140 research outputs found

    A telehealth system for Parkinson's disease remote monitoring. The PERFORM approach

    Get PDF
    This paper summarizes the experience and the lessons learned from the European project PERFORM (A sophisticated multi-parametric system FOR the continuous effective assessment and monitoring of motor status in Parkinson s disease and other neurodegenerative diseases). PERFORM is aimed to provide a telehealth system for the remote monitoring of Parkinson s disease patients (PD) at their homes. This paper explains the global experience with PERFORM. It summarizes the technical performance of the system and the feedback received from the patients in terms of usability and wearability

    Free-living monitoring of Parkinson’s disease: lessons from the field

    Get PDF
    Wearable technology comprises miniaturized sensors (e.g. accelerometers) worn on the body and/or paired with mobile devices (e.g. smart phones) allowing continuous patient monitoring in unsupervised, habitual environments (termed free-living). Wearable technologies are revolutionising approaches to healthcare due to their utility, accessibility and affordability. They are positioned to transform Parkinson’s disease (PD) management through provision of individualised, comprehensive, and representative data. This is particularly relevant in PD where symptoms are often triggered by task and free-living environmental challenges that cannot be replicated with sufficient veracity elsewhere. This review concerns use of wearable technology in free-living environments for people with PD. It outlines the potential advantages of wearable technologies and evidence for these to accurately detect and measure clinically relevant features including motor symptoms, falls risk, freezing of gait, gait, functional mobility and physical activity. Technological limitations and challenges are highlighted and advances concerning broader aspects are discussed. Recommendations to overcome key challenges are made. To date there is no fully validated system to monitor clinical features or activities in free living environments. Robust accuracy and validity metrics for some features have been reported, and wearable technology may be used in these cases with a degree of confidence. Utility and acceptability appears reasonable, although testing has largely been informal. Key recommendations include adopting a multi-disciplinary approach for standardising definitions, protocols and outcomes. Robust validation of developed algorithms and sensor-based metrics is required along with testing of utility. These advances are required before widespread clinical adoption of wearable technology can be realise

    Feasibility study of a wearable system based on a wireless body area network for gait assessment in Parkinson's disease patients

    Get PDF
    Parkinson’s disease (PD) alters the motor performance of affected individuals. The dopaminergic denervation of the striatum, due to substantia nigra neuronal loss, compromises the speed, the automatism and smoothness of movements of PD patients. The development of a reliable tool for long-term monitoring of PD symptoms would allow the accurate assessment of the clinical status during the different PD stages and the evaluation of motor complications. Furthermore, it would be very useful both for routine clinical care as well as for testing novel therapies. Within this context we have validated the feasibility of using a Body Network Area (BAN) of wireless accelerometers to perform continuous at home gait monitoring of PD patients. The analysis addresses the assessment of the system performance working in real environments

    Is the timed-up and go test feasible in mobile devices? A systematic review

    Get PDF
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.info:eu-repo/semantics/publishedVersio

    Mobile Phone Sensors Can Discern Medication-related Gait Quality Changes in Parkinson\u27s Patients in the Home Environment

    Get PDF
    Patients with Parkinson\u27s Disease (PD) experience daytime symptom fluctuations, which result in small amplitude, slow and unstable walking during times when medication attenuates. The ability to identify dysfunctional gait patterns throughout the day from raw mobile phone acceleration and gyroscope signals would allow the development of applications to provide real-time interventions to facilitate walking performance by, for example, providing external rhythmic cues. Patients (n = 20, mean Hoehn and Yahr: 2.25) had their ambulatory data recorded and were directly observed twice during one day: once after medication abstention, (OFF) and once approximately 30 min after intake of their medication (ON). Regularized generalized linear models (RGLM), neural networks (NN), and random forest (RF) classification models were individually trained for each participant. Across all subjects, our best performing classifier on average achieved an accuracy of 92.5%. This study demonstrated that smartphone accelerometers and gyroscopes can be used to distinguish between ON versus OFF times, potentially making smartphones useful intervention tools

    Identification of diseases based on the use of inertial sensors: a systematic review

    Get PDF
    Inertial sensors are commonly embedded in several devices, including smartphones, and other specific devices. This type of sensors may be used for different purposes, including the recognition of different diseases. Several studies are focused on the use of accelerometer for the automatic recognition of different diseases, and it may powerful the different treatments with the use of less invasive and painful techniques for patients. This paper is focused in the systematic review of the studies available in the literature for the automatic recognition of different diseases with accelerometer sensors. The disease that is the most reliably detectable disease using accelerometer sensors, available in 54% of the analyzed studies, is the Parkinson’s disease. The machine learning methods implements for the recognition of Parkinson’s disease reported an accuracy of 94%. Other diseases are recognized in less number that will be subject of further analysis in the future.info:eu-repo/semantics/publishedVersio

    Smart Technology for Telerehabilitation: A Smart Device Inertial-sensing Method for Gait Analysis

    Get PDF
    The aim of this work was to develop and validate an iPod Touch (4th generation) as a potential ambulatory monitoring system for clinical and non-clinical gait analysis. This thesis comprises four interrelated studies, the first overviews the current available literature on wearable accelerometry-based technology (AT) able to assess mobility-related functional activities in subjects with neurological conditions in home and community settings. The second study focuses on the detection of time-accurate and robust gait features from a single inertial measurement unit (IMU) on the lower back, establishing a reference framework in the process. The third study presents a simple step length algorithm for straight-line walking and the fourth and final study addresses the accuracy of an iPod’s inertial-sensing capabilities, more specifically, the validity of an inertial-sensing method (integrated in an iPod) to obtain time-accurate vertical lower trunk displacement measures. The systematic review revealed that present research primarily focuses on the development of accurate methods able to identify and distinguish different functional activities. While these are important aims, much of the conducted work remains in laboratory environments, with relatively little research moving from the “bench to the bedside.” This review only identified a few studies that explored AT’s potential outside of laboratory settings, indicating that clinical and real-world research significantly lags behind its engineering counterpart. In addition, AT methods are largely based on machine-learning algorithms that rely on a feature selection process. However, extracted features depend on the signal output being measured, which is seldom described. It is, therefore, difficult to determine the accuracy of AT methods without characterizing gait signals first. Furthermore, much variability exists among approaches (including the numbers of body-fixed sensors and sensor locations) to obtain useful data to analyze human movement. From an end-user’s perspective, reducing the amount of sensors to one instrument that is attached to a single location on the body would greatly simplify the design and use of the system. With this in mind, the accuracy of formerly identified or gait events from a single IMU attached to the lower trunk was explored. The study’s analysis of the trunk’s vertical and anterior-posterior acceleration pattern (and of their integrands) demonstrates, that a combination of both signals may provide more nuanced information regarding a person’s gait cycle, ultimately permitting more clinically relevant gait features to be extracted. Going one step further, a modified step length algorithm based on a pendulum model of the swing leg was proposed. By incorporating the trunk’s anterior-posterior displacement, more accurate predictions of mean step length can be made in healthy subjects at self-selected walking speeds. Experimental results indicate that the proposed algorithm estimates step length with errors less than 3% (mean error of 0.80 ± 2.01cm). The performance of this algorithm, however, still needs to be verified for those suffering from gait disturbances. Having established a referential framework for the extraction of temporal gait parameters as well as an algorithm for step length estimations from one instrument attached to the lower trunk, the fourth and final study explored the inertial-sensing capabilities of an iPod Touch. With the help of Dr. Ian Sheret and Oxford Brookes’ spin-off company ‘Wildknowledge’, a smart application for the iPod Touch was developed. The study results demonstrate that the proposed inertial-sensing method can reliably derive lower trunk vertical displacement (intraclass correlations ranging from .80 to .96) with similar agreement measurement levels to those gathered by a conventional inertial sensor (small systematic error of 2.2mm and a typical error of 3mm). By incorporating the aforementioned methods, an iPod Touch can potentially serve as a novel ambulatory monitor system capable of assessing gait in clinical and non-clinical environments

    Unsupervised home monitoring of Parkinson's disease motor symptoms using body-worn accelerometers

    Get PDF
    IntroductionCurrent PD assessment methods have inherent limitations. There is need for an objective method to assist clinical decisions and to facilitate evaluation of treatments. Accelerometers, and analysis using artificial neural networks (ANN), have shown potential as a method of motor symptom evaluation. This work describes the development of a novel PD disease state detection system informed by algorithms based on data collected in an unsupervised, home environment. We evaluated whether this approach can reproduce patient-completed symptom diaries and clinical assessment of disease state.Methods34 participants with PD wore bilateral wrist-worn accelerometers for 4 h in a research facility (phase 1) and for 7 days at home whilst completing symptom diaries (phase 2). An ANN to predict disease state was developed based on home-derived accelerometer data. Using a leave-one-out approach, ANN performance was evaluated against patient-completed symptom diaries and against clinician rating of disease state.ResultsIn the clinical setting, specificity for dyskinesia detection was extremely high (0.99); high specificity was also demonstrated for home-derived data (0.93), but with low sensitivity (0.38). In both settings, sensitivity for on/off detection was sub-optimal. ANN-derived values of the proportions of time in each disease state showed strong, significant correlations with patient-completed symptom diaries.ConclusionAccurate, real-time evaluation of symptoms in an unsupervised, home environment, with this sensor system, is not yet achievable. In terms of the amounts of time spent in each disease state, ANN-derived results were comparable to those of symptom diaries, suggesting this method may provide a valuable outcome measure for medication trials

    Towards a wearable system for predicting the freezing of gait in people affected by Parkinson's disease

    Get PDF
    Some wearable solutions exploiting on-body acceleration sensors have been proposed to recognize Freezing of Gait (FoG) in people affected by Parkinson Disease (PD). Once a FoG event is detected, these systems generate a sequence of rhythmic stimuli to allow the patient restarting the march. While these solutions are effective in detecting FoG events, they are unable to predict FoG to prevent its occurrence. This paper fills in the gap by presenting a machine learning-based approach that classifies accelerometer data from PD patients, recognizing a pre-FOG phase to further anticipate FoG occurrence in advance. Gait was monitored by three tri-axial accelerometer sensors worn on the back, hip and ankle. Gait features were then extracted from the accelerometer's raw data through data windowing and non-linear dimensionality reduction. A k-nearest neighbor algorithm (k-NN) was used to classify gait in three classes of events: pre-FoG, no-FoG and FoG. The accuracy of the proposed solution was compared to state of-the-art approaches. Our study showed that: (i) we achieved performances overcoming the state-of-the-art approaches in terms of FoG detection, (ii) we were able, for the very first time in the literature, to predict FoG by identifying the pre-FoG events with an average sensitivity and specificity of, respectively, 94.1% and 97.1%, and (iii) our algorithm can be executed on resource-constrained devices. Future applications include the implementation on a mobile device, and the administration of rhythmic stimuli by a wearable device to help the patient overcome the FoG
    corecore