
Towards Possibilistic Fuzzy Answer Set Programming
Kim Bauters∗ and Steven Schockaert†

Universiteit Gent
Department of Applied Mathematics and Computer Science

Krijgslaan 281
9000 Gent, Belgium

Jeroen Janssen‡ and Dirk Vermeir
Vrije Universiteit Brussel

Department of Computer Science
Pleinlaan 2

1050 Brussel, Belgium

Martine De Cock§
University of Washington
Institute of Technology
1900 Commerce Street

WA-98402 Tacoma, USA

Abstract

Fuzzy answer set programming (FASP) is a generaliza-
tion of answer set programming to continuous domains.
As it can not readily take uncertainty into account, how-
ever, FASP is not suitable as a basis for approximate
reasoning and cannot easily be used to derive conclu-
sions from imprecise information. To cope with this,
we propose an extension of FASP based on possibil-
ity theory. The resulting framework allows us to reason
about uncertain information in continuous domains, and
thus also about information that is imprecise or vague.
We propose a syntactic procedure, based on an imme-
diate consequence operator, and provide a characteri-
zation in terms of minimal models, which allows us to
straightforwardly implement our framework using ex-
isting FASP solvers.

Introduction
Answer set programming (ASP) is a form of non-monotonic
reasoning which is based on the stable-model semantics
(Gelfond and Lifzchitz 1988). Among others, ASP has
proven successful as an elegant and convenient vehicle for
commonsense reasoning in discrete domains, and to encode
combinatorial optimization problems in a purely declarative
way. Intuitively, an answer set program can be seen as a col-
lection of rules on which forward chaining is applied. Con-
sider, for instance, the following program:

rushHour← (1)
longExpectedDrivingTime← rushHour, raining (2)

Rules, in this case, are of the form head← body, where head
is an atomic proposition or its classical negation (i.e. the
head is a single literal) and body is a set of literals. The first
rule above has an empty body, which means that the head
is assumed to be unconditionally true. Such rules are called
facts. The second rule encodes that whenever we can derive
∗Funded by a joint FWO project
†Postdoctoral fellow of the FWO
‡Funded by a joint FWO project
§On leave from Universiteit Gent

that it is rush hour and that it is raining, we should expect a
long driving time to a particular destination. Now consider
the following additional rule:

shortExpectedDrivingTime← offPeak, dry, not accident

which encodes that whenever the current time is off–peak
and the weather is dry we should expect a short driving time,
unless we found out that there has been an accident. Since in
practical situations, we will never be able to prove that there
has been no accident, the not in the rule above is interpreted
as negation-as-failure: if we cannot prove that there has been
an accident, we assume that there has been no accident. The
conclusions of an answer set program, i.e. the set of literals
that we can derive to be true, is called an answer set. For pro-
grams without negation-as-failure, there is a unique answer
set which corresponds to the minimal model of the program
(w.r.t. set inclusion), interpreting rules as material implica-
tion. For programs with negation-as-failure there may be
several alternatives (see below).

Fuzzy answer set programming (FASP) is a generalization
of ASP based on fuzzy logic (Van Nieuwenborgh, De Cock,
and Vermeir 2007). Essentially, literals are then associated
with a truth degree from the unit interval [0, 1], reflecting the
intensity of a certain property. The example above, for in-
stance, refers to properties that are a matter of degree. If it is
only raining a little bit, driving time will not be substantially
affected, i.e. what (2) really means is

“If the intensity of the rush hour and the amount of rain
are above a certain threshold, then driving time will be
above a certain threshold.”

In FASP, the need for such thresholds disappears, using rules
of the form

longExpectedDrivingTime← f(rushHour, raining) (3)

where f is a particular [0, 1]2 → [0, 1] function that encodes
the exact relationship between the intensity of the rush hour,
the amount of rain and the expected driving time. Differ-
ent variants of FASP are obtained by restricting the class of
functions f . For instance, it is common to assume that these
functional relationships can be encoded using connectives

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55825306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


from particular fuzzy logics. In (Janssen et al. 2008), for
instance, it is shown how answer sets of a FASP program
can be found using mixed integer programming when using
connectives from Łukasiewicz logic. One of the strengths
of FASP lies in its ability to encode continuous optimization
problems in a way which is very similar to the way discrete
optimization problems are encoded in ASP. For instance,
(Schockaert et al. 2009) shows how FASP can be used to
find the strong Nash equilibria of games with continuous
strategies, while (Janssen et al. 2010) introduces a FASP
program to solve the reviewer assignment problem. How-
ever, in contrast to ASP, FASP does not appear to be suitable
as a basis for commonsense reasoning. Indeed, when look-
ing at (3), for instance, without extensive domain knowl-
edge, we are unlikely to find a reasonably accurate estimate
for the function f .

Despite the reference to the name “fuzzy”, FASP is es-
sentially a generalization of ASP to continuous domains,
and not a form of approximate reasoning. As such, FASP
is not well-equipped to deal with vagueness, and with un-
certainty in general. Other extensions of logic program-
ming, however, have been specifically targeted at combining
ASP with theories of uncertainty, such as probability theory
(Lukasiewicz 1998), possibility theory (Dubois, Lang, and
Prade 1991; Nicolas et al. 2006) or evidence theory (Wan
2009), but, since they are based on classical ASP, these ex-
isting approaches can only be used in discrete domains. The
aim of this paper is to combine both directions of work and
develop a possibilistic extension of fuzzy answer set pro-
gramming. Although combinations of FASP with other the-
ories of uncertainty may be envisaged, the choice of possi-
bility theory appears to be the most natural one. Indeed, as
already noted by Zadeh in (Zadeh 1978), there are strong
links between fuzziness and possibility, which form an im-
portant basis for theories of approximate reasoning (Dubois
and Prade 1999). Similarly, as we show below, by com-
bining FASP with possibility theory, an expressive frame-
work is obtained that combines the advantages of ASP with
those of approximate reasoning (e.g. robustness). Finally,
note that being one of the simplest non-trivial theories of
uncertainty, possibility theory is also an interesting choice
from a computational point of view. Indeed, as it turns out,
answer sets of possibilistic FASP programs can straightfor-
wardly be found by calculating the answer sets of a small
number of “regular” FASP programs.

The remainder of this paper is structured as follows. In
the following section, we provide a motivating example to
illustrate the need for a possibilistic extension of FASP. Sub-
sequently, we present some background on ASP and FASP,
after which we introduce possibilistic fuzzy answer set pro-
gramming. We then illustrate the approximate reasoning
capabilities of possibilistic FASP. Finally, we provide an
overview of related work, and present some conclusions and
directions for future work.

A Motivating Example
(Nowak 2006) Cancer is an evolutionary process in which
cells of the body mutate and start to exhibit improper be-
haviour such as cells starting to procreate without bound-

aries, leading to malignant tumors. Luckily, multi-cellular
organisms have a range of defenses to protect against the de-
velopment of cancer. One line of defense are tumor suppres-
sor genes or TSGs which are involved in promoting apopto-
sis or programmed cell death when a cell is found to misbe-
have. Mutations during cell division may cause a cell to lose
its TSGs, causing it to no longer undergo apoptosis when
misbehaving. Other mutations may activate chromosomal
instability or CIN. Having CIN causes cells to not divide
properly, considerably speeding up the rate of mutations.
CIN thus helps in deactivating TSGs and may speed up the
growth rate of tumors, with larger tumors as a result. We can
model this phenomenon using the following rules.

1: tsg(on)← not tsg(off )

1: tsg(off )← not tsg(on)

1: cin(on)← not cin(off )

1: cin(off )← not cin(on)

1: 0 ← min(tsg(on),not tsg(on))

1: 0 ← min(cin(on),not cin(on))

Intuitively, the first four rules of the program describe that
TSG and CIN will either be on or off. Unless further in-
formation becomes available, two choices have thus to be
made, which will lead to four different answer sets. The last
two rules are constraints, which describe that the body of
these rules cannot be satisfied. In this case, the last two rules
ensure that tsg(on), tsg(off), cin(on) and cin(off) are treated
as crisp literals, i.e. they can only take truth values 0 and 1
in any model of the program. The 1: in front of the rules
indicates that the certainty of these rules is maximal.

In FASP, we can describe that we have a tumor of e.g. size
0.6 or more, but it is not possible to express that a tumor will
be “reasonably large”, which we can do in our framework.
The next set of rules encode that when cin(on) and tsg(off)
hold, it is likely to grow a reasonably large tumor.

0.8: tumor ← 0 .4 ⊗ cin(on)⊗ tsg(off )

0.6: tumor ← 0 .6 ⊗ cin(on)⊗ tsg(off )

0.4: tumor ← 0 .8 ⊗ cin(on)⊗ tsg(off )

0.2: tumor ← 1 ⊗ cin(on)⊗ tsg(off )

In these rules, ⊗ denotes a t-norm (see the preliminaries).
The truth degree of tumor should be interpreted as a mea-
sure of the size of the tumor. Intuitively, when cin(on) and
tsg(off) have truth degree 1, we can derive that tumor has
truth degree 0.4 with certainty 0.8, 0.6 with certainty 0.6, 0.8
with certainty 0.4 and 1 with certainty 0.2. Hence, it is con-
sidered somewhat plausible that a large tumor will grow, and
very likely that at least a moderately-sized tumor will grow.
The information encoded in our example is that the tumor
will be “reasonably large”, which is an elastic constraint; it
is around 0.6 with the actual size between 0.4 and 1. How-
ever, we are less certain when we stretch the constraint fur-
ther away from 0.6, e.g. towards 1. A similar set of rules
can be added to describe inferences in cases where tsg(off)



holds, but not necessarily cin(on):

0.8: tumor ← 0 .1 ⊗ tsg(off )

0.6: tumor ← 0 .2 ⊗ tsg(off )

0.4: tumor ← 0 .3 ⊗ tsg(off )

0.2: tumor ← 0 .4 ⊗ tsg(off )

In this case, we still consider it likely that a tumor will grow,
but to a lesser extent, i.e. of a smaller size. Finally, we also
consider the following rule:

0.6: tsg(off )← cin(on)

This rule specifies that when cin(on) holds, it is likely that
tsg(off) will be the case, i.e. CIN acts as a catalyst towards
disabling TSG.

Preliminaries
Answer set programs
Let A be a finite set of atoms. A literal is either an atom
a ∈ A or the negation ¬a of an atom. We write L for the set
of all literals. A set of literals I is called an interpretation
if it is consistent, i.e. if there is no atom a such that both
a ∈ I and ¬a ∈ I . A normal rule is an expression of the
form l0 ← l1, ..., ls, not ls+1, ..., not ln where l0, l1, ..., ln
are literals. If no occurrences of not appear in a rule (i.e. s =
n), it is called simple. A normal (resp. simple) program P is
a finite set of normal (resp. simple) rules. An interpretation
I is a model of a simple rule r = (l0 ← l1, ..., ls), denoted
I |= r, if l0 ∈ I or {l1, ..., ln} 6⊆ I . An interpretation I of a
simple program P is a model of P iff ∀r ∈ P · I |= r.

Answer sets are defined using the immediate consequence
operator TP of a simple program P , defined for a set of
literals I as:

TP (I) = I∪{l0 | (l0 ← l1, ..., ls) ∈ P ∧ ({l1, ..., ls} ⊆ I)}

We use P ? to denote the fixpoint which is obtained by re-
peatedly applying TP starting from the empty interpretation,
i.e. the least fixpoint of TP w.r.t. set inclusion. An interpre-
tation I is called an answer set of a simple program P iff
I = P ?. Answer sets of normal programs are defined using
the Gelfond-Lifschitz reduct P I of a normal program P and
interpretation I , defined as

P I = {l0 ←l1, ..., ls|(∀i ∈ {s+ 1, ..., n} · li /∈ I)

∧ (l0 ← l1, ..., ls, not ls+1, ..., not ln) ∈ P}

An interpretation I is then called an answer set of the normal
program P iff

(
P I

)?
= I , i.e. if I is the answer set of the

reduct P I .

Fuzzy answer set programs
A fuzzy rule is a rule of the form l0 ←
f(l1, . . . , ls; ls+1, . . . , ln) with l0, . . . , ln ∈ L and f a
computable function such that the first s arguments of f are
increasing and the remaining arguments are decreasing. A
fuzzy program P is a set of fuzzy rules. A fuzzy simple rule
is a fuzzy rule l0 ← f(l1, . . . , ls; ) where every argument
of f is increasing. A fuzzy (simple) program P is a set of

fuzzy (simple) rules. A fuzzy interpretation I is a consistent
mapping I : L → [0, 1], i.e. it associates with each literal
a degree of truth with I(a) + I(¬a) ≤ 1 for all a ∈ A.
Furthermore, we define [f(l1, . . . , ls; ls+1, . . . , ln)]I =
f(I(l1), . . . , I(ls); I(ls+1), . . . , I(ln)). A fuzzy in-
terpretation I is a model of a fuzzy simple rule
r = l0 ← f(l1, . . . , ls; ), denoted I |= r if
I(l0) ≥ [f(l1, . . . , ls; )]I . A fuzzy interpretation I is
a model of a fuzzy simple program if I |= r for all r ∈ P .
A fuzzy interpretation I is an answer set of P iff I is a
minimal model of P . Equivalently, it is the least fixpoint
of the immediate consequence operator TP defined by
(Janssen et al. 2009).

TP (I)(l0) = sup{[f(l1, ..., ls; )]I |l0 ← f(l1, ..., ls; ) ∈ P}

Answer sets of arbitrary fuzzy programs are defined using a
generalization of the Gelfond-Lifschitz reduct, defined by

P I = {l0 ← f(l1, . . . , ls; I(ls+1), ..., I(ln)) |
l0 ← f(l1, . . . , ls; ls+1, . . . , ln) ∈ P}

A fuzzy interpretation I is then an answer set of P iff M is
an answer set of P I .

Note that the definition of a fuzzy rule allows a large
class of functions. In practice, however, it is common
to define fuzzy rules using connectives from a particular
fuzzy logic. For instance, rules can then be of the form
a ← b ⊗ (c ⊕ (1 − d)) where ⊗ and ⊕ are respectively
a t-norm and a t-conorm. Recall that a t-norm is a commu-
tative, associative, monotonically increasing [0, 1]2 → [0, 1]
mapping ⊗ satisfying 1 ⊗ x = x for all x ∈ [0, 1], while
a t-conorm is a commutative, associative, monotonically in-
creasing [0, 1]2 → [0, 1] mapping⊕ satisfying 0⊕x = x for
all x ∈ [0, 1]. In particular, the minimum and maximum are
a well-known t-norm and t-conorm, respectively, which we
write as ∧ and ∨. While there is no a priori theoretical bene-
fit from restricting the class of functions to those that can be
defined in terms of fuzzy logic connectives, this restriction
makes fuzzy programs often easier to understand.

Possibilistic Fuzzy Answer Set Programming
In (Nicolas et al. 2006; Nieves, Osorio, and Cortés 2007) the
semantics of answer set programs are extended with possi-
bility theory to arrive at a new framework that is able to deal
with reasoning that is uncertain and non-monotonic. In such
a setting, a necessity degree is associated with each literal
and rule, allowing to rank information in terms of its cer-
tainty. We now introduce a similar extension to the seman-
tics of fuzzy answer set programs.

Language
Let L be a set of literals. In the remainder of this paper, we
let C be a finite set of certainty degrees, with C ⊆ ]0, 1].
We define a valuation as a function V : L → (C → [0, 1])
which maps each literal to a decreasing function. The in-
tuition is that for a literal l, V (l)(c) = d means that we
can derive with certainty c that the truth degree of l is at
least d. For increasing certainty values, the lower bound on
the truth value of l will be weaker, i.e. lower. For notational



convenience we also use the set notation V =
{
lc;d , . . .

}
to specify valuations in which V (l)(c) = d. Given two
valuations V and V ′, we define V ≤ V ′ as the pointwise
extension of the natural ordering on the truth degrees, i.e.
∀l ∈ L · ∀c ∈ C · V (l)(c) ≤ V ′(l)(c). For c ∈ C and a val-
uation V , we let V c be the fuzzy interpretation defined by
V c(l) = V (l)(c). We say that a valuation V is c-consistent
whenever V c is consistent. A valuation V is said to be con-
sistent when it is c0-consistent with c0 = min(C). A (pos-
sibilistic fuzzy) interpretation I is a consistent valuation.

Example 1. Consider the valuations V =
{
a1 ;0 .6 , b1 ;0 .4

}
and V ′ =

{
a1 ;0 .6 , b1 ;0 .6 ,¬a0 .8 ;0 .5

}
with C = {1, 0.8}.

We have that V (b)(1) = 0.4 ≤ V ′(b)(1) = 0.6. A similar
observation can be made for a and ¬a for every c and thus
V ≤ V ′. We have that V ′ is not consistent; with min(C) =
0.8 we get V ′(a)(0.8) = 0.6 (since V ′(a)(1) = 0.6 and the
function is decreasing) and V ′(¬a)(0.8) = 0.5 which is not
consistent since 0.6 + 0.5 6≤ 1. V however is consistent.

A possibilistic fuzzy simple program is a set of possibilis-
tic fuzzy simple rules. A possibilistic fuzzy simple rule is a
pair p = (r, n(r)) with r a fuzzy simple rule and n(r) a cer-
tainty value associated with r. We write a pair p = (r, n(r))
with r = (l0 ← f(l1, . . . , ls; )) as:

n(r): l0 ← f (l1 , . . . , ls ; ).

The c-cut Pc of a possibilistic fuzzy simple program P is
then defined as

Pc = {(r, n(r)) ∈ P | n(r) ≥ c} .

Example 2. We know with certainty that it is quite cold out-
side. It is quite likely that when the streets are wet and tem-
peratures are below zero, the streets are wet because of snow
rather than rain. We are certain that when it is cold and
snowing, it will be very risky on the roads. It is possible that
when it is cold, it will be a bit risky and when it is wet, that
the roads will be rather risky. We have the program P with
the rules:

1: cold ← 0 .6

1: wet ← 0 .4

1: risky ← cold · snow

0.8: snow ← (cold ≥ 0 .5 ) ∧ wet

0.6: risky ← 0 .5 · cold

0.6: risky ← 0 .8 · wet .

The first two rules express facts about how cold and wet it
is, respectively. The third rule states that the degree of risk
of the roads is proportional to the degree of wetness and
coldness. The fourth rule states that the degree of wetness
corresponds to the degree to which there is snow, provided
that it is cold at least to degree 0.5, which we assume to
correspond to 0◦C. The last two rules allow us to derive
some weaker information about the risk even when there is
no snow, though with only a limited certainty. We have that
P1 contains the first three rules, P0.8 contains the first four
rules and P0.6 = P .

Fixpoint theory
Definition 1. Let P be a possibilistic fuzzy simple program
and X a valuation. The immediate consequence operator
TP is defined for l ∈ L and c ∈ C as:

TP (X)(l)(c) = sup {[α]Xc | (r : l← α) ∈ Pc}
where we assume sup ∅ = 0.

Given a valuation, the immediate consequence operator
determines the highest truth degree that can be motivated by
the rules, at a given certainty level c, by applying the rules
in P once on what has already been established. Due to a
result by Tarski (Tarski 1955) and because our consequence
operator TP is monotonic, we know that our consequence
operator has a least fixpoint, denoted as P ? for any possi-
bilistic fuzzy simple program P . This least fixpoint can be
computed using an iterated fixpoint procedure, i.e. by apply-
ing TP repeatedly, starting from the minimal interpretation
∅.
Example 3. Consider P from Example 2. We have:

TP (∅) = S0 = {cold1 ;0 .6 , wet1 ;0 .4}
TP (S0) = S1 = {cold1 ;0 .6 , wet1 ;0 .4 , snow0 .8 ;0 .4 ,

risky0 .6 ;0 .32}
TP (S1) = P ? = {cold1 ;0 .6 , wet1 ;0 .4 , snow0 .8 ;0 .4 ,

risky0 .6 ;0 .32 , risky0 .8 ;0 .24}
Proposition 1. TP is monotonic. That is, given two in-
terpretations I and I ′ such that I ≤ I ′, it holds that
TP (I) ≤ TP (I ′).
Definition 2. Let P be a possibilistic fuzzy simple program.
An interpretation I is an answer set of P iff I = P ?.

Note how the immediate consequence operator from Def-
inition 1 is a generalization of the immediate consequence
operator that is used for fuzzy simple programs. When we
take C such that |C | = 1, i.e. we only consider a single cer-
tainty level, then our immediate consequence operator co-
incides with the one from fuzzy answer set programming,
when ignoring the certainty values. In other words, we can
interpret any fuzzy simple program as a possibilistic fuzzy
simple program in which every rule is certain.

Model theory
We have thus far provided a syntactical deduction process
based on a fixpoint operator defined on rules of a possibilis-
tic fuzzy simple program. Despite being a natural way to
define answer sets, it does not readily lead to a way to ac-
tually implement a solver for possibilistic fuzzy answer set
programs. This is due to the fact that for some programs the
fixpoint of the immediate consequence operator is only ob-
tained after infinitely many applications. In this section, we
provide a characterization of anwer sets in terms of minimal
models, which will offer us a way to find answer sets of pos-
sibilistic fuzzy simple programs using existing fuzzy answer
set solvers (Janssen et al. 2008).
Definition 3. An interpretation I is a model of a possibilistic
fuzzy simple rule of the form r = c: l ← body , denoted as
I |= r iff I(l)(c) ≥ [body]Ic .



Definition 4. An interpretation I is a model of a possibilistic
fuzzy simple program P iff ∀r ∈ P · I |= r.

Using the c-cuts of a possibilistic fuzzy simple program,
we can look at a possibilistic fuzzy program as a layered pro-
gram where higher layers correspond to more certain rules.
As we show next, a possibilistic fuzzy simple program has a
unique minimal model which corresponds to the set of mini-
mal models of the fuzzy simple programs Pc for each c ∈ C.
Proposition 2. Let P be a possibilistic fuzzy simple pro-
gram. Let the valuation M be defined by ∀l ∈ L · (∀c ∈
C ·M(l)(c) = Fc(l)) with Fc the unique minimal model of
the fuzzy simple program Pc. Then M is the minimal model
of P .

Proof. We prove this by contradiction. Let M ′ be a mini-
mal model and assume that M ′ 6= M . Since M is not the
minimal model we have that ∃l ∈ L · ∃c ∈ C · (M(l)(c) >
M ′(l)(c)). Let us define F ′c = (M ′)

c; note that we also have
Fc = (M ′)

c. We can then rewrite the condition that M is
not a minimal model as ∃l ∈ L · F ′c(l) < Fc(l). Since Fc is
the minimal model of Pc, this is only possible if F ′c is not a
model of Pc. Hence ∃l′ ∈ L · (∃((l′ ← α′) ∈ Pc) · [α′]F ′

c
>

F ′c(l
′)). Because of the definition of Pc we know that there

is a rule c′: l ′ ← α′ ∈ P with c′ ≥ c. However, we have just
shown that M ′ is not a model of this rule, thus M ′ cannot
be a model of P , and a fortiori not a minimal model.

If we take a closer look at the consequence operator from
Definition 1, it is easy to see that it works by taking the c-cut
and then computing the answer set of the fuzzy projection of
the possibilistic fuzzy simple program.
Corollary 1. Let P be a possibilistic fuzzy simple program.
Then P ? is the unique minimal model of P .

Syntactic Extensions
Approximate conditions
In this section we introduce a number of syntactic extensions
that allow us to write possibilistic fuzzy answer set programs
more succinctly and often more naturally. The first exten-
sion allows us to deal with approximate information in the
body. Specifically, this extension expresses that we do not
have full confidence w.r.t. some information in the body of a
rule. In such a case, we may either weaken the information
in the body or lower the certainty of the conclusion, or both.
Definition 5. Let f : C → [0, 1] and ⊗ : [0, 1]2 →
[0, 1] be functions. We define the approximation rule
l ← approxf⊗(body) as a shorthand for the set of rules
{c: l ← body ⊗ f (c) | c ∈ C}.
Example 4. Consider the program with the rule

happy ← approxf⊗(warm⊗ sunny)

with f(x) = 1.2 − x, ⊗ the product operator, and C =
{0.2, 0.4, ..., 1}. This is a shorthand for

1: happy ← warm ⊗ sunny ⊗ 0 .2

...
0.2: happy ← warm ⊗ sunny ⊗ 1 .

i.e. when it is warm and sunny, we are definitely happy to
some extent. With a limited certainty, we can even derive
that we are completely happy in such a case. Now consider
also the following rules:

1: warm ← 0 .8

1: sunny ← 0 .6

We have
{warm0 .8 ;1 , sunny0 .6 ;1 , happy0 .48 ;0 .2 , happy0 .384 ;0 .4

happy0 .288 ;0 .6 , happy0 .192 ;0 .4 , happy0 .096 ;0 .4}
as the answer set of this program.

An important special case of this general idea are rules
that derive certainty information about the truth value of
some atom a based on a possibility distribution πa (i.e. a
[0, 1] → [0, 1] mapping from truth values to possibility de-
grees that restricts the possible values of a). Let ac for c ∈ C
be defined as ac = max{x0 ∈ [0, 1]| infx<x0(1− πa(x)) ≥
c}, then possibility theory dictates that ac is the strongest
lower bound that we can establish for a with certainty c (in
terms of the necessity measure1 induced by πa). We write
l← approxπa for the set of rules {c: a ← ac |c ∈ C}.

Variable certainty weights
Rules in fuzzy answer set programming are truth-qualifying,
i.e. the intuition is that the more the body is true, the more
the head of the rule should be true. Another type of fuzzy
rules are uncertainty-qualifying rules (Dubois and Prade
1996) that model the intuition that the more the body of a
rule is true, the more certain that the head is true. In our
framework, this corresponds to possibilistic fuzzy rules in
which the certainty score is an expression involving literals,
rather than a constant. Specifically, we will consider rules of
the form:

f1(l1, ..., ln): l ← f2 (l ′1 , ..., l
′
m)

Such rules can easily be simulated using the framework in-
troduced above using the following set of rules:
{c: l ← f2 (l ′1 , ..., l

′
m) ∧ (f1 (l1 , ..., ln) ≥ c)|c ∈ C}

where for a valuation I , [f1(l1, ..., ln) ≥ c]I = 1 if
[f1(l1, ..., ln)]I ≥ c and [f1(l1, ..., ln) ≥ c]I = 0 otherwise.
Example 5. (modified from (Janssen et al. 2009)) Consider
a number of people trying to decide whether they should or-
ganize a barbecue. The certainty that they will indeed want
a barbecue is determined by the degree of sunshine, whereas
the size of the barbecue is determined by the appetite of the
participants. We write:

sunshine: bbq ← hungry

For C = {0.2, 0.4, . . . , 1} this corresponds to the rules
0.2: bbq ← hungry ⊗ (sunshine ≥ 0 .2 )

0.4: bbq ← hungry ⊗ (sunshine ≥ 0 .4 )

...
1: bbq ← hungry ⊗ (sunshine ≥ 1 ).

1Recall that given a possibility distribution π in a universe U ,
the possibility Π(A) and necessity N(A) of a set A ⊆ U are de-
fined as Π(A) = supu∈A π(u) and N(A) = 1−Π(U \A).



Add the following facts:
1: sunshine ← 0 .9

1: hungry ← 0 .2 .

The resulting answer set is{
hungry1 ;0 .2 , sunshine1 ;0 .9 , bbq0 .8 ;0 .2

}
.

That is, it is likely that we will have a barbecue, but the
barbecue will be rather small.

Approximate Reasoning
1

0.8

0.6

0.4

0.2

10.80.60.40.2

A

1

0.8

0.6

0.4

0.2

10.80.60.40.2

A'

1

0.8

0.6

0.4

0.2

10.80.60.40.2

B

1

0.8

0.6

0.4

0.2

10.80.60.40.2

B'

Figure 1: Possibility Distributions

In this section we show how approximate reasoning with
if-then rules under generalized modus ponens (GMP) can
be supported in possibilistic fuzzy answer set programming.
The idea of GMP is that, given information about the possi-
ble values of a variable x in the form of a possibility distri-
bution A′ (usually written as “x is A′”), we can derive pos-
sible values for a variable y (usually written as “y is B′”)
from a rule of the form “if x is A then y is B”, where A
and B are fuzzy sets in the universes U and V correspond-
ing to variables x and y. To illustrate the main ideas, we
will consider the possibility distribution on y defined by
B′(v) = supu min(A′(u), A(u) → B(v)) for all v ∈ V ,
where → corresponds to the Łukasiewicz implicator2 and
A′, A and B are as depicted in Figure 1. The resulting pos-
sibility distribution B′ is also shown.

To find an approximation of B′ using possibilistic fuzzy
answer set programs, the information encoded in the
fuzzy sets/possibility distributions A′, A and B is dis-
cretized by only considering the certainty levels from C =
{0.2, 0.4, 0.6, 0.8, 1}. For example, we can derive from “x is
A′” that x ≥ 0.5 with certainty 0.8 sinceN({x|x ≥ 0.5}) =
1−Π({x|x < 0.5}) = 1−A′(0.5) = 0.8. The information
x is A′ can thus be encoded by the rule:

x← approxA
′

(4)
Intuitively, this rule states that we may conclude with cer-
tainty c that x is not smaller than the infimum of the strict
c-cut A′c = {x|A(x) > c}. Figure 1 illustrates these c-cuts
and corresponding infima for c ∈ C with dashed lines. From
this we can see that rule (4) corresponds to the following set:

1: x ← 0 .4 0.8: x ← 0 .5 0.6: x ← 0 .6
0.4: x ← 0 .7 0.2: x ← 0 .8 0: x ← 0 .9

2Recall that the Łukasiewicz implicator is defined by a→ b =
min(1, 1− a+ b) for all a, b ∈ [0, 1]

The information that “if x isA then y isB” essentially corre-
sponds to a conditional possibility distribution on y, depend-
ing on the value of x. The certainty that y ≥ v for a certain
v ∈ V is given by N({y|y ≥ v}) = 1 − sup({A(x) →
B(y)|y < v}) = 1− (A(x)→ B(v)). Writing bc = inf Bc
for the lower bound of the c-cut of B, we thus find:

{1− (A(x)→ c) :y ← bc | c ∈ C}
Note how the fact that the possibility that y takes on a cer-
tain value is conditional on the value of x, leads to variable
certainty weights. As an example, let us consider the rules
for certainty level c = 0.4:

0.4: y ← 0 .2 ∧ (1 − (A(x )→ 0 ) ≥ 0 .4 )

0.4: y ← 0 .26 ∧ (1 − (A(x )→ 0 .2 ) ≥ 0 .4 )

0.4: y ← 0 .32 ∧ (1 − (A(x )→ 0 .4 ) ≥ 0 .4 )

0.4: y ← 0 .38 ∧ (1 − (A(x )→ 0 .6 ) ≥ 0 .4 )

0.4: y ← 0 .44 ∧ (1 − (A(x )→ 0 .8 ) ≥ 0 .4 )

0.4: y ← 0 .5 ∧ (1 − (A(x )→ 1 ) ≥ 0 .4 )

If we want to find a lower bound for the value of y that can
be derived with certainty c, we need to calculate the classical
answer set of the program obtained by removing all rules
with certainty strictly below c. This leads to the following
values (lower bounds) of y: y = 0.26 with certainty 0.6,
y = 0.44 with certainty 0.8, and y = 0.5 with certainty
1. As one can see from Figure 1, the resulting output is an
approximation of the conclusions that are obtained using the
GMP, in the sense that slightly more informative conclusions
(i.e. higher lower bounds) could be obtained by considering
more certainty values.

Related Work
In the last few years, the combination of many-valued
logic with logic programming has received a lot of atten-
tion. In (Van Nieuwenborgh, De Cock, and Vermeir 2007)
the stable model semantics (Gelfond and Lifzchitz 1988)
are extended to allow answer sets where literals are true
to a certain degree. In (Straccia 2006; Lukasiewicz and
Straccia 2007; Damásio, Medina, and Ojeda-Aciego 2004;
Lakshmanan and Shiri 2001) general expressions are used
as rule bodies with many-valued predicates as arguments.
(Janssen et al. 2009) proposes a general framework for deal-
ing with fuzzy answer set programs.

A large body of research has also been devoted to logic
programming with uncertainty. One of the most widely
spread forms of representing uncertain information attaches
probabilities to statements, though this method has been re-
peatedly criticized (McCarthy and Hayes 1969; Dubois and
Prade 2004). A more elegant approach comes in the form
of possibilistic logic (Dubois, Lang, and Prade 1991), where
an uncertainty degree is attached to each statement.

(Nicolas et al. 2006) proposed a framework that combines
possibility theory with the stable model semantics (Gelfond
and Lifzchitz 1988). Such a framework can deal with non-
monotonicity and uncertainty at the same time. (Alsinet et
al. 2008) shows an alternative to our approach, though for
defeasible logic programming, where atoms are moreover
interpreted as fuzzy sets of truth values.



Note that approximate reasoning has also been embedded
and studied in other logical frameworks, for example in (Bo-
billo and Straccia 2008) Mamdani-style inference is embed-
ded in Fuzzy Description Logics, and in (Perfilieva 2006)
generalized modus ponens is studied in the logic of BL.

Conclusions
We have introduced possibilistic fuzzy answer set program-
ming as an extension of FASP programs where we associate
a necessity degree with each fuzzy literal and fuzzy rule.
We defined a consequence operator for possibilistic fuzzy
simple programs and proved that the least fixpoint of this
operator corresponds with the unique minimal model of that
program. This minimal model can moreover be found by
calculating the answer sets of the fuzzy simple programs at
each certainty level. This observation allows to readily im-
plement our new framework on existing solvers for (general)
FASP. With the aim of writing programs in a more natu-
ral way, we introduced an approximation operator and rules
whose certainty depends on the truth value of particular lit-
erals. We illustrated how these extensions can be used to
provide an elegant representation of approximate reasoning
under generalized modus ponens.

In this paper, we omitted a discussion of negation-as-
failure. The addition of negation-as-failure to possibilistic
fuzzy answer set programs, however, offers no additional
difficulties over those that are already encountered in (crisp)
possibilistic answer set programming. Nonetheless, the is-
sue of what the semantics of negation-as-failure should be
in the presence of necessity values is an interesting issue,
which will be addressed in more detail in future work. An-
other interesting issue is how partially satisfied answer sets
from FASP and c-cuts from possibilistic ASP should com-
plement each other when trying to resolve inconsistencies in
answer set programs.

References
Alsinet, T.; evar I., C.; Godoı́s, L.; Sandri, S.; and Simari,
G. 2008. Formalizing argumentative reasoning in a pos-
sibilistic logic programming setting with fuzzy unification.
Int. J. Approx. Reasoning 48(3):711–729.
Bobillo, F., and Straccia, U. 2008. fuzzyDL: An expres-
sive fuzzy description logic reasoner. In Proc. of FUZZ-08,
923–930. IEEE Computer Society.
Damásio, C. V.; Medina, J.; and Ojeda-Aciego, M. 2004.
Sorted multi-adjoint logic programs: Termination results
and applications. In JELIA2004, 252–265.
Dubois, D., and Prade, H. 1996. What are fuzzy rules and
how to use them. Fuzzy Sets and Systems 84(2):169–185.
Dubois, D., and Prade, H. 1999. Fuzzy sets in approximate
reasoning, part 1: inference with possibility distributions.
Fuzzy Sets and Systems 100:73–132.
Dubois, D., and Prade, H. 2004. Possibilistic logic: a
retrospective and prospective view. Fuzzy Sets and Systems
144(1):3–23.
Dubois, D.; Lang, J.; and Prade, H. 1991. Towards possi-
bilistic logic programming. In Proc. of ICLP’91, 581–595.

Gelfond, M., and Lifzchitz, V. 1988. The stable model
semantics for logic programming. In Proceedings of the
Fifth International Conference and Symposium on Logic
Programming, 1081–1086. Seattle, USA: ALP, IEEE.
Janssen, J.; Heymans, S.; Vermeir, D.; and Cock, M. D.
2008. Compiling fuzzy answer set programs to fuzzy
propositional theories. In Proc of ICLP’08, 362–376.
Janssen, J.; Schockaert, S.; Vermeir, D.; and Cock, M.
2009. General fuzzy answer set programs. In Proc. of
WILF’09, 352–359.
Janssen, J.; Schockaert, S.; Vermeir, D.; and De Cock, M.
2010. General fuzzy answer set programming: the basic
language. Submitted.
Lakshmanan, L. V., and Shiri, N. 2001. A para-
metric approach to deductive databases with uncertainty.
IEEE Transactions on Knowledge and Data Engineering
13:554–570.
Lukasiewicz, T., and Straccia, U. 2007. Tightly integrated
fuzzy description logic programs under the answer seman-
tics for the semantic web. In Proc. of RR-07, 289—298.
Lukasiewicz, T. 1998. Probabilistic logic programming. In
Proc. of ECAI’98, 388–392.
McCarthy, J., and Hayes, P. J. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Machine Intelligence. Edinburgh University Press. 463–
502.
Nicolas, P.; Garcia, L.; Stéphan, I.; and Lefèvre, C. 2006.
Possibilistic uncertainty handling for answer set program-
ming. Ann Math Artif Intell 47(1-2):139–181.
Nieves, J. C.; Osorio, M.; and Cortés, U. 2007. Semantics
for possibilistic disjunctive programs. In Proc. of LPNMR,
315–320.
Nowak, M. 2006. Evolutionary Dynamics: Exploring the
Equations of Life. Belknap Press of Harvard University
Press.
Perfilieva, I. 2006. Computational Intelligence, Theory and
Applications. Springer–Verlag. chapter Fuzzy IF-THEN
Rules from Logical Point of View.
Schockaert, S.; Janssen, J.; Vermeir, D.; and De Cock, M.
2009. Answer sets in a fuzzy equilibrium logic. In Proc. of
RR2009, 135–149.
Straccia, U. 2006. Annotated answer set programming. In
Proc. of IPMU-06, 1212–1219.
Tarski, A. 1955. A lattice-theoretical fixpoint theorem and
its applications. Pacific Journal of Mathematics 5:285–
309.
Van Nieuwenborgh, D.; De Cock, M.; and Vermeir, D.
2007. An introduction to fuzzy answer set programming.
Ann Math Artif Intell 50(3-4):363–388.
Wan, H. 2009. Belief logic programming. In Proc. of
ICLP’09, 547–548.
Zadeh, L. A. 1978. Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and Systems 3–28.


