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ABSTRACT

Acquiring a functional comprehension of the deregulation of cell signaling networks in disease allows progress
in the development of new therapies and drugs. Computational models are becoming increasingly popular as
a systematic tool to analyze the functioning of complex biochemical networks, such as those involved in cell
signaling. CellNOpt is a framework to build predictive logic-based models of signaling pathways by training
a prior knowledge network to biochemical data obtained from perturbation experiments. This training can be
formulated as an optimization problem that can be solved using metaheuristics. However, the genetic algorithm
used so far in CellNOpt presents limitations in terms of execution time and quality of solutions when applied
to large instances. Thus, in order to overcome those issues, in this paper we propose the use of a method based
on ant colony optimization, adapted to the problem at hand and parallelized using a hybrid approach. The
performance of this novel method is illustrated with several challenging benchmark problems in the study of
new therapies for liver cancer.

1. Introduction

Mathematical optimization seeks the best solution inside a feasible
search space with regard to some criterion (given by one or more
objective functions). Optimization problems persistently appear in the
real world, in as disparate areas as traditional scheduling and routing
(Beldjilali, Benadda, & Sadouni, 2020), engineering design (Bojan-
Dragos et al., 2021), or control systems (Pozna, Precup, Horvath, &
Petriu, 2022; Precup, David, Petriu, Preitl, & Paul, 2011), but also in
recent applications such as assessment of network traffic on the internet
(Li, Chen, & Tang, 2020) or the prediction of people’s behavioral
intention (Tan, Ooi, Leong, & Lin, 2014). One of the fields which is
currently fostering advances in optimization methods is computational
systems biology (Banga, 2008). Within this area, discovering effective
drugs in biomedicine and understanding how they work still lead to
considerable challenges nowadays (lorio et al., 2016). There are several
model-based paradigms for identifying drugs that could be used to treat
specific diseases. In this context, logic modeling is one of most useful
approaches to understand signal transduction deregulation in disease
and to characterize the mode of action of a drug (Traynard, Tobalina,
Eduati, Calzone, & Saez-Rodriguez, 2017).

Studying how cells process signals through complex and dynamic
networks, for a given context and an specific cell type, is essential

to understand signaling in both physiological and disease conditions.
A method that integrates static and non-context-specific knowledge
about signaling networks with perturbation data was initially proposed
in Saez-Rodriguez et al. (2009). By training prior knowledge networks
(PKN) against experimental data, this method produces models that
achieve larger predictive capacity. The model construction process is
implemented by using a logic-based formalism where the relationships
between species are described using logic gates that specify the state of
each node given the state of its parents. The automatically generated
models are subsequently trained to data. Therefore, they are useful to
understand how signals are processed by cells and how they can be
altered, and can be used to predict the effect of perturbations.
CellNOpt (Gjerga et al., 2020; Terfve et al., 2012) is a framework
that implements this method and several extensions, allowing for build-
ing predictive logic models of signaling networks by training networks
derived from prior knowledge to experimental data. It proceeds by first
compressing the protein signaling network to remove species that are
neither observable nor controllable, and then expands it to a scaffold
model representing an overlay of all the possible logic gates supported
by the network. This model is then trained against experimental data
by minimizing an objective function that quantifies the difference
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Fig. 1. Workflow of CellNOpt framework highlighting the optimization phase in the process.

between the data and the predictions obtained by simulation. Finally,
the calibrated models are used to predict new results from which new
biological information can be obtained. A typical workflow of the
CellNOpt framework is shown in Fig. 1, highlighting the optimization
step, the subject of our study here.

These minimization problems usually require global optimization
methods (Banga, 2008). Even though deterministic global methods can
be used for certain problem instances, the associated computational
effort to ensure global optimality can be extremely large, making them
impractical for realistic problems. As an alternative, stochastic methods
(and metaheuristics, in particular) can provide near-global solutions in
reasonable computation times.

Two important issues when training cell signaling networks using
metaheuristics are that they may not guarantee reaching a global
optima, and that they are usually not poised to report a complete family
of feasible models. Both of them are key issues needed to provide
precise insights about the mechanisms of signal transduction. Thus,
other approaches based on Integer Linear Programming (ILP) (Mitsos
et al, 2009; Sharan & Karp, 2012) and Answer Set Programming
(ASP) (Guziolowski et al., 2013; Videla et al., 2012) have been applied
to this class of problems, providing a proof of concept that a global
optimum can be identified. However, these two methods suffer from a
major issue, the superlinear increase of memory consumption with the
size of the problem, which becomes a challenge for many application
cases.

The two issues discussed above related to the use of metaheuristics
can be addressed. First, to overcome the issue of obtaining the global
optimum, for some metaheuristics, including various variants of the so-
called Ant Colony Optimization (ACO), it is possible to demonstrate
their convergence (Dorigo & Stutzle, 2002; Gutjahr, 2002) under cer-
tain circumstances. However, it is difficult to estimate the theoretical
speed of convergence, and this is where parallel implementations can
help, reducing the convergence time by speeding up computations,
or even improving the convergence rate. Second, although standard
metaheuristics stop when an optimal solution is found, they can be
adapted to detect and report a family of high-quality feasible solutions.

However many large problems in cell signaling networks, and
specifically in the case of model development leading to early drug
discovery, cannot be solved with standard methods on sequential
computers because, due to their complexity, they require excessive
execution time or exceed the available memory. Therefore, high perfor-
mance computing (HPC) infrastructures and HPC implementations of
suitable solvers are particularly appealing, and even essential, to solve
today’s challenging problems. In this work, we propose a novel parallel
implementation of an algorithm based on ACO, adapted to the problem
of signaling networks in cells, and making use of a high-performance
skeleton that allows us to develop a general approach that can be easily
reused or extended to other metaheuristics or for other purposes. For
the experimental assessment of the proposal, we have considered the
training of several real case-studies of signaling networks in liver cancer
using the CellNOpt framework.

The organization of this paper is as follows. Section 2 presents
a brief review of related work. Section 3 describes the optimization
problem. Section 4 presents an overview of the ACO metaheuristic
and its adaptation to the training of signaling networks in cells. Sec-
tion 5 describes the parallel implementation proposed. Its performance
is evaluated in Section 6. Finally, Section 7 summarizes the main
conclusions of this work.

2. Related work

The goal of systems biology is to generate new insights into complex
biological systems by combining experimental data with mathemati-
cal models. Model parameter estimations of most biological processes
are complex problems that may have multiple solutions (Villaverde
& Banga, 2014). To efficiently solve this calibration problem, many
research efforts have focused on developing metaheuristic methods
that are capable of finding good solutions in reasonable computation
times (Balsa-Canto, Banga, Egea, Fernandez-Villaverde, & de Hijas-
Liste, 2012; Banga & Balsa-Canto, 2008; Gabor & Banga, 2015; Sun,
Garibaldi, & Hodgman, 2012). Many examples using various meta-
heuristics can be found in the literature, such as simulating anneal-
ing (Perkins, Jaeger, Reinitz, & Glass, 2006), evolutionary strategies (Ji
& Xu, 2006; Jostins & Jaeger, 2010), differential evolution (Da Ros
et al., 2013; Villaverde & Banga, 2014; Zuniga, Cruz, & Garcia, 2014),
scatter search (Egea, Balsa-Canto, Garcia, & Banga, 2009; Egea, Marti,
& Banga, 2010), particle swarm optimization (Palafox, Noman, & Iba,
2012; Tang, Chai, Wang, & Cao, 2020), among others. Also, many
proposals exploit different parallelization strategies and infrastructures
to solve these problems in competitive execution times (Adams et al.,
2013; Gonzalez et al., 2017; Lee, Hsiao, & Hwang, 2014; Penas, Banga,
Gonzalez and Doallo, 2015; Penas, Gonzélez, Egea, Banga and Doallo,
2015; Penas et al., 2017; Teijeiro et al., 2017).

With regard to cell signaling, logic-based modeling is an approach
that falls between the complexity and accuracy of differential equations
on the one hand and data-driven regression approaches on the other.
A review of the fundamentals of logic-based models of biochemical
signaling networks can be found in Morris, Saez-Rodriguez, Sorger,
and Lauffenburger (2010). This work illustrates the ability of inte-
grating experimental and logic-based modeling to gain an in depth
comprehension of the biological system. Using this formulation, the
initial model can be trained to signaling data via an optimization
approach to compute the values of model parameters that better fit the
data (Morris, Saez-Rodriguez, Clarke, Sorger, & Lauffenburger, 2011;
Saez-Rodriguez et al., 2009, 2011). A Genetic Algorithm (GA) was used
in these works to prune the pathway by identifying and removing the
contradicting reactions. However, the computational time needed for
the optimization process points to a need for more reliable methods of
training logic-based networks. In a recent study (Gjerga et al., 2020),
the optimization problem was formulated as an Integer Linear Program
(ILP) via CPLEX. In contrast to GA, the ILP formulation guaranteed
global optimality and required a fraction of the CPU time needed by
the GA. This work has focused on improving the optimization approach
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by means of a constructive metaheuristic, ACO, and the use of HPC
techniques to overcome the problems raised with GA.

From the point of view of the parallel implementation, different
strategies can be applied when dealing with metaheuristics in gen-
eral, and the ACO in particular. Most parallel ACO proposals based
on distributed memory implementations consists of the distributed of
the ants of a single colony among the available processors (Craus &
Rudeanu, 2004; Delisle, Krajecki, Gravel, & Gagné, 2001; Lv, Xia, &
Qian, 2006; Talbi, Roux, Fonlupt, & Robillard, 2001; Tsutsui & Fuji-
moto, 2010). Synchronizations are carried out through a coordinator
processor, which slows down the performance, since faster processes
will be forced to wait for the slower ones. Some solutions that imple-
ment a coordinator process with asynchronous implementations can be
also found in Bullnheimer, Kotsis, and Strauf’ (1998), Jie, CaiYun, and
Zhong (2008) and Starzec, Starzec, Byrski, Turek, and Pietak (2020).
This approaches demonstrate their superiority over synchronous ones.
Other solutions follow a divide-and-conquer approach (Doerner, Hartl,
Benkner, & Lucka, 2006; Mocholi, Jaen, & Canos, 2005), based on the
decomposition of the problem and the search for partial solutions in
different processes while a coordinator builds the complete solution af-
terwards. Shared memory implementations are also proposed in Delisle,
Gravel, Krajecki, Gagné, and Price (2005), Delisle et al. (2001) and
Hadian, Shahrivari, and Minaei-Bidgoli (2012), where small tasks are
distributed among processes while a coordinator is in charge of carrying
out the update of the global information and control the progress of the
algorithm.

In this paper we adopt for the parallelization a multicolony model.
Other authors have previously explored this model for the paralleliza-
tion of the ACO algorithm, such as Chu, Roddick, and Pan (2004),
Jie et al. (2008), Michel and Middendorf (1998, 1999), Piriyakumar
and Levi (2002) and Twomey, Stiitzle, Dorigo, Manfrin, and Birattari
(2010). One of the limitations of those works is the use of synchronous
communications that limits the scalability of the proposal. Alternatives
that use asynchronous communications and/or adjust the frequency of
information exchanging can also be found in Chen, Sun, and Wang
(2012), Ellabib, Calamai, and Basir (2007) and Ling Chen, Hai-Ying
Sun, and Shu Wang (2008). All of these studies confirm that a trade-
off between exploration within each colony and cooperation through
information exchanging is desirable to achieve accurate results and
performance.

The authors of the present study have extensive experience in par-
allelizing different metaheuristics and using different problem-oriented
strategies and frameworks in computational systems biology. Differ-
ential evolution has been parallelized using an asynchronous strategy
in Penas, Banga, Gonzalez, and Doallo (2014), which has been extended
with heuristic improvements in Penas, Banga et al. (2015). An island-
based version has been proposed in Teijeiro, Pardo, Gonzalez, Banga
and Doallo (2016) using Spark to be executed in distributed and cloud
environments. An exhaustive evaluation of the Spark implementation
versus a Mapreduce solution was presented in Teijeiro et al. (2016).
Scatter Search has also been parallelized using a decentralized asyn-
chronous strategy with a ring topology for message passing in Penas,
Gonzalez et al. (2015), and with a centralized strategy with a co-
ordinator process that included self-adaptation in Penas, Gonzalez,
Egea, Doallo and Banga (2017). In Pardo, Argiieso-Alejandro, Gonzalez,
Banga, and Doallo (2020), a cloud-based implementation in Spark was
proposed for the Scatter Search method. Furthermore, in Gonzalez
et al. (2019) a hybrid parallel multimethod prototype was proposed
that exploit multiple computational resources to perform simultaneous
searches using different metaheuristics.

Based on our previous experience, the implementation used in this
work is committed to a hybrid model that combines attributes of several
of the previous models, using both distributed memory and a multi-
colony model, as well as shared memory and a fine-grained model
within each colony. Its most remarkable features are decentralization
(a coordinator process is not needed to organize and control the al-
gorithm) and the use of an asynchronous communication protocol
between processes (maximizing the use of resources).
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3. Problem statement

Fig. 1 shows a workflow of the CellNOpt framework. The method-
ology used in this framework is based on identifying a logic-based
model describing the interactions of a set of species, starting from a
prior knowledge network (PKN) and a set of experimental data. To
build the logic-based model, the PKN is compressed to contain only the
measured, perturbed, and inhibited nodes based on the experimental
data, and then expanded to add other possible logical descriptions of
gates connecting more than one input node to a single output node.

Training the cell signaling network model against experimental data
is an optimization problem in a search space defined by the hypercube:

Y=y €Y

where candidate solutions are encoded in vectors P € )’ and r is the
number of gates in the scaffold model. Each gate is assigned an index
i in vector P, i = 1,...,r such that P, = 1 when the gate is included in
the model and P, = 0 when it is not.

The objective function for optimization is based on the mean
squared error (MSE) deviation between the data and model (© s and
a second term that penalized increasing model size (O4). Thus, for a
set of data containing n, data points collected for m readouts at n time
points under S experimental conditions, the training procedure consists
in minimize:

OFP) = @f(P) +a-04P) 2)
where
1 S m n
0P == 3 X DB, ()~ B, ©)
"E j=11=1 1=1
and
04(P) = Uis Y v.P, 4
e e=1

such that B,’fl’t(P) € {0,1} is the value predicted by computation of
the model’s logical steady state and BkEJ’ , €10,1] is the data value for
readout / at time ¢ under the kth experimental condition.

To compute the size penalty, each gate in a given solution P is wei-
ghted by the number of starting nodes v,. By imposing a size penalty,
unnecessary and redundant gates are not included in the final model.
The size penalty is normalized to the total number of inputs across all
gates v5 = > v, and weighted with the tunable parameter a.

Further details on how the steady state of the Boolean model is
calculated can be found in Klamt, Saez-Rodriguez, Lindquist, Simeoni,
and Gilles (2006) and in Saez-Rodriguez et al. (2009).

4. Ant colony optimization

Ant Colony Optimization (ACO) is a metaheuristic in which a colony
of ants cooperate in finding good solutions to difficult optimization
problems. An artificial ant in ACO is a stochastic procedure that gradu-
ally builds a solution by adding appropriate elements to the solution
under construction. Thus, the ACO metaheuristic can be applied to
combinatorial optimization problems for which a constructive heuristic
can be defined, such as the training of signaling networks.

Algorithm 1 shows the basic pseudo-code of most ACO algorithms,
with three main procedures: ConstructAntsSolutions, UpdatePheromones,
and DaemonActions. ConstructAntsSolutions manages a colony of artifi-
cial ants that incrementally build solutions to the optimization problem
by means of stochastic local decisions based on pheromone trails and
heuristic information. Then, the UpdatePheromones procedure modifies
the pheromone trails based both on the evaluation of the new solutions
and on a pheromone evaporation mechanism. Finally, a DaemonActions
procedure performs problem specific or centralized actions, which can-
not be performed by single ants. Usually, this includes the application
of local or global optimizations to further approximate the solution.
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Fig. 2. Digraph representing the application of the ACO metaheuristic to the training of the compressed network in CellNOpt.

Algorithm 1: Pseudo-code of the Ant Colony Optimization
metaheuristic

1 Set parameters

2 Initialize pheromone trails

3 while termination condition not met do
4 ConstructAntsSolutions
UpdatePheromones

5
6 DaemonActions %opt

A large number of variants of this basic ACO algorithm can be found
in the literature. Among all, the MAX — MIN Ant System (MMAS)
(Stiitzle & Hoos, 2000) has been used in this problem. MMAS is chosen
for being one of the most popular ACO variants, especially for its
convenient efficiency, but also because it is one of the metaheuristics
that guarantees convergence to a global optimum (Dorigo & Stutzle,
2002).

In the rest of this section the adaptation of the previous three basic
procedures of the ACO metaheuristic, for its use in solving the training
of cell signaling networks, are described in depth.

4.1. Ants solution

ACO is an algorithm widely used to solve graph-related problems.
The artificial ants move from one node of the graph to another building
solutions based on a probability function that depends on the amount of
pheromones deposited in each arch and, eventually, on some heuristics
that the user can add.

In the training of cell signaling network, each ant builds a solution
that consists of a binary vector representing the inclusion (1) or exclu-
sion (0) of an edge of the previous compressed network obtained by the
CelINOpt framework. The digraph shown in Fig. 2 is used to represent
the application of the ACO to this problem.

Each node of the graph has only two paths, P, and P, representing
the inclusion or not of the corresponding edge. Compared to the
traditional ACO application, that uses a complete graph, this approach
saves considerable memory and computational time.

To decide the new path each artificial ant applies the following
probabilistic transition rule, that depends on pheromone values:

7

pij = %)

Tio + Til
where, 7;; represents the desirability of using the path j to cross edge
i given by the pheromone trails, that is, the desirability of include that
gate (z;;) or not (z;).

A difference between this implementation and the traditional ACO
is that in this proposal a particular heuristic for this problem is not
included in the transition rule. Thus, traditional ACO parameters a, that
sets the amount of pheromone deposited on the edges, and g, that sets
the relative significance of pheromone versus heuristic value, are not
used in this implementation.

4.2. Pheromones update

After the construction of a new solution by each ant, the pheromone
trails are updated, increasing their values when ants deposit pheromone
on promising paths to guide other ants in constructing new solutions,
or decreasing their values due to pheromone evaporation to avoid
unlimited accumulation of pheromone trails and also to allow bad
choices to be forgotten.

As shown in the transition rule (Eq. (5)), the possibility for an
ant to cross a path increases with the pheromone trail. It is in the
implementation of this procedure where many of the variants of the
ACO algorithm differ. As commented above, the MAX — MIN Ant
System (MMAS) variant of the ACO algorithm (Stiitzle & Hoos, 2000)
has been used in this work.

Algorithm 2 shows the pseudocode for the UpdatePheromones()
procedure. Lines 1-7 determine whether the best solution of the current
iteration improves the best global solution so far. In this case, the
limits of the trails are updated, being this a particular feature of the
MMAS variant of the ACO (Stiitzle & Hoos, 2000), which prevents the
pheromone trails from augmenting excessively, eluding disproportion-
ately favoring some paths over others, and thus, avoiding premature
convergence to local optima. Note that in these lines the progress of
the algorithm is also controlled, counting the number of iterations that
have stalled. This is so because the MMAS variant will later trigger a
mechanism to restart the pheromone matrix if it detects that the search
process has stalled (lines 18-21 of Algorithm 2). These two strategies
are described again in more detail in the next section.

The evaporation process prevents the algorithm from premature
convergence to suboptimal regions and from getting stuck in a lo-
cal optimum, by decreasing r by a constant rate p (the pheromone
evaporation rate):

7«1 =pr; 6

Then, ants deposit pheromone on the paths they have crossed in
their construction. The MMAS strongly exploits the best paths found
since only the iteration-best ant, that is, the ant that constructed the
best solution in the current iteration, or the best-so-far ant, that is, the
ant that constructed the best solution so far, deposits pheromones in
each iteration:

best 1/£(Ste"),  if path j for edge i belongs to St
A" = { 0, otherwise

7
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Algorithm 2: UpdatePheromones_and_DaemonActions

// Check whether a new best-solution is found
if solution-iteration-best-ant improves global-best-solution-so-far
then

-

2 global-best-solution-so-far = solution-iteration-best-ant
3 trail max = 1/(px global-best-solution-so-far)

4 trail_ min = trail max/(2 X n)

5 stall_iters = 0

6 else

7 L stall_iters++

// Update pheromones with iteration-best ant or
best-so-far ant
// Applying Equation (6) and Equation (7)
if iteration % update_gb then
L update_pheromone(iteration_best_ant)

o

10 else
11 L update_pheromone(best_so_far_ant)

// Gradually increase the frequency best-so-far ant
updates the pheromone trails
12 if stall iters < restart itersx0.25 then
1 L update_gb = 10
14 else if stall iters < restart itersx0.50 then
1 L update_gb = 5
16 else
17 L update_gb = 2
// Restart pheromone trails when algorithm is
stagnated
18 if stall iters > restart iters then
19 init_pheromone_trails()
20 stall_iters = 0
21 update_gb = 10

w

“«

where f(S%) is the function score of the solution $%¢*' found by the
iteration-best ant or the best-so-far ant.

In lines 8-11 of Algorithm 2, it can be seen how the pheromone
update is sometimes based on the solution of the best ant in the current
iteration and other times on the solution of the best ant so far. How
often this happens depends on the progression of the algorithm and is
controlled in the daemon procedure, explained in the next section.

4.3. Daemon actions

The daemon actions procedure is used to implement centralized
actions which cannot be performed by single ants because they require
access to non-local information. A daemon action is, for instance,
the gathering of global information to decide whether or not deposit
additional pheromones to guide the search process from a non-local
perspective. Local search procedures are also popular daemon actions.

In most general implementations of the MMAS algorithm, the use of
iteration-best solution and the best-so-far solution in Eq. (7) alternates.
The choice of the relative frequency with which the two pheromone
update rules are applied has an impact in the search: when pheromone
updates are always performed by the best-so-far ant, the search focuses
very quickly around the best-so-far solution, whereas when the iteration-
best ant updates pheromones the search is less directed. Experimental
results indicate that for small problems it may be best to use only
iteration-best pheromone updates, while for large ones the best per-
formance is obtained by giving an increasingly stronger emphasis to
the best-so-far solution. This can be achieved by gradually increasing
the frequency with which the best-so-far ant updates the pheromone
trails. Lines 12-17 of Algorithm 2 implement the adjustment between

Expert Systems With Applications 208 (2022) 118199

the update of the pheromone trials using the iteration-best ant or the
best-so-far ant.

The strategy to update the pheromone trails using only the iteration-
best ant or the best-so-far ant, speedups the algorithm, but may also
lead to a premature convergence. To offset this effect, MMAS limits
the possible range of pheromone trails to an interval [z,,,, T,.]- This
improves the exploration, giving each path a minimum probability of
being chosen. It can be observed that, because of pheromone evapo-
ration, the maximum value for the pheromone trail is 7,,, = 1/(p -
f(S =)), where f(S =) is the score of the optimal solution. Based on
this observation, and using the best-so-far solution obtained during the
execution of the algorithm, the maximum trial value can be estimated
as 7,,, = 1/(p- £(S**"). The minimum value of the pheromone trial
7,in 1S estimated as a constant factor lower than z,,,, in this work
Tpin = Tmax/2n being n the number of edges (lines 3-4 in Algorithm
2).

In the MMAS variant, the pheromone trails are initialized to the
maximum value. This leads to a further diversification in the algorithm
since during the first iterations the relative difference between the
different paths will not be very marked, as it is when the trails are
initialized to zero. Furthermore, when it is detected that the algo-
rithm stagnates at local minima, that is, when a certain number of
subsequent iterations fail to improve the best solution obtained so far,
the pheromone matrix is restarted, again with the pheromone trails
initialized to their maximum value (lines 18-21 of Algorithm 2). This
favors the search for alternative paths that allow the algorithm getting
out from the local minima.

5. Parallel implementation

The inherently parallel nature of the ACO, where each ant can
build its path independently from the rest, allow to parallelize the
algorithm both in the data and in the population domains. Many
different parallel strategies can easily be adapted to ACO. Most of them
can be classified into fine-grained and coarse-grained strategies. In fine-
grained approaches, few ants are assigned to individual processors that
exchange information frequently. In coarse-grained strategies, larger
sub-populations or even entire populations are assigned to individual
processors and information exchanged is lower. A recent review of the
literature on parallel approaches for the ACO algorithms can be found
in Gonzalez, Osorio, Pardo, Banga, and Doallo (2022).

A fined-grained parallelization attempts to find parallelism in the
sequential algorithm preserving its behavior by assigning few and small
tasks to unique processes that would carry out a frequent exchange of
information among them. In the case of the ACO metaheuristic, finding
the parallelism in the sequential algorithm is straightforward, since
most of the time-consuming operations are placed in loops that can be
performed in parallel. However, the frequent exchange of information
negatively affects the scalability of these approaches.

Therefore, a more efficient solution is a coarse-grained approach,
which involves looking for a parallel variant of the sequential algo-
rithm. In many metaheuristics the most popular coarse-grained solution
consists of implementing an island-based model. In these models, the
initial population is distributed among different islands where the orig-
inal algorithm is executed in isolation and, from time to time, islands
exchange information that allow them to benefit their searches from
the knowledge of the rest. This solution drastically reduces communi-
cations between distributed processes, which improves the scalability
of the proposals. In the case of the ACO metaheuristics, the islands are
called colonies and each colony is assigned to a different processor and
executes the sequential ACO algorithm remotely, until a communica-
tion step is reached, where information about the best solutions found
so far and/or the pheromone matrix is exchange among processors.
This kind of parallel ACO implementation is usually called multicolony
model.
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Fig. 3. Scheme of the MPI+OpenMP multicolony implementation.

In this work we have followed the MPI+OpenMP hybrid parallel
strategy for the ACO metaheuristic described in Gonzélez et al. (2022).
Fig. 3 illustrates this approach, that improves the efficiency of the
algorithm through a balance between diversification and intensifica-
tion. It combines a coarse-grained multicolony parallelization, focused
on stimulating diversification in the search and cooperation between
different colonies, with a fine-grained strategy, aimed at speeding up
calculations by carrying out the construction of solutions in parallel.

Algorithm 3 shows a basic pseudocode for the parallelization
adapted for the problem at hand. This pseudocode reflects both levels of
parallelization. Each colony in the group executes a copy of this code in
isolation, albeit communicating with each other as explained below. On
the other hand, within each colony, those tasks that can be performed
in parallel are distributed among different threads, following a fork-join
programming model.

The majority of the operations of the ACO algorithm can be carried
out in parallel. Specifically, both the construction of the solutions and
their evaluation (lines 6-12 in Algorithm 3) are directly parallelizable
using the OpenMP shared memory library. When the running thread
of each colony reaches the parallel loop (line 6), it creates a group of
threads so that the iterations of the loop are distributed among them. At
the end of the parallel loop (line 12) the threads are synchronized and
join into a single thread again, that continues the colony execution. The
only procedure that cannot be straight parallelized within each single
colony is the updating of the pheromone matrix. However, since in the
MMAS variant the update is carried out by a sole ant, its computational
cost is irrelevant.

On top of this fine-grained parallelization within each colony, a
cooperative scheme is built among a group of different colonies. When
designing this cooperative scheme some key issues have to be ad-
dressed, such as what information is exchanged, which colonies are
involved in the communication process, when and how the information
exchange takes place, and how the information received from other
colonies is used. In our approach, the exchange of information between
colonies is driven by the quality of the solutions, rather than by an
elapsed time or a predefined effort, to achieve more effective coopera-
tion. Thus, every time a new promising solution is achieved in one of
the colonies (line 13 in Algorithm 3), it is spread to the rest of colonies
(line 14). When a new solution arrives in the colony and improves the
best-solution-so-far, the latter is replaced by the former (lines 18-19).
An asynchronous communication protocol is used between colonies

Algorithm 3: MPI+OpenMP ACO parallelization

// Initialize MPI environment
1 MPL Init
2 Initialize colony parameters
3 Initialize colony pheromone trails
// Prepare a reception buffer for asynchronous
communications
4 MPI_IRecv(promising-solution,request)
s while termination condition not met do
// Share work among ants in the colony

6 $$ omp parallel loop
7 for k = 1 to number of ants do
8 step =1
9 while step < number_of edges do
// Applying Equation (5)
10 ApplyACODecisionRuleToSelectGate
11 step ++
12 EvaluateSolutionFitness
// When new local best solution is found, send it
asynchronously
13 if local-best-solution-so-far < global-best-solution-so-far then

14 L MPI_ISend(local-best-solution-so-far)

// Check the reception of foreign promising
solutions

15 repeat

// MPI check asynchronous reception

16 MPI Test(request, recvflag)
17 if recvflag then
18 if promising-solution < global-best-solution-so-far then
19 L global-best-solution-so-far < promising solution
// Prepare a new reception buffer for next
receptions
20 MPI_IRecv(promising-solution,request)

21 until (!recvflag)
// Using Algorithm 2
2 | UpdatePheromones_and_DaemonActions
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(lines 4, 14, 16 and 20), thus avoiding inactive processes while waiting
for the information exchange. Therefore, the proposal implements a
completely decentralized approach, in contrast to classic centralized
approaches, which address the efficient use of available resources while
providing a fault tolerant solution, since the coordinator represents a
single point of failure that is avoided here.

6. Experimental results

In this section the performance of the proposed parallel ACO is
evaluated using three benchmarks related to the target application,
early drug discovery. Specifically, the benchmarks used in this work are
related to the study of cell signaling in liver cancer. Benchmarks used
to carry out the experiments reported in this section are summarized
in Table 1. LiverDREAM (Saez-Rodriguez et al., 2009) was part of the
DREAM4 — In Silico Network Challenge (Chun et al., 2011). ExtLiv-
erBMC2012 (Terfve et al., 2012) uses phosphorylation data obtained
from a human hepatocellular cell-line (the HepG2) after perturbation
with inhibitory drugs, and ExtLiverPCB (Morris et al., 2011) is a larger
version of ExtLiverBMC2012.

All the experiments were performed at the Galicia Supercomputing
Center (CESGA) using the FinisTerrae-II supercomputer. Each Finis-
Terrae-II node is composed of two Intel Haswell E5-2680v3 CPUs
running at 2.50 GHz, with 12 cores per processor (24 cores per node),
and 128 GB of RAM. The nodes are connected using an InfiniBand FDR
56 Gbps interconnect using a Fat-tree topology.

To comprehensively evaluate the performance of different appr-
oaches, tests are performed from different perspectives. Most of the
tests were performed with a quality stopping criterion. An objective
value is pre-established and the effort needed to reach the target
solution is evaluated. These experiments have, as a handicap, the
long execution times required in some cases to achieve the optimum,
especially if we attempt to compare with sequential executions. For
this reason, other tests were carried out using a predefined effort. The
algorithm finishes when a maximum execution time has been spent.

In this work, execution time has been used as the main performance
metric. This is a very popular metric when evaluating the performance
of parallel algorithms, since the main objective of parallelization is
to improve response time. When the computer infrastructure is the
same in all experiments, this is the preferred metric to assess and
compare different parallel alternatives. In addition, for the design of
the experiments in this work, the guide of Hansen, Auger, Finck, and
Ros (2009) has been followed.

Due to the stochastic behavior of the algorithm, 100 runs are
performed independently for each experiment, and the distribution of
the data is taken into account in the evaluation and discussion of the
results.

6.1. Tuning of the ACO implementation

As usual in most metaheuristics, the performance of the ACO al-
gorithm is straight dependent on the choice of its parameters. As
described in Section 4, in the implementation proposed in this work,
only the evaporation rate (p), the number of ants, and the number of
stagnant iterations that triggers the restart of the pheromone matrix,
are applicable and, thus, need to be tuned. In this subsection we discuss
the choice made for each of them based on the performance and
efficiency of the method.

First, the number of stagnant iterations that trigger the restart
helps to speed up convergence, especially for problems that tend to
stagnate at local optima, as this is the case. Fig. 4 shows the cumulative
probability of reaching the global optimum for the LiverDREAM case-
study with different value of this parameter. Similar experiments have
been carried out with the rest of the benchmarks obtaining similar
results. Thus, the number of stagnant iterations that trigger the restart
is set to 50 for these problems, so that convergence is accelerated but
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Table 1

Benchmarks: #edges: number of edges, #nodes: number of nodes, #readouts: number
of measurements, #cond.: number of experimental conditions, TP: time-points, opt.:
optimum of the objective function cost.

Benchmark #edges #nodes #readouts #cond. TP opt.
LiverDREAM 62 17 7 25 0, 30 0.01977874
ExtLiverPCB 99 31 15 64 0, 30 0.024962085
ExtLiverBMC2012 108 31 15 64 0, 30 0.024959938

not too aggressive to remove the information in the pheromone trails
while it can still be useful.

Previous studies in the literature (Nallaperuma, Wagner, & Neu-
mann, 2015) have demonstrated that the number of ants in the MMAS
variant of the ACO does not present a significant impact in the final
result in terms of the number of iterations for convergence. However,
the more ants there are in the system, the more costly the loop to build
the solution, in terms of the number of evaluations performed and the
sequential execution time. For this reason, applications using the MMAS
variant use few ants regardless of the size of the problem. However,
notice that in the parallel versions it may be convenient to increase
the number of ants, especially if several threads are going to be used
to distribute the tasks of the construction loop. For the experiments
reported here we have used 24 ants. This number is chosen because
the thread configuration used in the experiments is multiple of 2, and,
thus, the distribution of ants between tasks/processors is balanced.

Finally, the pheromone evaporation rate (p) is key to rapidly de-
crease the pheromone trails for bad paths (when large rates are used) or
to keep the exploration ability (when small rates are taken). Therefore,
tuning this ACO parameter is critical to maximize the algorithm efficacy
and efficiency.

Fig. 5 shows the cumulative probability of reaching the global opti-
mum for the LiverDREAM case-study with different value of parameter
p. Moreover, in this work we include in the algorithm a self-adaptation
strategy for the evaporation parameter. Initially p starts with large
values (which can be selected by the user, or by default p = 0.5).
This high rate will remove from the pheromone matrix the trails of
initial solutions that are quickly improved in the first iterations of the
algorithm. Once the algorithm advances and begins to stagnate, p pa-
rameter begins to decrease 0.1 for every 20% of the stagnant iterations
before a new restart. Fig. 5 shows also the cumulative probability for
an experiment using the self-adaptive parameter.

In summary, for the experiments reported in the following sections,
only two parameters of the ACO are user-defined: the number of ants
and the number of stagnant iterations that trigger a restart of the
pheromone matrix. The former has been set to 24 ants for each colony,
while the latter is set to 50 stagnant iterations.

6.2. Assessment of the sequential ACO versus GA

As it has already been mentioned, until now the CellNOpt frame-
work used a GA algorithm as an optimization method for network
training (Terfve et al., 2012). This method has limitations, especially
regarding the execution time and the quality of the solutions when the
size of the problem grows. In this work we have compared the perfor-
mance of the proposed ACO with the GA. However, the GA provided
in CellNOpt package was programmed in R and executed sequentially.
In order to fairly compare the results, we have implemented the GA
algorithm in C, using the same structure as for the ACO algorithm and
also including a parallel implementation based on the island model.

Fig. 6 shows the cumulative probability of reaching the global
optimum for both the ACO algorithm and the GA for the LiverDREAM
case-study in sequential executions. Up to 100 runs were performed
for each of the experiments, limiting the execution time to 1 h in all
of them. In the lower part of the picture it can be seen that, in some
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Fig. 4. Cumulative probability of reaching the global optimum in LiverDREAM case-study using 6 colonies and 4 threads each, for different values of the number of stagnant
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Fig. 6. Cumulative probability of reaching the global optimum in LiverDREAM case-study for both ACO and GA algorithm. Results for 100 experiments each. Maximum time
allowed: 1 h.

experiments, the GA achieves the optimum in shorter execution times To get insight in these results, Fig. 7 shows the best values achieved
than the ACO. However, all in all, the ACO is more robust than the GA during the first 800 iterations, for both the ACO and the GA, in
because the dispersion of the results in the set of 100 experiments is sequential executions. It can be clearly seen how the GA algorithm
smaller, and all the executions converge in less than 1000 s, when only is faster in the first iterations but it converges quickly to suboptimal
49% of GA executions converge in 3600 s. solutions while ACO is able to get out of them. Each point in the
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Fig. 7. Best value over iteration for the first 800 iterations, comparing ACO with GA algorithms. Each point represents the average of the best value obtained in 100 runs.

figure represents the average of the final solutions obtained in 100 runs.
Although in the first iterations GA has a faster convergence, in the long
term ACO outperforms GA, as shown in Fig. 6.

6.3. Performance evaluation of the parallel implementation

The parallel implementation proposed in this work allows, not only
to accelerate the resolution of the problem through the construction
of the solutions and their evaluation in parallel, by means of the
fine-grained parallelization that distributes the calculations among the
different threads, but also to help the algorithm to get out of local op-
tima thanks to the cooperation of multiple colonies that are conducting
searches simultaneously.

Fig. 8 shows, for illustrative purposes, the results obtained for
the LiverDREAM case study in a pre-defined effort test (maximum
execution time 10 s) with different combinations of number of colonies
and number of threads per colony. Again each experiment is carried
out 100 times, and the best values achieved in each of them are dotted
(that is, there are 100 dots in each plot). As can be seen, with a single
colony and a single thread (sequential execution), most of the runs do
not reach the global optimum (0.019) and get stuck in a local optimum
(0.031). However, as the number of threads and, especially, the number
of colonies increases the number of runs that reach the global optimum
increases as well.

More detailed results of these experiments, as well as their com-
parison with the GA algorithm (and its parallel version) can be seen in
Fig. 9, for the three case-studies. The average of the best value obtained
in the 100 runs of each experiment, as well as the percentage of success,
that is, the percentage of executions that managed to reach the global
optimum, are reported.

It can be seen how the parallel versions improve the results achieved
as the number of processors increases. But it is also interesting to
see how the distribution of computational resources between threads,
that share the tasks of each colony, and independent colonies, that
cooperate with each other, impacts in the behavior of the parallel
algorithm. For example, if 8 processors are dedicated to the execution,
it can be seen the differences between using a single colony with 8
parallel threads, or using 8 colonies with a single thread each. In
these problems that tend to stagnate, cooperation between colonies is
essential to get out of stagnation, so it is usually more appropriate
to enhance the colonies against the threads. It is also important to
assess the results obtained by the ACO versus the GA in the parallel
experiments. The inherently parallel nature of the ACO means that
parallelization, even following the same strategy, obtains better results
than in GA, where more operations have to be carried out sequentially.

Table 2
p-values results of Mann Whitney test to compare the performance of parallel ACO with
the sequential ACO and with the parallel GA.

Colonies seq.ACO vs. par.ACO ACO vs. GA
1 - 0.2450
2 1.11e-7 6.70e-5
4 1.84e-9 1.17e-3
LiverDREAM 6 5.54e-9 6.02e-3
8 2.20e-16 1.18e-11
12 1.12e-11 1.18e-11
24 2.20e-16 3.51e-8
1 - 0.2714
2 5.01e-5 0.5173
4 2.36e—11 7.51e-5
ExtLiverPCB 6 6.4%e-12 1.59e-3
8 3.43e-14 2.27e—4
12 7.89e-13 2.28e-2
24 2.20e-16 9.24e-7
1 - 1.26e-2
2 5.37e-3 6.10e-3
4 5.51e-3 6.93e-4
ExtLiverBMC2012 6 5.51e-3 6.93e—4
8 7.89e-5 7.13e—-4
12 9.85e-7 3.42e-6
24 2.29e-10 1.82e-9

6.4. Statistical analysis

In order to prove the significance of the results a statistically analyze
was performed using the Mann Whitney U test (MacFarland & Yates,
2016). The Mann Whitney U test is a non-parametric statistical test to
compare the results obtained by a pair of algorithms. The test is based
on two hypotheses: the null and the alternative hypothesis. The null
hypothesis assumes that there is no difference between the ranks of the
results obtained by the two algorithms, and the alternative hypothesis
considers that there is a difference between them. We have applied the
Mann Whitney test to compare first the results obtained in the parallel
version of the ACO algorithm with the results obtained in its sequential
version, and second, the results obtained in the parallel version of the
ACO algorithm with the results obtained in the parallel version of the
GA algorithm. To carry out these tests, we used the results obtained in
the experiments reported in the previous section.

Table 2 shows the p-value obtained by each pair of algorithms
compared. We have used a test based on a 5% significant level. Thus,
when p-value is larger than 0.05 then the null hypothesis is true,
whereas when p-value is under 0.05 the alternative hypothesis is true.
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Fig. 8. Best value achieved for different combination of colonies and threads in the parallel implementation in predefined effort experiments. Case-study: LiverDREAM. Number
of runs per experiment: 100. Maximum time: 10 s. Blue dots: suboptimal solution, black dots: optimal solution.

As it can be seen, for the comparison between the sequential ACO
and the parallel multicolony approach, in all the cases the alternative
hypothesis is true, that is, the Wann Whitney U test concludes that the
parallel ACO outperforms the sequential ACO. Note also that the p-
value decreases, in general, when the number of colonies increases. For
the comparison between the ACO and the GA algorithm, note that the
comparison is performed with the same number of colonies en the ACO
algorithm and the GA algorithm. That is, the results reported in the
table for 6 colonies compare the parallel ACO with 6 colonies against
the parallel GA with 6 colonies. Most of the p-value for these tests are
under 0.05, that is the parallel ACO outperforms its counterpart parallel
GA. However, for the sequential version of the ACO and the GA in
LiverDREAM and ExtLiverPCB benchmarks, the p-value achieved was
larger than 0.05. This means that the null hypothesis is true and we
cannot prove that there is significance difference between the results
obtained by ACO and GA. This result is consistent with the discussion
in Section 6.2 and Fig. 6, where it has been evidenced that, in the
first iterations of the algorithm, the convergence results of the GA are
similar and even superior to the ACO, but in the long term GA stagnates
easily. Note that these Mann Whitney tests have been applied to the
results of the predefined-effort experiments reported in Fig. 9.
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6.5. Speedup and efficiency analysis

A very popular metric for assess parallel versus sequential imple-
mentations is speedup. In the HPC field, speedup is usually defined as
the relationship between the time required to execute the sequential
algorithm versus the time required to execute the parallel implemen-
tation. However, when studying stochastic problems, such as meta-
heuristics, it is necessary to be very careful with this definition. When
performing a series of runs in each experiment, it is necessary to use
the averages of the times to calculate the average speedup. Moreover,
the stopping criterion should be the quality of the solution reached
(that is, all the experiments should stop at the same target value), since
otherwise we may obtain a large speedup while the parallel executions
reach worse values from the quality point of view. In this case, we
have performed experiments with quality stopping criterium for the
LiverDREAM case study, and we show in Fig. 10 the average time to
achieve the global optimum, the minimum time of the 100 runs, the
speedup, and the efficiency. The speedup is computed as:

/Taug

_ avg
Sp= T, parallel”

sequential

The efficiency is calculated as:

e = sp/cores.
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| Average best value | | % hits |
Colonies Threads/OMP Colonies Threads/OMP
MPI 1 2 4 8 MPI 1 2 4 8
1] 1 0,029524  0,028441 0,026396  0,026276 1 19% 28% 45% 46%
2 0,026877 0,025794 0,025554 0,023990 2 38% 48% 52% 64%
4 0,025313  0,026997  0,024471 4 52% 40% 61%
8 6 0,025554  0,024832 = 0,022305 6 51% 58% 78%
8 0,025674  0,022907 8 51% 73%
s 12 0,024832 0,021704 12 58% 84%
b | | 24 0,022185 24 80%
8
9 1 0,029404  0,029524 0,028923  0,029043 1 20% 19% 24% 23%
= 2 0,029043 0,028923 0,028321 0,028321 2 23% 24% 29% 29%
4 0,027840  0,027960  0,027960 4 33% 32% 32%
S 6 0,027719 0,027960 0,026516 6 34% 31% 44%
8 0,027960  0,027479 8 32% 36%
12 0,027599 0,028080 12 35% 31%
| I | 24 0,026757 24 42%
| Average best value | | % hits |
Colonies Threads/OMP Colonies Threads/OMP
MPI 1 2 4 8 MPI 1 2 4 8
[ ] 1 0,028207 0,027877  0,027682  0,027395 1 3% 17% 31% 33%
2 0,027905 0,027997 0,027674 0,027512 2 19% 22% 33% 37%
4 0,027633  0,027516  0,027633 4 34% 35% 32%
.% 6 0,027593 0,026986 0,026824 6 33% 48% 54%
8 0,027350  0,026864 8 39% 52%
A 12 0,027633 0,026702 12 33% 57%
gL 24 |[0026824 24 53%
g
g [ ] 1 0,028218  0,028269 0,027925  0,028038 1 3% 14% 27% 24%
“ 2 0,028103 0,028010 0,028605 0,027957 2 18% 24% 10% 25%
4 0,028370  0,028078  0,028200 4 13% 23% 20%
S 6 0,028200 0,027916 0,027876 6 20% 27% 28%
8 0,027997  0,027795 8 25% 30%
12 0,027795 0,027674 12 30% 33%
| 1L 24 0,028038 24 24%
| Average best value | | % hits |
Colonies Threads/OMP Colonies Threads/OMP
MPI 1 2 4 8 MPI 1 2 4 8
[ ] 1 0,028020 0,027348  0,027265  0,026741 1 23% 41% 43% 56%
2 0,027591 0,027429 0,027024 0,026538 2 35% 39% 49% 60%
4 0,027307 = 0,026538  0,026822 4 42% 61% 54%
§ 6 0,026903 0,027186 0,026215 6 52% 45% 69%
~ 8 0,027064  0,026538 8 48% 61%
a 12 0,026741 0,026579 12 56% 60%
3] 24 | 0,026255 24 68%
% ]
.g [ ] 1 0,027916 = 0,028166 0,027672 = 0,028198 1 21% 19% 33% 20%
ﬁ 2 0,027793 ~ 0,028036 0,027955  0,027955 2 30% 24% 26% 26%
“ 4 0,027874  0,027995 0,027914 4 28% 25% 27%
18 6 0,027550 0,027834 0,027469 6 36% 29% 38%
8 0,027833  0,027793 8 29% 30%
12 0,027834 0,027753 12 29% 31%
| 1L 24 0,027591 24 35%

Fig. 9. Average best value achieved and %hits (global optimum achieved) in predefined effort experiments, for different configurations of the number of colonies (MPI processes)
and the number of OpenMP threads in each colony. Number of runs per experiment: 100. Maximum time: LiverDREAM = 10 s, ExtLiverPCB = 100 s, ExtLiverBMC2012 = 1000

s. Color coded from worse in red, to best in green.

Several conclusions can be drawn from these results. First, as al-
ready mentioned, the more cores used in the parallel implementation,
the better the results obtained. In addition, it is again highlighted that
the allocation of resources between colonies and threads affects perfor-
mance. Specifically, it can be seen how the average time improves as
the number of colonies increases, although the minimum time improves
with the number of threads (for the same number of total cores). For
example, a better average time is obtained with 24 colonies and 1
thread per colony than with 6 colonies and 4 threads per colony, but

11

with the latter combination a lower minimum time is obtained. This is
due to the effect of each of the parallel strategies employed (fine grain
vs. coarse grain). Parallelization into different cooperating colonies
helps drive executions that stagnate out of their local optima, thanks
to diversification. The fine-grained parallelization, on its turn, favors
an intensification in the search within each colony because it speeds

up the calculations.
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| minimum time |

Colonies| Threads/OMP Colonies Threads/OMP
MPI 1 2 4 8 MPI 1 2 4 8
1 86,802128 77,096032 34,306727 20,529403 1 0,669456 0,162129 0,150189 0,222448
2 47,388304 39,609473 15,080601 10,549374 2 0,528825 0,156996 0,066042 0,066123
4 23,204108 19,323643 10,670650 4 0,110078 0,058069 0,04518
6 14,193998 9,869347 5,928100 6 0,154828 0,071127 0,044841
8 12,957251  8,962198 8 0,124357 0,079087
12 9,025619 4,895997 12 0,126762 0,07804
24 4,991933 24 0,115271
Speedup Efficiency |
Colonies| Threads/OMP Colonies Threads/OMP
MPI 1 2 4 8 MPI 1 2 4 8
1 - 1,125896 2,530178 4,228186 1 - 56% 63% 53%
2 1,831720 2,191449 5,755880 8,228178 2 92% 55% 72% 51%
4 3,740809 4,492017 8,134662 4 94% 56% 51%
6 6,115411 8,795123  14,642487 6 102% 73% 61%
8 6,699116 9,685361 8 84% 61%
12 9,617305 & 17,729205 12 80% 74%
24 17,388482 24 72%

Fig. 10. Results of average time, minimum time, speedup and efficiency for experiments with a quality stopping criteria for LiverDREAM benchmark. Number of runs per

experiment: 100. Color coded from worse in red, to best in green.
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Fig. 11. Typical convergence curves using ACO to solve the three case-studies.

6.6. Convergence analysis

Fig. 11 shows, for illustrative purposes, some typical convergence
curves for the three problems at hand using the ACO algorithm pro-
posed. One of the first issues that can be observed in these convergence
curves is the tendency of the ACO algorithm to get stuck in suboptimal
solutions.

In solving these problems, rapid convergence to local suboptimals
and stagnation is not only a problem attributable to the ACO algorithm,
since other metaheuristics, specifically the GA commented above, also
present this same handicap. It would therefore be very interesting to
have a mathematical demonstration of the convergence of the different
metaheuristics, even for specific problems. However, as pointed in Hus-
sain, Mohd Salleh, Cheng, and Shi (2019), although metaheuristics
have successfully solved a wide range of difficult problems, this field
is still immature in terms of convergence, complexity, and runtime
analysis.

Fortunately, there are several works (Gutjahr, 2002; Stiitzle & Hoos,
2000) that have already demonstrate that, for the MMAS variant of the
ACO algorithm, the objective function value of the best solution found
so far converges with probability one to the optimal value. These papers
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consider only the sequential version of the algorithm. But they do not
estimate the theoretical speed of convergence. The parallelization of
the algorithm can certainly help at this point, as has been demonstrate
throughout this work.

Therefore, it is interesting to study how the parallelization of the
algorithm affects the convergence of the sequential ACO method. How-
ever, the theoretical development in parallel approaches of most meta-
heuristics is at an early stage. Therefore, mathematical analysis regard-
ing the rate of convergence is very difficult, if not impossible. In fact,
there is a lack of mathematical analysis and mostly ad-hoc approaches
have been adopted in the literature to measure the performance of
parallel metaheuristic algorithms.

The results reported in previous sections already implicitly reflect
the improvement in the convergence of the proposed parallel algorithm.
In this work, a hybrid parallelization is proposed combining fine-
grained parallelization with coarse-grained parallelization. The former,
as explained previously, hits intensification by means of the distribution
of ants among processors. With this parallelization, the original se-
quential algorithm does not change its properties, and the convergence
of the sequential method, in number of iterations and evaluations
carried out, is maintained when the number of threads increases. In
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Fig. 12. Beanplots with the distribution of execution times for experiments with a quality stopping criteria.

Table 3
Number of restarts triggered in the experiments of Fig. 10 for a different number of
colonies using one thread per colonie.

Colonies Number of restarts Y%executions
min Average max without restarts

seq 2 295 2404 0

2 1 158 954 0

4 0 78 447 2

6 0 44 351 7

8 0 37 233 15

12 0 26 206 17

24 0 14 99 26

these cases we see an improvement in the elapsed time motivated by
the execution of the original tasks in parallel. However, with coarse-
grained parallelization, as explained in detail in Section 5, the focus is
on diversification. The original algorithm changes, being the parallel
algorithm the result of the cooperation between different instances of
the sequential algorithm. In this case, the convergence of the algorithm
improves, since the systemic properties of the parallel version and a
simple instance of the sequential algorithm are not the same. Fig. 12
shows the dispersion of the results (execution time) in the tests that
use quality as stopping criterium, for the LiverDREAM benchmark,
using different numbers of colonies but only one thread per colony.
It can be clearly seen that the more colonies cooperating, the less time
to reach the optimum. Note that the y-axis scale is logarithmic. The
dispersion of the results is significantly lower (the average execution
time decreases more than an order of magnitude between the sequential
and the parallel execution with 24 colonies). These results demonstrate
the improvement in convergence and in the robustness of the parallel
algorithm.

To further demonstrate the improvement in convergence when the
number of colonies increases, Table 3 shows the number of restarts
of the pheromone matrix that have been triggered in each of the
experiments in Fig. 10. Let us remember that, as explained in Section 5,
this ACO algorithm uses a restart strategy for the pheromone matrix
every time it detects that the ants are stuck in a local minimum (lines
18-21 in Algorithm 2). Specifically, Table 3 shows the average number
of restarts that were triggered in the 100 runs of each experiment, the
minimum and maximum number of restarts, and the percentage of runs
that reached the optimum without needing any restart. It can be seen
that as the number of colonies increases, the number of average restarts
drops significantly. Also the maximum number of restarts needed by the
slowest execution decreases with the number of colonies. And, finally,
the percentage of executions for each experiment that did not need
any restarts increases from 0% in the sequential case to 26% with 24
colonies.
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6.7. Scalability analysis

To study the scalability of the parallel algorithm, we have also
carried out experiments using a large number of cores. Table 4 shows
results for different number of colonies and threads, using from 2
nodes (48 cores) to 8 nodes (192 cores) of the FinisTerrae-II. These
experiments demonstrate the scalability of the algorithm, since using
up to 192 cores the algorithm continues to scale.

It can be seen that, as the number of cores continues to increase,
the percentage of success continues to grow. It is also important to note
that, in general, the number of colonies has a larger impact than the
number of threads, since, as already indicated, the number of colonies
significantly impacts the ability of the algorithm to get out of local
optima. Regarding the execution time, note that the time reported in
the table is the average time of the 100 runs, however, depending on
the percentage of success of these runs, many would have finished in
the maximum time allowed without reaching the optimum (case of the
ExtLiverBMC2012 benchmark), so this average time does not allow us
to calculate a speedup.

6.8. Comparison with other training methods

Formulated as a non-linear optimization problem, the training of
network models in CellNOpt can be solved with stochastic search
methods as shown previously. However, other alternatives are possible.
In a recent work (Gjerga et al., 2020), a declarative problem-solving
technique using Answer Set Programming (ASP) via Cell ASP Optimizer
(CASPO) method and a Integer Linear Programming (ILP) formulation
via the IBM ILOG CPLEX Optimization Studio has been also tested.

Table 5 shows a comparison between the ASP and ILP approaches
and the parallel ACO proposed in this paper. In the case of the ASP
and ILP columns the time results are the ones reported in Gjerga
et al. (2020). In the case of the columns for ACO, we report results
of the parallel algorithm using a single supercomputer node (24 cores)
and 8 nodes (192 cores). The time reported is the minimum time
obtained in all the experiments. To analyze the results we must take
into account that the experiments have not been carried out in the same
infrastructure, so, to be fair, the conclusions drawn must take this into
account. However, though a deeper analysis cannot be supported on
this results, the times obtained using the parallel ACO metaheuristic
are competitive with alternative methods.

7. Conclusions

Here we describe the adaptation of the ACO algorithm for the
training of cell signaling networks which can help in the study of
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Results of best, average and worst solutions in predefined effort experiments, for the three case-studies. #c X #t: number of colonies x number of
threads. Number of runs per experiment: 100. Maximum time: 10 s for LiverDREAM case-study and 100 s for ExtLiverPCB and ExtLiverBMC2012.

Cores conf. fitness Avg. %hits
#c X #t Best Average Worst Time (s)
48 24 % 2 0.019778749 0.020981858 0.031809836 2.88 90
48 48 x 1 0.019778749 0.020259993 0.031809836 1.98 9%
9% 24 % 4 0.019778749 0.019778749 0.019778749 1.89 100
. 96 48 %2 0.019778749 0.019778749 0.019778749 1.06 100
LiverDREAM
9% 96 x 1 0.019778749 0.019778749 0.019778749 0.94 100
192 48 x4 0.019778749 0.019778749 0.019778749 0.64 100
192 9 x 2 0.019778749 0.019778749 0.019778749 0.55 100
192 192 x 1 0.019778749 0.019778749 0.019778749 0.39 100
48 24 % 2 0.024962085 0.026014277 0.029008977 44.49 74
48 48 x 1 0.024962085 0.02617616 0.029008977 45.62 70
9% 24 % 4 0.024962085 0.02556918 0.029008977 36.99 84
ExtLiverPCB 9% 48 x 2 0.024962085 0.025366782 0.029008977 29.75 89
9% 9 x 1 0.024962085 0.02552865 0.029008977 29.89 86
192 48 x4 0.024962085 0.025204921 0.029008977 24.78 93
192 96 x 2 0.024962085 0.02512396 0.029008977 2071 98
192 192 x 1 0.024962085 0.025002554 0.029008977 15.21 99
48 24 % 2 0.024959938 0.027428696 0.029007760 69.63 39
48 48 x 1 0.024959938 0.027023977 0.029007760 60.17 49
9% 24 % 4 0.024959938 0.027145384 0.029007060 64.45 46
) 9% 48 %2 0.024959938 0.026862134 0.029007760 56.10 52
ExtliverBMC2012 96 96 x 1 0.024959938 0.026497851 0.029007060 51.09 62
192 48 x4 0.024959938 0.026174074 0.029007060 42.74 70
192 9 x 2 0.024959938 0.026497844 0.029007060 51.86 62
192 192 x 1 0.024959938 0.026335959 0.029007060 45.96 66

Table 5

Results of execution time in seconds. Times for ASP and ILP: reported in Gjerga et al.
(2020). Times for ACO: minimum time needed for parallel ACO executed in 1 or 8
nodes to reach the optimum.

Benchmark ASP ILP ACO ACO

(1 node) (8 nodes)
LiverDREAM 0.060 0.136 0.044 0.032
ExtLiverPCB 239.89 4.733 1.229 0.716
ExtLiverBMC2012 273.66 33.933 3.443 0.825

new cancer drugs and therapies. These networks are modeled us-
ing the CellNOpt framework. In addition to adapting the algorithm
to the problem, we also describe its parallelization using a hybrid
strategy combining fine-grained parallelization using OpenMP with
coarse-grained parallelization (multicolony) using MPIL.

In order to ensure a fair comparison with the results previously ob-
tained with a GA algorithm, this GA was coded using C, and parallelized
using the same structure and strategy as the new ACO-based proposal,
further demonstrating that the proposed parallel strategy can be easily
extended to other metaheuristics.

The experimental results show the good performance of our ACO
implementation, outperforming the GA, and the convenience of the
parallel version, especially for difficult problems that present many
local minima where many methods can get trapped. In particular,
the fine-grained parallelization accelerates the calculations within each
colony, while the multicolony cooperation favors escaping from the
local minima and therefore facilitates the convergence to the global
solution.

Our approach can be further refined by pursuing several promising
research directions, but we are especially interested in exploring the
extension of the parallel implementation to include approaches based
on heterogeneous colonies, including self-adaptive strategies, so it can
efficiently handle very complex large-scale problems.

Our contribution will help the development of better models in
order to obtain a functional understanding of the deregulation of
signaling networks in disease. Further, these models can be the basis
for the development of new therapies.

The source code is made public at https://doi.org/10.5281/zenodo.
6630397
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