20 research outputs found

    Digital health technology for non-motor symptoms in people with Parkinson's disease: Futile or future?

    Get PDF
    Item does not contain fulltextINTRODUCTION: There is an ongoing digital revolution in the field of Parkinson's disease (PD) for the objective measurement of motor aspects, to be used in clinical trials and possibly support therapeutic choices. The focus of remote technologies is now also slowly shifting towards the broad but more "hidden" spectrum of non-motor symptoms (NMS). METHODS: A narrative review of digital health technologies for measuring NMS in people with PD was conducted. These digital technologies were defined as assessment tools for NMS offered remotely in the form of a wearable, downloadable as a mobile app, or any other objective measurement of NMS in PD that did not require a hospital visit and could be performed remotely. Searches were performed using peer-reviewed literature indexed databases (MEDLINE, Embase, PsycINFO, Cochrane Database of Systematic Reviews, Cochrane CENTRAL Register of Controlled Trials), as well as Google and Google Scholar. RESULTS: Eighteen studies deploying digital health technology in PD were identified, for example for the measurement of sleep disorders, cognitive dysfunction and orthostatic hypotension. In addition, we describe promising developments in other conditions that could be translated for use in PD. CONCLUSION: Unlike motor symptoms, non-motor features of PD are difficult to measure directly using remote digital technologies. Nonetheless, it is currently possible to reliably measure several NMS and further digital technology developments are underway to offer further capture of often under-reported and under-recognised NMS

    Free-living monitoring of Parkinson’s disease: lessons from the field

    Get PDF
    Wearable technology comprises miniaturized sensors (e.g. accelerometers) worn on the body and/or paired with mobile devices (e.g. smart phones) allowing continuous patient monitoring in unsupervised, habitual environments (termed free-living). Wearable technologies are revolutionising approaches to healthcare due to their utility, accessibility and affordability. They are positioned to transform Parkinson’s disease (PD) management through provision of individualised, comprehensive, and representative data. This is particularly relevant in PD where symptoms are often triggered by task and free-living environmental challenges that cannot be replicated with sufficient veracity elsewhere. This review concerns use of wearable technology in free-living environments for people with PD. It outlines the potential advantages of wearable technologies and evidence for these to accurately detect and measure clinically relevant features including motor symptoms, falls risk, freezing of gait, gait, functional mobility and physical activity. Technological limitations and challenges are highlighted and advances concerning broader aspects are discussed. Recommendations to overcome key challenges are made. To date there is no fully validated system to monitor clinical features or activities in free living environments. Robust accuracy and validity metrics for some features have been reported, and wearable technology may be used in these cases with a degree of confidence. Utility and acceptability appears reasonable, although testing has largely been informal. Key recommendations include adopting a multi-disciplinary approach for standardising definitions, protocols and outcomes. Robust validation of developed algorithms and sensor-based metrics is required along with testing of utility. These advances are required before widespread clinical adoption of wearable technology can be realise

    Movement Disorders Induced by SARS-CoV-2 Infection: Protocol for a Scoping Review

    No full text
    Infections are a significant cause of movement disorders. The clinical manifestations of SARS-CoV-2 infection are variable, with up to one-third of patients developing neurologic complications, including movement disorders. This scoping review will lay out a comprehensive understanding of movement disorders induced by SARS-CoV-2 infection. We aim to investigate the epidemiology, clinical and paraclinical features, interventions, and diagnostic challenges in patients with different types of movement disorders in the context of SARS-CoV-2 infection. We will search three databases applying appropriate search terms. Inclusion and exclusion criteria are pre-defined; the data of eligible studies will be extracted in standardized forms. We will report the results following Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). We will present information for clinicians and other healthcare professionals, policymakers, and public health researchers. In addition, the results of the present review may assist in the development and confirmation of inclusion criteria and research questions for further systematic review or meta-analysis, with more precise, narrower questions

    Can therapeutic Thai massage improve upper limb muscle strength in Parkinson's disease? An objective randomized-controlled trial

    No full text
    Muscle weakness is a frequent complaint amongst Parkinson's disease (PD) patients. However, evidence-based therapeutic options for this symptom are limited. We objectively measure the efficacy of therapeutic Thai massage (TTM) on upper limb muscle strength, using an isokinetic dynamometer. A total of 60 PD patients with muscle weakness that is not related to their ‘off’ periods or other neurological causes were equally randomized to TTM intervention (n = 30), consisting of six TTM sessions over a 3-week period, or standard medical care (no intervention, n = 30). Primary outcomes included peak extension and flexion torques. Scale-based outcomes, including Unified Parkinson's Disease Rating Scale (UPDRS) and visual analogue scale for pain (VAS) were also performed. From baseline to end of treatment, patients in the intervention group showed significant improvement on primary objective outcomes, including peak flexion torque (F = 30.613, p < .001) and peak extension torque (F = 35.569, p < .001) and time to maximal flexion speed (F = 14.216, p = .001). Scale-based assessments mirrored improvements in the objective outcomes with a significant improvement from baseline to end of treatment of the UPDRS-bradykinesia of a more affected upper limb (F = 9.239, p = .005), and VAS (F = 69.864, p < .001) following the TTM intervention, compared to the control group. No patients reported adverse events in association with TTM. Our findings provide objective evidence that TTM used in combination with standard medical therapies is effective in improving upper limb muscle strength in patients with PD. Further studies are needed to determine the efficacy of TTM on other motor and non-motor symptoms in PD. Keywords: Muscle strength, Bradykinesia, Parkinson's disease, Isokinetic dynamometer, Therapeutic Thai massag

    Exploring Bedroom Usability and Accessibility in Parkinson’s Disease (PD): The Utility of a PD Home Safety Questionnaire and Implications for Adaptations

    Get PDF
    BackgroundAlthough bedrooms are identified as a major location for accidents among Parkinson’s disease (PD) patients, there are no studies that specifically evaluate the bedroom environments of PD patients.ObjectiveTo examine the physical bedroom environment of patients with PD by generating a home safety questionnaire to rate bedroom accessibility and usability specifically for PD patients, and piloting it in a small set of PD patients, to identify environmental barriers and recommend adaptations to reduce accident risks.MethodsQuestionnaire development was based on the concept of Personal (P)-Environmental (E) fit. The P component covers five clinical domains that contribute to a patients’ current state of health, including PD-related motor symptoms, PD-related non-motor symptoms, gait and balance impairments, comorbidities, and limitations on specific activities. The E component focuses on both indoor (bedroom, bathroom, living room, stairs, and kitchen), and outdoor (outdoor area and entrance) areas within a home where PD patients commonly get injured. Total score for the whole questionnaire is 171. A higher score indicates more P-E problems.ResultsComprehension of questions was tested for content validity with an item-objective congruence index of above 0.6 for all items. High internal consistency (reliability) was confirmed by Cronbach’s alpha coefficient of 0.828 (r). The pilot in five PD patients gave a mean total score of 48.2 ± 7.29 with a mean score on personal and environmental components of 16.8 ± 5.12 and 31.4 ± 4.51, respectively.ConclusionThis PD home safety questionnaire is a valid and reliable instrument for examining P-E problems by a multidisciplinary team during their home visits. More studies, involving a large number of PD patients, are needed to establish its utility as a screening instrument in PD patients to assess for home adaptations

    Digital health technology for non-motor symptoms in people with Parkinson\u27s disease: Futile or future?

    No full text
    \ua9 2021 The Author(s). Introduction: There is an ongoing digital revolution in the field of Parkinson\u27s disease (PD) for the objective measurement of motor aspects, to be used in clinical trials and possibly support therapeutic choices. The focus of remote technologies is now also slowly shifting towards the broad but more “hidden” spectrum of non-motor symptoms (NMS). Methods: A narrative review of digital health technologies for measuring NMS in people with PD was conducted. These digital technologies were defined as assessment tools for NMS offered remotely in the form of a wearable, downloadable as a mobile app, or any other objective measurement of NMS in PD that did not require a hospital visit and could be performed remotely. Searches were performed using peer-reviewed literature indexed databases (MEDLINE, Embase, PsycINFO, Cochrane Database of Systematic Reviews, Cochrane CENTRAL Register of Controlled Trials), as well as Google and Google Scholar. Results: Eighteen studies deploying digital health technology in PD were identified, for example for the measurement of sleep disorders, cognitive dysfunction and orthostatic hypotension. In addition, we describe promising developments in other conditions that could be translated for use in PD. Conclusion: Unlike motor symptoms, non-motor features of PD are difficult to measure directly using remote digital technologies. Nonetheless, it is currently possible to reliably measure several NMS and further digital technology developments are underway to offer further capture of often under-reported and under-recognised NMS
    corecore