
Discrete wavelet transform based freezing  
of gait detection in Parkinson's disease 
Article 

Accepted Version 

ElAttar, A., Ashour, A. S., Dey, N., Abdelkader, H., Abd El
Naby, M. M. and Sherratt, S. (2018) Discrete wavelet 
transform based freezing of gait detection in Parkinson's 
disease. Journal of Experimental and Theoretical Artificial 
Intelligence. ISSN 13623079 doi: 
https://doi.org/10.1080/0952813X.2018.1519000 Available at 
http://centaur.reading.ac.uk/78925/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work. 

To link to this article DOI: http://dx.doi.org/10.1080/0952813X.2018.1519000 

Publisher: Taylor & Francis 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/161258391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://centaur.reading.ac.uk/licence
http://www.reading.ac.uk/centaur


CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online



1 

 Full-Text version 

 

Title:  Discrete wavelet transform based freezing of gait detection in Parkinson's disease 

 

Authors:  

Amira El-Attar, Electronics and Electrical Communications Engineering, Faculty of Engineering, 

Tanta University, Egypt  

 

Amira S. Ashour, Electronics and Electrical Communications Engineering, Faculty of Engineering, 

Tanta University, Egypt 

 

Nilanjan Dey, Department of Information Technology, Techno India College of Technology, India 

 

Hatem Abd El-Kader, Faculty of Computers and Information, Minufiya University, Egypt 

 

Mostafa M. Abd El-Naby, Electronics and Electrical Communications Engineering, Faculty of 

Engineering, Tanta University, Egypt 

 

R. Simon Sherratt, Biomedical Engineering Department, University of Reading, RG6 6AY, UK  

 

 

Abstract: 

Wearable on body sensors have been employed in many applications including ambulatory monitoring and 

pervasive computing systems. In this work, a wearable assistant has been created for people suffering from 

Parkinson’s disease (PD), specifically with the Freezing of Gait (FoG) symptom. Wearable accelerometers were 

placed on the person’s body and used for movement measure. When FoG is detected, a rhythmic audio signal was 

given from the wearable assistant to motivate the wearer to continue walking. Long term monitoring results in 

collecting huge amounts of complex raw data; therefore, data analysis becomes impractical or infeasible resulting in 

the need for data reduction. In the present study, Discrete Wavelet Transform (DWT) has been used to extract the 

main features inherent in the key movement indicators for FoG detection. The discrimination capacities of these 

features were assessed using, i) Support Vector Machine (SVM) using a linear kernel function, and ii) Artificial 

Neural Network (ANN) with a two-layer feed-forward with hidden layer of 20 neurons that trained with conjugate 

gradient back- propagation. Using these two different machine learning techniques, we were capable of detecting FoG 

with an accuracy of 87.50% and 93.8%, respectively. Additionally, the comparison between the extracted features 

from DWT coefficients with those using Fast Fourier Transform (FFT) established accuracies of 93.8% and 81.3%, 

respectively. Finally, the discriminative features extracted from DWT yield to a robust multidimensional classification 

model compared to models in the literature based on a single feature. The work presented paves the way for reliable, 

real-time wearable sensors to aid people with PD.  
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1 INTRODUCTION 

 PD is a chronic neurological disease linked to a decrease in dopamine levels, which causes abnormal brain activity 
leading to the signs of PD. There are many symptoms of PD, such as tremor, slowed movement, loss of automatic 
movement, impaired posture and balance, and changes in speech and writing (Mazilu et al., 2015). Motor blocks, or 
freezing is the most widespread negative effect of PD that affects the patient's legs during walking, and is termed FoG 
(Bächlin et al., 2010). The FoG has serious clinical and social effects as it is a precursor in falls, overlaps with daily 
activities, and extremely impairs quality of life. People with PD can be pervasively monitored using sensors and can 
receive stimulation to resume walking. Such a sensor may be part of a new healthcare technology in the field of 
wireless communications and networking aimed at interconnecting ‘things’ over the Internet, enabling machine to 
machine communications, and connectivity for the Internet of Things (IoT) (Sutagundar, & Hatti, 2017). 

Research on PD has been very popular and attracts several researchers. Zabaleta et al. (2009) presented a method for 
detecting FoG using sensors to obtain 3-dimentional acceleration and 2-dimentional angular velocity to monitor the 
movements of shank, foot and thigh. Changes in the Power Spectral Density (PSD) in normal walking and freezing 
were determined using Short Time Fourier Transform (STFT). A freeze index (FI) has been employed as a 
classification variable using a linear classifier. The best classification results were obtained with a freeze index 
obtained from the horizontal axis acceleration of the heel, resulting in 82.7 % of valid FoG events being correctly 
detected. Moore et al. (2008) measured the left shank vertical acceleration over 6 second signal intervals for 11 people 
with PD, and analyzed the power spectra. During the FoG there are high leg movement’s frequency components 
ranging from 3 to 8 Hz, which do not appear in the normal walking or standing. Moore et al. recognized the FI of the 
FoG offline, where the FI is calculated by dividing the power in the freeze band ranging 3–8 Hz by the no freezing 
power band ranging 0.5–3 Hz. A freeze threshold of the FI values is used in this work to detect the FoG, which is 
recognized above this threshold as a FoG event. 

For assisting the PD patients, Bächlin et al. (2010) implemented a wearable device to monitor the FoG symptom. An 
analysis of the inherent frequency components in the movements has been used to automatically detect the FoG. The 
leg’s motion has been sampled at 64 Hz using a rectangular window function of 4 seconds window length and 0.5 
seconds steps. A 256 FFT points have been calculated in order to determine the PSD. The results of FoG detection 
established sensitivity and specificity of 73.1% and 81.6% values, respectively. Mazilu et al. (2013) compared the 
performance of using several feature extraction approaches based on statistical/time-domain features for the detection/ 
prediction of the FoG cases. Rezvanian and Lockhart (2016) identified the FoG using Continuous Wavelet Transform 
(CWT). The authors proposed an index from the CWT components, which discriminated the FoG in anterior posterior 
axis. A 2 seconds window size provided specificity and sensitivity of values 77.1% and 82.1%, respectively. 
Accordingly, the FoG detection techniques can be categorize into two main methods, namely FoG detection based on 
the freezing index with threshold algorithms and machine learning based FoG detection techniques. A wearable 
assistant has been proposed in practice to monitor people with PD for FoG detection (Jha, 2016). There are many data 
reduction techniques, including dimensionality reduction, and data compression (Han et al., 2011).  Furthermore, 
DWT has been applied as a type of data reduction.  

Accordingly, the foremost contribution of the current study is to apply DWT for feature extraction and data reduction 
as follows: 1) apply feature extraction approaches by using DWT to extract the main features, and 2) use ANN and 
SVM machine learning techniques to improve automated classification accuracy in order to distinguish between 
freezing and non-freezing events (Obaidullah et al., 2013). The discriminative features can then be used to build a 
more robust classification model than the models based on a single feature presented in the literature (Bibicu et al., 
2013). The current work employed features of the sensor’s data that can be used to distinguish between the occurrence 
of FoG from normal walking, so the FoG detection problem can be formulated as two class classification problems, 
namely true FoG versus a no freezing event (e.g. walking, standing or turning). 

 

2 METHODOLOGY 

2.1 Data set 

The used dataset was recorded for many freezing events, which is available at 
https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait. It was acquired by using wearable device that 
combines 3-dimentional accelerometers placed on the ankle (shank), above the knee on the thigh, and on the hip. The 
movements are sampled at 64Hz, where the data is transmitted over a Bluetooth link for further processing. People 
with PD were asked to perform many tasks including walking in straight line, walking with many turns, perform 
number of the activities of everyday living, where patients went into several rooms while opening doors, fetching 
drinks, and other daily activities. Data was recorded for ten people over an 8 hrs and 20 min period. In the 
experiments, eight patients had FoG and two patients did not experience any freezing events. 

    The dataset contains ten files for ten patients collecting the time of each sample, the horizontal (forward), horizontal 
(lateral) and vertical acceleration for each of the 3 sensors (ankle, thigh and hip), and annotations of ‘0’ for not part of 

https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait
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experiment, ‘1’ for no freeze event and ‘2’ for a freeze event. The vertical acceleration of the sensor at the ankle 
(shank) was used in this work as in Bächlin et al. (2010). Subsequent feature selection and extraction was needed for 
each patient to distinguish between the freeze and no freeze events. 

2.2 Freezing of gait feature extraction 

    The main features of both FoG and normal movements must be extracted in order to distinguish between them. The 
used feature extraction approach aims to construct the representation of the data in a subspace with a reduced 
dimension (Webb, 2003).  Pattern recognition machine itself does not directly operate on the raw sensor data. Instead, 
firstly, a representation of data is built in terms of feature variables and then classification is performed. In addition, 
for efficient classification, the used features should be with high information content. In this article, the DWT is used 
as a data reduction technique applied to the raw sensor data. 
The DWT is a linear signal processing technique, where the data vector is transformed to a wavelet coefficients’ 
vector of the same length. The main advantage of DWT is its availability to truncate the transformed data to extract 
the most significant wavelet coefficients, which also reduced the data dimensionally and compress the data by 
replacing the other coefficients by zero. The representation of the resultant data is therefore very sparse. Thus, the 
operations in the wavelet space becomes computationally efficient, which enables DWT to build a robust 
multidimensional classification model compared to any other transforms which provided single feature. Moreover, 
DWT is useful in the applications that based on the analysis of time-series data. These characteristics lead to the 
superiority of using DWT in long time monitoring of the PD individuals as it creates a large amount of data and 
subsequently needs data reduction while keeping the integrity of the original data. The original data approximation of 
can be reconstructed by performing the inverse DWT for the given set of coefficients (Han et al., 2011).  
The DWT is evaluated at translations and discrete scales. The discrete scale is stated as 0

is s with an integer ‘i’, and 
fixed dilation step (

0 1s  ). In addition, the discrete translation factor 0 0

ik s  with a translation that depends on the 
dilation step 0

is is used. The resulting discrete wavelets are: 

 

/2 /2

, 0 0 0 0 0 0 0( ) ( ( )) ( )i i i i i

i kw t s h s t k s s h s t k           (1) 

    

The wavelet coefficients are a sequence of the approximation and detail coefficients. The low frequency components 
of the signal (high scale) are the approximations, and the high frequency components (low scale) are the details. The 
most basic level of the filtering process is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 The filtering process for wavelet coefficients 

 
       The features can be extracted using DWT from raw sensor data. The basic feature extraction steps are, i) 
decomposing the signal using DWT to obtain the approximation and detailed coefficients using filtering process, and 
ii) using the approximate and detail coefficients of DWT to extract the features. The extracted features from the DWT 
coefficients of the raw sensor data are considered useful features for input into classifiers. The extracted features from 
the signal are as follows: 

Signal 
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1) The mean, which is the average value of the DWT coefficients that computed once for approximate coefficients 
and another for detail coefficients. It can be expressed as: 

1

1 n

i

i

x x
n 

 
  
 

             (2) 

where x  is the mean, x  is a sequence of coefficient, n  is the number of the coefficients sequence. 

 

2) The variance, which is a measure of the spread of data in a data set, which is given by: 

2

1

1
( - )

-1

n

i

i

V x x
n 

                              (3) 

3) The mean of energy, which is given by: 

2

1

1 n

i

i

E x
n 

 
  
 

                      (4) 

4) The maximum amplitude, which is defined as the maximum value of the sequence of coefficients. 

5) The minimum amplitude which is defined as the minimum value of the sequence of coefficients. 

6) The mid-frequency, which is the obtained frequency value when the power spectral density is at the maximum 
value. 

7) The maximum energy, which is the highest energy value obtained from the sequences of coefficients. 

8) The minimum energy, which is the lowest energy value obtained from the sequences of coefficients. 

     Each feature is calculated for both approximate and detail coefficients for freeze and no freeze events, the 
significant features which are giving good discrimination of the two classes (freeze and no freeze) that considered as 
the main parameters will be tabulated and analyzed for classification. 

 

2.3 Detection of gait 

    From each signal, the selected extracted features were used as input to ANN and SVM according to their popularity 
(Saba et al., 2016) to classify data based on their extracted statistical information or prior knowledge from the raw 
data (Karamizadeh et al., 2014). SVM classifies by finding a decision boundary, also referred to as a hyper-plane. 
SVM searches for maximum marginal hyper-plane, where the hyper-plane with a large margin can classify more 
accurately than that with smaller one. Support vector points are the data points that lie on the margin and the linear 
combination of only these points is represented the solution (Kotsiantis et al., 2007). Comparing ANN to SVM, the 
sequential training procedures is the essential characteristic of ANNs that gives it the ability to learn complex 
nonlinear input/output relations with adapting according to the data. The proposed PD detection technique is shown in 
Algorithm 1 that is explained in detail in the next section. 
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Algorithm 1 :PD detection 

Start 

       Read vertical acceleration of the sensor at   

                  ankle Pi (: ,3) = S 

      Read annotation Pi ( : , 11) 

      if annotation=2 then 

          S= freeze 

      else if annotation =1 then 

           S= no freeze 

     Compute DWT for S 

    Display  DWT coefficients (CAF , CDF )     

                   for freezing & (CANF , CDNF  )     

                   for no freezing 

     Compute features for all DWT coefficients 

      Set  a target value 0 for freeze & 1 for no     

             freeze 

      Apply the computed features and target to   

                 ANN  

     Train the network to classify the inputs according to the 

target using scaled  conjugate gradient back-propagation 

     Detecting of freezing cases 
End 
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2.4 Proposed system 

    In the current work, a dataset was created to host the signals captured from the wearable on body sensors in the 
experiments. The dataset is for post processing in order to test several classification algorithms to detect PD FoG. 
Nine signals were acquired from the three sensors; each signal contains freezing and no freezing events. As compared 
to the literature (Bächlin et al., 2010), the vertical acceleration of the sensor at the ankle (shank) was used, which has 
been shown to give the best result in FoG detection. The Dataset contains ten files for ten patients, where 8 patients 
out of ten exhibited FoG during the study, the data of 8 patients is used to separate freezing and no freezing events, to 
apply DWT to each case for data reduction and then extract the main features from the DWT coefficients in order to 
distinguish between the two classes of freeze and no freeze. The primary steps of the proposed system are, i) data 
acquisition, ii) apply DWT, iii) feature selection, and finally iv) feature extraction and classification, as shown in 
Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Proposed system block diagram 

    

 Firstly the approximate and detail coefficients, CA and CD are computed for each signal as shown in Figure 3. 
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Figure 3 Approximate and detail coefficients for freezing and no freezing signals 

 

    There are eight features extracted (as discussed in section 2.2) from the DWT coefficients, but only five significant 
features were finally used being the Variance, Maximum amplitude, Minimum amplitude, Maximum energy and 
Minimum energy. The feature vector is built with 16 samples to train and test the ANN and the SVM classifiers. 

2.5 Evaluation metrics 

     Nine metrics are measured to evaluate the proposed method, where the assessment of the classifier accuracy 
performance was computed by using the confusion matrix (Altman, & Bland, 1994). In addition, in order to check the 
quality of classifiers, the Receiver Operating Characteristic (ROC) curve has been used being a comparison of two 
operating characteristics, the True Positive Rate (TPR) and the False Positive Rate (FPR) (Swets, 2014). The closer 
each curve is to the left and top edges of the plot, the better the classification. The following metrics for the binary 
classification in the present study are calculated from the confusion matrix: 

1) Sensitivity (TPR) is also known as the true positive rate, or probability of detection. It is used to identify the 
classification accuracy. The sensitivity of the test is defined as the ratio between the individuals who have positive test 
results for the disease and those who have the disease, which is given by:                             

  

     (5) 

 

where TP is the number of true positive cases, P is the number of real positive cases in the data, and FN is the number 
of false negative cases. 

2) Specificity (TNR), also called the true negative rate. In a medical test, it is the ratio between healthy patients known 
not to have the disease and who will test negative for it, which is given by: 

 

              (6)
                    

where TN is the number of true negative cases, N is the number of real negative cases in the data, FP is the number of 
false positive cases. 

3) Precision, or Positive Predictive Value (PPV) is the ratio of true positives to combined true and false positives, 
which is given by: 

TP TP
TPR

P TP FN
 



TN TN
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N TN FP
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TP
PPV

TP FP



           (7) 

4) Negative Predictive Value (NPV) is the ratio of true negative to combined true and false negatives, which is given 
by: 

TN
NPV

TN FN



                  (8) 

5) Miss rate, or False Negative Rate (FNR) is the ratio between the false negative cases and the real positive cases in 
the data, which is given by: 

        
1-

FN
FNR TPR

P
 

     

                        (9) 

6) Fall out, or False Positive Rate (FPR) is the ratio between the false positive cases and the real negative cases in the 
data, which is given by: 

           1-
FP

FPR TNR
N

                                  (10) 

7) False Discovery Rate (FDR) is the ratio of the false positives to combined true and the false positives which is 
given by: 

                1-  
FP

FDR PPV
FP TP

 
         

                             (11) 

8) False Omission Rate (FOR) is the ratio of false negatives to combined true and false negatives which is given by: 

1-  
FN

FOR NPV
FN TN

 


                    (12) 

9) Accuracy (ACC) refers to the ability to differentiate the diseased patient and the healthy cases correctly. In a 
medical test, the accuracy of a test is the proportion of the cases correctly identified as patient and the cases correctly 
identified as healthy in all evaluated cases, which is given by: 

TP TN TP TN
ACC

P N TP TN FP FN

 
 

   
                               (13) 

3 RESULTS AND DISCUSSION 

    In this paper, the vertical acceleration signal of the sensor at the ankle (shank) from dataset in section 2.1 had been 

used. As the performance of using different types of classifiers for FoG detection of PD patients using the features 

extracted from DWT coefficients was analyzed. Then, we compared the performance of using features extracted from 

FFT coefficients and extracted from DWT coefficients. 



9 

3.1 Performance metrics using the ANN and SVM 

     Figure 4 illustrates the signal of the vertical axis of the sensor at the ankle the PD patient, freezing signal and no 
freezing signal and the corresponding DWT coefficients of them. 

 
Figure 4 Signal of vertical axis of the sensor at the ankle 

 

     Figure 5(a) shows the freezing signal, which explains the movement of the patient at the freezing event. Figure 5 

(b) and (c) shows the DWT approximate and detail coefficients of this signal, respectively. In addition, Figure 6 

illustrates the no freezing signal and the approximate/ detail coefficients.  

      

 
(a) 

 
(b) 
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(c) 

Figure 5 a) Freezing signal, b) Approximate coefficient, c) Detail coefficient 

 

 
(a) 

 

 

 
(b) 
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(c) 

Figure 6 a) No freezing signal, b) Approximate coefficient, and c) Detail coefficient 

 

     Figure 6(a) shows the no freezing signal, which explains the normal movement of a patient and when DWT taken 

to this signal, while Figure 6-b and 6-c show the form of the approximate and detail coefficient, respectively. The 

figures illustrate a great difference between the coefficients for freezing and no freezing, thus, we extract the features 

from these coefficients. The variation of the eight features as explained in section 2.2 with respect to each classes are 

analyzed and only five features are used which given faithful information. These features are the variance, maximum/ 

minimum amplitudes, maximum/ minimum energies. The average values of the significant features are calculated and 

plotted in graphs. The average feature values for the two classes in the y- axis and the class in the x-axis as (F mean 

freeze) and (NF mean no freeze) is shown in the following graph as Figure 7(a) through (e). Furthermore, Figure 7(a) 

shows that the variance has greater values in freezing than in no freezing.  

 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 

 
(e) 

 

Figure 7 Illustrates the variation of (a): variance for two classes, (b) maximum amplitude for two classes, (c) 

minimum amplitude for two classes, (d) maximum energy for two classes, and (e) minimum energy for two classes 

 

  In Figure 7, the features give a clear difference between the freezing and no freezing, which are considered the main 

features to distinguish between the two classes. Figure 7(b) illustrates the variation of maximum amplitude is 

considered the significant feature to distinguish between the two classes as there is a difference in the values of 

freezing and no freezing. Figure 7(c) shows that the minimum amplitude has smaller values in freezing than in no 

freezing. This feature gives a clear difference between the freezing and no freezing, so it is considered the significant 

feature to distinguish between the two classes. Figure 7(d) shows that the variation of maximum energy gives a clear 

difference between the freezing and no freezing, so it is considered the significant feature to distinguish between the 

two classes. Figure 7(e) demonstrates that the variation of minimum energy gives a clear difference between the 

freezing and no freezing, so it is considered the significant feature to distinguish between the two classes. 

 

  In the present work, a two layer feed forward ANN with 20 neurons in its hidden layer was used. The network was 

trained with the default Scaled Conjugate Gradient back-propagation. As the extracted features applied to the network, 

the input was a 10 × 16 matrix and the target was a 1× 16 matrix with ‘0’ for freezing and ‘1’ for no freezing. The 

input vectors and target vectors were divided randomly into three sets, namely 70% for training, 15% for validation, 

and the last 15% were used for testing. The network response is analyzed by a display of the confusion matrix that 

displays various types of errors that occurred for the final trained network. The accuracy was 93.8 % as shown in the 

confusion matrix in Table 1. 
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Table 1: Confusion matrix of ANN using DWT coefficient 
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50.0% 
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6.3% 

1 0 

                                                              Target Class 

 

Table 1 reports that the sensitivity, specificity, precision or PPV, and NPV of the ANN in the proposed method have 

the values of 100%, 87.5%, 88.9%, and 100%; respectively. Furthermore, the FNR, FPR, FDR, FOR and the ACC 

have values of zero, 12.5%, 11.1%, zero, and 93.8%; respectively. These all metrics are explained in Table 2. The 

Receiver Operating Characteristic (ROC) of ANN using DWT coefficients is shown in Figure 8. 

 

 

Table 2 Evaluation metrics using DWT coefficient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performance Metric Metric value using DWT 

Sensitivity 100% 

Specificity 87.5% 

Precision 88.9% 

NPV 100% 

FNR 0% 

FPR 12.5% 

FDR 11.1% 

FOR 0% 

ACC 93.8% 
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Figure 8 ROC of ANN using DWT coefficients 

 

     The extracted features were then applied to the SVM classifier to train the SVM classifier using a linear kernel 

function. The SVM achieved 87.50 % accuracy. The performance of the two classifiers is reported in Table 3. Table 3 

establishes that the accuracy obtained using the ANN is higher than the obtained value using the SVM. Consequently, 

the ANN was used for the remaining elements of the current study. 

 

Table 3 The performance of ANN & SVM using DWT coefficients 

 

Classification accuracy (%) Classifier 

93.80 ANN 

87.50 SVM 

 

3.2 Comparison between using DWT and FFT 

    An FFT was applied to the freezing and no freezing signals to compute the same features extracted from DWT 
coefficients, namely variance, maximum amplitude, minimum amplitude, maximum energy, and minimum energy. 
Then, a two layer feed-forward ANN was applied with 20 neurons in its hidden layer. The network was trained with 
the default scaled conjugate gradient back propagation method. The extracted features were then applied to the 
network which has the following structure 5×16 input and 1×16 at the output (target) layer. The accuracy of detecting 
FoG, or distinguishing between freezing and no freezing was 81.3 % as shown in confusion matrix in Table 4.  

 
Table  4: confusion matrix of ANN using FFT coefficient 
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The confusion matrix in Table 4 established that the sensitivity, specificity, precision, or PPV and NPV of the ANN 
using FFT coefficient are 75.0%, 87.5%, 85.7% and 77.8%, respectively. Furthermore, the FNR, FPR, FDR, FOR and 
the ACC have values of 25.0%, 12.5%, 14.3%, 22.2% and 81.3%, respectively. These all metrics are explained in 
Table 5. 

 

Table 5 Evaluation metrics using FFT coefficient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

The ROC of ANN using FFT coefficients is shown in Figure 9. 

 

 

 

 
Figure 9 ROC of ANN using FFT coefficients 

 

 

The performance of using features extracted from FFT coefficients and extracted from DWT coefficients is reported 

in Table 6.  

 

Table 6 The performance of DWT versus FFT 

Accuracy (%) Extracted feature 

using 

93.80 DWT 

81.30 FFT 

    

 

The DWT is used to extract five features from the approximate coefficients and another five features from the detail 

coefficients concluding a total of ten extracted features. These features are used further with the ANN and provided 

efficient results. However, using FFT provided only 5 features, which applied also to ANN. The comparative study of 

the performance accuracy of using DWT versus FFT depicted that DWT achieved about 93.8% accuracy, while FFT 

Performance Metric Metric value using FFT 

Sensitivity 75% 

Specificity 87.5% 

Precision 85.7% 

NPV 77.8% 

FNR 25% 

FPR 12.5% 

FDR 14.3% 

FOR 22.2% 

ACC 81.3% 
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achieved 81.3% due to the more extracted significant features. Thus, DWT enables to build a robust multidimensional 

classification model compared to the one based on FFT. 

 

3.3 Comparison with related studies 

   The performance of using different types of classifiers for the FoG detection was analyzed for evaluated using the 

dataset of eight patients by extracting the features using DWT coefficients. This proposed method achieved much 

higher sensitivity and specificity values compared to the studies in (Bächlin et al., 2010) and (Rezvanian, & Lockhart, 

2016), which used the same dataset. Bächlin et al. (2010) used FFT to extract the PD information from the frequency 

domain of the acceleration signal to detect FoG cases. This was realized by analyzing the frequency components 

inherent in these movements and the FoG was detected using a freeze index and threshold algorithm. This system 

detected the FoG events with 73.1% and 81.6% values of the sensitivity and specificity, respectively. Furthermore, 

Rezvanian and Lockhart (2016) used CWT for features extraction from the acceleration signal, which provided 

information in both the frequency and time domains and defined an index for identifying the FoG. This method 

achieved 82.1% and 77.1% values of the sensitivity and specificity, respectively. 
However, the previous systems in the literature depended on only a single feature, the freeze index, the proposed 
system in this paper has used five features extracted from DWT coefficients (for both approximate and detail),  which 
were then input to the ANN and SVM machine learning techniques to distinguish between freezing and not freezing 
event. A comparison of the three systems using sensor placed at shank are reported in Table 7. 

 

Table 7 Comparison between proposed and other systems 

Work Dataset Feature and method sensitivity Specificity 

Bächlin et al. 

(2010) 

The same dataset used 

in these three studies. 

3 accelerometer 

sensors placed at the 

ankle (shank), on the 

thigh just above the 

knee, and on the hip 

capable of measuring 

3D acceleration of the 

movement. 

   The data were 

recorded in 8h and 20 

min, for ten patients, 

eight patients exhibited 

FOG during study and 

two did not have any 

freeze events. 

Use FFT, freeze index 

and threshold 

algorithm to detect 

FoG 

73.1% 81.6% 

Rezvanian and 

Lockhart (2016) 

Use CWT and novel 

FoG index to detect 

FoG 

82.1% 77.1% 

Proposed 

system using 

the DWT and 

ANN 

Use DWT and extract 

many features and use 

machine learning 

method to detect FoG 

100% 87.5% 

      

 

Table 7 indicates that the use of machine learning techniques, primarily the ANN significantly improve the automated 

classification accuracy, as the discriminative features extracted from DWT to build a significantly more robust 

multidimensional classification model than the models based on a single feature in the literature. Due to the 

superiority of the proposed method, it is recommended to detect the FOG using the proposed extracted features with 

other classifiers (Hore et al., 2016; Dey,& Ashour, 2016; Wang et al., 2016; Sharma, & Virmani, 2017; Ahmed et al., 

2017; Li et al., 2017; Hemalatha, & Anouncia, 2017; Sghaier et al., 2018).   
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4 CONCLUSIONS 

 

     This paper has presented a novel and improved system for freezing of gait detection in people with PD. The system 

uses DWT and ANN to distinguish between the occurrence of freezing and no freezing events. The paper has 

demonstrated that a combination of features including variance, maximum amplitude, minimum amplitude, maximum 

energy and minimum energy, enables the extraction of information about the signals. 

     The results established the ability of the proposed system to detect FoG events with sensitivity and specificity of 

100% and 87.5%, respectively, with significantly improved performance compared to other systems in the literature 

of 73.1% and 81.6% (Bächlin et al., 2010) and 82.1% and 77.1% (Rezvanian and Lockhart, 2016), respectively. 

Additionally, the results demonstrated that features extracted from DWT coefficients provided higher accuracy of 

freezing event detection than features extracted from FFT coefficients with resulting accuracy of 93.8% and 81.3%, 

respectively. Therefore, the system performance using ANN classifier was superior compared to using a freezing 

threshold used in previous work. Furthermore, extracted features from DWT coefficients gave higher detection 

accuracy than the features extracted from FFT coefficients. Generally, the use of machine learning techniques 

improves the automated classification accuracy, as the discriminative features extracted from DWT build a more 

robust multidimensional classification model than the models based on a single feature, and paved the way for simple 

and reliable wearable devices to aid PD. 

 Future studies can be conducted on other types of classifiers as imbalance classifier. Those classifiers can combine 

also all the signals from the three sensors put on ankle, on the thigh and on the hip then extract features from this 

combined signal. Also, we can extend our work by using deep neural network for FoG detection and use another type 

of transformation. A comparative study with other types of classifiers, such as the K- NN for detecting the FoG can be 

conducted. Predict the FoG before its occurrence and use the freeze index with other extracted features. In addition, 

since the freezing index is a proportion between the power in the freezing band [3–8 Hz] and the power in the 

locomotion band [0.5–3 Hz]. It is recommended in the future work to use the freeze index along with other extracted 

features during the classification process. Furthermore, since the main advantages of DWT include its ability for data 

reduction and its efficiency in several applications that based on time-series data analysis. These advantages are 

suitable to handle the long time monitoring of individuals having PD as large amount of data are acquired from the 

sensors and subsequently data reduction becomes essential needs while keeping the integrity of the original data. 

Accordingly, it is recommended to use several transform domains and compare with the use of DWT in the future 

work. 
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