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Introduction 

Current PD assessment methods have inherent limitations. There is need for an objective 

method to assist clinical decisions and to facilitate evaluation of treatments. Accelerometers, 

and analysis using artificial neural networks (ANN), have shown potential as a method of 

motor symptom evaluation. This work describes the development of a novel PD disease 

state detection system informed by algorithms based on data collected in an unsupervised, 

home environment. We evaluated whether this approach can reproduce patient-completed 

symptom diaries and clinical assessment of disease state. 

Methods 

34 participants with PD wore bilateral wrist-worn accelerometers for 4 h in a research facility 

(phase 1) and for 7 days at home whilst completing symptom diaries (phase 2). An ANN to 

predict disease state was developed based on home-derived accelerometer data. Using a 

leave-one-out approach, ANN performance was evaluated against patient-completed 

symptom diaries and against clinician rating of disease state. 

Results 

In the clinical setting, specificity for dyskinesia detection was extremely high (0.99); high 

specificity was also demonstrated for home-derived data (0.93), but with low sensitivity 

(0.38). In both settings, sensitivity for on/off detection was sub-optimal. ANN-derived values 

of the proportions of time in each disease state showed strong, significant correlations with 

patient-completed symptom diaries. 
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Conclusion 

Accurate, real-time evaluation of symptoms in an unsupervised, home environment, with this 

sensor system, is not yet achievable. In terms of the amounts of time spent in each disease 

state, ANN-derived results were comparable to those of symptom diaries, suggesting this 

method may provide a valuable outcome measure for medication trials. 
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1. Introduction 

Parkinson's Disease (PD) is a progressive, neurodegenerative dis-order characterised by 

motor symptoms, including tremor, rigidity and bradykinesia. With prolonged levodopa 

therapy, dyskinesia and motor fluctuations may develop [1]. The fluctuations of motor 

symptoms in PD make quantification of symptoms challenging. Current gold-standard 

assessment methods include clinical rating scales, most notably the Unified Parkinson's 

Disease Rating Scale (MDS-UPDRS) [2]. Whilst the MDS-UPDRS has undergone rigorous 

clinimetric validation, it remains time consuming to complete, and cannot feasibly be 

incorporated into routine practice. Patient-completed symptom diaries are also commonly 

used to evaluate patients' motor symptoms, but patient concordance with home diaries can 

be poor and entries are often not made contemporaneously [3]. Diary validity may be further 

compromised by incorrect disease state recognition [4], or by failure to recognise dyskinesia 

[5]. Furthermore, cognitive impairment has high prevalence within PD [6] and thus recall 

problems may adversely affect diary completion. Consequently, there is great need for an 

objective method of motor symptom assessment in PD. 

Quantitative assessment of PD symptoms using body-sensors is increasingly recognised [7-

9], yet the majority of work in this field has, thus far, focussed on gait [10]. Home monitoring 

of motor symptoms, using body-worn sensors, may enable more informed treatment 

decisions to be made, and development of such measures has been identified as a key 

research area for the PD community [11]. Such technology may provide a novel outcome 
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measure for evaluation of new treatments [12]. The ability of body-worn sensors to 

accurately detect bradykinesia [13,14], tremor [14-16] and dyskinesia [17-22] has previously 

been shown. There are however, a number of limitations to the research thus far. In some 

instances the equipment employed has been bulky, with the potential to impair human 

movement [18]. Much of the work has required participants to remain stationary throughout 

the monitoring period [15,16,19], thus precluding use of the technology in an unsupervised 

home monitoring environment. Previously, study participants have been asked to perform a 

set of scripted activities of daily living (ADL), whilst being monitored in a laboratory setting 

[14,17,20-23] - thus findings may not be directly applicable to unconstrained naturalistic 

settings like the home. More prolonged monitoring in a home environment has been 

undertaken [13,22] - however both studies failed to employ an alternative assessment 

method (e.g. symptom diaries) against which sensor findings could be validated. 

Furthermore, the symptom-detection algorithms underpinning both studies were derived 

from laboratory-based assessments, where patients performed predefined tasks whilst being 

monitored - again limiting their applicability to unsupervised home monitoring. 

Artificial Neural Networks (ANN) are a type of probabilistic, para-metric model that consist of 

a large number of simple computational units arranged in a directed, layered structure [24]. 

ANN are capable of performing multifactorial analyses and have shown promise as 

analytical methods within the field of human biology [25]. The use of ANN in PD symptom 

measurement has been explored by a number of groups, with moderate success 

demonstrated for detection of dyskinesia [17,23] and on/off disease states [26], albeit with 

data collection in controlled, ‘supervised’ environments. 

If body-worn sensors are to provide a viable home symptom monitoring system for PD 

patients, greater consideration must be given to the ecological validity of data informing the 

symptom detection algorithms. This work describes the development of a novel PD disease 

state detection system that is informed by symptom detection algorithms based on human 

movement data collected in an unsupervised, home monitoring environment. In this work we 
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investigate whether wrist-worn accelerometers, and data analysis with ANN, can reproduce: 

(a) Patient-completed symptom diaries during prolonged periods of unobserved home 

monitoring; (b) Clinician assessment of PD patients' disease state during periods of 

observation in a clinical environment. 

 

2. Methods 

2.1. Ethical approval 

This study was given a favourable ethical opinion by County Durham and Tees Valley 

Research Ethics Committee. 

2.2. Subjects and recruitment 

34 participants were recruited. All provided informed written consent. Participants were 

recruited from patients under the care of the Northumbria Healthcare NHS Foundation Trust 

PD service. Patients fulfilling the following inclusion criteria were recruited: Aged >18 years; 

Diagnosis of idiopathic PD (United Kingdom Brain Bank Criteria); Hoehn and Yahr stages I-

IV; Not significantly cognitively impaired (Mini-mental State Examination of >24); and taking 

immediate-release levodopa medication. Patient recruitment in this study aimed to include a 

range of motor disability, including a proportion of people with dyskinesia and motor 

fluctuations. 

2.3. Body-worn sensor 

The sensors employed in this study were the Axivity AX-3 [27] - a waterproof, tri-axial 

accelerometer attached via an adjustable Velcro strap (total weight 35 g). The sensor can 

continuously sense for 12 days without recharging. Participants wore a sensor on each wrist 

for both study phases. The acceptability of prolonged, continuous wearing of these sensors, 

has previously been demonstrated [28]. 

Phase 1: Participants attended Newcastle University's Clinical Ageing Research Unit 

(CARU) and wore the sensors continuously for four hours. Participants were instructed to 
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hold all antiparkinsonian medication after 10 pm on the evening preceding their attendance 

and thus attended in the ‘off disease state. All assessments began at 0900, but due to 

variations in treatment regimens the period of time that participants were off medication for 

was variable. During phase 1 participants were free to move around the department and to 

undertake unscripted ADLs. During their attendance at the clinic all participants underwent a 

complete MDS-UPDRS assessment. At hourly intervals participants underwent a clinical 

examination using a selection of MDS-UPDRS part III items assessing upper limb 

bradykinesia, tremor and gait (items 4,6,10,11,15-17) and on/off status was determined by 

clinician assessment. This was video-recorded and latterly reviewed by another member of 

the research team (RW), who undertook the same (blinded) assessment of the patient based 

on the recording. The above sub-set of the MDS-UPDRS part III was selected since it was 

judged to provide sufficient clinical assessment to enable the video-reviewer to pass 

judgement on motoric status, without being unduly burdensome in terms of time - too much 

time spent performing scripted activities would potentially render the data collected less 

ecologically valid. 

After the initial assessment was completed participants took their usual anti-parkinsonian 

medications, meaning all participants took their first medications of the day at approximately 

the same time. Participants also received a standardised orientation ahead of the home 

monitoring phase - this included a review of what constitutes each of the motor states 

employed in the diaries, instruction as how to complete symptom diaries (including practice 

at doing so) and an explanation of the capabilities of the sensor. 

Phase 2: Participants wore the sensors continuously at home for one week. Participants 

were asked to go about their normal ADLs. Participants also completed symptom diaries; 

recording, for each hour, whether they were predominantly ‘on’, ‘off’ , dyskinetic or asleep. 

Participants were advised to remove the sensors if they became unduly burdensome. At the 

end of the seven-day monitoring period the sensors and diaries were returned to the 

research team. 
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2.4. ANN development 

The ‘traditional’ approach to ANN development [17,23,26], has been to initially collect data in 

a controlled, supervised manner and to then to use these data to ‘train’ an ANN to detect 

and/or measure symptoms. These algorithms are then tested against either unsupervised 

home data or against ‘supervised’, controlled, laboratory-derived data. Since laboratory-

derived data cannot be considered ecologically valid we employed a novel approach. Here 

the ANN is ‘trained’ using a compendium of input (accelerometer) data and its corresponding 

output data (diary-defined disease state) - critically data are collected in the participants' 

homes in an unsupervised fashion, and can thus be considered ecologically valid. 

From each minute of accelerometer recordings, from both the left and the right wrist, we 

extracted a number of signal characteristics that summarised the recordings. These 

included: Fourier coefficients, to capture repetitive movements; empirical cumulative 

distribution function features, that capture the distribution of acceleration magnitude and jerk; 

and statistical features including means and standard deviations. In total, 91 characteristics 

were extracted from each minute - a more detailed description of this process, from a 

computing science perspective, has previously been published [29]. 

The ANN used in this work took the characteristics of 5 consecutive minutes as input. It 

contained two fully connected hidden layers with 2048 (logistic) units each. The top layer 

contained one unit for each target class: asleep, off, on, and dyskinesia. The parameters of 

the ANN were optimized (trained) based on a subset of the recording (the training-set) in a 

two-step process. First, an unsupervised learning algorithm was applied to initialise the 

weights of all connections in the ANN, as described previously [30]. Next, a supervised 

approach compared the output of the ANN with the annotations provided by the participants 

(diary), and adjusted the weights by propagating the derivative of the disagreement (error) 

backwards through the network. The motor state reported by participants for a given one 

hour diary interval, was taken to represent the motor state for all 5 min windows within that 

hour. The subsets used for training and evaluation of the ANN are constructed following a 
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leave-one-day-out approach. A more detailed description of the training process applied in 

this work has previously been published [29]. 

The result of the training process was an ANN that, for an input of 5 consecutive minutes, 

predicted a probability distribution over the 4 classes of interest. The value for a specific 

class, e.g. dyskinesia, represents the confidence of the ANN that the input contains 

dyskinesia. A prediction is made by selecting the class with the highest confidence. 

2.5. ANN performance evaluation 

The performance of the ANN was evaluated using both supervised, laboratory-derived data 

and unsupervised, home-derived data. Critically, performance was evaluated using unseen 

data to ensure that results were not confounded by the ANN simply ‘learning’ data it had 

previously ‘seen’. When evaluating ANN performance on home data, ANN predictions were 

compared against diary entries. To explore criterion-related validity, correlations between the 

amounts of time in a given disease state, as measured by ANN, home diaries and MDS-UP- 

DRS part IV, were examined using Pearson's correlation coefficient. For laboratory-derived 

accelerometer data, data from ten minute periods before and after the formal assessments 

were taken and divided into one minute epochs. The accelerometer data obtained during the 

clinical assessments themselves were excluded, since activities performed as part of an 

abbreviated MDS-UPRDS are highly scripted and cannot be considered ecologically valid. 

When evaluating ANN performance of previously unseen laboratory-derived data, ANN 

predictions were compared to clinicians' assessment of disease status. 

3. Results 

3.1. Participants 

The mean age of participants was 68.9 years (SD = 9.1). Mean disease duration was 9.8 

years (SD = 5.6). Median Hoehn and Yahr Stage was II (range I-IV). The disease phenotype 

of participants was determined (as per Stebbins et al. [31]) - 12 tremor dominant, 19 postural 

instability/gait difficulty and 3 indeterminate. All patients were on anti-parkinsonian 
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medication with a mean levodopa equivalent dose [32] of 918.1 mg/day. 28 (82.4%) were 

taking dopamine agonists, 6 (17.6%) were taking monoamine oxidase B inhibitors, 12 

(35.3%) were taking catechol-o-methyl transferase inhibitors, 7 (20.6%) were taking 

amantadine and 2 (5.9%) were using continuous intra-jejunal infusion of levodopa-carbidopa 

intestinal gel. 14/34 participants (41.2%) experienced dyskinesia and, based on symptom 

diaries, 31/34 experienced motor fluctuations. Cognitive assessment with MMSE revealed a 

mean score of 28.6 (SD = 1.5). Mean MDS-UPDRS scores by section were: I - 15.9 

(SD=5.6); II - 20.1 (SD = 9.7); III - 32.9 (SD = 14.4) and IV - 6.9 (SD = 3.6). 

3.2. Diary data 

All 34 participants completed diaries during phase II; 32 did so for the entire seven days. If, 

for a given time period, no diary entry was made, or if two or more disease states were 

selected, these entries were deemed ‘unclassifiable’ . The mean percentage of classifiable 

responses across the study cohort was 82.5% (SD = 26.2). 

3.3. ANN performance 

A total of 332,640 min (5544 h) of accelerometer data were recorded from the participants at 

home with a frequency of 100 Hz (samples per second). 268,388 min (4473 h, 80.7%) had 

corresponding diary entries. In the laboratory setting a total of 1195 min (~20 h) were 

extracted surrounding the clinician's assessments. Participants' motor status was dual-rated 

by two clinicians - assessments where the two clinicians disagreed on disease status were 

discarded (inter-rater agreement seen in >95% of assessments). Data were extracted 

surrounding the remaining 141 phase 1 clinical assessments. Fig. 1 (a) displays a 

normalised confusion matrix which shows agreement between diary-defined disease status 

(y-axis) and sensor-determined disease status (x-axis). Fig. 1(b) displays a confusion matrix 

that shows clinician-defined disease status (y-axis) and sensor-determined disease status 

(x-axis). 
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Sensitivity and specificity data for each disease state, for both home and laboratory data, are 

presented in Table 1. Values for ‘asleep’ in the laboratory setting are not presented, since 

this ‘disease state’ was not encountered during laboratory data collection. 

Correlations between measurements of the amounts of time produced by differing 

assessment methods, for a given disease state, were evaluated using Pearson's correlation 

coefficient. Results are displayed in Table 2 below, where consideration is given to home 

diaries vs. ANN, and MDS-UPDRS (Part IV) vs. home diaries. Correlation data are 

presented for ‘excellent’ diarists (where completion was >75%; n = 25) and ‘good’ diarists 

(where completion was >50%; n = 29). 

For data collected during home monitoring periods, graphical representations of participants' 

actual disease states (determined from diaries) and predicted disease states (determined by 

ANN) were produced. Examples are shown in Fig. 2 that demonstrate, for four participants, 

how hourly data is charted to provide an overview of the disease states experienced during a 

period of three days. The daily average time spent in each disease state, as determined by 

the ANN, diaries and by the MDS-UPDRS part IV are also displayed. 

4. Discussion 

Previous attempts to translate algorithms based on laboratory-derived data to home 

monitoring of upper limb motor symptoms have had major limitations, since the lab-based 

data informing their development lacked ecological validity. The innovative approach 

employed in this work captured, through home monitoring, a very large quantity of real-life 

data to inform algorithm development. A further strength was the use of patient-completed 

symptom diaries, the current gold standard for home monitoring, as the anchor for algorithm 

development. 

In the laboratory, specificity for dyskinesia detection was extremely high (0.99). High 

specificity was also demonstrated for home-derived data (0.93), but with low sensitivity 

(0.38). A possible contributory factor to this sub-optimal performance is that patients may 
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have experienced dyskinesia in body segments other than the upper limbs, thus rendering 

the wrist-worn sensors less sensitive. Superior performance was evident in the laboratory 

environment since clinicians are more likely than patients to identify subtle dyskinesia [5]. 

Comparative work, using ANNs to assess dyskinesia, highlighted similar challenges with 

detection of mild dyskinesia, particularly in the presence of volitional movement [17,23]. 

Notably, these ANNs were developed using laboratory-derived data, and required six 

sensors - the acceptability of such systems to the wearer has not been demonstrated. 

In both home and laboratory settings, sensitivity for on/off detection was sub-optimal (on: 

0.52, 0.69; off: 0.50, 0.60); whilst higher specificity values were demonstrated (on: 0.91, 

0.82; off: 0.83, 0.83). Previous work by Keijsers et al. [26] employed six body-worn sensors 

and developed an ANN to detect on/off states, reporting extremely high sensitivity and 

specificity (0.99 & 0.99). However, these results were based on training data alone - the 

ANN was not applied to unseen data, and thus these results simply represent over-training, 

effectively ‘memorisation’ of the data [25]. On/off detection is rendered extremely challenging 

due to the inherent subjectivity underlying interpretation of disease state descriptors - exactly 

what degree of motor symptoms each participant deems to be on/off is likely to differ 

between individuals. The challenges of identifying on/off states are compounded by the use 

of an hourly diary as the anchor against which the ANN was developed. For many of our 

participants, disease state was liable to fluctuation, and thus participants likely experienced 

more than one disease state in a given hour. Hourly intervals were employed in an attempt 

to minimise the burden of diary completion, due to concern about the potential negative 

effect burdensome diaries could have on both diary concordance and accuracy. We do 

however acknowledge that symptom diaries based on a 30 min interval are widely used in 

PD research [33] and may provide improved data for future work. 

Whilst patient-completed symptom diaries are the current gold standard for home 

monitoring, they do have other inherent limitations. Whilst the high diary-completion rates 

seen in this work are reassuring, we acknowledge that the presence of a diary entry does 
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not guarantee that the entry accurately represents a person's disease state at that time. 

Despite these limitations, diaries are however the most practicable current home 

assessment method. Future work should consider implementing a more rigorous diary 

orientation exercise during phase one: firstly, this may improve diary accuracy during home 

monitoring periods; secondly, it would enable agreement between clinician and participant to 

be evaluated, potentially providing external validation of diary content; and lastly, it would 

allow patient-defined disease state to be employed as the ‘ground truth’ for data collected in 

the clinical environment. 

Consideration was also given to the amounts of time spent in each disease state as 

recorded by diaries, predicted by ANN and estimated by MDS-UPDRS part IV. Correlation 

data between assessment methods (Table 2) provides evidence for the criterion-related 

validity of the ANN assessment method, since strong correlations were seen between ANN 

predictions and actual diary values. This is an important finding, since the amounts of time in 

a given disease state may provide a valuable outcome measure for medication trials. The 

use of symptom diaries in clinical trials often necessitates exclusion of cognitively impaired 

patients, for whom diary completion may be challenging and potentially inaccurate, thus 

limiting the generalisability of findings. In our work, diary completion was worse in patients 

with lower MMSE scores (Mann Whitney U test, Z = -2.275, p = 0.023). Discrete body-worn 

sensors capable of recording disease status may therefore provide an attractive assessment 

method for cognitively impaired patients. We acknowledge that cognitively impaired patients 

were excluded from our work and that their sensor concordance cannot be assumed. 

The ideal PD home monitoring system would enable real-time evaluation of symptoms to the 

extent where medication dosing and timing could be adjusted in light of the information 

obtained. Fig. 2 shows examples of real-time disease state estimations with diary entries 

superimposed for comparison. It was not possible to produce similarly accurate traces for all 

study participants due to disparity between diary entries and sensor predictions, highlighting 

that real-time evaluation with this sensor system, is not yet achievable. 
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In contrast to previous work employing ANN, where a multitude of sensors were employed 

across all four limbs, the trunk and chest, our assessment method used just two wrist-worn 

sensors. Using just two wrist-worn sensors meant less data were available to describe 

human movement and furthermore, interpretation of data was rendered more challenging 

due to the greater amount of voluntary movement exhibited in the upper limbs. The benefit of 

this approach is patient acceptability and wearability in a home environment [28]. 

Irrespective of the analysis approach employed, there is a lack of consensus in the literature 

regarding the optimal number of sensors, and the optimal site for their placement, for the 

assessment of PD motor symptoms - addressing this lack of conclusive data has been 

highlighted as a key challenge facing the field [9]. Despite these challenges our work 

provides evidence of the criterion-related validity of this assessment system. Rigorous 

scientific evaluation of an outcome measurement instrument also requires consideration of 

reliability and responsiveness [34] - thus further work is needed to evaluate these properties. 

Body-worn technology has huge potential to change how the motor symptoms of PD are 

measured. As technology advances, body-worn sensors may be capable of functioning as 

‘data processing’ sensors, enabling automated, real-time evaluation of data and thus 

providing the wearer with rapid feedback [35]. Future possibilities include modification of a 

patient's medication regimen in response to real-time data analysis, or even integration of 

such systems with non-oral medication delivery systems [36]. However, if such technology is 

to be translated into a meaningful tool for research use and clinical practice, it is essential 

that the ecological validity of data underpinning the algorithms is considered. 
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Figures & Tables 

Figure 1 

Confusion matrices of: (a) predicted disease state against actual (diary) disease state for home data; (b) 
predicted disease state against actual (clinician-rated) disease state for laboratory data [numerical values 
represent the number of five minute epochs for HOME data and the number of one minute epochs for LAB data]. 

 

Table 1 

Sensitivity and Specificity Data for each disease state, for both home and laboratory data. 
 
 Home  Laboratory  

 Sensitivity Specificity Sensitivity Specificit
y 

Asleep 0.85 0.94 n/a n/a 
Off 0.50 0.83 0.60 0.83 
On 0.52 0.91 0.69 0.82 
Dyskinesia 0.38 0.93 0.49 0.99 
Mean 0.56 0.90 0.59 0.88 
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Table 2 
 
Correlation between the amounts of time in a given disease state (MDS-UPDRS part IV vs. patient-completed 
diary and diary vs. ANN) for both ‘excellent’ and ‘good’ diarists. 
 

 Diary vs. ANN UPDRS vs. Diary 
r P r P 

'Excellent' diary 
completion 
>75% (n=25) 

ASLEEP 0.709 0.0001 0.090 0.6663 
OFF 0.555 0.0040 0.456 0.0221 
ON 0.704 0.0001 0.382 0.0596 

DYS 0.690 0.0001 0.516 0.0083 

'Good' diary 
completion 
>50% (n=29) 

ASLEEP 0.430 0.0198 0.175 0.3637 
OFF 0.470 0.0101 0.345 0.0668 
ON 0.658 0.0001 0.262 0.1691 

DYS 0.647 0.0002 0.516 0.0042 
      

Figure 2 

Predictions of the ANN compared to the diary entries for three consecutive days of four participants. Each graph 
shows the colour-coded predictions of the ANN over the course of the day, where dark indicates high confidence, 
and white a lack of confidence, in each disease state over time. Solid line indicates participants' diary entries; 
gaps indicate missing entries. Bottom row of graphs show the daily average time spent in each disease state, 
according to MDS-UPDRS (UPDRS), diaries (DIA), and as predicted by ANN (ACC). 

 

 

 

 


