500 research outputs found

    High-throughput fuzzy clustering on heterogeneous architectures

    Full text link
    [EN] The Internet of Things (IoT) is pushing the next economic revolution in which the main players are data and immediacy. IoT is increasingly producing large amounts of data that are now classified as "dark data'' because most are created but never analyzed. The efficient analysis of this data deluge is becoming mandatory in order to transform it into meaningful information. Among the techniques available for this purpose, clustering techniques, which classify different patterns into groups, have proven to be very useful for obtaining knowledge from the data. However, clustering algorithms are computationally hard, especially when it comes to large data sets and, therefore, they require the most powerful computing platforms on the market. In this paper, we investigate coarse and fine grain parallelization strategies in Intel and Nvidia architectures of fuzzy minimals (FM) algorithm; a fuzzy clustering technique that has shown very good results in the literature. We provide an in-depth performance analysis of the FM's main bottlenecks, reporting a speed-up factor of up to 40x compared to the sequential counterpart version.This work was partially supported by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities under grants TIN2016-78799-P (AEI/FEDER, UE), RTI2018-096384-B-I00, RTI2018-098156-B-C53 and RTC-2017-6389-5.Cebrian, JM.; Imbernón, B.; Soto, J.; García, JM.; Cecilia-Canales, JM. (2020). High-throughput fuzzy clustering on heterogeneous architectures. Future Generation Computer Systems. 106:401-411. https://doi.org/10.1016/j.future.2020.01.022S401411106Waldrop, M. M. (2016). The chips are down for Moore’s law. Nature, 530(7589), 144-147. doi:10.1038/530144aCecilia, J. M., Timon, I., Soto, J., Santa, J., Pereniguez, F., & Munoz, A. (2018). High-Throughput Infrastructure for Advanced ITS Services: A Case Study on Air Pollution Monitoring. IEEE Transactions on Intelligent Transportation Systems, 19(7), 2246-2257. doi:10.1109/tits.2018.2816741Singh, D., & Reddy, C. K. (2014). A survey on platforms for big data analytics. Journal of Big Data, 2(1). doi:10.1186/s40537-014-0008-6Stephens, N., Biles, S., Boettcher, M., Eapen, J., Eyole, M., Gabrielli, G., … Walker, P. (2017). The ARM Scalable Vector Extension. IEEE Micro, 37(2), 26-39. doi:10.1109/mm.2017.35Wright, S. A. (2019). Performance Modeling, Benchmarking and Simulation of High Performance Computing Systems. Future Generation Computer Systems, 92, 900-902. doi:10.1016/j.future.2018.11.020Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering. ACM Computing Surveys, 31(3), 264-323. doi:10.1145/331499.331504Lee, J., Hong, B., Jung, S., & Chang, V. (2018). Clustering learning model of CCTV image pattern for producing road hazard meteorological information. Future Generation Computer Systems, 86, 1338-1350. doi:10.1016/j.future.2018.03.022Pérez-Garrido, A., Girón-Rodríguez, F., Bueno-Crespo, A., Soto, J., Pérez-Sánchez, H., & Helguera, A. M. (2017). Fuzzy clustering as rational partition method for QSAR. Chemometrics and Intelligent Laboratory Systems, 166, 1-6. doi:10.1016/j.chemolab.2017.04.006H.S. Nagesh, S. Goil, A. Choudhary, A scalable parallel subspace clustering algorithm for massive data sets, in: Proceedings 2000 International Conference on Parallel Processing, 2000, pp. 477–484.Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), 191-203. doi:10.1016/0098-3004(84)90020-7Havens, T. C., Bezdek, J. C., Leckie, C., Hall, L. O., & Palaniswami, M. (2012). Fuzzy c-Means Algorithms for Very Large Data. IEEE Transactions on Fuzzy Systems, 20(6), 1130-1146. doi:10.1109/tfuzz.2012.2201485Flores-Sintas, A., Cadenas, J., & Martin, F. (1998). A local geometrical properties application to fuzzy clustering. Fuzzy Sets and Systems, 100(1-3), 245-256. doi:10.1016/s0165-0114(97)00038-9Soto, J., Flores-Sintas, A., & Palarea-Albaladejo, J. (2008). Improving probabilities in a fuzzy clustering partition. Fuzzy Sets and Systems, 159(4), 406-421. doi:10.1016/j.fss.2007.08.016Timón, I., Soto, J., Pérez-Sánchez, H., & Cecilia, J. M. (2016). Parallel implementation of fuzzy minimals clustering algorithm. Expert Systems with Applications, 48, 35-41. doi:10.1016/j.eswa.2015.11.011Flores-Sintas, A., M. Cadenas, J., & Martin, F. (2001). Detecting homogeneous groups in clustering using the Euclidean distance. Fuzzy Sets and Systems, 120(2), 213-225. doi:10.1016/s0165-0114(99)00110-4Wang, H., Potluri, S., Luo, M., Singh, A. K., Sur, S., & Panda, D. K. (2011). MVAPICH2-GPU: optimized GPU to GPU communication for InfiniBand clusters. Computer Science - Research and Development, 26(3-4), 257-266. doi:10.1007/s00450-011-0171-3Kaltofen, E., & Villard, G. (2005). On the complexity of computing determinants. computational complexity, 13(3-4), 91-130. doi:10.1007/s00037-004-0185-3Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254. doi:10.1007/bf02289588Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., … Lin, C.-T. (2017). A review of clustering techniques and developments. Neurocomputing, 267, 664-681. doi:10.1016/j.neucom.2017.06.053Woodley, A., Tang, L.-X., Geva, S., Nayak, R., & Chappell, T. (2019). Parallel K-Tree: A multicore, multinode solution to extreme clustering. Future Generation Computer Systems, 99, 333-345. doi:10.1016/j.future.2018.09.038Kwedlo, W., & Czochanski, P. J. (2019). A Hybrid MPI/OpenMP Parallelization of KK -Means Algorithms Accelerated Using the Triangle Inequality. IEEE Access, 7, 42280-42297. doi:10.1109/access.2019.2907885Li, Y., Zhao, K., Chu, X., & Liu, J. (2013). Speeding up k-Means algorithm by GPUs. Journal of Computer and System Sciences, 79(2), 216-229. doi:10.1016/j.jcss.2012.05.004Saveetha, V., & Sophia, S. (2018). Optimal Tabu K-Means Clustering Using Massively Parallel Architecture. Journal of Circuits, Systems and Computers, 27(13), 1850199. doi:10.1142/s0218126618501992Djenouri, Y., Djenouri, D., Belhadi, A., & Cano, A. (2019). Exploiting GPU and cluster parallelism in single scan frequent itemset mining. Information Sciences, 496, 363-377. doi:10.1016/j.ins.2018.07.020Krawczyk, B. (2016). GPU-Accelerated Extreme Learning Machines for Imbalanced Data Streams with Concept Drift. Procedia Computer Science, 80, 1692-1701. doi:10.1016/j.procs.2016.05.509Fang, Y., Chen, Q., & Xiong, N. (2019). A multi-factor monitoring fault tolerance model based on a GPU cluster for big data processing. Information Sciences, 496, 300-316. doi:10.1016/j.ins.2018.04.053Tanweer, S., & Rao, N. (2019). Novel Algorithm of CPU-GPU hybrid system for health care data classification. Journal of Drug Delivery and Therapeutics, 9(1-s), 355-357. doi:10.22270/jddt.v9i1-s.244

    Enhancing the context-aware FOREX market simulation using a parallel elastic network model

    Full text link
    [EN] Foreign exchange (FOREX) market is a decentralized global marketplace in which different participants, such as international banks, companies or investors, can buy, sell, exchange and speculate on currencies. This market is considered to be the largest financial market in the world in terms of trading volume. Indeed, the just-in-time price prediction for a currency pair exchange rate (e.g., EUR/USD) provides valuable information for companies and investors as they can take different actions to improve their business. The trading volume in the FOREX market is huge, disperses, in continuous operations (24 h except weekends), and the context significantly affects the exchange rates. This paper introduces a context-aware algorithm to model the behavior of the FOREX Market, called parallel elastic network model (PENM). This algorithm is inspired by natural procedures like the behavior of macromolecules in dissolution. The main results of this work include the possibility to represent the market evolution of up to 21 currency pair, being all connected, thus emulating the real-world FOREX market behavior. Moreover, because the computational needs required are highly costly as the number of currency pairs increases, a hybrid parallelization using several shared memory and message passing algorithms studied on distributed cluster is evaluated to achieve a high-throughput algorithm that answers the real-time constraints of the FOREX market. The PENM is also compared with a vector autoregressive (VAR) model using both a classical statistical measure and a profitability measure. Specifically, the results indicate that PENM outperforms VAR models in terms of quality, achieving up to 930xspeed-up factor compared to traditional R codes using in this field.This work was jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under Grant 20813/PI/18 and by the Spanish MEC and European Commission FEDER under Grants TIN2016-78799-P and TIN2016-80565-R (AEI/FEDER, UE).Contreras, AV.; Llanes, A.; Herrera, FJ.; Navarro, S.; López-Espin, JJ.; Cecilia-Canales, JM. (2020). Enhancing the context-aware FOREX market simulation using a parallel elastic network model. The Journal of Supercomputing. 76(3):2022-2038. https://doi.org/10.1007/s11227-019-02838-1S20222038763Bahrepour M, Akbarzadeh-T MR, Yaghoobi M, Naghibi-S MB (2011) An adaptive ordered fuzzy time series with application to FOREX. Expert Syst Appl 38(1):475–485Bank for International Settlements. https://www.bis.org/ . Accessed 13 Feb 2013Bhattacharyya S, Pictet OV, Zumbach G (2002) Knowledge-intensive genetic discovery in foreign exchange markets. IEEE Trans Evolut Comput 6(2):169–181Bank of International Settlements (2016) Triennial central bank survey: foreign exchange turnover in April 2016, BaselCaporale GM, Gil-Alana L, Plastun A (2017) Searching for inefficiencies in exchange rate dynamics. Comput Econ 49(3):405–432De Grauwe P, Markiewicz A (2013) Learning to forecast the exchange rate: two competing approaches. J Int Money Finance 32:42–76Fama E (1970) Efficient capital markets: a review of theory and empirical work. J Finance 25(2):383–417Fama EF (1965) The behavior of stock-market prices. J Bus 38(1):34–105Fama EF (1970) Efficient capital markets: a review of theory and empirical work. J Finance 25(2):383–417Fuglebakk E, Reuter N, Hinsen K (2013) Evaluation of protein elastic network models based on an analysis of collective motions. J Chem Theory Comput 9(12):5618–5628Hanssens DM, Parsons LJ, Schultz RL (2003) Market response models: econometric and time series analysis, vol 12. Springer, New YorkKamruzzaman J, Sarker RA (2003) Forecasting of currency exchange rates using ANN: a case study. In: Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, 2003, vol 1. IEEE, pp 793–797Kamruzzaman J, Sarker RA, Ahmad I (2003) SVM based models for predicting foreign currency exchange rates. In: Third IEEE International Conference on Data Mining, 2003. ICDM 2003, IEEE, pp. 557–560Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9(9):646–652Kleen A (2015) Intel PMU profiling tools. https://github.com/andikleen/pmu-tools/tree/d70840ba . Accessed 15 Mar 2019Kuo RJ, Chen C, Hwang Y (2001) An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets Syst 118(1):21–45LeBaron B, Arthur WB, Palmer R (1999) Time series properties of an artificial stock market. J Econ Dyn Control 23(9):1487–1516Li Q, Chen Y, Wang J, Chen Y, Chen H (2017) Web media and stock markets: a survey and future directions from a big data perspective. IEEE Trans Knowl Data Eng 30:381–399Luetkepohl H (2009) Econometric analysis with vector autoregressive models. In: Belsley DA, Kontoghiorghes EJ (eds) Handbook of computational econometrics. Wiley, New York, pp 281–319Makovskỳ P (2014) Modern approaches to efficient market hypothesis of FOREX—the central European case. Proc Econ Finance 14:397–406Meade N (2002) A comparison of the accuracy of short term foreign exchange forecasting methods. Int J Forecast 18(1):67–83Meese RA, Rogoff K (1983) Empirical exchange rate models of the seventies: do they fit out of sample? J Int Econ 14(1–2):3–24Mockus J, Raudys A (2010) On the efficient-market hypothesis and stock exchange game model. Expert Syst Appl 37(8):5673–5681Nassirtoussi AK, Aghabozorgi S, Wah TY, Ngo DCL (2014) Text mining for market prediction: a systematic review. Expert Syst Appl 41(16):7653–7670Neely C, Weller P, Dittmar R (1997) Is technical analysis in the foreign exchange market profitable? A genetic programming approach. J Financial Quant Anal 32(4):405–426Pincak R (2013) The string prediction models as invariants of time series in the FOREX market. Phys A: Stat Mech Appl 392(24):6414–6426Samuelson PA (2016) Proof that properly anticipated prices fluctuate randomly. In: The World Scientific Handbook of Futures Markets, pp 25–38Sarantis N, Stewart C (1995) Structural, VAR and BVAR models of exchange rate determination: a comparison of their forecasting performance. J Forecast 14(3):201–215Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117Sims CA (1980) Macroeconomics and reality. Econ: J Econ Soc. 48:1–48Ţiţan AG (2015) The efficient market hypothesis: review of specialized literature and empirical research. Proc Econ Finance 32:442–449Yao J, Tan CL (2000) A case study on using neural networks to perform technical forecasting of FOREX. Neurocomputing 34(1):79–9

    Towards Real-Time Detection and Tracking of Spatio-Temporal Features: Blob-Filaments in Fusion Plasma

    Full text link
    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. On a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.Comment: 14 pages, 40 figure

    GSWO: A Programming Model for GPU-enabled Parallelization of Sliding Window Operations in Image Processing

    Get PDF
    Sliding Window Operations (SWOs) are widely used in image processing applications. They often have to be performed repeatedly across the target image, which can demand significant computing resources when processing large images with large windows. In applications in which real-time performance is essential, running these filters on a CPU often fails to deliver results within an acceptable timeframe. The emergence of sophisticated graphic processing units (GPUs) presents an opportunity to address this challenge. However, GPU programming requires a steep learning curve and is error-prone for novices, so the availability of a tool that can produce a GPU implementation automatically from the original CPU source code can provide an attractive means by which the GPU power can be harnessed effectively. This paper presents a GPUenabled programming model, called GSWO, which can assist GPU novices by converting their SWO-based image processing applications from the original C/C++ source code to CUDA code in a highly automated manner. This model includes a new set of simple SWO pragmas to generate GPU kernels and to support effective GPU memory management. We have implemented this programming model based on a CPU-to-GPU translator (C2GPU). Evaluations have been performed on a number of typical SWO image filters and applications. The experimental results show that the GSWO model is capable of efficiently accelerating these applications, with improved applicability and a speed-up of performance compared to several leading CPU-to- GPU source-to-source translators

    Evaluation of Clustering Algorithms on GPU-Based Edge Computing Platforms

    Get PDF
    [EN] Internet of Things (IoT) is becoming a new socioeconomic revolution in which data and immediacy are the main ingredients. IoT generates large datasets on a daily basis but it is currently considered as "dark data", i.e., data generated but never analyzed. The efficient analysis of this data is mandatory to create intelligent applications for the next generation of IoT applications that benefits society. Artificial Intelligence (AI) techniques are very well suited to identifying hidden patterns and correlations in this data deluge. In particular, clustering algorithms are of the utmost importance for performing exploratory data analysis to identify a set (a.k.a., cluster) of similar objects. Clustering algorithms are computationally heavy workloads and require to be executed on high-performance computing clusters, especially to deal with large datasets. This execution on HPC infrastructures is an energy hungry procedure with additional issues, such as high-latency communications or privacy. Edge computing is a paradigm to enable light-weight computations at the edge of the network that has been proposed recently to solve these issues. In this paper, we provide an in-depth analysis of emergent edge computing architectures that include low-power Graphics Processing Units (GPUs) to speed-up these workloads. Our analysis includes performance and power consumption figures of the latest Nvidia's AGX Xavier to compare the energy-performance ratio of these low-cost platforms with a high-performance cloud-based counterpart version. Three different clustering algorithms (i.e., k-means, Fuzzy Minimals (FM), and Fuzzy C-Means (FCM)) are designed to be optimally executed on edge and cloud platforms, showing a speed-up factor of up to 11x for the GPU code compared to sequential counterpart versions in the edge platforms and energy savings of up to 150% between the edge computing and HPC platforms.This work has been partially supported by the Spanish Ministry of Science and Innovation, under the Ramon y Cajal Program (Grant No. RYC2018-025580-I) and under grants RTI2018-096384-B-I00, RTC-2017-6389-5 and RTC2019-007159-5 and by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18.Cecilia-Canales, JM.; Cano, J.; Morales-García, J.; Llanes, A.; Imbernón, B. (2020). Evaluation of Clustering Algorithms on GPU-Based Edge Computing Platforms. Sensors. 20(21):1-19. https://doi.org/10.3390/s20216335S1192021Gebauer, H., Fleisch, E., Lamprecht, C., & Wortmann, F. (2020). Growth paths for overcoming the digitalization paradox. Business Horizons, 63(3), 313-323. doi:10.1016/j.bushor.2020.01.005Guillén, M. A., Llanes, A., Imbernón, B., Martínez-España, R., Bueno-Crespo, A., Cano, J.-C., & Cecilia, J. M. (2020). Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. The Journal of Supercomputing, 77(1), 818-840. doi:10.1007/s11227-020-03288-wWang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48, 144-156. doi:10.1016/j.jmsy.2018.01.003Gretzel, U., Sigala, M., Xiang, Z., & Koo, C. (2015). Smart tourism: foundations and developments. Electronic Markets, 25(3), 179-188. doi:10.1007/s12525-015-0196-8Pramanik, M. I., Lau, R. Y. K., Demirkan, H., & Azad, M. A. K. (2017). Smart health: Big data enabled health paradigm within smart cities. Expert Systems with Applications, 87, 370-383. doi:10.1016/j.eswa.2017.06.027Weber, M., & Podnar Žarko, I. (2019). A Regulatory View on Smart City Services. Sensors, 19(2), 415. doi:10.3390/s19020415Ghosh, A., Chakraborty, D., & Law, A. (2018). Artificial intelligence in Internet of things. CAAI Transactions on Intelligence Technology, 3(4), 208-218. doi:10.1049/trit.2018.1008Monti, L., Vincenzi, M., Mirri, S., Pau, G., & Salomoni, P. (2020). RaveGuard: A Noise Monitoring Platform Using Low-End Microphones and Machine Learning. Sensors, 20(19), 5583. doi:10.3390/s20195583Kumar, P., Sinha, K., Nere, N. K., Shin, Y., Ho, R., Mlinar, L. B., & Sheikh, A. Y. (2020). A machine learning framework for computationally expensive transient models. Scientific Reports, 10(1). doi:10.1038/s41598-020-67546-wMittal, S., & Vetter, J. S. (2015). A Survey of CPU-GPU Heterogeneous Computing Techniques. ACM Computing Surveys, 47(4), 1-35. doi:10.1145/2788396Singh, D., & Reddy, C. K. (2014). A survey on platforms for big data analytics. Journal of Big Data, 2(1). doi:10.1186/s40537-014-0008-6Khayyat, M., Elgendy, I. A., Muthanna, A., Alshahrani, A. S., Alharbi, S., & Koucheryavy, A. (2020). Advanced Deep Learning-Based Computational Offloading for Multilevel Vehicular Edge-Cloud Computing Networks. IEEE Access, 8, 137052-137062. doi:10.1109/access.2020.3011705Satyanarayanan, M. (2017). The Emergence of Edge Computing. Computer, 50(1), 30-39. doi:10.1109/mc.2017.9Capra, M., Peloso, R., Masera, G., Roch, M. R., & Martina, M. (2019). Edge Computing: A Survey On the Hardware Requirements in the Internet of Things World. Future Internet, 11(4), 100. doi:10.3390/fi11040100Lu, H., Gu, C., Luo, F., Ding, W., & Liu, X. (2020). Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning. Future Generation Computer Systems, 102, 847-861. doi:10.1016/j.future.2019.07.019Mimmack, G. M., Mason, S. J., & Galpin, J. S. (2001). Choice of Distance Matrices in Cluster Analysis: Defining Regions. Journal of Climate, 14(12), 2790-2797. doi:10.1175/1520-0442(2001)0142.0.co;2Gimenez, C. (2006). Logistics integration processes in the food industry. International Journal of Physical Distribution & Logistics Management, 36(3), 231-249. doi:10.1108/09600030610661813Chang, P.-C., Liu, C.-H., & Fan, C.-Y. (2009). Data clustering and fuzzy neural network for sales forecasting: A case study in printed circuit board industry. Knowledge-Based Systems, 22(5), 344-355. doi:10.1016/j.knosys.2009.02.005Zheng, B., Yoon, S. W., & Lam, S. S. (2014). Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Systems with Applications, 41(4), 1476-1482. doi:10.1016/j.eswa.2013.08.044Woodley, A., Tang, L.-X., Geva, S., Nayak, R., & Chappell, T. (2019). Parallel K-Tree: A multicore, multinode solution to extreme clustering. Future Generation Computer Systems, 99, 333-345. doi:10.1016/j.future.2018.09.038Kwedlo, W., & Czochanski, P. J. (2019). A Hybrid MPI/OpenMP Parallelization of KK -Means Algorithms Accelerated Using the Triangle Inequality. IEEE Access, 7, 42280-42297. doi:10.1109/access.2019.2907885Liu, B., He, S., He, D., Zhang, Y., & Guizani, M. (2019). A Spark-Based Parallel Fuzzy cc -Means Segmentation Algorithm for Agricultural Image Big Data. IEEE Access, 7, 42169-42180. doi:10.1109/access.2019.2907573Baydoun, M., Ghaziri, H., & Al-Husseini, M. (2018). CPU and GPU parallelized kernel K-means. The Journal of Supercomputing, 74(8), 3975-3998. doi:10.1007/s11227-018-2405-7Li, Y., Zhao, K., Chu, X., & Liu, J. (2013). Speeding up k-Means algorithm by GPUs. Journal of Computer and System Sciences, 79(2), 216-229. doi:10.1016/j.jcss.2012.05.004Cuomo, S., De Angelis, V., Farina, G., Marcellino, L., & Toraldo, G. (2019). A GPU-accelerated parallel K-means algorithm. Computers & Electrical Engineering, 75, 262-274. doi:10.1016/j.compeleceng.2017.12.002Al-Ayyoub, M., Abu-Dalo, A. M., Jararweh, Y., Jarrah, M., & Sa’d, M. A. (2015). A GPU-based implementations of the fuzzy C-means algorithms for medical image segmentation. The Journal of Supercomputing, 71(8), 3149-3162. doi:10.1007/s11227-015-1431-yAit Ali, N., Cherradi, B., El Abbassi, A., Bouattane, O., & Youssfi, M. (2018). GPU fuzzy c-means algorithm implementations: performance analysis on medical image segmentation. Multimedia Tools and Applications, 77(16), 21221-21243. doi:10.1007/s11042-017-5589-6Timón, I., Soto, J., Pérez-Sánchez, H., & Cecilia, J. M. (2016). Parallel implementation of fuzzy minimals clustering algorithm. Expert Systems with Applications, 48, 35-41. doi:10.1016/j.eswa.2015.11.011Cebrian, J. M., Imbernón, B., Soto, J., García, J. M., & Cecilia, J. M. (2020). High-throughput fuzzy clustering on heterogeneous architectures. Future Generation Computer Systems, 106, 401-411. doi:10.1016/j.future.2020.01.022Cecilia, J. M., Timon, I., Soto, J., Santa, J., Pereniguez, F., & Munoz, A. (2018). High-Throughput Infrastructure for Advanced ITS Services: A Case Study on Air Pollution Monitoring. IEEE Transactions on Intelligent Transportation Systems, 19(7), 2246-2257. doi:10.1109/tits.2018.2816741Sriramakrishnan, P., Kalaiselvi, T., & Rajeswaran, R. (2019). Modified local ternary patterns technique for brain tumour segmentation and volume estimation from MRI multi-sequence scans with GPU CUDA machine. Biocybernetics and Biomedical Engineering, 39(2), 470-487. doi:10.1016/j.bbe.2019.02.002Fang, Y., Chen, Q., & Xiong, N. (2019). A multi-factor monitoring fault tolerance model based on a GPU cluster for big data processing. Information Sciences, 496, 300-316. doi:10.1016/j.ins.2018.04.053Rodriguez, M. Z., Comin, C. H., Casanova, D., Bruno, O. M., Amancio, D. R., Costa, L. da F., & Rodrigues, F. A. (2019). Clustering algorithms: A comparative approach. PLOS ONE, 14(1), e0210236. doi:10.1371/journal.pone.0210236Pandove, D., Goel, S., & Rani, R. (2018). Systematic Review of Clustering High-Dimensional and Large Datasets. ACM Transactions on Knowledge Discovery from Data, 12(2), 1-68. doi:10.1145/3132088Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), 191-203. doi:10.1016/0098-3004(84)90020-7Soto, J., Flores-Sintas, A., & Palarea-Albaladejo, J. (2008). Improving probabilities in a fuzzy clustering partition. Fuzzy Sets and Systems, 159(4), 406-421. doi:10.1016/j.fss.2007.08.016Kolen, J. F., & Hutcheson, T. (2002). Reducing the time complexity of the fuzzy c-means algorithm. IEEE Transactions on Fuzzy Systems, 10(2), 263-267. doi:10.1109/91.99512

    Accelerating Pattern Matching in Neuromorphic Text Recognition System Using Intel Xeon Phi Coprocessor

    Get PDF
    Neuromorphic computing systems refer to the computing architecture inspired by the working mechanism of human brains. The rapidly reducing cost and increasing performance of state-of-the-art computing hardware allows large-scale implementation of machine intelligence models with neuromorphic architectures and opens the opportunity for new applications. One such computing hardware is Intel Xeon Phi coprocessor, which delivers over a TeraFLOP of computing power with 61 integrated processing cores. How to efficiently harness such computing power to achieve real time decision and cognition is one of the key design considerations. This work presents an optimized implementation of Brain-State-in-a-Box (BSB) neural network model on the Xeon Phi coprocessor for pattern matching in the context of intelligent text recognition of noisy document images. From a scalability standpoint on a High Performance Computing (HPC) platform we show that efficient workload partitioning and resource management can double the performance of this many-core architecture for neuromorphic applications

    The Scalability-Efficiency/Maintainability-Portability Trade-off in Simulation Software Engineering: Examples and a Preliminary Systematic Literature Review

    Full text link
    Large-scale simulations play a central role in science and the industry. Several challenges occur when building simulation software, because simulations require complex software developed in a dynamic construction process. That is why simulation software engineering (SSE) is emerging lately as a research focus. The dichotomous trade-off between scalability and efficiency (SE) on the one hand and maintainability and portability (MP) on the other hand is one of the core challenges. We report on the SE/MP trade-off in the context of an ongoing systematic literature review (SLR). After characterizing the issue of the SE/MP trade-off using two examples from our own research, we (1) review the 33 identified articles that assess the trade-off, (2) summarize the proposed solutions for the trade-off, and (3) discuss the findings for SSE and future work. Overall, we see evidence for the SE/MP trade-off and first solution approaches. However, a strong empirical foundation has yet to be established; general quantitative metrics and methods supporting software developers in addressing the trade-off have to be developed. We foresee considerable future work in SSE across scientific communities.Comment: 9 pages, 2 figures. Accepted for presentation at the Fourth International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering (SEHPCCSE 2016

    CAVASS: A Computer-Assisted Visualization and Analysis Software System

    Get PDF
    The Medical Image Processing Group at the University of Pennsylvania has been developing (and distributing with source code) medical image analysis and visualization software systems for a long period of time. Our most recent system, 3DVIEWNIX, was first released in 1993. Since that time, a number of significant advancements have taken place with regard to computer platforms and operating systems, networking capability, the rise of parallel processing standards, and the development of open-source toolkits. The development of CAVASS by our group is the next generation of 3DVIEWNIX. CAVASS will be freely available and open source, and it is integrated with toolkits such as Insight Toolkit and Visualization Toolkit. CAVASS runs on Windows, Unix, Linux, and Mac but shares a single code base. Rather than requiring expensive multiprocessor systems, it seamlessly provides for parallel processing via inexpensive clusters of work stations for more time-consuming algorithms. Most importantly, CAVASS is directed at the visualization, processing, and analysis of 3-dimensional and higher-dimensional medical imagery, so support for digital imaging and communication in medicine data and the efficient implementation of algorithms is given paramount importance

    Parallel ant colony optimization for the training of cell signaling networks

    Get PDF
    [Abstract]: Acquiring a functional comprehension of the deregulation of cell signaling networks in disease allows progress in the development of new therapies and drugs. Computational models are becoming increasingly popular as a systematic tool to analyze the functioning of complex biochemical networks, such as those involved in cell signaling. CellNOpt is a framework to build predictive logic-based models of signaling pathways by training a prior knowledge network to biochemical data obtained from perturbation experiments. This training can be formulated as an optimization problem that can be solved using metaheuristics. However, the genetic algorithm used so far in CellNOpt presents limitations in terms of execution time and quality of solutions when applied to large instances. Thus, in order to overcome those issues, in this paper we propose the use of a method based on ant colony optimization, adapted to the problem at hand and parallelized using a hybrid approach. The performance of this novel method is illustrated with several challenging benchmark problems in the study of new therapies for liver cancer
    • …
    corecore