance is calculated from the

centroid to an intersection with a face. If more than

one face is intersected, the maximum distance is

used. Each face may be intersected multiple times

for different directions (θ,φ).

2.2. Method 2
In the second technique four θφ-matrices are also

created with θ[0,π] and φ[0,2π]. Increments of 1,

4, 9 and 18 degrees for θ and φ are used for each of

the four matrices respectively. For each of the faces

a range of θ and φ values is determined to create a

region surrounding the face. Depending on the

increment length, the number of intervals for θ and φ

are calculated.

This number of intervals is used to create a set of

points on the face defined by intervals of λ and β in

λE + βF + (1 – λ - β) G with 0 ≤ λ ≤ 1, 0 ≤ β ≤ 1 and

0 ≤ λ+β ≤ 1. E, F and G are the vertices of the face.

The distance from the centroid to the plane defined

by the vertices of the face is calculated for the

directions (θ,φ) for all the points in the set. This

procedure ensures that distances are calculated only

for the set of points on a face.

Using method 2 speeds up the process of calculating

the θφ-matrix considerably as there is no need to

repeat the calculations for all the directions of all the

faces. The process is applied to each face and the

results obtained for all the faces are combined. The

results obtained with these two techniques are given

in section 4.1.

3. MATCHING

3.1. Distance functions

Distance functions are used to determine the distance

between two feature vectors f1 and f2. A number of

distance functions are defined, among others, by

Vranić [Vra03a], Osada et al. [Osa01a] and Long et

al. [Lon02a]. Distance functions used in this project

are:

 l1 norm

 (1)

This function defines the distance between two

feature vectors as the sum of the absolute values of

the differences between each set of corresponding

elements.

 l2 norm

 (2)

With this function the distance between two feature

vectors is the square root of the sum of the squares of

the differences between each set of corresponding

elements.

 Minkowski with p=0.8

The next two distance measures use the Minkowski

norm given in Long et al. [Lon02a] as

 (3)

The value of p was chosen as 0.8 for this norm.

 Minkowski with p=1.2

This norm uses the same form as in Equation (3), but

with p chosen as 1.2.

 lmax norm

The lmax norm is the maximum of the absolute values

of the differences between the sets of corresponding

elements.

 (4)

WSCG 2011 Communication Papers 3

3.2. The matching process

Matching is done by first applying the same

descriptor method to two different objects after

which the distance between the two feature vectors is

calculated. This distance is used as a measure of the

similarity of the two objects.

When working with sets of objects, a matrix of

distance values is created to match two sets of

objects. The rows represent the objects of the first

set and the columns represent the objects of the

second set. Each value in the matrix is used as a

measure of the similarity between two objects, an

object from the first set as defined by the row number

and an object from the second set as defined by the

column number. For each object in the first set, the

closest match is found from the second set. With this

technique an object can be identified from a set of

possible objects.

The elements in a similarity matrix M are calculated

using one of the distance functions, therefore

M(i,j)=d(fi,fj) where fi is the feature vector of object i

on row i of matrix M and fj is the feature vector of

object j on row j of matrix M. d is the chosen

distance function.

In this study three sets of 60 objects are used to test

the usability of the descriptors for identification.

Examples of these objects are given in Figure 3.

Each of the three datasets used in the matching

process consist of 600 triangle mesh models

representing the 60 objects. Each object is digitized

10 times resulting in 10 representations of each

object. Due to the nature of the digitization process

there are small variations in the representations of the

objects. The 600 models in each dataset are divided

into two sets with five models representing each

object in a set. During the matching process the 300

models representing 60 objects from the first set are

matched to the 300 models representing the same 60

objects from the second set. The matching process

creates a similarity matrix with the models from the

first set represented by 300 rows and the models from

the second set represented by 300 columns. Each

element in the matrix is the result of a distance

function applied to the object represented by the row

from the first set and the object represented by the

column from the second set. Five different distance

functions are used to create five different similarity

matrices. Because multiple rows and columns are

used to represent feature vectors calculated from

different representations of the same object,

aggregates of these columns and rows are taken. The

aggregate functions used are minimum, mean,

maximum and sum. This results in a matrix with 60

rows and 60 columns. The objective is to identify

and match objects in a set using similar

representations of the same objects in another set.

Because both sets contain models of all 60 objects,

an object in a specific row must be matched with an

object in a specific column. This is done by finding

the object with the smallest distance function result.

4. RESULTS

4.1. Feature vector creation

The project was implemented using Matlab 2007 on

an Intel Core2 Quad 2.4GHz PC. The first tests are

to show the results obtained when applying the two

techniques to calculate the θφ-matrix as discussed in

section 2.1. A sphere with radius 3 consisting of 88

faces is used to evaluate the two techniques.

The results when calculating the θφ-matrix of the

sphere using method 1 are shown in Table 1. The

first column lists the sizes of increments used for θ

and φ and the second column lists the time it took to

create the θφ-matrix using method 1. The third

column show the time it took to create the θφ-matrix

using method 2.

Calculating the θφ-matrix is considerably faster when

using method 2 and incrementing θ and φ with 4

degrees or more as seen in Table 1.

Increments

(degrees)

Time (s)

Method 1

Time (s)

Method 2

1 630 506

4 40 0.9

9 9 0.2

18 2.3 0.06

Table 1. Time needed to calculate θφ-matrix

using method 1 and 2.

Figure 3. Representations of the first nine

objects in dataset 1 used during matching.

WSCG 2011 Communication Papers 4

Figure 4 shows the θφ-matrix for increments of 1

degree obtained using method 2. The next step is to

test the technique used for the creation of the Fourier

descriptors. Figure 5 shows 3 representations of

objects used to construct the feature vectors. Object

A is a sphere consisting of 88 faces. Object B is a

rounded cube consisting of 188 faces. Objects C and

D are irregular objects consisting of 2476 and 1372

faces respectively. The results of constructing the

feature vectors are listed in Table 2. The θφ-matrix

is calculated using the second technique with

increments of 4 degrees. The feature vectors are

calculated with threshold K=10. Figure 6, 7 and 8

shows the θφ-matrix, Fourier coefficients and feature

vector for object C.

A B

C D

Object

Time (s)

Method 2

A 0.7

B 0.9

C 4.4

D 3.5

Figure 8. Feature vector constructed from

Fourier coefficients for object C

Figure 7. Fourier coefficients obtained from

the DFT of the θφ-matrix for object C.

Figure 6. θφ-matrix for object C using

method 2 with increments of 4 degrees.

Table 2. θφ-matrix obtained by using method

2 with increments of 4 degrees.

Figure 5. (A) A sphere with radius 3

consisting of 88 faces. (B) A rounded cube

consisting of 188 faces. (C) An object

consisting 2476 faces. (D) An object

consisting of 1372 faces

Figure 4. θφ-matrix using method 2 with

increments of 1 degree.

WSCG 2011 Communication Papers 5

Figure 9 shows the feature vectors of 9 objects.

Object A is the sphere (object A) consisting of 88

faces in Figure 5. Object B is a sphere consisting of

66 faces. Object C is a rounded cube consisting of

188 faces. Objects D through G are different

representations of object C in Figure 5, consisting of

2384, 2268, 2476 and 2444 faces. Object H and I are

very similar objects consisting of 1372 and 1932

faces respectively. Different colours are used to

indicate the different objects. Below is a list of

colours used.

 Object A - (green).

 Object B - (dark green).

 Object C - (red).

 Object D - (blue).

 Object E - (dark blue).

 Object F - (cyan).

 Object G - (dark cyan).

 Object H - (purple).

 Object I - (magenta).

Smoothing of feature vectors as in Figure 10 is done

only to improve the visualization of the feature

vectors for printing. The original feature vectors are

used in the matching process as smoothing causes a

loss of feature information. Smoothing is done using

a moving average of length 21.

When comparing the feature vectors in Figure 10 it is

clear that the four feature vectors at the top are

grouped together. These feature vectors are for

objects D, E, F and G. When comparing the four

triangle mesh models, it is clear that they are

different representations of the same object, hence

the similarity in their feature vectors. Objects A, B,

H and I are very rounded in shape, and their feature

vectors are also very close together.

For method 2 the θφ-matrix is calculated with

increments of 4, 6 and 10 degrees for angles θ and φ

giving 4050, 1800 and 648 elements for each of the

matrices. Using increments of 1 degree result in

excessive processing time requirements. Using large

increment sizes produce feature vectors that result in

inaccurate matching. For this reason increments of 4,

6 and 10 degrees where chosen.

The time needed to calculate the θφ-matrices for the

different increments are compared in Figure 11. In

Figure 11 the number of faces is not the only

influence on processing time. The rightmost four

objects in the figure are very similar, and variations

in the complexity and orientation of the faces

influences the processing time. Increasing the

increment sizes for angles θ and φ decreases

calculation speed, but causes a loss of accuracy.

Figure 11. Processing time required to

calculate the θφ-matrix for the 9 objects of

Figure 9 using method 2 with increments of

10, 6 and 4 degrees.

Figure 10. Moving average of length 21 of the

feature vectors in Figure 9.

Figure 9. Feature vectors of 9 objects, also

represented in the Figure 10.

WSCG 2011 Communication Papers 6

4.2. Matching

The feature vectors are calculated with K=5 resulting

in 36 elements in each feature vector. These feature

vectors are calculated using increments of 10 degrees

for angles θ and φ. It takes 350 seconds to calculate

the feature vectors of all 600 mesh models in a

dataset using increments of 10 degrees. For

increments of 6 degrees it takes 940 seconds, and

2650 seconds for increments of 4 degrees. The

process of calculating the θφ-matrix takes up most of

the time during feature vector generation. Four

aggregate functions are applied to the results of each

of the distance functions, as discussed in section 3.2.

The results for each of these functions are listed in

the columns marked “Min”, “Mean”, “Max” and

“Sum”. The results are the number of errors made in

matching the two sets of mesh models. Figure 12

contains four similarity matrices for the l1 norm

distance function calculated from the results of the

four aggregate functions. Colours closer to blue

indicate similar objects, while colours closer to red

indicate dissimilar objects.

The first elements of the feature vectors correspond

to the lower order Fourier coefficients. The lower

order Fourier coefficients relate to large changes in

shape while the higher order coefficients relate to

smaller variations in shape. For this reason only a

number of coefficients surrounding the first

coefficient is needed to create a feature vector. This

approach will also reduce the influence of noise,

which is usually associated with small variations. As

the first elements have very large values, they will

have a greater influence during the distance

calculations between feature vectors. Therefore large

variations in shape will result in bigger differences

between feature vectors. From the results it is clear

that this feature vector creation method will produce

feature vectors that can be used to identify objects.

The results of the matching process are given in

Tables 3 to 5. These results show that the four

distance measures performed well during the

matching process. Table 5 shows that without PCA

the results are inferior. The errors made during

identification were of objects that are exceptionally

similar.

A good method for identification should have a low

probability of false acceptance and a low probability

of false rejection. The area closer to the origin in the

ROC graph will reveal the more accurate method.

For this reason the ROC graphs are displayed for a

probability of false acceptance and false rejection up

to 50%. The ROC graphs in Figure 13 illustrate that

the distance functions yield very similar results. The

two graphs in Figure 13 yielding poor results are the

Kullback-Leibler divergence and Jeffrey divergence.

These two distance functions gave poor results in all

the preliminary tests and where excluded from the

rest of the study. Even though using smaller

increments result in better matches, the differences

between the results observed when incrementing

angles θ and φ by 10, 6 and 4 degrees are very small.

The time needed for processing make increments

smaller than 10 ineffective. With all techniques the

“minimum” aggregate gave better results and

“maximum” aggregate gave inferior results.

Figure 13. ROC graph of matching results

for l1 norm distance function applied to

feature vectors generated using method 2.

 Figure 12. A similarity matrix for the l1 norm

distance function obtained from Fourier method 1

using Min aggregate. Colours closer to blue

indicate similar objects, while colours closer to red

indicate dissimilar objects.

WSCG 2011 Communication Papers 7

Distance function Min Mean Max Sum

 norm 1 2 22 2

 norm 3 10 31 10

Minkowski with

1 2 18 2

Minkowski with

2 2 24 2

 norm 4 18 36 18

Distance function Min Mean Max Sum

 norm 1 3 12 3

 norm 0 7 23 7

Minkowski with

2 3 13 3

Minkowski with

0 4 16 4

 norm 5 11 27 11

Distance function Min Mean Max Sum

 norm 30 49 52 49

 norm 31 52 55 52

Minkowski with

30 47 51 47

Minkowski with

29 49 52 49

 norm 39 50 53 50

5. CONCLUSION
Principal Component Analysis (PCA) plays a vital

part in normalizing the orientation of objects during
identification. Symmetrical objects result in errors
during PCA. Two methods to obtain feature vectors,
using the Fourier transform, are described in this
paper. Fourier methods are effective in identifying
objects as they are fast and accurate. Their only
drawback is that accuracy decreases when large
numbers of objects in the datasets are very similar.
Of the five distance measures evaluated the l1 norm, l2
norm, Minkowski with p=0.8 and Minkowski with
p=1.2 distance measures are best suited for
identification.

6. FUTURE WORK
Alternative methods to normalize orientation can

also be explored to improve results.

The CSS descriptor method [Dre05a, Zha01b] is

another technique that could possibly be adapted for

three-dimensional identification in future research.

7. ACKNOWLEDGMENTS
The authors would also like to thank Keith Forbes

and Colin Andrew for their aid during this project.

8. REFERENCES
[Dre05a] Drew, M.S., Lee, T.K. and Rova, A. Shape

Retrieval with Eigen-CSS Search. Technical

Report, TR 2005-07, Simon Fraser University,

Vancouver, B.C., Canada, School of Computing

Science, Vancouver, B.C., Canada. 2005.

[Lon02a] Long, F., Zhang, H., and Feng, D.D.

Fundamentals Of Content-based Image retrieval.

In D. Feng, W. Siu, & H. Zhang, Multimedia

Information Retrieval and Management -

Technological Fundamentals And Applications

(pp. 1-26). Springer, 2002.

[Osa01a] Osada, R., Funkhouser, T., Chazelle B. and

Dobkin, D. Matching 3D Models with Shape

Distributions. Proceedings of the International

Conference on Shape Modeling & Applications,

2001.

[Pap06a] Papadakis, P., Pratikakis, I., Perantonis, S.

and Theoharis, T. A Concrete Radialized

Spherical Projection Descriptor for 3d Shape

Retrieval. IEEE International Conference on

Shape Modeling and Applications (SMI'06),

2006.

[Vra01a] Vranić, D.V. and Saupe, D. 3D Shape

Descriptor Based on 3D Fourier Transform.

Proceedings of the EURASIP Conference on

Digital Signal Processing for Multimedia

Communications and Services (ECMCS 2001),

2001.

[Vra03a] Vranić, D.V. 3D Model Retrieval. PhD

Dissertation, Universität Leipzig, Institut für

Informatik, 2003.

[Zha01a] Zhang, C. and Chen, T. Efficient Feature

Extraction for 2d/3d Objects in Mesh

Representation. International Conference on

Image Processing, 2001.

[Zha01b] Zhang, S. and Lu, G. Content-Based Shape

Retrieval Using Different Shape Descriptors: A

Comparative Study. IEEE ICME. Tokyo, Japan.

2001.

Table 5. Results for dataset 1 created with

method 2 and increments of 10 degrees. No

PCA is applied.

Table 4. Results for dataset 3 created with

method 2 and increments of 4 degrees.

Table 3. Results for dataset 3 created with

method 2 and increments of 10 degrees.

WSCG 2011 Communication Papers 8

Comparative Performance of GPU, SIMD and

OpenMP Systems for Raw Template Matching in
Computer Vision

Juan Mendez

Departamento de Informática y
Sistemas. Universidad de Las

Palmas de Gran Canaria
 35017, Las Palmas, Spain

jmendez@dis.ulpgc.es

Javier Lorenzo

SIANI. Universidad de Las
Palmas de Gran Canaria.
35017, Las Palmas, Spain

jlorenzo@iusiani.ulpgc.es

Modesto Castrillon

SIANI, Universidad de Las
Palmas de Gran Canaria.
35017, Las Palmas, Spain

mcastrillon@iusiani.ulpgc.es

ABSTRACT
Template matching is a traditional technique of Computer Vision whose advantages and disadvantages are
known. However, advances in computer hardware allow computing it effectively with the use of SIMD
instruction set, GPUs or multi-core systems. The computation of that low-level primitive in sub millisecond scale
would improve high theoretical methods if they are used with high efficient primitives. This paper presents the
comparative results of basic template matching by using SIMD instructions, multi-core systems and multi-GPU
implementations. The results of this study will show that the high-specialized instruction in modern releases of
SIMD and the use of multi-core systems outperforms the implementations based on GPUs for small mask size
due to memory transfer cost. However, for big mask size GPU and SIMD systems have similar performance.

Keywords
Computer Vision, Template Matching, Parallel Computing, GPU, Multi-Core Systems.

1. INTRODUCTION
Template Matching is a Computer Vision procedure
focused on the detection of local features in a image
that seems or resembles similar properties than a
small part of the image or mask. This is a general
definition and many different approaches implement
the concept by using different paradigms. The main
drawback of template matching is that it implies a
"wasteful" exploring of the image for searching a
local area very similar to the mask. This requires the
sliding of the mask across the entire picture and the
computation of some measure of similarity or
distance for each position.

Computer Vision applications have two opposite
constraints. The first is related to the randomness of
the data that requires the use of higher-level
theoretical procedures. These methods allow robust

procedures that deal efficiently with the enormous
variability of the data and provide stable results. The
second constraint is related to the computational
efficiency that tends to carry out real-time
performance to fit the application needs and can be
useful in real world problems. The progresses in
Computer Vision deal to advances in both directions.
The equilibrium between both viewpoints determines
the most useful procedures for a defined state of the
advances in the computer technology and in
theoretical methods.

The evolution of computer hardware can revalue
some traditional and simple procedures because they
will be computed faster than in older
implementations. These fast and simple procedures
can be used as basic results, which are the first level
of intermediate results, in more elaborated and
complex procedures. That is, they can be considered
primitives rather than complete procedures. Raw
Template Matching is a traditional Computer Vision
technique with advantages and drawbacks, but it can
be computed very efficiently in modern computer
hardware as Graphics Processor Unit (GPU) and
Single Instruction Multiple Data (SIMD) arithmetic
units in multi-Core systems.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2011 Communication Papers 9

Modern computer ranging from desktop to rack
servers have multiple cores as well as some GPU in
standard hardware configuration. Also many
processors, such as the Intel/AMD series, include
vector units that allow advanced SIMD instructions.
Thus, no additional cost is needed in order to have
high performance computer hardware. However,
these units, that are normally unused, are difficult to
integrate in standard programming code unless no
special programming libraries are used. That is a very
common tendency in many branches of computing
where hardware advances are faster than
programming techniques, or programming practices.
The introduction of special libraries such as OpenCV
[Bra08a] provides to the user the advantage of high
computer performance and hides its complexity. But
OpenCV library is a bit conservative and does not
take advantage of all the features that the hardware
can provide. The best performance using SIMD is
achieved when the assembler code is used.
Developing a complete application in assembler level
is not a good idea, but coding only small pieces of
high efficient primitives can be a good option in
some special cases. Although programming GPU is
difficult, the use of this specialized hardware is
useful only if their programming is hidden in
specialized libraries for small but high efficient
pieces of the software used for Computer Vision.

The main idea of advanced tracking systems such as
Lukas-Kanade procedure [Luk81a] is based on the
assumption that small changes in image motion such
as the brightness constancy and spatial coherence of
small areas in the image motion can be detected; that
is, for short time intervals, small masks can be used
to detect the motion of real world objects. The
similarity between mask and local image area can be
computed by using different features and
classification strategies and methods, but the one
based on the similarity or distance between the raw
data at pixel level is the simplest of all.

According to Brunelli [Bru09a], the main drawback
of Template Matching is its high computational cost,
which has two distinct sources. The first one is the
necessity of using multiple templates to capture the
variability exhibited by the appearance of complex
objects. The second one is related to the size of
templates: the higher the resolution, the heavier the
computational requirements. Raw template matching
is much more simple if compared with advanced
matching that incorporates geometric invariance
[Ull04a] [Kin07a], of feature characterization
rotation invariant of mask based on moments of Hu
and Zernike [Teh88a]. In the case of advances
tracking applications, template matching must be
used along with higher level procedures such as

Kalman and Particle filter [For02a]. Template
Matching is also a basic tool used in video encoding,
where the correspondence points between successive
frames in video image, eg. in MPEG video
compression, implies the detection of image block of
16x16 pixels in previous frames [Sha01a]. However,
in video compression the required matching is carried
out in a narrow area bounding the block.

This paper presents a comparative study of
implementation of raw template matching based on
modern technologies using GPU and SIMD
architectures that allows the computation of template
matching of small masks in few milliseconds. The
basic results of raw template matching are presented
as well as its efficient implementation in the more
modern release of SIMD instruction set. The details
of the implementation in GPU are also presented, and
finally the comparative results of both approaches by
using multiple cores with OpenMP [Cha08a] parallel
programming.

2. RAW TEMPLATE MATCHING
The easiest way to achieve raw template matching is
by using a similarity or distance measure between a
local area of the image and a mask or template. If the
matching is based on a distance measure, it is
necessary to find the minimum or minima. A
widespread used distance measure in different
branches of Mathematics and Computer Science is
the one based on a vector norm, e.g. as the based on
the Minkowski metric [Bru09a] [Har01a]. The
matching result R can be computed from the image
data D and the template or mask M as:

, ,

where is the norm. Examples of very used
norms in Mathematics and Computer Vision are: ,

 and . The definition of template matching using
multichannel images and masks in these cases is the
following:

, | , , |
,

, | , , |
,

, max
, ,

| , , |

The , norm which generates the template matching
, is used by OpenCV Library [Bra08a], although it

has not the lowest computational cost. OpenCV is
originally based on performance primitives of
Intel/AMD processors, but these systems are better
suited to compute efficiently the norm, which is
based on the computation of Sum of Absolute

WSCG 2011 Communication Papers 10

Differences (SAD). Also NVIDIA GPUs have basic
support for computing the SAD primitive. The SAD
for two arrays is defined as: , ∑ |
|. Although the use of is no advantageous in

general purpose programming, some special
hardware makes it the best choice. However,
nowadays the special SIMD hardware of Intel
processors is of such a common and widely use that
we can call it as general purpose hardware.

Instead of using a coordinate system placed on the
center of the template mask, we will use upper-left
corner centered coordinates. It is more advantageous
to deal with memory alignment, because it plays a
main role in efficient memory accesses. The real
position of the detection of the mask can be obtained
after the minimum detection by using a simple offset
to the mask center. We will use the offset evaluation
of the match for a mask of dimension defined
as:

, | , , |

Multi-channel template matching, e.g. in RGB
images, can be obtained simply by adding the results
obtained in the previous equation that was applied in
every image channel and mask. For a image,
the border band, which is usually located bounding
the image, is moved to the right and low of the
image. The right null band is 1 width and low
band is 1 high. In the previous Equation the
, values run in the intervals: 0,

1 and 0, 1 . Usually, the border
band is set to null value, but to avoid any problem
with the minimum computation we decide to set it to
the highest numeric positive value in its internal
representation. After the local detection of the
minimum matching value, its location must be offset
by _ /2, _ /2 . Template matching in 2D has
advantages related to the data alignment, and it also
can be computed by row 1D oriented matching:

, | |

That can be computed by using the following general
1D template matching:

| |

The use of Region of Interest (ROI) reduces
significantly the computational cost because the
template search can be reduced to a fraction of the
image area. The ROI usage for tracking requires the
implementation of a strategy for updating the ROI
according to the detected trajectory by using a

predictive filter such as the one based on Kalman or
Particle Filters. In this paper we have computed the
worst case, when the maximal ROI extends to the
entire image. This option allows us to obtain an
upper bound of the tracking computational time.

The two main problems involved in the computation
of template matching in 2D and 1D are arithmetic
and memory access. The arithmetic is concerning to
the computation of SAD, which is not cheap if no
special hardware is available. Memory access is a
less evident problem, but it is more important in
modern computers because their performance is
mainly related to the pattern of memory access. The
sliding of the mask across the entire image requires
that all the different memory alignments patterns
must be used. The sliding value between and

 is the cause of many of the low
performance issues in computer applications because
it is very important in memory access efficiency.

3. SIMD-BASED TEMPLATE
MATCHING
The efficient implementation of template matching in
modern computer architectures requires a revision of
some specialized instructions of the machine code of
some popular microprocessors. Unfortunately, those
instructions are not used by the compilers to translate
the user code written in high level languages as
C/C++ to machine code. This implies that the user
must code the parts of the software dealing with the
specialized instructions using assembly language or
inline embedded assembly. In this section only some
guidelines of the specialized instructions are shown
with the aim of being useful for researchers and
developers in Computer Vision.

Early versions of SIMD in Intel/AMD processors
incorporate a SAD instruction called psadbw in the
first SSE (Streaming SIMD Extension) release of the
MMX (Multi Media eXtension) instruction set. It
uses the MMX registers of 64 bits, allowing
computing the SAD for 8 bits unsigned integer data.
This instruction allows improving the arithmetic part
of the array matching but does not solve the problems
related to the sliding of the mask array across the
data array. Multiple unaligned data read were needed
to perform and achieve the whole matching.

A recent SSE extension, that use 128 bit registers,
has included the mpsadbw instruction [Int09a] that
solves this problem by including in-hardware sliding
computation, which avoids that the user must design
a code with unaligned data load. This improvement
introduced in SIMD release SSE4.1 allows higher

WSCG 2011 Communication Papers 11

performance, but at the time of this study, it is not
included yet in all computer vision libraries, e.g.
OpenCV. This instruction computes multiple and
sliding SAD for 4 bytes masks including an
immediate additional argument (imm8) that controls
the selection of the group of 4 bytes defining the
mask and also controlling the sliding option. The
mpsadbw instruction requires three arguments: the
source register containing 16 byte mask data, s(0-15),
the result register that initially contains 16 byte data
from an image row, d(0-15), and finally one byte
register, imm8, to control the instruction mode. The
result is obtained as 8 unsigned short array r(0-7).

This instruction is extremely important for modern
HDTV codecs, and allows an 8x8 block difference
to be computed in fewer than seven cycles [Kua07a],
but also is very useful in general template matching
of small mask on the whole image. This instruction
implements the computation of the SAD for 4
unsigned char integer values and the in-hardware
computation of the sliding of the 4 bytes across the
data register. If 8 2 0,1 and

8 0 1 0,1,2,3 , it computes for
0,… ,7

4 | 4 4 |

Computing the whole sliding of a mask across a data
array will require a more complex arrangement.
Therefore, to compute a full matching of a data array
with a mask of suitable size multiple of 4 bytes, we
have designed a computational arrangement, which is
shown in Figure 1, as an useful chart that allows an
easy implementation for Computer Vision developers
and researchers. In this chart, Data and Result are the
arrays involved in a general 1D matching. The first
array is 8 bits unsigned integer and the second array
16 bits unsigned integers, also it is used the 8 bit
unsigned int Mask array, whose length is multiple of
4. In Intel architecture the SSE instructions for
loading and storing data are penalized if the memory
reference is not aligned to 16 bytes. The goal of the
arrangement shown in the Figure 1 is the
computation of Result(0-7) and Result(8-15) for

different mask sizes. Data are read from memory in
16 bytes block such as the CPU can read Data(0-15)
and Data(16-31). However, it can be read Data(8-23)
in unaligned way by incurring in efficiency penalties.
To avoid that, it can be obtained Data(8-23) by using
register instructions from the aligned Data(0-15) and
Data(16-31), which can be read without penalties.
Data contained in the first row are directly read and
the contained in the second row are obtained from the
previous by using register operations.

Column containing Result(0-7) defines the
intermediate results that must be added to get the
result and from which they are obtained. For
instance, to compute Result(0-7) by using the smaller
mask of 4, we must compute by using the imm8
value of 000 in the Data(0-15) according to the
description of the instruction. When we want the
same result but for a mask size of 8, we must obtain
the previous result (using 000 in Data(0-15)) and add
this to the intermediate result by using 010 applied to
Data(8-23). For each row related to a mask size,
intermediate results are organized form right to left
and successively computed from Data(0-15), Data(8-
23), Data(16-31), Data(24-39) and Data(32-47). Each
cell in the sub-rows corresponds to each mask size
when it is computed by using the defined {imm8}
datum. Although the arrangement can be extended to
bigger masks of size 4 , we only have included
the cases from 4 to 32.

4. TEMPLATE MATCHING IN GPU
A GPU has many processors or cores that can be
suitably arranged to fit better for a specific problem.
The advantage of GPUs is the massive number of
cores, e.g. 2x240 in a NVIDIA GTX 295, but its
drawback is the access to memory of such big
number of cores. The memory is organized in
different types: global, constant, texture and shared,
but each type is accessed by using a single port,
therefore the serial part and the bottleneck of the
algorithms programmed in GPU is the memory
access. According the Amdahl's law this is the factor
that limits the efficiency of this massive parallel
system.

WSCG 2011 Communication Papers 12

The main decision in the GPU programming is the
design criterion of how memory will be used. We
have decided to place the mask data in constant
memory and the image and the result data in global
memory. The image is constant in the algorithm but
it does not fit in the small constant memory of the
GPU. The CUDA programming methodology
[Nvi09a] allows arranging the processors as a grid of
threads. In our problem, the grid of threads is
configured by assigning a thread to each result pixel
at , excluding the border band; that is, each
thread is involved in the computation of a ,
result. To reduce the negative effects of memory
access, the mask data are placed in constant memory
because this type of memory is cached and is smaller
in size than the mask data. Also, we take advantage
of broadcast access to that memory type because for
, values of the mask indexes all the threads

access to the same , , which takes advantage of
the broadcast access to constant memory.

In the developed code, the access to global memory
is coalescent but unaligned due to the sliding. This
would require the access to two consecutive data
block in the same half ward, depending on the sliding
value of . To avoid the decreasing in performance
of unaligned access, NVIDIA documentation
[Nvi09a] suggests the use of texture memory instead
of global memory, but we have not experimented any
increasing in the performance when allocating the
image data in texture memory and the mask in
constant memory. At this point, the provided results
are the related to the data being placed in global
memory, with coalescent but unaligned access, and
the mask being in constant memory with cached
and broadcast access. To achieve the computation of

the SAD, the unsigned integer version of the CUDA
function sad(a,b,c) was used, where a becomes the
value of the sliding image in global memory, b the
value of the mask in constant memory and c the
value of the serialized computation of the result.

To increase the efficiency in GPU, streamed calls to
memory transfer and kernel launches have been used
by splitting the image in several areas, non
overlapping in result data and overlapping in image
data. The interleaving between data transfer and
kernel computation allows hiding the time used in
data transfer between device and host. For this
streamed asynchronous data transfer, the optional
pinned memory allocation was used. The last
included improvement is the use of this methodology
to feed data and kernel launches in the two GPU
contained in the same graphic card.

5. RESULTS
To test the implementations of raw template
matching, images of 640 480 pixel have been
used. Mask sizes range from 4 4 to 32 32. Both
image and mask are single-channel with a pixel data
of 8 bit unsigned int. The test computer is a Core2
Quad Q8300 with 4 GB of RAM memory and one
NVIDIA GTX 295 graphic card. The Operating
System is Windows XP and the code has been
written in C++ in Visual Studio. Computational times
are obtained by using performance counters of
Windows, the reported values are the average on one
hundred runs. Table 1 contains the results for four
different implementations. The first one is C plain
with low performance, but that is used as the baseline
to provide the speedup for higher performance

Figure 1. Computational arrangement for fast pattern matching. Data
inboxes is the imm8 value

WSCG 2011 Communication Papers 13

implementations. The second implementation uses
SIMD instruction in the 1D matching in which is
based in the 2D. Also, for these two implementations
the use of multiple cores is included by using
OpenMP [Cha08a] parallelism. The 2D matching is
implemented by row oriented 1D matching primitive,
an omp parallel for directive of OpenMP is used for
the row loop. The static schedule strategy is used, so
the computation of rows is assigned to each core at
the thread forking. Four threads are used for this four
core system. The speedup (Column Sp) reported is
the SIMD implementation with OpenMP in relation
to the serial C plain one. Core based parallelism is
more effective when 32 32 mask is used because
the latencies of the threads forking are less relevant
in bigger tasks than in the lowest associated to the
small 4 4 mask due to the effectiveness of threads
level parallelism is greatly dependent on the
computational grain size. A remarkable speedup
value of 184 is achieved for 16 16 mask when the
four core of the system are used and also their high
specialized SIMD vector units.

Table 1. Time in msec. for Template Matching in
640x480 images. C plain (Cp), SIMD and Speedup

(Sp) for the 4 Cores case are included.

Table 2 contains the results for the implementations
using one GPU. It contains the host to device (HtoD)
data transfer, that in this case means, the transfer of
mask from host memory to constant memory and the
image transfer to global memory. This table also
includes the kernel computation and finally the
device to host (DtoH) transfer of the result to host
memory. The result is coded as unsigned int which is
better for the SAD computation but increases the data
transfer time. However, this decision is not relevant
in bigger mask sizes. Speedup columns are related to
the kernel part (Sp1) or the total time (Sp2) over the
C plain simple case. Figure 2 shows the graphical
representation of these values. In the 4 4 case, data
transfer is the critical subtask, while for the 32 32
case the kernel computation is highly more
significant than the data transfer.

The final test that has been carried out includes other
computational advantages of the GPU. The first one
is the use of the second GPU included in the GTX
295 graphic card by means of splitting the whole
image in two parts and by loading each part to each
GPU. This methodology is extended by splitting the
image in many parts and transferring each one to the
GPUs in different threads context. This is
implemented by thread forking in OpenMP in a
number of threads defined by the user and using the
cudaSetDevice function to select the device. Pinned
memory is used to accomplish streamed
asynchronous memory transfer and kernel launches.
Table 3 contains the results for several mask size,
and Figure 3 illustrate the results for 32 32 mask
by using synchronous and asynchronous memory
transfer. The 2 thread case, which uses a task in each
GPU, is the best result followed by the 4 threads,
which includes two tasks in each CPU. The
asynchronous case that hides part of the memory
transfer cost is the best case, but it cannot overtake
the SIMD implementation.

Table 2. Results in msec. for Template Matching
in one GPU. Speedup 1 (Sp1) is Kernel time and
Speedup 2 (Sp2) is Total time, both related to 1

Core C plain case.

6. CONCLUSIONS
Modern computer hardware allows the computation
of raw template matching in few milliseconds for
small mask sizes. The use of ROI can reduce this
computational cost to sub milliseconds scale. This
fact is an opportunity to revalorize the developing of
template matching applications. The use of many
cores or many GPUs are different options to
consider, but nowadays, the many-core approach,
which includes specialized vector SIMD instructions,
is more computational efficient because it is high
specialized in SAD arithmetic and in-hardware
sliding of mask across data array.

Technological improvements are in the line of
increasing the number of cores in host. This trend is
not well suited for small masks because they do not
use effectively the OpenMP parallelism, but in bigger
masks they can greatly increase the performance of

 1 Core/ 1 Thread 4 Cores / 4 Threads

Mask Cp SIMD Cp SIMD Sp

4x4 11.1 0.7 2.7 0.6 18.5

8x8 33.1 0.8 8.8 0.2 165.5

12x12 66.4 2.4 27.2 0.9 73.8

16x16 110.6 3.4 29.0 0.6 184.3

24x24 231.3 6.5 60.0 1.3 177.9

32x32 388.6 10.5 101.0 2.3 168.9

Mask HtoD Kernel DtoH Total Sp1 Sp2

4x4 0.4 0.3 1.0 1.7 37 6

8x8 0.4 0.7 1.0 2.1 47 16

12x12 0.4 1.5 1.0 2.9 44 23

16x16 0.4 2.7 1.0 4.1 41 27

24x24 0.4 5.8 1.0 7.2 40 32

32x32 0.4 10.1 1.0 11.5 38 34

WSCG 2011 Communication Papers 14

template matching procedures. The evolution of GPU
architectures, e.g. the new NVIDIA Fermi
architecture, will introduce full global memory
cached access that can improve the kernel part of the
GPU procedure as well as an increase in the number
of involves cores. However, this can be improved
only in the performance of big mask sizes whereas in
smaller ones it will depend on the increase of the
bandwidth of memory transfer between the host and
the graphic card.

 4x4 16x16 32x32

Th S A S A S A

1 2.6 2.3 5.1 4.7 12.5 12.1

2 2.4 2.1 3.7 3.3 7.4 7.1

3 5.8 3.6 7.5 5.1 12.6 10.4

4 5.9 3.7 7.3 4.8 11.1 8.7

5 6.2 4.7 9.3 6.0 14.0 10.7

6 6.4 5.0 7.8 6.0 13.8 10.3

7 7.8 5.9 9.5 7.3 14.2 12.0

8 7.9 6.2 9.4 7.3 13.7 11.3

Table 3. Results in msec. for 2 GPUs and OpenMP
using different threads number (Th) from 1 to 8.
The Sync (S) and Async (A) cases are included for

several mask sizes.

7. REFERENCES
[Bra08a] Bradski, G. and Kaehler, A, Learning

OpenCV, Computer Vision with the OpenCV
Library, O’Reilly, 2008.

[Bru09a] Brunelli, R, Template Matching Techniques
in Computer Vision, Theory and Practice, John
Wiley and Sons Ltd, 2009.

[Cha08a] Chapman B., Jost, G and van der Pas, R.,
Using OpenMP Portable Shared Memory Parallel
Programming, MIT Press, 2008

[For02a] Forsyth, D.A., and Ponce, J., Computer
Vision: A Modern Approach, Prentice Hall, 2002.

[Har01a] Hart, P.E., Duda, R.O., Stork D.G., Pattern
Classification, John Wiley and Sons, 2001.

 [Int09a] Intel 64 and IA-32 Architectures Software
Developer’s Manual, Vols 2A-2B, Intel
Corporation, 2009

[Kin07a] Kim, H.Y, and Araujo S.A., Grayscale
template-matching invariant to rotation, scale,
translation, brightness and contrast, IEEE Pacific-
Rim Symposium on Image and Video
Technology, Lecture Notes in Computer Science,
4872:100-113, 2007.

[Kua07a] Kuah, K, Motion stimation with Intel
streaming SIMD extension 4. Technical report,
Intel Software Solution Group, 2007

[Luk81a] Lukas B.D. and Kanade, T., An iterative
image registration technique with application to
stereo vision, Proceeding of the 1981 DARPA
Image Understanding Workshop, pp 121-130,
1981.

[Nvi09a] NVIDIA CUDA, Programming Guide,
Version 2.3.1, NVIDIA Corporation, 2009.

 [Sha01a] Shapiro, L., and Stockman G., Computer
Vision, Prentice Hall, 2001.

[Teh88a] The, C.H., and Chin, R.T., On image
analysis by the method of moments, IEEE Trans.
on Pattern Analysis and Machine Intelligence,
10(4):496-513, 1988.

[Ull04a] Ullah, F., and Kaneko, S., Using orientation
codes for rotation-invariant template matching,
Pattern Recognition, 37:201-209, 2004.

Figure 2. Kernel and Data transfer in GPU,
memory copy from host to device (HtoD), device
to host (DtoH) and kenel matching

Figure 3. Total time for 2 GPUs and 32x32 mask
matching. Asynchronous memory transfer was
used with interleave between data transfer and
kernel launches.

WSCG 2011 Communication Papers 15

WSCG 2011 Communication Papers 16

Approximate reconstruction of meshes after material

removing

Félix Paulano

Universidad de Jaén
Dep. Informática

Campus Las Lagunillas
 23071, Jaén, Spain

fpaulano@ujaen.es

Juan J. Jiménez

Universidad de Jaén
Dep. Informática

Campus Las Lagunillas
23071, Jaén, Spain

juanjo@ujaen.es

Antonio Martínez

Universidad de Jaén
Dep. Informática

Campus Las Lagunillas
23071, Jaén, Spain

amalbala@ujaen.es

Rubén Pulido

Universidad de Jaén
Dep. Informática

Campus Las Lagunillas
23071, Jaén, Spain

rpulido@ujaen.es

ABSTRACT
Boolean operations are complex, so it is difficult to perform them in real time. Sometimes, the goal is only to
reconstruct the model. In that case, accuracy is not too important and other approaches can be performed.
However, the reconstruction of the model must satisfy some requirements like smoothness or velocity. In this
paper, a method to reconstruct a model after a cut is presented. This method can be applied to simulate medical
procedures, such as the rejection of damaged tissues, or applied to virtual sculpting. A haptic device has been
used to test the effectiveness of the method. Tests have shown that the elimination and the reconstruction are
performed in real time.

Keywords
Mesh reconstruction, Boolean operation, Material removing, Concavity regeneration, Surgery simulation, Virtual
Sculpting, Simulation tools

1. INTRODUCTION
Boolean operations allow performing unions,
intersections, differences and other operations
between two solid models. This kind of operations is
traditionally based on the marching cubes algorithm
[NY06]. These operations are very costly because
they are extremely complex and its result aims to be
exact. For that reason, it is very expensive to use
them in a real time application. In simulations, other
approaches faster than Boolean operations must be
used and accuracy is not usually a key factor.

Our aim is to perform difference operations between
two solid models (A-B) in an approximated way.
Specifically, the first solid (A) has at least a part
slimmer than the second one, and the second solid
(B) act as a tool to remove portions of the first solid
(figure 1). This is because the solid must be inside the
tool so that it can be cut.

This kind of operations is commonly used in virtual
simulations, such as virtual surgery or virtual
sculpture. In this case, Boolean operations cannot
normally be used because they are so costly. New
approaches that perform this operation in real time
are needed. These new approaches do not have to be
exact, but they have to allow real time interaction.

Figure 1. Example of application of the method. A
– An aerial view. B, C – Side view of two separate

cases.

This paper presents an approach to perform an
approximate reconstruction of a mesh. This approach
allows realizing a reconstruction that can be applied
to real time simulations. The obtained reconstruction
is not exact, but in some cases, such as virtual surgery
or sculpture, it is an advantage over other approaches.
This is because our method obtains a smooth surface
after the cut, simulating the real cut of a certain tool
with specific types of tissues. In the next section,
some works recently published, related to this
research area, will be described. Then, steps of the
simulation will be enumerated in a general way and

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2011 Communication Papers 17

the method will be described in detail. In addition,
some special cases will be described. The fourth
section will show the simulations that have been
performed in order to apply the method. Finally, the
simulation results will be presented as well as a brief
conclusion.

2. BACKGROUND
In the bibliography, there are some recently works
that propose new Boolean operations approaches.

Wang [Wang10] presented a method to perform
approximate Boolean operations of two freeform
polygonal meshes using Layered Depth Images
(LDI). A trimmed adaptive contouring method is
developed to reconstruct the mesh surface from the
LDI samples near the intersected regions and then
suture it to the boundary of the retained surfaces. This
method can perform Boolean operations of freeform
solids in a few seconds. Jing et al. [JWBC09]
proposed an approach to perform Boolean operations
on polygonal meshes that can be applied to both
closed meshes and open meshes. They use a collision
detection algorithm based on OBB trees to speed up
the intersection between each two triangles. Then, the
intersection region is obtained from the intersected
triangles and the intersection segments. Zhou et al.
[ZWSW*10] proposed a Boolean operation method
based on L-Rep model of 3D entities. The speed of
the method is improved by changing the three
dimensional spatial analysis into a one-dimensional
calculation.

These approaches can perform a Boolean operation
in a several tenths of a second. However, it is not
enough to apply them in real time simulations. For
that reason, other methods that allow performing the
approximated operation in real time must be
developed.

There are many works that perform a mesh
reconstruction using a method based on the Delaunay
triangulation [Shewchuk02]. These works perform a
homogeneous triangulation. However, our aims are to
develop a quick and robust method for simulating a
cut so the size and the form of the new generated
triangles could be non-homogeneous. Moreover, we
know the approximate shape of the resulting mesh
before the reconstruction; hence the performance of
the method can be improved using that information.
Other approaches [Frisken99] propose a linked
volume representation that enables physical modeling
of object interactions, such us deformations or
interactive objects deformations. [NS00] presents an
interactive algorithm for an interactive linear FE
deformation simulation. Moreover, runtime changes
of the mesh can be realized because the process
requires no global precomputation.

We propose a method that allows performing an
approximate mesh reconstruction after removing
triangles. The difference from other approaches is
that our method first performs a material removing
and then reconstruct the hole of the mesh, obtaining
an approximated solution near to the real cut of the
tool. The result is a smooth mesh on the border of the
operation (on the border of the hole) (figure 2) which
is suitable for some type of operations with this type
of tools (e.g. for virtual sculpting or surgical
simulations). Moreover, enables real time interaction.

3. DESCRIPTION OF THE PROCESS
In order to exemplify, it has been taken into account
that the mesh used to remove material is shaped like a
cuboid. However, this mesh can be any shape
possible, such as a sphere, a cylinder, a star, or
otherwise. Hence, the method can be easily applied to
other solids. Our approach can be divided in the next
steps:

1. Removing triangles. The triangles of the
solid A that are inside the cuboid are
removed.

2. Transforming the hole. The hole created
after removing triangles is transformed in a
convex concavity.

3. Projecting the cuboid points. The four
cuboid vertices that are nearest to the solid
A are projected on it. These four projected
points will be used to reconstruct the mesh.

4. Classifying the sutured points. Projected
points and sutured points are classified into
four quadrants.

5. Generating new triangles. The last step is to
reconstruct the mesh using all previous
calculations.

Figure 2. Top, example of a mesh reconstruction
using a Boolean operation. Bottom, example of a

mesh reconstruction using our approach.

After applying the method, the cut is simulated and
the resulting mesh is closed and approximated to the
Boolean operation between the trajectory of the tool
and the original mesh. In addition, the appearance of
the cut is smooth.

WSCG 2011 Communication Papers 18

Figure 3. 2D schema of the method used to remove triangles. A – Points to remove. B – Triangles to
remove (red). C – Suture Points (s1, …, s9)

Removing triangles
Before reconstructing the mesh, triangles of the solid
A that are inside the cuboid must be removed. In
order to achieve this, triangles that have at least one
of its vertices inside the cuboid are deleted.

To simplify this procedure, a spatial decomposition
has been performed using a tetra-tree [JFSO06]. This
data structure is built in an initial step, so it does not
reduce the method efficiency. A tetra-tree is an
hierarchical space decomposition defined in the
whole space. At its first level, the tetra-tree divides
the entire space into eight tetra-cones. In the
following levels of the hierarchy, each tetra-cone is
homogeneously divided into four new tetra-cones, as
shown in figure 4. The tetra-tree is subdivided until
reaching one of the following conditions:

• The maximum level of subdivisions is
achieved. This level is previously defined.

• The tetra-cone to subdivide has less triangles
than a threshold.

Figure 4. Left, a representation of the division of
a tetra-cone. Right, a scheme that represents the

bounding tetrahedra associated with a mesh.

Hence, the cudoid only have to interact with the
triangles belonging to the tetra-cones where it is
situated. The complexity of the calculation associated
with the removing is reduced to the tetra-cone space.

This type of spatial decomposition allows us to
quickly locate the nearest object part (tetra-cones)
where the points are situated. The tetra-tree also
allows us to discard triangles for removing in an
optimal way, due to the adjustment obtained by
bounding tetrahedra [JS08] associated with each
tetra-cone. This is represented in figure 4.

The tetra-tree has been chosen because fits the mesh
better than other approaches [JS08], such us an

octree. In addition, the tetra-tree allows classifying
triangles quickly and robustly because is based on
barycentric coordinates. While the removed triangles
are being determined, the topology of the hole is
calculated. In order to achieve this, the triangles that
have only a vertex inside the cuboid are used. The
two vertices that are outside the cuboid are marked as
suture points. In order to simplify the reconstruction,
the topology of the suture points is stored, sorting
them in opposite counter clock wise. This procedure
is shown in figure 3.

Transforming the hole
In this step, the hole created after the elimination of
triangles is transformed in a convex concavity using
the topological information about its edges. The
algorithm can be divided into three parts.

First, the concavities are located (Figure 5). Points
that form the hole, which are marked previously as
suture points, are studied in groups of three
consecutive points. If the sign of the matrix
determinant formed by three consecutive points is
negative, a concavity is found. During this process,
consecutive concavities are grouped into one (e.g. p1-
p4 in Figure 5).

Figure 5. Schema of the method used to eliminate
the concavity. Red – Triangles to remove. Blue –

Points used as input in the iterations of the
algorithm. They are also removed. Green – Points

to reconstruct.

Second, once all the concavities are located, they are
converted into convexities. First at all, the first and
the last point that form the concavity are stored (p1

WSCG 2011 Communication Papers 19

and p4). Then, the remaining points that form the
concavity are processed in a loop. This loop is
repeated until there are no more input points.

The loop has the following steps:

• Triangles that contain the input points are
determined.

• Points belonging to those triangles are
studied to check if they are inside or outside
the concavity:

o Points that are inside will be input
points in the next iteration of the
algorithm.

o If two points of a triangle are
outside the concavity, they will be
stored as points to reconstruct and
their topology will be saved.

o Points which have been input
points in this iteration will be
discarded.

When there are no input points, the loop is finished,
obtaining then a set of points to reconstruct. This
procedure is shown in figure 5. The first and the last
point of the concavity are within the set of points to
reconstruct.

Finally, the points to reconstruct are used in groups of
two consecutive points to generate new triangles
(figure 6). The midpoint of the segment that goes
from the first point of the concavity to the last point
of the concavity is calculated. This point is used as a
third point of each triangle.

Figure 6. Schema of the hole reconstruction.

Green – New triangles added.

The elimination of the concavities in the hole allows
simplifying the subsequent generation of new
triangles, preventing cross segments. Moreover, the
cut obtained is smooth, so some simulations are more
realistic than an exact approach.

Projecting the cuboid points
The four points representing the cuboid that are
nearest to the solid are used to reconstruct it, so these
points are projected on the solid using the algorithm
proposed by [JSF10]. This is done to simulate the
trajectory of the tool to perform cutting. In order to
simplify the procedure, two planes representing the
solid are determined. Hence, the points are projected
on one of these two planes, instead of the solid.

In the general case (figure 1, B), two planes are
calculated. These planes (figure 7) represent the top
and the bottom of the solid so they are called upper
average plane and lower average plane respectively.
A medium plane is used for dividing the triangles in
the tetra-cones scope in which the tool is included.
Then the triangles in the top and in the bottom are
used to obtain two average normals. The upper
average plane is defined by the triangles whose
normal is similar to the top average normal. On the
other hand, the lower average plane is defined by the
triangles whose normal is similar to the bottom
average normal. In both cases, an error must be
considered. Then, the upper points are projected on
the upper average plane and the lower points are
projected on the lower average plane, as shown in
figure 7.

Figure 7. A 2D scheme that shows the projection
of the cuboid points (p1, p2, p3, p4) on the upper

and lower average planes (p1’, p2’, p3’, p4’).

If any of the points cannot be projected on its
respective plane, an oblique cut is detected (figure 1,
C). In a oblique cut, the part of the object to be cut is
not completely within the tool. This is usually
because the tool is not aligned with the object. In that
case, one auxiliary plane is used to project those
points. To calculate the auxiliary plane, some
calculations are made in real time. The removed
triangles that are situated between the upper average
plane and the lower average plane are marked as
central triangles. The auxiliary plane is defined by the
average point and the average normal of the central
triangles.

WSCG 2011 Communication Papers 20

Figure 8. Different cases of generation of new triangles. The procedure depends on the number of

projected points that are inside the solid: 4 (A), 3(B), 2 (C), 1(D).

After projecting them, the four projected points are
used to reconstruct the solid. However, only the
projected points that are inside the solid mesh are
used. To check this, the inclusion algorithm by Feito
[FT97] is used, because it allows determining if a
point is inside a mesh without the need to perform
complex calculations, such as solving a system of
equations. In addition, to further reduce this problem,
the previous spatial decomposition using a tetra-tree
[JFSO06] is also utilized.

Classifying the suture points
In order to simplify the reconstruction of the mesh,
the suture points and the projected points are
classified into four quadrants. The central triangles,
which were calculated in the previous step, are also
utilized in this procedure. Two perpendicular planes
(figure 9) that pass through the average point of the
central triangles are calculated. These planes are also
perpendicular to the planes forming the cuboid.

Figure 9. Representation of the two planes (red)
forming the quadrants used to divide the suture

points (green) and the cuboid vertices (blue).

Both planes divide the previously projected points
into four quadrants, assigning each point to a
different quadrant. The suture points are also
classified using these four quadrants.

Generating new triangles
The last step is to generate new triangles to close the
mesh. In order to achieve this, all previous
calculations are used.

First, the projected points are used to build a
structure. This structure will be used as a patch and it
depends on the number of projected points that are
inside the solid (figure 8):

• In the case that the four projected points are
inside the solid mesh, this structure will be a
square.

• The structure will be a triangle if there are
three points inside the solid.

• If there are only one or two points inside the
solid, it will not build any structure. In this
case, the origin of the reconstruction will be
the projected point or the segment joining
the two projected points respectively.

Second, in each quadrant a sub-mesh is built. In order
to achieve this, a triangle is built using each two
consecutive points. The projected point assigned to
each quadrant is used as the third point in each
triangle. If one projected point is outside the mesh,
the triangles of its associated quadrant are generated
using the projected point of the upper or lower
quadrant.

Finally, in order to join the sub-meshes built in each
quadrant, new triangles are generated using the
projected points and the boundary suture points in
each quadrant.

Special cases
In our method, there are some cases that must be
treated specially. These cases have been described
and can be solved by adapting the general procedure.

In the general case, only a hole is created after
removing the triangles. However, several holes may
be generated after that (figure 10). In that case, each
hole must be treated separately.

This special case is detected in the stage when the
hole becomes convex. In this stage, the suture points
are read in a loop. The loop finish when all the suture
points are read or the first suture point is reached
again. If the first suture point is reached again before
all suture points are read, the special case is detected.
In that case, all unread points are included for
processing in a new loop. Each time the first point is
founded again, a new hole is detected.

Once the holes are detected, each hole is converted
into a convex shape. In order to achieve that, the
algorithm explained in the previous section is applied
to each hole. Once all the holes become convex, the

WSCG 2011 Communication Papers 21

four cuboid front points are projected on the planes
as in the general procedure (figure 10). Then, all the
holes are reconstructed. In order to achieve this,
triangles are generated using every two consecutive
points belonging to the hole.

Figure 10. A special case. Three holes have been
generated instead of only one. Bottom, an aerial

view before cutting.

The average points of the holes are used as the third
point of each triangle in the hole reconstruction, as
shown in figure 11. Finally, if the two left projected
points are inside the solid, the hole nearest to the left
is reconstructed using the two left projected points.
For that, the approach used in the general case when
only two projected points are inside the solid is
utilized (figure 11). Similarly, this procedure is
repeated with the right projected points and the hole
nearest to the right.

Figure 11. Generation of new triangles in a special
case. The central hole is reconstructed using only
a point. The others two hole are reconstructed

using two projected points.

4. EXPERIMENTAL RESULTS
In this work, a method to realize an approximate
reconstruction of a mesh has been implemented. The
data structures and algorithms implemented allow
simulating the removal and reconstruction of triangles
in real time.

In order to prove the method, a virtual meniscus
arthroscopy has been simulated. Specifically, a radial
injury is treated. This kind of injuries is usually
treated removing the damaged area [RBM09] to

attempt to keep the stability. Figure 12 shows a
representation of the area of the knee treated in the
simulation, and a real image of the knee during an
arthroscopy. Hence, in the simulation the first solid
represents the meniscus and the second solid
represents the surgical tool used to remove the
damaged tissue.

Figure 12. Left, a scheme that represents the area

of the knee treated in the simulation. Right, an
image of a real meniscus arthroscopy

A haptic device has been used to improve the
interaction. Specifically, a Sensable Phantom Omni©
and its associated software has been used. The haptic
device simulates the surgical tool that is used during
the intervention. The surgical tool movement is
calculated through the transformation matrix of the
haptic device. Moreover, the coordinates of the
points that represent the device are calculated to
determine the collisions with other elements. The
device feedbacks a simple force based on Hooke’s
law when it detects a collision.

Collision detection
The collision detection [LG98] between the surgical
tool and all the triangles that form the meniscus is
complex. Moreover, obtaining a real time feedback is
complex too, because the refresh rate of the haptic
device is 1 kHz [MCL08]. The collision detection
involves an intersection algorithm between the
surgical tool and the meniscus.

To reduce the problem, the previous spatial
decomposition of the meniscus is used, reducing the
number of triangles involved in the intersection test.
Even reducing the size of the problem through a
spatial decomposition, it is still complex to calculate
the intersection with the surgical tool. To simplify the
collision detection, it only works with a number of
representative points of the cuboid and the handle.
Then, only these points are classified by the tetra-
tree, reducing the collision detection to a point in
polyhedra test [JFSO06].

The representative points of the cuboid are their
vertices and central points of their faces. To represent
the surgical tool handle, taking into account that it is
shaped like a small cylinder, a set of points belonging
to the cylinder axis are used. These points are shown
in figure 13. Once the representative points are
calculated, tetra-cones that contain at least one of

WSCG 2011 Communication Papers 22

them are obtained. These tetra-cones define the space
of the meniscus where the intersection will be
calculated. To calculate the intersection, the point in
polyhedron algorithm by Feito [FT97] has been used.

Figure 13. A – The real surgical tool. B – 2D
Representation of the surgical tool. C – 2D

representation of the tool points used to simplify
the collision detection. D – 3D representation of

those points.

The use of representative points improves the
performance of the simulation, because it allows
determining if the surgical tool collides with the
elements involved in the simulation in real time,
therefore the tool cannot pass through the meniscus.

Mesh reconstruction
One of the device buttons has been used to actuate
the tool. If this button is pressed when the surgical
tool is close to the meniscus, the tool is actuated,
removing a portion of the meniscus. To provide
feedback to the user in this action, it has applied a
small force. In addition, the tool movement can be
restricted as in a real intervention. Therefore, the
instrument can be force to only swing through the
input. Nowadays, in many cases the repair of radial
meniscus injuries is treated by removing the damaged
part. Our aims are to apply the proposed method to
simulate the rejection of the damaged tissue. Our
approach avoids to perform costly Boolean
operations between elements [FHK01], giving us a
real time interaction. The main advantage of using
this approach, instead of Boolean operations, is that
our procedure is faster [JWBC09] and response time
is a key factor in haptic devices. Boolean operations
can obtain more accurately results. However, the
accuracy in the meniscus cut is not a critical feature.
In figures 14 and 15, results of the simulation are
shown. In these images, front and oblique cuts are
displayed.

Results
To perform the experiment has been made a
subdivision of the mesh that represents the meniscus.
This procedure allows us to obtain more complex
meshes to measure the performance of the method.

First, it has been measured the time it takes to
reconstruct the mesh using different tetra-tree
subdivisions. As shown in the table 1, until the fourth

subdivision, the more the tetra-tree is subdivided, the
better the times obtained are. Moreover, the time it
takes to reconstruct without a tetra-tree has also been
measured. The results show that the use of our
method to remove and reconstruct the mesh, as well
as the use of a tetra-tree, enables a real time
interaction. Although the refresh rate of the haptic
device should be 1 kHz [MCL08], it is impossible to
push the button at this frequency, so real time
interaction is achieved.

Number
of
triangles

Time
using a
level-2
tetra-tree
(ms)

Time
using a
level-3
tetra-tree
(ms)

Time
using a
level-4
tetra-tree
(ms)

Time not
using a
tetra-tree

13618 12,67 8,53 5,87 17,33

25258 29,93 23,33 14,67 73,65

55864 107,07 75,33 42,2 200,67

Table 1. Reconstruction using different tetra-tree
subdivisions as well as not using a tetra-tree.

Figure 14. Some images of the simulation. They

show front cuts in the meniscus.

WSCG 2011 Communication Papers 23

Figure 15. Some images of the simulations. They

show oblique cuts in the meniscus.

5. CONCLUSION
In this paper, a method that allows performing an
approximate mesh reconstruction after mesh
removing has been presented. In contrast to Boolean
operations, our method enables real time simulation.

To exemplify the method, it has been considered that
the mesh used to remove material is shaped like a
cuboid. However, this mesh can easily be any shape.
For that, the projected points must be chosen
according to the shape of the mesh, instead of the
cuboid. The same happens with the points used in the
collision detection.

To prove the method, a virtual meniscus arthroscopy
has been performed. Specifically, it has been focused
on radial injuries. In the future, our method can be
applied to perform other simulations, such us other
surgery operations or virtual sculpting.

Acknowledgments
This work has been partially supported by the
Spanish Ministry of Education and Science and the
European Union (via ERDF funds) through the
research project TIN2007-67474-C03-03, by the
Consejería de Innovación, Ciencia y Empresa of the
Junta de Andalucía through the research projects
P06-TIC-01403 and P07-TIC-02773, and by the
University of Jaén through the research project UJA-
08-16-02, sponsored by Caja Rural de Jaén.

6. REFERENCES
[FHK01] Farin, G., Hoschek, J., Kim, M. Solid

Modeling. Handbook of Computer Aided
Geometric Design. Elsevier Science, 2001.

[Frisken99] Frisken-Gibson, S.F. Using linked
volumes to model object collisions, deformation,
cutting, carving and joining. Visualization and
Computer Graphics, vol. 5, pp. 333-348.

[FT97] Feito, J.R., Torres, J.C. Inclusion test for
general polyhedral. Computers & Graphics 21,
pp.23-30, 1997.

[JFSO06] Jiménez, J.J., Feito, F.R., Segura, R.J.,
Ogáyar, C.J. Particle oriented collision detection
using simplicial coverings and tetra-trees.
Computer Graphics Forum 25, pp.53-68, 2006.

[JS08] Jiménez J.J., Segura, R.J. Collision detection
between complex polyhedra. Computers &
Graphics 32, vol 4, pp.402-411, 2008.

[JSF10] Jiménez, J.J., Segura, R.J., Feito, F.R. A
robust segment/triangle intersection algorithm for
interference tests. Efficiency study.
Computational Geometry 5, pp.474-492, 2010.

[JWBC09] Jing, Y., Wang, L., Bi, L., Chen, J.
Boolean Operations on Polygonal Meshes Using
OBB Trees. Environmental Science and
Information Application Technology, vol.1,
pp.619-622, 2009.

[LG98] Lin, M.C., Gottschalk, S. Collision detection
between geometric models: A survey. In Proc. Of
IMA Conference on Mathematics of Surfaces,
pp37-56, 1998.

[MCL08] Ming, C., Lin, M.O. Haptic Rendering:
foundations, algorithms, and applications. A K
Peters, Ltd, 2008.

[NS00] Nienhuys, H., Stappen, F. Combine finite
element deformation with cutting for surgery
simulations. In EUROGRAPHICS 2000.

[NY06] Newman, T.S., Yi, H. A survey of the
marching cubes algorithm. Computers & Graphics
5, vol.32, pp.854-879, 2006.

[RBM09] Richmond, J.C., Bono, J.V., McKeon, B.P.
Knee Arthroscopy, 2009.

[Shewchuk02] Shewchuk, J. R. Delaunay refinement
algorithms for triangular mesh generation.
Computational Geometry 1-3, vol.22, pp.21-74,
2002.

[Wang10] Wang, C. Approximate Boolean
Operations on Large Polyhedral Solids with
Partial Mesh Reconstruction. Visualization and
Computer Graphics, no.99, pp.1-10, 2010.

 [ZWSW*10] Zhou, L., Wang, D., Sheng, Y., Wang,
Y., Li, P. Three dimensional Boolean operation
based on L-Rep model. Geoinformatics, 2010
18th International Conference on, pp.1-6, 2010.

WSCG 2011 Communication Papers 24

Novel Trilateral Approach for Depth Map Spatial
Filtering

Alexander Voronov
Moscow State University
Graphics & Media Lab

avoronov@graphics.cs.msu.ru

Dmitriy Vatolin
Moscow State University
Graphics & Media Lab

dmitriy@graphics.cs.msu.ru

Maxim Smirnov
YUVsoft Corp.

ms@yuvsoft.com

ABSTRACT
In this paper, we present our approach for spatial filtering of depth map extracted from camera motion. An original
depth map may have some artifacts owing to imperfect motion estimation. Our goal was to make the depth map
uniform in smooth areas and to refine object boundaries without blurring edges. To solve this problem we propose
the trilateral filter, whose convolution kernel is composed of a distance kernel, a color-based kernel and a depth-
based kernel. Experiments demonstrate that this approach yields rather good results. Also, we compare our results
with those of a typical bilateral filter.

Keywords
depth map, disparity map, trilateral filtering, spatial filtering, post-processing, 3D video

1 INTRODUCTION
One of the widely used methods of creating 3D video
involves changing the image parallax using a depth
map. This process requires information regarding the
distance between the camera and the objects in the
scene. A depth map is a visualization of that distance
for every pixel in the image: more-distant spots are
represented using a darker color. Generally, the prob-
lem of creating of depth map from a single image is
insoluble. So, until recently, depth maps were painted
manually by stereo artists and composers in most
cases – a task that required much time and money. But
in some cases, depth maps can be created on the basis
of information from a scene. Some such approaches
apply machine learning algorithms to extract the in-
formation from a rather large set of images in differ-
ent scales [Sax06]. Also, [Zhu09] proposes an ap-
proach that uses the fact that the camera is typically
focused on foreground objects, so that objects have
sharp edges: with increasing distance from the cam-
era, object boundaries become blurrier. Another ap-
proach is to restore depth using the geometric proper-
ties of a scene: for example, by taking into account the
vanishing point, horizon line, vertical lines and so on.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

This technique is presented in [Bat04] and [Jun10].
For scenes with camera motion we can create a depth
map by applying an optical flow algorithm and ana-
lyzing how objects are moving in a scene. For exam-
ple, if the camera is panning, an object’s displacement
in a given frame relative to the previous frame de-
pends on that object’s distance from the camera. This
approach is described in [Pou10] and [Kim07].

Application of an optical flow algorithm supposedly
yields the highest quality depth map estimation using
camera motion. But the results of the algorithm at
that stage may be not good enough for several reasons.
First, it is impossible to accurately determine optical
flow for two frames in regions of opening and occlu-
sion that appears when objects are in motion. In such
regions depth can not be estimated correctly. Second,
it is impossible to detect true motion in smooth areas,
particularly in case of noisy video. Third, considering
the high computational complexity of this stage, we
must often sacrifice optical flow quality to increase
processing speed; this affects final results. So, some
postfiltering is required to reduce errors in a depth
map or to make them less visible in the final result.

Such postfiltering can be performed using some
variations of simple Gaussian smoothing [Zha05] or
using more-complex filtering: for example, bilateral
filtering [Cha09]. To address the problem of stereo
correspondence this approach can be extended to use
multilateral filtering, particularly with a left-right con-
sistency metric, which makes it more robust. De-
tails of this approach are presented in [Mue10] and
[Jac10]. Other approaches under active development

WSCG 2011 Communication Papers 25

reduce the problem of depth estimation to a matter of
energy optimization for the whole frame, a process
that requires extensive processing time but produces
better quality for the final results [Zha08].

2 PROPOSED METHOD
Our work involves spatial filtering of a depth map that
was estimated using camera motion for single-view
video. Our approch can be applied to depth maps gen-
erated by any other method, however, because the fil-
tering does not use any additional information from
the scene.

To suppress artifacts, we propose trilateral filter-
ing. The convolution kernel is built for every pixel
and is composed of the following components: Gaus-
sian kernel G with a specified radius, matrix I(x,y)
based on the photometric difference between the cur-
rent pixel with coordinates (x,y) and neighboring pix-
els in the source image, and analogous matrix D(x,y)
calculated for this pixel using a depth map.

G responds to the distance from the current pixel
being processed: the farther the pixel is from the cen-
ter the lesser influence it has on the result. Weights
i(x,y) in image-based component are linearly depen-
dent on the difference between the central pixel and
other pixels:

i(m,n) =

=

{
thcolor−IDi f fxy(m,n)

thcolor
, IDi f fxy(m,n)≤ thcolor

0, IDi f fxy(m,n)> thcolor

(1)

where IDi f fxy(m,n) = (|red(m,n)− red(x,y)| +
|green(m,n)−green(x,y)|+|blue(m,n)−blue(x,y)|)/3,
m ∈ [x− r,x+ r],n ∈ [y− r,y+ r].

Depending on the input data, the color difference
may be calculated in another way: for example, as
the maximum absolute difference for the color com-
ponents or as the absolute difference between the av-
erage values of the color components. But the results
and processing speed vary just slightly so we selected
the mean absolute difference as the more general ap-
proach. The parameter thcolor is set accordingly to the
source image’s noise level and contrast range.

For the depth-based component D(x,y), linear de-
pendence is not applicable. In some models depth has
only a few grades, so an error in one depth grade may
yield too large a color range. Also, we chose to pe-
nalize large differences in depth, so we used a logistic
function, and we calculated weights for depth-based
component in the following way:

d(m,n) = 1− 1
1+ e−t·DDi f fxy(m,n)+6 (2)

where DDi f fxy(m,n) = |D(m,n)−D(x,y)| , m ∈
[x− r,x+ r],n ∈ [y− r,y+ r] and t is a parameter that

influences on the acceptable deviation of the depth
value from value in the central pixel. The constant 6
is based on the properties of the logistic function: the
value of the function for arguments greater than 6 is
very close to zero.

When we take into account information from a
rough depth map, a problem may crop up. All the arti-
facts in the depth map will influence the depth compo-
nent in the convolution kernel, and consequently, they
will influence the final result. So, to calculate weights
in the depth component, we need a depth map that is
largely free of artifacts but that is not blurred, having
strong edges. To solve this problem we used bilateral
filtering with an adaptive threshold. If enough pix-
els of the same color are near the current pixel, we set
the threshold low to preclude using pixel from another
depth level and blurring of an edge. But when there
are few similar pixels, we set the filtering strength
high enough to suppress the artifacts. We choose the
filtering radius according to the size of the artifacts
that we want to suppress.

Then final convolution kernel K(x,y) is calculated
as the element-wise product of matrices G, I(x,y) and
D(x,y).

k(m,n) = g(m,n) · i(m,n) ·d(m,n) (3)

The resulting pixel value in the filtered depth map
is:

r(x,y) =

x+r
∑

m=x−r

y+r
∑

n=y−r
k(m,n) · z(m,n)

x+r
∑

m=x−r

y+r
∑

n=y−r
k(m,n)

, (4)

where z(m,n) is the pixel in the estimated depth
map.

Compared with bilateral filtering, the trilateral ap-
proach has some advantages. If we ignore informa-
tion from the source image, we are only blurring a
depth map and are not really enhancing it. But if we
ignore depth when building a convolution kernel, we
may blur a boundary between two objects of the same
color. Also, when we use only color component we
may obtain the wrong thin depth flows on boundaries,
since boundary colors are usually the average of the
objects they divide. An example of flows artifact is
presented in Figure 1.

3 RESULTS
Figures 2, 3 and 4 show the results for the proposed
method as well as a comparison with the bilateral ap-
proach. This method outperforms image-based bilat-
eral algorithm in preserving the boundaries of objects
detected by optical flow. Also, it produces smoother
depth in uniform areas compared with the depth-based
bilateral approach.

WSCG 2011 Communication Papers 26

a) Source image b) Estimated depth map

c) Result of bilateral filtering
d) Result of trilateral

filtering
Figure 1: Example of flow artifact for the bilateral
filter, sequence “Road”, frame 29

4 FUTURE WORK
In the short term, the authors plan to better inte-
grate data from optical flow algorithm into postfilter-
ing algorithm; this integration which will improve the
restoration quality for small details and will also al-
low as to obtain a confidence measure for each pixel.
Using this measure, we will be able to estimate the
probability of that artifacts will appear in certain re-
gions and allowing us to achieve better results.

Another direction in the algorithm’s development
is use of temporal data from previous and subse-
quent frames compensated according to optical flow.
This approach will significantly increase computa-
tional complexity but should improve the depth map’s
temporal stability and improve details in a frame.

Also we plan to use the source image and optical
flow data to extract separate objects as structural units
for more precise processing of object boundaries.

5 CONCLUSIONS
In this paper, we proposed an algorithm of trilateral
postfiltering for depth maps created from camera mo-
tion. We compared this algorithm with other ap-
proaches, and we described and demonstrated the rel-
ative advantages of our approach. After reviewing po-
tential problems that can appear when using an inac-
curate depth map for calculating the convolution ker-
nel, we described our method of solving these prob-
lems. Lastly, we described our intended directions of
future work.

ACKNOWLEDGMENTS
This research was partially supported by grant 10-01-
00697-a from the Russian Foundation for Basic Re-
search.

REFERENCES
[Sax06] Ashutosh Saxena, Sung H. Chung, Learn-

ing Depth from Single Monocular Images. Ad-
vances in Neural Information Processing Sys-
tems, 2006.

[Zhu09] Shaojie Zhuo, Terence Sim, On the Recov-
ery of Depth from a Single Defocused Im-
age. Proceedings of International Conference
on Computer Analysis of Images and Patterns
(CAIP), vol. 5702/2009, p. 889-897, 2009.

[Bat04] S. Battiatoa, S. Curtib, M. La Casciac, M.
Tortorac, Depth-Map Generation by Image
Classification. Proceedings of SPIE, vol. 5302,
95, 2004.

[Pou10] Mahsa T. Pourazad, Panos Nasiopoulos,
Rabab K.Ward, Generating the DepthMap
from the Motion Information of H.264-
Encoded 2D Video Sequence. EURASIP Jour-
nal on Image and Video Processing, Volume
2010.

[Kim07] Donghyun Kim, Dongbo Min, Kwanghoon
Sohn, Stereoscopic Video Generation Method
Using Motion Analysis. Proc. of the 3DTV
Conference, p. 1-4, 2007.

[Zha05] Zhang, L., Tam, W. J., Stereoscopic Image
Generation Based on Depth Images for 3D TV.
IEEE Trans. on Broadcasting, vol. 51, pp. 191-
199, Jun. 2005.

[Cha09] Chao-Chung Cheng, Chung-Te Li, Po-Sen
Huang, Tsung-Kai Lin, Yi-Min Tsai, and
Liang-Gee Chen, A Block-based 2D-to-3D
Conversion System with Bilateral Filter. Inter-
national Conference on Consumer Electronics,
p. 1-2, 2009.

[Zha08] Zhang, G., Jia, J., Wong, T., Bao, H., Recov-
ering Consistent Video Depth Maps via Bundle
Optimization. Proceeding of IEEE Conference
on Computer Vision and Pattern Recognition,
p. 1-8, 2008.

[Mue10] Mueller, M., Zilly, F., Kauff, P., Adap-
tive cross-trilateral depth map filtering. 3DTV-
Conference: The True Vision - Capture, Trans-
mission and Display of 3D Video (3DTV-
CON), p. 1-4, 2010.

[Jac10] Jachalsky, J. Schlosser, M. Gandolph, D.,
Reliability-aware cross multilateral filtering
for robust disparity map refinement. 3DTV-
Conference: The True Vision - Capture, Trans-

WSCG 2011 Communication Papers 27

a) Source frame

b) Source depth c) Bilateral filter (image-based)

d) Bilateral filter (depth-based) e) Trilateral filter

Figure 2: Comparison of different filtering methods for “Road” sequence, frame 29.

mission and Display of 3D Video (3DTV-
CON), p. 1-4, 2010.

[Jun10] Jae-Il Jung, Yo-Sung Ho, Depth map estima-
tion from single-view image using object clas-
sification based on Bayesian learning. 3DTV-
Conference: The True Vision - Capture, Trans-
mission and Display of 3D Video (3DTV-
CON), p. 1-4, 2010.

WSCG 2011 Communication Papers 28

a) Source frame

b) Source depth c) Bilateral filter (image-based)

d) Bilateral filter (depth-based) e) Trilateral filter

Figure 3: Comparison of different filtering methods for “Garden” sequence, frame 18.

WSCG 2011 Communication Papers 29

a) Source frame

b) Source depth c) Bilateral filter (image-based)

d) Bilateral filter (depth-based) e) Trilateral filter

Figure 4: Comparison of different filtering methods for “Warrior” sequence, frame 17.

WSCG 2011 Communication Papers 30

Network Protocols for Applications of Shared
Virtual Reality

Jiri Hnidek

Technical University of Liberec
Studentska 2

 Czech Republic 461 17 , Liberec

jiri.hnidek@tul.cz

ABSTRACT
Files are usually used for exchange of 3D data between graphical applications, but this approach is not feasible
for applications of shared virtual reality. Thus a network protocol is used for this purpose. Two antithetical
requirements are claimed for such protocol. Protocol has to be partially or completely reliable. Neither delay
jitter nor too high delay are acceptable. This paper explains and analyzes new version of protocol called Verse.
This improves shortcomings found in UDP, TCP, SCTP and DCCP transport protocols. The Verse protocol was
designed for sharing 3D data between applications of shared virtual reality. This paper also contains results of
experiments comparing suitability of network protocols for application of shared virtual reality.

Keywords
Shared Virtual Reality, Network Protocol, Transport Protocol, Delay, Delay Jitter, Verse

1. INTRODUCTION
Applications of shared virtual reality (ASVR) require
transferring of information (e.g. position of avatar
[KCJ0]) with small delay and delay jitter, because
flickering of object motion is disruptive for an
observer of virtual reality. Let consider situation,
when users of ASVR cooperate in this environment
and try to create large scene (e.g. city with buildings
). When users create these objects, then movements
of all entities (objects, vertexes) is unpredictable.
Each user should see what other users are doing in
real-time and movement of shared entities should be
smooth as much as possible. Many users of ASVR
can create large traffic. Moreover some activities of
users can cause burst traffic (uploading of existing
object, sculpt painting, etc.).

UDP protocol is usually used for sending real-time
data. On the contrary TCP is usually used for
transferring static 3D data, because it is reliable
stream protocol. When users of ASVR want to edit
shared geometry and topology of 3D objects, then
partial reliability as well as low latency is required.

It will be proved that any transport protocols as is
can not meet those needs. It will be shown that new
Verse protocol can effectively meet both needs.

2. CONDITIONS OF EXPERIMENTS
A special client-server application was developed for
testing all above network protocols (Fig. 9). Network
protocols were tested in real network environments,
but comparison of protocols required different
approach.

It was necessary to set exact parameters of link
between client and server applications for tested
protocols. For this reason the server application run
on virtualized Linux operating system and the client
application run on host. Virtual link between host
and virtualized OS was modified with Linux traffic

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is
granted without fee provided that copies are not made
or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Figure 1. Each operating system had TBF engress
qdisc and Netem ingress qdisc. Connection of
Netem and TBF qdisc allowed to simulate real

network conditions.

WSCG 2011 Communication Papers 31

control to simulate real network conditions . The
Netem [Hem05] queueing disciple (qdisc) was used
for setting delay and delay jitter. The TBF qdisc was
used for setting limited bandwidth. It is important to
note, that unmodified link between host and
virtualized OS had delay 0.5 ms and average delay
jitter was 0.03 ms. Configured values of delay and
delay jitter were 10 times higher than values on
unmodified link. This delay simulated local are
network. The bandwidth of the link was limited
using TBF qdisc to 256 kb/s. The MTU of link was
1500 B.

3. METHODS OF EXPERIMENTS
Particle system was used to simulate wide range of
users working with 3D data. Two particle systems
were pre-generated. The particle system containing
100 particles was used for testing network protocols
at modified virtual link, because it generated decent
traffic and visualization. The particles system with
1000 particles was tested in real network
environment. The particle system is simple
simulation of bouncing balls, but it is assumed that
movement of particles simulates some type of
unpredictable movement and thus only position of
particles was sent through network. Graph at Fig. 2
shows time slope of particles in scene.

The particle systems were generated with 25 frames
per second (FPS). The illusion of slow motion
depends on many factors (resolution, distance of user
from the screen, etc.). In the worst case this illusion
is broken, when delay of received particle is longer
then 40 ms. Such particle is visualized as problematic
delay.

The main communication between client and server
is started by client application by a request to send
particles. When server receives client request, then it
starts to send positions of all moving particles every
40 milliseconds back to the client. The PMTU is
used during this simple handshake to discover
maximal size of packet. The position of each moving
particle is added to the packet in a simple message
containing particle id, frame number and vector of
position. When there are no other particles that could

be added to the packet or packet is full, then packet
is send to the client. The client application tries to
receive packets with positions of particles and it
visualizes differences between received and pre-
generated particle system. First 10 received blind
packets are used to compute average delay between
client and server before real data transfer.

4. TESTING OF TRANSPORT
NETWORK PROTOCOLS
UDP and TCP
UDP [Pos80] was the first tested protocol. UDP is
unreliable datagram protocol widely used in gaming
applications for its low latency. UDP is not
congestion aware and generated traffic can cause
congestion collapse. We can see at Fig 4 that
particles transported with UDP had low delays
except the period, when congestion occurred.
Average delay was bigger than 40 milliseconds and
packet loss was visually noticeable during
connection. On the other hand tests proved that using
pure UDP in ASVR is not feasible, because lost data
are not resent and it leads to inconsistency of shared
data in ASVR. UDP protocol could be used for
ASVR, but re-sending of lost packets has to be
solved at the application layer.

Contrary TCP protocol [Pos81] is not widely used in
gaming applications, because of the consequences of
its reliability mechanism. When one single packet is
lost, then proceeding of all following packets is
blocked until the lost packet is resent as we can see
at Fig 5. Such behavior lead to a sudden stop of
motion and high delay up to 1 second. Tests of TCP
protocol proved that using TCP in ASVR is possible
only in situations where bandwidth is bigger than the
highest generated bitrate, there are no other
concurrent transmission and RTT is much smaller
than 1/FPS. It is usually not possible to guarantee
such conditions in real networks and thus re-
transmission of lost data leads to very big delays.

 Al-Regib and Altunbasak proved in [ARA04], that
combination of UDP and TCP connection can be
effectively used for streaming of large 3D data sets.
This approach can be also used in ASVR for loading
large data sets, but it does not solve all specific
problems of ASVR, where many users share the
same 3D data set.

We can see at Fig. 4 and Fig. 5 that tests of UDP and
TCP protocols on real network produced similar
results as tests at modified virtual link.

SCTP
SCTP [Ste07] is a modern message based transport
protocol. It can act as reliable or partially reliable
protocol. SCTP does not provide reliable order
delivery, because it is based on message. When
reliable variant of SCTP is used, then there is no
need to wait for re-transmission of previous lost
packets. This feature could be considered as great

Figure 2. Time slope of particles in scene.
Duration of pre-generated particle system was 8

seconds using 25 frames per seconds (FPS).

WSCG 2011 Communication Papers 32

benefit for ASVR, because there is smaller average
delay of received particles. On the other hand this
caused flickering of received particles. Someone can
argue that this is visually more confusing than big
delays of TCP. Flickering could be theoretically
removed by adding a time stamp to each message,
but re-transmission of obsolete particle position is
not effective approach. Every re-transmission of
obsolete particle position makes congestion worse.
We can see at Fig. 6 that average delay of reliable
variant of SCTP is bigger than average delay of TCP.

Partial reliable variant of SCTP can specify time to
live (TTL) of each message. It means that sender
tries to re-transmit lost message only for specified
time. When the TTL of message is reached, then
unsent message is dropped. Partially reliable variant
of SCTP removed flickering of received particles,
when TTL was smaller then 0.5/FPS, but important
feature of reliability was lost. Using partially reliable
variant of SCTP in ASVR is not acceptable for the
same reason as pure UDP protocol. The results of
tests (Fig. 7) gave similar result as test of UDP
protocol.

DCCP
DCCP [KHF06] is a congestion friendly unreliable
datagram protocol. Congestion control of DCCP
protocol should be better than congestion control
implemented at application layer on top of UDP,
because DCCP can send ECN capable packet that
helps to detect congestion without dropping packets.
Tests of DCCP protocol proved that implementation
of this protocol in Linux is not ready yet for practical
deployment. When some error occurs (e.g. many
packets loss), then memory of machine can go out of
the limit [LF09]. Thus results of DCCP test were not
comparable with tests of other transport protocols.

5. VERSE PROTOCOL
All tested transport protocol failed in some way.
Unreliable or partially reliable protocols do not
resend lost packets. Reliable protocols try to resend
all lost data and it causes high delays. Verse protocol
uses different approach, because it tries to resend
only actual data and obsolete data are dropped.

Verse protocol [BSS06] [SB07] is an application
protocol designed for sharing 3D data in ASVR. It
uses UDP protocol as a transport layer. UDP it is
widely used datagram protocol and it allows
implementation of own effective resend mechanism
at application layer.

Principles of Verse Protocol
The Verse protocol uses client-server architecture. It
means the Verse server holds data and distributes
changes of shared data between connected clients.
For example, when a client sends a message
containing new position of the object to the server,
then server changes local position of the object and
re-transmits this change to all clients interested in

this object. From this point of view the Verse
protocol behaves like a network protocol used in
gaming applications [WCC+09]. The Verse protocol
allows much more. Applications can share not only
the object transformations but also geometry and
topology of objects, materials, textures, UV
coordinates etc. On the other side, the Verse protocol
does not allow to use multicast connections because
each client is interested in different set of objects.

Resend Mechanism of Verse Protocol
Basic principles of resend mechanism will be
described on the example (Figure. 3). It is assumed,
that the Verse packet with ID = 31 contained
information about object position. This packet was
sent from the sender to the receiver. The receiver
received this packet and sent the acknowledgment
packet back to the sender. The sender could be client
and receiver could be server and vice versa.

After a while the sender sent new packet. This packet
had ID = 32 and contained new position of the
object. This packet was lost. The receiver detected
this loss, when the packet with ID = 33 was received,
because the receiver expected packet with ID = 32.
After this, the receiver sent acknowledgment
containing information about reception of packet 33
and loss of the packet 32. The next method of
detection of packet loss is detection by sender using
timeouts.

Let's assume, that this acknowledgment was received
by the sender. How the sender processed this
acknowledgment? If the sender resent content of the
lost packet 32, then the receiver would receive
obsolete position of the object and it would lead to
inconsistency of shared data. On the other side the
lost packet could contain some useful and still valid
information (for example, information about position

Figure 3. Example of simplified Verse resend
mechanism. Each packet sent from the sender has

unique ID and it contains position of sphere
object. Acknowledgment packet sent from the

receiver to the sender contains positive or
negative acknowledgment of received packet.

WSCG 2011 Communication Papers 33

of some other object, command to delete an object
etc.). Therefor sender must pick non-obsolete data
from lost packet and pack them to a new packet.

It is important to note, that the most of packet loss is
caused by congestion in the network. Because
network equipments try to use fair scheduling for
data flows, then most of congestion is caused by
traffic from the sender. Thus most of the packet loss
could be effectively detected by methods described
above.

If packet loss was detected only by sender using
timeout, then this behavior would lead to high
delays. Let's consider that retransmission timeout
interval (RTO) is computed using the following
formulas. Smoothed RTT (SRTT) is computed with:

⋅RTT1−⋅SRTT SRTT (1)

where RTT is round trip time measurement from the
most recently acknowledged payload packet. The
RTO is then:

RTO=⋅SRTT (2)

Suggested value of constant α is 0.9 and suggested
value of constant β is 2. RTT of packet could be in
range of 1-100 ms in real network environment. If
SRTT is 10 ms, then not-lost packets are delivered
with average delay 5 ms and lost packet would be
delivered with average delay 25 ms. Proposed
approach used in Verse protocol allows to deliver
lost packet with average delay 15 ms. If 3D scene is
visualized with 60 FPS, then delay between two
frames is 16.7 ms. It is obvious, that Verse protocol
has high chance to resend lost packet just in time.

If TCP was used on transport layer, then the packet
loss would be solved very ineffectively from our
point of view. If the packet 34 was lost, then
processing of all following packets would be
suspended until content of the packet 34 would be
delivered. Such behavior had negative effect on
fluency of particle movements in tests of TCP
protocol.

The real Verse protocol is more complicated, then
example described above. Verse uses two types of
packets. Payload packets contain payload data.
Acknowledgment packets contain acknowledgments
of payloads packets.

Each payload packet has unique ID (Payload ID). A
sender increments the counter of sent packets every
time it sends a payload packet. When the counter
reaches value 232 , then the counter is reset to zero
value.

When payload packet is received, then receiver sends
an acknowledgment packet to the sender. This
acknowledgment packet has unique ID (AckNak ID)
and it contains at least one message with the
acknowledgment of the received payload packet.
This packet could contain more acknowledgment
messages (will be described later). The uniqueness of

AckNak ID is guaranteed by the same mechanism as
in the case of Payload ID. The receiver should send
at least one acknowledgment packet for two received
payload packets. The receiver should decrease or
increase the ratio of acknowledgment packets, when
sender detects acknowledgment packet loss. Thus the
sender negotiate the ratio of acknowledgment
packets.

Negative acknowledgment informs the sender, that
one ore more packets were lost. The receiver detects
packet loss, when expects receiving of payload
packet with ID = N , but payload packet with ID > N
is received. The host sends an acknowledgment
packet containing all the ACK and NAK messages
from the previous acknowledgment packets and
following sequence:

nak N ,, nak ID−1 , ack ID (3)

When delayed packets (considered as lost) are
received, then it is possible to process non-obsolete
data from these packets, but it is easier to drop them.

Delivery of acknowledgment packet is uncertain,
because an unreliable datagram protocol on the
transport layer is used. Therefore, probability of
delivery of an acknowledge packet to other side must
be maximized. All the ACK and NAK messages
from previous acknowledgment packets are added to
further packets, including payload packets. It is clear,
that adding the ACK and NAK messages to packets
should be limited somehow. The ACK and NAK
messages could not be added to the packet infinitely,
because traffic with low packet loss and high delay
could produce long sequence of ACK and NAK
messages. In this manner ACK and NAK messages
would fill the whole packet in a short time.

To avoid infinite increase of the ACK and NAK
messages, acknowledgment of acknowledgment has
to be added to the Verse resend mechanism. The ID
of the last acknowledged payload packet is added to
the packet sent to the peer. This ID is called Ank ID.
When the receiver receives such packet, then it is
necessary to send only ACK and NAK messages for
payload packets greater than Ank ID. The sender
sends packets with the Ank ID until a newer
acknowledgment packet is received.

The next mechanism of limiting sequence of ACK
and NAK messages is compression of this sequence.
Let's consider the following sequence of ACK and
NAK messages:

ack 31 , ack 32, nak 33 , nak 34 ,
nak 35 , ack 36 , ack 37 , ack 38

(4)

Such sequence could be split into the several
subsequences containing only ACK messages:

AckSeqi={ack0N i ,, ackni
N ini} (5)

and NAK messages:

WSCG 2011 Communication Papers 34

NakSeqi={nak 0N i ,, nak ni
N ini} (6)

where ni+1 is the number of ACK or NAK messages
in each subsequence.

Because numbers of received payload packets are
constantly increasing, then original sequence could
be compressed to the following sequence:

ack 31 , nak 33, ack 36, ack 38 (7)

in general m subsequences could be compressed to
the following sequence:

ack0N 0 ,nak 0N1 , ack0N2 ,
, ack0 N m−1 , acknm−1

Nm−1nm−1
(8)

It is necessary to send an empty payload packet
every 2 seconds to the receiver, when there is no
payload data to send. It is used for computing current
RTT. Empty payload packets also work as a keep
alive packets. When the host does not receive any
packet from its peer during 30 seconds, then this
connection is considered as closed.

Tests of Verse protocol
The Verse protocol was tested in similar client-server
application where transport protocols were tested.
The Verse server run again on virtualized OS.
Position of moving particles were sent to the Verse
server from special Verse client running on the same
virtualized OS. When the Verse server received
positions of particles, then it tried to send these
positions to the second Verse client running at host
OS. The link between host and virtualized OS was
modified in the same way as it is described in
section 2. We can see at Fig. 8 that average delay of
Verse protocol was comparable with average delay
of UDP. The congestion was longer and delay was
bigger than with UDP, because messages containing
position of particles are not so simple as messages
used for tests of transport protocols. It is price for
flexibility and partial reliability of Verse protocol.

6. RELATED WORK
Work of Terrence L. Disz et. al. [DPPS95] contains
first experiments with CAVE to CAVE
communication. They proposed very ambitious plans
of object sharing, but it was only plan and this
project was canceled. Chen-Chi Chet et. al. [WCC+
09] proposed Game Transport Protocol (GTP) with 4
schemes of re-transmission, but every type of
retransmission scheme can re-transmit whole packet.
This approach is very similar to SCTP protocol and
it’s inefficiency for ASVR was proved. Harcsik et.
al. [HPG07] tested transport protocol and its
efficiency for network games. These test were
specific for network games using thin streams – they
consists of small packets sent at low packets rates.

7. CONCLUSION AND FUTURE
WORK
Sharing of 3D data over lossy networks is quite
challenging problem. UDP, TCP, SCTP and DCCP
transport protocols were tested and compared in
special client-server application. It was proved that
no transport protocol as is can guarantee low delays
together with reliable or semi-reliable transport.
Basic principles of new Verse protocol were
introduced. This protocol was also tested in the
client-server application. Proposed approach used in
Verse protocol gave significantly better results for
ASVR than simple ad-hoc solutions based on
transport protocols, because Verse resend mechanism
re-sends only actual data and obsolete data are
dropped. New Verse protocol allows to use
compression and thus further minimize congestion
and delays.

Future work will be focused on design and
implementation of reliable congestion control for
datagram transport varying packet size with fixed
sending rate of packets. Next target will be
implementation of prioritization, queueing and
scheduling of data, that are going to be sent to the
receiver. In this way it will be able to increase
probability of delivering data with high priority.

8. ACKNOWLEDGMENTS
This research is realized under the state subsidy of
the Czech Republic within the research and
development “Advanced Remediation Technologies
and Processes Center” 1M0554 – Program of
Research Centers PP2-DP01 supported by Ministry
of Education. I would like to thanks to Pavel Satrapa
and David Kmoch for useful suggestions and careful
reading of this paper.

9. REFERENCES
[ARA04] Al-Regib, G. Altunbasak, Y. 3TP: 3-D

models transport protocol. In Web3D ’04:
Proceedings of the ninth international conference
on 3D Web technology, pages 155–162, New
York, NY, USA, 2004. ACM.

[DPPS95] Disz, T.L. Papka, M.E. Pellegrino, M.
Stevens, R. Sharing Visualization Experiences
among Remote Virtual Environments. In
International Workshop on High Performance
Computing for Computer Graphics and
Visualization, pages 217–237. Springer-Verlag,
1995.

[KHF06] Kohler, E. Handley, M. Floyd, S.
Designing DCCP: congestion control without
reliability. In SIGCOMM ’06: Proceedings of the
2006 conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 27–38, New York, NY,
USA, 2006. ACM.

WSCG 2011 Communication Papers 35

[KCJ07] Kempf, J., Chander, A., and Jo, M.
Optimizing avatar environmental update in
shared virtual reality environments. In
Proceedings of the First International Conference
on Immersive Telecommunications (ICST,
Brussels, Belgium, Belgium, 2007), ImmersCom
’07, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering), pp. 1–6.

[Hem05] Hemminger, S. Network Emulation with
NetEm. In Linux Conf Au, April 2005.

[HPG07] Harcsik, S., Petlund, A., Griwodz, C., and
Halvorsen, P. Latency evaluation of networking
mechanisms for game traffic. In Proceedings of
the 6th ACM SIGCOMM workshop on Network
and system support for games (New York, NY,
USA, 2007), NetGames ’07, ACM, pp. 129–134.

[Pos80] Postel, J. RFC 768: User Datagram Protocol,
aug 1980.

[Pos81] Postel, J. RFC 793: Transmission Control
Protocol, sep 1981. Updated by RFCs 1122,
3168.

[BSS06] Brink, E. Steenberg, E. Svenson, G. The
Verse Networked 3D Graphics Platform. In
SIGRAD ’06: Conference proceedings: The
Annual SIGRAD conference: Special theme:
Computer Games, pages44-48, Skövde, Sweden.
2006.

[SB07] Steenberg, E. Brink, E. The Verse
Specification. http://verse.blender.org/, 2007.

[Ste07] Stewart, R. RFC 4960: Stream Control
Transmission Protocol, sep 2007.

[WCC+09] Wu, C.C. Chen, K.T. Chen, C.M.
Huang, P. and Lei, C.L. On the challenge and
design of transport protocols for MMORPGs.
Multimedia Tools Appl., 45(1-3):7–32, 2009.

[LG09] Linux Foundation. Networking ToDo List.
http://www.linuxfoundation.org/collaborate/work
groups/networking/todo, 2009

Figure 4: Results of experiments with 1000 particles on real WAN network. The link had delay about 5 ms
(delay jitter 1 ms) and the bandwidth was about 1900 kb/s.

WSCG 2011 Communication Papers 36

http://www.linuxfoundation.org/collaborate/workgroups/networking/todo
http://www.linuxfoundation.org/collaborate/workgroups/networking/todo
http://verse.blender.org/

Figure 5: Test of UDP protocol proofed, that UDP had average delay quite low. Delay between two frames
was 40 milliseconds (~25 FPS). Some of particles lost after 100 th frame has never been resend and this

packet loss caused inconsistency of data between client and server.

Test of TCP protocol proofed, that this transport protocol is not feasible for ASVR. When generated
traffic exceeded bandwidth, then delay of received particles grooved to 1 second.

Figure 6: Test of semi-reliable variant of SCTP protocol gave similar results as UDP protocol. Average
delay was quite low, but lost packets were not resend and it caused inconsistency in data between server

and client, when transmission of particles was finished.

Test of reliable variant of SCTP protocol. This protocol gave similar results as TCP protocol. When
generated traffic exceeded bandwidth of the link between client and server, then delay grooved up to 3

seconds.

WSCG 2011 Communication Papers 37

Figure 7: Test of Verse protocol has bigger average delay, then UDP or semi-reliable variant of SCTP
protocol, because Verse protocol has to transfer more data (header, acknowledgment commands, node

commands, etc.). When transferring of particles was finished, then position of all particles was the same at
the client and the server.

Figure 8: Screenshot of client visualizing delay of received particles. TCP protocol is used in
this case. This screenshot was captured during congestion. Thus all received particles are

delayed. Red points visualize current received positions and white points visualize expected
positions of particles. Colored line between these two points visualize delay of received particle.

WSCG 2011 Communication Papers 38

RaVioli: a GPU Supported High-Level
Pseudo Real-time Video Processing Library

Katsuhiko KONDO* Takafumi INABA* Hiroko SAKURAI†

Masaomi OHNO* Tomoaki TSUMURA* Hiroshi MATSUO*

* Nagoya Institute of Technology, Japan
camp@matlab.nitech.ac.jp

† OMRON Corp., Japan.

ABSTRACT

Real-time video processing applications such as intruder detection system are now in demand and being developed. However, on
general purpose computers, it is difficult to guarantee that enough CPU resources can be surely be provided. We have proposed
a pseudo real-time video processing library RaVioli for solving this problem. RaVioli conceals two types of resolutions, frame
rate and the number of pixels, from programmers. This makes video and image processing programmings more intuitive, but the
performance may be lower by the abstraction overhead. To solve this problem, this paper proposes an improvement of RaVioli
for supporting GPU platforms. For using GPUs effectively, a deep knowledge about them has been required, and this would
have been a burden to programmers. The proposition on this paper provides an easy-to-use framework for developers. They can
benefit from GPU without rewriting their RaVioli programs and get high performance video processing. The experiment results
with image/video processing programs show that the proposed method improves the performance about 151-fold/164-fold in
maximum against traditional RaVioli without rewriting programs, and about 30-fold/4-fold in maximum against a native C++
program.

Keywords
real-time video processing, programming paradigm, video processing library, CUDA

1 INTRODUCTION
The demand of the systems, which highly requires real-
time video processing, is rapidly increasing; such as
intruder detection systems, automatic vehicle collision
avoidance systems, and so on. It is also expected that
the performance improvement and the cost reduction
will promote real-time video processing on the general-
purpose computers and operating systems. In spite of
the advances, it is difficult to realize the real-time video
processing on general-purpose operating systems, be-
cause it should be run by constant time interval. The
main reason of the difficulty is the fluctuation in the
throughput of frame rate and in the amount of the avail-
able CPU resources.

To solve this problem, we have proposed a high-level
video processing library RaVioli (Resolution-Adaptable
Video and Image Operating Library) which guarantees
pseudo real-time processing on general-purpose system

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this no-
tice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.

platforms. RaVioli can regulate the throughput rate by
automatically fluctuating spacial resolution and frame
rate according to CPU usage and load. For such dy-
namical fluctuation of the resolutions, a programming
fashion which is independent of the resolutions is re-
quired. RaVioli conceals two resolutions, the spacial
resolution of an image and the frame rate of a video
stream, from programmers for controlling the resolu-
tions automatically at run-time. It makes possible to
exclude the concept of resolutions, and developers can
write video processing programs more intuitively.

However, RaVioli causes the decline of processing
speed that comes from the abstraction overhead. Hence,
to solve this issue, this paper proposes an improvement
of RaVioli to support CUDA GPU platforms which are
ideally suited to multimedia processing. The proposi-
tion of this paper is the method to provide an easy-
to-use programming framework. Developers can im-
plement real-time video processing programs without
considering GPU architectures, and achieve high per-
formance video processing.

2 RESEARCH BACKGROUNDS

2.1 Related Works
For real-time video processor, adjusting the process-
ing load is very important. Nevertheless, writing mul-
tiple routines with different algorithms has been the
only solution for the load adjustment. One example

WSCG 2011 Communication Papers 39

Video Memory

Register Memory

Shared

Memory

Streaming Multiprocessor (SM)

Streaming Processor (SP)

SM

SP

SP

SP

SP

SP

SP

SP

SP

SM SM

Figure 1: Brief architecture of GPU

that has been proposed is the imprecise computation
model (ICM)[1, 2]. In this model, computation accu-
racy is varied corresponding to the given computation
time. With the confidence-driven architecture, which
is based on the ICM, developers have to troublesomely
implement multiple routines with different algorithms
and different loads, and the confidence-driven archi-
tecture selects suitable routine dynamically and empir-
ically among them.

VIGRA[3] and OpenCV[4, 5] are well-known video
processing libraries. They aim at high-level descriptiv-
ity of video processing. Adopting template techniques
similar to the C++ STL, VIGRA allows programmers
to easily adapt given components to their programs.
OpenCV provides many typical video processing algo-
rithms as C functions or C++ methods. However, ad-
justing computation load is difficult to be implemented
with these libraries.

The approach of a library RaVioli[6] is completely
different from these existing computation models or
video processing libraries. RaVioli allows program-
mers to be unaware of the existence of pixels and
frames through their video processing programming.
Concealing pixels and frames from programmers,
RaVioli can vary spacial/temporal resolutions and can
adjust processing load dynamically and automatically.

2.2 GPU and CUDA
A GPU (Graphics Processing Unit) is a specialized
microprocessor for image/video processing. It has wide
memory bandwidth and high processing performance.
A brief architecture of a GPU shipped by NVIDIA
Corp. is shown in Figure 1. Although GPUs are
different according to their generations and families,
they have a common architecture. There are dozens
of Streaming Multiprocessors (SM) in one GPU, and

for example in the GT200 series, each SM has eight
Streaming Processors (SP). The eight SPs in an SM
can run in SIMD (Single Instruction Multiple Data)
fashion. A GPU is a massively parallel multi-core
processor, for example, a GT200 series GPU has 30
SMs, and consequently has 240 SPs.

NVIDIA also provides CUDA (Compute Unified
Device Architecture)[7] for GPU programming. CUDA
is a parallel computing architecture for GPUs. CUDA
also includes compilers and libraries, and provides
APIs for GPU programming. Hence, developers
can easily access memories of the computational
units in GPUs using CUDA. GPUs can achieve high
performance by executing massively parallel threads
simultaneously. In the CUDA framework, a GPU
can execute 65535 × 65535 × 512 threads across all
SPs. CUDA organizes these threads into two levels
of units; Grid and Block. A Block is executed on an
SM, and the threads in a Block can be identified by
three-dimension indices (x,y,z). A set of Blocks is
called Grid, and the Blocks in a Grid can be identified
by two-dimension indices. How many threads are
associated to a Block and how many Blocks per Grid
are called as an execution configuration. Defining
an appropriate execution configuration is a key for
achieving good performance on GPU, but it is rather
difficult for ordinary programmers.

Hence, some frameworks are proposed for CUDA
programming. Baskaran et.al.[8] has proposed a trans-
lator for optimizing CUDA programs. It makes global
memory accesses effective. The compiler framework
optimizes affine loop nests based on a polyhedral com-
piler model. CUDA-lite[9] is another translator for
CUDA programs. It generates a optimized code which
uses appropriate GPU memories. Lee et.al.[10] has
also proposed a optimization framework for GPU pro-
grams. However when using these frameworks, devel-
opers should pay attention to parallelism, and should
add annotations or pragmas for getting efficient code.
On the other hand, since RaVioli hides loop iterations
from developers, essential parallelism or data depen-
dencies between iterations are easily found automati-
cally.

3 OVERVIEW OF RAVIOLI

3.1 Abstraction of Video Processing
RaVioli[6] proposes a new programming paradigm
with which programmers can write video processing
applications intuitively. RaVioli conceals spatial
resolution (pixel rate) and temporal resolution (frame
rate) of a video from programmers. We human beings
naturally have no concept of resolutions through our
visual recognition. For example, we can recognize
object motion in our view without any pixel or
frame. However, pixels and frames are indispensable

WSCG 2011 Communication Papers 40

640

480

for(x = 0; x < 640; x++)

 for(y = 0; y < 480; y++)

 new.pixel[x][y]

 = GrayScale(img.pixel[x][y]);

program

}

img

(a) Traditional program.

library

640

480

img (capsulated)

img.procPix(GrayScale);

procPix

100%

100%

program

(b) Program with RaVioli.

Figure 2: Digital image processing.

for motion object detection programs on computer
systems.

For example, motion object detection programs are
sometimes implemented by using a block matching al-
gorithm, which searches the most similar block be-
tween current window and previous one. The similar-
ity between image windows will be calculated by SAD
(sum of absolute differences) or other alternative meth-
ods, and the methods should be implemented by cumu-
lative pixel value differences. Resolutions are delivered
from the requirement of quantitativeness on comput-
ers. Hence, programmers have to manage resolutions
in their programs although resolutions are not required
essentially for vision. In other words, the presence of
resolutions makes programs unintuitive.

Generally, loop iterations are heavily used in video
processing programs. When converting a color image
to grayscale, for example, each pixel will be converted
to grayscale in innermost iteration, and the process is
repeated for every pixels by loop nests as shown in
Figure 2(a). In RaVioli, an image is encapsulated in an
RV_Image instance, and this repeating process for all
pixels is done by RaVioli automatically, so program-
mers should only write a routine for one pixel as shown
in Figure 2(b). GrayScale() in Figure 2(b) is the rou-
tine defined by the programmer. What programmer
should do are defining function which processes one
pixel and passing the function to an image instance’s
public method procPix(). The proxPix() is defined as a
higher-order method which applies a function passed as
its argument to all pixels one after another. This frame-
work allows programmers to be released from resolu-
tions and the number of iterations. Not only procPix(),
RaVioli also provides some higher-order methods for
several processing patterns; such as template matching,
k-neighbor processing, and so on. As same as images,
videos are also encapsulated in RV_Video instances in
RaVioli. Frames, the components of an RV_Video in-
stance, are concealed from developers. An RV_Video
instance also has several higher-order methods. Devel-
opers should only define a component function, which

SS = 1 SS = 2 SS = 3

: pixels processed
SS: spacial stride

(a) Spacial resolution.

frames processed

ST = 1 ST = 2 ST = 3

ST: temporal stride

(b) Temporal resolution.

Figure 3: Resolution changes.

manages one frame, and pass the function to an appro-
priate higher-order method for video processing.

Pseudo real-time processing and parallelization are
also resolved by RaVioli. RaVioli conceals resolutions
from programmers, therefore RaVioli can easily vary
resolutions through real-time processing for load re-
duction. Moreover, the iteration unit is so distinct in
RaVioli programs that the programs can be automati-
cally data-parallelized. Sakurai et.al. have taken these
functions up in detail in [6].

3.2 Self-Adjustment of Computation
Load

RaVioli can dynamically vary video resolutions consid-
ering processing load. RaVioli periodically compares
the frame capturing interval and the processing time for
one frame. When the processing time becomes larger
than the capture interval, RaVioli considers it is over-
loaded and reduces resolutions. There are two reso-
lutions; spatial resolution and temporal resolution in
videos. Spatial resolution refers the number of pixels
contained in each frame, and temporal resolution refers
the frame rate. RaVioli applies component functions to
frames or pixels skipping on a certain stride in higher-
order methods mentioned above. Roughening resolu-
tions can be done by raising the stride value, and it
leads to decreasing the computation load. Figure 3(a)
shows which pixels are processed when special stride
increases, and Figure 3(b) shows which frames are pro-
cessed when temporal stride increases.

Priorities can be specified for telling RaVioli which
resolution (special or temporal) should be kept. In a
real-time video application, top priority will be given
to temporal resolution, and RaVioli reduces spatial res-
olution. In other applications such as face authentica-

WSCG 2011 Communication Papers 41

tion, top priority will be given to spatial resolution, and
RaVioli reduces temporal one. What should be done for
load adjustment is only specifying priorities.

The resolution priority is specified by a tuple of two
values (PS, PT) called a priority set. PS represents the
priority of spatial resolution, and PT the priority of tem-
poral resolution. When (PS, PT) = (3, 7) is specified,
the priority ratio of PS and PT is recognized as 3:7, and
RaVioli manages to keep spatial stride and temporal
stride in the ratio of 7:3. Therefore a video process-
ing application, which fulfills the performance demand
and realizes real-time processing, can be easily imple-
mented.

This algorithm for reducing resolutions is very simple
and naive. However, this simplicity is very important.
Many complement algorithms such as bi-linear, hyper-
cubic, and so on are well known and they can be used.
However, notice that the function of changing resolu-
tions of RaVioli aims at reducing calculations. Adding
calculations for changing resolutions makes no sense.
An application written with RaVioli can achieve real-
time processing without any considerations. Some-
times the output will have low quality, but the appli-
cation does not lose realtimeness. Moreover, defining
priority set appropriately can control the inconvenience
from the quality loss.

4 CUDA SUPPORT FOR RAVIOLI
In this section, CUDA-supported RaVioli (RaVio-
li/CUDA) and a translator which converts traditional
RaVioli programs to programs for RaVioli/CUDA are
proposed.

4.1 Execution Model of Image Processing
with CUDA

Developers can use several memories of GPU with
CUDA. Each memory has different access speed and
size. For achieving high performance image process-
ing, developers should use as fast memory as possi-
ble. For using fast memories, data should be trans-
ferred from main memory to GPU memories. Consider-
ing these memories and execution configurations needs
deep knowledge and dexterity.

In this paper, we propose an extension of higher-order
methods of RaVioli which supports CUDA API. In-
voking these higher-order methods, developers can use
GPUs without considering GPU memories, execution
configurations and other troublesome steps. Figure 4
briefly shows how a GrayScale() function will be ap-
plied to an image by invoking the extended higher-
order method cudaProcPix(). GrayScale() which is to
be passed to cudaProcPix() should be defined as a ker-
nel function. In CUDA, a kernel function specifies the
code to be executed by all threads in parallel.[7]

When cudaProcPix() is invoked with a component
function GrayScale(), RaVioli/CUDA allocates GPU

RV_Image

CPU GPU

RV_Image InImg;

// get Handle of GrayScale()

GetKernelHandle(&cuFunc,

 “GrayScale”);

InImg.cudaProcPix(&cuFunc);

extern “C” __global__

void GrayScale(...){

 :

 // processing on 1 thread

 // monotonize 1 pixel

}

main.cpp (host) kernels.cu (device)

copy (input)

copy (result)

cudaProcPix()

Figure 4: Brief execution model of RaVioli/CUDA

memories and transfers image data from main mem-
ory to GPU memories. After that, an execution con-
figuration is automatically defined according to the in-
put image, and GrayScale() is applied to the whole in-
put image. When completing the application, RaVio-
li/CUDA transfers the result to the main memory on
CPU and deallocates GPU memories. For each other
higher-order method of RaVioli, an associated CUDA-
supported method is defined.

4.2 Execution Model of Video Processing
with CUDA

As same as RV_Image class, CUDA-supported higher-
order methods for RV_Video class are also defined. The
methods for RV_Video not only conceals data transfer
between CPU and GPU, but also parallelize the data
transfer and kernel function execution automatically by
using CUDA stream.

In CUDA, the execution of a kernel function and the
data transfer between host (CPU) and device (GPU) can
be overlapped by using multiple CUDA streams. A
CUDA stream is defined as a sequence of CUDA op-
erations which are executed in-order. Multiple CUDA
streams can be declared and used simultaneously. Each
data transfer between host and device and each execu-
tion of kernel function can be assigned to one of the de-
fined CUDA streams. A host-device data transfer and
a kernel function execution on different CUDA streams
can be executed in parallel.

In RaVioli/CUDA, two CUDA streams are automati-
cally declared when an RV_Video is instantiated. When
a higher-order method of the RV_Video instance is in-
voked, each frame of the video is assigned to the two
CUDA streams alternately. The execution model is il-
lustrated in Figure 5.

First, the stream #1 transfer the frame #1 from host to
device. When the transfer completes, the stream #2 can
transfer the frame #2, and the stream #1 applies kernel

WSCG 2011 Communication Papers 42

Host -> Device

(frame #1)

Kernel func.

(frame #1)

Device -> Host

(frame #1)

Host -> Device

(frame #3)

Host -> Device

(frame #4)

Kernel func.

(frame #3)

Host -> Device

(frame #2)

Kernel func.

(frame #2)

Device -> Host

(frame #2)

Stream #1

Stream #2

time

Figure 5: Pipelining with CUDA streams.

Module file

(kernels.ptx)

Executable

C++ program

for RaVioli

C++ program

for RaVioli/CUDA

Kernel func.

(kernels.cu)

RaVioli/CUDA

library

NVCC CompilerNVCC Compiler

component func.

TranslatorTranslator

Object file

C++ CompilerC++ Compiler

Figure 6: Compilation flow with translator.

function to the frame #1 simultaneously. Notice that the
stream #2 cannot transfer the frame #3 as soon as the re-
sult of the frame #1 is sent back to the host, because the
stream #2 will be send the result of the frame #2. This
brings a pipeline bubble. However, in the ideal case in
which every stage takes same latency, the throughput
raises 1.5-fold.

4.3 Translator and Code Conversion
As described above, RaVioli/CUDA can provide an
easy-to-use CUDA programming framework for devel-
opers. Higher-order methods of RaVioli/CUDA con-
ceal almost all steps for using CUDA such as device
handling, memory allocation, execution configuration,
and so on from developers. However, developers still
should modify their traditional RaVioli programs. For
example in Figure 4, the developer should get a han-
dler for a kernel function by calling GetKernelHan-
dler(), and rewrite the higher-order method procPix() to
the associated CUDA-supported higher-order function
cudaProcPix(). The component functions also should
be rewritten to kernel functions for being adapted to
CUDA-supported higher order methods. To dissolve
these troubles, a translator which converts traditional
RaVioli programs to RaVioli/CUDA programs is also
proposed in this paper. Figure 6 shows a compilation
flow with the translator.

Figure 7 shows an example program which converts
color images to grayscale. The translator converts such
programs to two program files; main.cpp for host
CPU and kernels.cu for GPU device. These pro-

1 int main(int argc, char∗ argv[]){
2 RV_Image image;
3 :
4 image.procPix(GrayScale);
5 :
6 }
7

8 void GrayScale(RV_Pixel p1){
9 int ave = ((p1.getR()) + p1.getG() + p1.getB()) / 3;

10 p1.setRGB(ave, ave, ave);
11 }

Figure 7: A simple grayscale program with traditional
RaVioli.

1 /∗ main.cpp ∗/
2 RV_CudaDevice device;
3 int main(int argc, char∗ argv[]){
4 RV_Image image;
5 :
6 device.RaCudaInit(); /∗ initialize device ∗/
7 CUfunction cuFunction;
8 device.GetKernelHundle(&cuFunction, "GrayScale");
9 image.cudaProcPix(&cuFunction);

10 :
11 device.RaCudaExit(); /∗ finalize device ∗/
12 }

Figure 8: Main program translated from Figure 7.

1 /∗ kernels.cu ∗/
2 extern "C" __global__ void
3 GrayScale(RV_Pixel∗ idata, RV_Pixel∗ odata, int width, int height){
4 int x = blockDim.x ∗ blockIdx.x + threadIdx.x;
5 int y = blockDim.y ∗ blockIdx.y + threadIdx.y;
6 RV_Pixel p1;
7 if(x < width && y < height){
8 p1 = idata[y ∗ width + x];
9 int ave = (p1.getR() + p1.getG() + p1.getB()) / 3;

10 odata[y ∗ wid + x].setRGB(ave, ave, ave);
11 }
12 }

Figure 9: Kernel program translated from Figure 7.

gram files are compiled by C++ compiler and CUDA
compiler nvcc, and assembled to an executable. The
result of conversion is shown in Figure 8 and Figure 9.

In the main program, the invocation of procPix() in
Figure 7 is converted to cudaProcPix() in Figure 8. A
statement of GetKernelHandler() is added in main() for
getting a kernel handler for the component function
GrayScale(). RaCudaInit() and RaCudaExit() are func-
tions provided by RaVioli/CUDA for CUDA device ini-
tialization and finalization respectively.

On the other hand in the kernel program, the com-
ponent function GrayScale() is converted to a kernel
function. A kernel function expresses a process for one
thread. In Figure 9, the kernel function GrayScale() is
defined as it processes one pixel on one thread. The def-
inition of GrayScale() also makes continuous threads to
process continuous pixels by calculating indices. This

WSCG 2011 Communication Papers 43

is for coalesced access of CUDA memories. Mem-
ory accesses to global memory by continuous sixteen
threads in each Block can be issued in parallel by this
code conversion.

The translator searches higher-order method invoca-
tions through RaVioli programs, and generates associ-
ated code for RaVioli/CUDA with converting compo-
nent functions to kernel functions. In this simple exam-
ple program, there need no reduction operation for par-
allelization. However, in RaVioli programs, whether
reduction operations are required or not can be easily
detected, because any dependency between iterations
appears as an assignment to a global variable in the
component function.[6]

Enumerating translation rules in detail is left out for
want of space. There are additional functions of the
translator as follows.
Optimizing Data Transfers Many of video process-
ing programs consist of multiple stages, and the stages
can be pipelined. Since transferring data between CPU
and GPU on each stage of the pipeline is redundant, the
translator optimizes these data transfers. In the output
program converted by the translator, the data are trans-
ferred from CPU to GPU only once at the first stage (i.e.
the first invocation of a higher-order method), and the
result is transferred from GPU to CPU only once at the
last stage.
Using Page-Locked Memory With CUDA, two types
of CPU host memory are available. The one is heap
memory, and the other is page-locked host memory.
Page-locked host memory is mapped into the address
space of the GPU device, and can be accessed directly.
Moreover, data copy between page-locked host mem-
ory and GPU can be fast and asynchronous. The trans-
lator converts programs for using page-locked memory
automatically.

5 EVALUATION RESULTS
A CUDA extension for RaVioli and a translator de-
scribed in section 4 were implemented, and evaluated
with several image/video processing programs. The
evaluation environment is shown in Table 1.

5.1 Evaluation of Image Processing
We used three programs which are grayscale, emboss
filter and template matching for evaluating image pro-
cessing. The evaluation results are shown in Table 2. In
Table 2, Baseline denotes a program written in native
C++, RaVioli denotes a program with traditional RaVi-
oli and RaVioli/CUDA denotes a program with CUDA-
supported RaVioli described in this manuscript. The
size of the image which was used for grayscale and em-
boss filter was 512×512 pixels. For template matching,
the base image has 395× 372 pixels and the template
image has 70×72 pixels.

OS Fedora9
CPU Core2Quad

Frequency 2.83GHz
Memory 3GB

GPU GeForce GTX280
Number of multiprocessors 30

Number of cores (SP) 240
CUDA version 2.2 (Driver API)

Compute capability 1.3
Compiler gcc

Compile options -O3

Table 1: Evaluation environment.

Workloads Baseline RaVioli RaVioli/
CUDA

Grayscale 0.83 2.89 1.21
Emboss filter 2.08 18.62 1.30

Templ. matching 1902.45 9512.69 62.62

Table 2: Execution time. (ms)

0% 20% 40% 60% 80% 100%

Grayscale

Emboss filter

Template matching

GPU memory allocation

Data tranx from Host to GPU

Kernel function

Data tranx from GPU to Host

GPU memory deallocation

Figure 10: Breakdown of processing time with RaVio-
li/CUDA

As we can see in Table 2, RaVioli/CUDA achieves
performance gains of 2.3-fold, 14.2-fold and 151.8-fold
on grayscale, emboss filter and template matching re-
spectively, against traditional RaVioli without rewrit-
ing programs. Typically on template matching, RaVi-
oli/CUDA also achieves about 30-fold speedup against
Baseline.

Nevertheless, the performance of RaVioli/CUDA on
grayscale is still inferior to Baseline. Hence, the break-
down of processing time with RaVioli/CUDA was also
evaluated. The result is shown in Figure 10. As we can
see in Figure 10, the kernel function execution domi-
nates the whole execution time on the template match-
ing program, and the parallelization on GPU brings a

WSCG 2011 Communication Papers 44

good result. On the other hand, the kernel function exe-
cution accounts for about only 4% of total execution on
the grayscale program, and the data transfer overheads
between host CPU and GPU device are dominant. This
should prevent performance gain on the grayscale pro-
gram. However, a program with small kernel function
does not bring large latency and will not cause a prob-
lem on real-time video processing essentially.

5.2 Evaluation of Video Processing
The performance of video processing with RaVio-
li/CUDA was also evaluated. We have evaluated four
models with an edge detection program. Roughly
speaking, the edge detection processing consists of
three stages; converts input frames to grayscale,
binarize it, and detects object edges. The results of
processing time for ten frames are shown in Figure 11.

RaVioli/CUDA achieved about 90-fold speedup
against traditional RaVioli without rewriting program,
and over 2-fold speedup against the baseline program.
Furthermore, RaVioli/CUDA with CUDA stream
achieved 164-fold speedup against traditional RaVioli,
and about 4-fold speedup against the baseline. As we
can see in the breakdown of the third bar, the latency
of data transfer is longer than the latency of kernel
function execution. However, the result overcomes
the ideal 1.5-fold speedup mentioned in Chap. 4.2.
This can be explained by additional functions of the
translator mentioned in Chap. 4.3.

As a result, RaVioli/CUDA provides a high-level
programming framework for developers. Developers
can use GPU without any knowledge and consider-
ation, and can achieve high performance by using
RaVioli/CUDA. On expensive programs, GPU abilities
can be easily brought out by RaVioli/CUDA, and on
lightweight programs, RaVioli/CUDA can limit the
abstraction overhead of RaVioli effectively.

6 CONCLUSIONS
In this paper, we have proposed an improvement
of RaVioli for supporting CUDA GPU platforms.
RaVioli is a pseudo real-time video processing library
which conceals spacial/temporal resolutions from
programmers and changes resolutions automatically
for adapting to currently available CPU resource.
RaVioli/CUDA not only allows developers to be free
from considering GPU architectures, but also easily
brings out the performance in GPU devices.

The evaluations with several image and video
processing programs have been conducted. The
results with image processing programs have shown
that RaVioli/CUDA achieves 151-fold speedup in
maximum against traditional RaVioli without rewriting
programs, and also achieves about 30-fold speedup
against native C++ programs. The results with a
video processing program of edge detection has shown

P
ro

ce
ss

in
g

 t
im

e
(m

s)

B
as

el
in

e

R
aV

io
li

R
aV

io
li/

C
U

D
A

(w
/o

 C
U

D
A
 st

re
am

)

R
aV

io
li/

C
U

D
A

(w
/ C

U
D

A
 st

re
am

)

0

10

20

30

40

1360

Processing Time (in total)

Memory Deallocation

Data Trans. CPU GPU

Kernel function

Data Trans. GPU CPU

Memory Allocation

Figure 11: Evaluation of Video Processing.

that RaVioi/CUDA achieves about 164-fold speedup
against traditional RaVioli and about 4-fold speedup
against a native C++ program.

Possible improvement of this study is modifying ex-
ecution configuration appropriately and dynamically.
This can make kernel functions to run more effectively.
Now, RaVioli has good writeability, and many pro-
grams such as edge detection, circle detection, hough
transform, and so on can be written with RaVioli. How-
ever, image reconstruction and frequency processing
are hard to be written with RaVioli at the moment. We
should examine some new higher-order methods for
them. Designing a new video programming language
which cooperates with RaVioli is also left for our fu-
ture work.

ACKNOWLEDGEMENTS
This research was partially supported by a Grant-in-Aid
for Young Scientists (B), #21700028, 2009, from the
Ministry of Education, Science, Sports and Culture of
Japan.

REFERENCES
[1] J.W.S. Liu, Wei-Kuan Shih, Kwei-Jay Lin, R. Bettati, and Jen-

Yao Chung. Imprecise Computations. In Proceedings of the
IEEE, volume 82, pages 83–94, Jan. 1994.

[2] Hiromasa Yoshimoto, Naoto Date, Daisaku Arita, and Rinichiro
Taniguchi. Confidence-Driven Architecture for Real-time Vi-
sion Processing and Its Application to Efficient Vision-based
Human Motion Sensing. In Proc. of the 17th Int’l. Conf. on Pat-
tern Recognition (ICPR’04), volume 1, pages 736–740, 2004.

[3] Ullrich Köthe. VIGRA - Vision with Generic Algorithms, 1.6.0
edition, Aug. 2008.

[4] Gary Bradski and Adrian Kaehler. Learning OpenCV: Com-
puter Vision With the OpenCV Library. O’Reilly & Associates
Inc, 2008.

[5] Intel Corp. Open Source Computer Vision Library, 2001.

WSCG 2011 Communication Papers 45

[6] Hiroko Sakurai, Masaomi Ohno, Tomoaki Tsumura, and Hi-
roshi Matsuo. RaVioli: a Parallel Video Processing Library
with Auto Resolution Adjustability. In Proc. IADIS Int’l. Conf.
Applied Computing 2009, volume 1, pages 321–329, Nov. 2009.

[7] NVIDIA Corp. NVIDIA CUDA Programming Guide, 2.0 edi-
tion, Jun. 2008.

[8] Muthu Manikandan Baskaran, Uday Bondhugula, Sriam Krish-
namoorthy, Atanas Rountev, and P.Sadayappan. A Compiler
Framework for Optimization of Affine Loop Nests for GPG-
PUs. In ICS’08: Proc. of 22nd Annual Intl. Conf. on Supercom-
puting, pages 225–234. ACM, 2008.

[9] Sain-Zee Ueng, Melvin Lathara, Sara Baghsorkhi, and Wen mei
Hwu. CUDA-lite: Reducing GPU Programming Complexity.
In Proc. of 21st Annual Workshop on Languages and Compilers
for Parallel Computing (LCPC 2008), pages 1–15, 2008.

[10] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP
to GPGPU: A Compiler Framework for Automatic Translation
and Optimization. In Proc. of the 14th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming,
volume 44, pages 101–110. ACM, 2009.

APPENDIX
Another example of code conversion by the translator is
shown in this appendix. Figure 12 is a template match-
ing program written with traditional RaVioli. The codes
shown in Figure 13, Figure 14 and Figure 15 are gener-
ated by the translator from the code in Figure 12.

1 RV_Image tp_image;
2 RV_Coord start;
3 RV_Coord end;
4 int sad;
5

6 void SAD(RV_Pixel p1, RV_Pixel p2){
7 int abs = p1.absDiff(p2);
8 sad += abs;
9 }

10

11 void TPmatching(RV_Image imageSmall,
12 RV_Coord startNow, RV_Coord endNow){
13 sad = 0;
14 int min = INT_MAX;
15 imageSmall.procImgComp(SAD, tp_image);
16 if(min > sad){
17 min = sad;
18 start = startNow;
19 end = endNow;
20 }
21 }
22

23 int main(int argc,char∗ argv[]){
24 RV_Image∗ input_image = new RV_Image(argv[1]);
25 RV_Image∗ output_image = new RV_Image(argv[1]);
26 tp_image = new RV_Image(argv[2]);
27 input_image−>procBox(TPmatching,
28 input_tp−>getStartCoord(),
29 input_tp−>getEndCoord());
30 output_image−>writeRect(start,end);
31 return 0;
32 }

Figure 12: A template matching program with tradi-
tional RaVioli.

The component function SAD() is converted to the
SAD() in Figure 14, and the component function TP-

1 /∗ main.cpp ∗/
2

3 #include "ravioli.h"
4 #include "cutil.h"
5

6 RV_Cuda device;
7

8 CUtexref cuTexTPref; // texture reference for template image
9 CUarray d_TPimage;

10 int3 result;
11

12 void TPmatching(RV_Image∗ image){
13 CUfunction cuFunction;
14 CUfunction cuFunction2;
15 device.GetKernelHundle(&cuFunction, "TPmatching_kernel");
16 device.GetKernelHundle(&cuFunction2, "reduction_kernel");
17 cuParamSetTexRef(cuFunction,
18 CU_PARAM_TR_DEFAULT,
19 cuTexTPref);
20 result = image−>cudaProcBox(&cuFunction,
21 tp_image−>Width,
22 tp_image−>Height,
23 &cuFunction2);
24 }
25

26 int main(int argc, char∗ argv[]){
27 RV_Image∗ input_image = new RV_Image(argv[1]);
28 RV_Image∗ tp_image = new RV_Image(argv[2]);
29

30 device.RaCudaInit();
31 device.GetTexrefHundle(&cuTexTPref,"texTP");
32

33 tp_image−>TexRefSetImage(&d_TPimage, &cuTexTPref);
34 TPmatching(input_image);
35 cutilDrvSafeCall(cuArrayDestroy(d_TPimage));
36 image−>writerect(result.x,result.y);
37

38 device.RaCudaExit();
39 return 0;
40 }

Figure 13: Main program translated from Figure 12.

matching() is Figure 13 and TPmatching_kernel() in
Figure 13.

First, the translator finds the invocation of procBox()
at line 27 in Figure 12, and tries to translate the compo-
nent function TPmatching(). The procBox() is one of
the higher-order methods of RV_Image instance, and it
is for appling a component function repeatedly inside a
certain box defined by two coord arguments.

In the main program shown in Figure 13, TPmatch-
ing() is defined. It gets kernel hundlers for kernel func-
tions, sets up texture reference, and passes kernel func-
tions to the higher-order method cudaProcBox(), which
is the CUDA-supported version of proxBox().

TPmatching() in Figure 13 is only a wrapper func-
tion, and the essence of TPmatching() is translated to
TPmatching_kernel() in Figure 14. It calculates sum
of absolute differences by calling the function SAD().
Now, SAD() is called from device code. Hence, __de-
vice__ qualifier is added to SAD().

Thread-local results are stored in the data4reduction[]
array. In Figure 12, the variable sad is defined as a

WSCG 2011 Communication Papers 46

1 /∗ kernel.cu (module) ∗/
2

3 texture<int, 2, cudaReadModeElementType> texTP;
4 __device__ int SAD(int∗ idata, int wid, int hei,
5 int widBox, int heiBox, int x, int y){
6 int sad = 0;
7 int p1, p2;
8 for(int j = 0; j < heiBox; j++){
9 for(int i = 0; i < widBox; i++){

10 p1 = idata[(y + j) ∗ w + (x + i)];
11 p2 = tex2D(texTP, i, j);
12 int abs = absDiff(p1, p2);
13 sad += abs;
14 }
15 }
16 return sad;
17 }
18

19 extern "C"
20 __global__ void
21 TPmatching_kernel(int∗ idata, int4∗ data4reduction,
22 int wid, int hei, int widBox, int heiBox){
23 int x = blockDim.x ∗ blockIdx.x + threadIdx.x;
24 int y = blockDim.y ∗ blockIdx.y + threadIdx.y;
25 int incX = gridDim.x ∗ blockDim.x;
26 int incY = gridDim.y ∗ blockDim.y;
27 int sad;
28 int min = INT_MAX;
29 for(int j = y; j < (hei − heiTP); j += incY){
30 for(int i = x; i < (wid − widBox); i += incX){
31 sad = SAD(idata, wid, hei, widBox, heiTP, i, j);
32 if(sad < min){
33 data4reduction[y ∗ 256 + x].z = sad;
34 data4reduction[y ∗ 256 + x].x = i;
35 data4reduction[y ∗ 256 + x].y = j;
36 }
37 }
38 }
39 }

Figure 14: Kernel module program translated from
Figure 12.

global variable and overwritten in the component func-
tion TPmatching(). This lets the translator know that
there needs a reduction operation for the variable sad.
Hence, the code for reduction shown in Figure 15 is
also generated.

The code in Figure 15 reduces the thread-local re-
sults. Gathering the data over threads on shared mem-
ory in each Block, the minimum value and its coordi-
nation is settled, and the process is repeated over all
Blocks by for loop.

The code through the line 19 to 29 in Figure 15, six-
teen threads in each Block access continuous addresses
in shared memory. Hence, bank conflict and Warp di-
vergence can be avoided.

1 /∗ reduction code ∗/
2

3 extern "C"
4 __global__ void
5

6 reduction_kernel(int4∗ data4reduction, int4∗ g_odata){
7 __shared__ int sdatax[256];
8 __shared__ int sdatay[256];
9 __shared__ int sdataz[256];

10

11 // from Global Memory to Shared Memory
12 unsigned int tid = threadIdx.x;
13 unsigned int i = blockIdx.x ∗ blockDim.x + threadIdx.x;
14 sdatax[tid] = data4reduction[i].x;
15 sdatay[tid] = data4reduction[i].y;
16 sdataz[tid] = data4reduction[i].z;
17 __syncthreads();
18

19 // reduction operations on Shared Memory
20 for(unsigned int s = blockDim.x / 2; s > 0;s >>= 1){
21 if(tid < s){
22 if(sdataz[tid] > sdataz[tid + s]){
23 sdatax[tid] = sdatax[tid + s];
24 sdatay[tid] = sdatay[tid + s];
25 sdataz[tid] = sdataz[tid + s];
26 }
27 }
28 __syncthreads();
29 }
30

31 if(tid == 0){
32 g_odata[blockIdx.x].x = sdatax[0];
33 g_odata[blockIdx.x].y = sdatay[0];
34 g_odata[blockIdx.x].z = sdataz[0];
35 }
36 }

Figure 15: Reduction operations generated from
Figure 12.

WSCG 2011 Communication Papers 47

WSCG 2011 Communication Papers 48

Anisotropic 3D texture synthesis with application to
volume rendering

Lasse Farnung Laursen

Technical University of Denmark
Richard Petersens Plads

Building 321
 DK-2800 Kgs. Lyngby

lfla@imm.dtu.dk

Bjarne Kjær Ersbøll

Technical University of Denmark
Richard Petersens Plads

Building 305
DK-2800 Kgs. Lyngby

be@imm.dtu.dk

Jakob Andreas Bærentzen

Technical University of Denmark
Richard Petersens Plads

Building 321
DK-2800 Kgs. Lyngby

jab@imm.dtu.dk

ABSTRACT
We present a novel approach to improving volume rendering by using synthesized textures in combination with

a custom transfer function.

First, we use existing knowledge to synthesize anisotropic solid textures to fit our volumetric data. As input to

the synthesis method, we acquire high quality images using a 12.1 megapixel camera.

Next, we extend the volume rendering pipeline by creating a transfer function which yields not only color and

opacity from the input intensity, but also texture coordinates for our synthesized 3D texture. Thus, we add

texture to the volume rendered images. This method is applied to a high quality visualization of a pig carcass,

where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures.

Keywords
Volumetric Rendering, Texture Synthesis, Transfer function.

1. INTRODUCTION
The use of volumetric data is becoming increasingly

common within research fields such as medical

visualization, food production and graphics. This

data is also ever increasing in size as the scanners

providing the data, e.g. CT, MRI, and ultrasound

scanners, are improving and thus able to provide

higher resolutions. Increased precision and more

detail is a natural evolution as having too much

information, is somewhat of a luxury problem.

When concerned with rendering volumetric data in

real time, two issues persist. Firstly, the features that

we would like to visualize might be on a finer scale

than the voxels, despite the ever increasing amount of

volume data. In our case, we visualize pig meat, and

the variation in the texture of pig meat is on a finer

scale than the resolution of our CT scan. Moreover,

the voxels in our CT scanned data are stretched ten

times along one axis. This problem is compounded

by a second issue which is the fact that the CT

intensities represent material density, which is not

directly related to the appearance of the underlying

tissue.

We present a novel approach which aims to alleviate

both issues. With prior knowledge about the type of

volumetric data we wish to visualize, we synthesize

an anisotropic 3D texture which is applied to the

volume data via a customized transfer function.

Using this transfer function, we map the CT

intensities to a high resolution solid pig meat texture

which gives a qualitatively far better representation

of the meat than any single color. Moreover, the solid

texture texels are not stretched.

Solid textures are an ideal fit when rendering

volumetric data. In almost all cases, there is an

interest in rendering what is beneath the surface or

subdividing the data to expose some deeper layer.

Since a solid texture shares the same number of

dimensions as common volume data, its application

is relatively straightforward.

2. Related Work
The focus of this paper can be divided into solid

texture synthesis, and the application thereof in

volumetric rendering.

Solid Texture Synthesis
Considerable work has been done within the field of

texture synthesis, from parametric methods [HB95]

to non-parametric methods [DB97, Har01], as well as

alternative approaches [WL00]. Most texture

synthesis algorithms use a sample texture as input,

referred to from here on as exemplar. This exemplar

forms the basis for either a parametric model, which

synthesizes a new texture based on modeled

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2011 Communication Papers 49

parameters, or for a non-parametric algorithm, which

reuses elements from the exemplar and recombines

these to create a new, yet similar, texture.

Solid texture synthesis has been pioneered and

expanded upon within the past two decades. Several

methods, both parametric [GD95] and non-

parametric [Wei02], as well as alternate approaches

[JDR04], have been presented.

A recent texture synthesis method, which we use to

create our anisotropic textures, is called texture

optimization [KEBK05, KFCO+07]. This method

iteratively improves the texture as a whole, making

each modification smaller and more refined.

Volumetric Transfer Function
Volume rendering [DCH88] has come a long way.

Most applications today make use of graphics

hardware to improve performance [CN94]. The field

has seen a dramatic increase of research into all kinds

of visualization techniques involving volumetric

data. Most volumetric data originates from either

computed tomography or magnetic resonance scans,

which do not yield a direct mapping to appearance

attributes (i.e. color and texture of the scanned

tissue). An obvious field of research is therefore to

provide proper color and texture to this otherwise

appearance deficient data. The visible human project

is one such example, where a male and female body

has been scanned, and subsequently cut and

photographed to obtain the correlation between

density and appearance. One method with which to

color the data, is the use of a transfer function

[HKRs+06a].

Many methods for creating transfer functions exist.

From a simple pre-defined function capable of

transforming between two number domains, to a user

defined transfer function allowing for iterative

refinement through user input [CS07]. In most cases,

user input is desirable since the transfer function is

often used as a tool to highlight or hide specific

features in the volume data.

Other approaches include Dong and Clapworthy

[DC05], who use 2D input exemplars to apply and

synthesize texture to a volumetric volume

simultaneously. By analyzing the orientation of each

voxel in the volume data a patch based synthesis

strategy is applied to apply and expand the 2D

exemplar to the volume.

Lu et al. [LEQ+07] expand upon an existing 2D

synthesis algorithm to create a flexible system for

volume illustration. By extending the concept of

Wang Cubes into the third dimension Lu et al. create

a tileable solid texture set.

Manke and Wünsche [MW09] provide a formal

framework for applying solid textures to a volume,

similar to the work in this paper. They also present

methods for dealing with discontinuous mapping. In

contrast to this paper, however they do not touch

upon the scaling or periodicity issues of applying a

repeating solid textures to a volume.

In this paper, we use a simple, piecewise constant

transfer function which maps voxel intensities to

entire texture volumes, similar to Manke and

Wünsche [MW09]. Subsequently, the color values at

the given position in the volume are obtained by

lookup in these texture volumes. The voxel density is

used as an indicator for opacity. The textures are

applied in a multi-scale fashion to minimize the

periodicity, which is further described in Section 6.

3. Overview
It has been our overall goal is to improve the

visualization of CT scanned data. By applying a solid

texture to the data via a transfer function, we are able

to increase the visual detail at a minor cost to the

computations required.

We employ the texture optimization method

presented by Kopf et al. [KFCO+07], to synthesize

our anisotropic textures. There is a large overlap with

our description and [KFCO+07]. This is partly to

highlight particular details of our implementation and

partly to make the present paper more self-contained.

Unfortunately, the aforementioned texture synthesis

method does a poor job of synthesizing textures with

only low frequency features. This leads to some

muscle textures being comparable to base noise

textures with similar colors.

Due to computational limitations, synthesizing solids

larger than 128x128x128 is not feasible. This

presents a number of scale and periodicity issues

which we explore in sections 6 and 7. In short, we

apply the synthesized texture in multiple scales to

allow for fine and rough effects. We still make use of

the CT data to add additional rough detail.

The results of these iterative improvements are

compared and discussed, also in section 7.

4. Solid Texture Synthesis
As previously explained, texture optimization is an

iterative method where the difference between the

input exemplar and the synthesized solid is

minimized. The difference is measured by a global

texture energy function which compares fixed sized

8x8 2D neighborhoods. For now, let us assume that

each voxel/texel defines its own neighborhood. We

define a simplified global texture energy function,

similar to the one by Kopf et al. [KFCO+07].

����,��� =
���,� − ��,������
�

���
.

Equation 1: Global Energy Function.

WSCG 2011 Communication Papers 50

The neighborhoods in the synthesized solid and input

exemplar(s), are denoted by �� and

The total number of number of neighborhoods from

the synthesized solid (��) is denoted

vectorized neighborhood in the solid is denoted

and its closest match (in �� norm)

exemplar(s), is denoted by ��,����
� = 0.8 makes the function more robust against

outliers [KFCO+07, KEBK05].

Initially, the synthesized volume is comprised of

randomly selected texels from the input exemplar.

The volume is then iteratively improved

the input exemplar(s). The process

an expectation maximization algorithm.

the “best looking” parameters, then we optimize

based on those findings, and repeat the process.

Figure 1: Exemplars on the three planes

orthogonal to the main axes.

As mentioned previously, comparing the synthesized

texture to the input exemplar(s) is done by comparing

fixed sized 8x8 neighborhoods. These

are extracted from both the synthesized volume and

the input exemplar(s). However, there is not

previously mentioned - one neighborh

each voxel. Rather, each voxel is indirectly related to

the neighborhoods that includes it.

Figure 2: Density of neighborhoods on both

exemplar and synthesis textures.

The neighborhoods in the synthesized solid and input

and �� respectively.

The total number of number of neighborhoods from

) is denoted �. The �th

vectorized neighborhood in the solid is denoted ��,�,
orm) in the input

����. The exponent

makes the function more robust against

Initially, the synthesized volume is comprised of

from the input exemplar.

The volume is then iteratively improved to resemble

 is comparable to

an expectation maximization algorithm. We first find

the “best looking” parameters, then we optimize

based on those findings, and repeat the process.

Figure 1: Exemplars on the three planes

orthogonal to the main axes.

As mentioned previously, comparing the synthesized

texture to the input exemplar(s) is done by comparing

fixed sized 8x8 neighborhoods. These neighborhoods

are extracted from both the synthesized volume and

However, there is not – as

one neighborhood assigned to

Rather, each voxel is indirectly related to

Figure 2: Density of neighborhoods on both

exemplar and synthesis textures.

On the input exemplars, these neighborhoods lie on a

densely populated grid, since we want to use all the

available information provided to us

texture to be synthesized. In the synthesized volume

the neighborhoods lie on a sparse grid

voxel apart like Kopf et al. [KFCO+07]

planes orthogonal to the three main axes of our

coordinate system, as shown in F

to reduce computation time and avoid re

issues.

Figure 2 visualizes the sparse grid upon which the

synthesized neighborhoods lie. A given voxel

highlighted in blue - is a member of 16 on any given

plane, due to the sythesized solids toroidal boundary

conditions.

Once the all the neighborhoods have

the “best looking” parameters are

locating the least different neighborhood in the input

exemplar(s), for each neighborhood in the

synthesized volume. Once found, each voxel is

assigned a new value based on

corresponding best matches of the neighborhoods

overlapping that voxel. Essentially averaging all the

contributions to make a new color:

�� = ∑ ���∈��
���

Equation 2: Voxel color calculation.

The new color assigned to the voxel in the

synthesized solid, denoted �
several existing color values. The above equation

states that for each neighborhood

member of, we find the matching texel

matching neighborhood ��,�� !
divided by ���, which denotes the number of

neighborhoods the voxel �� is a part of

Figure 3: Neighborhoods on the three planes

orthogonal to the main axes matched to input

exemplar neighborhoods.

Figure 3 visualizes equation

sparsely populated grid on the synthesized solid, a

single voxel is member of 16 neighborhoods on a

single plane orthogonal to a main axis.

three such planes, visualized as blue, yellow, and

green in figure 3, the voxel is a member of

48 neighborhoods. Each of these neighborhoods

a corresponding match in an

overlapping the same position in each of these

the input exemplars, these neighborhoods lie on a

since we want to use all the

information provided to us, about the

texture to be synthesized. In the synthesized volume

the neighborhoods lie on a sparse grid (spaced 1

[KFCO+07]), and only on

planes orthogonal to the three main axes of our

coordinate system, as shown in Figure 1. This serves

to reduce computation time and avoid re-sampling

Figure 2 visualizes the sparse grid upon which the

synthesized neighborhoods lie. A given voxel –

is a member of 16 on any given

, due to the sythesized solids toroidal boundary

Once the all the neighborhoods have been extracted,

eters are then found by

neighborhood in the input

exemplar(s), for each neighborhood in the

Once found, each voxel is

assigned a new value based on texels in the

sponding best matches of the neighborhoods

overlapping that voxel. Essentially averaging all the

contributions to make a new color:

���,����

�
.

Equation 2: Voxel color calculation.

The new color assigned to the voxel in the

��, is an average of

several existing color values. The above equation

states that for each neighborhood �� the voxel is a

member of, we find the matching texel �, in the best

�� ! . This sum is finally

, which denotes the number of

is a part of.

Figure 3: Neighborhoods on the three planes

orthogonal to the main axes matched to input

exemplar neighborhoods.

visualizes equation 2 in practice. In our

sparsely populated grid on the synthesized solid, a

single voxel is member of 16 neighborhoods on a

single plane orthogonal to a main axis. Since we have

three such planes, visualized as blue, yellow, and

voxel is a member of a total of

48 neighborhoods. Each of these neighborhoods has

n exemplar. The texel

overlapping the same position in each of these

WSCG 2011 Communication Papers 51

neighborhoods contributes to the sum, which is

eventually divided by the total number of

contributions (in this case 48), yielding the new

color.

The optimization algorithm is actually performed on

multiple levels of differing quality. The synthesized

solid initially consists of 32x32x32 voxels, and input

exemplar(s) are scaled to 32x32 respectively. Once

the synthesis process reaches certain conditions,

outlined in section 4.5, the volume is scaled up to

64x64x64 using trilinear interpolation. Due to

computational restrictions of performing a nearest

neighbor search in a high dimensional space, the

synthesis is only performed up to a resolution of

128x128x128.

Approximate Nearest Neighbor
In a standard-RGB texture, an 8x8 neighborhood

consists of 192 values. Finding the nearest neighbor

in a 192 dimensional space is a computationally

expensive operation.

We apply the same optimizations as Kopf et al.

[KFCO+07] to reduce the computation complexity. A

principal component analysis is performed on the

neighborhood vectors from the exemplar(s). By only

preserving the coefficients required to maintain 95%

of the variance, we can typically reduce the number

of dimensions by half, or more.

We also employ the ANN: Approximate nearest

neighbor library [MA10]. The library accepts a value

", and returns an approximate nearest neighbor

guaranteed to be at most " + 1 away from the true

nearest neighbor. We employ " = 2 as dictated by

Kopf et al. [KFCO+07].

Weighting Scheme
As previously mentioned in section 4, using an

exponent of 0.8 in equation 1, causes it to be more

robust against outliers. However, minimizing the �&

norm is more cumbersome than minimizing the ��

norm. So instead we introduce a weight into the

equation and rewrite the terms of the energy function

(1) to the following (similar to Kopf et al.

[KFCO+07]):

���,� − ��,������

= ���,� − ��,������'(���,� − ��,�����(

=)�,�������,� − ��,������

Equation 3: Energy function term re-write.

where)�,���� = ���,� − ��,������'(
. This leads to

the following quadratic formula which we seek to

minimize:

����,��� =
)�,�������,� − ��,�����(
*+,-!(��)

���
.

Equation 4: Improved energy function.

The weight parameter)�,���� makes sure that the

exemplar neighborhood closest to a given

synthesized neighborhood, carries the most weight.

Instead of a straight average as applied in equation 2,

we are now calculating a weighted average which

leads to the following formula when calculating a

new voxel value:

�� = ∑)��,�������,������∈��
∑)��,������∈��

.

Equation 5: Weighted voxel color calculation.

Instead of dividing the sum by the total number of

contributors, we now divide by the total amount of

weight distributed among the contributions.

Meanshift
Although adjusting each contributing texel with a

weight parameter yields better results and speeds up

convergence, there are still numerous textures which

fail to produces acceptable results. One persisting

issue is that outliers still contribute to the final result,

even if their contribution is minimal.

In order to minimize contribution from outliers, Kopf

et al. [KFCO+07] employ a clustering approach,

proposed by Wexler et al. [WSI07]. In short, every

contributing texel is considered to be a cluster. These

clusters are then merged depending whether their

center is within a distance of 0 to one another. If any

new clusters emerge, the process of searching and

merging is repeated, until no further clusters form.

Only texels from the dominant cluster end up

contributing to the new voxel value.

The threshold 0 is decreased with each iteration over

the course of a single resolution level convergence.

Once the synthesized texture converges on a single

level, the thresholding value 0 is reset. We found that

setting 0 = 10, 0 = 0.05, and 0 = 0.01 worked well

in many cases, on the lowest, medium, and highest

resolution level, respectively.

Histogram Matching
The previously mentioned modifications to the

original synthesis method, speeds up convergence

and minimizes the impact of outliers. However, the

algorithm will occasionally converge at certain

minima, which fail to make full use of the

exemplar(s) details.

Kopf et al. [KFCO+07] address this issue by utilizing

histogram matching. The weight each texel carries is

further adjusted, based upon whether its contribution

will increase, or decrease, the similarity between the

histograms of the input exemplar, and the

WSCG 2011 Communication Papers 52

synthesized solid. Practically, they achieve this by

keeping track of a 16-bin histogram for each of the

input exemplars’ channels. Usually, this is just the

red, green, and blue channel. Kopf et al. also note the

importance of keeping this histogram up to date

during each “maximization” phase. Otherwise, the

method will just overshoot the intended histogram

and overcompensate in the following iteration.

When synthesizing anisotropic textures we maintain

one histogram per input exemplar. We let each

contributing texel pull in the direction of its

exemplars histogram, which seems to work well. Just

like Kopf et al. we also traverse the voxels in a

random order, to avoid any directional bias.

Histogram matching is an integral part of creating the

best results possible via texture optimization. It

makes the algorithm take global statistics into

consideration while still allowing for the use of a

small neighborhood window. Histogram matching

also speeds up convergence significantly.

Synthesis Convergence Conditions
We found that a fixed number of iterations yielded

the best result with most textures (J. Kopf, pers.

comm.). Iterating 100 times on the lowest resolution,

20 on the next level, and 10 on the highest level,

worked well with most textures.

5. Exemplar Acquisition
As with every other texture synthesis method, we

require exemplars of the texture we intend to

synthesize. Our exemplars were obtained using a

12.1 megapixel camera, Canon IXUS 120IS, in a

well lit setting. Originally, we intended to obtain

samples using a multispectral color and texture

measurement vision system. This system measures

up to 20 different bands across the visible and non-

visible spectrum. These precise measurements are

then combined to a final standard-RGB image.

However, most household cameras actually yield

more vivid and realistic colors as each sensor

integrates a wider range of the spectrum than the

more precise instrument.

6. Rendering
To visualize the volumetric data, a simple ray casting

technique [HKRs+06b] is applied using the GPU. To

obtain the start and end point for each ray, two

rendering passes are performed of a cube showing

the front- and backface respectively. The cube acts as

our rendering proxy and yields the start and end

position for each ray, which is recorded into a buffer

using the fragment shader.

An additional rendering pass is then performed where

the fragment shader traces a ray through the space

enclosed by the cube. The ray is traced with 0.001

increments in relation to the unit cube around the

volume, and accumulates more color and opacity as it

traverses the volume. The “ray-color” starts off black

and completely transparent. For each step through the

volume, the current density is classified as air, skin,

fat, meat, or bone, according to the Hounsfield scale

[Sev04]. Its contribution to the overall “ray-color” as

well as “remaining transparency” is calculated by the

following formulas:

234� = 25 ∗ 7 ∗ 834� ∗ 85

25 = 25 ∗ (1 − 85).
Equation 6: Color and transparency contribution

per ray-step.

The contribution added to the existing color and

transparency value of the ray is denoted as 234�. The

amount of contributing light via simple lambertian

shading [HKRs+06c], is denoted 7. The contributing

color and transparency from the classified density is

denoted 834� and 85 respectively. When “ray-color”

is completely opaque, the ray traversal is stopped.

Figure 4: Three synthesized solids and their two

input exemplars (pig muscle tissue). The left and

middle synthesis’ yield an unsatisfactory result.

Setting 834� in Equation 6 to the color from the

appropriately scaled solid texture produces a result

with significant periodicity at high magnification and

almost uniform color at low magnification (because

of mipmapping). This can be seen in Figure 5, in the

top and bottom left. To ameliorate these issues, we

combine the texture at three levels of scaling, and

834� is computed as illustrated in the next equation.

WSCG 2011 Communication Papers 53

Figure 5: Three differently scaled muscle textures com

segment show zoomed in areas to show finer detail.

Figure 6: On the top, volumetric data from the pig carcass, visualized without enhanced graphics. The

colors for the meat, bone, and fat tissue are the average color values of the textures applied on the right.

On the bottom, volumetric data from the pig carcass, visualized with enhanced graphics. The highlighted

sections in yellow indicate the zoomed section displayed on th

Figure 5: Three differently scaled muscle textures combined to create the final result. The top and middle

segment show zoomed in areas to show finer detail.

Figure 6: On the top, volumetric data from the pig carcass, visualized without enhanced graphics. The

, bone, and fat tissue are the average color values of the textures applied on the right.

On the bottom, volumetric data from the pig carcass, visualized with enhanced graphics. The highlighted

sections in yellow indicate the zoomed section displayed on the right.

bined to create the final result. The top and middle

Figure 6: On the top, volumetric data from the pig carcass, visualized without enhanced graphics. The

, bone, and fat tissue are the average color values of the textures applied on the right.

On the bottom, volumetric data from the pig carcass, visualized with enhanced graphics. The highlighted

e right.

WSCG 2011 Communication Papers 54

834� = 834�& 9& + 834�� 9� +
9& + 9� + 9

�34� = 834� ∗ �:; − ;!<3�
8=>-?@ = 834� + �34�

Equation 7: Density case color contribution.

The color contribution consists of three differently

scaled textures 834�&'A and an associated weight factor

9&'A. For each tissue, the scales differ approximately

a factor of 10, and the weight factor is always highest

for the macro texture (approximately 3 to 1). Density

is contributed to the final color value

The value �:; represents a scaled measure of the

density at that point in the volumetric data, and

;!<3� <+@Bdenotes the density threshold of the

contributing tissue. The result of combining the three

synthesized muscle textures, along with the density

modifier, is visualized in Figure 5.

An exception to the calculation outlined in Equation

7 is the skin color contribution which yields a

constant average color of sampled pig skin,

permeated by simplex noise [Per01] to give some

variation to the surface.

The transparency value for either fat, muscle or bone

is calculated via the following formu

85 = max(0.3, �:; + 0
Skin has a constant translucency of 0.75, and air is

completely transparent.

7. Results
We implemented the method described in this paper

entirely in C++. The time required to generate a

128Asolid depends primarily on the size an

of the input exemplars. On an Alienware m17x

model (using only a single core) the synthesis of our

three tissue types would usually converge after

approximately 2-3 hours. It was our experience that

the algorithm generated the best textures when

forcing two of the three dimensions to conform to

input exemplars, regardless of whether isotropic

anisotropic synthesis.

As previously mentioned in section 3, the synthesis

algorithm has trouble synthesizing 3D textures based

on input exemplars with primarily low frequency

features. The two initial attempts in figure

how the final synthesized solid ends up looking

almost nothing like the original two textures used as

input. The third synthesized solid is much more

promising.

A question of scale arises when choosing how much

surface a single exemplar should cover. To ensure we

acquired as homogenous a sample as possible, and

preserve detail, we chose to use exemplars covering a

small area of approximately 2x2 cm.

+ 834�A 9A

9A

3� <+@B

34�

Equation 7: Density case color contribution.

The color contribution consists of three differently

and an associated weight factor

. For each tissue, the scales differ approximately

a factor of 10, and the weight factor is always highest

for the macro texture (approximately 3 to 1). Density

is contributed to the final color value 8=>-?@ via �34� .

represents a scaled measure of the

density at that point in the volumetric data, and

denotes the density threshold of the

contributing tissue. The result of combining the three

textures, along with the density

outlined in Equation

is the skin color contribution which yields a

constant average color of sampled pig skin,

permeated by simplex noise [Per01] to give some

either fat, muscle or bone

is calculated via the following formula:

0.25).
Skin has a constant translucency of 0.75, and air is

We implemented the method described in this paper

The time required to generate a

solid depends primarily on the size and richness

of the input exemplars. On an Alienware m17x

model (using only a single core) the synthesis of our

three tissue types would usually converge after

It was our experience that

the algorithm generated the best textures when only

forcing two of the three dimensions to conform to

input exemplars, regardless of whether isotropic, or

As previously mentioned in section 3, the synthesis

algorithm has trouble synthesizing 3D textures based

imarily low frequency

The two initial attempts in figure 4 show

how the final synthesized solid ends up looking

almost nothing like the original two textures used as

input. The third synthesized solid is much more

scale arises when choosing how much

surface a single exemplar should cover. To ensure we

acquired as homogenous a sample as possible, and

preserve detail, we chose to use exemplars covering a

small area of approximately 2x2 cm.

As previously mentioned in section

value of a voxel is modified by a simple mapping of

the current density. The density modifier allows for a

number of low frequency details to show, as is

visualized in Figure 7.

Figure 7: Two hams, with and without density

value modification. The highlighted sections in

yellow indicate the zoomed section displayed on

the bottom.

The final result of the visualized volume data with all

the aforementioned techniques applied is shown in

Figure 6.

Figure 8: The volume data rotation

preliminary benchmark.

visualized.

We perform a preliminary benchmark of the applied

synthetic textures by rotating the volume

complete turn, around the y-axis

 Std. Graphics

Min. Fps

Max. Fps

Avrg. Fps 76.817

Table 1: Preliminary performance measurements.

The application of the synthesized textures only

requires three additional texture lookups per

ection 6, the final color

value of a voxel is modified by a simple mapping of

the current density. The density modifier allows for a

number of low frequency details to show, as is

Figure 7: Two hams, with and without density

modification. The highlighted sections in

yellow indicate the zoomed section displayed on

the bottom.

The final result of the visualized volume data with all

the aforementioned techniques applied is shown in

Figure 8: The volume data rotation pattern of the

preliminary benchmark. Unenhanced pig

visualized.

We perform a preliminary benchmark of the applied

synthetic textures by rotating the volume one

axis, as seen in Figure 8.

Std. Graphics Enh. Graphics

53 47

118 102

76.817 61.117

Table 1: Preliminary performance measurements.

The application of the synthesized textures only

requires three additional texture lookups per

WSCG 2011 Communication Papers 55

visualized voxel. Since texture lookups are

implemented on the hardware level, it comes as no

surprise that the performance loss is minimal

in Table 1. However, creating the synthesized

textures is another matter. Due to the complexity of a

nearest neighbor search in a high dimensional space,

performing the synthesis in real

impossibility.

8. Conclusions and Future Work
We have utilized an existing texture synthesis

approach to produce three anisotropic textures

were then applied to volumetric data

transfer function, improving upon

colorless data.

The technique can potentially be applied to any type

of volumetric data and is not necessarily constricted

to organic tissue.

Although the result has improved significantly, there

is still room for improvement.

Figure 9: A close up of the visualized volumetric

data showing computed tomography artifacts.

Our light model is simplistic. Better modeling of how

light and meat interact would be an obvious next step

since, recently, techniques for real

computation of translucent surfaces have started to

appear, e.g. [WWH+10].

As mentioned in the previous section, we modify the

final color slightly via the density of the volumetric

data. While this adds significant detail to the final

visualized voxel. Since texture lookups are

hardware level, it comes as no

surprise that the performance loss is minimal, as seen

. However, creating the synthesized

Due to the complexity of a

nearest neighbor search in a high dimensional space,

ynthesis in real-time is an

s and Future Work
utilized an existing texture synthesis

anisotropic textures, which

volumetric data via a custom

upon the original

The technique can potentially be applied to any type

of volumetric data and is not necessarily constricted

Although the result has improved significantly, there

close up of the visualized volumetric

data showing computed tomography artifacts.

etter modeling of how

light and meat interact would be an obvious next step

since, recently, techniques for real-time interactive

of translucent surfaces have started to

As mentioned in the previous section, we modify the

final color slightly via the density of the volumetric

data. While this adds significant detail to the final

visualization, it also introduce

introduced by the scanning method. Figure 9

how the data acquisition rays from computed

tomography leaves visible artifacts in the volume

data.

Due to time required to perform a complete solid

texture synthesis it could be advantageous to create a

larger pre-computed library of multiple tissue types

(in addition to the three described in this paper).

Theoretically, it would also be possible to synthesize

in-between textures by using an input exemplar from

each tissue type, to smooth the transition between

them. A few practical experiments are

how convincing the resulting solid textures

It would also be interesting to implement and

compare the technique demonstrated by

[LEQ+07]. Using their extension to the wang cube

model is also a way of avoiding periodicity in the

applied texture.

9. ACKNOWLEDGMENTS
We would like to thank Johannes Kopf for the

invaluable correspondence during the development of

this paper. We also extend our thanks to the

anonymous reviewers in helping us improve on the

paper. This research was supported in part by the

Danish Meat Research Institute. The CT scan of the

pig carcass was also kindly provided by the Danish

Meat Research Institute.

10. REFERENCES
 [CJ06] Thierry Carrard and Manuel Juliachs,

Bandwidth-efficient Hardware

Rendering for Large Unstructured Meshes,

WSCG 2006, 14th International Conference in

Central Europe on Computer Graphics,

Visualization and Comput

CZECH REPUBLIC, JAN 30

169–176 (English).

[CN94] Timothy J. Cullip and Ulrich Neumann,

Accelerating volume reconstruction with 3d

texture hardware, Tech. report, Chapel Hill, NC,

USA, 1994.

 [CS07] Amit Chourasia and Jue

Data Centric Transfer Functions for High

Dynamic Range Volume Data, WSCG 2007

International Conference in Central Europe on

Computer Graphics, Visualization and Computer

Vision, Plzen, CZECH REPUBLIC, JAN 29

01, 2007, pp. 9–15 (English).

[DB97] Jeremy S. De Bonet, Multiresolution

sampling procedure for analysis and synthesis of

texture images, SIGGRAPH ’97: Proceedings of

the 24th annual conference on Computer graphics

and interactive techniques (New York, NY,

visualization, it also introduces a number of artifacts

by the scanning method. Figure 9 shows

how the data acquisition rays from computed

tomography leaves visible artifacts in the volume

Due to time required to perform a complete solid

advantageous to create a

computed library of multiple tissue types

(in addition to the three described in this paper).

Theoretically, it would also be possible to synthesize

between textures by using an input exemplar from

o smooth the transition between

w practical experiments are required to see

ng the resulting solid textures would be.

It would also be interesting to implement and

compare the technique demonstrated by Lu et al.

. Using their extension to the wang cube

model is also a way of avoiding periodicity in the

ACKNOWLEDGMENTS
We would like to thank Johannes Kopf for the

invaluable correspondence during the development of

We also extend our thanks to the

anonymous reviewers in helping us improve on the

This research was supported in part by the

Danish Meat Research Institute. The CT scan of the

pig carcass was also kindly provided by the Danish

[CJ06] Thierry Carrard and Manuel Juliachs,

efficient Hardware-Based Volume

Unstructured Meshes,

14th International Conference in

Central Europe on Computer Graphics,

Visualization and Computer Vision, Plzen,

CZECH REPUBLIC, JAN 30-FEB 03, 2006, pp.

[CN94] Timothy J. Cullip and Ulrich Neumann,

Accelerating volume reconstruction with 3d

texture hardware, Tech. report, Chapel Hill, NC,

[CS07] Amit Chourasia and Juergen R. Schulze,

Data Centric Transfer Functions for High

c Range Volume Data, WSCG 2007, 15th

International Conference in Central Europe on

Computer Graphics, Visualization and Computer

Vision, Plzen, CZECH REPUBLIC, JAN 29-FEB

nglish).

[DB97] Jeremy S. De Bonet, Multiresolution

sampling procedure for analysis and synthesis of

texture images, SIGGRAPH ’97: Proceedings of

the 24th annual conference on Computer graphics

and interactive techniques (New York, NY,

WSCG 2011 Communication Papers 56

USA), ACM Press/Addison-Wesley Publishing

Co., 1997, pp. 361–368.

[DC05] Feng Dong and Gordon J. Clapworthy,

Volumetric texture synthesis for nonphotorealistic

volume rendering of medical data, The Visual

Computer 21 (2005), 463–473.

[DCH88] Robert A. Drebin, Loren Carpenter, and

Pat Hanrahan, Volume rendering, SIGGRAPH

’88: Proceedings of the 15th annual conference

on Computer graphics and interactive techniques

(New York, NY, USA), ACM, 1988, pp. 65–74.

[GD95] D. Ghazanfarpour and J. M. Dischler,

Spectral analysis for automatic 3-d texture

generation, Computers & Graphics 19 (1995), no.

3, 413 – 422.

 [Har01] P Harrison, A non-hierarchical procedure

for re-synthesis of complex textures, WSCG ‘

2001, 9th International Conference on Computer

Graphics, Visualization and Computer Vision,

PLZEN, CZECH REPUBLIC, FEB 05-09, 2001,

pp. 190–197 (English).

[HB95] David J. Heeger and James R. Bergen,

Pyramid-based texture analysis/synthesis,

SIGGRAPH ’95: Proceedings of the 22nd annual

conference on Computer graphics and interactive

techniques (New York, NY, USA), ACM, 1995,

pp. 229–238.

[HKRs+06a] Markus Hadwiger, Joe M. Kniss,

Christof Rezk-salama, Daniel Weiskopf, and

Klaus Engel, Real-time volume graphics, pp. 81–

102, A. K. Peters, Ltd., Natick, MA, USA, 2006.

[HKRs+06b] Markus Hadwiger, Joe M. Kniss,

Christof Rezk-salama, Daniel Weiskopf, and

Klaus Engel, Real-time volume graphics,pp. 163–

185, A. K. Peters, Ltd., Natick, MA, USA, 2006.

[HKRs+06c] Markus Hadwiger, Joe M. Kniss,

Christof Rezk-salama, Daniel Weiskopf, and

Klaus Engel, Real-time volume graphics,pp. 114–

116, A. K. Peters, Ltd., Natick, MA, USA, 2006.

[JDR04] Robert Jagnow, Julie Dorsey, and Holly

Rushmeier, Stereological techniques for solid

textures, ACM Trans. Graph. 23 (2004), no. 3,

329–335.

 [KEBK05] Vivek Kwatra, Irfan Essa, Aaron Bobick,

and Nipun Kwatra, Texture optimization for

example-based synthesis, SIGGRAPH ’05: ACM

SIGGRAPH 2005 Papers (New York, NY, USA),

ACM, 2005, pp. 795–802.

[KFCO+07] Johannes Kopf, Chi-Wing Fu, Daniel

Cohen-Or, Oliver Deussen, Dani Lischinski, and

Tien-Tsin Wong, Solid texture synthesis from 2d

exemplars, ACM Transactions on Graphics

(Proceedings of SIGGRAPH 2007) 26 (2007), no.

3, 2:1–2:9.

[LEQ+07] Aidong Lu, David S. Ebert, Wei Qiao,

Martin Kraus, and Benjamin Mora, Volume

illustration using wang cubes, ACM Trans.

Graph. 26 (2007).

[MA10] David M. Mount and Sunil Arya, Ann: A

library for approximate nearest neighbor

searching., http://www.cs.umd.edu/ mount/ANN/,

2010.

[MW09] Felix Manke and Burkhard C.Wuensche,

Texture-enhanced direct volume rendering,

Proceedings of the 4th International Conference

on Computer Graphics Theory and Applications

(GRAPP 2009) (Lisbon, Portugal), 2009, pp.

185–190.

[Per01] Ken Perlin, Noise hardware, In Real-Time

Shading SIGGRAPH Course Notes (2001), Olano

M., (Ed.)., 2001.

[RV06] Daniel Ruijters and Anna Vilanova,

Optimizing GPU Volume Rendering, JOURNAL

OF WSCG, 14th International Conference in

Central Europe on Computer Graphics,

Visualization and Computer Vision, Plzen Bory,

CZECH REPUBLIC, JAN 30-FEB 03, 2006, pp.

9–16 (English).

[SC07] Sakurambo and John Cayley, 3d coordinate

system, Image on the Internet, 2007.

[Sev04] El Sevier, Introduction to ct physics,

http://www.angelfire.com/nd/hussainpassu/Physic

s_of_Computed_Tomography.pdf, 2004.

[Wei02] Li-Yi Wei, Texture synthesis by fixed

neighborhood searching, Ph.D. thesis, Stanford,

CA, USA, 2002, Adviser- Levoy, Marc.

[WL00] Li-Yi Wei and Marc Levoy, Fast texture

synthesis using tree-structured vector

quantization, SIGGRAPH ’00: Proceedings of the

27th annual conference on Computer graphics

and interactive techniques (New York, NY,

USA), ACM Press/Addison-Wesley Publishing

Co., 2000, pp. 479–488.

[WSI07] Yonatan Wexler, Eli Shechtman, and

Michal Irani, Space-time completion of video,

IEEE Trans. Pattern Anal. Mach. Intell. 29

(2007), no. 3, 463–476.

[WWH+10] Yajun Wang, Jiaping Wang, Nicolas

Holzschuch, Kartic Subr, Jun-Hai Yong, and

Baining Guo, Real-time rendering of

heterogeneous translucent objects with arbitrary

shapes, Computer Graphics Forum 29 (2010),

497–506.

WSCG 2011 Communication Papers 57

WSCG 2011 Communication Papers 58

Using an Augmented Reality game to find matching
pairs

M. Carmen Juan; Marta Carrizo; Francisco Abad Miguelón Giménez

Instituto ai2 Escola d’Estiu

Universitat Politècnica de València Universitat Politècnica de València

Camino de Vera, s/n. 46022 Camino de Vera, s/n. 46022

Valencia, Spain Valencia, Spain

ABSTRACT
In this paper we present an Augmented Reality (AR) game for finding matching pairs to learn about endangered

animals in a fun way. Thirty-one children participated in a study. These children played the AR game and the

equivalent real game. We have compared the results of the two games. We have evaluated different aspects

(technical, orientational, affective, cognitive and pedagogical). The results indicate that children enjoyed playing

the AR game more than playing the real game and that they perceived the AR game to be more fun than the real

game. The children preferred the AR game to the real one and also seemed to learn about the subject of

endangered animals.

Keywords
Augmented Reality, edutainment, finding pairs.

1. INTRODUCTION
In this paper, we present an Augmented Reality (AR)

game for finding matching pairs. In an AR system,

users see an image composed of a real image and

virtual elements that are superimposed over it. The

most important aspect in AR is that the virtual

elements add relevant and helpful information to the

real scene.

Our AR game follows the rules and appearance of the

popular pair game. Since the game uses AR, over the

pieces of the game can appear images as well as

explanatory videos about the endangered animals.

The animals and part of the information related to

them were chosen from the Red List of Threatened

species (http://www. iucnredlist.org) published by the

International Union for the Conservation of Nature

and Natural Resources (IUCN). This list was created

in 1963 and is the world's most comprehensive

inventory of the global conservation status of plant

and animal species. The information on the Red List

is updated on the web site whenever possible

(annually). A full analysis of the data on the Red List

is published once every four years. There are nine

categories on the IUCN Red List: Extinct, Extinct in

the Wild, Critically Endangered, Endangered,

Vulnerable, Near Threatened, Least Concern, Data

Deficient, and Not Evaluated. In this paper only two

of these categories are described (critically

endangered and vulnerable). Critically endangered, is

defined as a species that is facing an ‘extremely high

risk’ of extinction in the wild. Vulnerable, is defined

as a species that is facing a ‘high risk’ of extinction in

the wild.

The main objective of this work was to develop an

innovative AR system to allow children to learn about

the animals that are at risk of extinction in a fun way.

The system is fun because it is played as a game. It is

innovative because as far as we know there is no

other AR system that has been developed for this

purpose. Another objective was to evaluate different

aspects of the AR game.

Taking into account the multidimensionality of

learning as well as AR as a field, there are a number

of technical, orientational, affective, cognitive,

pedagogical and other aspects that can be considered

in the evaluation. The technical aspect examines

usability issues, regarding interface, physical

problems, and system hardware and software. The

orientation aspect focuses on the relationship of the

user and the augmented environment; it includes

navigation, spatial orientation, presence and

immersion, and feedback issues. The affective

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2011 Communication Papers 59

parameter evaluates the user’s engagement, likes and

dislikes, and confidence in the virtual environment.

The cognitive aspect identifies any improvement of

the subject’s internal concepts through this learning

experience. Finally, the pedagogical aspect concerns

the teaching approach: how to effectively gain

knowledge about the environment and the concepts

that are being taught.

This paper is organized as follow. Section 2 focuses

on AR systems that have been used for learning.

Section 3 presents our AR system and includes the

software and hardware requirements as well as a

description of the game. Section 4 presents the results

of the game evaluation for the different aspects:

technical, orientational, affective, cognitive and

pedagogical. Finally, in section 6, we present our

conclusions, our suggestions for improvements and

future work.

2. RELATED WORK
Our work is not the first application for learning.

Learning is one of the fields were AR has already

been applied. For example, HIT Lab NZ

(www.hitlabnz.org), University of Canterbury, New

Zealand has developed several AR systems. The first

one was The Magic Book [Bil01]. The Magic Book

was presented as an example of an ARToolKit

application. It looked like a normal book, but there

were markers on the pages. A marker is a white

square with a black border inside that contains

symbols or letter/s. When the system recognized a

marker, an image was shown or a story was started.

Books of this type can be used for other purposes. A

second work presented by this group was the

S.O.L.A.R system. It was created for the TeManawa

Science Centre (Palmerston North, New Zealand). It

was an AR system for learning the position of each

planet in the Solar System [Woo04]. A third work

that is worthy of mention is the AR Volcano. It was

developed for Science Alive! (Christchurch, New

Zealand). It was a system for learning about

volcanoes [Woo04]. Another work developed by this

group was the BlackMagic. It was developed for the

Telecom Technology Pavilion at the America's cup in

New Zealand in 2003. It was a MagicBook that told

the history of the America's Cup [Woo04].

Another research group that has also developed

several AR systems in this field is the Mixed Reality

Lab of Singapore (www.mixedrealitylab.org). They

have developed several AR systems which include:

the sun system, how plants grow and the Magic Story

Cube. In the sun system, several concepts that are

related to the solar system were explained. In the

plant system children learned how plants germinate,

disperse, reproduce and perform photosynthesis. The

Magic Story Cube used a cube as a tangible interface

that was folded or unfolded and, depending on the

markers that were visible, the story was different. The

Magic Story Cube presented the story of Noah’s ark.

Other groups have also been working on the

development of different AR systems. For example,

Bimber et al. [Bim01] presented the Virtual

Showcase. It placed virtual objects on real artefacts.

One of the most outstanding applications was to place

skin and bones on the skull of a Raptor dinosaur.

Shelton & Hedley [She02] developed an AR system

to teach the relation between the earth and the sun to

geography students. In 2004, Kaufmann [Kau04]

presented Construct3D as his PhD dissertation thesis.

Construct3D was an AR system for constructing 3D

geometries. It was designed to teach mathematics and

geometry. Construct3D was tested with 14 students

from two high schools in Vienna. The results from

two evaluations showed that Construct3D was easy to

use, required little time to learn, and encouraged

learners to explore geometry. Larsen et al. [Lar05]

presented an AR system for learning how to play

billiards. The most outstanding characteristic of this

system was that the game was played on a real

billiard table. Organic chemistry can also be taught

using an AR system [Fje07]. Fjeld’s system, users

interacted directly with 3D molecular models. In

2008, Sykora et al. [Syk08] presented a colour ball

tracking that was used for direct manipulation with

real objects. They presented two learning

applications. The first one for learning basic

principles of chemical reactions. Color balls were

used to represent atoms. They combined typical AR

markers with the color ball tracking that had a special

semantic meaning. The second one for learning

organs in a human body where the balls were used as

a pointing device.

Our work is neither the first work that compared

different presentation forms, for example Despina et

al. [Des10] compared six different types of museum

exhibits, one traditional and five interactive ICT

exhibits. The exhibits were: a traditional map

learning activity, a virtual tour projection, a multi-

touch table application and three different AR

applications (AR puzzle, AR map and Touch

History). They evaluated the experience of young

users with the exhibits. They included two questions.

From the question: "your experience from the exhibit

was (awful, not very good, good, really good, and

brilliant)". Related to the brilliant score category, the

touch table scored 76%, followed by the AR puzzle

with a score of 67%, followed by the Virtual Reality

tour and AR Map (with scores near 50%). They

concluded that the experience scores top marks for

the interactive ICT systems.

WSCG 2011 Communication Papers 60

3. DESCRIPTION OF THE AR GAME
In our AR game, over the markers appeared images

(Figure 1) and videos of endangered animals such as

the Iberian lynx. The videos of the animals described

the physical characteristics of the animal, its habitat

and food, and also explained the causes of its

possible extinction. The animals and the categories

that were included in the game were the following:

� Critically endangered: Iberian lynx, Lowland

gorilla, Red wolf, Orinoco crocodile, and Javan

rhinoceros.

� Vulnerable: Polar bear, Iberian eagle, Humpback

whale, and Amazonian manatee.

Figure 1. Looking for a pair

Figure 2. Elements used in the game

For the interaction with the game, the child only has

to use markers with different symbols in their interior.

In our work, we have not used a direct augmentation.

The markers are a kind of a "remote control", but

they are not directly augmented. The augmentation

can be seen on the screen next to the playing area.

That is, the child can see the real markers in front of

him/her (playing area) and next to it, the screen with

the augmented scene. Figure 2 shows the elements

used in the game. The basic steps in the AR game

are:

1) Initialization of the video entry and download of

the files that contain the pattern and camera data,

the XML files containing information related to

the animals that are going to be shown.

2) The game asks the child to find the first animal

pair. The child turns over one piece and then

turns another one over.

3) The system identifies the visible markers and

shows the related animal over them. The person

in charge of the test must make sure that the

child only turns over two pieces at a time. If the

two markers belong to the desired animal, the

game detects this situation and congratulates the

child by telling that s/he has found the right

animal. If the markers do not match, the child

must continue to turn pieces over. Figure 1

shows an image where the child did not find a

pair and s/he had to continue turning pieces over.

The children could hold the pieces in their hands

and look closely at the images.

4) If the child finds the right animal, the game asks

if s/he wants to know more about the animal. The

child has to use a marker with 'Yes' in its interior

for answering yes, and a marker with 'No' in its

interior for answering no. S/he has to place the

chosen marker in a visible area in order to

continue with the game. To facilitate the

interaction, the child used a palette with 'No' in

one side and 'Yes' on the another side. This

palette can be seen in the left-lower area of

Figure 2. If the answer is yes, the game shows a

video over the visible marker/s. It shows the

characteristics of the animal and explains the

causes for its possible extinction.

5) The child can skip the rest of the video by using

a marker with the symbol “*” at any point. For

using this symbol, the child used another palette.

6) The game asks if the child wants to search for

another animal. If the answer is yes, the game

repeats step 2; if the answer is no, the game ends.

The way of answering is the same as in step 4

(marker with 'yes'/'no').

7) At the end of the game, the child receives a score

that depends on the number of animals

successfully matched and the amount of time.

The greater the number of matched pairs and the

lower the time, the higher the score. The

children’s score is then compared with the ten

best scores that are stored in an XML file.

In order to be able to extend the game to other themes

with minimum changes, we included as much

information as possible in XML external files. We

used two different kinds of XML files. One of them

contained the identification number of the image, the

name of the animal, the length of the video, and the

path to obtain the related images and videos. Another

WSCG 2011 Communication Papers 61

XML file contained the total number of pairs

available and also which ones were going to be used

in each game. Another XML file was used to store

the children’s scores. For our game, we had a total of

10 animals. The ten markers used for showing

animals are depicted in Figure 3. Figure 4 shows a

boy playing with the AR game.

In order to validate the AR game, we compare it with

a real game. The basic steps for playing with the real

game are the following:

1) The child sits in front of the table for playing the

real game (Figure 2, real playing area). The

person in charge of the validation asks the

participant to find a pair. The participant uses

real pieces to find a pair. Figure 5 shows the

pieces of the real game.

2) The participant turns over two pieces to find a

pair. If the participant does not find a pair, the

person in charge of the validation tells the

participant to try again. If the participant finds a

pair, the person in charge of the validation asks if

the participant wants to know more about the

animal. If the answer is no (verbally), the game

goes to step, 3. If the answer is yes (verbally),

the person in charge of the validation shows a

page with images and text. The text is the same

as the narrative of the video that is reproduced in

the AR game. It explains the characteristics of

the animal, its habitat and food, and it also

explains the causes of the animal’s possible

extinction.

3) The person in charge of the validation asks if the

participant wants to search for another pair. If the

answer is yes, the game repeats step 1; if the

answer is no, the game ends.

Figure 3. Markers used in the game

Figure 4. A boy is watching the video of the
Iberian lynx

To capture the video, we used QuickCam Pro for

Notebooks. The camera was fixed to a tripod which

was placed next to the child. We used a table with

back-projection as visualization system (a table made

of glass under which a CRT monitor was placed).

Figure 2 shows this table and its location.

To develop the system, we used the OsgART library

(www.artoolworks.com/community/osgart). It is a

C++ library that allows developers to build AR

applications using the rendering capabilities of Open

Scene Graph (OSG) and the tracking and registration

algorithms of ARToolKit [Kat99]. OSG is a set of

open source libraries that primarily provides scene

management and graphics rendering optimization

functionality to applications. It is written in portable

ANSI C++ and uses the standard OpenGL low-level

graphics API. ARToolKit is an open source vision

tracking library that allows a wide range of AR

applications to be easily developed. The required

elements for the application are: a USB or FireWire

camera, and a marker.

The animals' videos used in the game used AVI

format. Their length ranged from 45 second to 1

minute. The animals' images were saved using the

JPEG image file format.

Figure 5. The pieces of the real game

WSCG 2011 Communication Papers 62

4. STUDY AND RESULTS
As stated in the section 1, one of the objectives of this

work was to evaluate different aspects of the AR

game: technical, orientational, affective, cognitive

and pedagogical. To do this, we compared subjective

measures taken in a real game and in the AR game.

The study included 31 children, 17 boys and 14 girls

(aged from 6 to 12 years old, mean=7.7, SD=2.1).

The children’s parents signed an agreement to allow

them to participate in this study

Children were counterbalanced and assigned to one

of two conditions: a) Children who used the real

game first and then the AR game, 15 children; b)

Children who used the AR game first and then the

real game, 16 children.

The protocol was the following. Before using either

game the children were asked to fill out an entry

questionnaire (appendix, Table 3). Then, the children

were shown an explanatory video about the Red List

of threatened species of the IUCN and also told how

to play the games. This part was easy because most of

the children already knew how to play to this popular

matching game. The children then played the first

game. After the game, the children were asked to fill

out a post-game questionnaire (appendix, Table 4)

and a reduced version of the presence questionnaire

(appendix, Table 5) by Slater et al. [Sla94]. After

filling out the two questionnaires the children played

the second game. After playing, the children were

again asked to fill out the post-game questionnaire

and the same presence questionnaire. Finally, they

were asked to fill out a final questionnaire (appendix,

Table 6). The children played with the AR game at

about 15 minutes and with the real game at about 10

minutes. All the questionnaires had to be answered on

a scale from 1 (not at all) to 7 (very much).

The significance level was set to 0.05 in all tests.

Table 1 shows paired t-tests for the scores given to

the post-game questionnaire after playing both

games. As this table shows, there was a statistical

difference for questions 1 to 4. This indicates that

children enjoyed playing the AR game more than

playing the real game. They perceived the AR game

as being more fun than the real game. Question 4 for

the perceived value indicates that children preferred

the AR game. Question 5 was also included to

determine the perceived value, and there was no

statistical difference between the two games. On the

other hand, the children perceived the real game as

being easier to play. There was no statistical

difference between the two games for questions 5 to

9, indicating that the two games induced similar

motivation and intention to change.

 AG1 AG2 AG3 AG4 AG5

AR 6.74(0.77) 6.58(1.23) 5.74(1.63) 6.55(1.23) 6.29(1.53)

Real 6.06(1.00) 5.90(1.25) 6.77(0.50) 5.90(1.51) 6.19(1.42)

t 4.33** 3.02** -3.79** 3.07** 0.45

p <0.001** 0.005** 0.001** 0.005** 0.655

 AG6 AG7 AG8 AG9

AR 6.97(0.18) 6.87(0.34) 5.90(1.70) 6.42(0.81)

Real 6.94(0.25) 6.84(0.37) 5.84(1.66) 6.36(0.80)

t 1 0.57 0.57 1.44

p 0.325 0.572 0.572 0.161

Table 1. Means (SD) of the AR game and the real game, and paired t-test of the post-game questionnaire,

d.f. 30, **’ indicates significant differences

In order to determine whether or not the order of play

had an effect on the scores in the second game, the

sample was divided into two groups (children who

used the real game first and children who used the

AR game first) and Student t tests for the scores given

to all questions were applied. No significant

statistical differences were found, this indicates that

the order of play did not influence the children’s

scores for the post-game questionnaire.

To determine the level of perceived learning we

compared the initial score for the children’s

knowledge about the animals that are at risk of

extinction and the causes (I1,

mean(SD)=3.45(1.183)) with the perceived learning

scores after playing the two games (A2P1,

mean(SD)=6.10(0.98)). Using paired t-test, t(30)=-

12.90, p<0.001, the results show that there was a

significant statistical difference between the two

scores. The data indicate that children seem to learn

using the games.

We analyzed the questions that related to the

children’s attitude using paired t-tests. We used I2

and AG6. Our analysis starts with the first group that

used the AR game first and then the real one. In this

case, the initial score for question I2 was very high,

mean(SD)=6.69(0.79). This implies that even before

playing either game the children thought we should

provide greater protection to animals that are at risk

of extinction in order to prevent their extinction. We

compared the initial values with the values given after

playing a game (AR/real). For the AR game,

mean(SD)=7.00(0.00), t(15)=-1.58, p=0.136. The

WSCG 2011 Communication Papers 63

data show there is no statistical difference between

the two values. The mean and standard deviation after

playing the real game (after the AR game) was

exactly the same. With regard to the second group,

that is, children who played the real game first and

then the AR one, the initial score was also very high

for question I2, mean(SD)=6.87(0.35). Playing the

AR game second, the values are the following,

mean(SD)=6.93(0.26), t(14)=-1, p=0.334. The mean

and standard deviation after using the real game first

was the same as the initial score. Again, there was no

statistical difference for the group who played the AR

game after the real game.

We analyzed the questions related to the children’s

motivation to change. We used I3 and AG7, and

paired t-tests. Our analysis starts with the first group

that played the AR game first and then the real one.

In this case, the initial score for question I3 was very

high, mean(SD)= 6.56(0.89). As in previous analysis,

even before playing either game, the children were

willing to support initiatives to protect animals that

are at risk of extinction (AG7). We compared the

initial values with the values given after playing a

game (AR/real). Playing the AR game first, the

values are the following, t(15)=-1.70, p=0.111. As

can be deduced from the data, there is no statistical

difference between the two values. Again, as in

previous analysis, the mean and standard deviation

after playing the real game second was exactly the

same. For the children who played the real game first

and then the AR one, the initial score was also very

high for question I3, mean(SD)=6.87(0.35). After

playing the real game first, the values were:

mean(SD)=6.73(0.46), t(14)= 1.47, p=0.164. After

playing the AR game second, the values were:

mean(SD)=6.80(0.41), t(14)=1.00, p=0.334. For the

second group there was no statistical difference since

the initial value was so high, the values after playing

both games were slightly lower.

In our study, we used two questions for the sense of

presence (the presence score is taken as the number

of answers that have a score of 6 or 7). The scoring

was on a scale of 1-7. The SUS Count indicates the

mean of the test count of scores of 6 or 7 for the 2

questions. The SUS Mean uses the mean score across

the 2 questions instead. For the AR game, these

values are: SUS Count=1.90(0.40), SUS

Mean=6.69(0.64). From these data, it is possible to

deduce that the AR game induces a great sense of

presence. Table 2 presents the rest of the data for the

presence questionnaire. It shows paired t-tests for the

scores given after playing the two games. The

analysis of the data indicates there is no significant

statistical difference between the two games. This

implies that children perceived the AR game as being

real. In order to determine whether or not the order of

play had effect on the scores in the second game, the

sample was divided into two groups (the group of

children who played the real game first and the group

of children who played the AR game first). Student t

tests for the scores given to all questions were

applied. No significant statistical differences were

found. Therefore, the order of play did not influence

the children’s scores for the presence questionnaire.

Figure 6 presents the results for the question AP2.

Figure 7 shows children’s preferences grouped by

age. The majority of the children preferred the AR

game. For the older children, this percentage was

higher. Several explanations that the children gave

for preferring the AR game were: 1) There were

videos; 2) I could move the videos on the computer;

3) The videos explained much better why the animals

are at risk of extinction; 4) You learn more with the

videos; 5) Because I really liked the videos that I

saw; 6) Because I could see my hands in the image.

However, there were some children who liked the

real game better. For the following: Because it was

easier.

 P1 P2

AR 6.71(0.64) 6.68(0.70)

Real 6.90(0.30) 6.87(0.34)

t -1.99 -1.65

P 0.056 0.110

Table 2. Means (SD) of the AR game and the real

game, and paired t-tests for scores given to the

presence questionnaire after playing the two

games, d.f. 30

Figure 6. Children’s preferences

Figure 7. Children’s preferences grouped by age

Some positive comments related to the AR game

were the following: 1) I will talk with my sister who

is a biologist and I will tell her about everything that I

have learned; 2) This game has surprised me; 3) I

enjoyed seeing the images and videos presented this

way.

The only negative comments were the following: 1) I

am not interested in the videos and I do not want to

listen; 2) I do not like the game because for me it is

WSCG 2011 Communication Papers 64

not a game, it is another way of learning; 3) I don’t

feel like playing.

5. CONCLUSIONS
We have presented an AR game that implements a

popular pair game for learning about different

animals that are at risk of extinction. The children

learn the animals’ habits, characteristics, and the

causes of possible extinction. Thirty-one children

played the AR game and the equivalent real game. To

our knowledge, this is the first AR game with these

characteristics that has been developed and evaluated

for learning.

We have evaluated the aspects that are normally used

in the evaluation of educational systems (technical,

orientational, affective, cognitive and pedagogical).

The results indicate that children enjoyed playing the

AR game more than playing the real game and that

they perceived the AR game to be more fun than the

real game. With regard to presence, the

questionnaires indicated that the AR game induced

sense of presence in children and that this sense of

presence was similar to what they felt in a real

environment. Analyzing preference by age, it can be

deduced that older children liked the AR game more

than the younger ones. If attitude and motivation to

change are considerer, the results indicate the

following. Before playing either game the children

thought ‘We should provide greater protection to

animals that are at risk of extinction in order to

prevent their extinction’. In this case, the results

indicate that the children’s attitude did not change

after playing the games. Before playing either game,

the children were also willing to support initiatives to

protect animals that are at risk of extinction. As in the

previous case, the results indicate that the children’s

motivation to change did not change.

These results are encouraging, because AR has

demonstrated that the children have fun and

enjoyment; and induce sense of presence. Also before

using either game, the children thought that “We

should provide greater protection to animals that are

at risk of extinction in order to prevent their

extinction”. In spite of this, they perceived more

value in the AR game than in the real game.

More work has to be done to evaluate educational AR

systems. We have evaluated some parameters of the

different evaluation aspects, but a more exhaustive

evaluation could be performed. This would provide a

more significant contribution to educational systems,

particularly AR educational systems.

The system can be improved in several ways. First of

all, the glass surface on the table reflected. This

problem could be solved using a non-reflecting glass

surface or by eliminating it completely. We placed

the camera on a tripod next to the child, but a more

stable element could be used instead. Second, another

improvement that would involve greater changes is to

convert the system from 2D to a 3D version. Related

to the 3D version, if models of 3D animals with a

significant number of polygons were used, the

rendering speed would be an important aspect to

evaluate. In that case, modern Graphics Processing

Units could be exploited for accelerating the

rendering rates. Also, the current parallel computing

methods and multi-core methods could be further

used for achieving such acceleration. Third, with

these ideas, it would be possible to teach/learn other

subjects, such as animals/plants/etc. using different

methods for classification. Changing these features is

especially easy in our system because of its structure.

The system could be used for other purposes and the

results could be compared with the ones obtained in

this work. Fourth, in order to evaluate the acquired

knowledge of players, a final examination could also

be included.

Now, we are developing new AR games for

edutainment thanks to APRENDRA project. With it,

we hope to contribute with new games, new devices

that incorporate AR, new interfaces and validations

with enough number of children for obtaining

statistical significant results.

Finally, we firmly believe that AR has great potential

in the educational field. Our results as well as those

by other researchers (e. g. [Kau04]) should encourage

the AR community to develop and evaluate new AR

systems.

6. ACKNOWLEDGMENTS
We would like to thank:

� This work was partially funded by the

APRENDRA project (TIN2009-14319-C02-01).

� The Summer School of the Technical University

of Valencia for its collaboration.

7. REFERENCES
[Bil01] Billinghurst, M., Kato, H., Poupyrev, I. The Magic

Book-Moving Seamlessly between Reality and

Virtuality, IEEE Computer Graphics and Applications,

21 (3), 6-8, 2001.

[Bim01] Bimber, O., Fröhlich, D., Schmalstieg, D.,

Encarnaçao, L.M. The virtual Showcase, IEEE

Computer Graphics & Applications, 21 (6), 48-55,

2001.

[Des10] Despina, M., Nectarios, P., Isabelle, C.,

Panagiotis. Z., Loukia L. H., Yiorgos C. Comparative

Study of Interactive Systems in a Museum.

EUROMED, 250-261, 2010.

[Fje07] Fjeld, M., Fredriksson, J., Ejdestig, M., Duca, F.,

Bötschi, K., Voegtli, B.M., Juchli, P. Tangible User

Interface for Chemistry Education: Comparative

Evaluation and Re-Design, CHI 2007, 805-808, 2007.

WSCG 2011 Communication Papers 65

[Kat99] Kato, H., Billinghurst, M. Marker tracking and

HMD calibration for a video-based augmented reality,

2nd IEEE and ACM International Workshop on

Augmented Reality (IWAR’99), 85-94, 1999,

http://www.hitl.washington.edu/artoolkit.

[Kau04] Kaufmann, H. Geometry Education with

Augmented Reality, PhD Dissertation thesis, Vienna

University of Technology, 2004.

[Lar05] Larsen, L.B., Jensen, R.B., Jensen, K.L., Larsen, S.

Development of an automatic pool trainer, Conference

on Advances in Computer Entertainment Technology

(ACE’05), 83-87, 2005.

[She02] Shelton, B.E., Hedley, N.R. Using Augmented

Reality for Teaching earth-sun relationships to

undergraduate geography students, 1st IEEE

International Augmented Reality Toolkit Workshop, 8

pag., 2002 http://depts.washington.edu/pettt/papers/

shelton-hedley-art02.pdf.

[Sla94] Slater, M., Usoh, M., Steed, A. Depth of presence

in virtual environments. Presence: Teleoperators and

Virtual Environments, 3, 130-144, 1994.

[Syk08] Sýkora D., Sedláček D., Riege K. Real-time Color

Ball Tracking for Augmented Reality, 14th

Eurographics Symposium on Virtual Environments

(EGVE'08), 9-16, 2008

[Woo04] Woods, E., Billinghurst, M., Looser, J., Aldridge,

G., Brown, D., Garrie, B., Nelles, C. Augmenting the

science centre and museum experience, GRAPHITE,

230-236, 2004.

APPENDIX

Question ID Questions

I1 How much do you know about the animals that are at risk of extinction and the causes for this?

I2 Please, indicate the value that best describes your opinion with respect to:

“We should provide greater protection to animals that are at risk of extinction in order to prevent their

extinction”

I3 Please, indicate to what extent you would be willing to support initiatives to protect animals that are at risk

of extinction?

Table 3. Entry questionnaire

Question ID Questions

AG1 Engagement and fun

I enjoyed playing this game.

AG2 This game has been fun

AG3 Easy to use

Has it been easy to play?

AG4 Perceived value

I think playing this game can help me to learn the animals that are at risk of extinction

AG5 I would like to play again because it is interesting for me

AG6 Attitudes

Please, indicate the value that best describes your opinion with respect to:

“We should provide greater protection to animals that are at risk of extinction in order to prevent their

extinction”

AG7 Motivation to change

Please, indicate to what extent you would be willing to support initiatives to protect animals that are at risk

of extinction?

AG8 Intention to change

As a result of playing this game, I will talk with my friends and relatives about the animals that are at risk of

extinction

AG9 As a result of playing this game, I will think more about the animals that are at risk of extinction and the

causes for this

Table 4. Post questionnaire

Question ID Questions

P1 Have you had the sensation of playing with pieces where images and videos appeared over them (AR system)?

P2 Were there moments during the game when you thought that the images over the pieces were real?

Table 5. Presence questionnaire

Question ID Questions

AP1 How much have you learned about the animals that are at risk of extinction and the causes for this?

AP2 Which game did you like the most?

AP3 Why?

AP4 Add any comment about the experience

Table 6. Final questionnaire

WSCG 2011 Communication Papers 66

Setting the Parameters of the LFT Shape Matching

Algorithm

J.S.M. Vergeest, A. Kooijman, Y. Song

Delft University of Technology
Landbergstraat 15, NL-2628 CE Delft, The Netherlands

j.s.m.vergeest@tudelft.nl

ABSTRACT
The LFT algorithm (Large Fat Tetrahedron) is used to detect congruent subsets amongst unordered point sets and
forms the kernel of a partial shape matching method. Although the method yields several advantages and is
relatively efficient, its performance depends highly on the choice of various geometrical threshold parameters, as
e.g., for the length difference of two edges. We present an overview of the key parameters of the algorithm and
their influence on the computation, a guide line to provide an initial value for the parameters and we propose an
approach to their automatic adjustment.

Keywords
Scan view registration, partial shape matching, fat tetrahedron, threshold parameters

1. INTRODUCTION
The LFT algorithm (Large Fat Tetrahedron) was
designed to detect approximately congruent
tetrahedrons in two point sets [Vergeest 2010]. If
such tetrahedrons are found, they might indicate the
overlapping region of partially matching shapes. The
assumption was that if a large fat tetrahedron with
particular dimensions occurs in point set A, the
probability that a congruent tetrahedron is found in
point set B is small, unless both tetrahedrons reside in
the overlap region of A and B. Thus, LFTs can serve
as indicators of partial shape matching. The algorithm
will be briefly described in Section 2.

One important application of partial shape matching
is 3D scanning of physical objects. To construct a
geometric model from a physical object, multiple
scan views are taken, each consisting of range data,
i.e. 3D points representing the object’s surface. Since
the orientation of the object relative to the scanning
device is different for different scan views, the
collection of points from all scan views do not as
such represent the object’s surface. First the points

need to be aligned to each other, that is be
transformed to a common coordinate system. The
process of aligning the scan views is called scan view
registration. From the aligned point sets the surface of
the object can be reconstructed, either fully or
partially, depending on the coverage of the scan
views. If the surface can be fully reconstructed, it can
be assumed to represent the boundary of a volume, or
solid model. Then a solid model can be derived,
which can serve as input to a CAD (Computer-Aided
Design) system for further modeling and processing.
Basing a design on an existing object or on reuse of
precedent models is an important paradigm in some
industries, such as industrial design engineering. Such
a method can be successful only when even
occasional users of scanning devices can easily
operate the system. However, the registration task is,
even nowadays, still an impeding factor. In practice
the user could be a stylist who has manually created a
clay model of a future household device. Whereas
taking the scan views of the clay model is a
commonsense task to him/her, the registration of
view pairs is not. The scanning system’s
manufacturer normally offers an interactive software
package, allowing the user to designate
correspondences he/she observes amongst the scan
views, as to provide a starting position for a shape
matching algorithm, typically based on the ICP
(Iterative Closest Point) method. The user has to
aligned each scan view with the set of scan views
aligned previously. Generally this way of operating

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2011 Communication Papers 67

the scanner is perceived as slow and tedious, both by
incidental users and by trained operators.

Several approaches have been reported to the
problem of partial shape matching. From here on we
assume that the input data consists of unordered point
sets only. That is, we will not rely on preprocesses
that generate surface meshes, nor on additional
information such as color, texture or material
properties of the scanned object. We focus on the
kernel problem of matching two point sets. Most
methods make use of geometric descriptors and/or
feature points. The geometric descriptor can take
many forms, including moments, FFT coefficients,
spin images etc [Johnson 1999]. Defining a feature
using integrated quantities rather than using
derivatives reduces the influence of noise [Gelfland
2005]. Another approach to diminish sensitivity to
noise and data outliers is taken by [Aiger 2008]. He
collects sets of 4 planar points in each of the two
point clouds. If a particular set from one point cloud
is approximately congruent with one from the other
point cloud, a candidate corresponding pair of 4-
points sets is found. If the 4-points set is relatively
wide, then the method is less sensitive to noise. We
refer to [Gelfland 2005] and references therein for a
more extended description of registration methods.

Our approach is inspired by the 4-points congruent
sets as in [Aiger 2008]. We look for 4-points sets
which define a large fat tetrahedron (LFT). The
assumption is that the geometry of a large tetrahedron
is relatively rare and therefore can serve to detect
correspondences in the two point clouds. However,
since true correspondence exists in the overlap region
only, an upper bound must be set to the size of the
tetrahedrons. Secondly, since the number of fat
tetrahedrons in point sets can be very large, a
straightforward comparison of two sets of
tetrahedrons (each derived from one point cloud)
would not be efficient. Our algorithm derives a
limited number of fat tetrahedrons from one point
cloud. Then each tetrahedron is tested for being
approximately congruent to any point neighborhood
in the other point set. In [Vergeest 2010] we have
speculated about the advantages of the LFT algorithm
compared to other strategies. However, lacking a
benchmark platform we cannot demonstrate this. In
the next section the LFT algorithm will be briefly
described. In section 3 we present the influence of
parameters on the computational performance of the
method. Conclusions and recommendations are given
in section 4.

2. THE LFT ALGORITHM
Let two point sets A and B be given, originating from
sampling of a portion of the surface of a three-
dimensional object. There may exist subsets A’ ⊆ A

and B’⊆ B such that A’ and B’ are samples of the
same subsurface of the object. A’ and B’ are then said
to represent an overlap region of the samples.

Let a set of sets Bi be a partitioning of B defined as
follows. A three-dimensional grid is constructed,
aligned with a bounding box of B. The grid has the
size of the bounding box of B. The block-shaped grid
elements, or cells, all have the same size and have
index i, i = 1, ..., G, where G is the number of cells of
B. Each cell encloses zero or more points of B. Each
point of B is enclosed by exactly one cell. Bi is the set
of points enclosed by cell indexed i.

Let A’ and B’ be the largest overlap of A and B,
informally defined as follows. Assuming that A and B
are range images of a physical object, let SA and SB
informally be defined as the portions of the surface of
the physical object represented by A and B,
respectively. Then, both A’ and B’ represent all or
some part of the physical overlap surface SA ∩ SB.
Depending on the extent of SA ∩ SB , A’ and B’ each
may contain zero up to as many points as the
cardinality of A and B, respectively.

Let B’ i = Bi ∩ B′ , that is the portion of cell Bi
coinciding with the overlap region. Our search
strategy is based on the assumption that the overlap
region is connected and has the extent of at least the
size of a cell. In such cases there might exist sets Bi
containing multiple points of Bi’ . A property of any
point of B’ is that its Euclidian distance to A is
relatively small, provided that A and B are defined in
the same coordinate system. However, since A and B
originate from independent sampling processes, they
will in general be defined in different coordinate
systems. The difference between the two coordinate
systems can be described by a rigid body
transformation M, such that MB and A are defined in
the same coordinate system, where MB is the set of
points of B to which transformation M has been
applied. We name this transformation the matching
transformation.

Since neither the overlap region, nor the matching
transformation M are known, we determine which of
the sets Bi is fully or partly contained in B’. We do so
by constructing the largest and fattest tetrahedron in
each cell and test each such LFT against congruency
with 4-points sets of A.

2.1 Finding the LFT
When a small set of points of Bi is close to A and if
these points are sufficiently non-planar, then the
transformation to match this set with A is a relatively
good candidate of the M we are looking for. Relying
on this principle we base the algorithm on matching 4
points to A, where the 4 points are contained in the
same cell. The 4 points, denoted v1, v2, v3, v4, are

WSCG 2011 Communication Papers 68

selected from Bi such that they form an LFT as
follows: v1 and v2 are the points in Bi which are
furthest apart. v3 is the point in Bi furthest from the
line through v1 and v2, that is it maximizes |(v3 − v1) ×
(v2 − v1)|. v4 is the point in Bi furthest from the plane
defined by v1, v2 and v3, that is it maximizes | ((v3 −
v1) × (v2 − v1)) . (v4 − v1) |. An example of an LFT is
shown in Figure 1.

Figure 1. Point cloud B, its cell structure and the
LFT contained in a cell. Data are from the
Stanford Bunny [Stanford 2010].

2.2 Calculating the transformation M
Once an LFT has been determined in a particular cell
of point cloud B, we look for potential corresponding
4-points sets in A. As mentioned, when the LFT
resides in the overlap region of shapes A and B then
there should exist 4 points in A representing a
tetrahedron with dimensions equal to those of the
LFT, that is up to some precision since the point sets
A and B are obtained as independent measurements.
The deviation between “corresponding” points can be
expected to be as large as half of the scan spacing
practiced. We have applied two methods to detect
(approximately) congruent 4-points sets in A. We
look for points a1, a2, a3 and a4 in A such that there
exists a transformation M with Mvi ≈ ai for i=1,...4.
The edge lengths of the LFT are denoted l ij = |vi – vj|.

Method 1

For each point in A, name it a1

 Translate the LFT such that v1=a1

 Search for points in A at distance l12 from a1
 and name them a2

 For each such a2

 Search for points in A at distance l13 from v1 and at
 distance l23 from v2 and name them a3

 For each such a3

 Rotate the LFT about v1 such that v2 gets closest
 to a2

 Rotate the LFT about axis (v1, v2) such that
 v3 gets closets to a3

 If then v4 is close to any point in A (called a4) the
 accumulated transformations so far applied
 to the LFT represent a candidate M

End of method 1

Alternatively we can explicitly test congruency by
comparing the six edge lenths of the LFT to the
corresponding distances between candidate points a1,
a2, a3, a4. We define δ1 as the threshold value for
length comparisons.

Method 2

For each point in A, name it a1

 For each point in A, name it a2

 If |dist(a1, a2) – l12| < δ1

 For each point in A, name it a3

 If |dist(a1, a3) – l13| < δ1 and
 |dist(a2, a3) – l23| < δ1

 For each point in A, name it a4

 If |dist(a1, a4) – l14| < δ1 and
 |dist(a2, a4) – l24| < δ1 and
 |dist(a3, a4) – l34| < δ1

 Compute M from the vi and ai.

End of method 2

In method 2 the calculation of the transform M is
postponed until the congruency is fully checked. One
way to obtain M (as we implemented it) is to
concatenate the translations and rotations in exactly
the same way as done in method 1; see [Vergeest
2010] for the explicit equation. The two sets (v1, v2,
v3) and (a1, a2, a3) are sufficient to determine M, but
they do not lead to a set of linear equations with a
unique solution since the congruency is approximate
only. However, a solution based on minimizing Σ
|Mvi – ai|

2 would be feasible and accurate (not
implemented).

2.3 Computing the degree of overlap
Typically thousands of candidate M transforms are
found, depending on threshold δ1. If δ1 is increased
the number of candidates will rise steeply, as
discussed later. We need to test whether or not a
particular M is the matching transform. If an LFT L is
contained in B′ then the directed Hausdorff distance
of ML to A will be (by definition) small if M is the
matching transformation. It can be expected that then
a significant portion of the points MBi (from the
current cell) will be close to A as well. Conversely,
when many points MBi appear close to A the
probability that M is the matching transform is large.

v1

v2 v3

v4

WSCG 2011 Communication Papers 69

In our algorithm, all points in cell Bi are subjected to
M and their distance to A is determined. If a sufficient
fraction f of the points are closer than δ2 to A then M
is saved as a candidate transformation. As a final
step, each of the candidate transformations is used to
compute the set MB, involving all points of B. The
degree of matching of B to A is defined as N, the
number of points in MB closer than δ3 to A. The
transformation producing the largest N is the outcome
of the method.

3. PERFORMANCE AND
PARAMETERS
As reported in [Vergeest 2010] the algorithm has
been successfully applied to practical scan view
registration. A typical CPU time of partial shape
matching was 500s, which could be reduced to about
10s in a CUDA-GPU implementation [Kooijman
2009].

We have now studied the influence of the parameters
δ1, δ2, δ3 and f on the computational performance of
the algorithm for method 2. The granularity of the
subdivision into G cells is also of influence to the
algorithm. Not all cells produce an acceptable LFT.
We have set a lower limit to the number of points
from B contained in a cell; if the cell contains too few
points we do not consider it. If a particular LFT is too
small or too thin, it is discarded. Therefore, typically
10% of the cells produce an LFT for further
processing. We focused on method 2 since its
implementation is relatively simple and it will be
compared to its CUDA implementation in the near
future. An upper bound of the complexity of the
algorithm is C ∝ GP6, where P is the number of
points occurring in a scan view (we assumed that A
and B are of comparable size). In the search process,
for each cell, each point in A is visited at least twice
in order to form the line segment a1a2. When the test
against l12 is passed, another loop over all elements of
A is made to find candidates a3 and finally one more
loop to find a4 (the maximal cost is proportional to
GP4 so far). If a4 is found, then all points in the cell
are compared to A (cost proportional to P2) and
possibly another check of all B against A is
performed, as described in section 2.3. The main
terms of the cost C are:

C ∝ P2
 + β1P

3 + β 2P
4 + (β 3 + β 4)P

6. (1)

β1 is the probability that the l12 test is passed, β2 is
proportional to the probability that the l13 and l23 test
are passed and β3 is proportional to the probability
that the l14, l24 and l34 tests are passed. β4 depends on
parameter f and the degree of overlap found of points
in the current cell with A.

If we would set δ1=0 then no LFT would practically
pass the l12 test and terms 2 and 3 would vanish, or

β1= β2= β3= β4= 0. If aforementioned fraction f and all
δi are large then C behaves like an 6th power function
of P for large P; the number of candidate M
transforms would be very large and many of them
have to be checked by Hausdorff twice, namely once
involving MBi and possibly once more involving MB.

To achieve efficient partial shape matching the
algorithm should detect the matching M (therefore,
the parameters should not be too small), without
superfluous candidates (therefore, the parameters
should not be too large).

To gain insight in the effects of the parameters we
have performed numerical tests on one particular set
of A and B, with cardinality 3188 and 2407,
respectively. These sets are down-sampled versions
of the Bunny data from the Stanford Scan Data
Repository [Stanford 2010]. The data points are
relatively evenly spaced, about 2mm apart, on a
surface with a diameter of approximately 150mm.

Table 1 gives an impression of the computational
expense of the algorithm for Method 2. The 10 runs
differ only by the parameter δ1. The cell division was
G = 5×5×5 = 125 equally sized blocks of
24×31×27mm. Out of these, 77 were empty and 7
cells contained an LFT that was sufficiently large and
fat. Out of these 7, only one LFT appeared to be
located in the overlap region and could produce the
correct matching transform. This particular LFT had
l12 = 40.6mm and a base triangle of height 20.2mm
(that is the distance of point v3 to edge v1v2) and
thickness 3.1mm (distance of v4 to the base). The
algorithm includes threshold parameters for thickness
to accept LFTs and also for the minimum number of
points contained in cells that are considered as carrier
of an LFT. For the runs of Table 1, the limitation
parameters were chosen 3.0mm for height and 96 for
the number of points in a cell. The latter number was
calculated as nB / G2/3 = 2407/25 ≅ 96, which reflects
the fact that the data points represent a dimensionality
2 boundary rather than a volumetric content. The cell
located in the overlap region contained 100 points.
We have set fraction parameter f = 0.9. If 90% or
more of the cell points after transformation got closer
than δ2 to any point of A then the LFT yielded “cell
OK” in the table. δ2 was set to 1.5mm. The threshold
for computing the overlap explicitly was set to δ3 =
1.5mm. When the correct overlap (and thus the
correct matching transform) was found, the
associated LFT was classified as “all OK”.

From the table we see that δ1 = 0.67 is approximately
the lowest threshold for which at least one of the 7
LFTs produced the correct matching transform M.
The number of points from MB closer than δ3 =
1.5mm to A was 540 (22.4%), reflecting the size of
the overlap region (we were able to judge the

WSCG 2011 Communication Papers 70

nA = 3188, nB = 2407, G = 125, LFTs = 7, δ2 = 1.5mm, δ3 = 1.5mm, f = 0.9

δ1 (mm) a12 a12 OK a123 a123 OK a1234 a1234 OK cell OK all OK CPU(s)

0.00 7.1×107 0 0 0 0 0 0 0 2

0.15 7.1×107 2.0×105 6.3×108 6.5×103 2.0×107 10 0 0 18

0.30 7.1×107 4.0×105 1.3×109 5.1×104 1.7×108 438 0 0 40

0.45 7.1×107 5.9×105 1.9×109 1.8×105 5.6×108 4345 2 0 95

0.60 7.1×107 7.9×105 2.5×109 4.2×105 1.3×109 22,900 4 0 330

0.66 7.1×107 8.7×105 2.8×109 5.6×105 1.8×109 36,638 6 0 410

0.67 7.1×107 8.9×105 2.8×109 6.9×105 1.9×109 45,274 10 1 460

0.75 7.1×107 9.9×105 3.2×109 8.2×105 2.6×109 83,868 15 2 780

1.05 7.1×107 1.4×106 4.4×109 2.3×106 7.2×109 5.8×105 64 4 4800

1.50 7.1×107 2.0×106 6.3×109 6.6×106 2.1×1010 4.5×106 371 26 36,700

Table 1. Complexity terms of length tests by Method 2 as function of threshold δ1. Data are from the
Stanford Bunny.

correctness of the transformation of these particular
scan views based on ground knowledge from
alternative shape matching methods). Out of the
100 points in the particular cell containing the
“correct” LFT, 97 were at close distance to A
(within threshold δ2 = 1.5mm).

Obviously, the 4 vertices v1...v4 of the LFT itself
belong to that set of 97 points, since they are close
to the points a1...a4. For the same LFT one different
4-points set in A was found leading to a
transformation passing “Cell OK”. With that
transformation 91 points of the cell were close to A
but so were only 159 points of B, making it very
unlikely that the transformation was the matching
transform. Another LFT generated 8 transforms
passing “Cell OK” but turned out not the matching
transform. The total of 10 cases of “Cell OK” is
depicted in Figure 2. The number of overlap points
in B is plotted against the rotation exerted by the
transform. The latter quantity was chosen as it
characterizes the transform, although there is, of
course, not a one-to-one relationship between the
angle and the transformation matrix. The orientation
of scan view B relative to A is 89.9 degrees,
according to the solution found at δ1 = 0.67. The
number of l12 tests is, independently of δ1, equal to
nA

2 times the number of LFTs considered. For the
runs of Table 1 this number, labeled a12, was
31882×7 = 7.1×107. For δ1 = 0.67, 1.3% of the l12
comparisons passed the test, labeled “a12 OK”. This
percentage is collective over all accepted LFTs in
the run. The number of (l13, l23) tests is nA times the
“a12 OK” cases, or 2.8×109. This number depends
on the third power of nA. Further, β1 in equation (1)
is dependent on δ1.

0

200

400

600

0 50 100 150

Rotation of transform (degrees)

O
ve

rl
ap

 Figure 2. Number of points in MB close to A
versus rotation of M for δ1 = 0.67 and f=0.9. The
plot contains 10 data points.

0
100
200
300
400
500
600

0 50 100 150

Rotation of transform (degrees)

O
ve

rl
ap

Figure 3. Number of points in MB close to A
versus rotation of M for δ1 = 0.75 and f=0.9. The
plot contains 15 data points.

For the particular runs in Table 1 it turned out that
β1 = 0 for δ1 ≤ 0.66 and β1 is rising for increasing
δ1. For δ1 = 0.67, 0.02% of the a123 tests was
positive. This percentage is proportional to β2 and
depends on δ1. From the 1.9×109 a1234 tests, 0.002%
or 45,274 resulted positively. This fraction affects
β3. Finally, the number of exhaustive tests of
distance MB to A depends on the fraction of “cell
OK” (0.02% in the run for δ1 = 0.67). This fraction
is proportional to β4.

WSCG 2011 Communication Papers 71

The increase of computation time with increasing δ1
is obvious from the rightmost column of Table 1.
The choice of δ1 seems most critical, whereas δ2 and
f affect the number of distance evaluations, which
will be increasingly critical for large nA and nB.

The effect of changing f from 0.9 to 0.8 is shown in
Figure 5, which should be compared to Figure 3.
The number of candidates passing the f threshold
rises from 15 to 308. Instead of having only two
correct transformations for f=0.9, there are 4 of
them for f=0.8. They show up as a narrow peak in
Figure 5 near 90°.

0

200

400

600

0 50 100 150

Rotation of transformation (degrees)

O
ve

rl
ap

Figure 4. Number of points in MB close to A
versus rotation of M for δ1 = 1.05 and f = 0.9.
The plot contains 64 data points.

0

200

400

600

0 50 100 150

Rotation of transform (degrees)

O
ve

rl
ap

Figure 5. Number of points in MB close to A
versus rotation of M for δ1 = 0.75 and f = 0.8.
The plot contains 308 data points.

Lowering f to 0.5 does not lead to more correct
transforms, but increases the background of
incorrect candidates (Figure 6). In Table 2 the
number of candidates and the performance of the
algorithm, for the different values of f, are
presented. It should be noted that coefficient β4
increases with decreasing f, leading to 6th power
behavior of the complexity, see equation (1). The
increase of CPU time in Table 2 can be practically
completely attributed to the number of full distance
computations. When the number of tested cells
increases from 308 to 8695 (factor 28.2), the CPU
time for B-to-A distance computation increases by
factor (2114-780) / (829-780) = 27.2. In all cases
the number of cell-to-A distance computations is

83,868, which would increase with the 6th power of
number points as well. However, the β3 coefficient
is small when δ1 is moderate and the number of
points in a cell is small.

0

200

400

600

0 50 100 150

Rotation of transform (degrees)

O
ve

rl
ap

Figure 6. Number of points in MB close to A
versus rotation of M for δ1 = 0.75 and f = 0.5.
The plot contains 8695 data points.

nA = 3188, nB = 2407, G = 125, LFTs = 7,

 δ1 = 0.75mm, δ2 = 1.5mm, δ3 = 1.5mm

f a1234 OK cell OK all OK CPU(s)

0.9 83,868 15 2 780

0.8 83,868 308 4 829

0.5 83,868 8695 4 2114

Table 2. Dependence on f of the performance of
Method 2.

We observed that increasing δ1 and/or decreasing f
puts a dramatic load on the computation. Further,
having approximately 1.6 times more unordered
points in the sets, rises the CPU times by a factor
20.8, see Table 3 for details. For a pure 6th order
behavior one would expect a factor 16.8, but there
are other factors such as the number of accepted
LFTs, which changed from 7 to 9.

4. CONCLUSIONS
The two most critical factors influencing the
performance of the algorithm are the point set sizes
and δ1. In the test runs we have used down-sampled
versions of point sets containing originally 40,200
and 30,400 points. The down-sampling algorithm
removed points conservatively from the set such
that no two points were less than ε length units
apart, where ε was set to 2mm for the runs in Tables
1 and 2, and ε = 1.5mm for the runs in Table 3. For
given ε an upper limit of δ1 would be 0.5ε in a
worst-case one-dimensional setting. Using a small
value for δ1 could lead to zero LFT matches.

WSCG 2011 Communication Papers 72

nA = 3188, nB = 2407, G = 125, δ1 = 0.75mm, δ2 = 1.5mm, δ3 = 1.5mm, f = 0.9

nA, nB, LFTs a12 a12 OK a123 a123 OK a1234 a1234 OK cell OK all OK CPU(s)

3188, 2407, 7 7.1×107 9.9×105 3.2×109 8.2×105 2.6×109 83,868 15 2 780

5140, 4127, 9 2.4×108 3.1×106 1.6×1010 4.0×106 2.1×1010 737,044 703 40 16,240

Table 3. Effect of increasing the density of the point sets by approximately a factor 1.6 for Method 2.

Empirically we have found δ1=0.66mm=0.33ε as an
upper limit in the particular setting of the runs we
performed. This could be considered as a rule of
thumb for δ1, although it presumes evenly spaced
points. The choice of G has turned out to be critical
as well. When we selected G=6×6×6=216, none of
the LFTs yielded a correct transform, unless we
increased δ1 from 0.67 to 1.05mm. Indeed, refining
the cell subdivision could exceptionally imply that
fewer cells are fully included in the overlap region.
When we lowered G to 4×4×4=64, none of the
LFTs yielded a correct transform, not even at δ1 =
1.05. This could have been expected since the LFTs
all exceed the size of the overlap region and are
therefore unlikely to fit “correctly” to A at any
place.

The subdivision has been implemented on an
arbitrarily orientated evenly spaced grid, namely a
grid aligned with the global coordinate system. This
subdivision method could be improved significantly
to reduce the number cells that should be
considered further. If we assume that the overlap
region contains at least 20% of the points of B then
the 5×5×5 subdivision seems appropriate.

The values of δ3 and δ4 are less critical, provided
that δ1 is not unnecessarily large. The values we
supplied (1.5mm or 0.75ε) seem reasonable. f=0.9
turned also a good starting value; the correct
transforms yielded about 95% overlap of the cell
with A, and we observed that even with increased
δ1, it was not useful to set f lower than 0.9.

As mentioned, these recommendations for initial
parameter values are still case-specific. When the
scanning process would result in very unevenly
distributed points, the parameters should be derived
from the highest occurring ε.

A possible strategy for automatically adjusting the
parameters is to set ε relatively large (e.g. 0.01
times the diagonal of the bounding box of A) and
perform a run with δ1 = 0.3ε. Then the largest
overlap detected can be tested for compactness and
connectedness. If the distribution of the overlapping
points is not consistent with a connected portion of
A and/or B, runs with increased δ1 can be carried
out.

Both the length tests and the distance computations
can be implemented with a good degree of
parallelization. Unlike purely two-dimensional
processes such as image restoration, 3D scan view
data cannot be subdivided in portions which can be
processed completely independently. Still an
acceleration of the computation by a factor of 10 to
100 appears feasible in Cuda implementations that
are presently under investigation.

REFERENCES
 [Aiger 2008] Aiger, D., Niloy, M., Cohen–Or, D.

2008. 4–Points Congruent Sets for Robust
Pairwise Surface Registration. ACM Trans.
Graph. 27, 3.

[Johnson 1999] Johnson, A.E. and M. Hebert,
“Using spin-images for efficient multiple model
recognition in cluttered 3-D scenes,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 21, no. 5,
pp. 433–449, 1999.

[Gelfland 2005] Gelfland, N., Mitra, N. J., Guibas,
L. J., Pottmann, Robust global registration. In
Proc. Symp. Geometry Processing, Euro-
graphics, pp 197–206.

[Kooijman 2009] Kooijman, A., Vergeest, J.S.M.,
A GPU-supported approach to the partial
registration of 3D scan data. Proceedings of the
Gravisma 2009, D. Hildenbrand and V. Scala
(Eds), pp 1-5.

[Stanford 2010] Stanford Scan data Repository,
http://graphics.stanford.edu/data/3Dscanrep

[Vergeest 2010] Vergeest, J.S.M., Kooijman, A.,
Song, Y., Partial 3D shape matching using large
fat tetrahedrons. Journal of WSCG, Vol. 18, Nr.
2, pp 41-47, 2010.

WSCG 2011 Communication Papers 73

WSCG 2011 Communication Papers 74

Plausible Visualization of the Dynamic Digital Factory with
Massive Amounts of Lights

Franz Peschel
Daimler AG

franz.peschel@daimler.com

Fabian Scheer
Daimler AG

fabian.scheer@daimler.com

ABSTRACT

In the last years an enormous progress has been made in improving the visual quality of virtual worlds through approximations
of former computationally expensive global illumination (GI) effects. Nevertheless, the handling of dynamic or even deformable
content in massive data sets illuminated and shadowed by massive light sources still represents some kind of killer application.
Besides the gaming industry, these demands are especially made in digital factory planning applications, where moreover
preprocessing times and additional manual preparations of the virtual scenarios have to be avoided to keep a short time to
production and accordingly to market. Therefore, we present an efficient rendering pipeline and concept for the creation of
a plausible illumination for the digital factory, able to handle dynamic content in massive data sets at a large extent, that are
plausibly illuminated and shadowed with a lot of light sources and encoded with high dynamic range information at interactive
frame rates in a high resolution. The most important aspects for a visually plausible result are analysed on basis of real images
of a factory and at last evaluated with the achieved results. Finally, we give a detailed overview and analysis of the performance
of the incorporated techniques on modern graphics hardware to identify the main bottlenecks and key points for future research
and conclude with an extensive reflection of the benefits of a plausible illumination for digital factory planning applications.

Keywords: Global illumination, massive data, massive light sources, plausible visualization, virtual reality, digital factory

1 INTRODUCTION

Nowadays, the creation of digital mock-ups (DMUs) in
early stages of the product or production life cycle is
an essential planning instrument to increase the quality
and reduce the costs of products or production facili-
ties. Possible bottlenecks or sources of errors can be
discussed and analyzed by experts on basis of a holis-
tic visualization. Nevertheless, an entire factory DMU
is very complex (e.g. > 25 mio. polygons), consist-
ing of a lot of data contributed by several planning de-
partments or different suppliers. For this reason special
rendering methods, like the visibility guided rendering
(VGR) described in [12], have to be applied to handle
these massive data sets at interactive or realtime frame
rates. In this context the visualization plays an impor-
tant role. In the past, real time or interactive GI effects
for such massive amounts of data were hard to achieve,
so expensive cluster solutions were applied to obtain a
realistic impression. Furthermore, simple flat or phong
shading was the only way to achieve the interactivity
with the virtual world in real time frame rates. As a con-
sequence stereoscopic techniques in combination with
powerwall systems had to be incorporated, to support
the perception of depth and the correct assessment of
the digital content, like object correlations. This bene-
fit predominantly arised through the binocular disparity
depth cue [3], but also neglected an improved effect for
Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

the users perception or feeling of being immersed when
supporting a better representation for the perception of
pictorial depth cues [3, 17], which are evoked by a re-
alistic visualization. Due to the evolved capabilities of
modern graphics hardware former computationally ex-
pensive GI effects can be approximated at interactive or
real time rates. A high visual quality of virtual worlds
can be achieved on a single desktop PC, paving the way
for desktop virtual reality(VR) and enabling the possi-
bility to reduce the costs considering the provision of
expensive hardware.
Against this background we extend former work[19,
23] and present an efficient rendering pipeline and con-
cept for a plausible visualization of the digital factory
(DIFA). Dynamic and deformable content of massive
data sets illuminated and shadowed by massive amounts
of light sources can be handled. Various GI effects are
achieved by approximation, but produce a convincing
result. The most important and necessary factors of a
plausible visualization of the DIFA are analyzed on ba-
sis of footages of a real factory and compared with the
achieved quality of our results. At the end a detailed
overview of the performance of the several techniques
to achieve the identified important factors is given, serv-
ing as a basis for the identification of the main bottle-
necks and key points of future research in this field of
application. Our main contributions are the analysis of
the key points for an approximated realistic visualiza-
tion of the digital factory, the specified efficient ren-
dering pipeline for the DIFA and the detailed perfor-
mance evaluation of the pipeline on modern graphics
hardware.

WSCG 2011 Communication Papers 75

2 RELATED WORK

A lot of progress has been made in the last decades
to improve the realism of virtual worlds by global
illumination(GI) algorithms at interactive or real time
frame rates. [6, 1] present interactive ray tracing to
account for massive data sets in virtual reality(VR)
applications. [29] and [18] adopt the capabilities of
modern graphics hardware and push ray tracing to
the next level by considering more complex light
effects[29]. Due to the logarithmic complexity, ray
tracing is best suited to handle large data models at
performant frame rates. Nevertheless, the limits are
revealed when dynamic massive data sets illuminated
by massive amounts of light sources and the expensive
computation of secondary effects, like bounces of
indirect lighting, are involved.
More practical approaches for a dynamic and in-
teractive plausible illumination of complex and
massive scenes with a lot of light sources can
mainly be found by having a look at the gaming
industry([25, 5, 16, 15, 26]), especially when desk-
top VR with standard hardware is desired to avoid
expensive hardware solutions. In this context big
advancements were made through image space approx-
imations and deferred shading techniques in the last
years. [25] uses deferred shading, introduced by [2], to
consider huge amounts of lights for shading and relies
on visible fragments only. Thus, the computational
effort mainly depends on the amount of light sources
and the image resolution, while simultaneously being
independent of the polygon count and allowing the
handling of dynamic or deformable content in real
time.
[4] further improves the performance of this method by
accumulating the illumination per pixel in a separate
light accumulation buffer(LAB) without the consider-
ation of the material color, which is multiplied at the
end, thus reducing computational efforts when a lot
of light sources are considered. However, occlusion
information is missing and the creation of shadow
maps for many light sources would still represent the
bottleneck. In addition to the consideration of direct
light effects([27, 7]), many advancements have been
made for approximating GI effects at interactive or
real time rates, like screen space ambient occlusion
(SSAO)[16], which has become a standard in the
gaming industry. In [23] vector based SSAO closer
to the original definition of ambient occlusion is
presented, especially focusing on the application in
digital factory planning scenarios. In [22] SSAO is
extended to account for directional occlusion and
indirect lighting effects by screen space directional
occlusion(SSDO), but is limited to nearly arranged
surfaces. In the following sections the indirect lighting
effects of SSDO are also mentioned as screen space

global illumination(SSGI). [21] present an interesting
approach considering the shadow computation of
indirect illumination effects approximated by the usage
of many secondary light sources. Unfortunately, their
approach relies on a point based scene representation,
introducing a further preprocessing step we want to
avoid to keep minimal production times. In summary,
screen space approaches work entirely in screen space
without the need for preprocessing steps while simul-
taneously being independent of the scene complexity.
Recently, [11] introduced cascaded light propagation
volumes (CLPVs). In contrast to SSAO or SSGI,
CLPVs can compute indirect lighting effects for large
areas and are not limited to reveal its effect in cavities
or creases only. Three different sized cascaded grids
are attached to the camera and indirect illumination
is propagated through the grids by using spherical
harmonic functions, yielding a performant GI compu-
tation. However, small areas in the scene can be missed
due to the grid resolution, but fortunately reconsidered
with SSGI.

3 SOLVING THE RENDERING EQUA-
TION

According to [9] the rendering equation can expressed
as a Neumann series using the integral operator notation
in the following form[8]:

L = E +KL, (1)

where K represents the integration over the cosinus
modulated BRDF. E denotes the emitted radiance Le
and L the reflected radiance Lr. Equation (1) can be
discretized to a simple matrix equation, where E and L
are vectors and K is the light transport matrix, charac-
terizing the reflectivity of light in a scene, yielding:

L = E +KE +K2E +K3E + ... =
∞

∑
m=0

KmE (2)

E denotes the emitted radiance of a light source, KE
the direct illumination of surfaces, K2E the first bounce
indirect illumination, K3E the second bounce and so
on, finally converging against the exact solution of the
rendering equation. On basis of this representation the
following methods for the computation of single stages
of our rendering pipeline and the analysis of important
effects in images of a real factory can be broad into a
better coherence. Thereby, the operator notation un-
derlines the separability of GI into single computation
stages. To achieve an interactive performance of our
pipeline we restrict ourself to consider equation (2) just
to K2E, which in most cases is sufficient for a plausible
illumination simulation, since the perceptually notice-
able differences between the summands strongly de-
crease from the fourth summand.

WSCG 2011 Communication Papers 76

4 ANALYZING THE REAL FACTORY
To evaluate the plausibility of an illumination simula-
tion, comparisons to the reality in the factory or at least
to images of the real factory have to be done. Further-
more, essential illumination effects for a plausible vi-
sualization can be identified by analyzing these images.
Several images were used for the analysis under con-
sideration of the summands of the discretized rendering
equation (2) in section 3. The four most representa-
tive images are presented in fig.2. In addition, various
effects influencing the perception of the human visual
system are also addressed in the analysis.

4.1 Emission - E
Referring to equation(2), E represents the emitting ra-
diance of light sources. This effect can be noticed in
the views of fig.2 at windows with incoming sunlight
or at the fluorescent tubes mounted near the ceilings.
Since the images were taken with a low dynamic range
camera light emitting surfaces appear as bright white
areas, thus no further illumination effects can be recog-
nized in this areas. Factories are mainly illuminated by
fluorescent tubes and sunlight that shines through win-
dows and in conclusion have to be simulated in a real-
istic way, since the human perception strongly reacts to
these high frequent parts of the illumination.

4.2 Direct Illumination - KE
In absence of strong sunlight on a sunny day and
deep inside the buildings without any windows in
range, factories are homogeneously illuminated to
achieve ergonomically illuminated workplaces. As a
consequence, a lack of hard shadows can be noticed,
except for areas under machines and obstacles that
are mounted some inches above the ground. The only
source for hard shadows represents the sun light, when
falling through the windows in a strong intensity. In
conclusion, shadow mapping techniques should be
applied for the sun light, whereas a diffuse ambient
occlusion is sufficient concerning the weak occlusion
caused by the fluorescent tubes. Since the tubes are
encapsulated by a socket their emitting hemisphere is
directed towards the ground.
To achieve a plausible illumination the most remark-
able materials also have to be considered to create a
visually convincing result, as can be seen by the several
specular or glossy effects on the ground and at the
pipes in fig.2. The reflecting ground can especially
be noticed in view 1 and view 4 and the glossy pipes
in view 2 and view 3. Furthermore, strong diffuse
reflections can be recognized in view 2 at the walls or
at the machinery.

4.3 Indirect Illumination - K2E
The homogeneous distribution of the light in the scenes
as well as the strongly diffuse reflecting surfaces create

a smooth ambient illumination and thus it evokes the
effect of ambient occlusion in corners and interspaces.
Therefore, the ambient brightness and occlusion has to
be simulated to obtain a plausible result. Due to indi-
rect bounces of the light in the factory all images of
fig.2 seem to be tinted with a green shimmer, which is
mainly caused by the green machinery (see view 2 and
view 4). As a consequence, the incorporation of indi-
rect illumination effects is essential to achieve a similar
appearance concerning indirect bounces and the ambi-
ent brightness.

4.4 Glare
Due to the limited capabilities of the used low dynamic
range camera used for the images of the factory, the
surroundings of light emitting areas are overexposed
and glow effects can be recognized at the outer regions.
The same effect can be seen at strong reflections on the
ground or at metallic surfaces. Those effects are also
perceived by the human visual system, even though in
a reduced form since the eye can adapt to such illumi-
nation situations to a certain degree.

5 DESIGN OF A MASSIVE LIGHTING
PIPELINE

In this section a short overview of the massive lighting
pipeline (see fig.1) is given, specifying how the several
methods for a plausible illumination computation are
incorporated into the rendering module of a VR sys-
tem. For the implementation of the massive lighting
pipeline we focused on the visualization of the interior
of the factory. As a consequence, hard shadows inside
the buildings that merely occur due to strong sun illumi-
nation on a sunny day(see section4) are not considered,
but can additionally be incorporated as described in our
former work[21]. Due to the homogeneous illumination
inside the facility convincing occlusion results can be
obtained by the SSAO approach of [25]. The main fo-
cus lies on the plausible dynamic illumination by thou-
sands of light sources in massive data sets and the sim-
ulation of diffuse, glossy and reflective materials. In-
direct illumination effects in the nearfield of cavities or
creases are achieved by applying SSGI and for larger
areas by the application of CLPVs. An ambient term
is added by exploiting the capabilities of CLPVs to di-
rectly propagate direct light information, which is phys-
ically incorrect, but yields visually convincing results,
as can be seen in view 2 in fig.2. As a consequence,
massive data sets illuminated with massive lights and
containing dynamic or deformable content can be han-
dled at interactive rates and in high resolutions without
the need for preprocessing stages.

5.1 GBuffer Layout
Since factory planning scenarios with a large spatial ex-
tent are considered, the position and normal informa-

WSCG 2011 Communication Papers 77

Figure 1: Overview of the massive lighting rendering pipeline

tion has to be stored with 16-bit precision to avoid dis-
turbing z-fighting artifacts as well as gradation artifacts
of surface shading. For high screen resolutions this can
lead to a large memory requirement. To reduce mem-
ory consumption, the world positions are reconstructed
from one 16-bit depth value. For the normalized sur-
face normals only the x and y components are needed,
since the z component can be reconstructed too. For
depth and normal we use the RGB channels of a first
render target RT1. Additionally the material color is
stored in the RGB channels of a second render target
RT2. Further information like specular strength, trans-
parency flags and proxy geometry flags are stored in
the alpha channels of RT1 and RT2. In summation two
RGBA floating point textures with 16-bit per channel
are used for the geometry buffer(GBuffer).

5.2 Massive Lighting
[10] describes the possibility to apply CLPVs for a di-
rect diffuse illumination with massive light sources by
directly injecting the direct light information into grids.
Therefore, a light source buffer, further denoted as mas-
sive lighting map(MLM), is created that encapsulates a
maximum of 512x512 = 262144 usable light sources.
The MLM contains position, color, orientation and in-
tensity of light sources. Due to the small computational
effort of the injection stage of the light sources into the
grids, also higher resolutions of the MLM are possi-
ble. Hence, area lights like the fluorescent tubes can
be properly approximated by many point lights since
the amount of light sources will not become a bottle-
neck. Dividing the amount of all tubes in the factory by
the MLM buffer resolution yields the number of possi-
ble light sources to approximate a tube. In fact, such
a dense sampling of the tubes is necessary, since flick-
ering artifacts can occur when a light source enters or
leaves the spatial grid that is attached to the camera due
to camera movements. By using a lot of light sources
this case can be avoided due to a smooth fading between
the grid cells. In the fill buffer stage of our pipeline
the lights of the MLM are injected into the CLVP and
propagated through the several grids in the propagation
stage. In the light accumulation stage the propagated
direct illumination can be accessed at the respective po-
sition in the scene to fill the LAB with the direct illumi-
nation.

5.3 Ground Reflections
To account for visible important details of reflections
on the ground, the scene is rendered a second time into
another frame buffer from the perspective of a mirrored
camera to obtain a mirrored image. In the light accumu-
lation step, the ground plate is automatically identified
by a flag in the alpha channel of RT2 in the GBuffer,
which is set using the material of the ground plate.
Thus, the covered pixels in image space are determined
and used as mask for the rendering of the ground re-
flections. For the simulation of surface roughness the
reflections are finally processed with several filtering
techniques, e.g. a light streaks approach described in
[13] or a simple 5x5 gaussian blur filter.

5.4 Screen Space Ambient Occlusion and
Global Illumination

Ambient occlusion simulates the occlusion in cavities,
creases and for concave surfaces and is best suited to
provide shadow information for uniformly illuminated
diffuse or ambient environments[14], typical for fac-
tory interiors. Therefore, [23] is applied yielding suf-
ficient results with merely eight to 16 samples in this
diffuse environment. By means of the indirect lighting
part of the SSDO technique, indirect bounces of light
can be computed for nearly arranged surfaces. Since
the method is applied to the LAB that already contains
the direct illumination of the CLPVs at this stage, in-
direct bounces of the illumination can be computed as
described in [19]. Due to the use of many light sources
we do not apply the directional occlusion part of SSDO.

5.5 Participating Media Lighting
On basis of the CLPVs a spatial representation of the il-
lumination is available, that can be further extended by
the incorporation of direct light information from the
fluorescent tubes to simulate participating media light-
ing effects. Light sources of the MLM are injected into
the CLPV with a higher weighting factor and prop-
agated. By using view aligned volume slicing with
screen aligned quads, the light intensities of the CLPV
grid voxels can be computed and added to the LAB,
simulating the effect of homogeneous participating me-
dia lighting. By choosing an appropriate density factor
various effects like fog, dust or aerial perspective can be

WSCG 2011 Communication Papers 78

Figure 2: Top row: Flat shading. Middle row: Representative views for the analysis of a real factory, ranging from
view 1(left) to view 4(right). Bottom row: Results of our plausible illumination

simulated. For scenes with a large extent this can also
evoke the impression of an aerial perspective and thus
increase the depth perception of the scene.

5.6 Tone Mapping, Glare and Color
Grading

To account for a more realistic representation of the
scene, the illumination computation is based on high
dynamic range(HDR) information. Thereby, the capa-
bility of the human visual system to adapt to different
lighting conditions is simulated by applying the tone
mapping operator of [20], allowing a plausible display
of the HDR information on low dynamic range output
devices. The human perception of bright areas in the
factories (see section 4) is also considered by using the
approach of [13] to visualize a glare effect in the area of
light emitting or strong reflective surfaces. Therefore,
we store bright areas above a certain threshold in an ad-
ditional image which is downsampled and stored multi-
ple times by the factor four. The respective images are
filtered with a 5x5 gaussian mask. Afterwards the im-
ages are upsampled again and added to the final image
composition. Since physically correct indirect bounces
of the illumination are neglected, the color temperature
of the factory was simulated by a color grading method
as it is described in [24] using a 3D Look-Up Table(3D
LUT) which simply represents a mapping of a rgb color
cube into another rgb color cube and allows us to do the
color correction very fast. The color grading can be
changed in run time using manipulation methods of the
3D LUT. It is also possible to store or load a 3D LUT.

5.7 Anti-aliasing
Aliasing effects caused by an undersampling of high
frequent areas can lead to flickering artifacts and jaggy
edges, especially during camera movements, reducing
the feeling of being immersed in the virtual world.
Because of the used deferred shading approach no
hardware anti-aliasing can be utilized. We distin-
guish between a performance and quality version of
anti-aliasing. For the performance version an edge
anti-aliasing(EdgeAA) is implemented. Edges are
detected by building the differences of the surface
normals and depth values, followed by a 3x3 gaussian
blur applied at the edges. The quality version uses
full screen anti-aliasing(FSAA). Therefor the image
is computed in doubled resolution. For the super
sampling part of FSAA a rotated grid sampling pattern
is applied, yielding an optimal result for nearly hori-
zontal or vertical edges, which are often seen in factory
environments.

6 RESULTS
To achieve an interactive plausible illumination of mas-
sive data sets with massive lights for digital factory
planning applications the following main criterias are
determined:

• Visually plausible quality

• Interactive or real time frame rates

• Support for massive data sets with dynamic content

WSCG 2011 Communication Papers 79

• Support for massive dynamic light sources

• Avoidance of preprocessing time

In this section the achieved results are evaluated and re-
flected considering the listed criterias. The test system
consisted of an AMD Athlon 3700+ with 2 GB RAM
and a NVIDIA GeForce GTX 285 graphics card. For
the performance measurements a typical factory scene
with 15.3 million polygons and 4056 fluorescent tubes
is used and rendered in a resolution of 1280x1024 pix-
els. Each of the 4056 tubes of the scenario is approxi-
mated by 5 light source, yielding a total of 20280 light
sources. To handle the massive amounts of data effi-
ciently a visibility guided renderer[12] is used as the
rendering core of the VR-system, filling the buffers for
our further illumination computations.

6.1 Visual Quality and Plausibility
To evaluate the plausibility of the proposed method, the
images of the real factory and the criterias that were de-
rived by the analysis in section 4 are compared with the
achieved results. The results, ranging from view 1 to
view 4 in the bottom row of fig.2, show that the light
emitting fluorescent tubes with their surrounding glow
are plausibly visualized1. However, the glow in the
images seems a bit more smoothed at the outer edges
and is sometimes colorful pigmented against dark back-
grounds (see view 1 in fig.2), allowing a further im-
provement of the simulation. Even though, the direct
illumination is spatially approximated by the CLPVs
with two band spherical harmonics, the results are vi-
sually convincing. Nevertheless, artifacts in form of
some isolated bright areas (see view 2 in fig.2) can oc-
cur due to the spatial approximation of the grids. These
are mainly caused by high intensities in grid cells in-
cluding direct light sources.

Direct light is propagated in a specific direction in
form of cosine-lobes. Thereby, some amount is also
send in the opposite direction yielding a scattering of
the direct light in the scene. Because of the density of
fluorescent tubes and multiple reflections of their light
in the factory a similar effect of a diffuse distributed
ambient environment can be observed in the images.
As a consequence the massive lighting also simulates
some kind of physically incorrect indirect illumination
in the surroundings of light emitting surfaces and de-
creases with distance. Thus, a kind of global ambient
term is obtained that decreases in distance to a light
source in contrast a constant ambient factor, e.g. used
in the OpenGL lighting model. However, despite the
fact that the light propagation in form of cosine-lobes is
directed to the ground, the areas above the fluorescent

1 It should be noted that geometrical discrepancies can occur, due to
inconsistencies of the model and the real factory

tubes are also illuminated due to the scattering, thus cre-
ating an indirect illumination that appears very similar
to the images(see view 2 and view 3 in fig.2). Unfor-
tunately, this effect is colored with direct light informa-
tion and can not consider the color of a true bounce of
indirect illumination. The provided occlusion informa-
tion obtained by SSAO yields visually plausible results
in most of the cases. The limits are revealed in view
2 in fig.2. The shadow beneath the machine in front
should be stronger and weaker at the pillar. In view 1
in fig.2 the occlusion on the right side also seems to be
to strong, but can be improved with a better parameter-
ization. The indirect illumination effect of SSGI can be
clearly noticed in view 2 in fig.2 on the left side on the
ground near the green machines, further improving the
visual quality towards a plausible impression.
Another important aspect concerning the plausibility is
the reflection of the scene on the ground, even though
it sometimes appears to be polished due to a lack of
the simulation of rough surfaces, which can be incor-
porated by using additional bump and specular maps2.
The sparse application of participating media effects in
the background of the scenes decreases the contrasts in
distance and creates an aerial perspective that further
conveys the impression of depth. The effect is espe-
cially perceivable in view 2 and view 3 in fig.2.
On basis of the tone mapping operator, the visible con-
trast and brightness ratios are reproduced and appear
very similar to the images of the real factory. The color
temperature of the factory could be approximated using
the color grading method mentioned in 5.6. In combi-
nation with light scattering of the CLPVs a plausible
pigmentation of indirect reflected light is obtained and
essential for the atmosphere of the visualization as a
whole. In conclusion, a plausible and convincing over-
all quality of the illumination for virtual environments
is achieved in comparison to the images of the real fac-
tory. Nevertheless, small discrepancies can be recog-
nized in detail, but due to the diffuse ambient environ-
ment inside the factory these artifacts are not disturbing,
since the human perception is less sensitive to errors in
low frequency illumination environments.

6.2 Performance
An average performance of 6 frames per second is
achieved for the test scene in a resolution of 1280x1024
pixels. Thus, the dynamic digital factory can be inter-
actively explored and manipulated. The computational
effort of the several stages of the proposed pipeline for
the presented views including a detailed listing of the
incorporated methods is depicted in fig. 3.

2 Applicable in combination with the Virtual Texturing technology of
[28]

WSCG 2011 Communication Papers 80

Figure 3: Left: Detailed performance analysis of the several pipeline stages for the considered views. Right: All
blue-colored pipeline steps belong to the fill buffer stage, all red-colored to the light accumulation stage and all
yellow-colored to the post-processing stage.

Fill Buffer Stage The fill buffer stage with the
blue-colored steps in the graph seen on the right side
of fig. 3 contains the two time drawing of the scene
and therefore is the most expensive stage of the three
pipeline stages with an average of 66.06ms. For the
filling of the G-Buffer and the Reflection Buffer for the
different views strong fluctuations can be noticed in the
graph on the left side of fig. 3. These can be explained
by the amount of geometry inside the view frustum.
In view 2 and view 3 ind fig. 2 a lot of geometry is
occluded by the machinery close to the camera, thus the
visibility guided renderer can discard a lot of geometry
inside the frustum. In average the G-Buffer is filled
within 34.97ms, whereas the Reflection Buffer within
28.15ms due to the fact that only a part of the scene
covered by the mirror effect has to be rendered. The
injection into the CLPVs is independent of the scenes
complexity and image resolution and in consequence
very performant with merely taking 2.93ms.

Light Accumulation Stage The light accumulation
stage with the red-colored steps in the graph is with an
average of 40.28ms the second most expensive step,
whereas the computation of SSAO with an average of
22.19ms by using 27 samples represents the biggest
computational effort. The SSAO performance mainly
depends on the image resolution and the amount of
used samples. The effort for the light propagation
throughout the CLPVs depends on the number of
propagation steps and the grid resolution and therefore
constantly takes 8.87ms in all views with 21 + 10 + 5
propagations steps and a grid resolution of 48x48x48.
The illumination by the CLPV information depends on
the image resolution and the amount of propagation
steps in reflection direction through the CLPV to ap-
proximate glossy surfaces, which is further denoted as
glossy samples. The CLVP performance thus depends
on the amount of glossy or reflective areas in the image,
which is noticeable on the fluctuations in the timings
for the different views, e.g. in view 1 and view 2 more

glossy surfaces are visible than in view 3. The average
timing is 7.47ms for 16 glossy samples. The last "‘light
accumulation"’ step in this stage, which should not be
confused with the whole light accumulation stage, is
dependent on the image resolution and includes the
multiplication of the accumulated light in the LAB
with the material color and the ambient occlusion term
within an average of 0.6ms.

Post-Processing Stage The post-processing stage with
the yellow-colored steps in the graph takes an average
of 39.3ms. SSGI is included in this stage, since it is
applied after the multiplication with the material color.
The average timing for SSGI is 33.55ms by using eight
samples and a kernel size of eight. SSGI depends on the
image resolution and the amount of used samples. The
computational effort for the color grading is with 0.5ms
very small, as well as the effort for the glare with 0.6ms
and the tone mapping with 1.2ms. All three methods
depend on the image resolution. Participating media
lighting effects take an average of 3.43ms by using 32
slices, whereas the effort mainly depends on the num-
ber of the processed pixels and the number of slices to
approximate the volume.

7 BENEFITS
The presented method can handle dynamic objects and
dynamic light sources in massive data sets. Almost all
incorporated techniques are independent of the scene
complexity, except the reflections on the ground plate,
allowing the interactive exploration of massive virtual
worlds with an enhanced visual quality and pave the
way for high quality desktop VR. Massive light sources
can be handled and no preprocessings3 are needed for
all incorporated methods, keeping a short time to pro-
duction and market. Our scenarios need no manual
preparation times since massive amounts of data can be
handled by a visibility guided renderer and light sources

3 except the data export from the CAD tool to the VGR data base

WSCG 2011 Communication Papers 81

are automatically set during the data export of the CAD
tools by looking up the light source geometry with an
identifier.

8 CONCLUSION
In this paper we presented an efficient massive light-
ing pipeline for the interactive computation of a plau-
sible illumination for massive data sets of the dynamic
digital factory illuminated by massive amounts of light
sources. No preprocessing steps are necessary, keeping
a short time to production and market. The key points
for a plausible illumination computation of a factory are
identified by a detailed analysis and exemplary shown
on basis of images of a real factory. The results of our
proposed method are evaluated against the key points
and the real images and can confirm the plausibility of
the computed illumination. Finally, a detailed perfor-
mance evaluation of the whole pipeline is presented,
including the separate listing of all incorporated tech-
niques to identify the main bottlenecks and connecting
factors for future research.

ACKNOWLEDGEMENTS
This work was partially funded by the AVILUS project
of the german ’Bildungsministerium für Bildung und
Forschung’(BMBF).

REFERENCES
[1] Stephens A., Boulos S., Bigler J., Wald I., and Parker S.G.

An Application of Scalable Massive Model Interaction using
Shared Memory Systems. In Proceedings of the 2006 Euro-
graphics Symposium on Parallel Graphics and Visualization,
2006.

[2] M. Deering, S. Winner, B. Schediwy, C. Duffy, and Ne Hunt.
The triangle processor and normal vector shader: a vlsi system
for high performance graphics. In SIGGRAPH ’88: Proceed-
ings of the 15th annual conference on Computer graphics and
interactive techniques, 1988.

[3] David Drascic and Paul Milgram. Perceptual issues in aug-
mented reality. In SPIE Volume 2653: Stereoscopic Displays
and Virtual Reality Systems III, pages 123–134, 1996.

[4] Wolfgang Engel. Wolfgang engels blog, article: Light prepass,
http://diaryofagraphicsprogrammer.blogspot.com/2008/03/light-
pre-pass-renderer.html, 2010.

[5] Dominic Filion and Rob McNaughton. Effects & techniques. In
SIGGRAPH ’08: ACM SIGGRAPH 2008 classes, pages 133–
164, New York, NY, USA, 2008. ACM.

[6] Wald I., Dietrich A., Benthin C., Efremov A., Dahmen T., Gün-
ther J., Havran V., Slusallek P., and Seidel H.-P. A Ray Trac-
ing based Virtual Reality Framework for Industrial Design. In
Proceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing, 2006.

[7] J. Isidoro. Shadow mapping: Gpu-based tips and techniques.
Game Developer Conference (GDC) 2006 presentation, 2006.

[8] Henrik Wann Jensen. Realistic image synthesis using photon
mapping. A. K. Peters, Ltd., Natick, MA, USA, 2001.

[9] James T. Kajiya. The rendering equation. SIGGRAPH Comput.
Graph., 20(4):143–150, 1986.

[10] Anton Kaplanyan. Light propagation volumes in cryengine
3. In SIGGRAPH ’09: ACM SIGGRAPH 2009 Courses, New
York, NY, USA, 2009. ACM.

[11] Anton Kaplanyan and Carsten Dachsbacher. Cascaded light
propagation volumes for real-time indirect illumination. In I3D
’10: Proceedings of the 2010 ACM SIGGRAPH symposium on
Interactive 3D Graphics and Games, 2010.

[12] D. Kasik, B. Brüderlin, M. Heyer, and S. Pfützner. Visibility-
guided rendering to accelerate 3d graphics hardware perfor-
mance. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses,
2007.

[13] M. Kawase. Frame buffer postprocessing effects in double-
s.t.e.a.l (wreckless). Game Developer Conference (GDC) 2003
lecture, San Jose, CA., 2003.

[14] Hayden Landis. Production-ready global illumination. In SIG-
GRAPH 2002 Course Note #16: RenderMan in Production,
pages 87–102, 2002.

[15] M. MITTRING. A bit more deferred-cryengine3. Triangle
Game Conference’09, 2009.

[16] Martin Mittring. Finding next gen: Cryengine 2. In SIGGRAPH
’07: ACM SIGGRAPH 2007 courses, pages 97–121, New York,
NY, USA, 2007. ACM.

[17] John Murray. Some perspectives on visual depth perception.
SIGGRAPH Comput. Graph., 28(2):155–157, 1994.

[18] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko
Friedrich, Jared Hoberock, David Luebke, David McAllister,
Morgan McGuire, Keith Morley, Austin Robison, and Martin
Stich. Optix: A general purpose ray tracing engine. ACM Trans-
actions on Graphics, August 2010.

[19] Franz Peschel, Fabian Scheer, and Stefan Müller. Interactive
plausible illumination for the digital factory. In Joint Virtual
Reality Conference of EuroVR - EGVE - VEC, 2010.

[20] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photographic
tone reproduction for digital images. In SIGGRAPH ’02: Pro-
ceedings of the 29th annual conference on Computer graphics
and interactive techniques. ACM, 2002.

[21] T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachs-
bacher, and J. Kautz. Imperfect shadow maps for efficient com-
putation of indirect illumination. ACM Trans. Graph., 27(5):1–
8, 2008.

[22] T. Ritschel, T. Grosch, and H.-P. Seidel. Approximating dy-
namic global illumination in image space. In I3D ’09: Pro-
ceedings of the 2009 symposium on Interactive 3D graphics and
games, pages 75–82, New York, NY, USA, 2009. ACM.

[23] Fabian Scheer and Michael Keutel. Screen space ambient oc-
clusion for virtual and mixed reality factory planning. Journal
of WSCG, 18(1-3), 2010.

[24] J. Selan. Using lookup tables to accelerate color transforma-
tions. In GPU Gems 3, Chapter 24, 2007.

[25] Oles Shishkovtsov. Deferred shading in s.t.a.l.k.e.r. In Matt
Pharr and Randima Fernando, editors, GPU Gems 2: Program-
ming Techniques for High-Performance Graphics and General-
Purpose Computation, pages 143–166. Addison-Wesley Pro-
fessional, 2005.

[26] M. Valient. Deferred rendering in killzone 2,
develop conference 2009, http://www.guerrilla-
games.com/publications/dr_kz2_rsx_dev07.pdf, 2010.

[27] Michal Valient. Stable rendering of cascaded shadow map. In
Wolfgang Engel, editor, Shader X6, Advanced Rendering Tech-
niques. Course Technology, CENGAGE Learning, 2008.

[28] J.M.P. van Waveren. id tech 5 challenges, from texture virtu-
alization to massive parallelization. In SIGGRAPH ’09: ACM
SIGGRAPH 2009 Courses, 2009.

[29] Rui Wang, Rui Wang, Kun Zhou, Minghao Pan, and Hujun Bao.
An efficient gpu-based approach for interactive global illumina-
tion. ACM Trans. Graph., 28(3):1–8, 2009.

WSCG 2011 Communication Papers 82

Example-based Deformation with Support Joints

Kentaro Yamanaka

Waseda University
3-4-1 Okubo
Shinjukuku

 Tokyo, Japan, 1698555

kentaro.05-27@suou.waseda.jp

Akane Yano

Waseda University

Shigeo Morishima

Waseda University

shigeo@waseda.jp

ABSTRACT
In character animation field, many deformation techniques have been proposed. Example-based deformation

methods are widely used especially for interactive applications. Example-based methods are mainly divided into

two types. One is Interpolation. Methods in this type are designed to interpolate examples in a pose space. The

advantage is that the deformed meshes can precisely correspond to the example meshes. On the other hand, the

disadvantage is that larger number of examples is needed to generate arbitrary plausible interpolated meshes

between each example. The other is Example-based Skinning which optimizes particular parameters referencing

examples to represent example meshes as accurately as possible. These methods provide plausible deformations

with fewer examples. However they cannot perfectly depict example meshes. In this paper, we present an idea

that combines techniques belonging to the two types, taking advantages of both types. We propose an example-

based skinning method to be combined with Pose Space Deformation (PSD). It optimizes transformation matric-

es in Skeleton Subspace deformation (SSD) introducing “support joints”. Our method itself generates plausible

intermediate meshes with a small set of examples as well as other example-based skinning methods. Then we

explain the benefit of combining our method with PSD. We show that provided examples are precisely

represented and plausible deformations at arbitrary poses are obtained by our integrated method.

Keywords
Example-based, skinning, deformation, pose space deformation, PSD, skeletal-subspace deformation, SSD, sup-

port joints

1. INTRODUCTION
Character deformation plays an important role in

computer animations. Poor articulated character de-

formations are easily perceived when we see 3DCG

animations. In order to generate desired character

deformations, skilled animators spend much time

working on tedious processes. Many character de-

formation methods have been proposed to resolve

this problem, but it hasn’t been completed yet.

In articulated character deformation, skeleton-based

deformation is widely used to model articulated mo-

tion because they are intuitive to use. Among skele-

ton based deformation methods, Skeleton Subspace

Deformation (SSD) [MLT88] is the most common

technique, which is also called enveloping or smooth

skinning, because it is fast to compute and easy to

implement. Despite those advantages it brings, large

deformations lead to undesirable effects such as very

visible loss of volumes near joints. In order to com-

pensate the defects of SSD, example-based methods

are widely used especially in interactive applications.

Example-based deformations can be divided into

two types – Interpolation and Example-based Skin-

ning. Interpolation type focuses on how to interpolate

examples smoothly in a pose space. Example meshes

are always precisely represented, but interpolated

ones are not always plausible and many examples are

needed to generate plausible interpolated meshes at

arbitrary poses. In contrast to interpolation, example-

based skinning uses examples only to optimize par-

ticular deformation parameters such as vertex

weights. The advantage is that plausible intermediate

meshes at arbitrary poses between examples are ob-

tained, but example meshes themselves are not fully

represented.

In this paper, we present an idea that combines

these two types and takes advantage of them. First

we propose an example-based skinning method

called support joint deformation. It optimizes joint

transformation matrices introducing virtual joints

called “support joints”. Then we integrate our me-

thod with Pose Space Deformation (PSD) [LCF01],

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy oth-

erwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

WSCG 2011 Communication Papers 83

which is the most widely used in the interpolation

methods, and demonstrate how effective our idea is.

The original support joint deformation method was

proposed in our former work [YYM09]. We improve

the support joint deformation method and combine

the method with PSD in this paper in order to pre-

cisely represent examples when characters are de-

formed. To integrate with PSD effectively, we fo-

cused on artifacts occurring around a bending joint

instead the previous work took all errors between

examples into consideration.

This paper is organized as follows: After giving an

overview of related work in character animation area

in Chapter 2, we explain the theory and the disadvan-

tage of PSD in Chapter 3 and introduce our core idea

of example-based skinning with support joint optimi-

zation called support joint deformation in Chapter 4.

The way how to set vertex weights suitable for sup-

port joint deformation is explained in Chapter 5, be-

fore we demonstrate the results of our idea and con-

clude in Chapter 6.

2. RELATED WORK

Skeleton-based deformation
SSD, which is based on a work published by Mag-

nenat-Thalmann et al. [MLT88], has been very wide-

ly used for a long time in character animation field

and has been adopted by most computer animation

software because it is fast to compute, easy to im-

plement and intuitive to use. The deformation of ver-

tex with SSD is simply represented as follows:

i

N

j

jiji w vΤv

1

 (1)

where vi is the initial position of the i-th vertex of a

character mesh and vi’ is a position after vi is de-

formed. wij is a vertex weight which means the

amount of influence of the j-th joint on the i-th ver-

tex and it is normalized as
 . Tj is a trans-

formation matrix of the j-th joint. N is the number of

joints in a skeleton.

Though SSD has been very common, there exists an

undesirable defect in this method. Artifacts such as

“candy-wrapper” should be unavoidable. They are

caused by the very visible loss of volumes when a

character mesh is largely deformed.

Many works have been presented to overcome these

artifacts. Rohmer et al. proposed a geometrically

volume-preserving deformation method with interest-

ing shape controls [RHC09]. Kavan et al. proposed

spherical blend skinning [KZ05] and dual quaternion

blend skinning [KCZO07] [KCZO08] to realize as

rigid deformations as possible.

Example-based deformation
Example-based deformation is one of the attempts

to get over the artifacts of SSD. It is often used in

interactive application and is roughly divided into

two types. The first is interpolation and the second is

parameter-optimization. In this paper, we call the

latter type example-based skinning. PSD [LCF01] is

the most famous work in the interpolation group. It

interpolates examples by Radial Basis Function

(RBF) in a pose space using joint angles of SSD as

deformation parameters. After PSD was proposed,

many example-based interpolation methods have

been published. “Shape by example” by Sloan et al.

enabled extrapolation by adding low order linear

polynomials to PSD [SRC01]. Kry et al. proposed a

method suited to commercial graphics hardware re-

ducing data of interpolation with PCA [KJP02].

Weighted Pose Space Deformation (WPSD) [KM05]

[RLN06] generates arbitrary plausible intermediate

poses with fewer examples. Some attempts to use

various kinds of measured 3D data in example-based

deformation have been presented [ACP02] [KM05].

Provided example meshes are always entirely

represented. However, a large set of examples is

needed to generate plausible meshes at arbitrary pos-

es.

Example-based skinning needs smaller set of exam-

ples than interpolation, because given examples are

used only to optimize some particular deformation

parameters. Weber et al. proposed their original ske-

leton based deformation method and, in the paper,

they additionally optimized vertex weights from ex-

amples in order to add “context” to the results

[WSLG07]. Multi-weight enveloping (MWE) pub-

lished by Wang et al. also optimizes vertex weights

[WP02]. They introduced a novel vertex weight

which had a value for each element of transformation

matrix Tj, instead of wij in equation (1), and de-

scribed how to optimize the vertex weights. Mohr et

al. proposed additional joints [MG03]. First they op-

timized values of vertex weights from examples and

then they placed additional joints where some arti-

facts still occurred comparing to examples. It can be

said that they optimized vertex weights wij and a

number of joints N in equation (1). Shi et al.

[SZTDVG08] optimized parameters for simulation

using examples and characters were deformed ac-

cording to the simulation. We propose an example-

based skinning method which optimizes transforma-

tion matrices Tj in equation (1) using support joints.

Vertex weights
Vertex weights play an important role in our me-

thod as well as in the other skeleton based deforma-

tion methods. Baran et al. [BP07] solved heat equili-

brium over character surface to determine vertex

weights. They adopted heat equilibrium to satisfy

three conditions below. First, vertex weights should

WSCG 2011 Communication Papers 84

not depend on the mesh resolution. Second, the

weights vary smoothly along the surface. Finally, the

width of a transition between two bones meeting at a

joint should be roughly proportional to the distance

from the joint to the surface to avoid folding artifacts.

They satisfied those conditions. However, the me-

thod needs an initialization of the weight before start-

ing the diffusion smoothing. They suggested to in-

itialize the values to 1/d
2
 when the segment linking

the vertex to the bone lies entirely within the mesh

volume, and zero otherwise. This automatical discon-

tinuous definition works in most cases, but gives a

bad initial value of the skinning weights if the mesh

exhibits large non-convexities. Small variations in

vertex positions may change dramatically the initial

values when the line segment passes close to the

mesh boundary. Rohmer et al. compensated this dis-

advantage and satisfied the conditions above by de-

termining vertex weights according to geodesic vo-

lumetric distance [RHC09].

Our previous work [YYM09] defined a distance

field on a surface mesh based on geodesic distance

and determined the vertex weights according to the

field. Computing is, however, costly because all-

pair distances should be calculated and the vertex

weights are recalculated at every step of transforma-

tion matrices optimization, which also needs much

computing time.

3. POSE SPACE DEFORMATION
PSD is a hybrid approach that combines SSD and

morphing. Various example meshes are deformed

into the "base pose" with inverse SSD, and the result-

ing meshes are morphed and then deformed with

SSD. The process of PSD is shown in Figure1.

Let vi,p be the position of vertex i of the p-th exam-

ple. The p-th example mesh is first transformed into

its “base pose”:

pi

N

j

pjij

b

pi w ,

1

1

,, vΤv

 (2)

where vi,p
b is the position of vertex i of the p-th ex-

ample in its base pose, wij be the weight value of

joint j on a vertex i and Tj,p is the transformation ma-

trix of joint j of the p-th example. Let sp(P) be the

weight value for the interpolation at an arbitrary pose

P, satisfied with conditions as follows:

posen

p ps
1

1P ,

 1kps P kp , (3)

 0kps P kp

where Pk is the k-th example pose and is the

number of example poses. sp(P) is resolved using

Radial Basis Function (RBF) as follows:

 k

n

p

kpp dcs
pose

PPP

1

,
 (4)

where cp,k is a constant and is

used in this paper. D is a parameter whose value is

determined by users and D = 1.0 in this paper. If D

becomes smaller, interpolation weight for the nearest

example pose becomes bigger. is a dis-

tance from an arbitrary pose P to an example pose Pk

in an axis-angle manner. Then, each example surface

in the base pose is interpolated by using a morphing

method:

posen

p

b

pip

b

i s
1

,vPu (5)

where ui
b is the interpolated vertex position in a base

pose. Finally, the morphed surface is deformed with

Figure1. The process of PSD

WSCG 2011 Communication Papers 85

SSD:

b

i

N

j

jiji w uΤu

1

~
 (6)

where ui is the vertex position of the resulting de-

formed surface, j is the transformation matrix that is

calculated by interpolating the matrices of examples

using sp(P).

As explained above, PSD is largely based on SSD.

With SSD, however, large deformations lead to un-

desirable results such as very visible loss of volume

near joints (See Figure2). That also causes artifacts in

PSD. The artifacts of PSD are mainly caused by the

steps of the inverse SSD and SSD in the process (See

Figure1). Figure3 shows an example of artifacts in

PSD due to SSD. When examples are deformed into

the base pose with SSD (inverse SSD), artifacts fre-

quently occur. Then the artifacts remain on the

blended mesh. Besides, more artifacts may happen at

the last SSD step. Figure1 shows mechanism how

artifacts of PSD occur as well. Users have been

forced much more tedious works preparing additional

examples for the results to look better. In order to

avoid this otiose task, a deformation method which

has fewer artifacts should be adopted instead of SSD

to improve the quality of PSD. Then we propose such

a method in the next chapter.

4. EXAMPLE-BASED SKINNING

WITH SUPPORT JOINTS

Motivation
In order to overcome artifacts of PSD derived from

the defects of SSD such as apparent loss of volumes

around a joint when the joint is largely bent, we con-

sidered that example-based skinning method is the

most suitable and efficient alternative for SSD be-

cause there are already prepared examples and it

usually takes much time for users to prepare addi-

tional ones. Therefore this chapter presents example-

based skinning method which reduces artifacts

around a bent joint.

Example-based skinning optimizes particular de-

formation parameters from examples for the results

to look good. Wang et al. [WP02] introduced a novel

vertex weight which has one value for each of twelve

elements of transformation matrix in equation (1),

and optimized them. Then it is called Multi Weight

Enveloping (MWE). After optimizing vertex weights

Mohr et al. optimized the number of joints each of

which has a special function such as scaling in order

to reduce remaining artifacts and represent examples

as correct as possible. It hasn’t been presented yet a

method which optimizes transformation matrices, or

improves behavior of joints from examples though it

is often said that the poor structure of a traditional

hierarchical skeleton is one of the problems that

causes various artifacts of skeleton based deforma-

tion. A method which optimizes transformation ma-

trices and reduces the loss of volumes around a bent

joint with SSD is thought to be a solution to reduce

the artifacts of PSD.

Support Joint Deformation
In order to realize optimization of transformation

matrices, a set of support joints S is defined besides

the traditional hierarchical skeleton H. S doesn’t

have hierarchical structure and each joint of S can

move around the corresponding joint of H according

to the rule explained later, in contrast to that H has a

hierarchical structure and the distances between

joints are constant.

In our proposing method, it is assumed that example

meshes and corresponding joint angles of H are giv-

en. After a base mesh is deformed according to the

given joint angles of H in an example pose with SSD,

transformation matrices of S are calculated to minim-

ize error function described below:

i

SSD

i

N

j

S

j

S

ij

T

i w vTv
1

S (7)

Figure2. An artifact of SSD

Large deformations frequently lead to very visi-

ble loss of volume around joints. That causes

artifacts of PSD as well.

Figure3. An artifact of PSD because of SSD

WSCG 2011 Communication Papers 86

where i is the index of vertex. vi
T is a position of ver-

tex i of a given example pose. wij
S means a vertex

weights of the j-th joint of S on vertex i, which is

described in Chapter 5 in detail. Tj
s
 is the transforma-

tion matrix of the j-th joint of S that should be opti-

mized, and vi
SSD is a vertex deformed by SSD accord-

ing to the given joint angles. Therefore returns a

difference between a target mesh and a deformed

mesh.

In this paper, there are rules how joints of S moves

around joints of H to obtain the optimal position and

the optimal transformation matrix efficiently. Dis-

crete values are set on x-axis linked coordinate of the

parent joint of S and iterative search algorithm which

minimize is solved. Figure4 shows how S moves.

The rules are described below.

 The j-th support joint moves along a line from

the bent joint j of H to the parent joint j-1.

 First, the j-th support joint is translated along

the axis, and then it is rotated to the direction

which a virtual bone connects j-th support joint

of S and j+1-th joint of H.

According to the manner above, transformation ma-

trix
 is calculated.

Using the calculated transformation matrix above,

plausible intermediate meshes are obtained at arbi-

trary poses. According to the pose desired by uses,

the intermediate transformation matrix is calculated

by interpolating the transformation matrices Tj
s
 for

example poses. sp(P) in equation (5) is used to blend

transformation matrices Tj
s
 of example poses. The

result of support joint deformation can be obtained

when vi, wij, and Tj in equation (1) are replaced by
vi

SSD, wij
S, and interpolated Tj

s
.

Figure5 shows how much our proposing example-

based skinning reduces the artifacts. The artifacts of

SSD could be sufficiently improved by our proposing

support joint deformation.

5. VERTEX WEIGHTS
In skeleton based deformation vertex weights play a

very important role and it’s also true in our method.

Especially for SSD, users often set vertex weights

manually using painting tool in commercial anima-

tion software. However, it takes much time for users

to set vertex weights, while there often exist puzzling

cases in which no set of vertex weights can avoid an

artifact. Then many techniques to decide vertex

weights automatically have been proposed.

Example-based skinning methods decide optimal

vertex weights to represent the examples the best

referencing a set of the given example meshes and

the corresponding skeletons. Mohr et al. optimized

vertex weights before they introduced additional

joints [MG03]. Weber et al. optionally optimized

vertex weights from examples to add “context” to the

results after they deformed characters with their orig-

inal deformation method [WSLG07].

Though support joint deformation described in the

previous chapter is also classified into example-based

skinning, vertex weights in our method are deter-

mined not based on examples but geometrical infor-

mation. The reason is that we need to determine two

types of vertex weights. The first one is for SSD

represented as wij in equation (1). The second one is

for support joint deformation represented as wij
S in

equation (7). wij can be determined from examples

like other example-based skinning methods because

values of the other variables are already known. On

the other hand, wij
S cannot be optimized by examples

because the transformation matrix Tj
S is unknown

and it is required to be calculated from geometrical

information of examples. Because of the efficiency,

we adopt a technique which is able to calculate both

different vertex weights from geometrical informa-

Figure5. The result of support joint deformation

compared to SSD

Left: SSD, Right: support joint deformation

Both meshes are deformed with the same joint angles.

Figure4. The manner how support joints move

Blue: Hierarchical skeleton H, Yellow: A set of

support Joints S. The j-th support joint moves on a

line which connects j-th and j-1th hierarchical joint,

and the direction of the j-th support joint are deter-

mined from the position of the j+1th hierarchical

joint.

WSCG 2011 Communication Papers 87

tion. Both vertex weights are required to meet condi-

tions below.

 Vertex weights vary smoothly and continuously

along the surface.

 Vertex weights avoid artifacts caused by incor-

rect association between a joint and vertices.

 About wij, a transition of vertex weights around

joints between two bones is roughly proportion-

al to the distance from the joint to the surface.

 About wij
S, values of weights are high (close to

1) around the bent joint and converge to 0

smoothly according to the distance from the

joint.

The simplest technique to determine vertex weights

referencing only geometrical information of a mesh

is to calculate based on Euclidean distance from a

joint to vertices. It can satisfy the first condition al-

though it cannot meet the second and often causes

artifacts that attach weights from wrong joint to a

vertex because topology of character mesh is uncon-

sidered. In this paper we adopt the technique which

Baran et al. poposed [BP07] to determine both two

types of vertex weights.

Calculation of geodesic volumetric dis-

tance
Character mesh is required to be filled with voxels

(Figure6) prior to the measurement of geodesic vo-

lumetric distance. We assume that a voxelized model

is already pre-computed. In order to calculate the

distance from a joint or a bone to vertices, a voxel

which includes the joint (or bone) inside and a voxel

which includes a vertex inside need to be specified.

The geodesic volumetric distance from the joint (or

bone) voxel to vertex voxels are calculated using

dijkstra’s algorithm applied to three dimensions.

STEP1: Initialize about all vertex voxels.

STEP2: Select a base voxel b, set , and in-

sert b to VLIST.

STEP3: Take the vertex voxel v which has the smal-

lest g(v) in VLIST and remove it from

VLIST.

STEP4: For each vertex voxel va adjacent to v, if

 , update

 and insert (or

reinsert) va to VLIST, where length(v, va) is

defined as the Euclidean distance from the

center of v to the center of va. Notice that the

adjacency of vertex voxels is determined

whether a voxel is a member of a cube,

which consists of 27 (= 3*3*3) voxels

whose center is v, or not.

STEP5: Repeat Step3 and 4 until VLIST become

empty.

Geodesic volumetric distance calculated with this

algorithm is shown in Figure7.

Determination of vertex weights
In this paper, two types of vertex weights are de-

termined using the calculated distance above. The

first weights are designed for SSD. It is required to

meet the first, the second and the third condition pre-

viously mentioned. To satisfy the third condition, the

distances from bones are used to determine the vertex

weights. Therefore, bone voxels are set as base vox-

els in the calculation process. Figure8 shows vertex

weights from forearm bones. A vertex weight is de-

termined by reciprocal ratio of squared distances

from the nearest and the second nearest bone, and the

result is normalized.

The second weights are for support joint deforma-

tion. It is required to meet the first, the second and

the fourth condition and therefore distance from the

bent joint is adopted. The vertex weights for support

joint deformation are determined by multiplication of

a gaussian function of a distance from a joint and the

error of a vertex position on a base mesh deformed

by SSD from a vertex position on an example mesh.

Note that, when multiplied, the errors are normalized

to let the maximum value be 1. Figure9 shows the

resulting vertex weights for support joint deformation.

Vertex weights for support joint deformation are

Figure6. A voxelized character mesh

Left: A voxelized character mesh, Right: The

corresponding character mesh

Figure7. Geodesic volumetric distance from a

forearm bone
Red means that the distance from a voxel includ-

ing the bone to the vertex is small. Blue means

the vertex is distant from the bone voxel.

WSCG 2011 Communication Papers 88

determined referencing the distance from the joint

and the error between a SSDed mesh and the corres-

ponding example mesh.

6. RESULTS AND CONCLUSIONS

Integrated method
Finally we present a method which combines PSD

as an interpolation and support joint deformation as

an example-based skinning. It is simply explained as

following. The inverse SSD step in the process of

PSD is replaced by the inverse support joint deforma-

tion, and the last SSD step is replaced by support

joint deformation. First, transformation matrices

of bent joints of examples are optimized. Second,

examples are deformed into base pose by inverse

support joint deformation. Note that inverse support

joint deformation consists of two steps. First step is

inverse SSD and the second step is multiple inverse

of
 to a deformed mesh. Then deformed examples

in base pose are morphed. Lastly, The morphed mesh

is deformed with support joint deformation. Though

our method needs additional computational time to

PSD in order to optimize the transformation matrices

as pre-processing, the deformation is executed as fast

as PSD because we only changed SSD to support

joint deformation.

Result
Figure10 shows our method compared with PSD. It

demonstrates that our integrated technique of PSD

and support joint deformation entirely represents the

example poses as PSD does and generates arbitrary

plausible intermediate poses between each example.

It means that plausible results at arbitrary interme-

diate poses can be obtained with fewer examples than

PSD because PSD needs more examples to improve

the results. Therefore, it can be said that our propos-

ing method successfully takes advantages of interpo-

Figure8. Vertex Weights of the forearm bone

for SSD

Red: a vertex where , Blue: the value of

 is close to 0.0, White: precisely

Figure9. Vertex Weights of the elbow joint for

support joint deformation

Red: a vertex where , Blue: the value of

 is close to 0.0, White: precisely

Figure10. The result of our method compared with PSD

Upper: Our proposing method that combines PSD and our original Support Joint Deformation.

Lower: PSD

Left and right images show that our method precisely represents the example poses as PSD does, and the

middle images demonstrate our method is able to generate more plausible intermediate poses than PSD.

WSCG 2011 Communication Papers 89

lation and example-based skinning.

Future work
We would like to integrate support joint deforma-

tion into Weighted Pose Space Deformation (WPSD)

[KM05] [RLN06] for the results to look better with

smaller set of examples than combining with PSD.

This paper regulated motion of support joints as de-

scribed in Chapter4. We would like to deregulate the

manner and reduce all kinds of artifacts. Geodesic

volumetric distance is adopted to measure distance

between a joint (bone) and a vertex when vertex

weights are determined. Instead, interior distance

[RLF09] can be also employed to reduce the compu-

ting time of pre-processing.

7. REFERENCES
[ACP02] ALLEN, B., CURLESS, B., and POPOVIC,

Z. Articulated body deformation from range scan

data. Proceedings of the 29th annual conference

on Computer graphics and interactive techniques,

pp.612-619, 2002.

[BP07] BARAN, I., and POPOVIC, J. Automatic

rigging and animation of 3d characters. ACM

SIGGRAPH 2007 papers, p.72, 2007.

 [KCZO07] KAVAN, L., COLLINS, S., ZARA, J.,

and O’SULLIVAN, C. Skinning with dual qua-

ternions, Proceedings of the ACM SIGGRAPH

Symposium on Interactive 3D Graphics and

Games. ACM Press, pp.39-46, 2007.

[KCZO08] KAVAN, L., COLLINS, S., ZARA, J.,

and O’SULLIVAN, C. Geometric skinning with

approximate dual quaternion blending. ACM

Transaction on Graphics, 27, 4, 2008.

 [KJP02] KRY, P., JAMES, D. L., PAI, D. K.. Ei-

genSkin: Real time large deformation character

skinning in hardware. Proceedings of the 2002

ACM SIGGRAPH/Eurographics symposium on

Computer animation, pp.153-159. 2002.

[KM05] KURIHARA, T., and MIYATA, N. Model-

ing deformable human hands from medical im-

ages. Proceedings of the 2004 ACM SIG-

GRAPH/Eurographics symposium on Computer

animation (Aire-la-Ville, Switzerland), Euro-

graphics Association, pp.355-363, 2005.

[KZ05] KAVAN, L., and ZARA, J. Spherical blend

skinning: a real-time deformation of articulated

models. Symposium on Interactive 3D Graphics

and Games, pp.9-16, 2005

[LCF01] LEWIS, J. P., CORDNER, M., and FONG,

N. Pose space deformation: a unified approach to

shape interpolation and skeleton-driven deforma-

tion. Proceedings of the 27th annual conference

on Computer graphics and interactive techniques,

pp.165-172, 2000.

 [MG03] MOHR, A., and GLEICHER, M. Building

efficient, accurate character skins from examples.

ACM SIGGRAPH 2003 Papers, pp.562-568,

2003.

[MLT88] MAGNENAT-THALMANN, N., LA-

PERRIERE, R., and THALMANN, D. Joint-

dependant local deformations for hand animation

and object grasping. Proceedings on Graphics in-

terface ’88, pp.26-33, 1988.

[RLF09] RUSTAMOV, R., LIPMAN, Y., FUNKH-

OUSER, T. Interior Distance Using Barycentric

Coordinates. Computer Graphics Forum (Sympo-

sium on Geometry Processing) 28(5), July, 2009

[RLN06] RHEE, T., LEWIS, J., and NEUMANN, U.

Real-time weighted pose-space deformation on

the GPU. Computer Graphics Forum 25, 3. 2006

[RHC09] ROHMER, D., HAHMANN, S., and CANI,

M.-P. Exact volume preserving skinning with

shape controls. Proceedings of the 2009 ACM

SIGGRAPH/Eurographics Symposium on Com-

puter Animation, pp.83-92, 2009.

[SRC01] SLOAN, P.-P., ROSE, C., and COHEN, M.

Shape by example. Proceedings of the 2001 sym-

posium on Interactive 3D graphics, pp.135-143,

2001.

[SZTDVG08] SHI, X., ZHOU, K., TONG, Y., DE-

SBRUN, M., BAO, H., and GUO, B. Example-

based Dynamic Skinning in Real Time. ACM

Trans. on Graphics, August 2008.

[YYM09] YAMANAKA, K., YANO, A., MORI-

SHIMA, S. Example Based Skinning with Pro-

gressively Optimized Support Joints. ACM SIG-

GRAPH Asia 2009 poster, December 2009.

[WP02] WANG, X. C., and PHILLIPS, C. Multi-

weight enveloping: Least-squares approximation

techniques for skin animation. Proceedings of the

ACM SIGGRAPH/Eurographics symposium on

Computer animation, pp.129-138, 2002.

[WSLG07] WEBER, O., SORKINE, O., LIPMAN,

Y., and GOTSMAN, C. Context-aware skeletal

shape deformation. Comp. Graph. Forum 26,

2007.

WSCG 2011 Communication Papers 90

Integration of Reconstruction Error Obtained by
Local and Global Kernel PCA with Different Role

Kazuhiro Hotta
Meijo University

1-501 Shiogamaguchi, Tenpaku-ku, Nagoya 468-8502, JAPAN
Email: kazuhotta@meijo-u.ac.jp

ABSTRACT
This paper presents a scene classification method using the integration of the reconstruction errors by local
Kernel Principal Component Analysis (KPCA) and global KPCA. There are some methods for integrating
local and global features. However, it is important to give obvious different role to each feature. In the
proposed method, global feature with topological information represents the rough composition of scenes
and local feature without position information represents fine part of scenes. Experimental results show
that accuracy is improved by using the reconstruction errors obtained from the different point of views. The
proposed method is much better than only local KPCA, global KPCA and linear Support Vector Machine
(SVM) of bag-of-visual words with the same basic feature. Our method is also comparable to conventional
methods using the same database.

Keywords:
Integration, Local, Global, Kernel PCA, Scene classification

1 INTRODUCTION
In recent years, many local feature based methods has
been proposed [1, 2, 3, 4]. Local features are more
robust to pose variations [4, 5] and partial occlusion
[6] than global features. Although local features have
these advantages, local features based methods tend
to mis-classify samples which are classified easily by
global features. Global features are adequate to extract
the rough information and relation with various regions
though they are not robust to pose variations and par-
tial occlusion. Thus, if we integrate global features and
local features well, the accuracy will be improved.

There are some methods for combining local features
with global features. For example, a face detector us-
ing SVM with a summation kernel of local and global
features was proposed [7]. However, when local and
global features are integrated in the level of a kernel
function and a detector is constructed by SVM with
the kernel, the properties of local and global features
may deny each other. Li [5] used holistic image as well
as local patches in pose independent face recognition.
Although accuracy was improved by using the sum of
probabilities by both features, there is a possibility that
the both properties are not used sufficiently in the sim-
ple summation.

To integrate effectively local and global features, it
is important to give each feature to obvious different
role (property). There are some methods which gave
each feature to different role. Rao [8] proposed a brain
model in which global prediction and local complemen-
tation were integrated. They reported that end-stopping
cell was obtained by this formulation. Murphy [9] in-
tegrated local and global features in Bayes theorem to
localize objects in images. In this method, global fea-
ture was used as context and local features were used as
part classifiers. By giving the obvious different role to
each feature, localization accuracy was improved.

In recent years, global features were used as contex-
tual information for object detection [9, 10]. However,
in these methods, scene category information was not
used. If the system recognizes the category of scenes
not only global feature of an image, the system can pre-
dict the object candidates which are probably included
in the scene category. Thus, researchers pay attention
to scene category classification problem in recent years
[11, 12, 2, 13, 14]. To classify scene category, the
rough composition of images is important. In this pa-
per, KPCA of global features represents the composi-
tion of images. It is effective for scene classification.
However, global feature of an image is easily influenced
by the position changes of objects in scenes. In gen-
eral, the positions of objects in scenes are not static.

WSCG 2011 Communication Papers 91

Therefore, the sift-invariant similarities by local fea-
tures should be integrated with the rough composition.
To do so, we integrate KPCA of local features without
position information and global KPCA. We show that
accuracy is improved by integrating the reconstruction
errors obtained by both KPCAs with different role.

The proposed method is evaluated using 13 scene
category database [15] because many methods were
evaluated using this database [11, 12, 2, 13, 14]. We
evaluated our method using the same experimental set-
ting with conventional methods. The proposed method
achieves more than 82.5% by integrating the recon-
struction errors obtained by both KPCAs though only
global KPCA and local KPCA achieve below 77%. The
accuracy is much better than the linear SVM of bag-of-
visual words with the same basic feature. Our approach
is also comparable with the conventional methods.

In section 2, the details of the proposed method are
explained. Evaluation results using 13 scene database
are shown in section 3. Finally, conclusion and future
works are described in section 4.

2 PROPOSED METHOD
The proposed method consists of 3 steps. The first step
extracts the features from images. In this paper, grid
sampling with 16×16 grids is used, and orientation his-
tograms of Gabor features are developed at each grid.

The second step is the local and global KPCAs. In
local KPCA, 4 orientation histograms without position
information on 2×2 grid are used as a local feature. In
global KPCA, orientation histograms with topological
information on an image are used. Local KPCA rep-
resents the fine part of scenes and global KPCA repre-
sents the rough composition of scenes. Note that global
KPCA is position dependent and local KPCA is posi-
tion independent. The third step is the classification by
integrating the reconstruction errors in both KPCAs.

In section 2.1, orientation histogram of Gabor fea-
tures is explained. Local and global KPCAs are ex-
plained in section 2.2. Section 2.3 explains the classifi-
cation by integration of both KPCAs.

2.1 Features for scene classification
In recent years, the effectiveness of orientation his-
togram [1] for object recognition is reported. We de-
velop the orientation histogram from multi-scale Gabor
features because Gabor features are better representa-
tion than simple gradient features [13].

First, we define Gabor filters. They are defined as

ψk (z) =
k2

ν
σ2 exp

(
−k2

ν zT z
2σ2

)
·

(
exp

(
ikT z

)
− exp

(
−σ2/2

))
, (1)

where z =(y,x)T , k = kν exp(iφ)= (kν cos(φ),kν sin(φ))T ,
kν = kmax/ f ν , φ = µ · π/8, f =

√
2 and σ = π . In

Figure 1: Orientation histogram from Gabor features

the experiments, Gabor filters of 8 different orientations
(µ = {0, . . . ,7}) with 3 frequency levels (ν = {0,1,2})
are used. In the following experiments, the norm of real
and imaginary parts at each point is used as the output
of a Gabor filter. The size of Gabor filters of 3 differ-
ent frequency levels is set to 9×9, 13×13 and 17×17
pixels respectively.

Next, we explain how to develop the orientation his-
togram from the output of Gabor filters. In this pa-
per, the orientation histogram is developed from evenly
sampled M×M grid. Figure 1 shows the example of
2×2 grid with only one scale parameter 1. First, Gabor
features (real and imaginary parts) of 8 orientations are
extracted from the input image. The norm of real and
imaginary parts at each pixel is computed. Then the ori-
entation histogram with 8 bins at each grid is developed
by voting the output value of the maximum orientation
at each pixel to the orientation bin. This process is re-
peated at each scale parameter independently.

In the experiments, we use evenly sampled 16× 16
grid, and the orientation histogram of 24 dimensions
(= 3 scales × 8 orientation bins) is developed at each
grid. Only 24 dimensional orientation histogram at
each grid is too small to classify scenes by using only
local features. Thus, we use 4 orientation histograms
on 2×2 grid without overlap are used as one local fea-
ture. Namely, 64 (= 8× 8) local features are obtained
from an image. The dimension of a local feature is 96
(= 24×2×2).

In local KPCA, local features without position infor-
mation are used. In global KPCA, all 64 local features
with position information are used.

2.2 Local and global KPCA with different
role

In this section, at first, we explain KPCA and kernel
function. After that, local KPCA and global KPCA are
explained.
Kernel PCA This section explains KPCA [16, 17]
briefly. When data {x1 . . . ,xL} is given, x is mapped

1 In the experiments, Gabor features of 3 scale parameters are used.
2

WSCG 2011 Communication Papers 92

Skala
Obdélník

into high dimensional space by non-linear mapping
φ(x). By applying linear PCA in high dimensional
space, non-linear principal components are obtained.
Covariance matrix in high dimensional space is com-
puted by

C =
1
L

L

∑
i=1

φ(xi)φ(xi)T . (2)

Eigen value problem for KPCA is defined by λV = CV
where λ is eigen value and V are eigen vectors. Eigen
vectors lie in the span of φ(x1), . . . ,φ(xL). Therefore,
the eigen vector is represented by

v =
L

∑
i=1

αiφ(xi), (3)

where αi is the coefficient.
The equation does not change when φ(xk) is multi-

plied to both sides. Then the eigen value problem is
changed as

λφ(xk)TV = φ(xk)TCV for all k = 1, . . . ,L. (4)

By substituting eigen vectors shown in equation (3)
into equation (4) and using the kernel matrix K where
Ki j = φ(xi)T φ(x j), we obtain the following eigen value
problem

Lλα = Kα. (5)

By solving the eigen value problem, α is obtained. We
have to normalize the obtained α p for satisfying vT

p vp =
1 for all p = 1, . . . ,L.

An input sample x is mapped into the p-th principal
component axis by

vT
p φ(x) =

L

∑
i=1

α p
i K(xi,x). (6)

The new feature vector in KPCA space is obtained by
the weighted sum of similarities with training samples
because kernel function computes the similarity with
training samples.

Next, moving on to consider the types of kernel func-
tion, it is reported that a normalized polynomial kernel
gives comparable performance with a Gaussian kernel
using optimal parameters [18]. In addition, the param-
eter dependency of a normalized polynomial kernel is
much lower than that of a Gaussian kernel. Since a
normalized kernel satisfies Mercer’s theorem [19], it is
used as the kernel function. The normalized polynomial
kernel is defined as

K(x,y) =
φ(x)T φ(y)

||φ(x)|| ||φ(y)|| ,

=
(1+ xT y)d

√
(1+ xT x)d (1+ yT y)d

. (7)

By normalizing the output of a standard polynomial
kernel, the kernel value is between −1 and 1. In this
paper, all orientation histograms are positive values as
explained in section 2.1. Thus, the kernel value takes
between 0 and 1 as with a Gaussian kernel. In local
KPCA, d = 5 is used empirically.
Local KPCA Since the distribution of local features
without position information is non-linear, KPCA is
appropriate for representing it [4, 20]. In this paper,
KPCA is applied to the set of 4 orientation histograms
without position information on 2×2 grid, and we call
this “local KPCA”. Since the norm normalization of an
input feature vector improves accuracy [6], the norm of
each orientation histogram is normalized before apply-
ing local KPCA.

Reconstruction error of φ(x) by local KPCA can be
computed as

||φ(x)−VV T φ(x)||2 = φ(x)T φ(x)−φ(x)VV T φ(x)
= K(x,x)−||V T φ(x)||2. (8)

Since we use a normalized polynomial kernel, K(x,x) =
1 and the reconstruction error takes the value between 0
and 1. ||V T φ(x)||2 is called as CLAss-Featuring Infor-
mation Compression (CLAFIC) [21, 22, 23, 24]. The
reconstruction error is also called as Distance From
Feature Space (DFFS) [25]. The reconstruction error
K(xi,xi)−||V T φ(xi)||2 of i-th local feature xi is denoted
as εli.

In the classification by using only local KPCA, we
compute the sum of reconstruction errors of all local
features in an image, and the image is classified to the
category which has minimum reconstruction error.
Global KPCA with local summation kernel In this
paper, we want to compute the reconstruction error of
the i-th local feature xi from local and global view-
points, and both reconstruction errors are integrated to
improve accuracy. When global KPCA without any de-
vices is applied to the set of all local features of an im-
age, we obtain only the total reconstruction error εg and
can not obtain the reconstruction error εgi of the i-th
local feature xi. Therefore, we use the local summa-
tion kernel [26] and the expansion of it [20] to compute
the reconstruction error of i-th local feature by global
KPCA.

Local summation kernel in which local kernels are
summarized is defined as

Ksum(x,y) =
N

∑
i

φ(xi)T φ(yi) =
N

∑
i

K(xi,y j)

= φg(x)T φg(y) (9)

where φg(x)= (φ(x1)T , . . . ,φ(xN)T)T and x =(xT
1 , . . . ,xT

N)T .
Namely, in a local summation kernel, each local feature
xi is mapped into φ(xi) and global feature φg(x) is con-
structed by connecting all φ(xi). After that linear PCA

3

WSCG 2011 Communication Papers 93

Skala
Obdélník

is applied to the set of φg(x) extracted from training im-
ages.

If we use a normalized polynomial kernel with 2nd
degree as a local kernel, we can compute eigen vectors
of primal form directly not dual form. Therefore, we
can compute the reconstruction error of i-th local fea-
ture by using the eigen vectors of the primal form. Note
that dual form is the description using kernel function
and primal form uses φ(x) directly not kernel function.

In normalized polynomial kernel with 2nd degree
(d = 2 in equation (7)), the dimension of a mapped fea-
ture φ(x) becomes (nd +2)(nd +1)/2 when the dimen-
sion of an input feature x is nd. For example, the 2 di-
mensional feature x = (x1,x2)T is mapped into 6 dimen-
sional feature φ(x) = (x2

1/a,x2
2/a,

√
2x1/a,

√
2x2/a,√

2x1x2/a,1/a)T where a is the norm of the vector
(x2

1,x
2
2,
√

2x1,
√

2x2,
√

2x1x2,1)T . Note that the norm
of mapped feature is normalized to 1 in a normalized
polynomial kernel. In this paper, the dimension of φ(xi)
is 4753 because the dimension of a local feature xi is 96.

The eigen vectors W with the primal form which are
obtained by global KPCA with a local summation ker-
nel can be described as

W = (w1, . . . ,wM), (10)

where M is the number of dimension (eigen vectors
used) of KPCA space. The p-th eigen vector wp can
be described as

wp = (wT
p1, . . . ,w

T
pN)T . (11)

This equation means that each eigen vector is con-
nected the coefficient vectors for φ(xi) which is the fea-
ture after non-linear mapping of i-th local feature. The
dimension of wpi corresponds to φ(xi). Thus, a global
feature x extracted from an image is mapped into the
p-th principal component axis as

wT
p φg(x) =

N

∑
i

wT
piφ(xi). (12)

Since we use a local summation kernel, inner product
between eigen vector and φg(x) can be decomposed into
the summation of local inner products.

The difference from local KPCA is the eigen vectors
which are determined by using entire feature extracted
from an image. Namely, the eigen vectors of global
KPCA are position dependent though the eigen vectors
of local KPCA are not. Since global KPCA with a lo-
cal summation kernel is the linear PCA of φg(x), eigen
vectors also have relative information with other local
regions.

The computation of reconstruction error by global
KPCA is easy because φg(x) and φ̂g(x) = WW T φg(x)
can be computed directly by primal form. Since the to-
tal reconstruction error ||φg(xi)− ̂φg(xi)||2 is the sum of

reconstruction error of all local features as ∑N
i ||φ(xi)−

φ̂(xi)||2, the reconstruction error of the i-th local feature
can be computed easily. The reconstruction error of i-th
local feature is described as εgi.

In the classification by using only global KPCA, the
total reconstruction error ∑N

i εgi of an image is com-
puted, and the image is classified to the category which
has minimum error.

2.3 Classification by inter-complementation
We integrate the reconstruction errors obtained by local
and global KPCAs with different role. Figure 2 shows
the reconstruction by local KPCA. The i-th local fea-
ture xi (square region in the Figure) is mapped to φ(xi)
which is shown as the circle in the Figure. The circle on
the right side shows the reconstructed feature VV T φ(xi)
by local KPCA. The difference between 2 circles is the
reconstruction error of i-th local feature.

Figure 3 shows the reconstruction by global KPCA
with a local summation kernel. The i-th local feature xi
is mapped to φ(xi), and global feature is constructed as
φg(x) = (φ(x1)T , . . . ,φ(xN)T)T . The circle on the left
side in the Figure shows the global feature φg(x) and
the circle on the right side shows the reconstructed fea-
ture WW T φg(x) by global KPCA. As shown in previous
section, the total reconstruction error by global KPCA
is divided into the reconstruction error at each local fea-
ture.

The difference between the reconstruction error by
local and global KPCAs is whether position dependent
or not. In addition, global KPCA with a local summa-
tion kernel uses the relation with various regions though
relative information with other regions is not used in
local KPCA. Therefore, the integration of both recon-
struction errors obtained from the different points of
view will improve the accuracy.

To integrate the both reconstruction errors, we use the
weighted integration as

E = γ
N

∑
i

εli +(1− γ)
N

∑
i

εgi, (13)

where γ is the weight. A test image is classified to the
category which gives the minimum integration error. If
we set γ to 0, the method corresponds to the use of only
global KPCA. γ = 1 means that only local KPCA is
used. Experiments demonstrate the effectiveness of our
integration method.

3 EXPERIMENTS
In this section, the proposed method is evaluated us-
ing the 13 scene database [15]. First, image database,
evaluation method is explained in section 3.1. Next,
evaluation results are shown in section 3.2.

4

WSCG 2011 Communication Papers 94

Skala
Obdélník

Figure 2: Reconstruction by local KPCA

Figure 3: Reconstruction by global KPCA

3.1 Image database and evaluation method
We use the database of 13 scene categories in order to
compare our method with conventional studies [11, 12,
2, 13, 14]. The database includes only gray-level im-
ages with various sizes. Each scene category has dif-
ferent number of images. Examples of 13 scene cate-
gories are shown in Figure 4. There are various scene
categories such as outdoor and indoor. The within-class
variance in scene classification is larger than that in face
recognition problem because camera angle and objects
in images are not static.

In this paper, the images of each scene category are
divided into two sets; training and test sets. 100 images
selected randomly are used as training set. The remain-
ing images of each scene category are used as test set.
This protocol is the same as [11, 12, 2, 13, 14].

Each scene category has the different number of test
images. The minimum and maximum number of test
image of a class is 110 and 310. To reduce the bias of
different number of test images, the mean of the clas-
sification rate of each scene category is used in evalu-
ation. This is also the same as conventional methods.
We repeat this evaluation 3 times with different initial
seed of a random function, and the mean classification
rate of 3 runs is used as a final result.

3.2 Evaluation results
First, the proposed integration method is evaluated while
changing the weight γ in equation (13). Figure 5 shows
the result in which horizontal axis is γ and the vertical
axis is the correct classification rate. Note that γ = 0
means the use of only global KPCA and γ = 1 means
the use of only local KPCA. The 3 lines in the Figure

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

(j) (k) (l) (m)

Figure 4: Examples of 13 scene images. (a) suburb (b)
coast (c) forest (d) highway (e) inside-city (f) mountain
(g) open-country (h) street (i) tall-building (j) office (k)
bedroom (l) kitchen (m) living-room

mean the results with 3 different initial seeds for ran-
dom function. The average classification rate of 3 runs
is shown in Figure 6. Figures demonstrates that the in-
tegration of 2 KPCAs with different role improves ac-
curacy. The best accuracy achieves more than 82.5%
though the accuracy of only local KPCA or global
KPCA is below 77%. Namely, about 6% in accuracy
is improved by very simple weighted integration.

Table 1 shows that best accuracy of the proposed
method, the accuracy of only local and global KPCA.
The best accuracy of the weighted integration method
is obtained at γ = 0.79. To show the baseline accuracy,
we also evaluate the linear SVM of bag-of-visual words
[27] which are commonly used in scene classification
and object categorization. The basic feature for com-
puting the visual words is 4 orientation histograms on
2×2 grid which are same as the proposed method. Ta-
ble 1 also shows the accuracy. It achieves below 73%.
This result shows the effectiveness of our method.

Finally, our method is compared with the conven-
tional methods using the same database [11, 12, 13, 14,
2]. In general, the classification accuracy depends on
the features and classifiers. Since each conventional
method used different features and classifiers, the direct
comparison with our method is difficult. Comparison
result is shown Table 2. Note that accuracy of conven-
tional methods is obtained from each paper. Since two
methods [11, 12] used the bag-of-visual words with the
local parts obtained from evenly sampled grid, they are
similar with linear SVM of bag-of-visual words imple-
mented by us. In [13], orientation histograms were de-
veloped from subregions with various sizes. Our simple
approach gives much better accuracy than the method.
In [14], auto-correlation in KPCA space of visual words
is used to give shift-invariance and relative informa-
tion with neighboring regions to feature. The proposed
method integrates the shift-invariance similarity by lo-

5

WSCG 2011 Communication Papers 95

Skala
Obdélník

Table 1: Evaluation result
Method Classification rate
Proposed method 82.63%
local KPCA 76.62%
global KPCA 74.71%
linear SVM of bag-of-words 72.66%

Table 2: Comparison with conventional methods
Method Classification rate
Proposed method 82.63%
[2] (PAMI2008) 85.9%
[28] (ICPR2010) 84.33%
[14] (ICIP2009) 81.43%
[13] (ICVS2008) 76.12%
[12] (ECCV2006) 73.4%
[11] (CVPR2005) 65.2%

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0 0.2 0.4 0.6 0.8 1

globalKPCA_localKPCA1
globalKPCA_localKPCA2
globalKPCA_localKPCA3

Figure 5: Accuracy of the proposed integration method

cal KPCA and the similarity with position dependent
rough composition by global KPCA. Our simple ap-
proach outperforms the result in [14]. Unfortunately,
our method is worse than the method [2] using spatial
pyramid probabilistic Latent Semantic Analysis and the
method [28] using local co-occurrence features. How-
ever, those methods used many devices while the pro-
posed method is very simple in which the reconstruc-
tion errors of 2 KPCAs are integrated by only one pa-
rameter. In addition, the simple integration method is
comparable to conventional methods though the direct
comparison is difficult because of different features and
classifiers. This shows the possibility of our approach.
The accuracy will be improved further if we extend the
proposed approach. This is a subject of future works.

 0.74

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0 0.2 0.4 0.6 0.8 1

Figure 6: Average accuracy of 3runs

4 CONCLUSIONS AND FUTURE WORKS
We proposed a scene classification method using the
integration of rough composition by global KPCA and
fine part by local KPCA. By giving the obvious differ-
ent role to both KPCAs, the simple weighted integra-
tion improved about 6% in comparison with only local
and global KPCAs. The proposed method also outper-
formed the linear SVM of bag-of-visual words with the
same features. Our very simple approach gave com-
parable accuracy with conventional methods using the
same database. This shows the possibility of our ap-
proach.

In this paper, the simple weighted integration is used,
and the accuracy is evaluated with the fixed weight for
all test samples. However, if we select the appropri-
ate weight for each test sample, the accuracy will be
improved further. We may use the particle filter to se-
lect the weight such as [4]. This is a subject for future
works.

REFERENCES
[1] D. Lowe, “Distinctive image features from scale-

invariant keypoints,” International Journal of
Computer Vision 60(2), pp. 91–110, 2004.

[2] A. Bosch, A. Zisserman, and X. Munoz,
“Scene classification using a hybrid genera-
tive/discriminative approach,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence 30(4),
pp. 712–727, 2008.

[3] L. Fei-Fei, R. Fergus, and P. Perona, “Learning
generative visual models from few training exam-
ples: An incremental bayesian approach tested on
101 object categories,” in Proc. CVPR Workshop
of Generative Model Based Vision, 2004.

[4] K. Hotta, “Pose independent classifcation from
small number of training samples based on kernel
principal component analysis of local parts,” Im-

6

WSCG 2011 Communication Papers 96

Skala
Obdélník

age and Vision Computing 27(9), pp. 1240–1251,
2009.

[5] A. Li, S. Shan, X. Chen, and W. Gao, “Maxmizing
intra-indivisual correlations for face recognition
across pose differences,” in Proc. IEEE CS Con-
ference on Computer Vision and Pattern Recogni-
tion, 2009.

[6] K. Hotta, “Local normalized linear summation
kernel for fast and robust recognition,” Pattern
Recognition 43(3), pp. 906–913, 2010.

[7] K. Hotta, “View independent face detection based
on horizontal rectangular features and accuracy
improvement using combination kernel of various
sizes,” Pattern Recognition 42(3), pp. 437–444,
2009.

[8] R. P. N. Rao and D. H. Ballard, “Efficient encod-
ing of natural time varying images produces ori-
ented space-time receptive fields,” tech. rep., 97.4,
Dept of Comp Sci, Univ of Rochester, 1997.

[9] K. Murphy, A. Torralba, D. Eaton, and W. Free-
man, “Object detection and localization using lo-
cal and global features,” in Toward Category-
Level Object Recognition, pp. 382–400, 2006.

[10] T. Ishihara, K. Hotta, and H. Takahashi, “Es-
timation of object position based on color and
shape contextual information,” in Proc. Interna-
tional Conference on Image Analysis and Process-
ing, LNCS Vol.5716, pp. 57–62, 2009.

[11] L. Fei-Fei and P. Perona, “A bayesian hierarchi-
cal model for learning natural scene categories,”
in Proc. IEEE CS Conference on Computer Vision
and Pattern Recognition, pp. 524–531, 2005.

[12] A. Bosch, A. Zisserman, and X. Munoz, “Scene
classification via plsa,” in Proc. 9th European
Conference on Computer Vision, pp. 517–530,
2006.

[13] K. Hotta, “Scene classification based on multi-
resolution orientation histogram of gabor fea-
tures,” in Proc. International Conference on Com-
puter Vision Systems, LNCS Vol.5008, pp. 291–
301, 2008.

[14] K. Hotta, “Scene classification based on local au-
tocorrelation of similarities with subspaces,” in
Proc. IEEE International Conference on Image
Processing, pp. 2053–2056, 2009.

[15] 13 Scene categories database.
http://vision.cs.princeton.edu/ Datab-
sets/SceneClass13.rar.

[16] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and
B. Schölkopf, “An introduction to kernel-based
learning algorithms,” IEEE Trans. Neural Net-
works 12(2), pp. 181–201, 2001.

[17] B. Schölkopf, C. Burges, and A. Smola, Advances

in kernel methods: support vector learning, MIT
Press, 1998.

[18] R. Debnath and H. Takahashi, “Kernel selection
for the support vector machine,” IEICE Trans.
Info. & Syst. E87-D(12), pp. 2903–2904, 2004.

[19] J. Shawe-Taylor and N. Cristianini, Kernel Meth-
ods for Pattern Analysis, Cambridge University
Press, 2004.

[20] K. Hotta, “Non-linear feature extraction by linear
principal component analysis using local kernel,”
Pattern Recognition Recent Advances , pp. 99–
109, 2010.

[21] T. Balachander and R. Kothari, “Kernel based
subspace pattern classification,” in Proc. Inter-
national Joint Conference on Neural Networks,
vol. 5, pp. 3119–3122, 1999.

[22] E. Oja, Subspace Methods of Pattern Recognition,
Research Studies Press Ltd., 1983.

[23] S. Watanabe, Knowing and Guessing - Quantita-
tive Study of Inference and Information, John Wi-
ley & Sons, 1969.

[24] S. Watanabe and N.Pakvasa, “Subspace method
of pattern recognition,” in Proc. 1st International
Joint Conference on Pattern Recognition, pp. 25–
32, 1973.

[25] B. Moghaddam and A. Pentland, “Probabilistic
visual learning for object representation,” IEEE
Trans. Pattern Analysis and Machine Intelligence
19(7), pp. 696–710, 1997.

[26] K. Hotta, “Robust face recognition under partial
occlusion based on support vector machine with
local gaussian summation kernel,” Image and Vi-
sion Computing 26(11), pp. 1490–1498, 2008.

[27] G. Csurka, C. Dance, L. Fan, J. Willamowski, and
C. Bray, “Visual categoraization with bags of key-
points,” in Proc. ECCV Workshop on Statistical
Learning in Computer Vision, pp. 1–16, 2004.

[28] K. Hotta, “Scene classification using local co-
occurrence feature in subspace obtained by kpca
of local blob visual words,” in Proc. International
Conference on Pattern Recognition, pp. 4230–
4233, 2010.

7

WSCG 2011 Communication Papers 97

Skala
Obdélník

WSCG 2011 Communication Papers 98

Gait Recognition in the Presence of Occlusion: A New
Dataset and Baseline Algorithms

Martin Hofmann1, Shamik Sural2, Gerhard Rigoll1

1 Institute for Human-Machine Communication, Technische Universität München, Germany
{martin.hofmann,rigoll}@tum.de

2 Indian Institue of Technology Kharagpur, India
shamik.sural@gmail.com

ABSTRACT

Human gait is an important biometric feature for identification of people. In this paper we present a new dataset for gait
recognition. The presented database overcomes a crucial limitation of other state-of-the-art gait recognition databases. More
specifically this database addresses the problem of dynamic and static inter object occlusion. Furthermore this dataset offers
three new kinds of gait variations, which allow for challenging evaluation of recognition algorithms. In addition to presenting
the database we present two baseline algorithms (Color histograms, Gait Energy Image) to perform person identification using
gait. These algorithms already show promising results on the presented database.

Keywords: biometrics, gait recognition, database, occlusion, gait energy image.

1 INTRODUCTION
Person identification by biometric features is a well
established research area. The main focus has so far
been on physiologic features such as face, iris and fin-
gerprint. In addition, behavior based features such as
voice, signature and gait can be used for person identi-
fication. In this work we contribute to the research of
person identification using gait. The main advantage of
using these features over other physiologic features is
the possibility to identify people from large distances
and without the person’s direct cooperation. For ex-
ample, in low resolution images, a person’s gait signa-
ture can be extracted, while the face is not even visi-
ble. Also no direct interaction with a sensing device
is necessary, which allows for undisclosed identifica-
tion. Thus gait recognition has great potential in video
surveillance, tracking and monitoring.

Studies suggest [13] that if all gait movements are
considered, gait is unique. These findings are the basis
of the assumption that recognition using only gait must
also be possible for a computer system. Over the last
decade the field of recognizing people using gait fea-
tures has received remarkable attention. A multitude of
methods and techniques in feature extraction as well as
in classification have been developed. Experiments are
promising and encouraging.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

While good datasets for training and evaluation are
available (See summary in Section 3), we find that all
of them ignore to address one important challenge: The
challenge of occlusions. Occlusions are annoying but
are unfortunately omnipresent in practice. Especially
in a real word surveillance scenario, occlusions occur
frequently. Typical gait recognition algorithms require
a full gait cycle1 for recognition. In the case of oc-
clusion, however, it becomes a challenging problem to
extract a full gait cycle. In heavy occlusion, parts of
the gait cycle might be visible, while other parts are
obscured by another person walking in front. The chal-
lenge then lies in stitching together parts of different
gait cycles in order to obtain one complete gait cycle.
Alternatively gait recognition algorithms could be de-
veloped for which parts of the gait cycle are sufficient.
While to date, no algorithm is capable of handling par-
tially observable gait cycles, we here present the TUM-
IITKGP gait dataset, which can be used to specifically
address occlusions.

To this end the presented database includes record-
ings with two kinds of occlusions. On the one hand
dynamic occlusions by people walking in the line of
sight of the camera and on the other hand static occlu-
sions by people who are occluding the person of inter-
est by standing in the scene. In addition to specifically
addressing the occlusion challenge, the TUM-IITKGP
dataset also features three new configuration variations,
which allows to test algorithms for their capability of
handling changes in appearance.

We present two baseline algorithms for recognition
on this dataset. The first algorithm uses appearance

1 A full gait cycle is the time interval between successive instances of
initial foot-to-floor contact for the same foot

WSCG 2011 Communication Papers 99

A2 A1

B1 B2 C2D1 D2

camera

C1

hallway

Figure 1: Physical setup of the recording

information based on color histograms. Thus this al-
gorithm is not precisely a gait recognition algorithm,
but shows promising results. The second algorithm is
an actual gait recognition algorithm based on the well
known Gait Energy Image (GEI) features [6][7]. It can
be seen that this baseline algorithm which uses only
motion information and no color information already
shows excellent results.

Section 2 gives a summary of related gait recognition
databases. Section 3 presents the new dataset in de-
tails. We then present in Section 4.1 a simple baseline
recognition system based on color histograms, as well
as an actual gait recognition baseline algorithm in Sec-
tion 4.2. Results are given in Section 6 and we conclude
in Section 7.

2 RELATED GAIT DATABASES
Since the field of gait recognition has been in exis-
tence for roughly a decade, the research community has
long utilized publicly available databases for compara-
tive performance evaluation.

Table 1 summarizes the most prominent gait recogni-
tion corpora. This table also shows the important fea-
tures of the particular databases. The most important
features of a database are the number of subjects (which
should be high), as well as a good set of person varia-
tions. These variations include, but are not limited to,
view angle, clothing, shoe types, surface types, carrying
condition, illumination, and time.

The first available dataset was the 1998 UCSD
Dataset [11], which contains merely 6 subjects. Most
of the following early gait recognition databases
were published in 2001 from various institutions
[2][3][5][9][10][12]. Those datasets feature a medium
number (about 25) of subjects. It was then found, that
for meaningful evaluation, datasets should contain at
least 30 subjects and possibly more.

The most comprehensive database to date, which fea-
tures a large set of subjects as well as a substantial set
of variations is probably the HumanID Gait Challenge
[15]. Other databases such as CASIA (Dataset B) [1]
also feature high numbers of subjects and a significant
number of variations. CASIA additionally features an
exhaustive number of views, which allows for precise
3D reconstruction.

3 THE TUM-IITKGP DATABASE
As established in the introduction, the rationale behind
recording a new gait recognition dataset is to specifi-
cally address the problem of occlusions, which would
frequently occur in real world applications. The TUM-
IITKGP Database currently consists of 840 sequences
from 35 individuals.

The physical setup can be seen in Figure 1. The cam-
era is set up in a rather narrow hallway, reflecting a re-
alistic setup in a potential real world surveillance appli-
cation. The camera is positioned at a medium height
of 1.85 meters and is oriented perpendicular to the hall-
way direction. Thus people are walking from right to
left and from left to right in the image.

Each person is captured in six different configura-
tions. Furthermore, each of the configurations is re-
peated two times in a right-to-left motion and two times
in a left-to-right motion, resulting in a total of 840 se-
quences. Table 2 and Figure 2 show the six config-
urations for each person. Each person was primarily
recorded in a regular walking configuration, followed
by three degenerated configurations including hands in
pocket, backpack and gown. These configurations can
be used to evaluate recognition methods in the presence
of different kinds of gait variation.

Furthermore two configurations are specifically de-
signed to evaluate performance in the presence of oc-
clusions. One is with two people walking past (dynamic
occlusion). The other is with two people just standing
in the line of sight (static occlusion).

In all of the six recordings, the person of interest (the
subject) is starting to walk at point A1 and ending at
point A2. In case of dynamic occlusions (configura-
tion 5), the two other people are walking from B1/C1
to B2/C2, respectively. For static occlusions (configu-
ration 6), the two additional people are standing at D1
and D2, respectively.

Overall, each configuration is repeated 4 times. For
the second iteration the walking directions are inversed.
Thus the subject is walking back from A2 to A1, and in
case of occlusion configuration 5, the occluding peo-
ple are also walking in the opposite direction. The third
iteration is equivalent to the first and the fourth is equiv-
alent to the second.

Short Name Description
Conf. 1 regular Regular walking
Conf. 2 pocket Walk with hands in

pocket
Conf. 3 backpack Walk with a backpack
Conf. 4 gown Walk with gown
Conf. 5 dynamic occlu-

sion
Occlusion by two walk-
ing people

Conf. 6 static occlusion Occlusion by two
standing people

Table 2: Walking configurations

WSCG 2011 Communication Papers 100

Database, Ref. #subjs. #seqs. Environment Time Variations
UCSD ID [11] 6 42 Outdoor, Wall

background
1998 Time (minutes)

CMU Mobo [5] 25 600 Indoor, Tredmill 2001 Viewpoint, Walking speeds,
Carrying conditions, Surface
incline

Georgia Tech [9]
15 268 Outdoor 2001 Time(6 months), viewpoint
18 20 Magnetic tracker 2001 Time(6 months)

HID-UMD Dataset 1
[10]

25 100 Outdoor 2001

HID-UMD Dataset 2
[3]

55 222 Outside, Top
mounted

2001 viewpoints (front, side), time

MIT, 2001 [2] 24 194 Indoor 2001 view, time (minutes)
Soton Small Database
[12]

12 - Indoor, green back-
ground

2001 carrying condition, clothing,
shoe, view

Soton Large Database
[12]

115 2128 Indoor, Outdoor,
Tredmill

Summer
2001

view

HumanID Gait Chal-
lenge [15]

122 1870 Outdoor May &
Nov. 2002

viewpoint, surface, shoe, carry-
ing condition, time (months)

CASIA Database A [1] 20 240 Outdoor Dec. 2001 3 viewpoints
CASIA Database B [1] 124 13640 Indoor Jan 2005 11 viewpoints, clothing, carry-

ing condition
CASIA Database C [1] 153 1530 Outdoor, night,

thermal camera
2005 speed, carrying condition

TUM-IITKGP 35 840 Indoor, Hallway,
Occlusions

Apr. 2010 time (minutes), carrying condi-
tion, occlusions

Table 1: Comparison of other gait recognition databases

(a) regular (b) pocket (c) backpack

(d) gown (e) dynamic occlu-
sion

(f) static occlusion

Figure 2: Example images from all six configurations

4 BASELINE ALGORITHMS
In order to show first recognition results and in order
to have a means of comparing other algorithms for fu-
ture performance evaluation, we applied two baseline
algorithms to the database.

Both methods are non-model based. The first method
uses color histograms for feature extraction, the second
method uses Gait Energy Image (GEI) [7]. Obviously
using only color information has a multitude of draw-
backs, most importantly the fact that this kind of feature
is not invariant to change of clothing.

The second method however is a true gait recognition
method, because the Gait Energy Image captures tem-
poral motion over a gait cycle and is independent from
any appearance based features such as color.

4.1 Baseline Algorithm using Color
Histograms

Using color histograms is a widely used technique for
recognition and re-identification of people. This holds
especially true for short-time recognition, where people
do not change their appearance and clothing. Color his-
tograms are extremely fast and easy to compute. Fur-
thermore no detection of body parts is necessary, be-
cause the feature can be extracted globally from the
full person. Besides the problem that color features
fail in case of change in clothing, another drawback is
that they are very sensitive to lighting differences espe-
cially when recognition is to be performed between dif-
ferently calibrated cameras. This however can be han-
dled using adaptive appearance transformations such as
the Brightness Transfer Function [14].For this work, we
use 4-by-4-by-4 3D color histograms H. Thus each
person in the database is represented by a 4096 dimen-
sional sparse feature vector. To extract this feature vec-
tor, we first use background modeling based on Gaus-
sian Mixture Models [16] to segment foreground blobs.
The color histograms are then computed over all fore-
ground segments on the full sequence.For recognition
we use nearest neighbor classification, where H j is the

WSCG 2011 Communication Papers 101

(a) regular (b) pocket (c) backpack (d) gown

Figure 3: Gait Energy Images for four configurations

j-th sample from the test set, and H i is the mean of the
samples in the i-th class from the training set.

L j = argmin
i

dX (H j,H i) (1)

Here dX = {deuclid ,dcorr,dbhatt ,dchi} is the distance
function of one of four different histogram comparison
measures: Euclidean distance, normalized correlation,
Bhattacharyya distance and Chi Squared distance with
the following respective formulas:

deuclid =
√

∑
Bins

(H1−H2)2 (2)

dcorr = 1− ∑Bins (H1− H̄1)(H2− H̄2)

∑Bins
√
(H1− H̄1)2(H2− H̄2)2

(3)

dbhatt = 1−∑
Bins

√
H1

∣H1∣
H2

∣H2∣
(4)

dchi = ∑
Bins,H1+H2 ∕=0

(H1−H2)
2

H1 +H2
(5)

In the experiments it turned out that all four of these dis-
tance measures performed similarly well with a slight
tendency of the Chi Squared distance being the best.
See results in Section 6.

4.2 Baseline Algorithm based on Gait
Energy Image

In contrast to the color histogram method presented
in the previous section, GEI [6] is considered a true
gait recognition method, because the used features only
make use of silhouette and motion information. Ap-
pearance and color information is discarded.

4.3 Feature Extraction using GEI
In essence, the Gait Energy Image is an arithmetic mean
of the binarized foreground blobs. Denote Bt the fore-
ground silhouette in frame t. Then, the Gait Energy Im-
age g is formally defined as the silhouette average over
one full gait cycle:

g(x,y) =
1
T

T

∑
t=1

Bt(x,y) (6)

Here, T is the number of frames in a full gait cycle.
Using this kind of feature greatly reduces the available

data, since all the gait information is compressed to
only one gray level image. Figure 3 shows Gait En-
ergy Images for the first four configurations. It has been
shown that this representation suffices for person iden-
tification [7].

4.4 Feature Space Reduction
The gait energy images g(x,y) have a resolution of
130× 200 pixels. Thus the feature vector is still large
with 26000 dimensions. We apply principal compo-
nent analysis (PCA) followed by multiple discriminant
analysis (MDA) to reduce the size of the feature vec-
tor. A combination of PCA and MDA, as proposed in
[8], results in the best recognition performance. While
PCA seeks a projection that best represents the data [4],
MDA seeks a projection that best separates the data [8].

Assume that the training set, consisting of N d-
dimensional training vectors {g1,g2, . . . ,gN}, is given.
Then the projection to the d′ < d dimensional PCA
space is given by

yk =Upca(gk−g), k = 1, . . . ,N (7)

Here Upca is the d′× d transformation matrix with the
first d′ orthonormal basis vectors obtained using PCA
on the training set {g1,g2, . . . ,gN} and g = ∑

N
k=1 gk is

the mean of the training set. After PCA, MDA is per-
formed. It is assumed that the reduced vectors Y =
{y1,y2, . . . ,yN} belong to c classes. Thus the set of re-
duced training vectors Y is composed of its c disjunct
subsets Y =Y1∩Y2∩ . . .Yc. The MDA projection has
by construction (c− 1) dimensions. These (c− 1) di-
mensional vectors zk are obtained as follows

zk =Vmdayk, k = 1, . . . ,N (8)

where Vmda is the transformation matrix obtained using
MDA. This matrix results from optimizing the ratio of
the between-class scatter matrix SB and the within-class
scatter matrix SW :

J(V) =
∣S̃B∣
∣S̃W ∣

=
∣V T SBV ∣
∣V T SWV ∣

. (9)

Here the within-class scatter matrix SW is defined as
SW = ∑

c
i=1 Si, with Si = ∑y∈Yi(y−mi)(y−mi)

T and
mi =

1
Ni

∑y∈Yi y. Where Ni = ∣Yi∣ is the number of vec-
tors in Yi. The between-class scatter SB is defined as
SB = ∑

c
i=1 Ni(mi−m)(mi−m)T , with m = 1

N ∑
c
i=1 Nimi.

Finally, for each Gait Energy Image, the correspond-
ing gait feature vector is computed as follows

zk =UpcaVmda(gk−g) = T (gk−g), k = 1, . . . ,N
(10)

4.5 Classification
For further classification, we use nearest neighbor clas-
sification on this reduced set of feature vectors. To this

WSCG 2011 Communication Papers 102

(a) Baseline 2a (b) Baseline 2b

Figure 4: Cropped GEI regions used for recognition

end, first the mean feature vector zi is calculated for
each class.

zi =
1
∣Zi∣ ∑

z∈Zi

z. (11)

For each Gait Energy Image from the test set ĝ j, we
perform the identical transformation to get the reduced
feature vector

ẑ j = T (ĝ j−g) (12)

Person identification then becomes a nearest-
neighbor classification. We assign a class label L j to
each test gait image according to

L j = argmin
i
∣∣ẑ j− zi∣∣ (13)

4.6 Implementation details

Besides the principle approach as it was described
above, there are several technical details that had to be
considered. First, for our experiments, we align the
foreground blobs Bt before calculating the GEI. This is
done by centering each blob Bt based on the centroid
of the top 10% of each blob. This way it is guaranteed
that the heads, which are most stable in recognition,
are all aligned at the same position.

Second, we found (just like others have [7] [15]), that
using the full Gait Energy Images for recognition does
not result in the best performance. Especially the lower
region of the image is quite troublesome, because of
shadows and reflections on the ground, as well as dif-
ferent floor types (as in [15]). Therefore we decided to
use only the top 80% of the GEIs. Figure 4 depicts the
cropping regions.

In addition we experimented with a second cropped
variation of the GEIs. Here we use the top 80% of the
image, and only the rightmost 60% of the image. This
way, only the frontal part of the persons are included.
This is beneficial, because this way the gown and the
backpack have a much smaller impact on the Gait En-
ergy Images. In Section 6 we show that this cropping
indeed leads to improved recognition rates.

0 5 10 15 20 25 30 35

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank N

R
ec

og
ni

tio
n

ra
te

Baseline 1 (Color Histogram)
Baseline 2a (GEI)
Baseline 2b (GEI cropped)

Figure 5: Rank N recognition rates for the three Base-
line variants

5 EVALUATION METHOD
The presented gait recognition database is meant to be
a basis for performance evaluation of various present
and future gait recognition algorithms. Therefore, eval-
uation should be carried out the same way for all algo-
rithms. We propose the following procedure:

The goal is to recognize a person, which has only
been seen once before. Thus the training set consists
of merely one single sequence of each person. We de-
fine that this sequence is one from the first configuration
(regular walking). Consequently the test set consists of
23 sequences for each person (three for regular and
four each for the other five configurations). Because
the database consists of 35 people, the overall test set
consists in total of 805 sequences.

Since there are four sequences for the first configura-
tion, a 4-fold cross validation is performed. This means
that there are 4 rounds of evaluation, each time with one
of the four sequence in regular configuration as the sole
training sample, and all the rest as the test. The result is
then averaged over the 4 rounds of evaluation.

6 RESULTS
We evaluate on the one hand the color histogram based
recognition method (Baseline 1), described in Section
4.1 and on the other hand we evaluate GEI approach
(Baseline 2) described in Section 4.2. In the second
case we evaluate the recognition rate for the two dif-
ferently cropped Gait Energy Images. However, at this
point, the Gait Energy Image could not be calculated
for configuration 5 and 6, thus there are no results in
those cases.

Results are shown in Table 3. We evaluate the recog-
nition rate for each of the configurations separately and
we report overall recognition rates. For all three vari-
ants, we report rank 1, rank 5 and rank 10 recogni-
tion rates. Figure 5 additionally shows the cumulative
matching characteristic (CMC) for the rank n recogni-
tion rates for all three baseline variant.

WSCG 2011 Communication Papers 103

Top 1 Top 5 Top 10
BL 1 BL 2a BL 2b BL 1 BL 2a BL 2b BL 1 BL 2a BL 2b

Conf. 1 97.9% 68.6% 77.1% 100% 76.2% 94.3% 100% 85.7% 97.1%
Conf. 2 93.3% 67.1% 75.7% 93.3% 80.7% 94.3% 100% 90.0% 97.8%
Conf. 3 75.0% 11.4% 77.1% 91.7% 45.7% 90.0% 100% 66.4% 94.3%
Conf. 4 20.0% 8.6% 32.9% 60.0% 23.6% 63.6% 73.3% 43.5% 74.3%
All(1-4) 69.9% 36.9% 64.9% 85.2% 55.2% 84.9% 92.6% 70.5% 90.5%
Conf. 5 43.7% - - 60.4% - - 77.1% - -
Conf. 6 70.0% - - 90% - - 100% - -
All(1-6) 65.8% - - 81.9% - - 91.1% - -

Table 3: Results for Baseline 1 (Color Histogram), Baseline 2a (Gait Energy Image) and Baseline 2b (Cropped
Gait Energy Image)

It can be seen that the simple color based recognition
method outperforms the GEI approach. However, the
GEI approach also shows excellent results, and in case
of the cropped GEI, the performance of GEI surpassed
the performance of the color histogram method.

7 CONCLUSIONS
In this paper we have presented a new gait recogni-
tion database, which is focused on the problem of oc-
clusions. Besides addressing the occlusion problem,
the database also addresses three new kinds of vari-
ations which have not yet been addressed by other
datasets. More specifically these variations include
hands in pocket, wearing backpack and waring a gown.

We have presented two baseline algorithms which
perform excellent on the given dataset for the case of
no occlusion. However, so far neither of these two al-
gorithms specifically addresses the occlusion problem,
resulting in low performance for those cases. Thus it
remains future work of actually utilizing the databases
capabilities to show good performance in spite of oc-
clusions.

8 ACKNOWLEDGMENTS
This work has been partially funded by the European
Projects FP-214901 (PROMETHEUS) as well as by
Alexander von Humboldt Fellowship for experienced
researchers.

REFERENCES
[1] Center for biometrics and security research, CASIA.

http://www.cbsr.ia.ac.cn.

[2] R. T. Collins, R. Gross, and J. Shi. Silhouette-based
human identification from body shape and gait. In
Proceedings of IEEE Conference on Face and Gesture
Recognition, pages 351–356, 2002.

[3] N. Cuntoor, A. Kale, and R. Chellappa. Combining mul-
tiple evidences for gait recognition. In Proc. ICASSP,
pages 6–10, 2003.

[4] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classi-
fication. Wiley, New York, 2. edition, 2001.

[5] R. Gross and J. Shi. The cmu motion of body (mobo)
database. Technical report, 2001.

[6] J. Han and B. Bhanu. Statistical feature fusion for gait-
based human recognition. Computer Vision and Pat-
tern Recognition, IEEE Computer Society Conference
on, 2:842–847, 2004.

[7] J. Han and B. Bhanu. Individual recognition using gait
energy image. IEEE Trans. Pattern Anal. Mach. Intell.,
28(2):316–322, 2006.

[8] P. Huang, C. Harris, and M. Nixon. Recognising hu-
mans by gait via parametric canonical space. Journal
of Artificial Intelligence in Engineering, 13(4):359–366,
November 1999.

[9] A. Y. Johnson and A. F. Bobick. A multi-view method
for gait recognition using static body parameters. In
Proceedings of the Third International Conference on
Audio- and Video-Based Biometric Person Authentica-
tion, pages 301–311, 2001.

[10] A. Kale, N. Cuntoor, and R. Chellappa. A framework for
activity-specific human identification. In International
Conference on Acoustics, Speech and Signal Process-
ing, 2002.

[11] J. Little and J. E. Boyd. Recognizing people by their
gait: The shape of motion. Videre, 1:1–32, 1996.

[12] J. S. M. Nixon, J. Carter and M. Grant. Experimental
plan for automatic gait recognition. Technical Report
2001.

[13] M. P. Murray, A. B. Drought, and R. C. Kory. Walk-
ing patterns of normal men. Journal of Bone and Joint
Surgery, 46-A(2):335–360, 1964.

[14] B. Prosser, S. Gong, and T. Xiang. Multi-camera match-
ing using bi-directional cumulative brightness transfer
functions. In British Machine Vision Conference, 2008.

[15] S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother,
and K. W. Bowyer. The humanID gait challenge prob-
lem: Data sets, performance, and analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
27:162–177, 2005.

[16] C. Stauffer and W. Grimson. Adaptive background mix-
ture models for real-time tracking. Computer Vision and
Pattern Recognition, IEEE Computer Society Confer-
ence on, 2:2246, 1999.

WSCG 2011 Communication Papers 104

Improved Algorithm for Principal Curvature
Estimation in Point Clouds due to Optimized
Osculating Circle Fitting based on Geometric

Algebra

Roman Getto

TU Darmstadt,Germany
Departement of Computer Science

 Germany 64283, Darmstadt

r_getto@rbg.informatik.tu-darmstadt.de

Dietmar Hildenbrand

TU Darmstadt,Germany
Departement of Computer Science

Germany 64283, Darmstadt

Dietmar.hildenbrand@gris.informatik.tu-
darmstadt.de

ABSTRACT
In this paper we introduce our improvements and innovations to an algorithm for the estimation of principal

curvatures in point clouds. The major part of the improvement is achieved by the use of a new osculating circle

fitting. In this paper, first of all, we explain the algorithm for Principal Curvature Estimation, as well as the

previous osculating circle fitting. Then we present the new osculating circle fitting and an additional possibility

of improving the results by a method, which adjusts some variables of the algorithm at runtime, to adapt the

algorithm to the denseness of the particular point cloud. Furthermore, we present some results of the new

methods. To complete this paper, we give a conclusion and an outlook.

Keywords
Geometric Algebra, Point Sets, Point Clouds, Principal Curvature, Osculating Circle Fitting

1. INTRODUCTION
With a 3D scanner, one can construct a digital model

of a real object. However, to get a model most close

to reality as possible, a couple of steps are needed.

The 3D scanner produces a point cloud, mostly

accurate, but, depending on the physical

characteristics of the object, containing some small

measurement errors. If the digital model is simply

constructed by combining three neighbored points to

a triangle, the measurement errors leads to several

undesirable effects e.g., under certain conditions, a

plane part of the surface can look cragged in the

reconstructed digital model. To obtain mostly correct

reconstructions of the surface, complex methods like

presented in [Gun08], [Hor06], [Med05], [Kol04]

and [Ada03] are needed.

Another solution is to avoid the effects by

reconstructing the object with the help of the

principal curvatures of the surface, like presented in

[Goi06]. The two principal curvatures are defined for

each point of a surface and are the maximum and

minimum curvature in a particular direction of the

point. Therefore, these indicate how the surface is

formed, e.g. a point on a plane has a maximum and

minimum curvature of 0. If the two principal

curvatures, the minimum and the maximum

curvature, are not equal, then the directions in which

they occur are clearly defined. The directions of the

principal curvatures are the principal directions.

For such a solution, which uses the principal

curvatures, first of all, the knowledge of the principal

curvatures and directions for each point in the point

cloud is needed. Unfortunately, the principal

curvatures are not directly generated by the 3D

scanner. We need to estimate them with the point

cloud. Some approaches to this task are presented in

[Kal07], [Yan06] and also in [Goi06].

A new approach to this task is presented in [Sei10].

The presented algorithm uses an osculating circle

fitting, which is based on the geometric algebra, for

estimating the curvature. The algorithm already leads

to useful estimations of the principal curvatures and

the corresponding principal directions for each point

of a point cloud. Nevertheless, there is room for

improvement. The accuracy of the estimation as well

as the performance of the algorithm are of major

interest. We present two innovations to this

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2011 Communication Papers 105

algorithm. An improved osculating circle fitting, also

based on the geometric algebra, and a newly

developed method, which automatically adapts the

algorithm to the structure of the point cloud.

In the second section we will explain the algorithm

for principal curvature estimation. The previous

osculating circle fitting will be explained separately

to the algorithm, in the third section. In the following

fourth section, the changed new version of the

osculating circle fitting is presented and in the fifth

section the new method, named dynamic variable

adjustment, is introduced. Some results of the new

methods are presented in the sixth section. At last, a

conclusion and outlook is given in the seventh

section.

2. PRINCIPAL CURVATURE

ESTIMATION ALGORITHM
The algorithm described in this section is almost a

summary of the algorithm presented in [Sei10]. The

algorithm is explained in this part, since it is essential

to understand the algorithm, for understanding the

improvements and innovations.

The goal of the algorithm is to calculate the principal

curvatures and the principal directions of a point x, in

a point cloud. To estimate the curvature, the

Algorithm fits osculating circles to a set of points,

like shown in Figure 1. The center m of the

osculating circle is always on the straight line defined

by x and his surface normal n.

 n

 x

 m

Figure 1. osculating circle for a set of points

The algorithm consists of 5 parts. The center of the

algorithm, the third part, is the osculating circle

fitting. The first and second part choose the points to

which the osculating circles are fitted. The results of

the fittings are used in the fourth and fifth part, to

calculate the principal curvatures and principal

directions.

Choice of the Surrounding Points
For estimating the principal curvatures of the

arbitrary chosen point x, only the surrounding points

of x are needed. Therefore, the first step is to choose

all points which distance to x is smaller than the

value of a predefined surroundings-threshold. The

choice of this value is very important as it decides

how many points are used for the fittings.

Estimation of Planes in 16 Directions
An osculating circle fitting is made for each of the 16

directions. Therefore, we need 16 set of points which

each represents one direction.

One set of points represents one direction when they

are arranged one after another, nearly forming a two

dimensional curve. For this reason, an osculating

circle fitting makes sense. When we fit an osculating

circle to the curve, the circle nearly has the same

curvature as the curve and hence the same curvature

as the surface in the corresponding direction of x.

We achieve such a set of points if we calculate the

intersection of the surface and a plane, containing the

surface normal n. Which direction the plane

represents is defined by the second vector, with

which the plane is defined. Therefore, we need to

define vectors in 16 directions. Figure 2 shows how

these 16 directions should be arranged. The green

lines represent the 16 vectors of the 16 directions.

Figure 2. 16 directions for point x

Together with the surface normal each vector defines

a plane. For a good representation of one direction

each vector must be orthogonal to the surface normal.

Therefore, we define the first vector as follows:

WSCG 2011 Communication Papers 106

The remaining vectors up to are calculated by

repeatedly rotating with around , i.e. the

vector is the result of the rotation of around

 , with the rotation angle .

The 16 planes defined by the surface normal and a

corresponding actually are only “half” planes since

they start at x. Furthermore, the intersection of a

plane and the surface cannot be perfectly calculated

due to the fact that the point cloud is not infinite

dense. For this reason, we define a plane-distance-

threshold. Every point of the set of surrounding

points, which distance to a plane is less than the

plane-distance-threshold, is assigned to the set of

points of the corresponding direction. As result we

have 16 set of points which each represents a part of

the surface in a certain direction.

Osculating Circle Fitting
For each of the 16 set of points an osculating circle

fitting is made. How this fitting works, is explained

in detail in the third section.

As result of the osculating circle fittings we get

curvature values in 16 directions.

Sine Function Fitting
Since we do not know in which direction the

principal curvatures are and also cannot be certain

that one of the 16 sampled directions is exactly a

direction of a principal curvature, we need to

construct a function which interpolates the curvatures

between the sampled directions.

Figure 3 shows the calculated curvatures in 16

directions for an arbitrary chosen point x. It is no

coincidence that the calculated curvatures are

arranged like a sine function. Since the principal

directions are orthogonal to each other, a sine

function makes a good approximation to the

curvatures in all directions.

Figure 3. Fitted Sine Function

As we can see the sine function in Figure 3 does not

perfectly approximate the curvature values. Since we

estimate the curvature with “half” planes we fit 2

phases of the sine function. The correct curvature

values are between the values for each phase.

Therefore, the mean values represented by the sine

function are accurate.

The fitted sine function has the form:

The variable represents the amplitude, represents

the phase and o represents the offset. The sine

function fitting is based on the method described in

[IEEE01].

For this method a matrix and a vector has to be

defined, where denotes the calculated curvature in

the ith direction and twice the rotation angle of the

corresponding . It has to be twice the angle,

because the 16 curvature values represent two phases

of the sine function. E.g. has the rotation angle

 , therefore is

With and a result vector can be calculated:

Finally the amplitude, phase and offset of the fitted

sine function can be calculated:

Calculation of the Principal Curvatures

and Principal Directions
The principal curvatures are denoted as and .

 is the minimal curvature and is the maximal

curvature. Since the sine function represents the

curvatures of x in all directions, the minimal and

-0,1
-0,08
-0,06
-0,04
-0,02

0
0,02
0,04
0,06
0,08
0,1

0π 1π 2π 3π 4π

WSCG 2011 Communication Papers 107

maximal value of the sine function are exactly the

value of and :

For the principal directions, we must know at which

angle the extrema of the sine function are. A sine

function without shifted phase would have his

maximum at and his minimum at . We

achieve the angle of the extrema if we subtract the

phase from the normal extrema. Additionally, we

must divide the angle by 2, since the sine function

was fitted for values of two phases.

Finally, we achieve the vector of the direction of ,

if we rotate with around . The rotation with

 results in the vector of the direction of .

3. PREVIOUS OSCULATING CIRCLE

FITTING
The osculating circle fitting takes x, n and a set of

points as input, and calculates a circle, which is as

near as possible at all points. The output of the

osculating circle fitting is the radius and the center

 of the fitted circle.

A circle has the same curvature value at all his

points: the multiplicative inverse of the radius. The

circle is fitted to all points of the set and therefore

nearly has the same curvature as the part of the

surface which is represented by the set of points.

Hence, the searched curvature of the surface in a

certain direction is the multiplicative inverse of the

radius of the fitted osculating circle.

The osculating circle fitting is based on the geometric

algebra in which a point is represented as a sphere

with radius 0 and a plane is a sphere with infinite

radius. These special characteristics of the geometric

algebra permit to use the inner product of two

geometric entities, like sphere and point, or plane and

point, as a measure for the distance. For using this

aspect, the osculating circle is handled like a sphere,

which has the same radius and center like the circle.

This osculating circle fitting uses a least squares

approach to minimize the sum of all inner products of

the sphere and the points, to which the sphere is

fitted. Additionally, since the representation of a

plane and a sphere is equal, the fitting can also result

in a plane instead of a sphere.

With this approach the symmetric matrix B can be

constructed, where denotes the ith point and the

number of points to which the sphere is fitted. For a

more detailed deduction see [Hil06] and [Sei10].

The eigenvector of the smallest eigenvalue of this

matrix B is the resulting vector with which the

radius and the center can be calculated:

Usually a radius is a positive value, but in this case,

can be negative or positive. This is absolutely

desired, since a curvature can be positive or negative.

A negative curvature means that the curvature occurs

in direction of the surface normal, a positive

curvature means that the curvature occurs in the

opposite direction. I.e. a point on a convex surface

has negative curvatures in all directions and a point

on a concave surface has only positive curvatures.

The principal curvatures of a plane surface cannot be

correctly estimated with a sphere. Since the approach

is based on geometric algebra, where a plane is a

sphere with infinite radius, this case can be also be

correctly identified. If a plane is fitted instead of a

sphere is 0. Furthermore, an additional information

is gained by : if is 0, the fitted sphere or plane

intersects the origin.

As mentioned before, the curvature of the curve,

which was intended to be estimated, is the

multiplicative inverse of the radius . Hence, the

calculation of the center is actually not required

for the algorithm.

WSCG 2011 Communication Papers 108

4. NEW OSCULATING CIRCLE

FITTING
The newly developed osculating circle fitting is also

based on the geometric algebra and starts with the

same matrix B. The further steps however are very

different. We avoid the costly calculation of the

eigenvalues of the matrix, through defining a

restriction on the vector : we set = 1. With this

restriction the resulting radius can still have any

value. The only possible result, which cannot be

obtained anymore is a plane, which has = 0.

Nevertheless, we will see in a later step, that we can

recognize a plane in another equation.

With the changed we can construct a system of

equations without calculating the eigenvalues. The

values of the symmetric matrix B are denoted with

the variables a up to f:

The system of equations is constructed as follows:

If we rearrange the equations we get:

Since the system of equations is overdetermined, we

can calculate in two ways. If we calculate for

both possibilities by inserting into the first

equation we obtain the following equations for :

Due to the chosen value of the radius actually

has the same value as .

The radius of the osculating circle therefore has two

possible results:

Even if the chosen apparently excluded the

possibility of obtaining a plane we can recognize a

plane in both equations. In both equations the

denominator equals 0 if the fitting would result in a

plane.

The both equations mostly result in the same value

for . The values only differ due to numerical

instability of floating point numbers. Tests have

shown that the second equation has less faulty

fittings than the first equation. If we use the second

equation to calculate the radius, the fitting needs in

most cases less than 50 % of the time of the previous

fitting method, but the accuracy of the fittings is

reduced by an average of 2 %.

Another solution with impressive results, because it

has not the same numerical instability, is to choose

the equation with a better fitted osculating circle in

every fitting, if the two equations for do not have

the same result.

We can determine a measure for the quality of the

fitting, denoted as , by calculating the sum of the

distances to all points to which the circle was

fitted:

If we calculate for both values of , we can decide

which has a better osculating circle and choose this .

WSCG 2011 Communication Papers 109

An argument against would of course be that

additional time is needed for checking which

osculating circle is better. Nevertheless, the improved

results justify the raised effort. With this method the

fitting still needs less than 75 % of the time of the

previous fitting method and achieves results that are

highly more accurate than the results of the previous

fitting method. As we will see in the tests the results

are about 35 % up to 300 % more accurate.

5. DYNAMIC VARIABLE

ADJUSTMENT METHOD
The method is needed because the results of the

osculating circle fittings are only useful if the set of

points which the fittings had as input, were chosen

well. This method tries to optimize those set of points

by adjusting two variables of the algorithm: the

surroundings-threshold and the plane-distance-

threshold.

As described in the algorithm, the surroundings-

threshold gives the limit, how small the distance of a

point to x has to be, for including this point in the

choice of the set of points.

The plane-distance-threshold gives a limit how small

the distance of a point to a plane of one direction has

to be, for including this point in the set of points

representing the intersection of the corresponding

plane and the surface.

This method tries to adjust the surroundings-

threshold to achieve a well-proven number of points

in the surroundings-set and simultaneously adjust the

plane-distance-threshold to this number.

Various tests have shown that optimal results are

achieved with around 375 points included in the

surroundings and a plane-distance-threshold of 0,1.

Therefore, we have chosen this combination 375/0,1

as the initial target combination of the dynamic

variable adjustment method.

The method consists of 3 parts: The first part adjusts

the surroundings-threshold for the subsequent point.

The second part adjusts the target combination to

more dense point clouds. The third part adjusts the

plane-distance-threshold to the number of points in

the surroundings-set.

We assume that the principal curvatures of all points

of a point cloud are estimated sequently with the

algorithm for principal curvature estimation.

Therefore, we can use the fact that the denseness of

the surrounding part of the point cloud does not differ

much from one point to the next point.

This method is always executed right after the choice

of the surroundings-set, hence before the planes in 16

directions are defined and before the set of points for

the fittings are constructed. Therefore, the adjustment

of the plane-distance-threshold can still affect the

choice of the set of points, but the adjustment of the

surroundings-threshold only affects the principal

curvature estimation of the subsequent point.

In the following, the targeted number of points

included in the surroundings-set is denoted as

and the targeted plane-distance-threshold as .

The actual detected number of points in the

surroundings-set is denoted as . The actual plane-

distance-threshold is denoted as and the

surroundings-threshold as

Initially, has the value 375, the value

0,1 and the value 4.

Adjustment of the

surroundings-threshold
The surroundings-threshold has to be adjusted,

because the number of points included in the

surroundings should equal or at least almost equal the

targeted number of points. If we assume that the

points are more or less equally distributed in the

point cloud we can calculate the optimal new

surroundings-threshold with the help of the old

surrounding-threshold and the number of points in

the surroundings-set. The developed formula for the

new surroundings-threshold is as follows:

The best result would be achieved if the choice of the

surroundings would be repeated after the adjustment.

Unfortunately this step is very costly; therefore, the

new surroundings-threshold is only used for the

subsequent point. An exception is only the very first

point for which the principal curvatures are

estimated, since this is the only case where the point

has no previous adjustment. For this reason, at the

very first point, the choice of the surroundings-set is

repeated after the adjustment.

Adjustment of the Target Combination
Tests have shown that for highly dense point clouds

the initial chosen target combination 375/0,1 results

in too small surroundings-threshold. Therefore, this

combination is also adapted in some cases.

If the surroundings-threshold is adapted to a value

lower than 2, the target combination is set to

750/0,05. If the surroundings-threshold is further

adapted to a value lower than 1, the target

combination is set to 1500/0,025.

However, the target combination should also be

adapted to the original value if a less dense part of

WSCG 2011 Communication Papers 110

the point cloud is reached. Therefore, the target

combination is set back to 750/0,05 from 1500/0,025

or back to 375/0,1 from 750/0,05 if the surroundings-

threshold is adapted to a value higher than 4.

Adjustment of the

plane-distance-threshold
The plane-distance-threshold is always adjusted to an

appropriate value, depending on the number of points

in the surroundings-set and the targeted values:

6. TESTS AND RESULTS
For evaluating the newly developed methods we have

compared results of the new methods to results of the

previous algorithm of [Sei10].

We have chosen 12 point clouds for the tests. The

point clouds differ in the quantity of points and

denseness of the point cloud. The surfaces

represented by the different point clouds include

various forms of curvatures. Therefore we achieve

representative results, by testing with all 12 point

clouds.

The principal curvatures of all points of the point

clouds are known, since for evaluating the results we

have to calculate the average difference to the correct

values for all points of a point cloud.

Table 1 shows results without the dynamic variable

adjustment method. The tests were made for several

different combinations of the surroundings-threshold

and the plane-distance-threshold. For each point

cloud the table shows the best results of the best

combination. Therefore, the table does not show that

most of the other combinations resulted in average

 / differences of more than 0,01. This was the

reason, why the dynamic variable adjustment method

was developed.

Compared methods:

New01 is the algorithm with the new osculating

circle fitting only using the second equation for .

New02 is the algorithm with the new osculating

circle fitting with selection of the better equation.

Previous is the unchanged previous algorithm.

 is the chosen combination of the surroundings-

threshold and plane-distance-threshold.

 Previous New01 New02

1 6,0/0,3 6,0/0,3 6,0/0,5

 0,0050 0,0051 0,0031

 0,0050 0,0051 0,0023

2 6,0/0,3 6,0/0,3 6,0/0,5

 0,0032 0,0033 0,0022

 0,0023 0,0024 0,0014

3 4,0/0,1 4,0/0,1 4,0/0,1

 0,0016 0,0017 0,0011

 0,0007 0,0008 0,0006

4 4,0/0,1 4,0/0,1 4,0/0,1

 0,0018 0,0018 0,0015

 0,0007 0,0007 0,0006

5 4,0/0,1 4,0/0,1 4,0/0,1

 0,0016 0,0016 0,0015

 0,0011 0,0013 0,0011

6 4,0/0,1 4,0/0,1 4,0/0,1

 0,0007 0,0008 0,0006

 0,0014 0,0014 0,0013

7 4,0/0,1 4,0/0,1 4,0/0,1

 0,0017 0,0018 0,0017

 0,0008 0,0009 0,0008

8 6,0/0,1 6,0/0,1 4,0/0,1

 0,0014 0,0014 0,0005

 0,0023 0,0024 0,0010

9 4,0/0,1 4,0/0,1 4,0/0,1

 0,0025 0,0026 0,0010

 0,0025 0,0025 0,0017

10 4,0/0,1 4,0/0,1 4,0/0,1

 0,0017 0,0017 0,0011

 0,0032 0,0032 0,0015

11 4,0/0,1 4,0/0,1 4,0/0,5

 0,0051 0,0051 0,0050

 0,0014 0,0014 0,0013

12 6,0/0,1 6,0/0,1 4,0/0,1

 0,0011 0,0012 0,0003

 0,0017 0,0017 0,0005

Table 1. Test results with several possible

combinations for s and p

As we can see, for most of the point clouds the

New02 method could achieve highly improved

results. As we can see, for some point clouds no good

results could be achieved with the limited number of

 combinations.

The time needed for the fittings could also be

improved. On average New01 needed 50% and

New02 75% of the time of Previous.

WSCG 2011 Communication Papers 111

Table 2 shows the results with the dynamic variable

adjustment method. In this table we can see that the

dynamic variable adjustment method achieves good

results and also that the new osculating circle fitting

improved the principal curvature estimations.

 Previous New02 Previous New02

1 0,0061 0,0021 0,0041 0,0014

2 0,0037 0,0013 0,0028 0,0009

3 0,0010 0,0007 0,0008 0,0005

4 0,0008 0,0007 0,0006 0,0004

5 0,0012 0,0012 0,0006 0,0006

6 0,0018 0,0006 0,0021 0,0006

7 0,0006 0,0006 0,0003 0,0003

8 0,0010 0,0003 0,0011 0,0003

9 0,0004 0,0001 0,0005 0,0001

10 0,0012 0,0001 0,0014 0,0002

11 0,0007 0,0005 0,0002 0,0001

12 0,0014 0,0007 0,0015 0,0005

Table 2. Test results with the dynamic variable

adjustment method

7. CONCLUSION AND OUTLOOK
In this paper we presented our new osculating circle

fitting and the dynamic variable adjustment method.

The goal of both developments was to improve the

presented algorithm for principal curvature

estimation.

The evaluation of the tests confirms that we have

reached this goal. The new osculating circle fitting

improves the results of the algorithm and is also

faster than the previous one. The additional dynamic

variable adjustment method improves the utilization

of the algorithm for a whole point cloud. This

method has also proven his worth.

The presented improvements were concentrated

mainly on the raising of the accuracy. The algorithm

could be further improved by expanding it with a

Moving Least Squares approach like in [Ada03] and

[Gue08]. Other improvements shall also highly raise

the speed. For this task an implementation in CUDA

or OpenCL are planned.

8. REFERENCES
[Ada03] Adamson, Anders and Alexa, Marc:

Approximating and Intersecting Surfaces from

Points. Eurographics Symposium on Geometry

Processing (SGP), pages 230–239, 2003.

[Goi06] Gois, João Paulo, Tejada, Eduardo, Etiene,

Tiago, Nonato, Luis Gustavo, Castelo, Antonio

and Ertl, Thomas: Curvature-driven modeling and

rendering of point-based surfaces. Brazilian

Symposium on Computer Graphics and Image

Processing (SIBGRAPI), pages 27-36, 2006.

[Gue08] Guennebaud, Gaël, Germann, Marcel and

Gross, Markus: Dynamic Sampling and

Rendering of Algebraic Point Set Surfaces. In

Eurographics, pages 653–662, 2008.

[Hil06] Hildenbrand, Dietmar: Geometric Computing

in Computer Graphics and Robotics using

Conformal Geometric Algebra. Diss. Darmstadt

2006.

[Hor06] Hornung, Alexander and Kobbelt, Leif:

Robust Reconstruction of Watertight 3D Models

from Non-uniformly Sampled Point Clouds

without Normal Information. Eurographics

Symposium on Geometry Processing (SGP),

pages 41–50, 2006.

[IEEE01] Institute of Electrical and Electronics

Engineers: Std. 1241-2000 IEEE standard for

terminology and test methods for analog-to-

digital converters. chapter 3, pages 26-27, 2001.

[Kal07] Kalogerakis, Evangelos, Simari, Patricio,

Nowrouzezahrai, Dere and Singh, Karan: Robust

statistical estimation of curvature on discretized

surfaces. Eurographics Symposium on Geometry

Processing (SGP), pages 13–22, 2007.

[Kol04] Kolluri, Ravikrishna, Shewchuk, Jonathan

Richard and O’Brien and James F.: Spectral

Surface Reconstruction from Noisy Point Clouds.

Eurographics Symposium on Geometry

Processing (SGP), pages 11–22, 2004.

[Med05] Mederos, Boris, Amenta, Nina, Velho, Luiz

and de Figueiredo, Luiz Henrique: Surface

Reconstruction for Noisy Point Clouds.

Eurographics Symposium on Geometry

Processing (SGP), pages 53–62, 2005.

[Per09] Perwass, Christian: Geometric Algebra with

Applications in Engineering. Berlin: Springer,

2009.

[Sei10] Seibert, Helmut, Hildenbrand, Dietmar,

Becker, Meike and Kuijper, Arjan: Estimation of

Curvatures in point sets based on geometric

algebra. Angers: VISIGRAPP, International Joint

Conference on Computer Vision, Imaging and

Computer Graphics Theory and Applications,

2010.

[Yan06] Yang, Yong-Liang, Lai, Yu-Kan, Hu,

 Shi-Min and Pottmann, Helmut: Robust Principal

Curvatures on Multiple Scales. Eurographics

Symposium on Geometry Processing (SGP),

pages 223–226, 2006.

WSCG 2011 Communication Papers 112

Investigating measures for transfer function generation for visualization

of MET biomedical data

L. Svensson, I. Nyström, S. Svensson and I.-M. Sintorn

Centre for Image Analysis, Uppsala University and Swedish University of Agricultural Sciences

Box 337

SE-751 05 Uppsala, Sweden

E-mail: {lennart,ingela,stina,ida.sintorn}@cb.uu.se

ABSTRACT

In this paper, the question of automatically setting transfer functions for volume images is further explored. More
specifically, the focus is automatic visualization of Molecular Electron Tomography (MET) volume images using
one-dimensional transfer functions. We investigate how well a few general measures based on density, gradient,
curvature and connected component information are suited for generating these transfer functions. To assess
this, an expert has set suitable transfer function levels manually and we have studied how these levels relate to
different characteristics of the selected measures for 29 data sets. We have found that the measures can be used to
automatically generate a transfer function used to visualize MET data, to give the user an approximate view of the
components in the image.

Keywords
Volume visualization, direct volume rendering, transfer functions, automatic visualization, molecular electron to-
mography

1 INTRODUCTION
Automatic visualization provides the means for screen-
ing large amounts of data in a short time by aiding the
user in setting visualization parameters. Here, the goal
is to investigate measures for automatically creating
one-dimensional transfer functions that give good first
renderings of Molecular Electron Tomography (MET)
data. These should highlight the most important in-
formation, i.e., the molecular surface of proteins, and
still show other variations in the imaged sample. The
visualization should be a starting point for interactive
adjustments. Primarily, the focus is to identify mea-
sures which generate an appropriate opacity function.

MET allows for studying the structure and flexi-
bility of molecules and macromolecules in solution
(in vitro) as well as in tissue samples (in situ). The
imaging technique reveals material density with a res-
olution as low as a few nanometers. For determin-
ing how the proteins function in their natural environ-
ment, tissue samples are analyzed directly using MET.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

For determining molecule flexibility and dynamics,
molecules in solution are analysed, see Klaile [5] for
a recent example. In order to investigate, explore, and
analyse the complex data, adequate visualization of
the data is required.

For general automatic transfer function generation,
the “transfer function bake-off” [7] presents four ap-
proaches: (1) trial-and-error, (2) data-centric without
model, (3) data-centric with model, and (4) image-
based. Multi-dimensional transfer functions based on
curvature have been introduced by Kindlmann [4],
transfer functions specified as the sum of Gaussians
were presented by Kniss [6], schemes based on topol-
ogy differentiation have been suggested [11, 12], Rezk
Salama presented an approach [8] which focuses on
parameters relating to the user’s domain knowledge.
The mentioned methods move transfer function gen-
eration close to identification and segmentation prob-
lems.

To our knowledge, no transfer function generator
tailored for MET volumes has so far been suggested.
The volumes are usually rendered with direct volume
rendering with a 1-D transfer function that is manually
set. Often, the pre-integration step, that was presented
by Engel [2], is left out, leading to notable visualiza-
tion artefacts. The transfer function generation prob-
lem is highly relevant for this type of data since the
volumes are difficult to interpret, see Figure 1, due to
low contrast, small objects, missing data, etc. Another
problem with this type of data is that many factors af-

WSCG 2011 Communication Papers 113

fect the density values in the volumes. Among the in-
fluencing factors are the energy of the electrons hitting
the sample, the sample thickness and composition, the
detector, and the MET reconstruction algorithm.

We address this issue by following the second ap-
proach in the bake-off paper [7], the “data centric
without model” approach. The idea is to make approx-
imate distinctions between objects using measures in
the density range of the volume image. The aim is
to establish relations for generating a transfer func-
tion in this domain automatically. We have chosen a
one-dimensional transfer function because of the in-
trinsic property that densities are remapped to opac-
ities in a consistent way. Multi-dimensional transfer
functions can be useful to differentiate between re-
gions, but there is a less clear connection to the un-
derlying density. If a model-based approach was em-
ployed, where individual components would be identi-
fied using various means of thorough image analysis,
it would have enabled more elaborate fine-tuning of
the visualization. This would however be at the ex-
pense of having a more complex solution and time-
consuming algorithm, as well as possibly lower gen-
erality.

Using measures in the density range is similar to
the approach presented by Bajaj [1], but the calculated
functions are different and are also suggested to be
used in a different way. We focus on automatic extrac-
tion of isovalues, whereas Bajaj suggested his mea-
sures to be used for interactive isovalue selection and
volume data exploration. We have studied four differ-
ent measures based on density, gradient, curvature and
connected component functions. The interesting point
is how features of these measures relate to manually
chosen levels by an expert. For the density histogram,
it has been investigated what percentiles the manually
set levels correspond to, whereas for the gradient, cur-
vature and connected component measures, different
features of the functions have been correlated to the
manually set level. We have used 29 volumes in the
tests.

2 IMAGE DATA
In MET, an electron microscope is used to capture 2D
micrograph images from different angles of a sam-
ple. This results in a so called tilt series. The sample
is a very thin frozen or chemically embedded slice.
A back projection technique is applied to reconstruct
a 3D image of the sample, which is then refined in
an optimization procedure resulting in aMET vol-
ume [10]. Its scalar values correspond to the density of
the sample. The complete process from sample prepa-
ration to a final volume is a long and tedious process,
so these volumes are not available in large quantities.

MET volumes are difficult to interpret for a num-
ber of reasons: the resolution is relatively low — each

Data set No of invest. No of molecule
volumes instances per vol.

IgG 3 ∼2
RNAP II 3 ∼10

CEACAM1 6 ∼90
TMV 17 ∼2

Table 1: Investigated MET volumes

protein is represented by a small number of voxels;
the contrast is low as electron irradiation destroys the
sample, which means that the total dose used to ac-
quire the micrographs must be kept low; the MET vol-
ume suffers from missing data artefacts as the electron
microscope limits the angular range to 120◦ – 140◦;
and the density levels in the MET volume are relative
and not absolute. For an untrained eye, the volumes
often seem to only contain a large number of blobs of
varying size and shape.

Another challenge when visualizing MET volumes
compared to, e.g., MRI volumes, is that the molecules
cannot be studied individually using visible light. This
means there is no ground truth to refer to regarding
how they should be visualized.

We investigate and evaluate the chosen measures us-
ing 29 MET volumes from four different studies of
proteins in solution. All MET volumes were recon-
structed using the constrained maximum entropy to-
mography method [10], giving a few nanometer res-
olution. The proteins are described in brief below.
Since this kind of data is difficult and labour intense to
generate, 29 volumes should be considered as a rela-
tively large set of volumes. See Table 1 for a list of the
number of respective protein images and molecules.

The RNA Polymerase II (RNAP II) is a large,
fairly round macromolecule responsible for mRNA
synthesis in eukaryotic cells. In the investigated MET
volume, a RNAP II macromolecule has a∼ 21 voxel
diameter.

The Immunoglobulin G (IgG) antibody is a smaller
macromolecule. Antibodies are crucial parts of our
immunological defence system, e.g., IgG binds to for-
eign agents such as virus particles and targets them for
destruction. An IgG antibody has three roundish parts
of equal size connected at one center point. Two of the
arms are fragment antigen binding arms and one is a
fragment crystallisable stem. In the investigated MET
volume, the smallest round subpart has a∼ 10 voxel
diameter. See Sandin [9] for details.

The carcinoembryonic antigen related cell adhe-
sion molecule 1 (CEACAM1) is even smaller than
IgG. It is a transmembrane receptor involved in bind-
ing with other cells. In the investigated MET volumes,
CEACAM1 occur as monomers, one molecular unit,
with a volume of∼ 580 voxels, or dimer, two molec-

WSCG 2011 Communication Papers 114

Figure 1: The Tobacco Mosaic Virus (TMV) reconstructed using Molecular Electron Tomography (MET). Left: a slice
of a MET volume is shown. Right: a volume visualization with amanually set transfer function.

ular units linked together, with a volume of∼ 1160
voxels. See Klaile [5] for details.

The Tobacco Mosaic Virus (TMV) is a larger,
tubular structure. In the investigated MET volume, the
TMV has∼ 32 voxel diameter. It infects, e.g., tobacco
plants.

The MET volumes in the study are approximately
2563 voxels. The protein concentrations are such that
we expect ten RNAP II molecules, one or two IgG
antibodies, and 80–100 CEACAM1 molecules in each
MET volume. For TMV, one to three structures are
present in each volume.

3 INVESTIGATION
A MET volume can be described asf : N3 → R, not
considering the limitations of digital number represen-
tation, while the used transfer function corresponds to
g : R→R

4. The four output components of the trans-
fer function are the three color channels, RGB, and the
opacity.

We suggest to render a MET volume with a transfer
function built using two primitives, a Gaussian and a
piece-wise linear function going from transparent to
opaque, see Figure 2 (top). The idea behind the Gaus-
sian is that it should correspond to the most central
surface level for the molecules of interest. This we
denote theprimary level. With a high concentrated
peak, the Gaussian will have a similar effect as an iso-
surface, but both reveal the shape of objects and give
an idea about the blurriness around it, i.e., if the sur-
face is part of a sharp change or a smooth transition.
The piece-wise linear function has two roles, partly to
reveal more of the MET volume and partly to high-
light outliers. To visualize this, a linear ramp with low
opacity slope is suggested, starting at thesecondary
level, to not disturb the surface visualization, while a
linear ramp with high slope in a different color is rec-

0 50 100 150 200 250
0

200000

400000
N

o
 o

f
v
o
x
e
ls

0 50 100 150 200 250
0.0000

0.0001

0.0002

0.0003

M
e
a
n
 g

ra
d
ie

n
t

0 50 100 150 200 250
0.0

0.5

1.0

M
e
a
n
 c

u
rv

a
tu

re

Figure 2: Example of transfer function (top). Plots of
the histogram and the gradient and curvature
functions of a MET volume containing a To-
bacco Mosaic Virus (bottom).

ommended for the outlier density range, starting at the
outlier level.

To set the positions for these primitives, the follow-
ing estimates need to be extracted from the chosen
measures:

WSCG 2011 Communication Papers 115

• Primary level (center of the Gaussian, ’A’ in Fig-
ure 2)

• Primary level standard deviation (width of the Gaus-
sian)

• Secondary level start (start of low slope ramp, ’B’
in Figure 2)

• Outlier level start (end of low slope ramp, start of
high slope ramp in different color, ’C’ in Figure 2)

We have focused on localizing the primary level.
For the secondary level, the outlier level and the pri-
mary level standard deviation, we have not yet re-
vealed any correlation. Therefore, we suggest to use
a fixed ratio to the primary level for these levels. We
suggest to set the secondary level at half the primary
level, the outlier level at double the primary level, and
the primary standard deviation to±10% around the
primary level.

To establish a relationship between that density level
and the measures, the primary level was manually set
by an expert to give a good visualization of the MET
volumes. We have investigated direct correlation be-
tween the manual levels and the measures, i.e., per-
formed analysis of the different measures separately.

In Figure 2, the density histogram, the mean gra-
dient and the mean curvature are shown for a TMV
volume. The number of bins for calculating the dif-
ferent functions is set to 256, which is higher than the
accuracy of the extracted estimates.

A central point to investigate in these plots is whether
they are based on multiple distributions, which could
arise from differences between spurious blobs in the
volumes and shapes of actual molecules. In the fol-
lowing subsections the measures are described. The
results are shown and discussed in Section 4.

The density histogramis the basis for measure 1.
This is a “standard” histogram that shows the number
of voxels that fall within a certain density bin. We in-
vestigate how the expert levels are distributed in the
histogram. The ideal, but a little boring, result would
be that the levels correspond to a single histogram per-
centile. This would mean that it would suffice to visu-
alize a fixed fraction of a MET volume.

The number of componentswith size filtering is
the basis for measure 2. This creates a function over
the density values as for the histogram, representing
the number of components at one density bin within
the specified size range. To obtain this number, the
lower bin value is used as threshold and all voxels with
a value equal to or higher than this should belong to a
component. If two voxels are 26-connected, then they
belong to the same component. The size filter is ap-
plied to increase the “hit rate” in the density region of
most interest. To extract the primary level estimate
from this function, the position of the maximum is

simply used. The size estimates have been manually
calculated from the object diameters and their basic
shape (round or tubular), with some margin.

The mean gradient histogramis the basis for mea-
sure 3. A gradient magnitude image is calculated us-
ing the first order derivative of a Gaussian kernel with
a sigma related to the approximate diameter in vox-
els of the components of interest in the images. The
gradient magnitude for each voxel is

|
∂ f
∂x

|+ |
∂ f
∂y

|+ |
∂ f
∂ z

| (1)

where f is the density. The mean gradient magnitude
value for the set of voxels within the density bin is then
calculated. From the plots of this function, we have
identified a reoccurring plateau starting approximately
around the primary level chosen by the expert. We
have defined the starting point for this plateau as the
first local minimum of a smoothed derivative of the
mean gradient measure. The smoothing has been done
with a Gaussian filter with sigma set to 5, half the size
of one subpart of the IgG molecule.

The mean curvature histogram is the basis for
measure 4. It follows the curvature approach used
by Kindlmann [4]. Essentially, these values measure
the mean curvature for voxels at a particular intensity
level. A value of zero would mean that the voxels
within the corresponding intensity interval is not a part
of an isosurface that has a strong curvature.

The first and second order partial derivatives needed
for the gradientg and the Hessian matrixH are cal-
culated using combinations of first and second order
derivatives of the Gaussian kernel. Then the surface
normal

n = g/|g| (2)

and the projection matrix

P= I −nnT (3)

whereI is the identity matrix, are calculated. The ma-
trix P projects onto the tangent plane of the isosurface.
Next, the matrix

G = -PHP/|g| (4)

referred to by Kindlmann as the geometry tensor, is
formed and from that the traceT and Frobenius norm
F . The mean curvature is calculated as:

κ1 = (T +
√

F2−T 2)/2 (5)

κ2 = (T −
√

2F2−T 2)/2 (6)

Then, the mean curvature for a single voxel is(κ1+
κ2)/2. As in the mean gradient calculation, the total
mean curvature for one density bin is calculated to ac-
quire the measure. To match it with the primary level,

WSCG 2011 Communication Papers 116

Dataset Sigma Size threshold (voxels)

RNAP II 2.0 2500

IgG 1.0 500

CEACAM1 1.0 500

TMV 2.0 50000

Table 2: Parameters for Gaussian and size filtering

we have identified a plateau for this measure as well.
We have defined its starting point in the same way as
for the gradient measure, i.e., as the first local mini-
mum of a smoothed derivative of the mean curvature
measure.

A priori information has been used when calculat-
ing the gradient and curvature measures, in the form
of setting sigma to 1/10 of an estimation of the small-
est component diameter. This will preserve the main
structure of the components, but remove some of the
noise.

For volume rendering, pre-integrated ray casting
was used. Ray casting provides the possibility to visu-
alize more information than an isosurface rendering.
We claim that the user can get a better feeling for the
data in the volume, by for example also taking densi-
ties around an isolevel into consideration. In order to
still have an exact visualization with transfer functions
which can contain high frequency changes, the pre-
integration step is necessary. The methods were im-
plemented in C++ partly using routines from the Na-
tional Library of Medicine Insight Segmentation and
Registration Toolkit (ITK) [3].

4 RESULTS AND DISCUSSION
We have not found any clearly multimodal distribu-
tion in any of the feature functions. From visual in-
spection of the density histogram, the distribution is
close to a gamma distribution regardless of what kind
of molecules there are in the solution. For the other
three feature measures, there is more variation. In Fig-
ure 9, the correlation between the expert levels and the
measures are shown. The used manually set filter pa-
rameters are given in Table 2. For the immediate visu-
alization of a volume when it is opened, it should not
be required to enter such information, but preliminary
tests show that using a standard value for sigma will
still give feasible results.

Measure 1 was visually evaluated, whereas for mea-
sures 2-4, a performance index has also been calcu-
lated for each of the measures. First a liney = kx+m
has been fitted to the data using a least square error
norm. The performance index is calculated as

P = 100
k

error
(7)

0 20 40 60 80 100 120
0.94

0.95

0.96

0.97

0.98

0.99

1

Manually set primary density level

C
or

re
sp

on
di

ng
 h

is
to

gr
am

 p
er

ce
nt

ile

CEACAM1
IgG
RNAP II
TMV

Figure 3: Primary levels chosen by an expert for the 29
investigated volumes plotted against their cor-
responding density histogram percentiles.

This index evaluates the discriminative power of a
measure, but it is nothing more than an inverted cor-
relation to the error, which is multiplied withk to re-
move the effect of the value range of the measure. The
error is calculated as the mean of absolute errors.
1. Density histogram, Figure 3: The aim is to find
a decorrelation when calculating the percentile value
from the manual level. That is, the manual levels
would optimally correspond to a single percentile level,
forming a horizontal line. In Figure 3, a decorrelation
tendency can be seen as not all the data seem to be
spread around any diagonal “correlation line”. An-
other observation is that the primary level is always
above 95% for the investigated data sets. A compar-
ison of an expert visualization and a visualization us-
ing the 99-percentile of the density histogram as the
primary level is shown for RNA Polymerase II in Fig-
ures 4 and 5, respectively. The same comparison is
shown for TMV in Figures 6 and 7, respectively.
2. Connected components, Figure 9: Considering all
data sets, there is only some correlation. When ex-
cluding the sets with the largest molecules, the TMV
data sets and the RNA Polymerase II data sets, a lin-
ear tendency can be seen. The performance index is
4.1 using all data sets.
3. Gradient, Figure 9: This measure exhibits the high-
est correlation tendency to the expert primary level,
with a performance index of 7.5. This indicates that
the molecules of interest have a more homogeneous
internal density structure than the lower intensity arte-
facts.
4. Curvature, Figure 9: For the curvature measure,
there seems to be a weak linear tendency. The perfor-
mance index is 3.0. Hence, the difference in isosurface
curvature between the biological molecules and other
structures does not seem very significant.

WSCG 2011 Communication Papers 117

Combining the measures using their performance
indices as averaging weights gives the result shown
in Figure 8. The performance index of this combined
measure is 7.4, which is lower than for the gradient
based measure.

When testing on an Intel E5430 2.66GHz CPU,
loading and processing a 2563 volume took approxi-
mately one minute. In an interactive application, the
generation of a transfer function needs to be faster,
a few seconds would be preferable, which should be
feasible with optimization.

5 CONCLUSION
Four measures have been investigated regarding their
potential for automatically generating a first visual-
ization of MET volume data. We see all as interest-
ing measures in this context, but the gradient based

Figure 4: Visualization of a RNA Polymerase II volume,
with an expert set primary level.

Figure 5: Visualization of the same RNA Polymerase II
volume as in Figure 4, setting the primary level
at the 99-percentile of the density histogram,
but also showing±0.8% around that level.

measure stand out as giving the best estimate of the
primary level. We therefore suggest to use gradient
based analysis for best accuracy when setting the pri-
mary level. Another simple but interesting result is
that the primary level of interest for the investigated
data sets is always in the top 5% of the volumes, in
terms of density. Since this percentile measure is fast
to compute, it is a good basic measure for instant auto-
matic visualization, especially of large MET volumes.
It could also be used as a control measure when calcu-
lating the primary level in a more exact way.

It is suitable that the gradient measure with the high-
est performance index also is the second easiest mea-
sure to calculate, after the histogram percentile, al-
though it still takes around 15 seconds for a typical
volume to be processed for this measure. In terms of
algorithmic complexity, the gradient measure is based
on separable filtering, so it will scale nicely for larger
volumes.

Our next step is to step up a scale in terms of fea-
ture calculation, to make the distinction of objects of
interest and other structures easier. One path would
be to use region growing methods and explore differ-
ent components using suitable shape descriptors.

ACKNOWLEDGEMENTS
This work is funded through theVisualization Pro-
gram by Knowledge Foundation, Vårdal Foundation,
Foundation for Strategic Research, VINNOVA, and
Invest in Sweden Agency.

We would like to thank Roger Kornberg Labora-
tory, Dept. of Structural Biology at Stanford Uni-
versity Medical School, USA; Elenor Hauzenberger
and Lars-Göran Öfverstedt at Sidec AB, Sweden; Sara
Sandin, et al. [9]; Esther Klaile, et al [5], for providing
the data and to Daniel Evestedt, SenseGraphics AB,
for partly implementing the pre-integrated ray caster.
We also thank the anonymous reviewers for their con-
structive criticism.

REFERENCES
[1] Chandrajit L. Bajaj, Valerio Pascucci, and

Daniel R. Schikore. The contour spectrum. In
Proc. Vis. ’97, pages 167–173, 1997.

[2] Klaus Engel, Martin Kraus, and Thomas Ertl.
High-quality pre-integrated volume rendering
using hardware-accelerated pixel shading. In
SIGGRAPH/Eurographics Workshop on Graph-
ics Hardware, pages 9–16. ACM, 2001.

[3] Luis Ibanez, William Schroeder, Lydia Ng, and
Josh Cates.The ITK Software Guide. 2005.

[4] Gordon Kindlmann, Ross Whitaker, Tolga Tas-
dizen, and Torsten Möller. Curvature-based
transfer functions for direct volume rendering:

WSCG 2011 Communication Papers 118

methods and applications. InProceedings Vis.
’03, page 67, 2003.

[5] Esther Klaile, Olga Vorontsova, Kristmundur
Sigmundsson, Mario M. Müller, Bernhard B.
Singer, Lars-Göran Öfverstedt, Stina Svensson,
Ulf Skoglund, and Björn Öbrink. The CEA-
CAM1 N-terminal Ig domain mediates cis- and
trans-binding and is essential for allosteric rear-
rangements of CEACAM1 microclusters.Jour-
nal of Cell Biology, 187(4):553–567, 2009.

[6] Joe Kniss, Simon Premoze, Milan Ikits, Aaron
Lefohn, Charles Hansen, and Emil Praun. Gaus-
sian transfer functions for multi-field volume vi-
sualization. InProc. Vis. ’03, page 65, 2003.

[7] Hanspeter Pfister, Bill Lorensen, Chandrajit Ba-
jaj, Gordon Kindlmann, Will Schroeder, Lisa So-
bierajski Avila, Ken Martin, Raghu Machiraju,
and Jinho Lee. The transfer function bake-off.
IEEE Comput. Graph. Appl., 21(3):16–22, 2001.

[8] Christof Rezk Salama, Maik Keller, and Peter
Kohlmann. High-level user interfaces for trans-
fer function design with semantics.IEEE TVCG,
12(5):1021–1028, 2006.

[9] Sara Sandin, Lars-Göran Öfverstedt, Ann-
Charlotte Wikström, Örjan Wrange, and Ulf
Skoglund. Structure and flexibility of individual
immunoglobulin G molecules in solution.Struc-
ture, 12(3):409–415, 2004.

[10] Ulf Skoglund, Lars-Göran Öfverstedt, Roger M.
Burnett, and Gérard Bricogne. Maximum-
entropy three-dimensional reconstruction with
deconvolution of the contrast transfer function:
A test application with adenovirus.Journal of
Structural Biology, 117:173–188, 1996.

[11] Gunther H. Weber, Scott E. Dillard, Hamish
Carr, Valerio Pascucci, and Bernd Hamann.
Topology-controlled volume rendering.IEEE
TVCG, 13(2):330–341, 2007.

[12] Jianlong Zhou and Masahiro Takatsuka. Auto-
matic transfer function generation using contour
tree controlled residue flow model and color har-
monics.IEEE TVCG, 15(6):1481–1488, 2009.

Figure 6: Visualization of a MET volume with a Tobacco
Mosaic Virus (TMV) using an expert set pri-
mary level.

Figure 7: Visualization of the same MET volume of a
TMV as in Figure 6 setting the primary level
at the 99-percentile of the density histogram,
but also showing±0.8% around that level.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Manually set primary density level

W
ei

gh
te

d
co

m
bi

na
tio

n
of

 e
st

im
at

es

CEACAM1
IgG
RNAP II
TMV

Figure 8: How a weighted combination of the measures
correlates to the expert set primary level. The
fitted line is used to calculate the performance
index of the combined measure.

WSCG 2011 Communication Papers 119

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Manually set primary density level

Le
ve

l f
or

 m
ax

 o
f R

C
C

CEACAM1
IgG
RNAP II
TMV

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Manually set primary density level

F
irs

t m
in

. l
oc

. f
or

 d
er

iv
. o

f g
ra

di
en

t

CEACAM1
IgG
PolII
TMV

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Manually set primary density level

F
irs

t m
in

. l
oc

. f
or

 d
er

iv
. o

f c
ur

va
tu

re

CEACAM1
IgG
PolII
TMV

Figure 9: How the expert set primary level correlates to the extracted measures. The fitted line is used for calculating the
performance index of each measure. Top: For the connected component measure there is a weak correlation
to the expert level. Middle: The gradient measure shows correlation. Bottom: The curvature measure shows
a weak correlation.

WSCG 2011 Communication Papers 120

A Method for Storing Clustering Information of

Model Simplification in GPUs

Takayuki Kanaya
Hiroshima International University

555-36, Kurose Gakuendai
Higashi Hiroshima, Hiroshima

 Japan (739-2695)
t-kanaya@hw.hirokoku-u.ac.jp

Koji Nishio

Osaka Institute of Technology
nishio@is.oit.ac.jp

Tomoaki Taniguchi
Osaka Institute of Technology

1-79-1, Kitayama
Hirakata, Osaka

Japan (573-0196)
taniguchi@ggl.is.oit.ac.jp

Kenichi Kobori

Osaka Institute of Technology
kobori@is.oit.ac.jp

Yuji Teshima
Sasebo National College of

Technology
1-1, Okishinchou

Sasebo, Nagasaki
Japan (857-1171)

teshima@post.cc.sasebo.ac.jp

ABSTRACT
A vertex-clustering simplification is a kind of model simplification. It is difficult for the vertex-clustering
simplification to simplify complex models in real-time, although it is known as a very fast method. In addition, it
is also difficult for the vertex-clustering simplification to control the number of faces. It synthesizes vertices in
each cluster. Therefore, models sometimes consist of the unexpected number of faces. In recent years, Graphics
Processing Units (GPUs) have grown so significantly in performance that both the computational speed and the
computational accuracy improve spectacularly. GPUs have programmable units such as vertex shaders and
geometry shaders. With shaders, GPUs can be used not only for graphics rendering but also for general purposes.

In this paper, we propose a real-time simplification algorithm for complex models of 3D objects by using a
GPU whose performance gets better these days. First, vertex-clustering information is stored to video memory on
a GPU. Next, the faces are reduced by the vertex-clustering information using a programmable shader, depending
on the level of detail which a user defined. We also discuss a method to control the number of faces easily.

Keywords
Simplification, GPU, Vertex-Clustering, Real-Time rendering

1. INTRODUCTION
In recent years, it has been easy to express complex
models of 3D objects in product design, simulation,
medicine and games electronically, due to
progressive computer technology and progressive
computer graphics. However, it is still difficult to
render them in real time. Therefore technology is
required to change the level of detail (LOD) of multi-
resolution representations of models according to a
user’s needs.

A vertex-clustering algorithm is known as a kind of
model simplification. While the vertex-clustering

algorithms feature low computational costs, they have
2 disadvantages. One is that model simplification has
traditionally not been viewed as a real-time rendering
on CPU, the other is that it is difficult for a user to
control the degree of the LOD. The vertex-clustering
algorithm has been proposed by Rossignac and
Borrel [Rossignac and Borrel 1993]. This is the
method where a cell, which includes all the vertices
that exist in 3D space, is uniformly divided; all
vertices within each grid cell are collapsed to a single
representative vertex, which may be one of the input
vertices or some weighted combination of the input
vertices. Some triangles degenerate to edges or points.
A number of other vertex clustering algorithms have
also been proposed. Low and Tan have proposed a
modified vertex-clustering algorithm using floating
cells rather than a uniform grid [Low and Tan 1997].
The floating-cell clustering leads to more consistent
simplification. Since the importance of vertices
controls the positioning of clustering cells, the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

1) 2)

3)

2) 2)

WSCG 2011 Communication Papers 121

unpredictable simplification artifacts are greatly
reduced. Luebke and Erikson have proposed the
algorithm using a hierarchical grid in the form of an
octree, which is called Tight Octree [Luebke and
Erikson 1997]. This vertex tree allows for a dynamic,
view-dependent adaptation of the level of detail.
Kanaya and Kobori have proposed the improved
Tight Octree algorithm allowing for cell size [Kanaya
and Kobori 2002]. This method is easier to control
the LOD level. Lindstrom has used QEM(quadric
error metrics) [Garland 1999] to improve the
positioning of the representative vertices [Lindstrom
2000]. Shaffer and Garland have proposed BSP-Tree
partitioning to control the LOD level [Shaffer and
Garland 2001], and have also used QEM to improve
the positioning of the representative vertices [Garland
and Shaffer 2002]. Mesh simplification has been a
slow, CPU-limited operation performed as a pre-
process on static meshes.

In recent years, GPUs have grown so significantly
in performance that the computational speed and the
computational accuracy improve spectacularly.
Additionally, a general–purpose GPU, such as
numerical calculation, modeling, have been studied
by a Programmable Shader’s appearance.

[DeCoro and Tatarchuk 2007] is famous as a
model simplification using GPU. This method is
based on [Lindstrom 2000] adopted to the novel GPU
pipeline. Additionally, they have proposed the
algorithm for variable level-of-detail, called
probabilistic octree. This method is much faster than
CPU-based algorithm.

We present an algorithm overcoming the 2
disadvantages of vertex-clustering algorithms. For
this, we present a novel general-purpose data
structure designed for a GPU. At the same time, we
present a method to linearize a relationship between a
level which a user defined and the number of faces.
As a result, our algorithm is faster and the number of
faces is easier to control.

2. Our algorithm
We outline our algorithm, which consists of the
following five steps:

1. The space division algorithm.
2. Synthesis of vertices in each cluster.
3. Updating level for controlling the number of

faces.
4. Storing the clustering information in a GPU.
5. Generating the simplified models.

The above procedures (1) to (2) are performed on the
CPU; the procedures (3) to (5) are performed on the
GPU.

2.1 Space division algorithm
We applied the algorithm of [Kanaya and Kobori
2002], which we have proposed, to an arbitrary 3-D
space division. The space division algorithm consists
of the following five steps:

1. A cell, which includes all the vertices that
exist in 3D space, is generated. The cell is a
minimized cuboid, which is divided by
domain parallel to the planes of the x-y
coordinate, the y-z coordinate, and the z-x
coordinate so that two or more vertices can
be included.

2. The cell is equally divided by eight, and then
eight cuboids are made.

3. The degree of the LOD (level of details) is
determined by the longest edge of each
cuboid. This is estimated by the following
equation.

)(logINT_ max
2

currentLength
Lengthleveli = (1)

where, INT() is an integral function. The
Length max is the longest length of cell that
envelops all vertices. The Length current is the
longest length of the considered cell. The
i_level is integer value.

4. The number of vertices belonging to each
cuboid is equally divided into eight; dividing
will end if the number of the vertices, which
exists in the cuboid, is only one.

5. Otherwise, each remaining cuboid is
changed into a cell and processing returns to
step 2.

By this procedure, a tree can be generated as shown
in Figure 1. This tree is an octree, since a cell is
always divided by eight. Considering the degree of
the LOD in this octree, the root node is an i_level 0
and the degree of the LOD becomes larger as the
node is closer to a leaf node. The octree is clustering
information.

1 2 3

4

5 6 7

8 9

i_level 0

i_level 1

i_level 2

i_level 3
1 2

3

5

7

4

8
9

6

Figure 1. A generated octree using a
spatial partitioning. (In 2D space)

(a) The space division. (b) An octree of (a).

WSCG 2011 Communication Papers 122

2.2 Synthesis of vertices in cluster
A method for the synthesizing of vertices in cluster is
based on [Kanaya and Kobori 2002]. This is why we
simply want to compare CPU-based algorithms with
GPU-based algorithms. It is possible to use
[Lindstrom 2000] instead of Kanaya and Kobori for
accuracy improvement.

2.3 Updating level for controlling the
number of faces
To make it easier for the user to define the number of
faces, we propose a way of linearizing a relationship
between a level which a user defined and the number
of faces as follow.

First, we cluster the internal nodes which i_level is
same. However, the longest length of cell varies
according to cell in spite of the same i_level. The
internal nodes are arranged in descending order of the
length in each cluster which has the same i_level.
Then, we call the level which has the rank in
descending order in each cluster “r_level”. The
r_level is a real number. The r_level of each internal
node m “r_levelm” is calculated by equation (2).

k
number

levelilevelr
i

beforem ×+=
1__ (2)

where, i_levelbefore is the i_level of each internal node.
k is a rank of each internal node after arranging in
descending order. numberi is the number of internal
node in arbitrary i_leveli. The leaf level is not
updated.

2.4 Storing the clustering information in a
GPU
The clustering information which was generated by
the above process is stored in a texture on the GPU as
texture. We prepare 2 kinds of textures for storing the
clustering information. One texture is called “Tree-
buffer”; the other texture is called “Leaf-buffer”. The
Tree-buffer stores the information of the internal
nodes in an octree. The Leaf-buffer stores the
information of the leaf nodes. We illustrate the way to
store the information of nodes in textures in Figure 2.

First, we describe a method used for storing the
internal nodes in the Tree-buffer. Each texel of the
Tree-buffer stores the synthesized coordinate of
vertices and the r_levelm as shown in Figure 3, while
arbitrary internal nodes with parent-child relationship
arrange a column parallel to the v axis, as shown in
Figure 2.

Next, we describe a method used for storing the
leaf nodes in the Leaf-buffer. Each texel of the Leaf-
buffer stores a coordinate of vertices of leaf node in
the octree and a pointer whose value refers directly to

the parent node in the Tree-buffer as shown in Figure
4, in order from the bottom left as shown in Figure 2.
For example, as we show in Figure 2, the leaf node 1,
2 hold a pointer whose value refers directly to the
internal node A which is the parent for both nodes,
respectively. As a result, it is easy to refer to a node

ROOT

8 9

Figure 2. A stored state in the Tree-buffer
and the Leaf-buffer.

Tree-buffer

Leaf-buffer

Z

I

H

F G

A B C D E

1 2 3 5 6 7 4

2 3 4 5 6 1
8 9 7

B C D E A
F F F D G

H H H H H
I I I I I

Z Z Z Z Z

u

v

na nb

nc

nd

RGBA={xa, ya, za, fractionala}

x, y, z: x, y, z coordinate of vertex of internal node
fractional: fractional part of r_levelm

RGBA={xb, yb, zb, fractionalb}

RGBA={xc, yc, zc, fractionalc}

RGBA={xd, yd, zd, fractional d}

Figure 3. Method used for storing
information in the Tree-buffer.

na nb

nc

nd

RGBA={xa, ya, za, pa}

x, y, z: x, y, z coordinate of vertex of leaf node
p: a pointer to the Tree-buffer

RGBA={xb, yb, zb, pb}

RGBA={xc, yc, zc, pc}

RGBA={xd, yd, zd, pd}

Figure 4. Method used for storing
information in the Leaf-buffer.

WSCG 2011 Communication Papers 123

of a level a user wants, when the texture coordinate of
the terminal internal node is known.

2.5 Generating the simplified models
We describe the way for simplifying models by using
the Tree-buffer and the Leaf-buffer on a GPU. First,
we outline the generating procedure of the simplified
model.

1. Calculate “r_level” of the number of faces
“f_count” which a user wants.

2. Search the Leaf-buffer and the Tree-buffer
for the coordinate of vertices associated
with r_level.

3. Output each triangle consisted of the above
coordinate of vertices.

(Pass 1) Calculate the level of detail of f_count.
We illustrate a way of calculating r_level of the
number of faces a user wants in Figure 5. The r_level
is the degree of the LOD, which is associated with a
user-defined number of faces, in an octree. f_countmax
in Figure 5 is the number of faces constructing the
original model.

First, we search i_level i which is the maximum
number of faces within f_counti, i_level i+1 which is
the minimal number of faces over f_counti+1. It is
easy to set up the number of faces of the simplified
model by counting these levels respectively in
advance. Next, we calculate r_level corresponding to
the f_count. In general, a model consists of nearly

uniform faces in 3D-CG. Therefore, we can think that
the change in the number of faces is nearly constant,
each time a vertex is deleted. We suggest the
following equation for calculating the r_level.

ii

i

countfcountf
countfcountfilevelr

__

1 −
−

+=
+

 (3)

We can generate the simplified models consisting of
faces whose number is nearly equal to the user-
defined number by using the r_level.

(Pass 2) Select coordinate of vertices.
Each coordinate of vertices is selected by r_level on a
vertex shader of a GPU. We illustrate the selecting
way with an example in Figure 6.

We describe how to calculate a texture coordinate

of a parent node associated with a leaf node on the
Tree-buffer, when we assume r_level is equal to “4.4”.

 First, an arbitrary leaf node is selected. In this case,
we assume that P1 is selected. When the pixel of P1 in
the Leaf-Buffer is referred, it stored a pointer whose
value refers directly to the parent node Pa according
to Table 1. We can calculate the texture coordinate of
Pa in the Tree-buffer by the pointer.

Table 1. Table of referenced nodes in each leaf node.

Next, we calculate a node associated with r_level
by nodes whose parent node is located on the same
axis of v. As described above, all parent nodes which
are able to be traced from arbitrary internal nodes are
arranged a column of the Tree-buffer texture.
Therefore, we calculate the location storing the target
node with difference d between r_level and levell.

levelrleveld l _−= (4)

where, levell is level of leaf node.
However, the target node can not always be

calculated by equation (4), because both r_level and
level which internal nodes have are real numbers.
Therefore, we consider the following 3 cases
according to d. These are (Case 1) 0≤d , (Case 2)

0.10 ≤< d , (Case 3) 0.1>d . In (Case 1), the
three world coordinates of an arbitrary vertex in the

Leaf node levelm

P1
Pa (5.633) P2

P3
P4 Pb (4.382)
P5
P6 Pc (3.457)

Figure 6. An example of a texture in an octree.

Tree-buffer

Leaf-buffer

Pa
Pb
Pc

P1 P2 P3 P4 P5
P6

Pa

Pb

Pc

P1 P2 P3

P6

P5 P4

i_level 6

i_level 5

i_level 4

i_level 3

f_countmax

f_counti+1

f_count

f_counti

i i+1 r_levelmax
r_level

i_level

The number of faces

Figure 5. A computation of r_level.

WSCG 2011 Communication Papers 124

leaf node are selected, because the level of the leaf
node is too small for the r_level. In (Case 2), if a
level of the parent node for the leaf node is larger
than the r_level, the three world coordinates of an
arbitrary vertex of the leaf node are selected;
otherwise, the three world coordinates of an arbitrary
vertex of the parent node are selected. In (Case 3),
when each level of 2 internal nodes closest to the
r_level is compared with the r_level, the three world
coordinates of an arbitrary vertex of the internal node
whose level is larger than the r_level are selected. In
Figure 4, levell is 6, r_level is 4.4. d is equal to 1.6 by
equation (4). As a result, this is selected as Case 3.
The candidate internal nodes are Pa and Pb. The
selected node is Pa because r_level (4.4) is greater
than the level of Pb (4.382).

As described above, the access number of times to
texture is 3 tops. It is quicker to search in the octree.
(Pass 3) Generate triangles for meshes.
The above process selects each coordinate of vertices
for triangles. This pass determines if each triangle is
generated in geometry shader. The geometry shader
calculates normal vectors of triangles. If the size of
the normal vector is not equal to 0, triangle is
rendered; otherwise, triangle is not rendered.

3. Experiment and Results
To evaluate the performance of our algorithm, we
made 3 experiments. The first experiment is
associated with processing time, the second is
associated with controlling the number of faces.
Figure 7 shows 2 original models and the simplified
models whose number of faces are one tenth of
original models, respectively. We use “s_level”

instead of the number of faces, where s_level is
degree of LOD. The range of s_level a user defines is
from 1 to 1,000. That is, when s_level is 1,000, the
number of faces is that constructing the original
model. When s_level is 1, the simplified model
consists of one thousandth the number of faces for the
original model. All simplifications were performed
on a PC with a Core2 Duo CPU (2.66GHz), 2GB of
RAM and an NVIDIA GeForce 8800GTX (768MB)
GPU, collected on Windows XP Professional.

3.1 Experiment associated with
processing time.
We compare our algorithm with a CPU-based
algorithm. The CPU-based algorithm is [Kanaya and
Kobori 2002]. Figure 8 shows the comparison of 2
algorithms. The horizontal axis shows the s_level and
the vertical axis shows processing time. Our
algorithm is up to 17 times quicker than the CPU-
based algorithm, as shown in Figure 8. Additionally,
it is found that the processing time is almost constant
at every s_level.

3.2 Experiment associated with control-
ling the number of faces
We verify that when a user defines an s_level, the
simplified models consist of the number of faces
he/she expected. The range of s_level a user defines

(a) Model A
 (2,208,936)

(b) The simplified model
of A (226,866)

(c) Model B
 (3,745,150)

(d) The simplified model
of B (377,278)

Figure 7. Experimental models and
Simplified results.

CPU-based algorithm

Our algorithm

CPU-based algorithm

Our algorithm

Figure 8. Comparisons of our algorithm
and CPU-based algorithm.

(a) Processing Time of Model A

(b) Processing Time of Model B

WSCG 2011 Communication Papers 125

is from 1 to 1,000. That is, when s_level is 1,000, the
number of faces is that constructing the original
model. When s_level is 1, the simplified model
consists of one thousandth the number of faces for the
original model. Figure 9 shows a result of model A
simplified by using our algorithm. The horizontal axis
shows the s_level and the vertical axis shows the
number of faces.

A relationship between s_level and the number of
faces is almost linearized according to Figure 9.
However, the difference between the numbers of
faces we have expected and actual results were
accurate within 4.7%, because we calculated r_level
of s_level by linear approximation. However, it is
easy to get the number of faces a user wants by using
our method.

4. Conclusions
We have presented a method for model simplification
on the GPU programmable shader and demonstrated
how triangle decimation becomes practical for real-
time use. We have applied a vertex-clustering
algorithm to the GPU and we have presented how to
store the clustering information.

We introduced “r_level” that is a real number, for
the purpose of generating the simplified models
which consisted of the number of faces a user
expected. We introduced 2 buffers “Tree-buffer” and
“Leaf-buffer” for faster access and efficient storage.
Additionally, the experiment results showed efficacy.

We have not compared our algorithm with the
algorithm based GPU [DeCoro and Tatarchuk 2007].
We would like to compare our algorithm with the
algorithm in the future work.

5. REFERENCES
[DeCoro and Tatarchuk 2007] DeCoro, D. and

Tatarchuk, N., Real-time Mesh Simplification
Using the GPU. Symposium on Interactive 3D
Graphics (I3D) 2007, pp. 6, April 2007.

[Garland and Shaffer 2002] Garland, M., and
Shaffer, E., A multiphase approach to efficient
surface simplification. In VIS ’02: Proceedings of
the conference on Visualization ’02, IEEE
Computer Society, Washington, DC, USA, 117–
124, 2002.

[Garland 1999] Garland, M., Quadric-based
polygonal surface simplification. PhD thesis,
Carnegie Mellon University. Chair-Paul Heckbert,
1999.

 [Kanaya and Kobori 2002] Kanaya, T., and Kobori,
K., A Method of Model Simplification Using
Spatial Partitioning. In the journal of the Institute
of Image Information and Television Engineers
56(4), 636-642, 2002.

 [Lindstrom 2000] Lindstrom, P., Out-of-core
simplification of large polygonal models. In
SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 259–262,
2000.

[Low and Tan 1997] Low, K.-L., and Tan, T.-S.,
Model simplification using vertex-clustering. In
SI3D ’97: Proceedings of the 1997 symposium
on Interactive 3D graphics, ACM Press, New
York, NY, USA, 75–82, 1997.

[Luebke and Erikson 1997] Luebke, D., and
Erikson, C., View-dependent simplification of
arbitrary polygonal environments. In
SIGGRAPH ’97: Proceedings of the 24th annual
conference on Computer graphics and interactive
techniques, ACM PRESS/Addison-Wesley
Publishing Co., New York, NY, USA, 199–208,
1997.

[Rossignac and Borrel 1993] Rossignac, J., and
Borrel, P., Multi-resolution 3d approximations for
rendering complex scenes. In Geometric
Modeling in Computer Graphics, Springer-Verlag,
New York, NY, USA, 455–465, 1993.

[Shaffer and Garland 2001] Shaffer, E., and
Garland, M., Efficient adaptive simplification of
massive meshes. In VIS ’01: Proceedings of the
conference on Visualization ’01, IEEE Computer
Society, Washington, DC, USA, 127–134, 2001.

Figure 9. Relationship between s_level and
the number of faces.

WSCG 2011 Communication Papers 126

Speeding up probabilistic inference of camera orientation
by function approximation and grid masking

Nicolau Leal Werneck
Universidade de São Paulo

Av. Prof. Luciano Gualberto tv. 3, 158
05508-900 São Paulo, SP, Brazil

nwerneck@usp.br

Anna Helena Reali Costa
Universidade de São Paulo

Av. Prof. Luciano Gualberto tv. 3, 158
05508-900 São Paulo, SP, Brazil

anna.reali@poli.usp.br

ABSTRACT
This article presents modifications to an existing technique for camera orientation estimation intending to make
it faster for use in real time applications and also for analysis of large image sets. The technique is based on
likelihood maximization of a probability function that has the image gradient as the observed data and the camera
orientation as parameter values. The camera orientation is inferred from the vanishing points of the image, and
the directions of the edges in the environment are assumed to be in three mutually orthogonal directions. The first
proposed modification is to substitute the expression that is calculated at each pixel by a computationally lighter
approximation. The second proposal is to take in consideration only a few of the pixel lines and columns of the
image during the calculations, performing a grid windowing of the image. This article presents the derivation and
reinterpretation of the likelihood function approximation and also a performance evaluation.

Keywords
Vanishing point, grid masking, camera orientation, camera localization, Bayesian inference, ML estimation.

1. INTRODUCTION
Camera localization is the Computer Vision problem
of inferring the position and orientation of a camera
in an environment from one or more pictures captured
by it. Camera localization problems are defined by
their different restrictions, specially the available data
and what parameters are to be estimated. As usual
in Computer Vision, it is an ill-posed problem of
parameter estimation, and solutions are often based
on procedures such as non-linear regression [SW89]
and robust estimation [CKY09, HZ03]. One specific
case of the localization problem is to estimate just
the camera orientation from a single image under
the restriction known as “Manhattan World”, or also
“LEGO Land”, that the edges in the environment are
in the directions of the coordinate axes. This article
presents modifications to existing techniques [CY03,
DIM02, SD04, DEE08] that solve this problem
using the Likelihood Maximization principle, with a
probabilistic observation model where the observed
data is the image gradient, and the parameters to be

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

estimated define the camera orientation in the world
reference frame. Two modifications are proposed:
the substitution of the expression calculated at each
pixel by a simpler one, and the use of a grid mask to
select pixels. The alternative expression caused great
speed gains (60 fold in one test) while exhibiting good
convergence. The subsampling technique also caused
a 10 fold speed increase with just a 10% reduction of
convergence probability in another experiment.

The proposed simplified expression can be seen as
the result of a windowing operation by a mask that
is calculated from the image gradient norm using
a sigmoid function. While the original expression
is strictly probabilistic, the proposal is similar to
techniques such as Fuzzy Logic and Neural Networks.

In the remainder of this section the problem is
further described and previous techniques are briefly
reviewed. In Section 2 the existing techniques on
which this proposal is based are better explained, and
so is the developed technique. This section also brings
results of experiments conducted with a database of
images with solved orientation parameters to evaluate
the proposal. Section 3 brings a few conclusions.

1.1 Problem geometry
The aim of the proposed technique is to obtain an
estimate of the spatial orientation of a camera from
a single image captured by it. The camera follows the
simple pinhole model [TV98, chap. 2][HZ03, chap.

WSCG 2011 Communication Papers 127

6]. In this model there is a camera reference frame
whose origin is the focal point of the camera, and
the image plane is located at z = f , where z is the
direction that points outwards from the camera and
into the scene. Image coordinates can be converted to
this camera reference frame by a linear transformation
involving the pixel size and the location of the
image origin. The color of pixels are determined
by the color of objects that are projected onto the
image plane according to the classic perspective
transformation [TV98]. The environment is assumed
to be composed of rectangular parallelepipeds of faces
with different colors and with edges aligned to the
coordinate axes of the world reference frame.

The projections of the edges of these objects
create edges on the captured images. These image
edges typically produce gradient vectors with high
magnitude that point to the direction orthogonal to the
edge. Image gradients are approximately calculated
by linear filters such as the one used in the well
known Sobel detector [TV98, chap. 4]. In the present
research the Scharr filter was employed [WS02]. The
perspective projection causes the well known effect
of producing vanishing points in the image. Lines
that point to the same direction in the environment
create either parallel lines in the image, or lines that
converge to a vanishing point. The spatial orientation
of the camera determines the position of the vanishing
points, and the orientation can be therefore estimated
from the directions of the image edges [HZ03, sec.
8.6]. This principle is the basis of many different
techniques to estimate camera orientation.

1.2 Existing techniques
Many of the existing techniques for vanishing point
or camera orientation estimation are either based
on the Hough Transform [Shu99, CJRZ10] or on
robust estimators [Tar09, Fö10] for matching edges
extracted from the image and perform the desired
estimation. Extracting edges and defining parameter
space accumulators can be a nuisance for some
applications, and this is one of the main reasons to
look for alternative techniques. It is usually hard
to extract edges with good precision, and also to
match the edges that refer to the same direction.
The technique presented in this article is part of a
family of techniques that avoid these problems by
using probabilistic models to infer camera orientation
directly from pixel values, exploiting the vanishing
point restriction.

The probabilistic model is used to perform
maximum likelihood (ML) estimation to determine
the camera orientation ~Ψ from a given input image.
The differences between these similar techniques
lie in the expression used for the calculation of
the image likelihood given ~Ψ and the pixel values,

more specifically the image gradient, and in the
optimization procedure employed to find the optimal
~Ψ∗ that maximizes the likelihood expression.

The directions of the environment edges must
be known in order to infer camera orientation
from vanishing points. In the present research the
orientations are assumed to be in the directions of
the coordinate axes, so the edge directions in camera
coordinates are easily calculated from the rotation
matrix that gives the camera orientation in relation
to the world reference frame. Other than camera
orientation, most of these techniques can be modified
for other tasks such as discovering vanishing points
in unknown directions and also estimating intrinsic
camera parameters such as the focal distance f .

2. METHODOLOGY
This section brings more detailed explanations about
how the existing and the proposed techniques work.
They are all procedures that create an estimate of a
camera orientation ~Ψ from a given input image. This
orientation is a rotation matrix in three dimensions,
and as such can be parameterized in different ways.
The most popular alternatives are Euler angles, the
Rodrigues formula, and quaternions, which are used
in this work. But this representation is not relevant
for the following subsections, where the reader can
just assume ~Ψ is given as a 3D rotation matrix.

The next subsection describes the original
probabilistic technique for estimating camera
orientation from image gradient [CY03] and some
modifications. The following subsection brings the
new proposals. These techniques are all based on
the Maximum Likelihood principle. They are more
specifically maximum a posteriori (MAP) estimators,
that can be seen as regularized ML estimators. These
methods need a function called observation model,
which is a conditional probability density function
(PDF) of observing a measured data set given certain
condition parameters. This function is used as a
likelihood function, where the observed data is
taken from the image gradient, and the conditional
parameters are the camera orientation (related to the
vanishing points locations), image coordinates of
each pixel, and a pixel class that will be explained
below. Once the expression is defined and the data
collected, an optimization technique is used to find
the parameters that maximize this MAP estimator.
The ~Ψ∗ found by this optimization is the desired
camera orientation estimate.

2.1 Original observation model
In the first observation model proposed related to our
technique [CY03] the likelihood of the whole image
is factored as the product of the likelihoods of the

WSCG 2011 Communication Papers 128

gradients ~E~u at each pixel ~u. These individual PDF
are also further factored as products of the likelihoods
of the gradient norms E~u and edge angles φ~u yielding

P (~E~u|m~u, ~Ψ, ~u) = P (E~u|m~u)P (φ~u|m~u, ~Ψ, ~u).
(1)

The edge angle φ~u is orthogonal to the gradient
direction 6 ~E~u. The formula has two important
characteristics. The first is that the PDF of the
gradient norm E~u depends only on the pixel class
m~u. This class can be one of five possibilities: class 1
means the pixel is not an edge, classes 2–4 are edges
on each of the three coordinate axes of the world
reference frame and class 5 is a non-aligned edge.

The second characteristic is that the PDF of φ~u also
depends on m~u, but also on the camera orientation ~Ψ
and the coordinates of pixel ~u. When m~u = 1 or 5 we
assume all gradient directions are equally probable,
so P (φ~u|m~u, ~Ψ, ~u) becomes a uniform distribution
in these cases. For m~u = 2, 3 or 4 we calculate
the probability of the measured direction. For that
we first use ~Ψ to calculate ~rm = (rmx , r

m
y , r

m
z), a

vector in the direction of the edges of the class m~u

in the camera reference frame. The location where a
line extended from ~rm crosses the image plane is the
vanishing point. The vector can also be parallel to the
plane, in which case there is no actual vanishing point
but it is still possible to calculate the directions of the
edges. The direction on each pixel is:

~θm~u =

(
rmx
rmz

f + ux,
rmy
rmz

f + uy

)
. (2)

One way to calculate P (φ~u|m~u, ~Ψ, ~u) used in
previous techniques is to determine the vanishing
point direction angle 6 ~θm~u , then subtract it from the
edge direction φ~u, and this difference is then used
as parameter to the PDF of the observation error in
the measured edge directions. This PDF has been
assumed in previous works to be uniform [CY03],
triangular [DIM02], Gaussian [SD04] and a
Generalized Laplace distribution [DEE08].

Two different PDF are used to implement
P (E~u|m~u). For m~u = 1, Poff (E~u) is used, and
Pon(E~u) is used otherwise. Different assumptions
have been made about these functions too. Both
measured values [CY03, DIM02] and Gaussian
models [SD04] have already been used.

As previously mentioned, the likelihood of the
complete image is a product of terms given by
Equation 1. This product can be used to define a ML
estimator, but what is usually done is to improve it
by using the information of a priori probabilities of
P (m~u), to define a MAP estimator. The logarithm
of the resulting expression is also taken to replace the
product by a summation, what does not change the
location of the maximal points. Considering all this,

and using Mk for P (m~u = k), Φk for P (φ~u|m~u =

k, ~Ψ, ~u) we arrive at the expression:

L
(
~Ψ
)

=
∑
~u

log

(
Poff (E~u)Φ1M1 + Pon(E~u)Φ5M5

+ Pon(E~u)
∑4
k=2 ΦkMk

)
(3)

The camera orientation estimate is therefore the
rotation ~Ψ∗ that maximizes the function L. In the
original proposal the summation is performed over
all the image pixels [CY03], but just like with the
PDF definitions, other researchers have proposed
different ways to select subsets of the image pixels
over which the summation should be performed,
hoping to make the calculation faster and also smooth
the estimator function. One proposal is to divide
the image in square tiles, and sample a single
pixel randomly from each one, a different pixel at
each calculation [DIM02]. Another possibility is
to select only a few of the pixels with the largest
values of E~u [SD04]. The probabilistic modeling
of the pixel being or not on an edge can be even
dropped and substituted by the use of an edge-finding
algorithm [DEE08]. In this case the argument of the
log in Equation 3 becomes simply

∑5
k=2 ΦkMk, but

this technique depends on an initial edge extraction,
that did not exist in the original proposal.

Other aspects where the techniques differ is
the application of the Expectation-Maximization
algorithm, where values for Mk are also
iteratively estimated [SD04, DEE08], and the
optimization algorithms used. Alternatives
range from coarse-to-fine search at regularly
sampled points [CY03], stochastic importance
sampling [DIM02], and continuous non-linear
optimization methods [SW89] such as
Levenberg-Marquardt [SD04] and BFGS [DEE08].

2.2 Function approximation
This subsection describes the first major modification
investigated in this research, which is substituting
the original arithmetical expression for the likelihood
function by a computationally simpler approximation.
The following subsection covers the use of a grid
mask to select the pixels to be considered in the
calculations.

Tests performed with an implementation of the
original likelihood expression (Equation 3) revealed
that much of the computation time was spent
on functions to compute the logarithm and the
arc-tangent used to calculate 6 ~θm~u . A removal
from the program of the procedure calls related to
these operations, while keeping all the rest of the

WSCG 2011 Communication Papers 129

calculations, resulted in an approximately ten fold
speed gain, showing experimentally that avoiding
these operations can be a good strategy to reduce the
calculation time. Arc-tangent was the most costly
operation of the three, considering both the time of
a single calculation and the number of calls at each
calculation iteration in the summation loop.

The modifications begin by replacing the logarithm
with the first-order approximation

log(b+ a) ≈ a

b
+ log(b), (4)

where a represents the terms that depend on ~Ψ,
and b the terms that remain constant during the
optimization. The log(b) term can therefore be
ignored as it does not influence the solution, and the
resulting approximation becomes

∑
~u

W ′(E~u)
4∑
k=2

Φk
Mk

Φ1
, (5)

where the mask generating function

W ′(E~u) =

(
Poff (E~u)

Pon(E~u)
M1 +M5

)−1
. (6)

The function W ′ produces, at least with the
appropriate parameters, a sigmoid curve, similar to
the logistic or to the hyperbolic tangent functions.
The second approximation used was to replace this
function by W , the logistic function applied to E~u
translated by p1 and scaled by p2

W (E~u) =
(

1 + e−p2(E~u−p1)
)−1

. (7)

Replacing W ′ for W at Equation 5 and ignoring the
constantMk/Φ1, that only scales the function, finally
produces the proposed estimator:

L̃
(
~Ψ
)

=
∑
~u

W (E~u)
4∑
k=2

Φk, (8)

Figure 1 displays, at the top, the probability
models of the gradient magnitudes with measured
values, provided by the authors of [CY03], and also
the Gaussian models from [SD04] (mean 8.28 and
standard deviation 6.21 for Pon , and respectively 1.13
and 0.77 for Poff). On the bottom of the figure, the
continuous and dashed curves are W ′ obtained from
the two PDF models mentioned, and the red dotted
curves are W with two different sets of parameters
(p1 = 10 p2 = 0.4 and p1 = 3.1 p2 = 3.0).

Figure 2 shows an image from the YorkUrbanDB
image database [DEE08]. This image set has
102 indoor and outdoor images of man-made
environments, and the orientation of each image was

Figure 1: Original gradient magnitude likelihood
functions, resulting mask generating functions and
examples of the proposed function.

obtained from edges and with a manual labeling
process. Intrinsic parameters of the camera are also
provided, enabling interested researchers to test their
techniques and compare to others. Possible radial
distortions of the images were not taken in account
in this work, but the projection center coordinates and
focal distance that are provided were used.

The leftmost graphic of the figure displays the
input image. The next one displays the values of W
calculated over each pixel, with white representing
the zero level, (p1 = 20 and p2 = 0.2 were used).
The two graphics to the right display the horizontal
and vertical components of the normalized direction
vector. The red color denotes negative values, but
even in a monochromatic mode it is possible to see
how edges in the direction of the derivative vanish on
each graphic. The edge mask obtained with W has
been applied to these gradient images, clearing out the
noise that would be otherwise noticeable in the large
white areas of these images.

In the program created to implement this expression
the edge mask is calculated and stored in memory
before the optimization procedure starts, so only
memory accesses are needed to obtain the values
during the calculations. Something similar can be
done with other techniques, because P (E~u|m) does
not depend on Ψ, only Φm does.

The last modification done to the likelihood
expression was to substitute the calculations of
arc-tangents by dot products. Instead of calculating
the angles of the gradient and vanishing point
directions, these vectors are simply normalized and
multiplied by each other. Because the gradient is
orthogonal to the edge direction, this multiplication

WSCG 2011 Communication Papers 130

Figure 2: Gradient of an YorkUrbanDB image. The second image is the edge mask calculated from the gradient
vectors absolute values. The two rightmost graphics are the masked gradient x and y components.

yields γm = sin(φ~u − 6 ~θm~u). This is a good
approximation of the identity function for small
values, so the product result can be directly used in
the angle error PDF. The function used was therefore:

Φm =

{
2
p3

(
1− |γ

m|
p3

)
if |γm| < p3

0 if |γm| ≥ p3
, (9)

where we note that the 2/p3 multiplication can be
dismissed without affecting the optimization results.

The normalization of ~E~u and 6 ~θm~u can be
performed quickly using a special rsqrt instruction
available in many modern processors that calculates
an approximation of the reciprocal of the square
root of numbers. This instruction was used in the
implementation tested, and so were SIMD (single
instruction, multiple data) instructions that allow
calculations to be performed simultaneously both for
the three vanishing points, and also for the three image
channels when possible. The three image channels
were independently considered in the calculations,
with just the pixel coordinates and ~θ~u in common. The
final likelihood value is therefore the summation of
likelihoods for each channel.

The program was implemented using
Cython [Sel09], with a few routines implemented
in C in order to make use of the special processor
instructions mentioned. Another implementation
was made based on [CY03], using arc-tangent
and logarithm calls inside the loop, but with some
similarities to the implementation of the proposal,
such as using SIMD instructions for some operations,
and caching constant values.

Tests were performed with the YorkUrbanDB
images at different values of Ψ to measure the
speed of the proposed function relative to this
implementation of the original. Speed gains
from 50 up to 64 times were found in one
computer (c1.xlarge instance from Amazon Web
Services [Ser]), where the mean time to calculate the
likelihood of one image using the classic function was
1.10 ± 0.06s versus 18.9 ± 2.4ms for the proposed
algorithm. Although these numbers naturally varied

according to the processor employed, accelerations of
more than 10 times were often detected in other tests.

The positive impact of these function modifications
on the calculation speed is not surprising. But the
impact of these modifications on the performance of
the optimization procedure must be now studied to
validate the proposed technique. This analysis will
be presented in Subsection 2.4. But it should be
noted that this proposed modification did not intend
to numerically approximate the original likelihood
function values. The original function serves more
as a theoretical foundation, and the modifications do
not seek to approximate it exactly, but only retain
characteristics such as the positions of the extremal
points and gradient directions.

When the logarithm of the likelihood is used
instead of the original function in an optimization, the
produced function does not approximate the original
numerically, but is still useful for the optimization.
So the performance of such modifications should
not be measured by looking at approximations
errors, but at the optimization results instead. In
the same way, because the modifications proposed
here include dropping some constant terms, the
resulting function cannot be compared to the original
function, so no error analysis was performed, only
performance analysis of the optimization procedure.
Despite of that, the modifications are in fact initially
based on first-order approximations of the original
function, justifying the use of the term approximation,
even though the final proposed function does not
approximate the original one numerically.

The proposed function also differs from the original
in that the parameters of the mask generating function
are only indirectly related to the gradient norm
probabilities. While it is possible to fit the parameters
to a mask function taken from histograms, it is better
to look for parameters that maximize the performance
of the final optimization procedure. The sensitivity of
the performance to these parameters, and also to the
gradient norm probabilities is a topic that the proposed
modifications bring up, but was not studied here.

WSCG 2011 Communication Papers 131

Figure 3: Two example grids with spacing equal to 16
and 128 over the norm of the gradient of an example
image.

2.3 Grid mask
A sampling strategy was introduced to reduce the
number of pixels used in the calculations, and also
try to make the estimator smoother. The strategy is
to select only a few of the pixel lines and columns of
the image. These were selected at regular intervals,
with the spacing controlled by the parameter g. The
result is the same of applying a mask to the image
with the shape of a square grid, with a continuous line
or column at every g pixels, starting from the image
origin. When g = 1 all pixels are used. When g = 2,
3/4 of the pixels are used, and 7/16 when g = 4.

The grid masking is proposed here as a theoretically
more suited way to subsample images when edges
are the target features. Other subsampling techniques
simply regard edges as a kind of pixel, and not
as a geometric entity without area. Some authors
quote statistics such as “10% of the image pixels
are edges”, but such statements miss some important
points about image edges. The number of pixels of
an image increases with the square of resolution, but
the number of pixels that lie over and edge should
increase linearly. New edges may be introduced
as resolution increases, affecting positively this
proportion of edge pixels to image size, but the
relative number of pixels of an existing edge still
decreases linearly with resolution, and subsampling
strategies should take this effect in consideration.

As image resolution increases the number of edge
pixels found over a grid line or column should remain
constant, while non-edge pixels increase linearly
with resolution — assuming that no new edges are
introduced, and that edge directions are not exactly
aligned to the grid. One interesting characteristic of
grid masking is that if the edges have a minimum
length, the grid spacing can be made small enough
as to guarantee that a minimum number of points over
any edge in the images is sampled. Grid masking also
avoids sampling groups of neighboring pixels, what
is generally thought to be good because pixels are
assumed to be independent in the probabilistic model.
Figure 3 shows the grid lines and columns overlaid to
the gradient of the three channels of an image from the
YorkUrbanDB database. The top graphic has the grid
spacing parameter g = 16, and the lower g = 128.

Figure 4: Successful and failed optimizations.

2.4 Optimization
With the likelihood function and sub-sampling
technique defined, an optimization technique can
now be used to produce orientation estimates from
input images. The algorithm used was the modified
Powell’s method from SciPy [JOP+]. Figure 4
displays a successful optimization, obtained with g =
200, and a failed one with g = 400. This is
an 800x600 pixels image captured with a consumer
digital camera. Line segments in the directions of
the three vanishing points obtained form the solution
were plotted in regularly spaced points over the
images, and it is possible to see how the edges are
aligned to the objects in the environment. In the
failed optimization the solution found was not much
far from the initial condition, which was no rotation.

The parameterization used for the rotations was
quaternions. The vector ~Ψ has three dimensions,
and are the three quaternion parameters that are
directly related to the direction of the rotation axis.
The fourth parameter, related to the rotation angle,

is calculated as
√

1− ||~Ψ||2. If ||~Ψ|| > 1 no
quaternion can be directly produced. In this case
the quaternion is obtained from −~Ψ/||~Ψ||. It should
be noted that no symmetries were taken in account
in this parameterization, so multiple ~Ψ values are
equally acceptable solutions, and can be obtained
from each other by 90 degrees rotations around the
axes. The problem of associating the axes properly,
when possible, was not considered in this research.

As in previous works, optimization is initiated from
different starting points [DEE08], although only two
were used in the present experiments. One point
considers no rotation, and the other a 45 degrees
rotation around the vertical axis. This explores
the tendency of the camera to be upright, and the
ambiguity resulting from 90 degree turns. After the
two optimizations are performed, the solution with the
highest likelihood is picked as the best estimate.

Figure 5 shows an evaluation of this optimization
for different grid spacings g. The parameters used for
L̃ in this experiment were p1 = 20, p2 = 0.2 and
p3 = 0.1. There is a compromise between calculation
speed and the quality of the solutions obtained.
The decreasing green curves show the probability p,
estimated from the N=102 images, of the obtained

WSCG 2011 Communication Papers 132

Figure 5: Speed of the calculations as a function of
the grid spacing, and two quality evaluations.

solution lying at 10◦ or 5◦ of the orientation provided
in the database [DEE08]. The 10◦ curve is naturally
above the 5◦ one. The uncertainty interval plotted is a
single standard deviation above and below the points,
calculated as

√
p(1− p)/N .

The speed estimate is the number of times L̃
can be calculated per second as a function of g.
To calculate this, the elapsed time and number of
function calculations performed were first stored for
both optimization runs of all test images. The speed
was then estimated for each optimization run by
dividing the number of calculations by the elapsed
time. The mean number of iterations was 276 for
all optimization trials with all g values, with a 89.3
standard deviation. The increasing blue continuous
line in the graphic is the mean and 6σ interval of
this speed for all optimizations performed for each g.
It should be noted this experiment was performed in
a slower machine compared to the one used for the
measurement reported in Subsection 2.2.

The increasing black dashed line in Figure 5 shows
how speed should increase if it depended only on the
reduction of the number of pixels, where speed gain
should be g2/(2g − 1) . The smaller speed values
that were measured are coherent with the addition of
a constant time to the calculation time, the reciprocal
of the speed value.

This analysis only considers the individual
performance of the proposed target function and
the effects of the grid sampling. Another test was
performed in order to validate the proposed function.
The objective was to find out if the modifications
were causing the extremal points to be located in
positions further from the true solutions than the
points produced by the original function.

To perform this test the solution found with
the proposed method was used as initial estimate
for a second optimization on the original function.
The error of the first and the second optimizations
compared to the estimate in the database were then
analyzed. The modifications would be considered
destructive if the errors in the first optimization were
higher than the errors from the second, i.e. the second
optimization would “fix” the first one. On the other
hand, if the modifications are acceptable the second
optimization should not improve the solutions much.

The result was that from the 102 YorkUrbanDB
images 53 had their errors reduced after the second
optimization. From these, 5 were improvements from
more to less than 10◦ away from the correct solution.
On the other hand, from the 49 cases where the second
optimization ended with a larger error, there were 6
cases where the initial solution was below 10◦ but
the second was beyond. So there is no indication
that using the original expression can be critical to
improve the performance obtained with the proposed
function, at least with the optimization algorithm that
was used and with no subsampling performed.

3. CONCLUSION
This article demonstrated modifications made to
existing techniques for camera orientation estimation
to attain higher calculation speed. The techniques
are based on the optimization of a MAP estimator
that has the image gradient values as observed data,
and the camera orientation as estimated parameter.
It works by finding the orientation that causes the
best alignment of the image gradient to the vanishing
points created by the directions of the three mutually
orthogonal axes of the world reference frame.

The original expression to calculate the likelihood
was modified by an approximation that avoids the
calculation of arc-tangents by using dot products,
and also replaces the logarithm of a summation
at the expression for each pixel by a summation
where all the terms are strictly dependent on the
gradient directions and camera orientation. These
pixel summations are weighed in the total image
summation by a coefficient calculated by applying a
sigmoid function to the gradient norms.

This coefficient takes the role performed originally
by the likelihoods Pon and Poff , and also the a priori
probabilities M1 and M5. The need to measure these
parameters is replaced by having to choose just p1
and p2. The third parameter p3 shapes the likelihood
of gradient directions. More tests still have to be
conducted to determine the best parameters, but the
technique seems to be robust to variations on them.
Outside of these parameters, the other parameters that

WSCG 2011 Communication Papers 133

must be set in order to use the technique are the ones
related to the optimization.

A grid masking technique was also proposed to
select a subset of the image pixels to take in
consideration in the calculations. It was inspired in
the usual curve tracking technique of searching for
edges over spaced lines normal to an initial estimate
of the curve location[BI98, chap.5], and also on
the Canny edge extractor [TV98]. It subsamples the
image in a deterministic and more reliable way, and
has been proven effective.

Some planned extensions to this research are to
better choose the function parameter values and turn
the grid masking into a search of maximal points of
the derivative in the direction of the line or column.
The gradient calculations can also be restricted to
the grid vicinity to speed up calculations. Other
subsampling techniques can also be applied together
with a grid mask. For example, random sampling
could be performed only within the mask pixels,
or a random sampling could be performed in the
whole image initially, but instead of picking just a
single pixel from each trial, picking a whole group of
pixels inside a cross or square mask centered at each
generated pixel.

This fast orientation estimation algorithm is
planned to be used in real time to track the orientation
of a camera with a Kalman filter or a similar
technique. An attempt will be made to reuse the
data remaining from the grid masking to also extract
edges. The resulting edge observations will be fed to
a monocular simultaneous localization and mapping
(SLAM) system [NDL08] that exploits the restrictions
on the edge directions.

ACKNOWLEDGEMENTS
The authors thank the support from Capes, CNPq
(Proc. N. 475690/2008-7 and N. 305512/2008-0) and
FAPESP (Proc. N. 2008/03995-5).

REFERENCES
[BI98] Andrew Blake and Michael Isard. Active Contours.

Springer, 1998.

[CJRZ10] Xuehui Chen, Ruiqing Jia, Hui Ren, and
Yinbin Zhang. A new vanishing point
detection algorithm based on hough transform.
Computational Sciences and Optimization,
International Joint Conference on, 2:440–443, 2010.
doi:http://doi.ieeecomputersociety.
org/10.1109/CSO.2010.163.

[CKY09] Sunglok Choi, Taemin Kim, and Wonpil Yu.
Performance evaluation of RANSAC family. In
20th British Machine Vision Conference, 2009.
Available from: http://www.bmva.org/bmvc/
2009/Papers/Paper355/Paper355.pdf.

[CY03] James Coughlan and Alan Yuille. Manhattan world:
orientation and outlier detection by bayesian inference.

Neural Comput., 15(5):1063–1088, 2003. Available
from: doi:10.1162/089976603765202668.

[DEE08] Patrick Denis, James H. Elder, and Francisco J. Estrada.
Efficient edge-based methods for estimating manhattan
frames in urban imagery. In David A. Forsyth, Philip
H. S. Torr, and Andrew Zisserman, editors, ECCV (2),
volume 5303 of Lecture Notes in Computer Science,
pages 197–210. Springer, 2008.

[DIM02] Jonathan Deutscher, Michael Isard, and John
Maccormick. Automatic camera calibration from
a single manhattan image. In Eur. Conf. on Computer
Vision (ECCV), pages 175–205, 2002.

[Fö10] Wolfgang Förstner. Optimal Vanishing Point Detection
and Rotation Estimation of Single Images of a
Legolandscene. In Int. Archives of Photogrammetry and
Remote Sensing, pages 157–162. ISPRS Symposium
Comm. III, Paris, 2010.

[HZ03] Richard Hartley and Andrew Zisserman. Multiple View
Geometry. Cambridge Univ. Press, 2nd edition, 2003.

[JOP+] Eric Jones, Travis Oliphant, Pearu Peterson, et al.
SciPy: Open source scientific tools for Python, 2001–.
Available from: http://www.scipy.org/.

[NDL08] José Neira, Andrew J. Davison, and John J. Leonard.
Guest editorial special issue on visual slam. Robotics,
IEEE Transactions on, 24(5):929 –931, oct. 2008.
doi:10.1109/TRO.2008.2004620.

[SD04] Grant Schindler and Frank Dellaert. Atlanta world: An
expectation maximization framework for simultaneous
low-level edge grouping and camera calibration in
complex man-made environments. In CVPR (1), pages
203–209, 2004.

[Sel09] Dag Sverre Seljebotn. Fast numerical computations
with cython. In Gaël Varoquaux, Stéfan van der
Walt, and Jarrod Millman, editors, Proceedings
of the 8th Python in Science Conference, pages
15–22, Pasadena, CA USA, 2009. Available
from: http://conference.scipy.org/
proceedings/SciPy2009/paper_2.

[Ser] Amazon Web Services. Available from: http://
aws.amazon.com.

[Shu99] Jefferey A. Shufelt. Performance evaluation and
analysis of vanishing point detection techniques. PAMI,
IEEE Transactions on, 21(3):282–288, 1999. doi:
10.1109/34.754631.

[SW89] George A. F. Seber and Christopher J. Wild. Nonlinear
Regression. John Wiley & Sons, Inc., 1989.

[Tar09] Jean-Philippe Tardif. Non-iterative approach for fast
and accurate vanishing point detection. In Computer
Vision, 2009 IEEE 12th International Conference on,
pages 1250 –1257, sep. 2009.

[TV98] Emanuele Trucco and Alessandro Verri. Introductory
Techniques for 3-D Computer Vision. Prentice Hall,
1998.

[WS02] Joachim Weickert and Hanno Scharr. A scheme
for coherence-enhancing diffusion filtering with
optimized rotation invariance. Journal of Visual
Communication and Image Representation,
13(1-2):103 – 118, 2002. Available from:
doi:10.1006/jvci.2001.0495.

WSCG 2011 Communication Papers 134

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/CSO.2010.163
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/CSO.2010.163
http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf
http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf
doi:10.1162/089976603765202668
http://www.scipy.org/
http://dx.doi.org/10.1109/TRO.2008.2004620
http://conference.scipy.org/proceedings/SciPy2009/paper_2
http://conference.scipy.org/proceedings/SciPy2009/paper_2
http://aws.amazon.com
http://aws.amazon.com
http://dx.doi.org/10.1109/34.754631
http://dx.doi.org/10.1109/34.754631
doi:10.1006/jvci.2001.0495

Off-line Handwritten Arabic Words Segmentation Based on Structural
Features and Connected Components Analysis

Moftah Elzobi, Ayoub Al-Hamadi, Zaher Al Aghbari*
Institute for Electronics, Signal Processing and Communications

Otto-von-Guericke-University Magdeburg, Germany
*Department of Computer Science, University of Sharjah, UAE

{Moftah.Elzobi, Ayoub.Al-Hamadi}@ovgu.de

Abstract— A precise and efficient segmentation for handwrit-
ten Arabic text is a vital prerequisite for the accuracy of the
subsequent recognition phase. In this paper, we present a dual-
phase segmentation approach. The proposed approach starts
first by detecting and resolving sub-words overlapping, then a
topological features based segmentation is applied by means of
a set of heuristic rules. Because of its crucial importance, the
segmentation phase is preceded by a handwritten specific pre-
processing phase, that considers issues like word’s skew- and
slant- correction. The proposed approach has been successfully
tested on a database of handwritten Arabic words, that contains
more than 3000 words images. The results were very promising
and indicating the efficiency of our approach.

Keywords- Arabic Handwriting Segmentation, Handwriting
Topological Features, Pattern Recognition.

I. INTRODUCTION

PEOPLE nowadays expecting that, modern as well as
historical human knowledge and cultural resources are

digitally available as electronic text, which can be fast, effi-
ciently and easily accessed. Resources that are not converted
properly to digital text, e.g., Unicode, ASCII, and etc., soon
will become obsolete or even inaccessible for researchers,
scholars and general public. This means lose of an important
and huge amount of the human cultural memory.

Off-line Optical Character Recognition (OCR) is the tech-
nological means used for converting handwritten, typewrit-
ten and printed text into a digital text. Latin alphabet based
and Chinese characters based scripts have been the subject
of extensive research since decades, that lead to significant
achievements in the field [1], [2]. Despite the fact of being
the world second most used alphabet, reported works that
address the off-line OCR issues related to Arabic alphabet
based scripts, e.g., Arabic, Persian, Urdu, Ottoman, Kurd,
and etc., are relatively less in quantity and quality.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

The complexities that hindering fast progress in this
research field can be related to the cursive written form of
Arabic script and to the high variability of character’s forms
with regard to their positions (isolated, begin, middle and
end) within a word, that makes an efficient segmentation
hard and error-prone process. It is also observed that tech-
niques proved successful for Latin and/or Chinese, cannot
be directly applied without fundamentals changes [1], [3],
[4], [5], [6].

In this paper, we introduce a topological feature based
segmentation approach for handwritten Arabic words. In
order to compensate limitations of extraction steps such
as binarization, our methodology starts by pre-processing
steps such as small holes filling and smoothing the out-
cropping pixels. Then to reduce the extreme variability
of handwritten words, normalization issues such as Slant-
and Skew- correction is considered. The segmentation then
conducted through a dual-phase procedure. In the first phase,
a connected component analysis is performed, in order to
resolve sub-words overlapping. Then topological features
based segmentation is carried out to segment the word into
identifiable units representing their constituent characters.

In literature relatively few works are addressing the prob-
lem of Arabic text segmentation. Hereafter we will briefly
discuss the most important published related works. In [3]
a recognition system for off-line cursive handwriting is
presented. The system is segmentation based one, thinned
and smoothed images of the strokes are processed and two
representations for each stroke are generated. The first rep-
resentation is a direct straight-line approximation. The other
is what they called a reduced graph with loops reduced to
vertices, then temporal information of the strokes is extracted
by following their straight-line representation from right to
left. Finally, cursive stroke representatives are segmented to
small parts called tokens that passed to the recognizer.

In an attempt to avoid over-segmentation, [7] propose an
analytical segmentation approach, that is trying to extract the
whole stroke that represents the character by means of the
so called Character Key Feature Set (KF), which is the set
of End-Points, Branch-Points, Loop-Points and Dot-Points
from the word thinned image. First, the minima and maxima

WSCG 2011 Communication Papers 135

P

Pre-processing Handwritten specific

Pre-processing

Skew Correction Slant CorrectionImage Enhancement Morph. Pre-processing

Character Segmentation

Overlaps Resolving Characters Rep. Seg.

I. CFP Calculation.

II. Heuristic rules based

election of cut points.

I Connected

Components Analysis.

II. Solving Sub-

words Overlapping.

I. Horizontal Gradient

Image Calculation

II. Proj. Profiles Variation

Maximization.

I. Local Minima Linear

Regression.

II. Hough Transform

Parameters Calculation.

I. Noise Reduction and

Contrast Enhancement.

II. Global Binarization.

I. Small Holes Filling.

II. Smoothing

Outcropping Pixels.

Images of Gray

Scale Handwritten

Arabic Words.

Pre-processed,

Skew- and Slant-

Free Images.

Set of Images

of Characters

Representatives.

Pre-processed,

Skew- and Slant-

Free Images.

Figure 1. Diagram of the proposed Methodology

of the thinned image are calculated, then the so called Key
Features Segments (KFSg) are determined. Secondly, A set
of heuristic rules that employ KF set, are applied on the set
of the minima in order to elect cut candidates among them.

Ref. [8], proposed an approach, in which a tentative over-
segmentation is first performed on the text image, the result
is a set of what they called “graphemes”, the approach differ-
entiates among three types of graphemes. The segmentation
decisions are confirmed upon the recognition results of the
merged neighboring graphemes; if recognition failed another
merge will be tried until successful recognition.

Ref. [4], presenting an algorithm for printed text segmen-
tation, in which the vertical projection histogram of each
line of the source binary image is computed, which then
processed to generate a string indicating relative variations
in pixels. Finally, a search for patterns in variations is con-
ducted in order to segment the characters’ representatives.

II. METHODOLOGY

Our methodology consists mainly of two phases, in the
first phase the issue of pre-processing is considered. In which
traditional pre-processing steps e.g. filtering, binarization,
etc., as well as Handwriting specific issues like skew correc-
tion and slant correction are conducted. The second phase is
the segmentation, which performed in dual-phase procedure.

Given the fact that most Arabic words are consisting
of multiple sub-words [9], those are both specially dis-
connected and vertically overlapping, connected compo-
nents based analysis and subsequently resolving of sub-
words overlapping, are vital for the following character
segmentation phase. Ultimately, a topological features based
heuristics are applied in order to segment the words into their
constituent character representatives. Fig.1 is depicting the
proposed methodology.

A. Pre-processing

The words images that we experimented on are gray
scale images, taken from an under construction database;
conventional flatbed scanner is used to extract the text
with 350 dpi resolution. To suppress noisy pixels, whilst
preserving edges a median filter is applied on the gray scale
images [10]. Then a global threshold (Otsu’s method based)
is used to produce binary versions. As a consequence of the
extraction and binarization processes, issues like smoothing
out outcropping pixels and small holes filling should be dealt
with. Morphological based operations such as Close and
combination of Open and Reconstruction are employed
respectively to solve those issues.

To reduce the amount of information to be processed, to
the minimum necessary for conducting our segmentation,
and also to ease the process of extraction the critical features
points, thinning operation is applied on the enhanced binary
words’ images. The thinning approach that we adapted is
based on the Zhang-Suen’s thinning algorithm [11]. In the
following two subsections, we will discuss and suggests
improvements for two off-line handwritten specific pre-
processing issues, namely skew- and slant- correction.

1) Skew correction and baseline estimation: Skew cor-
rection and baseline discovering is proven to be of critical
importance for segmentation of handwritten Arabic text.
Various techniques have been reported in literature; each
with its pros and cons [12], [13]. Hough transform (HT)
is one of such methods, that is relatively insensitive to
noise and tolerates gabs within Arabic words [14]. As for
the baseline detection HT is insensitive to line direction.
Consequently, it performs badly when the longest stroke is
not parallel to the word baseline.

Another method is based on the linear regression of local
minima of the word image skeleton (LMR) [15]. Benefiting
from the fact, that most of local minima (LM) points are
usually occurring on, or near of the baseline; the problem of

WSCG 2011 Communication Papers 136

finding the baseline can be reduced to a linear fitting problem
of local minima points. Even though LMR is not as accurate
as HT , its main advantage is the relatively insensitivity to
strokes’ direction that is not parallel to the baseline.

Thinned

Words’ Images
Estimated

Slope Angle 10

and are

Baseline

Parameters

Local Minima

Calculation.

Local Minima

Linear Fitting.
Find HT’s

Global Maxima

Pre-processing Slant Estimation

HT’s Domain

reduction

HT-based

Baseline

Calculation.

Estimation. Baseline Parameters’

calculation.

Figure 2. Diagram illustrates the proposed steps for words baseline
estimation

Experimentally, we noticed that reducing the Domain of
HT ’s θ parameter according to a priori direction estima-
tion, firstly, increases accuracy, and secondly, reduces the
computation power needed. Thus we propose a HT based
technique combined with a LMR, for baseline estimation.
The LMR is used for a priori estimation of the HT ’s θ
parameter. Fig. 2, shows a diagram depicting the propose
approach for baseline estimation.

Thinned Vesion for LMs

 Local Minima point

The fitted Line

Figure 3. A thinned text image with all possible LM points and their
correspondence fitting line.

The first step in the proposed technique starts by calcu-
lating the fitting line of LM points according to Eq.1,2, and
3.

y = a+ bx (1)

where a, b coefficients calculated as follow

b =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(2)

a = ȳ − bx̄ (3)

where x̄ and ȳ are the statistical means of x and y
coordinates respectively.

Fig. 3 shows a thinned image with LM points and their
correspondence fitted line. The slope angle α of the fitted
line is then calculated according to Eq.4

α = arctan(b) (4)

The second step is to calculate the baseline using the HT ,
with θ’s domain reduced to be [α±10◦],where [±10◦] is the
empirically observed inaccuracy of LM . We first discretize
the θ and ρ parameters and then for each point (xi, yi) in
the image space we calculate ρ́ as stated in Eq.5:

ρ́ = xi sin θ́ + yi cos θ́ ∀θ́ ∈ [α− 10◦, α+ 10◦] (5)

Next, each point in the image space will vote for bins
that could have generated it in the hough accumulator A,
and votes will be accumulated in A according to Eq.6

A(ρ́, θ́) = A(ρ́, θ́) + 1 (6)

Finally, ρ́ and θ́ with the maximum number (global
maxima) of votes will be considered as the parameters of
the word baseline as showed in Eq.7.

arg max
ρ́,θ́

A(ρ́, θ́) (7)

Fig. 4, shows an example of the results, where Fig. 4(A) is
the original image, Fig. 4(B) is the skew corrected image and
the estimated baseline according to LMR only. Fig. 4(C)
shows the result of the skew correction and the estimated
baseline of the word using the proposed technique. The
reader can clearly see the improvement.

HT Corrected Image
Corrected Image with LMs: Skew Angle= -11.158

(A) (B) (C)

Figure 4. Skew correction and baseline estimation, (A) Original binary
image and its corresponding horizontal projection profile, (B) Corrected
version using LMR only, (C) Corrected version using the proposed
technique.

2) Slant Correction: Slant angle is the angle, which verti-
cal strokes make with the absolute vertical direction. In order
to reduce variability within handwritten characters’ classes,
it is necessary to normalize slant variations [16]. As for the
segmentation process, slant correction improves accuracy,
since spaces between vertical strokes will be increased.

Since it is being observed, that vertical projection his-
tograms of the slant free images have higher and clear peaks
compared to the slanted ones. Thus projection profile based
technique calculated upon the horizontal gradient image at
various shearing angles in the range [±45], is used for
estimation of the slant angle.The reasons behind choosing the horizontal gradient
image for calculation are, first, vertical strokes will be
emphasized at the expense of horizontal ones, as Fig. 5(B)
shows. Second, computation cost will be reduced, since
relatively fewer pixels need to be processed.

WSCG 2011 Communication Papers 137

(A) (B)

Figure 5. Horizontal gradient, (A) The binary word image, (B) The
horizontal gradient counterpart.

Given (x, y) the coordinates of pixel in an image i,
their sheared counterparts (x́, ý) in the sheared image í are
calculated according to Eq.8

x́ = x− y. tan(α), ý = y (8)

where α ∈ [±45] is the shearing angle.
For each sheared image we calculate vertical histogram

H as stated in Eq.9.

H(x́L;α) =
∞∑
k=0

í(x́L, ýk) (9)

Then the variation for every two consecutive profiles is
calculated as in Eq.10.

V (α) =
∞∑
L=0

[H(x́L;α)−H(x́L+1;α)]2 (10)

And the sheared angle ά is calculated as the angle
associated with maximum variation, according to Eq.11.

ά = arg max
α

V (α) (11)

Fig. 6(A) shows a slanted word image and its corresponding
vertical histogram, and Fig. 6(B) shows its slanted free
version and its vertical histogram.

(A) (B)

Figure 6. Slant correction, (A) A binary word image and its correspon-
dence vertical projection profile, (B) The Slant corrected version and its
correspondence vertical projection profile.

B. Characters Segmentation

As mentioned above our segmentation approach con-
ducted in two steps. In the first step, a careful analysis
of the x-axis coordinates of the connected components is
performed. The result is words images with resolved sub-
word overlapping. The second step is to perform topological
feature based segmentation for characters’ representatives.

Before detailing our approach, it is helpful to start by
recalling some definitions that are thought to be necessary
for the clarity of subsequent definitions and notations.

Firstly, let P refers to any foreground pixel in the
thinned word image g(x, y), and let N8(P) denotes the
8-neighborhood set of P . Secondly, by examining each
P ∈ g(x, y) a set of feature points are identified, which
we call Critical Feature Point (CFP). CFP set contains
further four subset that are listed below:

i. The first subset is End Points (EP) depicted in Blue
in Fig. 7, which are all pixels with only one pixel in
its 8-neighborhood set.

EP = {P |N8(P) = 1} (12)
ii. The second subset is Branch Points (BP) depicted in

bright Green in Fig. 7, which are all pixels where its
8-neighborhood set contains only 3 or 4 pixels.

BP = {P |N8(P) = 3 ∨ P |N8(P) = 4} (13)

iii. The third subset is Dot Points (DP), which is the union
of the set of all isolated pixels, and the set of pixels
that belong to connected components (CC) that are
less in size than an adaptive threshold T proportional to
the estimated character size calculated upon the thinned
text image. Depicted in Cyan in Fig. 7

DP = {P |N8(P) = 0}
∪{P |P ∈ CC ∧ size(CC) < T}

(14)

where T ≤ µ, and µ is the mean of the area of all CC,
that are not intersecting the baseline.

iv. The fourth and last subset is the Loop Points (LP),
which are all On remained pixels of the thinned text
image after performing the flood−fill (ff) algorithm
on it. depicted in Red in Fig. 7

LP = {P |P ∈ ff(i(x, y))} (15)

Given the aforementioned four subsets the CFP set can be
defined as the union of all the four subsets. Fig. 7 shows
a thinned text image with all possible CFP s, that will be
utilized later to guide the characters’ segmentation process.

CFP = ∪{LP,EP,BP,DP} (16)

LP EP BP DP

Figure 7. CFP Feature Points, thinned text image with all possible
CFP s.

Next, we present the first step of the proposed
segmentation approach.

WSCG 2011 Communication Papers 138

1) Resolving of Sub-words’ Overlapping: For resolving
the sub-words overlapping, we first find the word baseline as
stated above. Then upon finding the baseline, we differenti-
ate between two types of connected components (CC). The
first is what we call main (CC)s, which are all (CC)s that
intersecting with the baseline’s ”y” coordinate. The second
are what we call auxiliary (CC)s, which are all CCs that
are not intersecting the baseline’s ”y” coordinate. Fig. 8
shows an example of word images, where the main CCs
are (1,2,4, and 6), and the auxiliaries are (3,5,7, and 8) and
the horizontal blue line representing the baseline.

1

2

3
4

5

6

7

8

X-axis

Y
-ax

is

Figure 8. Sub-words overlapping example.

After identifying the main CCs, we conduct a distance
analysis on their bounding boxes along the x-axis, in order
to identify the baseline overlapped main CCs and their
correspondence overlapping distances. In Fig. 8 for example,
main CCs that are overlapping are (1,2), (2,4), and (4,6).
Another distance analysis is performed against the auxiliary
(CC)s, so each can be assigned to its correspondence main
CC according to the following rules:

i. If an auxiliary CC is overlapping only a given main
CC along the x-axis, then assign the auxiliary to the
main. So in Fig. 8 for example, auxiliaries number (8,
7) will be assigned to the main CC number ”6”.

ii. If an auxiliary that is above the baseline, is completely
contained in the bounding box of a main CC, then
assign the auxiliary to the main regardless of any main
CC that may overlap it along the x-axis. So ”3” will
be assigned to ”1” in Fig. 8.

iii. if two main CC are overlapping an auxiliary under
baseline, like in case of ”5” that is overlapped both ”4”
and ”6”, we calculate the absolute distance along the
y-axis, between lower bounding box of the auxiliary,
and the lower bounding box of the overlapping main
CCs; the one with minimal distance wins the auxiliary.
So ”4” wins ”5” in Fig. 8 for example.

iv. In case auxiliary is above the baseline and overlapping
multiple main CCs, the absolute distance along the
y-axis is measured between its lower bounding box
”y” coordinate and the upper ”y” coordinates of the

overlapping main CCs bounding box; the main CC
with the minimum distance wins.

Even though the aforementioned rules solve for almost all
the cases, there are some extreme cases where auxiliaries are
not overlapping any main CC. In these cases, auxiliary is
assigned to the direct next main CC on the left 1. After
assigning the auxiliaries to their corresponding main CCs,
we computed the sub-words borders along the x-axis against
all its elements (auxiliary CCs and main CCs). The sub-
word’s bounding box left border, is computed to be the
farthest left border among all sub-word elements. Likewise,
the right border is selected to be the farthest border to the
right.

Eventually, a final distance analysis is preformed against
the new sub-word borders and the overlapping solved by
shifting away the overlapped sub-words. Fig. 9 shows
two examples (A) and (B) and their correspondence
sub-word overlapping free version. As a result of this
pre-segmentation step, sub-words are separated by empty
columns that make their segmentation a straight forward
process.

(A) (B)

Figure 9. Resolving sub-word’s overlapping, (A) Overlapped sub-words
versions, (B) Results of overlap resolving procedure.

2) Segmentation of Character Representative : Providing
sub-word overlapping is solved, we turn to the issue of
segmentation of sub-words into their constituent characters’
representatives. Given that Arabic characters have their
boundaries in columns with the minimum number of pixels
(only one pixel in the thinned version), our segmentation
approach starts by generating a set C of columns’ indices
as candidates for segmentation, where the elements of C
are all column indices within the thinned image g(x, y),
containing only one foreground pixel. We developed the
segmentation algorithm presented in [7], in a way that we
use broader set of segmentation candidates instead of using

1This is due to the fact that Arabic text is written from right to left,
and writers usually writing main CC first, then auxiliaries. As a result
auxiliaries are appearing shifted to the right away from their correspondence
sub-words.

WSCG 2011 Communication Papers 139

the set of only the contour’s local minima. We observed that
using local minima as candidates for segmentation is risking
good segmentation, because local minima often occur inside
many of Arabic characters main strokes. So we decided to
generate a large set of segmentation candidates, and we did
not restrict our candidates to be only local minima.

(A) (B)

(C) (D)

Figure 10. Cut candidates election, (A) Depicts all possible cut candidates.
(B) Candidates after excluding column that contains EP , LP , BP or DP .
(C) Candidates after excluding candidates with direct left neighbor. (D) The
result after applying the proposed heuristic rules

Fig. 10(A) is depicting the columns’ candidates for seg-
mentation of the text image, the reader can notice that each
column containing only one pixel is elected as a candidate.
The next step is to exclude from the candidates set all
columns that are intersecting with any CFP , this is to
say that LP , EP , BP and DP columns cannot be in the
same time a cut point, otherwise we lose important character
features. Fig. 10(B) shows a text image after excluding
columns’ candidates that are intersecting CFP columns.
The reader can notice in Fig. 10(B) that very few candidates
are excluded comparing to Fig. 10(A), this is because, it is
quit seldom that an LP or a BP column contains only one
pixel, so it will not be chosen as a candidate in the first
place.

The next step is to scan the list of candidates, starting
from the most right one to the left, electing the left neigh-
bor from each two adjacent segmentation candidates. Fig.
10(C), shows the result, we can easily notice the significant
reduction in the number of candidates for segmentation. The
candidates set obtained so far is an important improvement
over the previous candidate sets. However, in order to resolve
issues like, for example the over-segmentation in Fig. 10(C)
(the letter �

H (TAA), the first letter from the right is over-
segmented into three parts). We formulate four conditions
to increase segmentation accuracy.

To ease notation of conditions, we will write m a subscript
to CFP or/and CFPs elements, to refer to the respective
column index. Also, we will use ci , cj to refer to any two
column indices in the thinned image g(x, y) , that are chosen
to be candidates. The finale election process is performed by
applying the following condition on the candidates:

i. First condition, is saying that if there are two consecu-
tive cut candidates and there is no CFP in between

then delete from the list the one on the right, this
condition can be formulated as following;

∀{ci, cj} ∈ {C}|ci > cj ,

if {CFPm} /∈ [ci, cj]⇒ ci /∈ C
(17)

ii. Second condition, if the direct neighboring on the left is
a column contain pixel of DP , then delete the candidate
from the list. This can be notated as following:

∀ci ∈ C if ∃(ci + 1) ∈ DPm ⇒ ci /∈ C (18)

where DPm, is the set of columns contain DP pixels.
iii. Third condition saying that if there is a branch point

column BP or Loop point column LP before encoun-
tering another candidate then we elect the candidate as
cut point, the notation version of the condition is:

∀{ci, cj} ∈ {C}|ci > cj ,

if ∃(BPm ∨ LPm) ∈ [cj , ci]⇒ ci ∈ C
(19)

iv. If the next column contains an end point EP1, which
is in the same time not an end of stroke, then flow
the contour starting from EP1 down to the left, if
another end point EP2 is encountered (before BP or
LP) which, not on the contour and is an end of the
stroke, then elect the candidate as a cut point.

Finally, we insert a cut candidate direct before and after
every connected component.

Fig. 10(D) illustrates the final segmentation results, and
Fig. 11, shows zoomed in segmentation’s result of an Arabic
sentence.

Figure 11. Characters segmentation, characters’ representatives are
bounded by rectangles.

III. EXPERIMENTAL RESULTS

We experimented our proposed methodology on an under
construction database of handwritten Arabic words, that con-
tains more than 3000 Arabic words images, collected from
more than 30 persons. Our results are very satisfactory, and
to our knowledge outperforming literature available results
so far. We have tested a system implemented according to the
proposed approach on a set of 200 different words’ images.
Fig. 12, illustrates some of the results, where complete
success is reported in 72% of cases, this means the system
accurately discovers the character representatives’ borders.
Fig. 12(A), Fig. 12(B), Fig. 12(C), Fig. 12(D) illustrates
examples of 100% success segmentation of character rep-
resentatives, where each is bounded in a rectangle. Partial

WSCG 2011 Communication Papers 140

success is reported in 28% of cases, we have empirically
noticed that 9% of such cases are generated when CFP s
occur inside the character instead of on its borders, leading
to what we call an over segmentation, where a part of
stroke is regarded as a character representative, which, in
fact, it is not. This problem is specific to characters �

and �
� (SIEN and SHIEN), and Fig. 12(A) illustrates an

example, the black arrow is pointing out to where it occurs.
The other 19% of cases happen when CFP s cease to exist
between two consecutive characters leading to segment them
as a representative for one character. Fig. 12(F), shows
such problem, where its position indicated with the arrow.
This problem is called under-segmentation, and it is specific
for cases, when the second character to left is connected
@ (ALF) or connected È (LAM) with sheared distortion
angle to the left. We think that those problems can be
solved, either by expanding the CFP set to contain more
features points like Local minima points for example and
then accordingly modify and adding heuristic rules, or they
can be solved in subsequent recognition phases like in the
post-processing phase for instance, where the recognition
results can be corrected against lexicons using different text
retrieval techniques.

(A) (B)

(C) (D)

(E) (F)

Figure 12. Characters segmentation, (A)-(D) Successful segmentation of
characters representatives, (E)-(F) Partial success of segmentation.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we proposed dual-phase segmentation ap-
proach that starts first by sub-word borders’ identification
and resolving overlapping among them, and then topological
features based segmentation is taking place according to a
set of heuristic rules. The dual-phase segmentation is pre-
ceded by an extensive handwriting specific pre-processing
phase in which issues like morphological enhancement,
skew correction, and slant correction are dealt with. Even
though results were quite satisfactory, future works may
investigate issues like, expanding CFP set by adding more

topological features and correspondingly more heuristics.
Moreover, a cyclic segmentation-recognition based approach
is expected to improve results further. In such approach
character representatives segmentation proved against the
results of the recognition phase. As an in-between approach,
of segmentation based approaches with their relatively high
error-prone tendency and holistic based approach with their
small and restricted domains [17]. A holistic sub-words
based approach can be another alternative to attack the
problem of off-line handwritten Arabic text recognition.

REFERENCES

[1] L. M. Lorigo and V. Govindaraju. ”Offline Arabic handwriting
recognition”, Pattern Analysis and Machine Intelligence, IEEE
Transaction on, Vol. 28, No. 5, pp.712724, May 2006.

[2] M. Elzobi, A. Al-Hamadi, L. Dinges, B. Michaelis. ”A
Structural Features Based Segmentation for Off-line Handwrit-
ten Arabic Text”, International Symposium on Image/Video
Communications over fixed and mobile networks (ISIVC2010).
Rabat, Morocco, Sep.30-Oct.02, 2010.

[3] I. Abuhaiba, M. Holt and S. Datta. ”Recognition of Off-Line
Cursive Handwriting”, Computer Vision and Image Under-
standing, Vol. 71, No. 1, pp. 19-38, July 1998.

[4] N. A. Shaikh, Z. A. Shaikh, and G. Ali. ” Segmentation
of Arabic Text into Character for Recognition”, IMTIC 2008,
CCIS 20, Springer Berlin/Heidelberg, pp.11-18, 2008.

[5] H. Almuallim, S. Yamaguchi. ” A Method of Recognition of
Arabic Cursive Handwriting”, Pattern Analysis and Machine
Intelligence, IEEE Transaction on, Vol. 9, No. 5, pp.715-722,
Sep. 1987.

[6] Z. Al Aghbari, S. Brook. ”HAH manuscripts: Aholistic
paradigm for classifying and retrieving historical Arabic hand-
written documents”, Journal of Expert Systems with Applica-
tions , Vol. 36, Nr. 8, (2009), pp. 1094210951.

[7] A. A. Atici and F. T. Yarman. ”A Heuristic Algorithm for
Optical Character Recognition of Arabic Script”, Signal Pro-
cessing., Vol. 62, No. 1, pp.87-99, Oct. 1997.

[8] X. Ding, and H. Liu. ”Segmentation-Driven Offline Hand-
written Chinese and Arabic Script Recognition”, Springer
Berlin/Heidelberg, LNCS 4768, pp.196-217, 2008.

[9] D. Motawa, A. Amin, and R. Sabourin. ” Segmentation of
Arabic Cursive Script”, ICDAR, pp.625-628, 1997.

[10] E. Arias-Castro and D.L. Donoho. ”Does median filtering
truly preserve edges better than linear filtering?”, Annals of
Statistics, Vol. 37, No. 3, pp.11721206, 2009.

[11] L. Lam, S. Lee, and C. Suen. ”Thinning Methodologies
- A Comprehensive Survey”, Pattern Analysis and Machine
Intelligence, IEEE Transaction on, Vol. 14, No. 9, pp.869-885,
Sep. 1992.

[12] Z. Razak et al. ”Off-line Handwriting Text Line Segmenta-
tion: A Review”, IJCSNS, Vol. 8, No.7, Jul. 2008.

[13] V. Beusekom, F. Shafait and T. M. Breuel. ”Combined
orientation and skew detection using geometric text-line mod-
eling”, IJDAR, Vol.13, No.2, pp.79-92, Springer-Verlag Berlin,
Heidelberg, Jun. 2010.

[14] T. M. HA and H. Bunke. ”Image processing methods
for document image analysis,” in Handbook of Charcter
Recognition and Document Image Analysis, Singapore:World
Scientific Publishing Co. Pte. Ltd.,1997, pp.1-47.

WSCG 2011 Communication Papers 141

[15] M. Wienecke. ”Videobasierte handschrifterkennung”, Ph.D.
dissertation, Bielefeld university, Bielefeld, Germany, 2003.

[16] N. Arica and F. T. Yarman-Vural.”An Overview of Charac-
ter Recognition Focused on Off-Line Handwriting”, Systems,
Man and CyberneticsPart C: Applications and reviews, IEEE
Transaction on,Vol. 31, No. 2, pp.216-233, May 2001.

[17] V. Lavrenko, T. M. Rath and R. Manmatha. ”Holistic Word
Recognition for Handwritten Historical Documents”, DIAL04,
pp.278-287, 2004.

WSCG 2011 Communication Papers 142

Chroma Reconstruction from Inaccurate Measurements
Alexander Balinsky

Cardiff University, UK
BalinskyA@cardiff.ac.uk

Nassir Mohammad
Cardiff University & HP Labs, UK

MohammadN3@cardiff.ac.uk

ABSTRACT

Non-linear filter responses of natural colour images have been shown to display non-Gaussian heavy tailed distributions which
we call sparse. These filters operate in the YUV colour space on the chroma channel U (and V) using weighting functions
obtained from the gray image Y. In this paper we utilise this knowledge for denoising the chroma channels of a colour image
from inaccurate measurements. In our model the U (and V) elements are affected by noise, with a good version of the gray image
Y obtainable through existing methods. We show that accurate reconstruction of the chroma components can be accomplished
by solving an L1 constrained optimisation problem, where the sparse filter response on natural images is used as a regularization
term. This scheme gives comparable results to leading commercial and state of the art denoising algorithms, and exceeds for
chroma noise that does not correlate with the luminance structure.

Keywords: Natural images, filter response, sparse distributions, denoising, L1 optimisation.

1 INTRODUCTION
Denoising is a fundamental problem in image process-
ing due to the fact that images, no matter their content,
usually contain some degree of noise. This is often re-
garded as a form of image degradation and the goal of
denoising algorithms are to form an estimate x′ of the
the original image x given the observed noisy version
x∗, modeled as

x∗ = x+n, (1)

where n is the matrix of the random noise pattern.
The principal causes of noise in digital images arise

during image acquisition (digitization) and/or transmis-
sion. This can be caused by several factors such as low
light levels, sensor temperature, electrical interference,
malfunctioning pixels and interference in the channels
used for transmission. The distribution of noise can be
several, such as white, impulse or multiplicative, each
giving its own characteristic form of degradation.

Various algorithms have been introduced with suc-
cess over the past few decades for denoising images.
The proposals, in their original form, have sparked
an abundant literature resulting in many improve-
ments in quality and speed. These algorithms can be
categorized into several groups including Wavelets,
Bilateral filtering, Anisotropic diffusion, Total variation
and Non-local methods. Readers are advised to see
[BUA05] and [MAI08] for comprehensive reviews and
comparisons of the best available versions together
with powerful novel approaches.

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Some recent algorithms to mention include [LIU08]
where the authors propose a unified framework for two
tasks: automatic estimation and removal of colour noise
from a single image using piecewise smooth image
models. Their segmentation-based denoising algorithm
is claimed to outperform current methods. This paper
also contains an interesting introduction that discusses
the current state of the art methods for image denois-
ing. Another recent algorithm which claims to lead to
excellent results is C-BM3D [DAB07]. In this scheme
the authors propose an effective colour image denoising
method that exploits filtering in a highly sparse local
3D transform domain in each channel of a luminance-
chrominance colour space. For each image block in
each channel, a 3D array is formed by stacking to-
gether blocks similar to it. The high similarity be-
tween grouped blocks in each 3D array enables a highly
sparse representation of the true signal in a 3D trans-
form domain, thus a subsequent shrinkage of the trans-
form spectra results in effective noise attenuation.

The importance of denosing in image processing has
also led to many commercial and freely available soft-
ware. These include Neat Image, Noise Ninja, Denoise-
MyImage, Photoshop, Topaz Denoise, Gimp and many
more. The programs often incorporate a host of image
enhancement tools to collectively remove typical forms
of image degradation. A full evaluation of so many pro-
grams is difficult, especially since each has parameters
which a user can change for subjective suitability. How-
ever, from general usage and reading it has been found
that Noise Ninja and Neat Image are among the best
used noise reduction programs. DenoiseMyImage is
also a current alternative that uses a modified form of
the state of art non-local means method. Readers may
view [ALM] for a comprehensive user comparison of
current software.

Denoising algorithms are usually fed a noisy RGB
image corrupted in each channel. Most methods have

WSCG 2011 Communication Papers 143

been formulated as a channel by channel or vectorial
model. In the former case the RGB values are mapped
to a colour space such as YUV or Lab or any other suit-
able space to separate the luminance and chroma, with
the denoising algorithm usually applied to each band.
Since the luminance channel contains the main struc-
tural information and chroma noise is more objection-
able to human vision (as opposed to the film grain ap-
pearance of luminance noise), separation allows more
intensive denoising of the chroma channels without too
much loss of detail. These models take into account
the human perception of colour and allow us to han-
dle the particular characteristics of the noise affecting
each component. Methods based on their luminance-
chromatic decomposition are well known for their ex-
cellent results with [DAB07] being a recent example.
Furthermore, in the process of transmission, the reduc-
tion of bandwidth for the chroma allows errors and ar-
tifacts to be more easily compensated for than using a
typical RGB model.

In this paper we propose a novel algorithm for
removing noise from real images and also white and
impulse noise from the chroma channels of an image in
the colour space YUV , where a good version of the Y
component is obtainable. (Due to the similarity of the
colour components, from here on we interchangeably
mention either the U or V channel, where analysis
of the other is obtained by substitution). Algorithms
such as those in [DAB07], [FOI07] and [BOR05]
have successfully exploited the information in the
luminance channel for effectively filtering the chroma
components. In line with this philosophy our approach
utilises the non-linear filter response distributions
observed in [BAL09] as a regularization term (a prior,
in Bayesian analysis) to penalize solutions that don’t
give a desired sparse solution when filtering.

The rest of the paper is laid out as follows: section 2
describes the motivating details behind our regulariza-
tion function. Section 3 outlines our denoising proce-
dure while section 4 gives results for denoising images.
Section 5 summarizes the paper and directions for fu-
ture work.

2 REGULARIZATION USING THE
SPARSE DISTRIBUTION OF THE
FILTER RESPONSE

Our approach in denoising the chroma components in-
volves introducing a regularization term which incor-
porates knowledge of the statistics of natural images.
More specifically we consider the recent non-linear fil-
ter response distributions of natural images observed in
[BAL09]. In that paper the authors show that colour
images, when filtered by the following:

F(U)(r) = U(r)− ∑
s∈N(r)

w(Y)rsU(s), (2)

display non-Gaussian heavy tailed distributions, i.e.
sparse. Here r represents a two dimensional point,
N(r) a neighborhood (e.g. 3x3 window) of points
around r, and w(Y)rs a weighting function. The
proposed filter thus takes a point r in U (or in V) and
subtracts a weighted average of chroma values in the
neighborhood of r. The w(Y)rs is a weighting function
that sums to one over s, large when Y (r) is similar to
Y (s), and small when the two intensities are different.
(See [BAL09] for further details).

The response of the filter can be modeled by a gener-
alized Gaussian distribution (GGD)

f (x) =
1
Z

e−|x/c|α , (3)

where Z is a normalising constant so that the integral
of f (x) is 1, c the scale parameter and α the shape
parameter. It is found for natural images that α < 1
which results in a non-convex function. However, due
to the recent success of L1 optimization in recovering
approximately sparse signals [CAN06], we convexify
our model i.e. take α = 1, and use this as a regularizer
in (4).

3 CHROMA DENOISING PROCE-
DURE

We consider real noisy RGB images that have been cor-
rupted by unknown noise which are then transformed
to the YUV colour space. Due to the properties of the
underlying natural colour images, such as high corre-
lation between R, G, and B channels, we note that Y
has higher SNR than U and V and that it contains most
of the valuable information such as edges, shades, ob-
jects, texture patterns, etc. The U and V contain mostly
low-frequency information with iso-luminant regions,
i.e. variation in only U and V , being unlikely. Thus
removing chroma noise through knowledge of gray in-
formation is plausible. We chose to use Neat Image
or DenoiseMyImage when appropriate to denoise the Y
channel when needed. We additionally used them as
a benchmark for testing our algorithm. Furthermore,
our algorithm is also tested against images in the YUV
space suffering from impulse noise only in the chroma
channels.

Thus, given the noisy chroma component U∗ and a
denoised gray image Y , our task is to recover a good ap-
proximation U ′ of the original element U . This model
results in the following optimisation scheme,

argminU ′ ||F ·U ′||1 +λ ||U ′−U∗||d . (4)

Given an n×m image, (we abuse the notation a little
and have) F here is an nm×nm matrix whose rows cor-
respond to filtering a single pixel where U ′ and U∗ are
nm× 1 column first rasterized vectors. U ′ is the esti-
mate we seek of U , while U∗ is the noisy observation
of U .

WSCG 2011 Communication Papers 144

The first term is our penalizing function which takes
small values for desirable solutions and the second is
the fidelity term. The parameter d is taken to be either
2 or 1 reflecting the norms proposed in the measure-
ment of the distance between the two vectors. In words,
this optimisation scheme searches for the estimate im-
age U ′ with the sparsest filter response and with the sec-
ond term encouraging the solution to be close to a noisy
chroma measurement U∗.

For an image assumed to be corrupted by Gaussian
noise our reconstruction process involves solving (4)
with d = 2, where the fidelity term encourages solu-
tions to be close to the noisy version in the L2 sense.
When the noise is taken to be impulsive and affecting
the image at random points by taking extrema values,
we solve (4) with d = 1. Modifying the fidelity term
to d = 1 (i.e. L1 norm) has been studied with success
within the Total Variation framework, as reviewed in
[CHA05].

An important parameter in our algorithm is the value
of λ which controls the relative weight of the differ-
ence between the noisy channel and the solution. Too
small a value and the optimisation results in an overly
smoothed output, while too high a value results in a so-
lution that is too close to its noisy version. We found
experimentally that λ ∈ (0,5] gave the best results, with
half-integer increments for optimality.

4 RESULTS
Our optimisation problem was solved using CVX
[GRA] which is a convex programming package
implemented in Matlab. The images that we used are
of sizes in the region of 200× 200 pixels, which took
on average a couple of minutes to denoise. However,
our aim here is not to pose a fast algorithm but only to
show the applicability of such a scheme for denoising
chroma channels. The algorithm is parameterised
by the value of λ whose value is given in the text
accompanying the figures.

Fig. 1(a) shows an example RGB image which is
made severely noisy by adding Gaussian noise of mean
zero and variance 0.01 to all the channels as shown
in (b). (c) shows the denoised image obtained us-
ing Neat Image and (d) the result obtained using De-
noiseMyImage. Neat Image was used at maximum set-
ting while DenoiseMyImage was used at an adjusted
medium level to obtain the best results. Neat image still
left considerable noise like artifacts in the image, while
DenoiseMyImage gave a less noisy but much smoother
output. The result using our algorithm is shown in (e)
where we used DenoiseMyImage to denoise the gray
component. Visually comparing the results shows that
our algorithm gives an intermediate result which is bet-
ter than using NeatImage, while the colours are much
more vibrant and appear sharper than when using De-
noiseMyImage. This is also further justified by the peak

signal to noise ratios (PSNR) which quantify the results,
and shows our algorithm having a higher but similar
value.

The next examples focus on real world images where
the type of noise affecting the image is unknown. We
begin with Fig. 2(a) which shows an image that is
severely affected by colour noise. This is typical of an
image taken in low light conditions with high ISO set-
tings. (b) shows the image having been denoised using
Neat Image. This program requires a suitable region
to be selected for noise estimation, after which lumi-
nance and chrominance noise reduction can be individ-
ually adjusted. We required 100% noise reduction on
all components due to the high amount of noise present
in the image. (c) shows our algorithm where the lu-
minance channel was denoised using Neat Image and
the filter matrix F constructed from it for reconstruct-
ing the chroma channels. (d) shows the result of using
DenoiseMyImage. We observe that our algorithm gives
similar noise reduction compared to the existing meth-
ods, although on close inspection our result gives less
colour aberrations.

Fig. 3(a) has been taken from some examples given
on the Neat Image website. This is a crop of a television
frame captured with a computer TV card. The image
has strong colour banding visible across all the image
caused by the electric interference in the computer cir-
cuitry. Similar banding is sometimes observed in digital
camera images (caused by interference too). The band-
ing degradation does not affect the luminance, how-
ever all channels still show grain like noise. (b) shows
the best Neat Image result obtainable by denoising the
chroma and luminance at 100%. However, the banding
is still evident in the result. (c) is the result of our algo-
rithm which clearly removes the noise. (d) is the best
result obtainable using DenoiseMyImage which is still
unable to remove the banding noise.

Our algorithm is able to remove this type of noise by
filtering only the chroma channels and using Neat Im-
age for clearing the fine grain luminance noise. The
result is free of the colour banding and (f) shows that
the V channel does not display any of this degrada-
tion against the V channel when using Neat Image (e).
We are able to attain this result as we are filtering the
chroma channels through taking account of the underly-
ing gray level structure. Since the colour banding is not
appearing in the luminance, minimisation of the filter
response favours areas of homogeneous colours while
the fidelity term bounds the colours to being close to
the original.

The final two examples illustrate the flexibility of the
model in handling chroma noise taking a different dis-
tribution. Fig. 4 shows an example of a clean image
(a) which is transformed to the YUV colour space and
impulse noise of density 0.05 added to the U and V
channels only. Our algorithm, with the fidelity term

WSCG 2011 Communication Papers 145

measuring L1 norm, is able to denoise such that the re-
combined RGB image shown in (b) is visually identical
to the original. The detailed look at the chroma com-
ponents reveals no sign of the impulse noise, while the
PSNR is of a good value.

Fig. 5 shows another example of an image that has
been corrupted by impulse noise and reconstructed. (a)
shows the original image, (b) the RGB image with noise
having been added to only the chroma channels and (c)
shows our reconstructed image. The results illustrate
again that noise has been successfully removed to a very
high standard with good PSNR values, and this is fur-
ther justified by looking at the chroma channels which
have had their impulse noise removed. Neat Image and
DenoiseMyImage are unable to effectively denoise the
images affected by impulse noise. Instead we obtain a
‘washed out’ look with the impulse points still remain-
ing. An example is shown by (d).

5 CONCLUSION
We have illustrated how knowledge of the statistics of
natural images can be incorporated into an effective de-
noising scheme. Our objective was to propose a novel
algorithm for removing chroma noise from digital im-
ages by operating in a luminance-chrominance colour
space. We utilised the sparse filter response distribu-
tion of the filter studied in [BAL09] as a regularization
term, and introduced a quadratic fidelity term to ensure
the solution remained close to the original. This model
allowed us to denoise real images with results compara-
ble to current alternatives. The flexibility of the model
was also shown by its ability to handle chroma impulse
noise very effectively, giving results that are virtually
identical to the original image. This was accomplished
by altering the fidelity term to measure L1 norm and
shows concentration on gray level denoising gives suf-
ficient information for colour channel reconstruction.

In future it would be most useful to robustly test this
approach across diverse datasets of images and also in
other colour spaces where we may observe increased
performance. We are also looking at algorithms for
solving the optimisation scheme much more quickly
and looking at applying the approach to denoising hy-
perspectral images.

ACKNOWLEDGMENTS
This work was supported in part by grants from EPSRC
and Hewlett Packard Labs awarded through the Smith
Institute Knowledge Transfer Network.

REFERENCES
[BAL09] A. Balinsky and N. Mohammad, “Non-linear

filter response distributions of natural colour im-
ages.” LNCS 5646, pp. 101-108. Springer-Verlag
Berlin Heidelberg 2009.

(a)

(b) (c)

(d) (e)

Figure 1: Denoising example. (a) shows the original image, (b)
the image with Gaussian noise added to all RGB channels. (c) is the
result using Neat Image at maximum filtering. (d) shows the denois-
ing result using DenoiseMyImage. (e) is the result obtained using our
algorithm. PSNR: (c) 26.69, (d) 26.35, (e) 27.20 (λ = 5)

[BUA05] A. Buades, B. Coll, and J. M. Morel, “A re-
view of image denoising algorithms, with a new
one, Multiscale Modeling & Simulation, vol. 4,
no. 2, pp. 490530, 2005.

[MAI08] J. Mairal, M. Elad, and G. Sapiro, “Sparse
representation for color image restoration”, IEEE
Transactions of image processing, vol. 17, No. 1,
January 2008.

[LIU08] C. Liu, R. Szeliski, S.B. Kang, C.L. Zit-
nick, W.T. Freeman, “Automatic Estimation and
Removal of Noise from a Single Image”, IEEE
Transactions on pattern analysis and machine in-
telligence, vol. 30, NO. 2, Feb 2008

[DAB07] K. Dabov, A. Foi, V. Katkovnik, and K.
Egiazarian, “Color image denoising via sparse
3d collaborative filtering with grouping constraint
in luminance-chrominance space”, ICIP 2007.
(Matlab code available at www.cs.tut.fi/ foi/GCF-

WSCG 2011 Communication Papers 146

(a) (b)

(c) (d)

Figure 2: Real image denoising example. (a) is an image that has
been affected by severe chroma noise resulting in the appearance of
‘blotches’ of colour. (b) shows the denoised image obtained using
Neat Image and (c) is obtained using our algorithm. (d) is the result
obtained using DenoiseMyImage. We observe that all the reconstruc-
tions are visually similar, although on close inspection our result gives
less colour aberrations. (λ = 0.5)

BM3D).
[ALM] M. Almond,

http://www.michaelalmond.com/Articles/noise.htm
[FOI07] A. Foi, V. Katkovnik, and V. Egiazar-

ian, “Pointwise Shape-Adaptive DCT for High-
Quality Denoising and Deblocking of Grayscale
and Color Images”, IEEE Trans. Image Process.,
vol. 16, no. 5, May 2007.

[BOR05] D Borkowski, “Chromaticity Denoising us-
ing Solution to the Skorokhod Problem”, Image
Processing Based on Partial Differential Equa-
tions, Proceedings of the International Conference
on PDE-Based Image Processing and Related In-
verse Problems, CMA, Oslo, August 812, 2005.

[CAN06] E. Candes, “Compressive Sampling,”
Int. Congress of Mathematics, 3, pp. 1433-
1452,Madrid, Spain, 2006.

[CHA05] T. F. Chan and S. Esedoglu, “Aspects of total
variation regularized L1 function approximation”,
SIAM J. Appl. Math., 65 (2005), pp. 18171837.

[GRA] M. Grant and S. Boyd, http://cvxr.com/cvx/

(a) (b)

(c) (d)

(e) (f)

Figure 3: Real image denoising example. (a) shows an example im-
age affected by chroma noise that appears as bands in the colour chan-
nels. (b) is the result obtained using Neat Image which still leaves
evident colour banding. (c) is our result which is able to remove the
noise leaving a clean image as the colour banding does not correlate
with the luminance structure. (d) is the best result obtained using
DenoiseMyImage. (e) shows the banding still remaining in the V
channel of the image when using Neat Image, while (f) clearly shows
that the banding structure has been removed in our reconstructed V
channel. (λ = 0.1)

WSCG 2011 Communication Papers 147

(a) (b)

(c) (d)

(e) (f)

Figure 4: Impulse noise removal example. (a) shows the origi-
nal image and (c) and (e) illustrate the colour channels with impulse
noise added. (b) is the reconstructed image which does not display
the impulse noise and is visually identical to the original. (d) and
(f) shows the denoised chroma channels which have had their noise
successfully removed. PSNR: (b) 37.68. (λ = 0.5)

(a) (b)

(c) (d)

(e) (f)

Figure 5: Impulse noise removal example. (a) shows an origi-
nal colour image and (b) a noisy version that has had impulse noise
added to the chroma channels in the YUV space. (c) is our recon-
structed image which is virtually identical to the original. (d) is a
typical result obtained using Neat Image or DenoiseMyImage. The
impulse noise affecting the chroma is illustrated by (e) while the suc-
cess of our algorithm for impulse removal is shown by (f). PSNR: (c)
42.20. (λ = 0.5)

WSCG 2011 Communication Papers 148

Mimicking POV-Ray Photorealistic Rendering
with Accelerated OpenGL Pipeline

J. Pe ivač

Brno University of Technology
Božet chova 2ě

612 66 Brno, Czech Republic

peciva@fit.vutbr.cz

P. Zem íč k

Brno University of Technology
Božet chova 2ě

612 66 Brno, Czech Republic

zemcik@fit.vutbr.cz

J. Navrátil

Brno University of Technology
Božet chova 2ě

612 66 Brno, Czech Republic

inavrati@fit.vutbr.cz

ABSTRACT

Traditional ray tracing algorithms tend to provide photorealistic results but at high computing costs. Rendering times of minutes or days are
not exceptional. On the other side, hardware accelerated OpenGL rendering can provide real-time interaction with virtual environment with
unnoticeable rendering times. This paper attempts to bring these two together and attempts to give an answer on the difficulty of
implementing real-time photorealistic rendering. The paper presents case study on mimicking of POV-Ray photorealistic rendering with
accelerated OpenGL pipeline. The study shows the opportunity to accelerate some photorealistic algorithms by real-time approaches while,
on the other side, it locates the parts that are difficult to replace by traditional real-time rendering paradigms. Particularly, it is shown how
to implement primary and shadow rays and POV-Ray-like material model using accelerated OpenGL pipeline using modern shader techno-
logy. On the other side, the difficulties of reflected and refracted rays implementation using real-time rendering approaches is discussed.

Keywords
photorealistic rendering, POV-Ray, OpenGL, raytracing, shaders

1 Introduction

Photorealistic rendering is a very important domain in computer
graphic because of the realism that is often expected from
graphics applications. Beginnings of photorealistic rendering can
be traced back to the '60s to the invention of the ray casting
algorithm [Appel 1968], followed later by ray tracing algorithm
[Whitted 1980]. Ray tracing and other methods of photorealistic
rendering, however, tend to be computationally very expensive
even for today's hardware, often forcing users to wait minutes, or
even days for high quality results. On the other side, many
applications of real-time computer graphics desiring for higher
realism exist. They can not accept computationally expensive
algorithms of photorealistic computer graphics. Their users
require high productivity and interaction with the graphics scenes.
Such requirements are difficult to achieve in non-real time
applications.

Areas desiring real-time photorealistic rendering include, for
instance, CAD and architecture applications for interior design.
Architects often want to immediately see the esthetic value of the
designed model. Presently, they are forced either to compromise
productivity by waiting for the results of the photorealistic
rendering, or to compromise visual quality by throwing away
photorealism and by using standard approaches of real-time
computer graphic instead. However, visual quality is often
essential while standard approaches of real-time computer

graphics usually tend to provide poor results on advanced scene
lighting setups. If real-time photorealistic visualizations would be
possible, they would provide high quality visualizations, making
architects and designers much more time effective while
increasing the final quality of the designed models. Other
applications include visualizations for civil engineering, scientific
research, computer games, and visualizations in general.

Recent enhancements in programability of the graphics processor,
particularly shaders, gives a question whether it would be possible
to implement and accelerate some photorealistic algorithms using
standard approaches of real-time computer graphics. This paper
does so by a case study of mimicking POV-Ray rendering with
accelerated OpenGL pipeline while evaluating speed up factors of
accelerated parts and describing difficulties with algorithms that
are difficult to match with current OpenGL rendering paradigm.

2 State of the Art

The beginnings of photorealistic rendering go back to the '60s
when ray casting was developed [Appel 1968]. Ray tracing
[Whitted 1980] extends the idea of the ray casting by recursion –
tracing the ray in the scene through several reflections. [Arvo
1989] presented a number of methods for ray tracing acceleration.

A number of modifications of ray tracing were developed. Path
tracing [Kajiya 1986] uses Monte Carlo for stochastic evaluation
of light distribution in the scene. It was extended to bidirectional
path tracing [Lafortune 1993]. Photon mapping [Jensen 1995]
[Jensen 2001] creates scene light distribution by shooting large
number of photons from the light sources and making them
bounce in the scene until they are absorbed somewhere, forming a
photon map. To render a such scene, path tracing can be used,
looking for contributions of closest photons at each surface hit.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

WSCG 2011 Communication Papers 149

Another path tracing optimization is Metropolis light transport
[Veach 1997].

With the evolvement of ray tracing algorithms, various ray tracing
software emerged, such as POV-Ray in 1989, Yafaray (2002), and
Radiance ray-tracing software system [Larson 1998].

A number of real-time ray tracing attempts were made.
REMRT/RT tools (based around BRL-CAD ray-tracer) are
parallel network distributed ray-tracing system developed in 1986
and credited at Siggraph 2005 as a first real-time ray tracer
capable of rendering several frames per second [Muuss 1987].
OpenRT (www.openrt.de) [Wald 2002] is a standalone closed-
source real-time ray tracer. In 2006, Intel demonstrated the
performance of its new dual-core processors on POV-Ray 3.7 beta
that is capable of SMP (Symmetric Multiprocessing). In 2008,
Intel demonstrated a special version of the computer game Enemy
Territory: Quake Wars using ray tracing as rendering method. The
demonstration used a 16-core system running at 2.93 GHz and
providing 14-29 frames per second (FPS) on basic HD (720p)
resolution [Valich 2008].

Some attempts were made for special ray tracing acceleration
hardware. One of them was "Rendering on demand" [Chalmers
2006] using specialized hardware based on DSP and FPGA –
(Field programmable gate array). The Saarland University
developed another FPGA based system called Ray Processing
Unit capable of accelerating ray tracing algorithms in hardware
[Woop 2005]. The University of Utah developed a highly parallel
multicore solution for real-time ray tracing [Spjut 2009].

Other approaches tried to use the ever-growing power of GPUs
for ray tracing. [Purcell 2002] was the first one that presented ray
tracing running on GPU. Photon mapping followed [Purcell 2003]
with more complex ray tracing algorithms [Horn 2007][Gunther
2007][Shih 2009][Garanzha 2010]. Finally, Nvidia came with its
own GPU-accelerated ray tracing API called OptiX [Nvidia
2009].

2.1 Real-time Rendering

Although ray tracing on GPU seems to be a promising approach,
[Garanzha 2010] states that its GPU approach is only about 4x
quicker than the CPU friendly implementation running on Core 2

Quad. Ray tracing algorithms as those mentioned here, are
currently capable of processing about 100Mrays/second on scenes
with 100K triangles (roughly said). It is still a level of magnitude
behind the processing power of the traditional rendering pipeline
as will be shown in the paper. Thus, number of attempts, such as
[Loviscach 2004], were made to approach photorealistic rendering
with the traditional OpenGL rendering pipeline.

Real time graphics used to focus mostly on performance and
lacked the support for advanced lighting effects. Applications
were forced to use precomputed lighting or a fixed lighting model
[Wright 2004] that is too limiting for many modern graphics
applications (see figures 2, 3). Invention of shaders [Rost 2005]
for the OpenGL pipeline brought new possibilities for realism and
lighting effects of real time rendering (see figure 4). Moreover,
the shader programming capabilities grow with each new graphics
card generation, giving more and more possibilities to map some
photorealism algorithms to the real time rendering paradigms.

This paper is going to investigate the topic and find photorealism
algorithms that can be accelerated and identify those that are
difficult to map to the current OpenGL based real time rendering
architectures. The photorealism will be studied on POV-Ray as it
is a popular, recognized, and publicly available photorealistic ray
tracer. Moreover, POV-Ray's source code is publicly available to
be studied, modified, etc. Finally, the investigation will be done as
a case study on mimicking POV-Ray with OpenGL using shader
technology as this will easily show difficult algorithms to
accelerate as well as performance gains of successfully
implemented parts.

3 POV-Ray Architecture

POV-Ray will be divided into three main parts for the purpose of
this paper:

• ray tracing rendering

• scene description and modelling library

• material modelling algorithms

Figure 1: PRAY ray tracing tool rendering of fractally generated
scene (4096 sphere objects in total) [Zemcik 1995]

Figure 2: Computer game Counter Strike (release year: 2000)
Note static shadows of the buildings and
shadows absence under moving people

WSCG 2011 Communication Papers 150

Only core functionality of these will be investigated, omitting for
example, radiosity rendering and other various extensions.

POV-Ray ray tracing rendering is delivering photorealistic results
on one side while requiring much computing resources on the
other side. Rendering times of hours or days are not exceptional.
Mimicking ray tracing in the OpenGL rendering pipeline is a
challenging task as they are using an opposite approach: POV-
Ray is tracing rays from the camera while OpenGL is projecting
the scene geometry to the camera. This small difference brings
various challenges to various light effects that will be discussed
through the paper.

The scene description language of POV-Ray is very robust. It
starts from triangle meshes and atmospheric effects and finishes
with splines, blobs, run-time evaluated functions, and animations.
In this paper, we will focus just on triangle meshes because that is
the natural representation to OpenGL and all other representations
can be tessellated – producing a triangle representation.

Modelling of materials is more advanced in POV-Ray than in
standard OpenGL. It includes even multiple layers of material and
procedurally generated material surfaces. Many of these advanced
material approaches should be implementable in OpenGL shaders.
This paper will not go to the excessive material functionalities of
POV-Ray, rather mimicking of core material functionality will be
discussed in section 3.2.

3.1 Ray Tracing

POV-Ray is a ray tracer. It casts a ray or a number of rays through
each pixel of the image, rendered by camera. These rays are called
primary rays. The ray travels through the scene until it hits a scene
object, a light, or escapes the scene. If some object is hit, the
object's material is processed and computed color is assigned to
the ray. If it is primary ray, the ray's color is immediately assigned
to the rays image pixel. However, depending on the material
properties and the light setup, material processing may cause
additional rays to be cast from the point of the object hit to
various directions. Such rays are called secondary rays. When
these rays hit other surfaces in the scene, these secondary rays
may spawn recursively additional secondary rays. If the light is
hit, it assigns the ray the light's color. If the ray leaves the scene, it
is usually assigned the background's or sky's color.

POV-Ray assigns the level's number to the rays cast. The primary
rays cast from the camera are level 0 rays. When a surface is hit
by a ray of level n and it emits a new ray or several rays, they are
said to be of level n+1. Tracking of the ray level avoids infinite
recursions in some scenes and limits the rendering time by giving
a maximum ray level limit. POV-Ray sets the limit to 5 by default
while the user may increase it as needed, for example, on scenes
with many mirrors.

3.2 Ambient Scene: Level 0 Rays

The idea of mimicking POV-Ray with the standard OpenGL
pipeline leads immediately to the crucial question whether POV-
Ray's ray casting can be replaced by the rendering pipeline. The
approach of OpenGL is to project the scene's geometry to the
camera's rendering plane and to change the pixel's colors as the
geometry is rasterized and fragments are processed. POV-Ray's
approach is the opposite. The rays are cast through the rendering
plane and the color of the pixels are determined by the scene
geometries hit by the rays. If only direct rays (e.g. level 0) are
considered, both approaches should be interchangeable. The
experiment of figures 5 and 6 proves the idea. Both images are of
the same quality while POV-Ray's image took 4 seconds to render
and the OpenGL's one 2.2 milliseconds (i7-920@2.66GHz,
GeForce GTX 260). An acceleration factor of 1800 is the first
achievement of this paper.

However, limiting rays to level 0 only prevents the scene
geometry to be illuminated by light sources and only the ambient
component of the light model affects visual appearance. To
include light sources, rays of level 1 need to be introduced,
providing the secondary rays cast from the intersection point to
the light sources.

3.2 POV-Ray's Surface Model

To accelerate POV-Ray's level 1 rays in OpenGL, it is necessary
to properly model POV-Ray's interaction of a ray with a surface.
If the ray hits the object's surface any combination of four things
might happen:

Figure 3: Lighting artifacts on a scene using standard OpenGL
Gouraud shading

Figure 4: Per-pixel lighting in a scene
rendered using shader technology

WSCG 2011 Communication Papers 151

 absorption – the light ray or part of its intensity is
absorbed, lowering its intensity and possibly altering its
hue by absorption of some wavelengths only

 reflection – the light ray is reflected in one or more
directions, secondary rays are cast

 refraction – transparent and translucent materials may
cause a portion of the light ray to refract into the object

 fluorescence and emission – the surfaces may emit the
light of different wavelengths, possibly altering the
spectrum of the ray

POV-Ray models the surface absorption like OpenGL. It uses the
RGB light color model. If the surface if purely blue, it absorbs all
red and green component of incoming light rays. If it is 50% grey,
half of the light ray's intensity is absorbed. Various reflection
types are modelled by ambient, diffuse, specular, phong, and
reflection material components. Refraction is modelled by the
component of the same name, by the densities of refraction
environments, and the amount of transparency of a given object.
Fluorescence and emission effects are simulated by the ambient
component or material components set in a way that the amount
of outgoing light is bigger than the amount of incoming light. This
may happen, for example, when one of the material components is
bigger than 1.0.

However, modelling POV-Ray's material properties with OpenGL
is not an easy task because the surface materials of POV-Ray are
very robust and include material libraries and procedural
functions. Because covering the material libraries and procedural
functions would be time expensive work and would provide
enough material for a paper dedicated just to this topic, this paper
will be limited just to the core material modelling capabilities of
POV-Ray.

POV-Ray calls the set of material surface properties "texture"
(note the name collision with OpenGL's "texture"). The texture is
composed of pigment, finish, and normal. The pigment can be a
color, image map (e.g. 2D texture), or color map (procedural
texture). Colors and image maps are the functionalities that have
equivalents in OpenGL. Color maps are more complicated. They
map floating point values in a range from 0.0 to 1.0 to color
values specified in the map. The floating point values can be
generated by various mapping functions and be modified by
functions like turbulence and frequency. These procedural

functions can be probably implemented using shaders, however
they are out of scope of this paper.

Finish is the next item of POV-Ray's surface texture. Knowing the
pigment, e.g. surface color at a given point – this may include
texture mapping and filtering – finish gives the amount of
ambient, diffuse, specular, phong, reflection, and refraction
component. All these values are floats, usually between 0.0 and
1.0 to specify range from absence (value 0.0) to full intensity (1.0)
of a given material component. Negative values and values over
1.0 can be used as well to create special or unrealistic effects.
These intensities just multiply their value with the pigment color,
resulting in the color of a particular component. Mimicking of all
POV-Ray's finish material functionality in accelerated OpenGL is
described summarized in the table 1.

The last POV-Ray's material surface property is normal. It is
designed for surface normal manipulation. It can be specified by a
bump map or a procedural approach. The procedural generators
are out of the scope of this paper, so only bump maps are
considered. The bump maps have mandatory support in OpenGL
since version 1.3 [Segal 2001], thus they can be implemented.

3.3 Secondary Rays

After the investigation of primary rays (level 0) and color
processing on POV-Ray's surface textures and seeing that it is
possible to implement them in OpenGL, it is possible to come to
the next step: POV-Ray's level 1 rays. When a level 0 ray cast
from the camera hits a surface of an object, several secondary rays
of level 1 may be cast. Secondary rays called shadow rays are sent
to each light source to see whether anything is in the way and
obscures the light source. If there is nothing in the way, the
intersection point is illuminated by the particular light source and
the color of the light source is assigned to the ray. If the light is
obscured by an object, the black color is assigned to the ray
instead.

If the surface has a non-zero reflection component, another
secondary ray is cast in the direction of the reflection vector. If the
surface is not completely opague, e.g. it is transparent or semi-
transparent, another ray is cast into the object while a refraction
effect may apply. The secondary rays are processed recursively in
the same way as the primary rays, making secondary reflections
and refractions, tertiary reflections, etc. At the end of each ray

Figure 5: POV-Ray rendering using only level 0 rays Figure 6: OpenGL rendering using ambient light

WSCG 2011 Communication Papers 152

level n evaluation, the color of all the rays of the level n+1 are
taken and included in the color computation of the ray of the level
n. Finally, when level 0 ray evaluation is completed, its color is
assigned to the pixel of the image.

Visual results are shown in the figure 7 for POV-Ray while using
level 0 and 1 rays only, and figure 8 for the OpenGL accelerated
implementation.

3.4 POV-Ray Lights

Casting of secondary rays, particularly shadow rays cast towards
light sources, is influenced by the light type. As can be expected,
POV-Ray uses a more advanced lighting model than built-in
OpenGL lights. Anyway, the limited built-in light model was
made obsolete in OpenGL 3.0 and programmers are encouraged to
create their own lighting effects using shaders.

POV-Ray uses several types of lights: point light, parallel light
(like OpenGL's directional light), spot light, cylindrical light, and
area light. The first three have equivalents in OpenGL, the fourth
should be possible to implement in shaders and the last one – area
light – can be implemented as an array of point lights. That is
actually the way that area light is implemented in POV-Ray. All
the details of POV-Ray's lights and their implementability by
OpenGL are described in the table 2. Implementability was
verified for point light, directional light and spot light. Cylindrical
light is rarely used, and area light is just the array of point lights in
POV-Ray. To prove implementability of the lights, point light,

directional light and spot light were implemented in OpenGL's
shaders. The results are shown in the figures. Because of the space
limitations, we show just the spot light scene as the spot light is
the most complex type when considering mentioned light types
and their POV-Ray implementation. A summary of lights
implementability is shown in the table 2.

3.5 Higher Level Rays

When we attempted to analyze implementability of level 2 rays in
OpenGL, we found it very difficult, particularly when considering
the general case. Following the goals set in the beginning of this
paper, this section successfully identifies one particular difficulty:
to mimics POV-Ray rays starting from level 2. Additionally, the
section is going to discuss available options that should be
addressed in the future.

Rays of higher level starting from level 2 bring very cool effects,
like mirroring, reflections and refractions. One POV-Ray example
is shown in the figure 9. However, these rays are not
straightforward to implement for the general case. Some GPU
approaches follow that can be used to reach similar effects as
those created by level 2 rays:

– scene mirroring – there are various approaches to implement
mirrors in OpenGL. Usually, they just duplicate the scene
behind the mirroring surface while using stencil test to limit
rendering just to mirroring surface.

POV-Ray's Finish
component

Required rays to be cast Finish component description Implementability in OpenGL

Ambient no ray casting required pigment multiplied by ambient component
and global ambient intensity

yes, using ambient color and global
ambient light

Diffuse

Phong

Specular

secondary ray is cast to
each light source to test its
visibility

for each visible light source compute sum of
diffuse equations (Lambertian reflectance
[Phong 1973]) of the pigment multiplied by
diffuse component, and color of the ray cast
to the light source. Brilliance parameter may
modify distribution of the reflection.

for each visible light source compute phong
highlight [Phong 1973] of pigment, phong
intensity, light source ray color. Pigment
color affects the ray if metallic is specified.

for each visible light source compute
specular highlight [Blinn 1977][Phong
1973] of pigment, specular intensity and
light source ray color. Pigment color affects
the ray if metallic is specified.

yes, but light source visibility requires
accelerated shadow algorithms to be
used. For example, shadow maps or
shadow volumes techniques can be used.

Per-pixel lighting requires color
components to be computed using
shaders because OpenGL's per vertex
lighting provides often unacceptable
results (see figure 3).

Reflection one secondary ray cast in
direction of reflection
vector

color of reflection ray is multiplied with
reflection intensity

Transparency one secondary ray cast into
the object

the color of the ray is multiplied by
transparent intensity. The direction of the
ray may be affected by refraction

OpenGL provides direct support for
transparency, but robust implementation
of reflection and refraction is not trivial.
Possible solutions are discussed in the
paper.

Table 1: Relation between POV-Ray materials and OpenGL materials

WSCG 2011 Communication Papers 153

– render to texture – the mirrored or reflected geometry can be
pre-rendered to the texture that is applied to the surface
afterwards.

– environment mapping – similar to render to texture approach,
but it usually renders all surrounding environment (360
degrees) to, for example, cube map. The pre-rendered
environment is then mapped to the geometry using, for
instance, texgen OpenGL functionality or shaders. Effects
like mirrors or surface reflections are easily implementable
using environement mapping.

– GPU raytracing – there were number of attempts to perform
ray tracing on GPU, such as [Garanzha 2010][Shih 2009]
[Horn 2007][Gunther 2007].

The first three OpenGL-based options seem appropriate to create
nice reflections and refraction effects on planar surfaces.
However, they are breaking projection coherency that was present
with primary rays and shadow level 1 rays. Breaking of this
coherency may result in a huge number of projections and pre-
rendering to texture. Theoretically, each surface that is not
coplanar with any other surfaces may require its own projection.
Such solution may turn to be very performance expensive.
Moreover, curved surfaces, such as NURBS, exhibit even more
problems. They can not be processed directly as they are not
planar surfaces. They can be tesselated, but to reach high quality
visual results, too many not coplanar surfaces may be produced,
possibly harming performance too much.

Another approach can be to start GPU ray tracing at level 2 rays.
Although GPU ray tracing still does not reach the performance of

Figure 7: POV-Ray rendered image using rays level 0 and 1 Figure 8: OpenGL rendered image using per-pixel lighting

POV-Ray's light type Description Implementability in OpenGL

Point light The light placed in the scene shining equally in
all directions

Similar to OpenGL's point light except that OpenGL's light does
not cast shadows by default. One of shadow techniques need to
be utilized. Lighting should be implemented per-pixel, for
example, in shaders.

Parallel light The light whose rays come in parallel in certain
direction

Similar to OpenGL's directional light with the exception of
shadows. One of shadow techniques need to be used.

Spot light Like the point light but the light is restricted to
a cone in some direction. The light intensity in
the cone can be modulated. POV-Ray uses
radius, falloff, and tightness parameters.

Similar to OpenGL's spot light except shadows and light
intensity modulation. Shadows need to be implemented.
Intensity modulation inside the cone is different from the
OpenGL's built-in spotlight. However, shaders are usually used
to implement per-pixel lighting and POV-Ray's light
modulation can be computed there as well.

Cylindrical light Like spot light but it is constrained by a
cylinder. It is useful for effects light laser
beams. Technically, it is not based on parallel
light as could be expected, but on point light
whose rays are constrained by the cylinder.

Can be implemented in OpenGL shaders. Shadow technique
needs to be used.

Area light Finite 1D or 2D rectangular area providing flat
panel light. Technically, it is implemented
using array of point lights. As a side effect, the
light provides soft shadows.

Can be implemented as an array of point lights. Alternatively,
some area light model [Au 2007] implemented using shaders
can be used for instance.

Table 2: POV-Ray's lights and their implementability by OpenGL

WSCG 2011 Communication Papers 154

the standard OpenGL rendering paradigm, it may outperform
OpenGL approaches for level 2 rays. Further investigation would
be necessary to clarify the best approach that may even lead to a
hybrid solutions – rendering big planar surfaces in OpenGL and
ray tracing the small or curved surfaces.

4 Experiments

All the algorithms developed in this paper were tested as a part of
our Lexolights open source project available at:
http://lexolight.sourceforge.net. The website includes win32
binaries covering the functionalities mentioned in this paper.
Namely, all POV-Ray core material functionality is implemented,
e.g. all major elements of POV-Ray's texture finish, with
exception of reflection and refraction elements that would require
support of level 2 rays. Next covered area is lights that include
point, directional, and spot light while we used shadow maps
[Williams 1978] and LiSPSM [Wimmer 2004] for shadow rays
visibility tests. Lexolight is implemented using OpenSceneGraph
(http://www.openscenegraph.org) – high level rendering library
built on the top of OpenGL. As some of our algorithms were
better suited to be included directly in OpenSceneGraph, such as
POV-Ray scene converter and exporter, we submitted them to be
included in the upcoming release for the profit of the open source
community.

4.1 Performance

To evaluate the performance gains, several measurements were
made for POV-Ray rendered scenes. Then, the same scene was
rendered by hardware accelerated OpenGL. The results are
summarized in the table 3. We used the scene composed of
approximately 83000 triangles visualized on high and low
performance CPUs and a variety of graphics cards ranging from
hi-end, through mobility versions, to old low-end GPUs. POV-
Ray rendering took from few seconds to about a minute.
Rendering of the same scene for level 0 and level 1 rays using
POV-Ray's accelerated OpenGL approach took less than 150ms
even on very old mobile fill-rate limited graphics card. For
nowadays hi-end graphics cards, the speed up factor stayed far
above 1000. We consider such speed up an interesting result. It
shows a potential to accelerate level 0 and level 1 rays of ray
tracers. Another option can be to further investigate acceleration
of level 2 rays or to consider whether a hybrid solution would be
the best option for close-to-photorealistic real-time rendering.

5 Conclusions

This paper investigated the realization of photorealistic rendering
in real-time, accelerated by the graphics hardware. The
investigation was made on a case study by mimicking of POV-
Ray with OpenGL's rendering paradigm accompanied with the
latest programmable shader technologies.

The presented study proved that the core POV-Ray material and
lighting functiontionality can be implemented in accelerated
OpenGL. It turned out that it is very easy to accelerate primary
rays (e.g. level 0 rays) cast by POV-Ray when rendering the scene
and a speed up factor of 400 was measured even on very old
hardware. Secondary rays of level 1 were accelerated as well
while together with level 0 rays, the speed up factor was over
3000 for modern hardware. Rays of level 2 and higher turned out
to be difficult to be implemented in accelerated OpenGL. They
may require additional research efforts and using of advanced
rendering techniques as was discussed in section 3.5.

Future research should extend acceleration of rays of level 0 and 1
to higher level rays. Although it may be difficult to do so, it would
enable additional visual effects and may even lead to ideas of
accelerating global illuminations methods, such as radiosity.

Figure 9: POV-Ray rendered image using rays level 0,1, and 2

Level 0 Rays Acceleration Level 1 Rays Acceleration Level 2 Rays

POV-Ray
rendering

(level 0 rays)

OpenGL
ambient

rendering

Speed-up
factor

POV-Ray
rendering

(level 1 rays)

OpenGL
per-pixel
ligting

Speed-up
factor

POV-Ray
rendering

(level 2 rays)

i7-920 @2.66GHz,
GeForce GTX 260

4s 2.2ms 1800 14s 4.4ms 3200 21s

Core 2 Duo @ 2.00GHz,
Radeon HD 3670 Mobility

8s 7.4ms 1100 21s 18ms 1200 33s

Athlon XP 2000+,
Radeon HD 2600 XT

12s 11.4ms 1100 37s 20.5ms 1800 58s

Core 1 Duo @ 1.83GHz,
Radeon X1300M

13s 33ms 400 36s 133ms 270 55s

Table 3: Performance comparison
(screen size: 1440x1050, one omnidirectional light, 83000 triangles)

WSCG 2011 Communication Papers 155

Acknowledgements

This work was supported by the Ministry of Education, Youth and
Sports of the Czech Republic under the research program LC-
06008 (Center for Computer Graphics). Special thanks to
Cadwork Informatik AG and Cadwork development team in Brno
for the support of this project.

References

AU, A. 2007. A simple area light model for GPUs. In Shader X5, W.
Engel, Ed. Charles River Media, Chapter 2.1, 63—67.

APPEL, A. 1968. Some techniques for shading machine renderings of
solids. In Proceedings of the April 30--May 2, 1968, Spring Joint
Computer Conference (Atlantic City, New Jersey, April 30 - May
02, 1968). AFIPS '68 (Spring). ACM, New York, NY, 37-45.
DOI= http://doi.acm.org/10.1145/1468075.1468082

ARVO, J. AND KIRK, D. 1989. A survey of ray tracing acceleration
techniques. In An introduction To Ray Tracing, A. S. Glassner,
Ed. Academic Press Ltd., London, UK, 201-262.

BLINN, J. F. 1977. Models of light reflection for computer synthesized
pictures. SIGGRAPH Comput. Graph. 11, 2 (Aug. 1977), 192-
198. DOI= http://doi.acm.org/10.1145/965141.563893

CHALMERS, A., DEBATTISTA, K., GILLIBRAND, R., LONGHURST, P., AND
SUNDSTEDT, V. 2006. Rendering on demand. In EGPGV2006 - 6th
Eurographics Symposium on Parallel Graphics Visualization,
Eurographics, 9--18.

GARANZHA, K., LOOP, C., 2010. Fast Ray Sorting and Breadth-First Packet
Traversal for GPU Ray Tracing, Computer Graphics Forum 29, 2.
Proceedings of Eurographics 2010, Norrköping, Sweden.

GUNTHER, J., POPOV, S., SEIDEL, H., AND SLUSALLEK, P. 2007. Realtime Ray
Tracing on GPU with BVH-based Packet Traversal. In
Proceedings of the 2007 IEEE Symposium on interactive Ray
Tracing (September 10 - 12, 2007). IEEE/Eurographics
Symposium on Interactive Ray Tracing. IEEE Computer Society,
Washington, DC, 113-118. DOI=
http://dx.doi.org/10.1109/RT.2007.4342598

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN, P. 2007.
Interactive k-d tree GPU raytracing. In Proceedings of the 2007
Symposium on interactive 3D Graphics and Games (Seattle,
Washington, April 30 - May 02, 2007). I3D '07. ACM, New
York, NY, 167-174. DOI=
http://doi.acm.org/10.1145/1230100.1230129

JENSEN, H. W., CHRISTENSEN, N. J. 1995. Photon maps in Bidirectional
Monte Carlo Ray Tracing of Complex Objects". Computers &
Graphics 19 (2), pages 215—224.

JENSEN, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A.
K. Peters, Ltd.

KAJIYA, J. T. 1986. The rendering equation. SIGGRAPH Comput. Graph.
20, 4 (Aug. 1986), 143-150. DOI=
http://doi.acm.org/10.1145/15886.15902

LAFORTUNE, E.P. AND WILLEMS, Y.D., Bi-directional Path Tracing, Computer
Graphics Proc., Alvor (Portugal), 1993, pp. 145-153.

LARSON, G. W. AND SHAKESPEARE, R. 1998 Rendering with Radiance: the Art
and Science of Lighting Visualization. Morgan Kaufmann
Publishers Inc.

LOVISCACH, J. 2004 Emulating an Offline Renderer by 3D Graphics
Hardware, WSCG 2004, 269-276.

MUUSS, M. J. 1987. RT & REMRT: Shared Memory Parallel and Network
Distributed Ray-tracing Programs. Proceedings of 4th Computer
Graphics Workshop, Cambridge, MA, USA, October 1987.
Usenix Association, pp 86-98.

NVIDIA 2009. Nvidia OptiX. Nvidia website:
http://www.nvidia.com/object/optix.html.

PHONG, B. T. 1973 Illumination for Computer-Generated Images. Ph.D.
Thesis. UMI Order Number: AAI7402100., The University of
Utah.

PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P. 2002. Ray tracing
on programmable graphics hardware. In Proceedings of the 29th
Annual Conference on Computer Graphics and interactive
Techniques (San Antonio, Texas, July 23 - 26, 2002).
SIGGRAPH '02. ACM, New York, NY, 703-712. DOI=
http://doi.acm.org/10.1145/566570.566640

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN, H. W., AND HANRAHAN,
P. 2003. Photon mapping on programmable graphics hardware. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware (San Diego,California, 2003).
Eurographics Association, Aire-la-Ville, Switzerland, 41-50.

ROST, R. J. 2005 Opengl(R) Shading Language (2nd Edition). Addison-
Wesley Professional.

SEGAL, M., AKELEY, K. 2001. The OpenGL Graphics System: A
Specification (Version 1.3). Silicon Graphics, Inc. Available at:
http://www.opengl.org/documentation/specs/

SHIH, M., CHIU, Y., CHEN, Y., AND CHANG, C. 2009. Real-Time Ray Tracing
with CUDA. In Proceedings of the 9th international Conference
on Algorithms and Architectures For Parallel Processing (Taipei,
Taiwan, June 08 - 11, 2009). A. Hua and S. Chang, Eds. Lecture
Notes In Computer Science, vol. 5574. Springer-Verlag, Berlin,
Heidelberg, 327-337. DOI= http://dx.doi.org/10.1007/978-3-642-
03095-6_32

SPJUT, J., KENSLER, A., KOPTA, D., AND BRUNVAND, E. 2009. TRaX: a
multicore hardware architecture for real-time ray tracing. Trans.
Comp.-Aided Des. Integ. Cir. Sys. 28, 12 (Dec. 2009), 1802-
1815. DOI= http://dx.doi.org/10.1109/TCAD.2009.2028981

VALICH, T. 2008. Intel converts ET: Quake Wars to ray tracing. TG Daily.
(June 12, 2008), Available online at
http://www.tgdaily.com/html_tmp/
content-view-37925-113.html .

VEACH, E. AND GUIBAS, L. J. 1997. Metropolis light transport. In
Proceedings of the 24th Annual Conference on Computer
Graphics and interactive Techniques International Conference on
Computer Graphics and Interactive Techniques. ACM
Press/Addison-Wesley Publishing Co., New York, NY, 65-76.
DOI= http://doi.acm.org/10.1145/258734.258775

WALD, I., BENTHIN, C. AND SLUSALLEK, P. 2002. OpenRT – A Flexible and
Scalable Rendering Engine for Interactive 3D Graphics.
Technical report, Saarland University. Available at
http://graphics.cs.uni-sb.de/Publications.

WHITTED, T. 1980. An improved illumination model for shaded display.
Commun. ACM 23, 6 (Jun. 1980), 343-349. DOI=
http://doi.acm.org/10.1145/358876.358882

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
SIGGRAPH Comput. Graph. 12, 3 (Aug. 1978), 270-274. DOI=
http://doi.acm.org/10.1145/965139.807402

WIMMER, M., SCHERZER, D., PURGATHOFER, W. 2004. Light Space Perspective
Shadow Maps, In Rendering Techniques 2004 (Proceedings
Eurographics Symposium on Rendering), p. 143-151. June 2004.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. RPU: a programmable
ray processing unit for realtime ray tracing. In ACM SIGGRAPH
2005 Papers (Los Angeles, California, July 31 - August 04,
2005). M. Gross, Ed. SIGGRAPH '05. ACM, New York, NY,
434-444. DOI= http://doi.acm.org/10.1145/1186822.1073211

WRIGHT, R. S. AND LIPCHAK, B. 2004 OpenGL Superbible (3rd Edition).
Sams.

ZEMCIK, P., CHALMERS, A. G. 1995. Optimised CSG Tree Evaluation for
Space Subdivision. Computer Graphics Forum, p. 139-146,
Netherlands, 1995

WSCG 2011 Communication Papers 156

Automated 3D Visualization of Electron Microscope

Tomograms

Chikara Yamashita

Osaka Institute of Technology
1-79-1, Kitayama
Hirakata, Osaka

 573-0196, Japan

yamashita@is.oit.ac.jp

Koji Nishio

Osaka Institute of Technology
1-79-1, Kitayama
Hirakata, Osaka
573-0196, Japan

nishio@is.oit.ac.jp

Ken-ichi Kobori

Osaka Institute of Technology
1-79-1, Kitayama
Hirakata, Osaka
573-0196, Japan

kobori@is.oit.ac.jp

ABSTRACT
In this paper, we propose a 3D visualization method for ultra-high voltage electron microscope tomography
intended for use with biological samples. The most important process for constructing 3D images from
UHVTEM tomograms is the extraction of contours from 2D sliced images. However, automatic extraction of
contours is difficult because of typical noise and artifacts. The proposed method automatically extracts contours
by the 3D level set method. In general, the result of the extraction with the level set method depends on the
definition of initial contours and parameters. These parameters are usually set manually. Our method
automatically generates the initial contours and decides the fittest parameters for the level set method. We verify
the effectiveness of our method by applying the technique to two types of unicellular organisms, to compare the
results of the proposed method with manual extraction. The automated method successfully identified most cell
tissues, with the exception of a limitation in the imaging of tubular-shaped cell structures.

Keywords
Electron microscope tomography, level set method, visualization, segmentation, contour extraction.

1. INTRODUCTION
Ultra-high voltage transmission electron microscopy
(UHVTEM) has become a major contribution to
medial imaging, because it permits the examination
of intracellular structures, which are difficult to
examine by conventional X-rays, computed
tomography (CT), and magnetic resonance imaging
(MRI) techniques [Joa06].

Three-dimensional visualization method can be
classified into volume rendering and surface
rendering. We use surface rendering to observe
object surface. It is possible to extract the three-
dimensional structure of cellular structures from
UHVTEM data; however, 3D contours are difficult
to generate automatically because of noise and
artifacts in the data. The traditional approach for
generating 3D contours of cellular structures traces
the structures on successive two-dimensional slices

of a three-dimensional reconstruction. Many hours
are required, when the number of sliced images
increases.

Our proposed method automatically extracts 3D
contours using the level set method [Set99] [Sta03].
Generally, the extraction with the level set method
requires the definition of the initial contours and the
fittest parameters, which are difficult to define
manually. The proposed method automatically
generates the initial contours and decides the fittest
parameters, thus expediting the process of 3D
contour generation. We expect that this refinement of
the level set method will facilitate the analysis and
recognition of cell pathologies, with applications in a
broad spectrum of biomedical disciplines.

2. FEATURES OF ULTRA-HIGH
VOLTAGE ELECTRON
MICROSCOPE TOMOGRAMS
Ultra-high voltage Electron microscope tomograms
are generated by UHVTEM images, obtained on
samples with thicknesses in the range of 0.1–10 μm.
These thicknesses are sufficient to encompass the
size of cell organelles and to permit the quantitative
analysis of variations in shape and organization of
pathological structures. One of the requirements of

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2011 Communication Papers 157

the UHVTEM image is that the missing domain is
minimized to enhance the precision of tomographic
processing.

A transmitted image is obtained by inclining the
sample irradiate the transmitted beam. A missing
domain occurs in the resulting image because of
mechanical limitations related to rotation of the
sample. For example, the reconstructed image in
Figure 1(a) reveals decreased resolution in the
direction of the missing domain, indicated by the
blurred, dim region. Also, the gold particles used in
Ultra-High voltage electron microscopy for image
alignment and registration appear as granular lines in
UHVTEM tomograms; see Figure 1(b).

(a) (b)

Figure 1. Typical noise in ultra-high voltage
electron microscope tomograms: (a) Blurred

region reflects low S:N ratios; (b) Ellipses identify
shadows of gold particles.

3. LEVEL SET METHOD
The level set method is commonly used in medical
imaging because it successfully extracts blurred
contours [Tak03] [Yos05]. The method is considered
an active contour model because it allows topological
change. The algorithm extracts contours based on a
boundary condition where a region becomes a zero
value in high-dimension function. The user defines
an initial contour and the level set function which is
decided from the initial contour. The algorithm then
updates the level set function by solving partial
differential equation. The image processing is
complete when the variation in the level set function
falls below a certain threshold value.

One problem with the level set method is that errors
are accumulated at each update of the level set
function, causing instabilities in the solution. To
achieve a stable solution, the function must be "re-
initialized", however, the processing cost of re-
initialization is high [Cat03] [Chu05] and various
faster methods have been introduced. In our
proposed model we use the method of references
[Chu05] which is a level set method without re-
initialization. In the method of references, the update
level set function φ is

 rFtt 1
where

 (1)

 gg ALF
. (2)

F is the speed function (the sum of the internal and
external energies), r is the weight of the speed
function, P is the internal energy function (the effect
of re-initialization at the time of the update of the
level set function is included), Lg gives the length of
the zero isosurface of φ, Ag is introduced to
accelerate the update of the level set function,

μ is the weight of the internal energy function, and λ
and ν are the weights of the external energy function;
if ν is positive, a contour moves in the shrinking
direction; otherwise, a contour moves in the
expanding direction.

In the level set method, values for the parameters of
the level set function are set by experience, usually
requiring a number of trials to establish values that
give a suitable solution. The model proposed here
eliminates these trials by establishing the parameters
automatically.

4. 3D VISUALIZATION METHOD
In general, the technique of 3D visualization relies
upon laminating the contours of 2D sliced images.
When extracting a contour manually, the top and
bottom images are established as references. In our
proposed automated protocol, the top and bottom
images are inputs to the three-dimensional level set
method. The level set method requires the input of
an initial contour; however, this contour is difficult
to set manually. The initial parameters of the level set
parameter are also difficult to set, because of the
number and variety of cellular structures often
embedded in a tomographic image. The proposed
automated model sets the initial contour and level set
parameters according to procedures in Figure 2.

Figure 2. Overview of the proposed automated
method.

Step 1) To reduce the influence of the missing
domain that is characteristic of ultra-high voltage
electron microscope images, an image barrier is set
for volume data. The image barrier is discussed in
Section 4.3.

Step 2) Extract the contour of outer object using the
three-dimensional level set method.

Electron microscope tomogram

Image barrier setting

Outer object extraction

Inner object extraction

3D Isosurface

WSCG 2011 Communication Papers 158

Step 3) Extract the contour of inter object using the
three-dimensional level set method.

Step 4) Step 3 is repeated as many times as
necessary for each of the varieties of cellular tissue.

Step 5) Isosurfaces are generated using Marching
Cubes [Wil87] for the results provided by Steps 2
and 3.

In addition, the proposed method automatically sets
an initial contour and parameters for the level set
method based on a reference region, as discussed in
Section 4.2.

4.1 Definition of tissue boundaries
In order to reduce the processing time in samples
with a variety of cell tissue types, the proposed
method extracts the contour border of the outer tissue
structure, and next extracts the contours of inner
tissue structures. This hierarchical extraction
technique reduces the processing required for
calculations. We define structure of the cell group
border of the biotissue as "inner tissue", and other
contour and inside domain as "outer tissue". Figure 3
shows the relationship between inner tissue and outer
tissue.

Figure 3. Tissue extraction.
Figure 4 shows the automated procedure to set an
initial contour at the border of the outer domain
structure. The contour, initially set at the boundary of
the image, shrinks to conform to the outer tissue
boundary. To set an initial contour on an inner
domain structure, the initial contour is defined within
the structure, and the contour expands to conform to
the inner boundary of the domain.

(a) (b)
Figure 4. External tissue extraction:

(a) Initial contour; (b) Result of extraction

4.2 Automatic initial contour generation
The extraction of the outer boundary of the “outer
tissue” is relatively straightforward because the

background pixel values are approximately constant.
The initial contour for outer tissue can therefore be
established either manually or automatically.
However, it is difficult to establish an initial contour
for inner tissue structures because of the number and
variety of associated shapes, textures, brightness
intensities, colors, etc. When the inner contours are
extracted manually, the operator considers tissues
with similar colors as the basis for organization, even
if the shape of these structures varies.

Therefore, the proposed method automatically
generates the initial contours for inner tissue
structures based on color information within the
sample. Figure 5 gives an overview of the automated
process for initial contour generation.

Figure 5. Overview of the automated process
of initial contour generation.

Step 1) Choose an image nearly the center of
volume data and select a region for contour
extraction. Selected region defines the “region for
reference”; see Figure 6(a).

Step 2) Determine the mode of brightness values in
the region for reference.

Step 3) Determine the extraction range of brightness
values for inner tissue

Step 4) To remove noise and artifacts, perform
shrinkage processing on the Step 3 result.

(a)

(b) (c)
Figure 6. Automatic initial contour generation:

(a) Region for reference; (b) Result of region
extraction; (c) Initial contour.

If the frequency of brightness values within the inner
tissue structure is approximately uniform, then the
peak of the distribution defines the mode. The

Region for reference

Initial contour

Electron microscope tomogram

Region for reference

Region extraction

Determination of mode value

Initial contours

Object for

extraction

Initial contour
Convergent contour

Background

Outer tissue

Inner tissue

WSCG 2011 Communication Papers 159

process chooses a range of brightness values for
extraction, and the extraction range encompasses the
mode value; see Figure 7.

Figure 7. Extraction range.
The extraction range establishes the contrast used by
the procedure to define the initial contour.
Depending on the extraction range, the procedure
may extract pixels that are outward of the actual
boundary. In this case, one applies shrinkage
processing on the extracted domain in Step 2.

In the proposed method, Steps 2–4 are performed for
the cell structures within the outer tissue; repetition
of this processing technique extracts the individual
elements and establishes the organization framework
of the tissue.

4.3 Setting of image barriers
For regions in which a low gradient intensity is
included in the image, contours are extracted by the
level set method. A contour is defined which extends
inside of the cellular structure; see Figure 8(a).

(a) (b)
Figure 8. Image barrier (a) before setting and (b)

after setting.
In the case of ultra-high voltage electron microscope
tomography, missing domains create the region of
the low gradient intensities. Missing domains are
typically common on upper and lower boundaries.
Thus, the application of the three-dimensional level
set method may result in contours which extend into
the structure. In addition, in the case of a tubular
structure oriented in the section direction, a contour
may extend into the inner regions of the tissue
because the top and bottom boundary surfaces are
not distinct. Therefore, the proposed method sets a
barrier for the contour by defining the boundary of
the structure (Figure 8(b)). This barrier is defined as
an “image barrier.”

The image barrier is set at the top and bottom ends of
the domain manually; see Figure 9. The rectangular
domain which encloses the cell tissue is included in

these images. These images can them be replaced
with the original input image.

Figure 9. Image barriers.

4.3 Automatic parameter setting
The proposed method sets the parameters for level
set method automatically for inner tissue levels. To
decrease the processing time, the automated method
processes a small domain and translates that domain
to the whole image.

Figure 10. Bounding box generation.
A 3D bounding box is established outside the parcel
of inner tissue which includes the region for
reference; see Figure 10. The bounding box is
elongated in a direction perpendicular to the plane of
the region for reference. The initial contour is set
using the level set method in this bounding box. The
parameters are established when the contour
corresponds to the boundary of the region for
reference; see Figure 11(a). If the initial contour is
inside of the region for reference, the parameters λ
and ν are increased and the level set method is
reapplied; see Figure 11(b). If the initial contour is
outside of the region for reference, the parameters λ
and ν are decreased and the level set method is
reapplied; see Figure 11(c).

(a)

(b) (c)
Figure 11. Evaluation of parameters: Fitting the
level set contour to the region for reference (a) at
the boundary, (b) inside the boundary, and (c)
outside the boundary.

Bounding box

Region for reference

Region for reference

Level set contour

Low gradient intensity

Low gradient intensity

Image barrier

A

Contour

High gradient intensity

Low gradient intensity
Image barrier

Frequency
Mode value

Range for extraction

Brightness value

B

WSCG 2011 Communication Papers 160

5. RESULTS
In our results, we compare the proposed automated
method with the manual method of operation. We
performed the automatic generation of the initial
contour and three-dimensional level set method
parameters based on the input of an initial contour.

Figure.12 shows ultra-high voltage electron
microscope tomograms used to test the automated
method: (a) Dunaliella parva (870 × 791 × 146); (b)
Brassica rapa (512 × 496 × 101).

(a) (b)

Figure 12. Ultra-high voltage electron
microscope tomograms of: (a) Dunaliella

parva; (b) Brassica rapa.
Figures 13 and 14 show the results of 3D
visualizations obtained by (a) manual extraction and
(b) the proposed automated method. The regions in
the visualizations are referred to as outer tissue
(regions A and D), granular inner tissue (regions B
and E), and “other” inner tissue (regions C and F).

We assessed the effectiveness of the proposed
method by evaluating whether contours established
by manual extraction are also established by the
proposed method. The ratio P of false detections to
manually established contours is

manualV

errorPossitiveerrorNegative
P

_

__
 . (3)

V_manual is the number of voxels in the region of
manual extraction. Negative_error is the number of
voxels in regions of cellular tissue that the proposed
method failed to extract. Positive_error is the
number of voxels that the proposed method
erroneously extracted from regions that were not part
of the cellular tissue. P is 0 when the results of the
automated and manual extractions are equal.

(a) (b)
Figure 13. Results for Dunaliella parva:

(a) Manual extraction; (b) Proposed method.

(a) (b)
Figure 14. Results for Brassica rapa:

(a) Manual extraction; (b) Proposed method.
Tables 1 and 2 show the evaluation values and
processing time and the number of V_manual,
Negative_error and Positive_error voxels, along
with their relative contributions (in percentages) to
the value of the evaluation parameter P for the 3
regions, in Dunaliella and Brassica, respectively.

 A B C
Evaluation value 0.133 1.464 0.242
Time (hour) 7.0 3.0 1.5
V_manual 13,349,695 449,990 942,446

Negative_error
616,980 73,128 105,993

4.6% 16.2% 11.2%

Positive_error
1,159,883 585,851 122,052

8.7% 130.2% 13.0%
Table 1. Evaluation values and processing time,

and voxel values obtained for manually extracted
contours, and corresponding errors associated

with the automated extraction method; data for
Dunaliella.

 D E F
Evaluation value 0.028 0.910 0.036
Time (hour) 13.2 3.0 15.8
V_manual 14,538,179 890,216 8,466,293

Negative_error
1,240 547,500 34,231
0.0% 61.5% 0.4%

Positive_error
402,573 262,993 273,441

2.7% 29.5% 3.2%
Table 2. Evaluation values and processing time,

and Voxel values obtained for manually extracted
contours, and corresponding errors associated

with the automated extraction method; data for
Brassica.

Evaluation values obtained for outer tissues (A and
D) are less than 0.15 (Tables 1 and 2). Because outer
tissues include a large proportion of high gradient
intensity regions, which facilitate tomographic
processing, it appears that contours can be readily
extracted even if the initial contour is set roughly.

The evaluation values for “other” inner tissue regions
(C and F) are 0.242 and 0.036 for the 2 trials (Tables
1 and 2). It is thought that initial contour generates
cellular tissue in neighborhood. Because ratio these
tissue in input tomogram is big.

The evaluation values of granular inner tissues (B
and E) are relatively large (1.464 and 0.910; Tables 1
and 2). The Positive_error of B is larger than the

D

E

F

A

B

C

WSCG 2011 Communication Papers 161

value of V_manual (Table 1), suggesting that the
automatic method extracted an unnecessary domain
when the initial contour was generated. Figure 15
shows (a) the original image of Dunaliella parva and
(b) the initial contours generated by the automatic
method (also see Figure 13).

(a) (b)

Figure 15. (a) The original image of Dunaliella
parva, and (b) the initial contours (black

pixels) generated by the automated method.
The initial contour extracted for the granular inner
tissue domain is represented in Figure 15(b). The
level set method extracts a greater region than the
manual method, contributing to high Positive_error
values (130% in Dunaliella; Table 1).
Negative_error values less than 20% of V_manual
values indicate that the proposed method adequately
extracts the spherical cellular tissue. The
Negative_error for region E is equivalent to 60% of
the V_manual value (Table 2), probably because this
region is a tubular structure.

The capacity of an active contour model to extract
objects with vague contours depends on the internal
energy. When the internal energy is large, a spherical
contour is extracted. However, when the external
energy is large, the extraction of contours in inner
cell structures with low gradient intensities is
problematic. Therefore, the automatic method did not
sufficiently expand the contour in the case of the
tubular cell tissue, and only an initial contour and the
domain of the neighboring cellular tissues were
extracted. For this reason, values of the
Negative_error increased. The extraction of “other”
inside tissue contours was apparently unaffected by
these considerations.

6. CONCLUSIONS
We propose an automated 3D visualization for ultra-
high voltage electron microscope tomograms using
the level set method. The method generates an initial

contour in the vicinity of manually recognized cell
structures. Experimental verification confirmed that
the automated method can extract the contours of
most cellular tissues, with the exception of tubular-
shaped structures. The method may expedite
tomographic processing techniques.

Future research will explore the possibility of
extracting contours for tubular-shaped tissues.

7. REFERENCES
[Cat03] Cates J.E., Lefohn A.E., Whitaker R.T. GIST: An

interactive, GPU-based level set segmentation tool for

3D medical images. Medical Image Analysis 8, No. 3,

pp. 217-231, 2003.

[Chu05] Chunming, L., Chenyang, X., Changfeng, G.,

Martin D, Fox. Level set evolution without re-

initialization: A new variational formulation. IEEE

International Conference on Computer Vision and

Pattern Recognition (CVPR) 1, pp. 430-436, 2005.

[Joa06] Joachim, F. (ed.) Electron tomography: Methods

for three-dimensional visualization of structures in the

cell, Springer, Albany, New York, pp. 1-15, 2006.

[Set99] Sethian, J.A. Level set methods and fast marching

methods evolving interfaces, in Computational

Geometry, Fluid Mechanics, Computer Vision, and

Materials Science, Cambridge, England, Cambridge

University Press, pp. 214-227, 1999.

[Sta03] Stanley, O., Nikos, P. Geometric level set methods,

in Imaging, Vision, and Graphics, Springer-Verlag

New York, pp. 1-20, 2003.

[Tak03] Takeshi, H., Akimbo, S., Misato, T., Hidefumi, K.

Development of a liver extraction method using a level

set method and its performance evaluation. Journal of

Computer Aided Diagnosis of Medical Images 7, pp. 1-

9, 2003.

[Wil87] William E.L., Harvey E.C. Marching cubes: A

high resolution 3D surface construction algorithm.

Computer Graphics 21, No. 4, pp. 163-169, 1987.

[Yos05] Yoshitaka, S., Hideaki, H. Segmentation of

medical images using a level-set method. IEICE

Technical Report 104, pp. 1-6, 2005.

WSCG 2011 Communication Papers 162

Visualization and Analysis of Inverse Kinematics
Algorithms Using Performance Metric Maps

Oliver Cardwell, Ramakrishnan Mukundan
Department of Computer Science and Software Engineering

University of Canterbury
Christchurch
New Zealand

orc13@student.canterbury.ac.nz, mukundan@canterbury.ac.nz

ABSTRACT
Iterative inverse kinematics (IK) algorithms are commonly used in graphics animations involving goal-directed
motion of joint chains and articulated character models. A well-known algorithm is the Cyclic Coordinate
Descent. For certain joint chain configurations and target positions, iterative methods can generate undesirable
joint rotations. Similarly, certain target positions may require large number of iterations, or may not even be
reachable. This paper presents a novel concept called performance metric maps as a tool for visualizing and
analysing the performance characteristics of an iterative IK algorithm under parametric variations. The proposed
method is particularly useful in determining how well an algorithm converges within a given region of the
workspace. The paper presents the visualization aspects of the metric maps, and the results of comparative
performance analysis of two IK algorithms.

Keywords
Inverse kinematics algorithms, Cyclic coordinate descent, Goal-directed motion, Articulated character animation,
Performance metric maps

1 INTRODUCTION
Animation of articulated character models and the goal-
directed motion of serial joint chains often require in-
verse kinematics (IK) algorithms that provide a con-
verging solution for both joint angles and the target
position [1],[6]. Cyclic Coordinate Descent (CCD)
is a well-known iterative algorithm used in computer
graphics and animation [3]. Even though the algorithm
is conceptually simple and easy to implement, certain
target positions may require a large number of itera-
tions before an acceptable solution is obtained. Similar
algorithms have been recently proposed either to im-
prove the convergence of the solution, or to eliminate
problems associated with large angle rotations [4],[5].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

The performance analysis of such methods will have to
take into account several factors that affect the param-
eterization of the joint chain in terms of angles, such
as number of joints, link lengths, and joint angle con-
straints.

Several types of metrics can be defined to evaluate the
performance of an iterative IK algorithm. Some of
these are outlined in [4]. However, the pattern of vari-
ation of these metrics changes with the configuration
of the joint chain. Given two target positions in the
work space, it is often difficult to predict the value of
the metric at an intermediate point. Metrics such as
the minimum number of iterations, distance traveled
by the end-effector, etc., do not have a linear relation-
ship to changes in target positions.

This paper proposes a novel method for representing
the values of performance metrics on a discretized pixel
coordinate space that is mapped to the joint chain’s
workspace. The map not only provides an exhaustive
set of values of a performance metric at all reachable
points, but also gives an image-based visualization of
its variation within the two-dimensional workspace. Here
we assume that every joint other than the root has a

WSCG 2011 Communication Papers 163

single degree-of-freedom given by a relative angle of
rotation about a fixed axis. We also assume that motion
to an arbitrary point in three-dimensional space can
be considered as a combination of (i) a rotation of the
chain about the root so that base, end-effector and the
target lie on a plane, followed by (ii) a solution of the
2D IK problem for the chain configuration and target
position on that plane. Thus a two-dimensional perfor-
mance metric map is adequate for the analysis of most
of the iterative IK algorithms used in computer anima-
tion. This paper gives a comparative analysis of iter-
ative IK algorithms using performance metric maps,
and shows the effectiveness of the method in analyz-
ing the workspace characteristics of a given algorithm
in terms of configuration dependent parameters.

The paper is organized as follows. The next section
gives a general overview of IK structures that we will
be dealing with in this paper. Section 3 looks at the
CCD algorithm and also introduces a new IK algo-
rithm that finds a solution where all joints are placed
along a circular arc. Section 4 introduces the con-
cept of performance metric maps. Section 5 gives a
comparative analysis of the CCD and the circular al-
gorithms and presents experimental results. Section 6
concludes the paper and outlines future research direc-
tions.

2 IK STRUCTURES
Common IK structures used in robotics and animation
are articulated bodies. An articulated body is simply a
list of joints linked end to end; forming a joint chain.
Each joint in the chain has a length and an angle offset
from its parent joint. One end of the joint chain is the
base, and is fixed in some frame of reference, and the
other end is the end-effector. In the case of a robotic
arm the end-effector would be the manipulator or hand
(Fig. 1). A joint chain can be described as a list of

L1

base

end-e�ector

θ2

L2

θ1

L3

θ3

target

Figure 1: Joint Chain with length n = 3

lengths l and a corresponding list of angles q such that

l = [L1, L2, . . . , Ln]
q = [θ1, θ2, . . . , θn]

(1)

The state of a joint chain is given by q. To perform
forward kinematics on a joint chain, that is given l,
q and the base coordinates b, find the location of the
end-effector e then it follows that[

ex
ey

]
=

[
bx
by

]
+

n∑
i

[
Licosθi
Lisinθi

]
(2)

However, to perform inverse kinematics on a joint chain,
a function is needed that takes the desired location of
the end-effector e and computes a valid state q. Find-
ing a valid state for a given joint chain configuration
can be a difficult process and there are numerous meth-
ods of computing valid states.

3 ITERATIVE IK ALGORITHMS
There are a number of common parameters that are
given to an inverse IK algorithm. These parameters
are

n The number of joints in the chain

i The maximum number of iterations

ε The threshold distance to which the end-effector can
be considered at the target location

Therefore, a typical parameter iterative IK algorithm
will be passed values for n, i and ε along with the joint
chain.

Cyclic Coordinate Descent
The CCD algorithm uses a heuristic approach to find a
solution by iteratively rotating the links so that the end-
effector moves closer to the target. Each iteration per-
forms a sequence of rotations of links i, starting from
the end-effector towards the root, trying to minimize
the angle θi between the vector from the link joint to-
wards the end-effector and the vector towards the tar-
get [2] (Fig. 2).

Δθ2

target

end-e�ector

L2

Figure 2: Joint angle rotations in a CCD algorithm

Joint angle rotations for a CCD algorithm can be eas-
ily computed and implemented in graphics applica-
tions. However, the method suffers from primarily

WSCG 2011 Communication Papers 164

three types of problems: (i) certain target positions
within the workspace require a large number of itera-
tions, (ii) a solution may involve large angle rotations,
and (iii) target positions near the base of the chain may
result in self-intersecting configurations. Examples of
these cases are shown in Fig. 3.

(i) (ii) (iii)

Figure 3: Limitations of the CCD algorithm

Because the CCD algorithm must visit each joint in the
chain for each iteration it can be shown that the CCD
algorithm has a computational complexity of O(n) for
each iteration.

Circular Alignment Algorithm
A few methods have been recently proposed ([4],[5])
to circumvent the limitations of the CCD algorithm.
In this section, we propose a new algorithm that can
be considered as a further improvement of the method
proposed in [5].

If d denotes the distance of the target t from the base
of a joint chain, then there exists a unique circumscrib-
ing circle with radius r along which all nodes can be
positioned (Fig. 4).

d d

a

θ

θ ar r

Figure 4: Circular alignment of joints

In the following, we make the assumption that all joints
have the same length. If there are n joints in the chain
then the chain contains n+1 nodes. If θ is the segment
angle of a joint of length a in the circumscribing circle
with radius r then it follows that

a = 2rsin

(
θ

2

)
(3)

And therefore we can define the relationship between
lengths a and d as

sin
(
θ
2

)
sin
(
nθ
2

) =
a

d
(4)

We seek the solution of the above equation for θ, by
defining the function

f(θ) = dsin

(
θ

2

)
− asin

(
nθ

2

)
(5)

with the derivative

f ′(θ) =
d

2
cos

(
θ

2

)
− na

2
cos

(
nθ

2

)
(6)

The solution for θ is obtained using Newton-Raphson
iteration

θi+1 = θi −
f(θi)

f ′(θi)
(7)

with initial condition

θ0 =
2π

n
(8)

This givens the initial configuration that the joint chain
is curled around so the end-effector is at the base, such
that the length d = 0. As the angle θ approaches 0 the
chain opens up until d is within the threshold distance
ε of the target t.

When the joints are aligned along a circular path, the
joint angles will automatically assume values in an ac-
ceptable range, and there is no possibility of the chain
intersecting itself. The Newton-Raphson method yields
fast convergence for the parameter θ, from which the
joint angles that are all equal, can be computed.

Because the Circular Alignment Algorithm (CAA) method
does not need to visit each joint during an iteration it
can be shown that the CAA method has a computa-
tional complexity of O(1) for each iteration.

4 PERFORMANCE METRIC MAPS
Metric maps allow easy visualization and analysis of
otherwise complex or dense data. A common example
of metric maps are terrain or elevation maps. In these
metric maps the terrain height at any point on the map
is represented as a color shade. They also often include
contour lines at designated elevation intervals to help
us visualize the layout of the terrain represented by the
map.

This basic principal can be generalized to display many
other types of data. We will show how using metric
maps can greatly simplify the visualization and anal-
ysis of the behavior of various iterative inverse kine-
matic algorithms.

WSCG 2011 Communication Papers 165

In order to generate a performance metric map of the
workspace of a given joint chain we need to encap-
sulate the whole workspace in an image. Because the
workspace is a circle we need a square image and if we
set the base of the chain to be the center of the image
then the length of the joint chain becomes the radius.
An example of this can be seen in Fig. 5.

workspace

initial con�guration

image

Figure 5: Joint Chain Workspace

From this initial configuration we can now iterate over
each pixel in the image using the pixel’s coordinates
relative to the image center as the target point for the
joint chain. For each of these targets we simply run
an iterative inverse kinematic algorithm over the joint
chain and record the desired metric, for example, the
number of iterations taken to move the end-effector to
within ε of each pixel can be seen in Fig. 6. Where
black indicates that the algorithm failed to reach that
pixel, red indicates that algorithm successfully reached
the pixel on the last attempt and in hue scale down to
blue which indicates that the pixel was reached in a
single iteration.

It is interesting to note in Fig. 6 the dark blue (single
iteration) region separates the remaining iso-surfaces
into two disjoint regions. These properties and pat-
terns cannot be analytically derived but by using met-
ric maps these properties can be observed.

Other metrics can also be measured using the same
method. An example of plotting the distance traveled
by the end-effector can be seen in Fig. 7.

5 COMPARATIVE ANALYSIS
Using metric maps to help visualize the behavior of a
iterative IK algorithm on a joint chain gives a much
clearer picture of problem areas. In Fig. 6 it can been
seen that the CCD method fails to place the end-effector
at target locations in and around the initial end-effector
location. The existence of this large void is somewhat
unintuitive but can be clearly seen using a metric map.
It is also can been seen that CCD algorithm in general
requires more iterations to reach targets further from

9 08 7 6 5 4 3 2 110

Figure 6: Metric Map of Iterations (n = 2, i = 10, ε =
0.01)

the base of the chain but covers most of the possible
workspace.

However, as we increase the number of joints in the
chain and plot their corresponding metric maps a num-
ber of interesting properties can be observed (Fig. 8).
The observed structure of the metric map becomes more
complex and the inclusion of more voids is evident.
A interesting observation that can be made using met-
ric maps is that the workspace coverage of the joint
chain diminishes as the number of joints increases. In-
tuitively it could be thought that increasing the num-
ber of joints in the chain would allow the chain more
freedom to move the end-effector to the target location
and thus increase the workspace coverage. However it
appears that adding more than three joints to a chain
decreases the chain’s coverage. This can been seen in
Fig. 9.

An interesting optimization can be done to the workspace
coverage by altering the lengths of the joints in the
chain. If the lengths of the joints are set so that, start-
ing from the end-effector, each joint is the equal to the
sum of lengths before it, then the coverage is largely
unaffected by the increase in the number of joints (Fig.
10). For example, if we have a joint chain where n = 6
then the the length ratios are l = [16, 8, 4, 2, 1, 1].

Using metric maps we can compare the two algorithms,
CCD and CAA for iterations and workspace coverage
(Fig. 12).

We can clearly see through the use of metric maps the

WSCG 2011 Communication Papers 166

2.0 0.0

Figure 7: Metric Map of Distance Traveled (n =
5, i = 10, ε = 0.01)

differences in behavior between the two algorithms.
In this example the CCD method has 67% workspace
coverage and clearly uses up to the maximum number
of iterations, colored red, to reach various target posi-
tions.

However, with exactly the same configuration we can
see that the CAA method has 100% coverage and at no
position needs to use up to the maximum number of
iterations. In fact, the CAA method only uses a max-
imum of 5 iterations to reach every target point in the
workspace. On closer evaluation of the CAA method
we can see that the number of iterations required to
completely cover the workspace is solely dependent on
the size of the threshold ε. A comparison of the com-
putational efficiency also shows that the CCD has an
O(n) computational complexity while the CAA oper-
ates in O(1). An example of this can be seen in Figure
11.

6 CONCLUSION AND FUTURE
WORK

We have shown how the use of metric maps can aid
greatly in visualizing and analyzing the behavior of in-
verse kinematic problems. By generating metric maps
for a popular iterative IK method, CCD, we were able
to easily discover and identify the algorithm’s vari-
ous properties, including helping to formulate a new
method, CAA, to address some of the negative perfor-
mance aspects of the CCD method.

Although generating these metric maps can be some-

Figure 8: Clockwise from top left, n = 3, n = 4, n =
5 and n = 6

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Co
ve

ra
ge

 (%
)

Number of links (n)

i = 10
i = 5
i = 3
i = 2

Figure 9: CCD coverage with joints of equal length
(ε = 0.01)

what computationally expensive, as essentially they are
an exhaustive search of workspace, the generation lends
itself well to parallel computational techniques. Even
without parallel techniques our implementation gener-
ated 300 by 300 sample images in only a couple of
seconds (see figure 11).

The CCA method shows promise as a high performance
iterative but relies on some important assumptions that
may not be practical in some situations. We would like
to expand the CAA method to be able to incorporate
chains with joints of different lengths.

WSCG 2011 Communication Papers 167

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Co
ve

ra
ge

 (%
)

Number of links (n)

scaled
even

Figure 10: CCD coverage (i = 5, ε = 0.01)

0

2

4

6

8

2 10 18 26 34 42 50

Se
co

nd
s

Number of Links (n)

CCD CAA

Figure 11: Performance (4x Multi-threaded) for a
300x300 metric map (i = 20, ε = 0.01)

References
[1] M. Engell-Nørregard. Inverse Kinematics The

state of the art. 2007.

[2] G.Z. Grudic and P.D. Lawrence. Iterative inverse
kinematics with manipulator configuration con-
trol. IEEE Transactions on Robotics and Automa-
tion, 9(4):476–483, 1993.

[3] J. Lander. Making kine more flexible. Game De-
veloper Magazine, 11:15–22, 1998.

[4] R. Mukundan. A robust inverse kinematics algo-
rithm for animating a joint chain. International
Journal of Computer Applications in Technology,
34(4):303–308, 2009.

[5] R. Muller-Cajar and R. Mukundan.
Triangualation-A New Algorithm for Inverse
Kinematics. 2007.

[6] C. Welinan. Inverse kinematics and geometric
constraints for articulated figure manipulation.
PhD thesis, Simon Fraser University, 1993.

Figure 12: Comparison of CCD (left) and CAA (right)
with n = 5, i = 10, ε = 0.01

WSCG 2011 Communication Papers 168

Detecting unstructured elements in 3D scanned scenes

M.J. González, M. Lucena, J.M. Fuertes, R. Segura, A.J. Rueda
Departamento de Informática

University of Jaén
Campus Las Lagunillas Edif. A3

23071 - Jaén, Spain

{mgmunoz, mlucena, jmf, rsegura, ajrueda}@ujaen.es

Abstract

This paper presents a technique for detecting unstructured areas in scanned 3D data. For many applications, outdoor 3D
scanned data has to be filtered in order to eliminate undesirable artefacts, such as wires, vegetation, small objects, etc. Usually,
this task is done manually, but it would be desirable to provide an automatic tool to reduce the preprocessing cost. The proposed
technique, which consists in two stages, based on anisotropic diffusion and plane regression respectively, allows us to select
most of the uninteresting data. It also has been shown good results with real data.

Keywords: Data filtering, 3D scanner, anisotropic diffusion.

1 INTRODUCTION

3D data acquisition has been turn very popular in re-
cent times, because of the availability of affordable
and very accurate scanners. A lot of 3D data is being
collected from a variety of sources, outdoor and in-
door, for very different purposes, ranging from recon-
struction to analysis and measurement. For this rea-
son, 3D data filtering techniques have become a very
active research topic, with a variety of applications that
include among others robotic vision, civil engineering,
archaeology, medicine, etc.

Typical available 3D laser scanner software includes
tools for processing the 3D points scanned, which con-
stitute complex sets of data. It is often necessary
to remove unwanted objects from the data (workers,
equipment, temporary support structures, etc.), so a
basic segmentation process is necessary. Without a
priori knowledge, automated unsupervised segmenta-
tion provides unsatisfactory results [3, 1, 4]. For this
reason, current 3D point-cloud management software
requires manual or semi-automatic data segmentation.
This can be an extremely slow and tedious operation
when dealing with large complex models.

Most of the unwanted objects present in a 3D out-
doors scene share common geometrical properties. In
general, they do not present surface-like structures lo-
cally. We will call such objects as unstructured. Typi-
cal unstructured objects give rise to point aggregations

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Republic

that are: longitudinal (wires), noisy (bushes or trees
branches), and very small and isolated point clusters
(small objects).

In our case, we want to detect unstructured elements
present in a given scene, using geometric information
exclusively. Starting from a point cloud dataset, ob-
tained from a 3D scanner, our technique allows us to
detect such type of elements. By eliminating the se-
lected points we can extract relevant structures from
the scene, in order to create suitable polygonal meshes
for civil engineering applications. It must be empha-
sized that we do not want to reduce or remove the noise
present in the cloud of points, but to detect unstruc-
tured objects present into the scene.

In this paper, we propose a two-stage process for
detecting such type of structures, based on anisotropic
diffusion and plane regression, where 3D data are ar-
ranged as a two-dimensional matrix representing the
polar coordinates of every point relative to the scan-
ner.

This paper is organized as follows. Section 2 in-
troduces the proposed method. Experimental results,
using both synthetic and real data are shown in Sec-
tion 3. Finally, Section 4 presents our conclusions and
further work.

2 PROPOSED METHOD
We start by obtaining the projections of the scanned
points over a range matrix I, where the column and
row for a given point are determined by his horizon-
tal and vertical angle relative to the scanner position.
Each element of the matrix can be a real number, rep-
resenting the distance of the corresponding point to the
scanner, or be undefined if the scanner did not detect
anything.

Our technique consist of two phases. The first one
applies an anisotropic diffusion process to the range

WSCG 2011 Communication Papers 169

matrix. This process displaces each point along the
straight line that connects it with the scanner. Sub-
tracting the resulting matrix and the original one, we
can extract the high frequency component of the range
matrix. One can expect that unstructured objects give
rise to bigger variations in the values of the resulting
matrix.

If we generate a matrix with the differences between
the original range matrix and the smoothed one, we
can see that not only appears big values in nonstruc-
tured zones. It also appear significant values inside
the regions where the distance to the scanner changes
gradually (like the ground, or a inclined wall). This
is due to the anisotropic diffusion process modify the
values of these regions to reach a central value. The
second phase detects such variations in the subtracted
matrix, measuring the difference between every ac-
tual point and a regression plane, calculated from his
neighbours.

2.1 Anisotropic diffusion
Perona and Malik [7] introduced an iterative, non-
linear regularisation technique known as anisotropic
diffusion which regularises grey-valued images while
preserving important discontinuities that often contain
edge information. This process can be generalised to
be applied to colour [5] and disparity (range) images
[6]. Our approach is based in the latter case. Being I
our range matrix, we will apply this technique in or-
der to remove the high frequencies from it, effectively
displacing the points.

Anisotropic diffusion modifies the value on a point
as a function of the difference with its neighbours.
This difference is weighted by a conduction coefficient
c. For the discrete approach of the anisotropic dif-
fusion a four nearest neighbours discretization of the
Laplacian operator can be used to update matrix val-
ues in each iteration:

It+1 = It +λ [cN ·∇N(I)+ cS ·∇S(I)+

+cE ·∇E(I)+ cW ·∇W (I)] (1)

where ∇ represents the gradient operator, λ ∈ [0,1/4],
and the sub-indices N, S, E and W represent the North,
South, East and West neighbours.

Anisotropic diffusion uses a conduction coefficient
c that is 1 inside each region and 0 at the boundaries.
We have used the following expression for c [7]:

g(x) =
1

1+(x/K)2 (2)

Where x is an estimate of the range matrix gradient
magnitude for the corresponding point, and K is just a
threshold according to which the boundaries with con-
trast bigger than K will remain and the rest will tend

Figure 1: Unstructured point detection. a) Structured
set of points, the distance between the point (red) and
the ones used to estimate the regression plane (black),
is small. b) Unstructured set of points: the distance
between the red point and the plane is bigger.

to disappear. This value can be fixed manually or be
the noise estimator described by Canny [2]: the accu-
mulated histogram of the absolute values of the image
gradient can be determined and the value of K is cho-
sen that leaves 90% of the histogram values below.

The number of iterations can be established man-
ually. When the process finishes, we obtain the
smoothed image I′. If we compare the smoothed
image I′ with the original I we can see important
differences in noisy zones. We will then calculate a
new matrix M = I− I′.

2.2 Plane regression
Regions belonging to structured objects present one
characteristic in M: their values can be locally adjusted
to a plane with small error. We use this in a similar
manner to [8], to discriminate between unstructured
and structured regions. To find the best plane that ad-
justs the points we consider the row and column in-
dices of the matrix as the X and Y coordinates and the
values themselves as the Z coordinate. For each value
inside the matrix, we can use its neighbour values to
fit a plane and measure the distance between the plane
and the value itself. If the value corresponds to a struc-
tured region, the distance with the plane will be very
small (See Figure 1). This way we generate a new dif-
ference matrix, M′, filled with the distances between
every value to its corresponding regression plane, al-
lowing us to characterize the unstructured regions.

The final selection stage will be performed by
thresholding the difference matrix M′ estimated in the
regression phase. We use as a threshold the inflection
point calculated over the histogram of M′. Isolated
points are directly marked as unstructured.

3 EXPERIMENTAL RESULTS
3.1 Experimental setup
We have tested our technique on several synthetic and
real world scenes. Synthetic scenes have been ob-
tained by simulation, from a simple world composed
by several simple structured objects (ground and build-
ings), and unstructured ones (trees, bushes and electric
wires), giving us a cloud of approximately 530.000

WSCG 2011 Communication Papers 170

Figure 2: Synthetic scene used in experiments.

Figure 3: Synthetic cloud of points used in the exper-
iments, generated from the scene in figure 2. showing
a building, a street light, and some vegetation.

points (See Figures 2 and 3). Vegetation leaves have
been simulated using randomly placed points inside a
sphere.

The real world scene (Figure 4) has been obtained
outdoors using a mid range laser scanner (Callidus CP
3200), showing an ancient stone bridge, surrounded by
vegetation, with approximately 400.000 points. The
point cloud also contains some wires, belonging to the
scanning station.

We have the ground truth only for the synthetic
scene, so we will show numerical results for that im-
age only.

For the diffusion process, the following parameters
have been used for all the experiments: 100 iterations,
λ = 0.25, and K such that leaves an 80% of the accu-
mulated histogram.

3.2 Results obtained
Figures 5 and 6 show the clouds of points projected
over the range matrices. As we can see, there are large
areas of undefined points, corresponding mainly to the
sky, where the laser beam did not return to the scan-
ning station. These points will be simply ignored in
the processing stages.

Figure 4: Cloud of points obtained outdoors by a mid
range scanner.

Figure 5: Projected points corresponding to the syn-
thetic scene, using the real colours of the scene. Un-
defined points are shown in grey.

Figure 6: Projected points corresponding to the real
scene, using the real colours of the scene. Undefined
points are shown in white.

Figure 7 shows the results obtained from the syn-
thetic cloud of points, using regression planes com-
puted over a neighbourhood defined by a centred win-
dow size of 3. It can be seen that most of the un-
structured points are correctly marked, and some of the
structured points, specially those placed in high curva-
ture areas, are marked also as unstructured. Particu-
larly interesting is the case of the street lights, whose
poles are labeled as unstructured. In fact, these objects
are only slightly thicker than the electric wires.

Some numerical results are shown in Table 1. The
best results have been obtained with smaller window
sizes. This is due to the better tolerance to curvature
in the arrangement of the points in the neighbourhoods
of the structured points.

Figure 8 shows the results obtained for the real
scene. It can be seen that most of the bushes are se-

WSCG 2011 Communication Papers 171

Figure 7: Results for the synthetic cloud in fake col-
ors (blue: correct match for structured regions; green:
correct match for unstructured regions; red: incorrect
match). Neighbourhood window size: 3.

Window Size Unstructured Structured
3 92.34% 97.18%
5 92.00% 96.77%
7 89.23% 97.28%
9 89.98% 96.53%

Table 1: Accuracy levels achieved for the synthetic
scene, varying the neighbourhood window size.

Figure 8: Results for the real scene. Points detected as
unstructured are marked in red. Neighbourhood win-
dow size: 9.

lected correctly. The upper border of the bridge is
marked also as unstructured. This is due to the pres-
ence of small bushes in this part of the bridge. We can
also see that the vegetation of the ground has been not
marked, because of his small height.

4 CONCLUSIONS AND FUTURE
WORK

Our method can detect and mark most of the unstruc-
tured elements in outdoors 3D scenes. These unstruc-
tured elements correspond in most of the cases with
undesirable objects in the scanned scene (wires, vege-
tation, etc.).

The first stage, composed by an anisotropic diffu-
sion process followed by a subtraction, eliminates the
low frequency components of the cloud of points, and
the plane regression stage detects locally the lacking
of structure. As a result, we obtain a labelling for each
point, indicating the presence (absence) of local struc-
ture.

Numerical results show that the proposed method
is accurate enough to give an initial estimation of the
structures of interest in a cloud of points.

It is worth to mention that our method is currently
used in a 3D data manipulation software, as part of
a supervised point selection tool for civil engineering
applications, with good results.

As a future work, we plan to test our method with
other kinds of scenes, containing objects of different
scales. We want also to take into account the colour in-
formation in the selection process. Finally, our method
can be combined with object detection techniques to
select mixed compound objects, such as trees, which
have unstructured parts (leaves) and structured ones
(trunk).

5 ACKNOWLEDGMENTS
This work has been partially granted by Sacyr, Junta
de Andalucia, the Spanish Ministry of Education and
Science, and the European Union ERDF funds un-
der research projects 970/2007, P06-TIC-01403, P07-
TIC-02773, TIN2007-67474-C03-03.

REFERENCES
[1] B. Akinci, F. Boukampa, C. Gordona, D. Huberb, C. Lyonsb,

and K. Parkc. A formalism for utilization of sensor systems and
integrated project models for active construction quality con-
trol. Automation in Construction, 15(2):124–138, 2006.

[2] J. Canny. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
8(6):679–698, 1986.

[3] A.E. Johnson and M. Hebert. Using spin images for efficient
object recognition in cluttered 3d scenes. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 21(5):433–449,
may. 1999.

[4] S.W. Kwon, C.T. Haas, K.A. Liapi, S.V. Sreenivasan, and
J. McLaughlin. Human-assisted object fitting to sparse cloud
points for rapid workspace modeling in construction automa-
tion. In Proceedings of the 19th International Symposium
for Automation and Robotics in Construction, pages 357–362,
2002.

[5] M. Lucena, J.M. Fuertes, N. Pérez de la Blanca, and N. Ruiz.
Anisotropic diffusion in colour images. In M.I. Torres and
A. Sanfeliu, editors, Pattern Recognition and Applications,
pages 81–88. IOS Press, 2000.

[6] M. Mabaar and J.P. Siebert. Smoothing disparity maps using
intensity-edge guided anisotropic diffusion. In Medical Image
Understanding and Analysis 2008, 2nd-3rd July 2008, Univer-
sity of Dundee, Dundee, Scotland., 2008.

[7] P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(7):629–639, 1990.

[8] T. Weyrich, M. Pauly, S. Heinzle, S. Scandella, and M. Gross.
Post-processing of scanned 3d surface data. In Symposium On
Point-Based Graphics, pages 85–94, 2004.

WSCG 2011 Communication Papers 172

Rain Removal from Videos using the Temporal-
Spatial Statistical Properties

Robin Kalia

Electronics and Telecommunications Research
Institute (ETRI),

138 Gajeongdong, Yuseong-gu
305 700, Daejeon, South Korea

robinkalia@etri.re.kr

Amol Jaikar

Electronics and Telecommunications Research
Institute (ETRI),

138 Gajeongdong, Yuseong-gu
305 700, Daejeon, South Korea

amol@etri.re.kr

ABSTRACT
Detection and removal of rain streaks from videos has recently become a great and challenging topic of research.
This paper discusses a new technique for the removal of rain from videos using the temporal-spatial statistical
properties. For this the temporal statistical properties of the pixels affected by rain are made use of, and then an
efficient and easy algorithm is implemented which takes care of the effective removal of rain from videos. This
technique works very well for videos with still and moving backgrounds involving moving objects with a fixed
camera position. For the videos which involve the motion of the camera, the technique works well for a small rate
of change of background in the camera frames. Our algorithm does not use variable and conditional parameters
like the shape, size, velocity, and spatio-temporal physical model of raindrops, and camera’s parameters like the
aperture, focal length, and exposure time. The test results quantitatively and qualitatively illustrate that the
performance of our algorithm is quite efficient in comparison to the previously existing algorithms which are
state of the art techniques used for the purpose of removing rain from videos.

Keywords
Rain Detection, Rain Removal, Image Restoration, Temporal Properties, Pixel Occlusion, Spatial Filtering,
Outdoor Vision and Weather.

1. INTRODUCTION
In the present day scenarios, we need to perform real
time image processing and computer vision
operations on real world objects. However, we have
to deal with a large amount of interference and noise
effects in the images of real world objects. The most
important and prominent effect is that of the weather.
The weather effects cause a lot of irritation to human
viewers, and also affect the performance of vision
algorithms for carrying out tasks like object
detection, object recognition, tracking and image
segmentation. Our project is based on Content Based
Image Retrieval for Photo Automatic Sorting System.
We have to carry out tasks like face detection, face
recognition, image registration, general object
detection and recognition, and key frames extraction
in the images and videos of real world objects, which
could vary from people to landscapes and
architecture. In this case we use small features which
operate on the images.

There are two kinds of outdoor weather conditions
that we have to deal with: static weather conditions
(fog, haze) and dynamic weather conditions (rain and
snowfall). The dynamic effects of weather conditions,

like the blurring and intensity altering effects of rain
streaks on large portion of the images, affect the
efficiency of these algorithms. Any vision algorithm
which uses small features will be seriously affected
by the disruptive effects of the weather conditions.
Hence, we aim to reduce these disruptive effects of
weather like motion blurring, and restore the image to
its original form, to carry out our task of Content
Based Image Retrieval with a good performance. In
this paper we deal specifically with the dynamic
weather conditions involving the removal of rain
streaks from videos.

1.1 Related Work
Starik and Werman approached this problem by
trying out temporal median filtering on pixels
[Starik03a]. The problem with their developed
method is that it works in the case of moderate rain
conditions on clear day scenes. However, in the case
of heavy rain and poor contrast scenarios, their
method causes unnecessary blurring of other details
in the images while retaining the blurring effects of
rain considerably. Figure 1(a) shows the effect of
using this approach on a scene with appropriate
contrast and heavy rain conditions, and Figure 1(b)
illustrates the effect of using this method on a scene
with poor contrast and heavy rain conditions. It can

WSCG 2011 Communication Papers 173

be seen that the image becomes a little blurred at the
edges, and the rain streaks are still quite clearly
evident after the temporal median filtering. Garg and
Nayar have tried to remove rain using the spatial and
photometric properties [Garg04a]. Their method does
not work very well in the case of videos involving
heavy rain. They also removed rain from videos for
certain conditions by adjusting the camcorder’s
parameters like the exposure time and aperture
[Garg05a]. However, this case does not apply very
well in the case of heavy rain conditions. Zhang
utilized the temporal and chromatic properties to
remove rain [Zhang06a]. This method does not
perform real time processing, and the chromatic
property they use depends on the experimental
frames. Barnum et al use blurred Gaussian to
approximate a rain streak for the blurring that it
causes [Barnum07a]. This can work for clear rain
scenes but in the heavy rain case, a blurred Gaussian
is not effectively appropriate to segment rain streaks.

Zhao and Liu implemented the histogram model to
detect rain in videos [Zhao08a]. Their method uses
K-means clustering, and its effectiveness is
appropriate only for videos of stationary scenes taken
with a fixed camera position. Park and Lee have used
the Kalman filtering method to estimate the intensity
of the rain affected pixels [Park08a]. This method
performs real time processing of videos but it works
only for a fixed camera position and still background
which is not practical in real applications. Brewer and
Liu model rain streaks based on the shape, velocity,
and aspect ratio of rain drops [Brewer08a]. However,
the aspect ratio depends heavily upon the camera’s
exposure time, and for a video with unknown
exposure time and heavy rain, the segmentation of
rain and non-rain regions is not much effective, and
their algorithm does not work very well for heavy
rain conditions in a video. Liu and Xu detect rain
using the chromatic property, and they develop a
discriminant function to eliminate false detections
[Liu08a]. Their algorithm considers only videos with
stationary background taken by a stationary camera,
and it uses the threshold values which have to be
estimated depending upon the video in consideration.
They improve their method in [Liu09a] by effectively
segmenting the rain and moving object pixels to work
for any video with better and effective results.

1.2 Our Work
In this paper we discuss the removal of rain using the
temporal-spatial statistical properties. The intensities
of each pixel are analyzed for the first 15 frames.
Using the statistical properties of the pixels, an
algorithm is empirically developed to distinguish the
rain affected pixels from the other unaffected pixels.
This algorithm works for the videos of the static

scenes taken by a stationary camera. To distinguish
rain affected pixels in the videos with changing
background taken by both stationary and moving
cameras, further processing of the rain affected pixels
is carried out. An empirical distinguishable property
of the rain affected pixels is used. This property states
that the difference in the intensities of the rain
affected pixels in consecutive frames is
comparatively lower than the difference in the
intensities of the pixels affected by the motion of the
object.

Section 2 deals with the detection and the removal of
rain. Section 3 deals with the experimental results and
the comparison of our algorithm with some of the
previously existing algorithms. Section 4 leads to the
conclusion where we discuss the benefits and the
drawbacks of the proposed method. Section 5 lists the
references that we have used for our study.

(a)

(b)

Figure 1: Illustrations of the result of using
temporal median based filtering (a) A scene from
a video with heavy rain (b) A scene from a video
with heavy rain and poor contrast

2. DETECTION AND REMOVAL OF
RAIN
2.1 Rain Detection
The temporal statistical properties are used for the
detection of rain. We deal with the case of a
stationary camera and stationary background, which
may or may not contain moving objects. Then we will
deal with a more general case involving the motion of
camera with a changing background.

We consider the intensities of each pixel for the first
15 frames. We take the average of the intensities for
each pixel over the sequential 15 frames. We have

WSCG 2011 Communication Papers 174

considered a few observations reported by Garg and
Nayar [Garg04a] as our initial assumptions. These
observations are mentioned below.

 The intensity of a pixel shoots to a very high
value as compared to its background when it
is occluded by a rain drop.

 A pixel is not always covered by rain
throughout the video.

 Also a pixel is almost negligibly covered by
rain in more than 2 frames consecutively.
The case where the pixel is covered by rain
drops in more than two frames consecutively
has also been accounted for by our rain
removal algorithm.

So we take the average intensity of each pixel over
the 15 frames. Let us say that for a particular pixel i

in frame n, this specific value is 1
,i nt . The intensity

values higher than this average value 1
,i nt , are

considered and stored separately. Then we take the

average of these higher intensities, 2
,i nt and take the

mid value between this average and the average 1
,i nt

calculated for all the frames earlier, as the threshold.

Let us say that this threshold value is 3
,i nt whose value

is obtained from equation 2.1a.

1 2
, ,3

, 2
i n i n

i n

t t
t

 (2.1a)

The intensity values greater than 3
,i nt are empirically

found out to be affected by rain, and the rest are not
generally affected by rain.

We carry out this processing for all the pixels in the
next 15 frames and hence forth, till the end of the
video. This method will detect the rain in the case
where the camera’s position is fixed and the
background is stationary, without involving the
motion of any random object. Next we consider the
case involving the motion of a random object in the
video with the fixed position of the camera. This
algorithm will detect the motion of a random object
as false positives. In that case we can use another
property of rain affected pixels which is described
ahead, to distinguish them from the motion of some
random object. So, we refine this algorithm further to
remove the false positives.

We have observed experimentally that for a specific
frame n, and for a particular pixel i affected by rain,

the difference , ,i n rI between the intensities for the

frame n and the frame n-1, is lower than the

difference , ,i n oI between the intensities of the

pixels affected by the motion of the random object
for the frame n and frame n-1. This can be expressed
mathematically with the equations.

, , , , , 1,i n r i n r i n rI I I (2.1b)

, , , , , 1,i n o i n o i n oI I I (2.1c)

, , , ,i n r i n oI I (2.1d)

Here r refers to rain affected pixels and o refers to the
pixels affected by the motion of the object. We have
a general observation for these differences in
intensity values.

2 1
, , , ,()i n r i n i nI t t (2.1e)

2 1
, , , ,()i n o i n i nI t t (2.1f)

It is observed that the value of lies in the range

[0.2 – 0.5] and the value of is generally greater

than 0.6. This summarizes the range for and
that we get from the videos which we used for our
observation. The more precise narrow range for

and will depend on the experimental video more

accurately. Using this property of the rain affected
pixels we can reduce the false positives further. This
method can effectively eliminate the edges detected
by the motion of the object in sequential frames,
which are wrongly detected as candidate rain pixels.

Finally in the case involving the motion of the
camera, we consider the videos where the
background changes at very slow rate so that intensity
of the pixels can be considered for the desired
number of frames by their proper alignment. The
limit for the frame rate of the videos, for which our
algorithm seems to produce good results, lies
between 10-15 frames per minute. The next section
involves the removal of rain from the rain affected
candidate pixels.

2.2 Removal of Rain

Here we consider the cases where a candidate pixel is
affected once or more in three consecutive frames. In
the case where a particular pixel i is affected once by

rain in frame n, the intensity ,
first

i nI is calculated as an

average of the intensity of the pixel in the previous

frame , 1i nI and the next frame , 1i nI , where the

pixel is not affected by rain. This concept is taken
from Garg and Nayar [Garg04a].

WSCG 2011 Communication Papers 175

, 1 , 1
, 2

i n i nfirst
i n

I I
I

 (2.2a)

If the pixel is affected by rain more than once in
consecutive frames, we consider two cases. In one
case the pixel is affected twice in three consecutive
frames, and in the other one which is very rare in
practical situations, a particular pixel is affected in all
the three consecutive frames. For the former case, if a
pixel i is affected in frame n and frame n-1, the pixel
in frame n-1 is convolved with the spatial 3×3 mask
which is illustrated in Figure 2. The justification
behind using this spatial filter is based upon an
empirical observation which is, it is very improbable
for all the pixels in the 3×3 neighborhood of the
affected pixel to be covered by rain drops and
especially in a streak. Also, the close neighborhood
of a pixel generally has an identical intensity
background pattern.

The net intensity of the pixel i, sec
,

ond
i nI is then

computed as the average of the intensity , 1i nI in the

n+1 frame and the intensity after spatial filtering
. .

, 1
spat filt
i nI in the n-1 frame.

. .
, 1 , 1sec

, 2

spat filt
i n i nond

i n

I I
I

 (2.2b)

We will get a similar result if the pixel in the n+1
frame has been affected instead of the n-1 frame.

. .
, 1 , 1sec

, 2

spat filt
i n i nond

i n

I I
I

 (2.2c)

Next we consider the final case, which is very rare in
practical situations, where a particular pixel is
affected consecutively in three frames. This is the
case when the rain is very heavy as in the case of a

hurricane or storm. The intensity ,
third
i nI of the pixel i

in frame n is then calculated as the average of the

intensities . .
, 1
spat filt
i nI and . .

, 1
spat filt
i nI of the pixel in the

frames n-1 and n+1, respectively, after it has been
spatially filtered using the same 3×3 mask as shown
in Figure 2.

. . . .
, 1 , 1

, 2

spat filt spat filt
i n i nthird

i n

I I
I

 (2.2d)

Figure 2: Spatial 3 3 mask

3. EXPERIMENTAL RESULTS

We applied this algorithm on different videos
involving heavy rain, changing background, static
and dynamically changing positions of camera. We
consider these cases one by one to show the
effectiveness of our algorithm in different practical
scenarios. The results here are shown for the
implementation of this technique on the standard
videos used by Garg and Nayar [Garg04a], Zhang
[Zhang06a], and Park and Lee [Park08a] to facilitate
comparison with their methods. We compare our
work with their methods since they performed
completely independent, unrelated, and pioneering
work in this area. The rest of the work done by other
people involves the usage of some part of their
algorithms to develop and modify their own
technique for rain detection and its removal from
videos.

These videos were taken from the work done by Garg
and Nayar, and Zhang [Garg04a, Garg05a, Garg06a,
Zhang06a]. We consider a simple case of a video in
which rain is falling heavily in front of a brick wall
causing ripples on the ground. Here the background
is not changing and the position of the camera is
fixed. Figure 3(a) shows the original image frame,
and Figure 3(b) shows the same image frame after the
application of our algorithm. It is quite clear that the
rain streaks have been removed very well. Next we
consider the similar case of a scene of a wall with
dense rain streaks. Figure 4(a) shows an image frame
from the video, and Figure 4(b) shows the same clear
image frame obtained after the removal of the rain
streaks. The quality of the picture obtained after the
application of our algorithm is very good.

 (a)

WSCG 2011 Communication Papers 176

(b)

Figure 3: Video with still background and
stationary camera position (a) Original image
frame with clearly visible rain streaks (b) The
same image frame obtained after the application
of our algorithm on the video

Next we consider a more general case where the
camera’s position is fixed and the object is moving.
Here we consider the case where there are candidate
rain pixels in the foreground and the background.
Figure 5(a) shows an image frame taken from a video
in which a man is moving and the background as well
as the camera is fixed in position. Here the rain
streaks are very clear. Figure 5(b) shows the same
frame after the removal of the rain streaks from the
background as well as the foreground containing the
moving object. The developed algorithm proves to be
really effective in this case.

(a)

(b)

Figure 4: Video with still background and
stationary camera position (a) Original image
frame with heavy rain streaks (b) Image frame
obtained after the application of our algorithm on
the video containing the frame shown in figure
3(a)

(a)

 (b)
Figure 5: Video with still background and moving

WSCG 2011 Communication Papers 177

object with stationary camera position (a) The
frame shows the image of a moving object with
fixed background and stationary camera position
containing rain streaks (b) This image shows the
same frame after removal of heavy rain streaks
using our algorithm

We have done qualitative comparison of our
algorithm with the previously existing algorithms
developed by Garg and Nayar [Garg04s], Zhang
[Zhang06a], and Park and Lee [Park08a]. For this we
considered a challenging case where the contrast is
dark, the background is changing at a slow rate with
heavy rain and the position of the camera is changing.
A particular image frame is considered in Figure 6(a).
Figure 6(b) shows the same frame with the rain
streaks almost completely removed after the
application of our algorithm. Figure 6(c) shows the
frame after the application of Garg and Nayar’s
method. It can be seen that their method is not very
effective in removing the rain streaks completely in
this case. Figure 6(d) shows the image frame after
the application of Zhang’s method. Here the rain
streaks have been removed in a better way as
compared to Garg and Nayar’s method. However,
some rain streaks can still be perceived. Finally,
Figure 6(e) shows the result after applying the
Kalman filtering process as proposed by Park and
Lee. Since Park and Lee’s method does not perform
well for videos taken by cameras with changing
positions, rain streaks are still very evident in Figure
6(e) after the Kalman filtering process. The better
clarity in the visual content after the removal of rain
from the video using our algorithm can be compared
to the results obtained after the application of other
methods as shown below.

(a) Original Scene

(b) Proposed Method

(c) Garg and Nayar’s Method

(d) Zhang’s Method

WSCG 2011 Communication Papers 178

(e) Park and Lee’s method

Figure 6: Qualitative comparison of our algorithm
with the previously existing algorithms. Image
frame is taken from a video having a dark
contrast with changing background and
dynamically changing camera position (a)
Original scene (b) Rain streaks have been almost
completely removed with the help of our
algorithm (c) This image frame shows the result
after the application of Garg and Nayar’s method
(d) Image frame after the application of Zhang’s
algorithm (e) This image frame shows the result
after the application of Kalman filtering process
as implemented by Park and Lee.

As we had mentioned in the introduction section, our
purpose for this work is to restore the images which
have been considerably weather degraded, to carry
out tasks like object recognition, object detection,
and image registration using vision algorithms. In this
case we detect feature points on the image after
which we carry out techniques like SIFT, SURF and
MSER. It is observed that we do not get proper
points in the images which have been degraded by
rain. Hence, we establish the quantitative
performance of our method in terms of the detection
of proper feature points using the Harris-Affine
Detector and the Hessian-Affine Detector
[Mikolajczyk04a]. This is a completely new approach
in comparison to the previous approaches to
quantitatively judge the efficiency of their algorithms.
Our method for evaluating quantitative performance
is very specific to our objective for carrying out this
work. We hope that this kind of evaluation has a
potential for further research where the aim of
restoring weather degraded images is to carry out
content based indexing and retrieval in images and
videos.

Table 1 and Table 2 illustrate the performance of
Harris-Affine and Hessian-Affine Detectors on the
images which have been illustrated in Figure 3, 4 and
5.

Table1: Harris-Affine Detector

Image Resolution Correct
Number
of Points
Detected

Total
Number
of Points
Detected

Time
Taken

Figure 4(a) 368×288 109 550 1.2s

Figure 4(b) 368×288 114 508 1.183s

Figure 5(a) 320×304 44 239 1.033s

Figure 5(b) 320×304 47 215 1.033s

Figure 6(a) 504×376 115 767 2.333s

Figure 6(b) 504×376 139 710 2.317s

Table2: Hessian-Affine Detector

Image Resolution Correct
Number
of Points
Detected

Total
Number
of Points
Detected

Time
Taken

Figure 4(a) 368×288 120 219 0.433s

Figure 4(b) 368×288 136 185 0.417s

Figure 5(a) 320×304 56 133 0.333s

Figure 5(b) 320×304 66 124 0.333s

Figure 6(a) 504×376 148 311 0.817s

Figure 6(b) 504×376 153 296 0.800s

It can be seen that the proper number of points
detected using the Harris-Affine and Hessian-Affine
detectors is more in the case of restored images in
comparison to the weather degraded images, where
the improper number of feature points detection
along with the time taken for it, is more.

4. CONCLUSIONS

The experimental results show that the proposed
algorithm works very well for different scenes with
still and moving backgrounds with moving random
objects having varying textures and still and moving
camera positions. We have implemented the complete
setup on MATLAB platform. The results show that
the efficiency of our algorithm is comparable to the
previously existing algorithms. We have dealt with
the particular cases where a pixel is covered by rain
in more than one frame which gives us advantage
over Garg and Nayar’s method where the average of
the intensities of the neighboring pixels in the same
frame is taken as the intensity of the pixel in that
frame.

Our method has a small latency, so it could be used in
real time processing applications where latency does
not need to be strictly negligible. This gives us an
advantage over Zhang’s method which considers
many frames from the complete video for processing
and thus is not suitable for real time processing
applications. Also, Park and Lee’s method of Kalman
filtering process does not apply well for videos

WSCG 2011 Communication Papers 179

involving changing background and changing camera
position. Thus, although their method does not
involve any significant latency, it considers very
specific cases which are not that practical in day to
day applications. Our image quality is comparable to
other methods for the general case involving slowly
changing background, along with the changing
camera position. Also, we do not consider the size,
velocity, shape, and any physical model of rain
streaks, and the external parameters like camera’s
aperture size, focal length, and exposure time.

On the other hand, there are a few limitations of this
method as well. The small latency makes the method
unsuitable for real time processing applications
requiring no latency at all. Also in the case of videos
having image frames with very large resolution, this
method would require a lot of storage memory which
may make it unsuitable for some specific practical
applications. In the case of heavy rain when the
spatial filter is convolved two times in two frames for
a given pixel position, there is a slight degradation of
quality of the video, in terms of a little blurring of the
details. Still the video is better in terms of quality
after the removal of heavy rain from it. The range of
 and is empirical and in some cases there are

misclassifications between the rain affected and the
moving object pixels. For videos with very bright
background, the rain affected pixels may not be
detected properly leading to insufficient removal of
rain from the frames. This method cannot deal with
videos with very fast changing background and
camera position. Figure 7 illustrates two cases where
this algorithm is not effective. In Figure 7(a), the
camera’s frame change rate is very fast; whereas in
Figure 7(b) the rain is very heavy along with mist as
experienced in a hurricane or storm. Future work
focuses upon dealing with these issues.

 (a) (b)

Figure 7: Scenes from the videos where the
performance of the algorithm is not effective (a) A
scene from a video where the background is
changing at a high frame rate (b) A scene from a
video with extremely heavy rainfall which is
experienced in a hurricane or a storm.

5. REFERENCES
[Starik03a] S. Starik and M. Werman, “Simulation of
Rain in Videos,” in International Workshop on
Texture Analysis and Synthesis, 2003.

[Mikolajczyk04a] Krystian Mikolajczyk and Cordelia
Schmid, “Scale and Affine Interest Point Detectors,”
in International Journal of Computer Vision 60(1),
pp. 63-86, 2004.

[Garg04a] K. Garg and S.K. Nayar, “Detection and
Removal of Rain from Videos,” in Proc. CVPR, vol.
1, pp. 528-535, 2004.

[Garg05a] K. Garg and S.K. Nayar, “When Does a
Camera See Rain?,” in Proc. ICCV 2005, vol. 48, no.
3.

[Garg06a] K. Garg and S.K. Nayar, “Photorealistic
Rendering of Rain Streaks,” in Proceedings of ACM
SIGGRAPH 2006.

[Zhang06a] Xiaopeng Zhang and Teck Khim Ng,
“Rain Removal in Video by combining Temporal and
Chromatic Properties,” in Proc. Multimedia and
Expo, 2006.

[Barnum07a] Peter Barnum, Takeo Kanade,
Srinivasa G Narsimhan, “Spatio-Temporal Frequency
Analysis for Removing Rain and Snow from Videos,”
in PACV Workshop at ICCV 2007.

[Zhao08a] Xudong Zhao, Peng Liu, Jiafeng Liu, and
Xialong Tang, “The Application of Histogram on
Rain Detection in Video,” in Proceedings of the 11th

Joint Conference on Information Sciences, 2008.

[Liu08a] Liu Peng, Xu Jing, Liu Jiafeng, Tang
Xianglong, Zhao Wei, “A Rain Removal Method
Using Chromatic Property for Image Sequence,” in
Proceedings of the 11th Joint Conference on
Information Sciences, 2008.

[Park08a] Wan-Joo Park and Kwae-Hi Lee, “Rain
Removal using Kalman Filter in Video,” in
International Conference on Smart Manufacturing
Application, April 9-11, 2008.

[Brewer08a] Nathan Brewer and Nianjin Liu, “Using
the Shape Characteristics of Rain to Identify and
Remove Rain from Video,” in SSPR & SPR ’08,
Proceedings of the 2008 Joint IAPR International
Workshop on Structural, Syntactic, and Statistical
Pattern Recognition, LNCS 5342, pp. 451 – 558,
2008.

[Liu09a] Peng Liu, Jing Xu, Jiafeng Liu, Xianglong
Tang, “Pixel Based Temporal Analysis Using
Chromatic Property for Removing rain from Videos,”
in Journal of Computer and Information Science,
Vol. 2, No. 1, February 2009.

WSCG 2011 Communication Papers 180

Approximate importance sampling of functions
reconstructed from spherical harmonics

Martin Berger
Charles University

Prague, Czech Republic
maca.berger@gmail.com

ABSTRACT

The ability to generate random samples that match a spherical PDF given in terms of spherical harmonic coefficients is very
important in many fields of computer graphics. Recent work has shown that generating such samples can be done efficiently,
but the published methods are not robust in the presence of reconstruction errors which manifest themselves as negative values
of the PDF. In our paper, we extend the approach so that it can handle such errors, and generates uniform distribution of samples
in the negative parts of the sampled function while preserving a distribution that matches the original function elsewhere. The
overall distribution approximates the original function and guarantees that there are no parts of the spherical domain which
remain unsampled. This property makes the scheme suitable for use in unbiased Monte Carlo rendering.

Keywords: Monte Carlo rendering, importance sampling, spherical harmonics.

1 INTRODUCTION

Spherical harmonics are a set of functions ym
l (θ ,φ)

which form a basis of square-integrable functions de-
fined over the spherical domain. Thus, any such func-
tion can be represented as a series of coefficients in this
basis. In addition, spherical harmonics have some in-
teresting properties, such as support for rotations and
convolutions, which may favor them over other sim-
ilar bases. This lends to many applications in com-
puter graphics, where functions defined over the sphere
or hemisphere are very common. BRDFs ([4]), pre-
computed radiance transfer ([8]) and irradiance envi-
ronment maps ([6]) are examples of such functions.

Recently, an efficient strategy for importance sam-
pling of functions given as spherical harmonics coef-
ficients has been introduced in [3]. The ability to effec-
tively produce high quality sample distributions broad-
ens the scope of applications of spherical harmonics
to other fields of computer graphics such as unbiased
Monte Carlo rendering.

Spherical harmonics are not without limitations,
though. The projection of a band-unlimited function
to spherical harmonics will yield an infinite sequence
of non-zero coefficients, which for practical purposes
needs to be truncated. This step introduces errors to the
reconstructed function, which manifest themselves as
the so-called ringing artifacts. Specially, for a strictly
positive function f , its reconstruction f̂ can have parts
with negative values. The importance sampling scheme
of Jarosz et al. is particularly sensitive to this kind

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

of problem, because the hierarchical warping process
used to generate the samples is undefined for negative
values (negative values can’t be used to construct a
valid PDF1). Simple clamping of the negative values
to zero will lead to bias as there will be parts of the
function’s domain which won’t receive any samples.
The authors recommend adding a positive offset to the
function, but it is not clear how to find a suitable value
for the offset. If the offset is set too high, it will prevent
negative reconstruction issues but at the same time it
will degrade the quality of the resulting distribution (it
will tend towards globally uniform distribution).

On the other hand, some applications might not need
a sample distribution that exactly matches the recon-
structed function. During our work on unbiased Monte
Carlo rendering, we faced the problem of importance
sampling a local radiance estimate stored as a set of
spherical harmonic coefficients. Here, the function we
are trying to sample is inaccurate anyway, so an approx-
imate sampling strategy is sufficient.

The contribution of this paper is a modification of
the sampling scheme of Jarosz et al., which overcomes
the reconstruction problems without function offset-
ting. Our method doesn’t always generate samples that
match the sampled function closely, but avoids bias
from negative reconstruction values.

2 RELATED WORK
2.1 Background
Real spherical harmonic basis functions are defined by:

1 Probability density function

WSCG 2011 Communication Papers 181

ym
l (θ ,φ) =

{
Km

l P|m|l (cosθ)cos |m|φ , for m≥ 0

Km
l P|m|l (cosθ)sin |m|φ , for m < 0,

(1)
where Km

l are constants and Pm
l are the associated Leg-

endre polynomials. For a detailed description of spher-
ical harmonics and their properties, see [7] or [2].

Due to orthogonality, the coefficients of a function
f projected onto the spherical harmonic basis can be
obtained from:

cm
l =

∫∫
4π

f (θ ,φ)ym
l (θ ,φ)dθ dφ (2)

For practical purposes, we truncate the series by set-
ting ym

l = 0 for l >N, where N is a pre-determined max-
imum band. During reconstruction, we approximate
the original function by summing the basis functions
weighted by the coefficients cm

l :

f (θ ,φ)≈ f̂ (θ ,φ) =
N

∑
l=0

l

∑
m=−l

cm
l ym

l (θ ,φ). (3)

Mathematically, truncated spherical harmonics ex-
pansion can be shown to be the minimizer of the least
squares error functional:

∫
4π

(f (Ω)−
N

∑
l=0

l

∑
m=−l

cm
l ym

l (Ω))2 dΩ. (4)

Minimizing the square of the error allows the result
to oscillate about the original function which gives rise
to the so called ringing artifacts. There are a number
of techniques how to reduce this effect, for example fil-
tering the resulting coefficients, using constrained least
squares projection or offsetting the function before its
projection. A survey of these techniques along with a
rigorous mathematical description of the problem can
be found in [5], [1] and [7].

However, none of these techniques can guarantee
a non-negative reconstruction f̂ for an arbitrary non-
negative function f and arbitrary maximum band N in
general.

2.2 Hierarchical sampling
Here, we give a brief overview of the sampling
scheme introduced in [3]. The process starts with a
uniform sample distribution over the whole surface of
the sphere. In the second step, we split the domain
into four quadrants and compute the integrals of the
function over these sub-domains. The four computed
values serve as an importance function, which is used
to warp to sample set. This step is then recursively
repeated on the four quadrants.

Technically, the warping step is accomplished by do-
ing a warp along the vertical axis first and then along

the horizontal axis. For a domain T and its quadrants
A,B,C,D (see Figure 1), this means we compute the in-
tegrals I1 = IA+ IB and I2 = IC + ID of the reconstructed
function and warp the set of the samples according to
probabilities pAB = I1

IT
and 1− pAB. Warping along the

horizontal axis is analogous. The effect of the warping
step is that more samples are placed in areas with large
values of f̂ .

Figure 1: Left: definition of quadrants and integrals of
the corresponding domains used in the text. For visual-
ization purposes, we have mapped the spherical surface
domain to a square. T denotes the union of all A, B, C,
D. Right: one of the possible scenarios where some of
the integrals are negative.

Warping continues in this fashion recursively up to a
predefined maximum warping depth. The PDF of each
sample is then computed from the ratio of the integral
over the node containing the sample and the integral
over the whole sphere.

This method generates samples that are distributed
exactly proportionally to values of the reconstructed
function f̂ as long as the reconstruction is positive.
However, once we encounter negative values for the in-
tegrals, we cannot perform the warping step and the
scheme breaks. The authors propose adding a posi-
tive offset to the function before projection, but finding
a suitable value for this parameter automatically is an
open problem.

3 OUR APPROACH
Instead of trying to avoid negative reconstructed values
completely, we use different rules during the warping
process so that it can handle them in an unbiased way.

3.1 Warping step
The basic warping step is similar to [3]. First, the
samples are warped along the vertical axis and then
along the horizontal axis. As opposed to the original
approach, we don’t use the values of the integrals I1,
I2, and corresponding probabilities pAB = I1

IT
, pCD =

1− pAB directly, but rather we use the values

p̂AB, p̂CD = 1− p̂AB (5)

, where

p̂AB is pAB clamped to the [ε,1− ε] range (6)

for 0 < ε ≤ 1
2 . Warping along the second axis is analo-

gous.

WSCG 2011 Communication Papers 182

Our observation is that this enables us to continue
warping even if some of the integrals IA, IB, IC, ID are
negative, but only as long as the total integral IT is pos-
itive. In effect, we modify the function we are trying
to sample so that it has positive values of the respective
integrals. If the total integral IT is negative, we termi-
nate the recursion immediately, which leaves the sam-
ple uniformly distributed in the domain of T as we have
no suitable definition of corresponding sample distribu-
tion in this case.

Our scheme guarantees that we always get valid sam-
ple distributions and that there are no areas completely
without any samples. This follows from the fact that
at each warping level, the probability of each quadrant
is at least ε2, so for K levels of recursion, we have
pX ≥ ε2K > 0 for all respective sub-regions X of f̂ .
This along with the fact that we can compute the PDF
of each sample exactly means that the importance func-
tion is nonzero over the whole domain and the Monte
Carlo estimator remains unbiased for any ε ∈ (0, 1

2].

3.2 Sample PDF
The PDF of each sample after the warping step can no
longer be computed simply as the integral of the con-
taining node divided by the total integral. This is be-
cause our clamping rule diverts the PDF of generated
samples from the original function. Instead of the orig-
inal calculation, we compute the final PDF incremen-
tally during the recursion. Each warping step modifies
the probability of a given quadrant from the original 1

4
to p̂h p̂v for the respective horizontal and vertical prob-
abilities computed from f̂ . Therefore, we need to scale
the sample PDF by the factor p̂h p̂v

1
4

for each warping

level.
If we start with a PDF of a uniform distribution over

the whole spherical domain, the final PDF of the sample
(after k levels of warping) will be:

1
4π

k

∏
l=1

p̂h p̂v
1
4

=
4k

4π

k

∏
l=1

p̂h p̂v (7)

3.3 The role of ε

The value of ε generally affects the uniformity of the
resulting distribution.

Setting ε near zero will yield a distribution, whose
PDF matches the original function very closely, but
very few samples will be in the regions of negative re-
construction. In the limit case of ε = 0, our method
will return the same sample distribution as the original
method of Jarosz et al. for functions which do not ex-
hibit negative reconstruction issues.

On the other hand, setting ε = 1
2 will yield globally

uniform distribution, as the probabilities will be equal
in each warping step.

In our rendering system, where we sample functions
that approximate local radiance estimates, we use a

value of ε = 0.01 so that the sample distributions match
the functions closely.

Figure 2: The original non-negative function (before
projection) used for evaluation of our method. The
blocky behavior and discontinuities are particularly dif-
ficult for spherical harmonics and severe ringing arti-
facts can be expected upon projection and reconstruc-
tion of this function.

4 RESULTS
Figure 3 shows distributions obtained with our method
and with the original method from [3] with offsetting.
The same number of generated samples is shown for
both methods. After reconstruction, our function from
Figure 2 exhibits ringing artifacts and has parts with
negative values. Note that function offsetting causes
the distribution to be much more uniform than the dis-
tribution from our method.

In our case, where we used the proposed method
for importance sampling of local radiance estimates,
the distribution generated with our method resulted in
faster convergence, because fewer samples were sent to
insignificant directions.

5 CONCLUSION
In our paper, we introduced a method for sampling
functions given in terms of spherical harmonic coeffi-
cients, which, unlike previous methods, is robust in the
presence of reconstruction errors.

The distribution generated with our method will be
warped according to the sampled function in its regions
of positivity, and will be uniform in its negative regions.
Also, there is virtually no memory requirements or per-
formance penalty associated with our modifications.

ACKNOWLEDGEMENTS
We would like to thank Alexander Wilkie, who pro-
vided valuable discussion and insights.

WSCG 2011 Communication Papers 183

(a) The function reconstructed from projec-
tion to spherical harmonics using six bands.

(b) Reconstructed function along with sam-
ples generated by our scheme with ε = 0.1.

(c) Negative (red) and positive (blue) parts of
the reconstructed function.

(d) Reconstructed function with offsetting.
The minimum offset required to make the re-
construction positive across the whole spheri-
cal domain was determined by trial and error.

(e) Reconstructed function with offsetting
along with samples generated by the original
method of Jarosz et al.

(f) Negative (red) and positive (blue) parts of
the reconstructed function.

Figure 3: A comparison of our method and the original method of Jarosz et al. The first row shows results obtained
with our method. Note that the reconstructed function has large parts with negative values and that these regions
do receive a fraction of the samples. On the contrary, to achieve non-negativity of the reconstructed function with
the original method (the second row), a comparatively large offset value was needed, and the resulting distribution
is much more uniform as a result.

REFERENCES
[1] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Dover

Publications, New York, 2001.

[2] R. Green. Spherical harmonic lighting: The gritty details.
Archives of the Game Developers Conference, March 2003.

[3] W. Jarosz, N. A. Carr, and H. W. Jensen. Importance Sampling
Spherical Harmonics. Computer Graphics Forum (Proc. Euro-
graphics EG’09), 28(2):577–586, 4 2009.

[4] J. Kautz, P. P. Sloan, and J. Snyder. Fast, arbitrary brdf shading
for low-frequency lighting using spherical harmonics. In EGRW
’02: Proceedings of the 13th Eurographics workshop on Ren-
dering, pages 291–296, Aire-la-Ville, Switzerland, Switzerland,
2002. Eurographics Association.

[5] R. G. McClarren, C. D. Hauck, and R. B. Lowrie. Filtered spher-
ical harmonics methods for transport problems. In Proceedings
of the International Conference on Mathematics and Computa-

tional Methods and Reactor Physics, American Nuclear Society,
2009.

[6] R. Ramamoorthi and P. Hanrahan. An efficient representation for
irradiance environment maps. In SIGGRAPH ’01: Proceedings
of the 28th annual conference on Computer graphics and inter-
active techniques, pages 497–500, New York, NY, USA, 2001.
ACM.

[7] P. P. Sloan. Stupid spherical harmonics (sh) tricks. Game Devel-
opers Conference, February 2008.

[8] P. P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance trans-
fer for real-time rendering in dynamic, low-frequency lighting
environments. ACM Trans. Graph., 21(3):527–536, 2002.

WSCG 2011 Communication Papers 184

CUDA Expression Templates

Paul Wiemann
Computer Graphics Lab,

TU Braunschweig, Germany
p.wiemann@tu-bs.de

Stephan Wenger
Computer Graphics Lab,

TU Braunschweig, Germany
wenger@cg.tu-bs.de

Marcus Magnor
Computer Graphics Lab,

TU Braunschweig, Germany
magnor@cg.tu-bs.de

ABSTRACT

Many algorithms require vector algebra operations such as the dot product, vector norms or component-wise manipulations.
Especially for large-scale vectors, the efficiency of algorithms depends on an efficient implementation of those calculations.
The calculation of vector operations benefits from the continually increasing chip level parallelism on graphics hardware. Very
efficient basic linear algebra libraries like CUBLAS make use of the parallelism provided by CUDA-enabled GPUs. However,
existing libraries are often not intuitively to use and programmers may shyaway from working with cumbersome and error-
prone interfaces. In this paper we introduce an approach to simplify the usage of parallel graphics hardware for vector calculus.
Our approach is based on expression templates that make it possible to obtain the performance of a hand-coded implementation
while providing an intuitive and math-like syntax. We use this technique to automatically generate CUDA kernels for various
vector calculations. In several performance tests our implementation shows a superior performance compared to CPU-based
libraries and comparable results to a GPU-based library.

Keywords: GPU computing, parallel computing, CUDA, linear algebra

1. INTRODUCTION

In the last years general purpose computation on graph-
ics processing units (GPGPU) has become more and
more popular [Deg10, TNA+10, VKS10]. The mod-
ern GPU is not only a graphic engine but also a flex-
ible programmable processor that can execute thou-
sands of threads in parallel[TNA+10]. In future par-
allel computing will most probably get even more im-
portant. Microprocessor development will focus on
adding cores rather then increasing single thread per-
formance [OHL+08]. Since todays GPUs outclass con-
sumer CPUs in terms of FLOPS, which is a common
measure for computing capabilities, it is obvious that
one should use this to speed up numerical calculations.
Highly parallel linear algebra libraries like CUBLAS
make use of computing power on graphics hardware
but have a lack in usability. In this paper we take on
this problem by introducing a technique allowing us to
use a concise and math-like syntax, while utilizing the
computing power of the GPU. We achieve our goal by
combining CUDA and the expression templates tech-
nique.

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CUDA [NVI10b] is a general purpose parallel com-
puting architecture developed by NVIDIA. It allows
one to run code, written in CUDA C, which is de-
rived from C and has some extensions but also restric-
tions, on CUDA-enabled GPUs. In general, this is done
by writing a so-called kernel, a function that is exe-
cuted N times in N different threads. The threads are
organized in warps and blocks. Each block is indi-
vidually scheduled on the GPU processor cores. This
means, blocks can run on any processor core in any or-
der. Thus, a CUDA kernel scales automatically with
the number of cores. A warp is a group of 32 parallel
threads within a block. Each warp is scheduled individ-
ually and executes one instruction per cycle. Hence, to
reach maximum efficiency the threads’ execution path
within a warp should not diverge, because otherwise
each path will be executed separately in serial, multi-
plying the execution time by the number of execution
paths. [NVI10b]

In our approach we use the expression template tech-
nique, which was concurrently invented by Todd Veld-
huizen and David Vandevoorde in 1995 [VJ03, Vel95,
IR09], to generate CUDA kernels. In general expres-
sion templates make passing expressions as function ar-
guments in C++ possible. The expression gets inlined
into the function body, preventing the overhead of call-
backs. Therefore a templated class is defined, which
represents an arbitrary expression. At compile time the
expression gets parsed and stored as the template pa-
rameter [Vel95].

We use this technique to generate CUDA kernels,
for arbitrary mathematical expressions, which then can
concurrently be evaluated on the GPU.

WSCG 2011 Communication Papers 185

2. RELATED WORK
Since an efficient implementation of vector algebra op-
erations is crucial to many algorithms, there are many
libraries facing this problem. On the one hand, tem-
plate expression math libraries like uBLAS or blitz++1

provide a math-like syntax but do not use the new com-
puting capabilities on GPUs [Vel00, WK+10]. But
since scientific computing through graphics hardware
can be considerably faster then C-code for the CPU
[CAN08], we attempt to make use of those capabili-
ties in our approach. On the other hand libraries like
CUBLAS [NVI10a] or thrust2 are based on CUDA.
While CUBLAS implements basic linear algebra func-
tionality, thrust is a generic C++ template library for
CUDA with a high-level STL-like interface. However,
neither of the two provides a convenient mathematical
syntax as our implementation does. Additionally, with
CUBLAS, only a fixed set of functions is available,
which leads to unnecessary calculations as well as to
the use of temporary objects in the limited GPU mem-
ory [NVI10a]. The thrust library supports user-defined
operations but requires manual specification of func-
tor classes, which means plenty lines of code for the
SAXPY operationY = c∗X +Y, with c as a constant.
A simpler solution again requires the allocation of tem-
porary objects. Unlike existing CUDA libraries, our
implementation provides a math-like syntax and avoids
temporary objects for most operators.

3. IMPLEMENTATION
Like already said we want to make the utilization of
CUDA based vector-calculus easier via the expression
template technique. This technique allows to pass ex-
pressions as function arguments. Those expressions get
inlined, thus the code is nearly as fast as handwritten C.
It can also be used to overload class operators and have
the compiler generate the code to compute the result
in a single pass without temporary objects. To achieve
this, no subset of an arbitrary expression may be eval-
uated, until the entire expression is known. At compile
time, the complier determines the expression type and
stores it as a template parameter. Hence, all operations
and operands are determined before the evaluation is
evaluated and according to this the expression can be
computed in one pass [VJ03, Vel95].

The CUDA compiler (nvcc) does only support a sub-
set of C++ that includes function templates but no gen-
eral template programming [NVI10b]. Thus, expres-
sion templates can not be used directly in CUDA code
Instead, we use the expression templates to generate
a CUDA kernel for each expression type at runtime.
Those kernels are automatically executed once the exe-

1 http://www.oonumerics.org/blitz/
2 http://code.google.com/p/thrust

cution reaches the code line, where the expression oc-
curs.

We achieve our goal by introducing several
new classes. Initially we introduce the classi-
cal classes of the expression template technique:
A base classExpression and a vector class
cudaVec. Expression represents any kind of
an expression (without assignment), likev + w,
component_wise_sin(v) or simplyv. Sincev is also an
expressioncudaVec is derived fromExpression.
cudaVec also inheritsthrust::device_vector
from the thrust library to allow for interoper-
ability with thrust’s generic interface, e.g. for
reductions. Additionally, we develop the class
AssignmentExpression with represents an
assignment of an expression to acudaVec and over-
load the assignment operator in thecudaVec class
to instantiate an AssignmentExpression.
For example v = w+u is represented by an
AssignmentExpression. A subset of the
class structure is shown in Figure 1.

For each element-wise operation, like multiplica-
tion of a vector with a scalar or the addition of two
vectors, an operator expression class is derived from
Expression. For example, the multiplication of
a vector with a scalar would be implemented in a
VectorMultipliesScalarExpression class.

In order to allow for a concise and math-like syntax,
we overload the arithmetic operators (like +, -, *, /) for
expressions such that they invoke the constructor of the
appropriate operator expression. An Example of an op-
erator expression class and the associated creator func-
tion is shown in Listing 1. In the firest part the class
SumExpression is defined which represents a plus
operation with two arbitrary expressions as operands.
The class has two template parameters, each of which
stores an operator expression type. The template pa-
rameters’ types depend on the expression types the con-
structor is called with. In the second part one can see
the associated creator function. It is a templated func-
tion, in this case the plus operator, thus any expression
can be an argument. The creator function invokes the
constructor of its associated class.

In this way, we can directly write vector alge-
bra in application code and the necessary tree of
expression classes is automatically instantiated. A
simple example is given in Listing 2. Since the
plus operator is redefined as an creator function,
it returns an instance of theSumExpression.
Both template parameters are typed ascudaVec,
becausea’s andb’s type iscudaVec. Additionally
the overloaded assignment operator in the cudaVec
class instantiates anAssignmentExpression
with SumExpression<cudaVec,cudaVec> as
template Parameter. The resulting structure of the
classes is shown in Figure 2.

WSCG 2011 Communication Papers 186

AssignmentExpression Expression thrust::device_vector

cudaVecoperator expression classes

Figure 1: The class structure.

t empla te <typename E1 , typename E2>
c l a s s SumExpress ion : p u b l i c Express ion <SumExpression <E1 , E2> > {

p u b l i c :
c o n s t E1 &_ l ;
c o n s t E2 &_r ;
SumExpress ion (c o n s t Express ion <E1> &l , c o n s t Express ion <E2> &r)

: _ l (l) , _ r (r) {}
/ / . . .
}

template < c l a s s E1 , c l a s s E2>
SumExpression <E1 , E2>i n l i n e operator +(c o n s t Express ion <E1> &l ,

c o n s t Express ion <E2> &r) {
re turn SumExpression <E1 , E2> (l , r) ;

}

Listing 1: Example for an operator expression class and the associated creator function.

cudaVec a (1 0 0) , b (1 0 0) , c (1 0 0) ;
/ / i n i t i a l i z e a , b

c = a + b ;

Listing 2: Sample code which instantiates the classes
shown in Figure 2.

Because we want to evaluate the expressions on the
GPU, each templatedAssignmentExpression
has to generate a CUDA kernel which per-
forms the calculation. As Listing 3 shows,
AssignmentExpression contains a static
member variable to which the appropriate
CUDA kernel is assigned at program startup.
This is achieved by the static initializer
AssignmentExpression::init() which is
called for each templatedAssignmentExpression
and which takes care of generating the kernel code,
compiling it with nvcc and loading it.

Each kernel is built according to a pattern (Listing 4).
Only the parameter list and the evaluation line depend
on the type of theAssignmentExpression. To
create these two strings, we traverse the object hier-
archy for the corresponding expression from the root.
Each operator expression class writes its CUDA opera-
tor or CUDA function into the evaluation line and calls
its parameters to do the same. Hereby the tree is grad-
ually traversed. If a parameter is a terminal symbol (a
cudaVec or a constant), the parameter list is extended
by a new parameter and the name of the parameter is
put into the evaluation line as an operand.

The example in Listing 2 generates the kernel shown
in Listing 5. In this case the tree has a root typed
as SumExpression with two children of the type
cudaVec. As the tree is hierarchically traversed, the
SumExpression writes its cuda operator (a+) into
the evaluation line. Since both children are terminal
symbols, each extends the parameter list and puts the
parameter’s name into the evaluation line.

WSCG 2011 Communication Papers 187

AssignmentExpression<cudaVec, sumExpression<cudaVec, cudaVec> >

cudaVec
sumExpression<cudaVec, cudaVec>

cudaVec cudaVec

Figure 2: Hierarchy of objects that is created when Listing 1is compiled.

t empla te < c l a s s E>
c l a s s Ass ignmen tExpress ion {

/ / . . .
s t a t i c i n t ke r ne l I D ;
s t a t i c i n t i n i t () ;

/ / . . .
}
template < c l a s s E>
i n t Ass ignmentExpress ion <E > : : ke r ne l I D =

Ass ignmentExpress ion <E > : : i n i t () ;
template < c l a s s E>
i n t Ass ignmentExpress ion <E > : : i n i t () {

/ / genera te , comp i le and load k e r n e l
}

Listing 3: Implementation of theAssignmentExpression class.

ex t ern "C" __g loba l__ void k e r n e l (f l o a t ∗ a ,
/∗ p a r a m e t e r l i s t∗ / , unsigned i n t s i z e) {
i dx = blockDim . x ∗ b lock I dx . x + t h r e a d I d x . x ;
i f (i dx < s i z e) {

a [i dx] = /∗ e v a l u a t i o n l i n e∗ / ;
}

}

Listing 4: The Kernel prototype.

ex t ern "C" __g loba l__ void k e r n e l (f l o a t ∗ a , f l o a t ∗ b ,
f l o a t ∗ c , unsigned i n t s i z e) {
i dx = blockDim . x ∗ b lock I dx . x + t h r e a d I d x . x ;
i f (i dx < s i z e) {

a [i dx] = b [i dx] + c [i dx] ;
}

}

Listing 5: Kernel generated by compiling Listing 2.

WSCG 2011 Communication Papers 188

The kernel code is compiled into an assembler-like
ptx file by the CUDA compiler and then loaded with
the CUDA Driver API.

Now, if an AssignmentExpression has to be
evaluated, the expression template generated tree is tra-
versed and each terminal symbol passes its value (in the
case ofcudaVec a pointer) to the kernel via the CUDA
driver API. Thereafter the kernel is executed.

4. EXPERIMENTAL RESULTS
We now examine the experimental performance of our
implementation. Zotos and Stephanides have shown
that the performance of major numerical CPU-based
libraries varies only by a factor of 4 [ZS]. We there-
fore exemplarily compare our implementation to the
expression template library uBLAS, as well as to an
implementation based on the thrust GPU programming
framework. Our tests were performed on an Intel Core
i5 750 CPU, which has four cores running at 2.67 GHz
on a 64 bit Linux system with four GB RAM and an
NVIDIA GeForce GTS 250 GPU with 1 GB on-board
memory.

The GPU time is only reported as execution time
and neither includes the time of transferring input data
across the PCI express bus to the device nor the time
necessary to compile the CUDA kernels. Normally, the
data is transferred from the host to the device at the be-
ginning and then all calculations concerning these data
are executed. Only after the last calculation, the data is
transferred back to the host. Since data transfer, which
is limited by 4GB/s, can proceed while a contempora-
neous kernel execution is in progress, the PCIe trans-
fer can often be executed in the background, so that no
major delay occurs [SHG09]. The kernel compiler is
started only once at program startup, therefore the ex-
ecution time gives us the clearest picture of the overall
performance.

We perform different computations with various vec-
tor sizes to compare the efficiencies. Our first test is

 0.1

 1

 10

 100

 1000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07 5e+07

uBlas
cudaVec

thrust

Figure 3: Test 1: a = b + c. The execution time of our
CUDA implementation is 35 to 58 times faster com-
pared to uBLAS and performs similar to thrust.

a = b+ c starting with a vector size of 1000000 up
to a maximum of 50000000. Smaller sizes could not
be compared since the processor time of an execution
drops below 1ms. Figure 3 shows the result of this test.
We gain a 55 to 58 times faster execution time for vec-
tor sizes between 1000000 and 33553920 compared to
uBLAS and a little bit faster execution time compared
to thrust. The execution time of our implementation
increases heavily if the size goes from 33553920 to
33553921 due to the fact that we need to modify our
kernel. We are forced to do so, because our first ker-
nel computes one element per thread and now there are
more elements then the maximum number of threads on
the GPU used in our tests. Hence we only get a 35 times
speed boost compared to uBLAS and drop slightly be-
low the execution time of thrust. With a further increas-
ing vector size our implementation closes the gap to
thrust and increases performance compared to uBLAS
as well. The described performance drop was observed
in every test we took.

In the second and third test we test a bit more com-
plex calculations. In comparison to uBLAS the results
were similar to the first test and are shown in Figure 4
and 5. For thrust we tested both possible methods, one
with a user-defined functor class and one with tempo-
rary objects. Since the memory on graphics hardware is
limited the second method could only be tested for the
vector-sizes up to 3355920. It is obvious that the tem-
porary object method is up to five times slower then our
implementation and also slower then the functor class
approach.

In comparison to the functor class method our imple-
mentation performed faster in the second test for vector
sizes below 33443920 but fell behind for greater vector
sizes. Like in the first test, the gap closes with increas-
ing size. The thrust implementation and ours performed
on a similar level in the third test.

 0.1

 1

 10

 100

 1000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07 5e+07

uBlas
cudaVec

thrust with temp. obj
thrust with functor class

Figure 4: Test 2: a = 0.12*b + 7.54*c. The execu-
tion time of our implementation is 38 to 64 times faster
compared to uBLAS and about 5 times faster then thrust
with temporary objects. Thrust’s implementation with
a functor class and ours are on the same level.

WSCG 2011 Communication Papers 189

 0.1

 1

 10

 100

 1000

 10000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07 5e+07

uBlas
cudaVec

thrust with temp. obj
thrust with functor class

Figure 5: Test 3:a = (b− (a+ 3.75∗ c) + c− 0.24∗
b)/27.51+a−0.25∗b. The execution time our imple-
mentation is 47 to 60 times faster compared to uBLAS
and again about 5 times faster then thrust with tem-
porary memory allocation. Our implementation and
thrust’s functor class approach perform similar.

In a fourth test we normalized a vector. Therefor we
had to compute the euclidean norm and multiply the in-
verse with the vector. Thrust did not provide the func-
tionality of calculating the Euclidean norm, thus a user-
defined functor class is needed. The computation of the
Euclidean norm we used in our implementation is part
of the CUBLAS library from NVIDIA and gets evalu-
ated first, before the expression template generated ker-
nel is executed. Even though we need two kernel exe-
cutions there is a considerable performance gain com-
pared to uBLAS as shown in Figure 6. The speed of our
implementation and thrust’s are comparable.

We also want to examine the different syntaxes of our
implementation to thrust and uBLAS (Listing 6). Our
implementation and uBLAS have the same concise and
math-like syntax whereas thrust’s syntax is more cum-
bersome and requires way more code.

5. CONCLUSION AND FUTURE
WORK

We presented a technique, which leads to a library for
vector algebra operations utilizing the capabilities of
graphics hardware and still providing a math-like and
concise syntax. Our implementation combines expres-
sion templates with CUDA, so that we benefit from the
strengths of both.

Our experimental results show a superior perfor-
mance compared to the non-GPU library uBLAS,
while keeping the same brief syntax. In comparison
to the thrust library our implementation performed
similar to the user-defined functor class method in all
tests. Compared to the thrust method with temporary
objects our approach was considerably faster.

We want to point out that kernel generation occurs at
run time and of course slows down the execution time
of the program. But for programs with a long execution

 0.1

 1

 10

 100

 1000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07 5e+07

uBlas
cudaVec

thrust

Figure 6: Test 4:a = a/‖a‖2. The execution time of
our CUDA implementation is 34 to 56 times faster com-
pared to uBLAS. Thrust shows comparable results.

time this investment quickly pays off. There are pos-
sibilities conceivable that one could save time in this
step. By caching earlier compiled kernels, recompila-
tion can be avoided. Possible further extensions of our
library include copy-free implementation of matrix al-
gebra as well as further optimization of the kernel call
parameters such as the number of threads per block.

REFERENCES

[CAN08] G. Cummins, R. Adams, and T. Newell.
Scientific computation through a GPU. In
Southeastcon, 2008. IEEE, pages 244–246.
IEEE, 2008.

[Deg10] M. Degirmenci. Complex Geometric Primi-
tive Extraction on Graphics Processing Unit.
Journal of WSCG, pages 129–134, 2010.

[IR09] K. Iglberger and U. Rüde. The Math Li-
brary of the pe Physics Engine – Combin-
ing Smart Expression Templates and BLAS
Efficiency. Technical report, Institut für
Informatik, Friedrich-Alexander-Universität
Erlangen-Nürnberg, 2009.

[NVI10a] NVIDIA Corporation. CUBLAS Library.
http://developer.download.
nvidia.com/compute/cuda/3_2/
toolkit/docs/CUBLAS_Library.
pdf, 2010.

[NVI10b] NVIDIA Corporation. NVIDIA
CUDA C Programming Guide.
http://developer.download.
nvidia.com/compute/cuda/
3_2/toolkit/docs/CUDA_C_
Programming_Guide.pdf, 2010.

[OHL+08] J.D. Owens, M. Houston, D. Luebke,
S. Green, J.E. Stone, and J.C. Phillips.
GPU computing.Proceedings of the IEEE,
96(5):879–899, 2008.

WSCG 2011 Communication Papers 190

/∗ our i m p l e m e n t a t i o n∗ /
/ / i n i t i a l i z e v e c t o r s a , b , c
c = 0.12∗ b + 7.54∗ b ;

/∗ uBLAS i m p l e m e n t a t i o n∗ /
/ / i n i t i a l i z e v e c t o r s a , b , c
c = 0.12∗ b + 7.54∗ b ;

/∗ t h r u s t i m p l e m e n t a t i o n∗ /
/ / d e f i n e f u n c t o r
s t r u c t f u n c t o r {

c o n s t f l o a t f1 ;
c o n s t f l o a t f2 ;

f u n c t o r (f l o a t _f1 , f l o a t _f2)
: f1 (_ f1) , f2 (_ f2) {}

__hos t__ __dev ice__
f l o a t operator () (c o n s t f l o a t& x , c o n s t f l o a t& y) c o n s t {

re turn f1 ∗x + f2 ∗y ;
}

} ;

/ / i n i t i a l i z e v e c t o r s a , b , c
t h r u s t : : t r a n s f o r m (b . beg in () , b . end () ,

c . beg in () , a . beg in () , f u n c t o r (0 . 1 2 f , 7 .54 f)
) ;

Listing 6: A comparison of the different syntaxes from thrust, uBLAS and our implementation.

[SHG09] N. Satish, M. Harris, and M. Garland.
Designing efficient sorting algorithms for
manycore GPUs. InParallel & Distributed
Processing, 2009. IPDPS 2009. IEEE Inter-
national Symposium on, pages 1–10. IEEE,
2009.

[TNA+10] A. Tasora, D. Negrut, M. Anitescu,
H. Mazhar, and T.D. Heyn. Simulation of
Massive Multibody Systems using GPU Par-
allel Computation. InWSCG 2010 Full Pa-
pers Proceedings, pages 57–64, 2010.

[Vel95] T. Veldhuizen. Expression templates.C++
Report, 7(5):26–31, 1995.

[Vel00] T. Veldhuizen. Advances in Software tools
for scientific computing, volume 10, chap-
ter 2: Blitz++: The library that thinks it is a
compiler, pages 57–87. Springer, 2000.

[VJ03] D. Vandevoorde and N.M. Josuttis.C++
Templates: The Complete Guide, chapter
18: Expression Templates. Addison-Wesley,
2003.

[VKS10] J.S.M. Vergeest, A. Kooijman, and Y. Song.
Partial 3D Shape Matching Using Large Fat
Tetrahedrons.Journal of WSCG, pages 41–

48, 2010.

[WK+10] J. Walter, M. Koch, et al. uBLAS,
Boost C++ software library.
http://www.boost.org/doc/
libs/1_44_0/libs/numeric/
ublas/doc/index.htm, August 2010.

[ZS] K. Zotos and G. Stephanides. Analysis of
Object-Oriented Numerical Libraries. Tech-
nical report, Deptartment of Applied Infor-
matics, University of Macedonia.

WSCG 2011 Communication Papers 191

WSCG 2011 Communication Papers 192

When It Makes Sense to Use Uniform Grids for Ray Tracing

Michal Hapala
Czech Technical University in Prague

Faculty of Electrical Engineering
Czech Republic

hapalmic{@}fel.cvut.cz

Ondřej Karlík
Czech Technical University in Prague

Faculty of Electrical Engineering
Czech Republic

karliond{@}fel.cvut.cz

Vlastimil Havran
Czech Technical University in Prague

Faculty of Electrical Engineering
Czech Republic

havran{@}fel.cvut.cz

ABSTRACT

Commonly used hierarchical data structures such as bounding volume hierarchies and kd-trees have rather high build times,
which can be a bottleneck for applications rebuilding or updating the acceleration structure required by data changes. On the
other hand uniform grids can be built almost instantly in linear time, however, they can suffer from severe performance penalty,
in particular in scenes with non-uniformly populated geometry. We improve on performance using a two-step approach that
combines both approaches: first we build a uniform grid and test its performance. Second, using an estimate on the number of
rays to be queried we either continue using the grid or build a hierarchical data structure instead. This way we select a more
efficient data structure given a particular implementation of the algorithms which yields with high probability an overall smaller
computational time. We evaluate the properties of this method for a set of 28 scenes.

Keywords: ray tracing, ray casting, uniform grid, kd-tree, hierarchical data structures.

1 INTRODUCTION

Ray tracing is a technique that can be used for generat-
ing images by shooting rays into a 3D scene and finding
closest intersections among rays and the scene objects.
This basic visibility computation is used in a core of
many rendering algorithms. Although ray tracing has
been known for over last four decades [App68, Gla89],
it is still considered relatively slow to be massively
used in real-time applications particularly for animated
scenes.

Different data structures have been proposed, each
one with its own advantages and disadvantages. Most
commonly used are hierarchical data structures, e.g.
a kd-tree [Ben75] and a bounding volume hierarchy
(BVH) [Kay86]. Their main advantage is their capabil-
ity to adapt to the distribution of geometric primitives –
they can deal with non-uniform geometry distribution,
including so-called "teapot in a stadium" type of scenes.
Because of that they perform well in a vast majority of
scenes encountered in real-life use. They are typically
built in O(N logN) or O(N log2 N) time using the sur-
face area heuristic (SAH) [Wal06a]. Super-linear time

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

complexity of their build algorithms can be a bottleneck
in particular when tracing rays in applications with real-
time requirements.

Another type of an acceleration structure is a uniform
grid [Fuj86]. In its simple form it divides a scene reg-
ularly and non-adaptively into equally-sized voxels and
sets the primitive references to each cell overlapped by
the primitives. Ray then traverses cells along the ray
path and only geometric primitives in these cells are
tested for an intersection. Although this data structure
can perform well in certain types of scenes (typically
with uniformly distributed primitives), its performance
degrades drastically in scenes with a non-uniform dis-
tribution. Despite this fact, uniform grids can still be
advantageous for usage in real-time applications be-
cause their build algorithm has only a linear time com-
plexity.

The availability of two approaches with different
properties presents us with a choice whether to use
either an adaptive data structures that will most likely
be efficient for shooting rays, but have higher time
complexity for building, or a simple regular one like
the aforementioned uniform grids, which have lower
build time but can have a severe performance penalty.

In this paper we propose and study such an algorithm
that uses the estimate of performance properties choos-
ing acceleration data structures on the fly. The algo-
rithm uses a calibration phase which requires a set of
scenes of different properties such as number of ge-
ometric primitives and their spatial distribution. The
calibration phase is executed only once before the al-

WSCG 2011 Communication Papers 193

gorithm is used for an application on a particular hard-
ware. During the calibration phase we measure the im-
plementation and hardware constants for building up
data structures and also a practical efficiency of shoot-
ing rays. Given an unknown scene we build a uniform
grid first in a short time and test its performance by sam-
pling a small set of representative rays. Using the data
from this test and data from the calibration phase we
estimate if it is more advantageous to use the uniform
grid or to discard it and build a hierarchical data struc-
ture instead. To make a correct decision we need to
know at least roughly the number of rays to be shot in
the application.

This paper is further structured as follows. Section 2
describes the previous work on the most relevant data
structures. Section 3 describes the proposal of our al-
gorithm. Section 4 shows the results obtained from the
set of 28 scenes. Section 5 concludes the paper with
some prospectives for future work.

2 PREVIOUS WORK
In this section we briefly recall the most important work
on uniform grids and hierarchical data structures. As
the number of papers is huge, we select only the most
recent and important work to our approach.

Uniform Grids. The uniform grids, also called
regular subdivision, were proposed by Fujimoto et
al. [Fuj86]. Cleary and Wyvill [Cle88] analyse the
properties of ray tracing with uniform grids in depen-
dence on its resolution. They study the performance
when the number of cells in the uniform grid is propor-
tional to the number of objects. Other methods were
also studied by Ize et al. [Ize07]. The performance of
ray tracing with uniform grids has two important fac-
tors. First, the initial setup time given a ray is relatively
high. Second, when the distribution of primitives in a
scene is highly uniform, it is likely that the ray will stop
its traversal after only a few traversal steps. Therefore,
the uniform grids are for such types of scenes even
more efficient than hierarchical data structures that
require initial traversal phase to a first leaf. However,
for moderately to highly non-uniform distribution of
geometric primitives in space the uniform grids are
rather inefficient as studied for example by Havran et
al. [Hav00b].

Given an arbitrary ray the number of traversed cells
is of order O(3

√
N) in the worst case, where N is the

number of object primitives hence the number of all
grid cells. The second important property is the time
needed for building a uniform grid, which is only O(N)
provided each geometric primitive is assigned to only a
constant number of cells. Wald et al. [Wal06b] studied
the coherent traversal algorithm for primary rays that
reaches real-time framerates. Recently, Kalojanov and
Slusallek [Kal09] presented the algorithm for parallel
building of uniform grids on a GPU.

Hierarchical Data Structures. Hierarchical data
structures for ray tracing were studied in a num-
ber of papers. Chang [Cha04], Wald [Wal04], and
Havran [Hav00a] provide the survey on the spatial data
structures for ray tracing static scenes with the focus on
the hierarchical data structures. The common property
of the data structures is that the time complexity for
building is O(N logN) since it corresponds to sorting
in 3D space. While the time complexity for building is
higher than the one for uniform grids O(N), the time
needed for ray query can be estimated by O(logN).
The performance of the ray is hence much less depen-
dent on the number of objects than for uniform grids
as we also show further in the paper. The properties
and relations between these data structures in general
were discussed by Havran [Hav07]. Another study that
compares the performances of a grid and a kd-tree was
presented by Szirmay-Kalos et al. [SKH02].

Selection Algorithm. We are aware of only two al-
gorithmic proposals that considers the use of different
data structures. The first one proposed by Havran et
al. [Hav00b] is based on statistical properties for the
same input data. They analyse the distribution of ob-
jects in the scene and if selected statistical character-
istics are low without giving any threshold, they sug-
gest to use uniform grids, otherwise kd-trees or other
hierarchical data structures such as adaptive grids. The
statistics measures that are easy to compute from only
the distribution of geometry in the scene are sparseness,
maximum number of primitives referenced in the cell,
and statistical moments as mean, variance (hence also
standard deviation), skewness, and kurtosis. We recall
below the formulas for these measures computed over t
cells of a grid taking into account the references of ge-
ometric primitives in the cells denoted by Ni for the i-th
cell.

Scene sparseness is the ratio of empty cells to all
cells:

sparseness =
#empty cells

N
(1)

High values of sparseness could indicate inferior grid
performance, as adaptive data structures generally deal
better with cutting off empty space. Big gaps with no
geometry in the scene create many empty cells in the
grid which have to be traversed unnecessarily.

Maximum number of primitives in any cell is defined
simply as:

maxRe f s = max(Ni), i ∈ 1 . . . t (2)

High value could be useful in detecting a "teapot in a
stadium" type of scene.

Mean represents an average number of references per
cell:

mean =
1
t

t

∑
i=1

Ni (3)

WSCG 2011 Communication Papers 194

Because the grid is built to have the number of cells
proportional to the number of geometric primitives in
the scene, high mean values indicate low performance
as that means that there are many primitives overlap-
ping multiple cells.

Variance gives us information about how much val-
ues differ from the mean value. It is computed using
this formula:

variance =
1

t−1

t

∑
i=1

(Ni−mean)2 (4)

Higher variance corresponds to the higher differ-
ences in the data: there may be many empty cells
but also many cells with high number of primitives.
Standard deviation σ is computed from variance as
σ =
√

variance.
Skewness describes asymmetry of the distribution

and kurtosis describes "peakedness" of the distribution
belong to higher statistical moments and are defined as:

skewness =
1
t

t

∑
i=1

(
Ni−mean

σ

)3

(5)

kurtosis =
1
t

t

∑
i=1

(
Ni−mean

σ

)4

−3 (6)

The aforementioned metrics can be computed di-
rectly from the uniform grid based on a voxelisation
approach proposed by Klimaszewski [Kli94].

Another approach to selecting a better acceleration
structure on the fly was proposed by Müller and Fell-
ner [MF99]. They create a bounding volume hierarchy
for a given scene and try to find regions (nodes) that
contain uniformly distributed objects. A uniform sub-
division of space to a predetermined number of voxels
is then created in these regions.

3 ALGORITHM OUTLINE
In this section we present the algorithm that given a
scene suggest to use either the uniform grids or a hier-
archical data structure in the dependence on the number
of rays. We analyse such case and suggest an algorithm
that estimates if it is more convenient to use an already
built grid or to build up a hierarchical data structure.
Our decision algorithm can be used for virtually any
application of ray tracing that implements grids and hi-
erarchical data structure in the framework. The data
from the implementation are extracted in the calibra-
tion phase that is executed only once on a given hard-
ware/implementation on a set of scenes.

We verified the observation by Havran et
al. [Hav00b], if the suggested selection algorithm
between grids and kd-trees is valid for another set of
scenes. We have found out that on our set of scenes
(see Figure 3) there is no scene with such low standard
deviation, skewness, and kurtosis as in the study that

could justify the use of uniform grids based only on
the scene statistics. However, when analysing the
statistical characteristics in [Hav00b] it appears that
the threshold for standard deviation should be very
low, such as 2.0, to justify the use of uniform grids.
This leads to the higher performance of ray shooting
irrespective to the number of rays even if we ignore the
time needed to build the data structure.

In this paper we study another case when the number
of rays to be shot is known or well estimated in advance
and we account for the time needed to build the data
structure. The algorithm requires the calibration phase
over all s scenes in a set Scal (i.e. s = |Scal |).

The calibration phase computed for i-th scene having
N(i) geometric primitives for all the scenes in the set
Scal has four steps:

1. Build a uniform grid [Fuj86] over N(i) geometric
primitives of the i-th scene with the number of cells
proportional to N(i). Measure the time T G

B (i) to
build the uniform grid.

2. Measure the time T G
R (i) for M(i) ray queries using

the ray traversal algorithm over the uniform grid.

3. Build a hierarchical data structure over N(i) geomet-
ric primitives. Measure the time T H

B (i) needed for
the build.

4. Measure the time T H
R (i) for M(i) ray queries (the

same ray queries as for uniform grid) using the ray
traversal algorithm over the hierarchical data struc-
ture.

The data from the calibration phase are then used
for an application scenario given an unknown scene
S with N geometric primitives. To improve on the
performance we decide on both cases assuming the
knowledge or the rough estimate for the number of
rays R to be queried.

Decision algorithm:

1. Build a uniform grid [Fuj86] over N geometric prim-
itives of scene S with the number of cells propor-
tional to N. Measure the time T G

B (i) to build the
uniform grid.

2. Estimate the time tG
R needed for computing a single

ray with the uniform grid. This is carried out by
sampling using a small set of rays.

3. Estimate the time T H
B to build a hierarchical data

structure from the calibration phase and from N.

4. Estimate the time tH
R to ray trace a single ray from

the calibration phase and from N.

5. If tH
R ≥ tG

R then use the uniform grid to shoot all the
rays. Finish.

WSCG 2011 Communication Papers 195

6. Estimate the critical point, it is the number of rays
RC, when the uniform grid and hierarchical data
structure yields the same computation time taking
into the account the estimated build time of the hi-
erarchical data structure. This is computed as: RC =
T H

B /(tG
R ·(1+ε)− tH

R). The parameter ε is used only
to avoid division almost by zero, we use the value
such as ε = 0.01.

7. If RC ≤ R (R is the number of rays to be queried),
use uniform grids for the rest of the computation.
Finish.

8. Otherwise, discard the uniform grid and build the
hierarchical data structure. Shoot all the remaining
rays using hierarchical data structure. Finish.

To put it short the decision algorithm above simply
computes the estimate whether or not it is more advan-
tageous to use an already built uniform grid or if it pays
off to build a hierarchical data structure.

The only information computed after building the
uniform grid is the build time TB. To estimate the criti-
cal point for the number of rays RC we need to estimate
the average time tG

R to shoot a single ray using the uni-
form grid, the time needed to build the hierarchical data
structure T H

B , and the time tH
R for shooting a single ray

using this (unbuilt) data structure.
Below we describe how to estimate these qualitative

performance characteristics. The average time tG
R which

gives an average time to shoot a single ray in uniform
grid is estimated by sampling of small number of rays
such as 100 to 1000 rays. This provides an accurate
estimate, the only condition is that the sampling rays
represent the distribution of all rays.

The time needed to build the hierarchical data struc-
ture T H

B is estimated using the time complexity of a
build O(N logN) and from the times T H

B (i) needed to
build these data structure in the calibration phase as fol-
lows:

T H
B = N · log2 N · 1

s

s

∑
i=1

T H
B (i)

N(i) · log2 N(i)
(7)

Similarly, we can estimate the time to shoot a sin-
gle ray T H

R in a hierarchical data structure under the
assumption of O(log2 N) time complexity for this op-
eration, using the time T H

R (i) needed for the same algo-
rithm from the calibration phase as follows:

tH
R = log2 N · 1

s

s

∑
i=1

T H
R (i)

M(i) · log2 N(i)
(8)

Analysis and Discussion
After building the grid the algorithm above provides
three possible outcomes. First, if the estimated time
tG
R to shoot a ray in the grid is lower than the estimated

time tH
R to shoot a ray in the hierarchical data structure,

it does not make sense to build a hierarchical data struc-
ture. Second, for the number of rays to be shot in the
range between 0 and RC it does not pay off to build up
a hierarchical data structure. This is because the time
to build a hierarchical data structure is relatively high
even if it provides faster processing of a single ray and
for relatively small number of rays it does not pay off.
Third, for the number of rays larger than RC it is then
always more efficient to discard the uniform grid, build
the hierarchical data structure and use it to shoot the
rays.

Below we compare a proposed algorithm combining
uniform grids and hierarchical data structures with a
single use of the either two data structures. When we
compare it to the use of only the grids, the proposed
algorithm is more efficient as it is always of the same
performance or provides the speedup in cases when we
detect that the grids are inefficient.

We also compare the proposed algorithm to the use
of only the hierarchical data structure as we need the
additional time to build the uniform grid. Favourably,
the time complexity O(N) is asymptotically smaller
than the time complexity needed to build the hierarchi-
cal data structure O(N log2 N). Theoretically, the time
complexity needed to build the uniform grid, which
is possibly later discarded, gives the time complexity
increase from O(N log2 N) to O((N(1 + log2 N)) that
presents the slowdown of building of only a hierarchical
data structure 1+ 1/ log2 N. In practice when we take
into account the particular implementation, the con-
stants behind the time complexities for building them
are even higher for hierarchical data structure when
compared to uniform grids. Therefore such slowdown
is negligible. For the test scenes used in this paper the
slowdown is only 4.5% on average, with a minimum
value of 2.1% (1,070,671 triangles) and a maximum
value of 15.4% (528 triangles).

We can also express the maximum theoretical
speedup for using the combined solution when using
only the hierarchical data structure. This is only for
a small number of rays with a limit of O(log2 N) and

the speedup is then T H
B +tH

R ·log2 N
T G

B +tG
R ·log2 N

. The speedup reaches

the average value of 28.07 with a minimum of 6.5
(528 triangles) and a maximum of 46.50 (1,070,671
triangles). We avoid the discussion for a trival case –
it does not pay off to build up any hierarchical data
structure if the number of rays to be shot is smaller
than O(log2 N).

4 RESULTS
We have implemented a path tracer application in C++.
We report here the results for a PC equipped with Intel
Core 2 Duo E4300 1.8 G Hz (Allendale) and 6 GBytes
of RAM, running Windows 7 operating system in Mi-
crosoft Visual C++ 2008. For testing we have used a set

WSCG 2011 Communication Papers 196

of 28 scenes, 20 of them unique and 4 scenes tessellated
to triangles in two level of details, see Table 1.

For each scene we have measured uniform grid and
hierarchical data structure build times and traversal
times for two types of ray generation schemes. The first
scheme uses rays generated from two points randomly
generated on a bounding sphere of the scene, the
second one uses rays generated by the path tracer. As a
hierarchical data structure we used an implementation
of a kd-tree. From the measurements we have com-
puted exactly the critical point for the number of rays
RC and each scene where rendering using the uniform
grid is faster according to the equations provided in the
previous section. To test the quality of our estimate
algorithm we have compared the exactly computed
RC and its estimated value Rest when the hierarchical
data structure was not build. We report by how many
percent the estimate of RC is inaccurate (relative error
Err = 100 · Rest−RC

RC
).

This was carried out for random combinations of cal-
ibration and estimated scenes as follows: always a cer-
tain number of scenes from the set C are used in the
calibration stage, and the rest is used to test the accu-
racy of the estimate. This number C is increased from
1 to 27, thus for the first case one random scene would
be the base for the calibration and twenty seven would
be estimated and for the last one the situation is re-
versed. To gain some convergent data we have repeated
the computation 5000 times for every of these cases.
Both graphs in Figure 1 and Figure 2 show the average
value of estimated relative errors in percent (1

5000 ∑Err)
in red and the average of absolute values of relative er-
rors in percent (1

5000 ∑ |Err|) in blue colour.
For randomly generated rays (see Figure 1) the esti-

mate is about 25 percent more optimistic about the qual-
ity of the grid and is quite stable in this prediction ex-
cept for the extremes where there are either not enough
calibration scenes or not enough estimated scenes. The
estimate predicts that it is safe to shoot more rays with
the grid still being faster than in reality.

For path traced rays (see Figure 2) the estimate is off
by around 30 percent, but this prediction is not as stable
as for the randomly generated rays and the tendency is
to predict that the grid is worse than it really is. Since
a big part of our path traced rays are primary rays or
shadow rays, this is not an efficient sampling of the
space of possible rays with regard to providing good
calibration for other scenes. This can also occur for
non-diffuse scenes, where glossy reflections will result
in a non-uniform sampling.

From the results we see that the range of rays where
its does not pay off to build the hierarchical data struc-
ture can be significant in particular for scenes with a
higher number of geometric primitives. For example
for the scene phone-high the critical point for the num-
ber of rays RC is 2.7×106 rays to justify the use of hi-

0 5 10 15 20 25 30
5

10

15

20

25

30

35

40

45

50

55

Number of scenes for calibration [−]

E
s
ti
m

a
te

 e
rr

o
r

[%
]

Figure 1: Estimate error for random rays calibrated on
random rays.

0 5 10 15 20 25 30
10

15

20

25

30

35

40

45

50

Number of scenes for calibration [−]

E
s
ti
m

a
te

 e
rr

o
r

[%
]

Figure 2: Estimate error for the rays from path tracing
calibrated on rays from path tracing.

erarchical data structure for random rays and 856×103

rays for path tracing. The results for 28 scenes also
show that without computing the estimate the selection
cannot be made in general.

5 CONCLUSION AND FUTURE
WORK

We have proposed an algorithm that combines a uni-
form grid and a hierarchical data structure for ray trac-
ing so that it takes advantages of both types. Based on
the scene properties and a small number of rays com-
puted using the grid we decide either to continue ray
tracing with the grid or to build the hierarchical data
structure such as kd-trees.

We show that the use of uniform grids is relatively
limited for standard scenes with the exception of scenes
with a special distribution of geometric primitives in
space. To our best knowledge we present the first al-
gorithm that decides when it is advantageous to use
uniform grids in dependence on the number of rays
to be shot. Compared to the use of only a hierarchi-
cal data structure the method has a slowdown of only
1+1/log2N for the building of the data structure in the
worst case. We can reach the average speedup 28.07
for a small number of rays. Our method can be used

WSCG 2011 Communication Papers 197

Figure 3: All used test scenes. There are multiple scenes with the same model which differ only in a polygon
count. Only one picture for each such group is shown. Scenes from the top-left are: a10, boxes, building, camel,
bunny, sockets, case, conference, teapots, hunger, cornell, interior-3, interior-dance, interior-deloix, interior-japan,
knot, teapot, sphere, phone, pills, chess, spheres.

in any hardware platform and any implementation of
ray tracing that uses uniform grid and hierarchical data
structure. We show that the number of rays that gives
the critical point for the same performance of grids and
hierarchical data structure can be well estimated with
only a low number of scenes.

As a future work we can improve on estimates for the
time needed to shoot a ray using yet unbuilt hierarchical
data structure and the time to build this data structure
for example by using other statistical characteristics of
the scene. This could provide more accurate estimate
for the critical point.

WSCG 2011 Communication Papers 198

Random rays Path tracing
Scene Primitives σ T G

B T H
B tG

T tH
T RC tG

T tH
T RC

boxes 528 7.46 2 12 5.0 4.1 11,669 0.9 1.4 0
interior dance 1,990 10.84 3 50 5.0 4.2 55,328 0.7 1.3 0

cornell 2,450 8.73 3 42 7.9 5.5 15,773 3.0 3.0 38,177
sphere 2,880 4.85 4 74 7.7 7.9 0 0.6 1.6 0
teapot 3,080 7.50 32 73 6.8 6.0 78,320 0.8 1.6 0

interior 3 3,412 10.75 4 83 4.6 3.8 101,888 0.9 1.0 124,367
phone 7,716 15.85 6 207 3.3 2.9 441,922 3.3 0.9 53,984

spheres 31,460 7.70 22 696 11.2 8.1 211,736 2.0 4.9 0
pills 32,606 12.90 21 802 7.1 3.6 221,538 2.3 1.8 593,553

teapots 52,360 12.43 29 1,215 13.4 6.8 172,843 4.3 5.4 1,620,297
building 54,490 42.19 21 995 6.3 3.1 304,414 12.8 1.8 63,055

knot 56,448 6.97 35 1,300 20.2 12.1 147,560 1.3 3.3 0
bunny 69,473 7.48 35 1,639 33.1 10.8 69,587 1.3 2.5 0

interior japan 72,310 43.03 36 1,241 4.6 4.8 0 3.1 1.9 515,863
sphere-high 87,120 6.68 48 1,751 23.5 13.5 161,984 1.1 2.8 0

case 131,228 24.93 51 2,872 14.0 4.2 293,541 5.3 3.0 638,451
hunger 141,143 64.21 47 2,586 15.9 5.6 250,041 68.2 3.1 236,153

interior deloix 149,090 16.02 67 3,928 22.9 6.6 231,927 3.0 1.9 1,704,493
camel 178,102 72.49 73 3,734 23.0 6.0 216,668 3.3 2.5 1,734,172

sockets 187,330 15.93 102 5,229 22.8 8.9 358,906 1.2 2.8 0
conference 190,947 25.62 97 4,428 19.4 7.1 348,928 2.8 2.7 3,268,361

chess 249,608 12.65 103 5,799 16.4 5.1 543,065 1.4 1.1 6,037,314
phone-high 318,756 30.72 145 8,163 6.7 2.9 2,262,962 7.5 1.5 856,324

pills-high 590,626 15.23 283 18,694 17.7 4.3 1,401,905 4.6 2.9 5,082,077
a10 1,070,671 60.79 403 29,921 25.0 5.9 1,544,378 2.6 3.1 52,604,130

hunger-high 1,418,560 136.61 384 27,690 44.2 5.6 727,590 156.3 3.9 27,356
case-high 1,614,006 36.86 501 37,224 39.6 4.5 1,108,126 11.1 4.5 3,101,617

sockets-high 1,658,432 16.80 730 45,842 41.0 11.0 1,516,267 2.7 4.1 0

Table 1: Measurements for all tested scenes for both ray generation schemes. T G
B and T H

B are uniform grid and
kd-tree build times. tG

T and tH
T are uniform grid and kd-tree per-ray traversal times. Build times are in milliseconds

and traversal times are in microseconds. RC (the critical point) is the exact number of rays for which the uniform
grid is equal in performance of the kd-tree.

ACKNOWLEDGEMENTS
This work has been supported by the Ministry of Ed-
ucation, Youth and Sports of the Czech Republic un-
der research programs MSM 6840770014, LC-06008
(Center for Computer Graphics), MEB-060906 (Kon-
takt OE/CZ), the Grant Agency of the Czech Republic
under research program P202/11/1883, and the Grant
Agency of the Czech Technical University in Prague,
grant No. SGS10/289/OHK3/3T/13.

REFERENCES
[App68] Appel, A. Some techniques for shading ma-

chine renderings of solids. In AFIPS ’68 (Spring):

Proceedings of the April 30–May 2, 1968, spring
joint computer conference, pages 37–45, New
York, NY, USA, 1968. ACM.

[Ben75] Bentley, J.L. Multidimensional binary search
trees used for associative searching. Commun.
ACM, 18:509–517, 1975.

[Cha04] Chang, A. Y.-H. Theoretical and Experimen-
tal Aspects of Ray Shooting. PhD thesis, Polytech-
nic University, USA, 2004.

[Cle88] Cleary, J.G. and Wyvill, G. Analysis of an al-
gorithm for fast ray tracing using uniform space
subdivision. The Visual Computer, 4(2):65–83,
July 1988.

[Fuj86] Fujimoto, A., Tanaka, T., and Iwata, K. ARTS:

WSCG 2011 Communication Papers 199

Accelerated ray tracing system. IEEE Computer
Graphics and Applications, 6(4):16–26, 1986.

[Gla89] Glassner, Andrew S. An introduction to ray
tracing, Academic Press Ltd.,London, UK, 1989

[Hav00a] Havran, V. Heuristic Ray Shooting Algo-
rithms. Ph.d. thesis, Department of Computer Sci-
ence and Engineering, Faculty of Electrical En-
gineering, Czech Technical University in Prague,
November 2000.

[Hav00b] Havran, V., Prikryl, J., and Purgathofer, W.
Statistical comparison of ray-shooting efficiency
schemes. Technical Report TR-186-2-00-14, Vi-
enna University of Technology, May 2000.

[Hav07] Havran, V. About the relation between spatial
subdivisions and object hierarchies used in ray trac-
ing. In Mateu Sbert, editor, 23rd Spring Conference
on Computer Graphics (SCCG 2007), pages 55–60,
Budmerice, Slovakia, May 2007. ACM.

[Ize07] Ize, T., Shirley, P., and Parker, S. Grid cre-
ation strategies for efficient ray tracing. In RT ’07:
Proceedings of the 2007 IEEE Symposium on Inter-
active Ray Tracing, pages 27–32, Washington, DC,
USA, 2007. IEEE Computer Society.

[Kal09] Kalojanov, J., and Slusallek, P. A parallel al-
gorithm for construction of uniform grids. In HPG
’09: Proceedings of the Conference on High Per-
formance Graphics 2009, pages 23–28, New York,
NY, USA, 2009. ACM.

[Kay86] Kay, T.L. and Kajiya, J.T. Ray tracing com-
plex scenes. In David C. Evans and Rusell J. Athay,
editors, SIGGRAPH ’86 Proceedings), volume 20,
pages 269–278, August 1986.

[Kli94] Klimaszewski, K.S. Faster ray tracing using
adaptive grids and area sampling. PhD thesis,
Brigham Young University, dec 1994.

[MF99] Müller G. and Fellner D.W. Hybrid Scene
Structuring with Application to Ray Tracing. In
Proceedings. of Intl. Conf. on Visual Computing
ICVC ’99, 1999.

[SKH02] Szirmay-Kalos, L., Havran, V., Balázs, B.
and Szécsi, L. On the efficiency of ray-shooting
acceleration schemes. In Proceedings of the 18th
Spring Conference on Computer Graphics (SCCG
2002), pages 89–98, Budmerice, Slovakia, May
2002.

[Wal04] Wald, I. Realtime Ray Tracing and Interactive
Global Illumination. PhD thesis, Computer Graph-
ics Group, Saarland University, 2004.

[Wal06a] Wald, I. and Havran, V. On building fast kd-
trees for ray tracing, and on doing that in O(N log
N). In Proc. IEEE Symposium on Interactive Ray
Tracing 2006, pages 61–69, September 2006.

[Wal06b] Wald, I., Ize, T., Kensler, A., Knoll, A. and
Parker, S.G. Ray Tracing Animated Scenes using
Coherent Grid Traversal. ACM Transactions on
Graphics, pages 485–493, 2006. (Proceedings of

ACM SIGGRAPH 2006).

WSCG 2011 Communication Papers 200

Biquadratic S-Patch in Bézier form

Alexej Kolcun

Institute of Geonics, Czech Academy of Sciences
Studentská 1768

708 00 Ostrava, Czech Republic

alexej.kolcun@ugn.cas.cz

ABSTRACT
Mutual conversions between triangular and quadrilateral meshes need the same degree of both diagonal and
boundary curves of quadrilateral meshes. New approach to quadrilateral patches, S-Patches, offers such
possibility. The Bézier approach of Smart patches (S-Patch) in the biquadratic case is analyzed. Dependencies
among the control points are derived. BS-Patches are presented. Close relation between Bézier triangles and BS-
Patches is found. Condition for smooth concatenation of biquadratic BS-Patches is formulated.

Keywords
Parametric modeling, S-Patch, Bézier patch, Bézier triangle.

1. INTRODUCTION
Two types of meshes, triangular and quadrilateral are
used very often in various fields of computer graphic
modeling [Pup_11]. Mutual conversions between
them are the aim of interest for a long time, e.g.
[Bru_80], [Far_86], [Gol_87], [Far_88]. Due to
different geometric properties and incompatibility in
these two types of meshes, it is difficult to use both
kinds of patches in the same CAD system.
Approximation techniques of the meshes mutual
substitution are analyzed e.g. in [Lai_99]. Conversion
of triangular patch to three quadrilateral ones is
analyzed in [Hu_96]. Idea of degenerated rectangular
meshes is used in [Hu_01]. Functional composition
of the meshes is studied in [Fen_99] and [Las_02].
In [Hol_99] some properties of diagonal curve of the
quadrilateral patch are analyzed. Importance of the
main diagonal curves is recognized in [Ska_10],
where the concept of Smart-Patches (S-Patch) is
introduced. Here the main idea is to find suitable
conditions, when both diagonal and boundary curves
are the parametric curves of the same degree. It gives
us a possibility to find simple and direct correlation
between triangular and quadrilateral patches. In
[Ska_10] bicubic patches in Hermit polynomial basis

are analyzed.
In our approach we inspired with the idea mentioned
above. We prefer Bernstein-Bézier form of
polynomial basis functions. It is more convenient,
due to the fact that we obtain the same formal
description of both triangular and quadrilateral
patches.
In this paper only the biquadratic case of S-Patches is
analyzed in detail. (The importance and usefulness of
biquadratic quadrilateral patches and quadratic
triangular patches can be found e.g. in [Raz_05],
[Boc_09].) Proves of main properties are presented in
a very detailed way due to the fact, that in similar
way the analysis of the patches of higher degree can
be realized.
The rest of the paper is organized as follows. In
section 2 biquadratic S-Patch is introduced in general
form of simple polynomial basis functions (1, u, u2).
It gives us a basic form of S-Patch. In section 3
Bernstein-Bézier polynomial basis is used. Mutual
dependencies of control points are analyzed. In
section 4 it is shown when diagonal curves of S-Patch
can be expressed as Bézier curves of proper
‘diagonal’ control points. Such patches are
introduced as BS-Patches. In section 5 it is shown,
that BS-Patches we can split to Bézier triangle
patches. In section 6 conditions of smooth
concatenation of BS-Patches are formulated.

2. PROBLEM FORMULATION
Let us consider biquadratic parametric patch

 () ()
T

T

v

v

RRR

RRR

RRR

uuvuX

==
2

222120

121110

020100
2

1

1, uRv (1)

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

WSCG 2011 Communication Papers 201

Our goal is to find out the conditions for all boundary
lines and both main diagonals D1(u), D2(u) to be the
lines of the same degree.

 () () 2
2101 , uAuAAuuXuD T ++=== uRu (2)

() () ()

2
210

2

121

011

001

1,

uBuBB

uuXuD

T

T

++=

−
−=

=−=−=

uuR

u1uR

. (3)

Such patches are named S-Patches [Ska_10].

Theorem 1. Biquadratic patch (1) is a S-Patch iff

0222112 === RRR ,

i.e.

 () T

R

RR

RRR

vuX vu

=
00

0,

20

1110

020100

 (4)

Proof: Resulting matrix for (3) is

−−++
−−++
−−++

222221222120

121211121110

020201020100

2

2

2

RRRRRR

RRRRRR

RRRRRR

So, the conditions (2) and (3) lead to the equations

0

02

0

0

22

222112

22

2112

=
=−−
=
=+

R

RRR

R

RR

. (5)

It is obvious, that linear system (5) has trivial solution
only

 0222112 === RRR .

QED.

Corollary. A ll parametric lines of a biquadratic S-
Patch are curves of degree d ≤ 2.

Proof: Let us consider general parametric line of S-
patch. Using standard transformations of (4) for

() ()buauXuL += , we obtain the resulting formula

 () T

Q

QQ

QQQ

uL uu

=
00

0

20

1110

020100

where

.

,

,

,

,2

,

2020

1111

02
2

02

111010

020101

02
2

010000

RQ

bRQ

RbQ

aRRQ

abRbRQ

RaaRRQ

=
=
=

+=
+=

++=

Q.E.D.

3. BÉZIER FORM OF S-PATCH
Let us express the biquadratic S-Patch in Bézier form

() TTvuX vPuuRv

−
−

−
−==

100

220

121

121

022

001

,
 (6)

From (6) we can find control points Pij.

11

100

220

121

121

022

001
−−

−
−

−
−= RP (7)

In more detailed way

=

100

1
2

1
0

111

00

0

111

0
2

1
1

001

20

1110

020100

222120

121110

020100

R

RR

RRR

PPP

PPP

PPP

Explicit vector form of (7) gives

=

11

20

02

10

01

00

22

21

20

12

11

10

02

01

00

444444

240424

040404

204244

100224

000204

004044

000024

000004

4

1

R

R

R

R

R

R

P

P

P

P

P

P

P

P

P

 (8)

Rank of the matrix M in (8), rank(M) = 6.

In the text below (Figures 2 – 4) we use vector
indexing and Cartesian indexing of control points of
a patch – Fig. 1.

1 2 3 00 01 02

4 5 6 10 11 12

7 8 9 20 21 22

a) b)
Figure 1. a) vector indexing, b) Cartesian

indexing of control points.

WSCG 2011 Communication Papers 202

The first six rows of matrix M in (8) (Fig. 2a)) are
linearly dependent, as we can write

 111002010012 22 PPPPPP +−+−= .

Similarly, the sets of rows in (8) (i.e. the rows of
matrix M) (1,2,3,7,8,9), (4,5,6,7,8,9), (1,4,7,2,5,8),
(1,4,7,3,6,9), (2,5,8,3,6,9) are linearly dependent too.

a) b) c)

Figure 2. Configurations of dependent 6-element
sets of control points Pij (black).

For the configuration of points Fig. 2c), i.e. for the
configuration of rows (1,2,4,6,8,9) of the matrix M in
(8) we can find relation

 001001211222 PPPPPP +−−+= .

The symmetric configuration of rows (2,3,4,6,7,8) is
linearly dependent too.

We can formulate the condition for the independency
of sets of the control points Pij.

Theorem 2. Only the eight six-element sets of control
points mentioned above are linearly dependent.

Proof can be done by computing the determinant of

all 84
6

9
=

 6x6 submatrices of M in (8).

(Due to symmetries it is enough to parse not more
than 21 cases.)

QED.

Such configurations of control points cannot be used
for the patch determination.

Fig. 3 gives examples of independent sets of control
points. Symmetrical cases are independent too.

a) b) c) d)

Figure 3. Some configurations of independent 6-
element sets of control points (black).

Useful properties of some independent configurations
of control points are:

1. configurations from Fig. 3a), 3b) involve all
corner control points,

2. configurations from Fig. 3a), 3c) involve full
information of the pair of neighbour boundary
lines.

4. BS-PATCH
Let us analyze the relations between main diagonal
D1(u) of S-Patch (4)

 () T

R

RR

RRR

uD uu

=
00

0

20

1110

020100

1
 (9)

and proper Bézier diagonal – i.e. the curve defined on

the set of ‘diagonal’ control points 221100 ,, PPP –

Bézier diagonal curve

 ()

−
−=

22

11

00

1

121

022

001

P

P

P

uD B u . (10)

Using the abbreviation

 ()TRRRRRR 112002100100=ℜ ,

for (9) we obtain

 () ℜ

=
111000

000110

000001

1 uuD (11)

On the other hand, for Bézier diagonal curve the
resulting expression of (10) is

 () .

5.011000

5.000110

000001

1 ℜ

= uuD B
 (12)

As the matrices in (11) and (12) differ in the last
column only, the condition R11 = 0 must be fulfilled
for both Bézier and S-patch diagonals to be identical.

The same result we obtain for the diagonal curves
D2(u) and D2B(u).

 () ,

111000

102110

001011

2 ℜ

−
−−= uuD

 (13)

 () .

5.011000

5.002110

001011

2 ℜ

−−= uuD B

 (14)

Here the matrices in (13) and (14) also differ in the
last column only.

Just proved relations among the diagonal lines can be
formulated as the theorem below.

WSCG 2011 Communication Papers 203

a) b) c) d) e) f) g)

Figure 4. 5-element sets of control-points. a),b) – non independent, c)–g) independent sets.

Theorem 3. D1(u)= D1B(u) if and only if R11=0.
Moreover, equality of these diagonals automatically
implies the equality of D2(u)= D2B(u).

On the base of the Theorem 3 we can introduce
biquadratic BS-Patch, i.e. patch in the form as
follows

 () T

v

v

R

R

RRR

vuX vu

=
2

20

10

020100 1

00

00, . (15)

In this case mutual relations among Bézier control
points Pij (8) are reduced to

=

20

02

10

01

00

22

21

20

12

11

10

02

01

00

22222

20212

20202

02122

00112

00102

02022

00012

00002

2

1

R

R

R

R

R

P

P

P

P

P

P

P

P

P

. (16)

We can see that now the corner control points
(Fig. 4a)) are dependent,

 00022022 PPPP −+= .

It means that the corner control points create
rhomboids.

Similarly the quaternion of neighbour control points
(Fig. 4b)) is dependent too,

 00011011 PPPP −+= .

Examples of non independent and independent 5-
element sets of control points of BS-Patches are
presented in Fig. 4 c) – g). E.g. for independent
pentad from Fig. 4e) the rest of control points can be
represented as

11122122

11102120

11120102

11100100

PPPP

PPPP

PPPP

PPPP

−+=
−+=
−+=
−+=

. (17)

5. BS-PATCH AND BÉZIER
TRIANGLES

As both diagonal and boundary curves of BS-Patches
are Bézier curves, it is meaningful to analyze the
triangle patches. We shall demonstrate that there is a
very close connection between the Cartesian BS-
Patch and a pair of triangular Bézier patches. This
relation is formulated for the case n =2.

Let us consider triangular mesh of nodes

 nkjinkjiPijk =++≤≤ ,,,0

where nodes
222111

, kjikji PP are neighbour, if

 2212121 =−+−+− kkjjii .

Bézier triangular patch is defined as

 { }()
()
∑=∆

kji
ijk

kji
ijk Pwvu

kji

n
PwvuP

,, !!!
!

,,, (18)

where

nkjinkjiwvuwvu =++≤≤=++≤≤ ,,,0,1,1,,0 .

Let us consider quadratic BS-Patch defined on the set
of control points 2,0, ≤≤ jiPij . Let us consider

Cartesian and triangular indexing of these control
points according to Fig. 5.

a) b) c)

Figure 5. Cartesian a) and triangular b), c)
indexing of control nodes for n = 2.

WSCG 2011 Communication Papers 204

Theorem 4. BS-Patch defined on control points
2,0, ≤≤ jiPij is the same surface as the pair of

triangular Bézier patches, defined on the sets of
proper control points.

Proof. Let us use the independent set of control
points according to Fig. 4e). Solving proper
subsystem of (16)

=

20

02

10

01

00

21

12

11

10

01

20212

02122

00112

00102

00012

2
1

R

R

R

R

R

P

P

P

P

P

and inserting the solution into (15) we obtain

()
()

−+
−

−+−−+
=

002

002

22

112101

0111

1112101011111001

PPP

PP

PPPPPPPP

R
. (19)

Let us express triangular patch on the nodes

 P00, P01, P02, P10, P11, P20 – Fig. 5a).

Using the triangular indexing – Fig. 5b), we have

()

011101110

002
2

020
2

200
2

222

,,

vwPuwPuvP

PwPvPu

wvuP

+++
+++=

=∆

. (20)

Rewriting it to Cartesian indexes – Fig. 5a) we obtain

()

011011

00
2

02
2

20
2

222

,,

vwPuwPuvP

PwPvPu

wvuP

+++
+++=

=∆

.

Using (17) and excluding w, as vuw −−=1 leads to
the final form of triangle patch

()

() ()
() ().22

22

,,

111210
2

112101
2

10110111

111001

PPPvPPPu

PPvPPu

PPPwvuP

−++−++

+−+−+
+−+=∆

We have obtained the same relation as (19).

For the triangle defined on control points form
Fig. 5c) the process of proving is similar. Difference
is in used parametrization only: in (20) we use

()u−1 instead of u and ()v−1 instead of v.

For triangles with the diagonal defined on control
points 221100 ,, PPP in (20) we have to use

parametrizations () vu ,1− , ()vu −1, respectively.

QED.

Corollary. Just proved theorem gives us an important
generalizaton of the trivial fact that a bilinear patch

can be decomposed to two triangles iff the quaternion
of control points is planar.

6. SMOOTH CONCATENATION OF
BS-PATCHES

Let us consider 5-element set of independent control
points form Fig. 4e). Condition (17) says that the set
of control points creates four rhomboids – Fig. 6.
Here we can distinguish three types of control points:
‘central’, ‘crosswise’ and ‘dependent’.

Figure 6. Resulting geometry of control points for
BS-patch. Different types of control points are
distinguished: black – central one, dark –
crosswise ones, light – dependent ones.

Let us consider four general BS-patches – Fig. 7a).
The conditions for concatenation of the patches are
obvious – Fig 7b):

a=e, c=g, i=m, k=o, d=l, b=j, h=p, f=n.

This condition can be formulated more generally in
the following way.

a) b)

Figure 7. Concatenation of BS-patches.

a) Four independent BS-patches. b) Concatenated
BS-patches.

Let there are two open polylines

 ()nPPPP L2101 =Λ and ()mRRRR L2102 =Λ .

Let us consider the lattice of nodes

 ()mjniQ ji ≤≤≤≤= 0,0:,Λ

where

 .,
00 ,, PPRjiRRPji xyyyxxxx

ijji
−+=−+=

WSCG 2011 Communication Papers 205

a) b) c) d)

Figure 8. Smooth concatenation of BS-patches according to the steps a) – d) below.

Theorem 5. Surface is set of BS-Patches iff set of
control points is a lattice of polylines.

Moreover, if we demand smooth concatenation of
BS-Patches, edges b,h must be parallel. Similarly,
edges c,i must be parallel too. It means that the
quaternion of central control points from Fig. 7b)
creates the vertices of rhomboid.

Construction

Given two polylines

()nPPP L101 =Λ , ()mRRR L102 =Λ ,

given two sets

()110 ,,, −= nppp Lπ , ()110 ,,, −= mrrr Lρ , 1,0 << ji rp ,

we can construct smooth concatenation of BS-patches
according to the steps below.

a) We suppose that the central control points of
BS-patches create a lattice.

b) Crosswise control points can be found as a
ratio of neighbour central control points.

c) Dependent control points (corners of BS-
patches) are found according to the (17).

d) Concatenation consists of full-defined BC-
patches.

Fig. 8 illustrates the above described construction.

7. CONCLUSIONS
In the presented study we have described the Bézier
form of S-Patches in the biquadratic case.
• Dependencies among the control points are

derived.
• BS-Patches are introduced.
• Close relation between Bézier triangles and BS-

Patches is found.
• Condition for smooth concatenation of

biquadratic BS-Patches is formulated.
We can see that biquadratic BS-patches are very
convenient for mutual conversion between triangular
and quadrilateral patches. On the other hand, smooth
concatenation of such patches is ‘too rigid’ and
perhaps it is hardly used for the shape expression in
general case. Future work will be focused to

• more detailed analysis of relationship between
S-Patches and BS-Patches,

• patches of higher degree.

8. ACKNOWLEDGMENTS
This work is supported by the grant
GACR 105/09/1830 of the Grant Agency CR and
the research plan AVOZ 30860518 of the Academy
of Sciences of the Czech Republic.

REFERENCES
[Boc_09] Bocek, J., Kolcun, A.: Shading of Bézier

patches, in: GraVisMa 2009 workshop proc.
(V. Skala, D. Hildenbrand eds.) Univ. of West
Bohemia, Plzeň, 2009, pp. 126-129.

[Bru_80] Brueckner, I.: Construction of Bézier
points of quadrilateral forms those of triangles,
Computer-Aided Design 12,1(1980), pp. 21-24.

[Fen_99] Feng, J.Q., Peng, Q.S.: Functional
Compositions via Shifting Operators for Bézier
Patches and Their Applications, Chinese Journal
of Advaced Software Research, 10(1999), pp.
1316-1321.

[Far_86] Farin, G.E.: Triangular Bernstein-Bézier
patches, CAGD 3,2(1986), pp 83-127.

[Far_88] Farin, G.E.: Curves and Surfaces for
CAGD: A practical Guide, Academic Press, 1988.

[Gol_87] Goldman, R.N., Filip, D.J.: Conversion
from Bézier rectangles to Bézier triangles,
Computer-Aided Design, 19,1(1987), pp. 25-27.

[Hol_99] Holliday D.J., Farin, G.E.: A geometric
interpretation of the diagonal of a tensor-product
Bézier volume, CAGD 16(1999) pp. 837-840.

[Hu_96] Hu, S.M.: Conversion of a triangular Bézier
patch into three rectangular Bézier patches,
CAGD 18(2001) pp. 219-226.

WSCG 2011 Communication Papers 206

[Hu_01] Hu, S.H.: Conversion between triangular
and rectangular Bézier patches, CAGD 18(2001)
pp. 667-671.

[Lai_99] Lai, M.J., Schumaker, L.L.: On the Appro-
ximation Power of Splines on Triangulated
Quadrangulations, SIAM, 36,1(1999), pp.143-
159)

[Las_02] Lasser, D.: Tensor product Bézier surfaces
on triangle Bézier surfaces, CAGD 19(2002) pp.
625-643.

[Pup_11] Puppo E.: Quad meshes vs Triangle me-
shes: What is better?, Keynote lecture,

WSCG 2011. http://wscg.zcu.cz/WSCG2011/Pap
ers_2011/Puppo.htm

[Raz_05] Razdan, A., Bae, M.S.: Curvature Estima-
tion Scheme for Triangle Meshes Using
Biquadratic Bézier Patches, Computer-Aided
Design 37,14(2005) pp. 1481-1491.

[Ska_10] Skala, V., Ondračka, V.: S-Patch: Modi-
fication of the Hermite parametric patch, in
Conf.proc. ICGG 2010, Kyoto 2010.

WSCG 2011 Communication Papers 207

	H11-full.pdf
	H31-full.pdf
	H53-full.pdf
	I03-full.pdf
	I05-full.pdf
	I07-full.pdf
	I11-full.pdf
	I13-full.pdf
	I19-full.pdf
	I31-full.pdf
	I47-full.pdf
	I53-full.pdf
	I67-full.pdf
	Introduction
	Related Gait Databases
	The TUM-IITKGP Database
	Baseline Algorithms
	Baseline Algorithm using Color Histograms
	Baseline Algorithm based on Gait Energy Image
	Feature Extraction using GEI
	Feature Space Reduction
	Classification
	Implementation details

	Evaluation Method
	Results
	Conclusions
	Acknowledgments

	I97-full.pdf
	J03-full.pdf
	J07-full.pdf
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. Our algorithm
	2.1 Space division algorithm
	2.2 Synthesis of vertices in cluster
	2.3 Updating level for controlling the number of faces
	2.4 Storing the clustering information in a GPU
	2.5 Generating the simplified models

	3. Experiment and Results
	3.1 Experiment associated with processing time.
	3.2 Experiment associated with control-ling the number of faces

	4. Conclusions
	5. REFERENCES

	J11-full.pdf
	Introduction
	Problem geometry
	Existing techniques

	Methodology
	Original observation model
	Function approximation
	Grid mask
	Optimization

	Conclusion

	J19-full.pdf
	J23-full.pdf
	J31-full.pdf
	ABSTRACT
	1	Introduction
	2	State of the Art
	2.1 Real-time Rendering
	3	POV-Ray Architecture
	3.1 Ray Tracing
	3.2 Ambient Scene: Level 0 Rays
	3.2 POV-Ray's Surface Model
	3.3 Secondary Rays
	3.4 POV-Ray Lights
	3.5 Higher Level Rays
	4 Experiments
	4.1 Performance
	5	Conclusions
	Acknowledgements
	References

	J37-full.pdf
	J53-full.pdf
	J89-full.pdf
	K07-full.pdf
	K17-full.pdf
	K19-full.pdf
	K47-full.pdf
	K73-full.pdf

