22 research outputs found

    A logic programming framework for possibilistic argumentation: formalization and logical properties

    Get PDF
    In the last decade defeasible argumentation frameworks have evolved to become a sound setting to formalize commonsense, qualitative reasoning. The logic programming paradigm has shown to be particularly useful for developing different argument-based frameworks on the basis of different variants of logic programming which incorporate defeasible rules. Most of such frameworks, however, are unable to deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly encoded in the object language. This paper presents Possibilistic Logic Programming (P-DeLP), a new logic programming language which combines features from argumentation theory and logic programming, incorporating as well the treatment of possibilistic uncertainty. Such features are formalized on the basis of PGL, a possibilistic logic based on G¨odel fuzzy logic. One of the applications of P-DeLP is providing an intelligent agent with non-monotonic, argumentative inference capabilities. In this paper we also provide a better understanding of such capabilities by defining two non-monotonic operators which model the expansion of a given program P by adding new weighed facts associated with argument conclusions and warranted literals, respectively. Different logical properties for the proposed operators are studie

    Towards possibilistic fuzzy answer set programming

    Get PDF
    Fuzzy answer set programming (FASP) is a generalization of answer set programming to continuous domains. As it can not readily take uncertainty into account, however, FASP is not suitable as a basis for approximate reasoning and cannot easily be used to derive conclusions from imprecise information. To cope with this, we propose an extension of FASP based on possibility theory. The resulting framework allows us to reason about uncertain information in continuous domains, and thus also about information that is imprecise or vague. We propose a syntactic procedure, based on an immediate consequence operator, and provide a characterization in terms of minimal models, which allows us to straightforwardly implement our framework using existing FASP solvers

    An argumentation framework with uncertainty management designed for dynamic environments

    Get PDF
    Nowadays, data intensive applications are in constant demand and there is need of computing environments with better intelligent capabilities than those present in today's Database Management Systems (DBMS). To build such systems we need formalisms that can perform complicate inferences, obtain the appropriate conclusions, and explain the results. Research in argumentation could provide results in this direction, providing means to build interactive systems able to reason with large databases and/or di erent data sources. In this paper we propose an argumentation system able to deal with explicit uncertainty, a vital capability in modern applications. We have also provided the system with the ability to seamlessly incorporate uncertain and/or contradictory information into its knowledge base, using a modular upgrading and revision procedurePresentado en el X Workshop Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI

    An argumentation framework with uncertainty management designed for dynamic environments

    Get PDF
    Nowadays, data intensive applications are in constant demand and there is need of computing environments with better intelligent capabilities than those present in today's Database Management Systems (DBMS). To build such systems we need formalisms that can perform complicate inferences, obtain the appropriate conclusions, and explain the results. Research in argumentation could provide results in this direction, providing means to build interactive systems able to reason with large databases and/or di erent data sources. In this paper we propose an argumentation system able to deal with explicit uncertainty, a vital capability in modern applications. We have also provided the system with the ability to seamlessly incorporate uncertain and/or contradictory information into its knowledge base, using a modular upgrading and revision procedurePresentado en el X Workshop Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI

    Labeled bipolar argumentation frameworks

    Get PDF
    An essential part of argumentation-based reasoning is to identify arguments in favor and against a statement or query, select the acceptable ones, and then determine whether or not the original statement should be accepted. We present here an abstract framework that considers two independent forms of argument interaction-support and conflict-and is able to represent distinctive information associated with these arguments. This information can enable additional actions such as: (i) a more in-depth analysis of the relations between the arguments; (ii) a representation of the user's posture to help in focusing the argumentative process, optimizing the values of attributes associated with certain arguments; and (iii) an enhancement of the semantics taking advantage of the availability of richer information about argument acceptability. Thus, the classical semantic definitions are enhanced by analyzing a set of postulates they satisfy. Finally, a polynomial-time algorithm to perform the labeling process is introduced, in which the argument interactions are considered.Fil: Escañuela Gonzalez, Melisa Gisselle. Universidad Nacional de Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Budan, Maximiliano Celmo David. Universidad Nacional de Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin

    Computational Complexity of Strong Admissibility for Abstract Dialectical Frameworks

    Get PDF
    Abstract dialectical frameworks (ADFs) have been introduced as a formalism for modeling and evaluating argumentation allowing general logical satisfaction conditions. Different criteria used to settle the acceptance of arguments arecalled semantics. Semantics of ADFs have so far mainly been defined based on the concept of admissibility. Recently, the notion of strong admissibility has been introduced for ADFs. In the current work we study the computational complexityof the following reasoning tasks under strong admissibility semantics. We address 1. the credulous/skeptical decision problem; 2. the verification problem; 3. the strong justification problem; and 4. the problem of finding a smallest witness of strong justification of a queried argument
    corecore