
An argumentation framework with uncertainty
management designed for dynamic environments

Marcela Capobianco and Guillermo R. Simari

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering

Universidad Nacional del Sur – Av. Alem 1253, (8000) Bah́ıa Blanca Argentina
Email: {mc,grs}@cs.uns.edu.ar

Abstract. Nowadays, data intensive applications are in constant de-
mand and there is need of computing environments with better intel-
ligent capabilities than those present in today’s Database Management
Systems (DBMS). To build such systems we need formalisms that can
perform complicate inferences, obtain the appropriate conclusions, and
explain the results. Research in argumentation could provide results in
this direction, providing means to build interactive systems able to rea-
son with large databases and/or different data sources.

In this paper we propose an argumentation system able to deal with
explicit uncertainty, a vital capability in modern applications. We have
also provided the system with the ability to seamlessly incorporate un-
certain and/or contradictory information into its knowledge base, using
a modular upgrading and revision procedure

1 Introduction and motivations

Nowadays, data intensive applications are in constant demand and there is need
of computing environments with better intelligent capabilities than those present
in today’s Database Management Systems (DBMS). Recently, there has been
progress in developing efficient techniques to store and retrieve data, and many
satisfactory solutions have been found for the associated problems. However,
the problem of how to understand and interpret a large amount of informa-
tion remains open, particularly when this information is uncertain, imprecise,
and/or inconsistent. To do this we need formalisms that can perform complicate
inferences, obtain the appropriate conclusions, and explain the results.

Research in argumentation could provide results in this direction, providing
means to build interactive systems able to reason with large databases and/or
different data sources, given that argumentation has been successfully used to
develop tools for common sense reasoning [8, 4, 14].

Nevertheless, there exists important issues that need to be addressed to use
argumentation in these kind of practical applications. A fundamental one con-
cerns the quality of the information expected by argumentation systems: most
of them are unable to deal with explicit uncertainty which is a vital capability in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301041348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

modern applications. Here, we propose an argumentation-based system that ad-
dresses this problem, incorporating possibilistic uncertainty into the framework
following the approach in [9]. We have also provided the system with the ability
to seamlessly incorporate uncertain and/or contradictory information into its
knowledge base, using a modular upgrading and revision procedure.

This paper is organized as follows. First, we present the formal definition
of our argumentation framework showing its fundamental properties. Next, we
propose an architectural software pattern useful for applications adopting our
reasoning system. Finally, we state the conclusions of our work.

2 The OP-DeLP programming language: fundamentals

Possibilistic Defeasible Logic Programming (P-DeLP) [1, 2] is an important ex-
tension of DeLP in which the elements of the language have the form (ϕ, α),
where ϕ is a DeLP clause or fact. Below, we will introduce the elements of the
language necessary in this presentation. Observation based P-DeLP (OP-DeLP) is
an optimization of P-DeLP that allows the computation of warranted arguments
in a more efficient way, by means of a pre-compiled knowledge component. It
also permits a seamless incorporation of new perceived facts into the program
codifying the knowledge base of the system. Therefore the resulting system can
be used to implement practical applications with performance requirements. The
idea of extending the applicability of DeLP in a dynamic setting, incorporating
perception and pre-compiled knowledge, was originally conceived in [5]. Thus
the OP-DeLP system incorporates elements from two different variants of the
DeLP system, O-DeLP [5] and P-DeLP [9]. In what follows we present the formal
definition of the resulting system.

The concepts of signature, functions and predicates are defined in the usual
way. The alphabet of OP-DeLP programs generated from a given signature Σ is
composed by the members of Σ, the symbol “∼” denoting strong negation [11]
and the symbols “(”, “)”, “.” and “,”. Terms, Atoms and Literals are defined
in the usual way. A certainty weighted literal, or simply a weighted literal, is a
pair (L,α) where L is a literal and α ∈ [0, 1] expresses a lower bound for the
certainty of ϕ in terms of a necessity measure.

OP-DeLP programs are composed by a set of observations and a set of de-
feasible rules. Observations are weighted literals and thus have an associated
certainty degree. In real world applications, observations model perceived facts.
Defeasible rules provide a way of performing tentative reasoning as in other
argumentation formalisms.

Definition 1. A defeasible rule has the form (L0 –≺ L1, L2, . . . , Lk, α) where L0 is a
literal, L1, L2, . . . , Lk is a non-empty finite set of literals, and α ∈ [0, 1] expresses a
lower bound for the certainty of the rule in terms of a necessity measure.

Intuitively a defeasible rule L0 –≺ L1, L2, . . . , Lk can be read as “L1, L2, . . . , Lk
provide tentative reasons to believe in L0” [15]. In OP-DeLP these rules also have
a certainty degree, that quantifies how strong is the connection between the

Ψ
(virus(b), 0.7)
(local(b), 1)
(local(d), 1)
(∼filters(b), 0.9)
(∼filters(c), 0.9)
(∼filters(d), 0.9)
(black list(c), 0.75)
(black list(d), 0.75)
(contacts(d), 1)

∆
(move inbox(X) –≺ ∼filters(X), 0.6)
(∼move inbox(X) –≺ move junk(X), 0.8)
(∼move inbox(X) –≺ filters(X), 0.7)
(move junk(X) –≺ spam(X), 1)
(move junk(X) –≺ virus(X), 1)
(spam(X) –≺ black list(X), 0.7)
(∼spam(X) –≺ contacts(X), 0.6)
(∼spam(X) –≺ local(X), 0.7)

Fig. 1. An OP-DeLP program for email filtering

premises and the conclusion. A defeasible rule with a certainty degree 1 models
a strong rule.

A set of weighted literals Γ will be deemed as contradictory, denoted as
Γ |∼⊥, iff Γ |∼(l, α) and Γ |∼(¬l, β) with α and β > 0. In a given OP-DeLP

program we can distinguish certain from uncertain information. A clause (γ, α)
will be deemed as certain if α = 1, otherwise it will be uncertain.

Definition 2 (OP-DeLP Program). An OP-DeLP program P is a pair 〈Ψ,∆〉,
where Ψ is a non contradictory finite set of observations and ∆ is a finite set of
defeasible rules.

Example 1. Fig.1 shows a program for basic email filtering. Observations de-
scribe different characteristics of email messages. Thus, virus(X) stands for
“message X has a virus”; local(X) indicates that “message X is from the local
host”; filters(X) specifies that “message X should be filtered” redirecting it
to a particular folder; black list(X) indicates that “message X is considered
dangerous” because of the server it is coming from; and contacts(X) indicates
that “the sender of message X is in the contact list of the user”.

The first rule expresses that if the email does not match with any user-
defined filter then it usually should be moved to the “inbox” folder. The second
rule indicates that unfiltered messages in the “junk” folder usually should not be
moved to the inbox. According to the third rule, messages to be filtered should
not be moved to the inbox. The following two rules establish that a message
should be moved to the “junk” folder if it is marked as spam or it contains
viruses. Finally there are three rules for spam classification: a message is usually
labeled as spam if it comes from a server that is in the blacklist. Nevertheless,
even if an email comes from a server in the blacklist it is not labeled as spam
when the sender is in the contact list of the user. Besides, a message from the
local host is usually not classified as spam.

In OP-DeLP the proof method, written |∼, is defined by derivation based on
the following instance of the generalized modus ponens rule (GMP): (L0 –≺ L1 ∧
· · ·∧Lk, γ), (L1, β1), . . . , (Lk, βk) ` (L0,min(γ, β1, . . . , βk)), which is a particular
instance of the well-known possibilistic resolution rule. Literals in the set of

observations Ψ are the basis case of the derivation sequence, for every literal Q in
Ψ with a certainty degree α it holds that (Q,α) can be derived from P = (Ψ,∆).

Given an OP-DeLP program P, a query posed to P corresponds to a ground
literal Q which must be supported by an argument [15, 10].

Definition 3. [Argument]–[Subargument]Let P = 〈Ψ,∆〉 be a program, A ⊆ ∆ is
an argument for a goal Q with necessity degree α > 0, denoted as 〈A, Q, α〉, iff: (1)
Ψ ∪ A |∼(Q,α), (2) Ψ ∪ A is non contradictory, and (3) there is no A1 ⊂ A such that
Ψ∪A1 |∼(Q, β), β > 0. An argument 〈A, Q, α〉 is a subargument of 〈B, R, β〉 iff A ⊆ B.

As in most argumentation frameworks, arguments in O-DeLP can attack each
other. An argument 〈A1, Q1, α〉 counter-argues an argument 〈A2, Q2, β〉 at a
literal Q if and only if there is a sub-argument 〈A, Q, γ〉 of 〈A2, Q2, β〉, (called
disagreement subargument), such that Q1 and Q are complementary literals.
Defeat among arguments is defined combining the counterargument relation and
a preference criterion “�”. This criterion is defined on the basis of the necessity
measures associated with arguments.

Definition 4. [Preference criterion �][9] Let 〈A1, Q1, α1〉 be a counterargument
for 〈A2, Q2, α2〉. We will say that 〈A1, Q1, α1〉 is preferred over 〈A2, Q2, α2〉 (denoted
〈A1, Q1, α1〉 � 〈A2, Q2, α2〉) iff α1 ≥ α2. If it is the case that α1 > α2, then we will
say that 〈A1, Q1, α1〉 is strictly preferred over 〈A2, Q2, α2〉, denoted 〈A2, Q2, α2〉 �
〈A1, Q1, α1〉. Otherwise, if α1 = α2 we will say that both arguments are equi-preferred,
denoted 〈A2, Q2, α2〉 ≈ 〈A1, Q1, α1〉.

Definition 5. [Defeat][9] Let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two arguments built
from a program P. Then 〈A1, Q1, α1〉 defeats 〈A2, Q2, α2〉 (or equivalently 〈A1, Q1, α1〉
is a defeater for 〈A2, Q2, α2〉) iff (1) Argument 〈A1, Q1, α1〉 counter-argues argument
〈A2, Q2, α2〉 with disagreement subargument 〈A, Q, α〉; and (2) Either it is true that
〈A1, Q1, α1〉 � 〈A, Q, α〉, in which case 〈A1, Q1, α1〉 will be called a proper defeater
for 〈A2, Q2, α2〉, or 〈A1, Q1, α1〉 ≈ 〈A, Q, α〉, in which case 〈A1, Q1, α1〉 will be called
a blocking defeater for 〈A2, Q2, α2〉.

As in most argumentation systems [7, 13], OP-DeLP relies on an exhaus-
tive dialectical analysis which allows to determine if a given argument is ul-
timately undefeated (or warranted) wrt a program P. An argumentation line
starting in an argument 〈A0, Q0, α0〉 is a sequence [〈A0, Q0, α0〉, 〈A1, Q1, α1〉,
. . . , 〈An, Qn, αn〉, . . .] that can be thought of as an exchange of arguments be-
tween two parties, a proponent (evenly-indexed arguments) and an opponent
(oddly-indexed arguments). In order to avoid fallacious reasoning, argumenta-
tion theory imposes additional constraints on such an argument exchange to be
considered rationally acceptable wrt an OP-DeLP program P, namely:

1. Non-contradiction: given an argumentation line λ, the set of arguments of the
proponent (resp. opponent) should be non-contradictory wrt P. Non-contradiction
for a set of arguments is defined as follows: a set S =

Sn
i=1{〈Ai, Qi, αi〉} is contra-

dictory wrt P iff Ψ ∪
Sn
i=1Ai is contradictory.

2. No circular argumentation: no argument 〈Aj , Qj , αj〉 in λ is a sub-argument
of an argument 〈Ai, Qi, αi〉 in λ, i < j.

3. Progressive argumentation: every blocking defeater 〈Ai, Qi, αi〉 in λ is defeated
by a proper defeater 〈Ai+1, Qi+1, αi+1〉 in λ.

An argumentation line satisfying the above restrictions is called acceptable, and
can be proved to be finite. Given a program P and an argument 〈A0, Q0, α0〉,
the set of all acceptable argumentation lines starting in 〈A0, Q0, α0〉 accounts
for a whole dialectical analysis for 〈A0, Q0, α0〉 (i.e. all possible dialogs rooted
in 〈A0, Q0, α0〉, formalized as a dialectical tree, denoted T〈A0,Q0,α0〉. Nodes in a
dialectical tree T〈A0,Q0,α0〉 can be marked as undefeated and defeated nodes (U-
nodes and D-nodes, resp.). A dialectical tree will be marked as an and-or tree:
all leaves in T〈A0,Q0,α0〉 will be marked U-nodes (as they have no defeaters), and
every inner node is to be marked as D-node iff it has at least one U-node as a
child, and as U-node otherwise. An argument 〈A0, Q0, α0〉 is ultimately accepted
as valid (or warranted) iff the root of T〈A0,Q0,α0〉 is labeled as U-node.

Definition 6. [Warrant][9]Given a program P, and a literal Q, Q is warranted wrt
P iff there exists a warranted argument 〈A, Q, α〉 than can be built from P.

To answer a query for a given literal we should see if there exists a warranted ar-
gument supporting this literal. Nevertheless, in OP-DeLP there may be different
arguments with different certainty degrees supporting a given query. This fact
was not considered in [9], but we are clearly interested in finding the warranted
argument with the highest certainty degree.

Definition 7. [Strongest Warrant]Given a program P, and a literal Q, we will say
that α is the strongest warrant degree of Q iff (1) there exists a warranted argument
〈A, Q, α〉 than can be built from P and (2) no warranted argument 〈B, Q, β〉 such that
β > α can built from P.

Note that to find out the strongest warrant degree for a given literal Q we
need to find the strongest warranted argument supporting it, that is, the war-
ranted argument supporting Q with the higher certainty degree. Then, to find
the strongest warrant degree for a literal Q we must first build the argument A
that supports the query Q with the highest possible certainty degree and see if
A is a warrant for Q. Otherwise we must find another argument B for Q with the
highest certainty degree among the remaining ones, see if it is a warrant for Q,
and so on, until a warranted argument is found or there are no more arguments
supporting Q.

Example 2. Consider the program shown in Example 1 and let move inbox(d)
be a query wrt this program. The search for a warrant for move inbox(d) will
result in an argument 〈A, move inbox(d), 0.6〉, with

A = {(move inbox(d) –≺ ∼filters(d), 0.6)}

allowing to conclude that message d should be moved to the folder Inbox, as it
has no associated filter with a certainty degree of 0.6. However, there exists a
defeater for 〈A, move inbox(d), 0.6〉, namely 〈B,∼move inbox(d), 0.7〉, as there
are reasons to believe that message d is spam:

B = {(∼move inbox(d) –≺ move junk(d), 0.8)
(move junk(d) –≺ spam(d), 1), (spam(d) –≺ black list(d), 0.7)}

Using the preference criterion, 〈B,∼move inbox(d), 0.7〉 is a proper defeater
for 〈A, move inbox(d), 0.6〉. However, two counterarguments can be found for
〈B,∼move inbox(d), 0.7〉, since message d comes from the local host, and the
sender is in the user’s contacts list:

– 〈C,∼spam(d), 0.6〉, where C = {(∼spam(d) –≺ contacts(d), 0.6)}.
– 〈D,∼spam(d), 0.9〉, where D = {(∼spam(d) –≺ local(d), 0.9)}.

B defeats C but is defeated by D. There are no more arguments to consider,
and the resulting dialectical tree has only one argumentation line: A is defeated
by B who is in turn defeated by D. Hence, the marking procedure determines
that the root node 〈A, move inbox(d), 0.6〉 is a U-node and the original query
is warranted.

3 Dialectical graphs and pre-compiled knowledge

To obtain faster query processing in the OP-DeLP system we integrate pre-
compiled knowledge to avoid the construction of arguments which were already
computed before. The approach follows the proposal presented in [5] where the
pre-compiled knowledge component is required to: (1) minimize the number of
stored arguments in the pre-compiled base of arguments (for instance, using one
structure to represent the set of arguments that use the same defeasible rules);
and (2) maintain independence from the observations that may change with
new perceptions, to avoid modifying also the pre-compiled knowledge when new
observations are incorporated.

Considering these requirements, we define a database structure called dialec-
tical graph, which will keep a record of all possible arguments in an OP-DeLP

program P (by means of a special structure named potential argument) as well
as the counterargument relation among them. Potential arguments, originally
defined in [5] contain non-grounded defeasible rules, depending thus only on the
set of rules ∆ in P and are independant from the set of observations Ψ .

Potential arguments have been devised to sum-up arguments that are ob-
tained using different instances of the same defeasible rules. Recording every
generated argument could result in storing many arguments which are struc-
turally identical, only differing on the constants being used to build the corre-
sponding derivations. Thus, a potential argument stands for several arguments
which use the same defeasible rules. Attack relations among potential arguments
can be also captured, and in some cases even defeat can be pre-compiled. In what
follows we introduce the formal definitions, adapted from [5] to fit the OP-DeLP

system.

Definition 8. [Weighted Potential argument]Let ∆ be a set of defeasible rules. A
subset A of ∆ is a potential argument for a literal Q with an upper bound γ for its
certainty degree, noted as 〈〈A,Q, γ〉〉 if there exists a non-contradictory set of literals Φ
and an instance A that is obtained finding an instance for every rule in A, such that
〈A, Q, α〉 is an argument wrt 〈Φ,∆〉(α ≤ γ) and there is no instance 〈B, Q, β〉 of A
such that β > γ

The nodes of the dialectical graph are the potential arguments. The arcs
of our graph are obtained calculating the counterargument relation among the
nodes previously obtained. To do this, we extend the concept of counterargu-
ment for potential arguments. A potential argument 〈〈A1,Q1, α〉〉 counter-argues
〈〈A2,Q2, β〉〉 at a literal Q if and only if there is a non-empty potential sub-
argument 〈〈A,Q, γ〉〉 of 〈〈A2,Q2, β〉〉 such that Q1 and Q are contradictory lit-
erals.1 Note that potential counter-arguments may or may not result in a real
conflict between the instances (arguments) associated with the corresponding
potential arguments. In some cases instances of these arguments cannot co-exist
in any scenario (e.g., consider two potential arguments based on contradictory
observations). Now we can finally define the concept of dialectical graph:

Definition 9. [Dialectical Graph]Let P = 〈Ψ,∆〉 be an OP-DeLP program. The di-
alectical graph of ∆, denoted as G∆, is a pair (PotArg(∆), C) such that: (1) PotArg(∆)
is the set {〈〈A1,Q1, α1〉〉, . . . , 〈〈Ak,Qk, αk〉〉} of all the potential arguments that can be
built from ∆; (2) C is the counterargument relation over the elements of PotArg(∆).

We have devised a set of algorithms to use the dialectical graph for improving
the inference process. For space reasons these algorithms are not detailed in this
work, the interested reader may consult [6] for a more detailed treatment of
this subject. We have also compared the obtained algorithms theoretically with
standard argument-based inference techniques (such as those used in P-DeLP).
At the inference process, we have found out that complexity is lowered from

O

(
2|∆

′|3.(2
|∆′|)/4

)
to O(2|∆

′|.|∆′|).

4 A proposed architecture for OP-DeLP applications

Applications that use the OP-DeLP system will be be engineered for contexts
where: (1) information is uncertain and heterogeneous, (2) handling of great
volume of data flows is needed, and (3) data may be incomplete, vague or con-
tradictory. In this section we present an architectural pattern that can be used
in these applications.

Previous to proposing a pattern we started analyzing the characteristics of
OP-DeLP applications. First, we found that data will generally be obtained from
multiple sources. Nowadays the availability of information trough the Inter-
net has shifted the issue of information from quantitative stakes to qualitative
ones [3]. For this reason, new information systems also need to provide assistance
for judging and examining the quality of the information they receive.

For our pattern, we have chosen to use a multi-source perspective into the
characterization of data quality[3]. In this case the quality of data can be eval-
uated by comparison with the quality of other homologous data (i.e. data from
different information sources which represent the same reality but may have

1 Note that P (X) and ∼P (X) are contradictory literals although they are non-
grounded. The same idea is applied to identify contradiction in potential arguments.

contradictory values). The approaches usually adopted to reconcile heterogene-
ity between values of data are : (1) to prefer the values of the most reliable
sources, (2) to mention the source ID for each value, or (3) to store quality
meta-data with the data. We have chosen to use the second approach. In multi-
source databases, each attribute of a multiple source element has multiple values
with the ID of their source and their associated quality expertise. Quality exper-
tise is represented as meta-data associated with each value. We have simplified
this model for an easy and practical integration with the OP-DeLP system. In our
case, data sources are assigned a unique certainty degree. For simplicity sake, we
assume that different sources have different values. All data from a given source
will have the same certainty degree. This degree may be obtained weighting the
plausibility of the data value, its accuracy, the credibility of its source and the
freshness of the data.

OP-DeLP programs basically have a set of observations Ψ and a set of rules
∆. The set of rules is chosen by the knowledge engineer and remains fixed. The
observation set may change according with new perceptions received from the
multiple data sources. Nevertheless, inside the observation set we will distinguish
a special kind of perceptions, those with certainty degree 1. Those perceptions
are also codified by the knowledge engineer and cannot be modified in the future
by the perception mechanism. To assure this, we assume that every data source
has a certainty value γ such that 0 < γ < 1.

Example 3. Consider the program in Example 2. In this case data establishing
a given message is from the local host comes from the same data source and
can be given a certainty degree of 1. The same applies for contacts(X). The
algorithm that decides whether to filter a given message is another data source
with a degree of 0.9, the filter that classifies a message as a virus is another data
source with a degree of 0.7, and the algorithm that checks if the message came
from some server in the blacklist is a different source that has a degree of 0.75.
Note that we could have different virus filters with different associated certainty
degrees if we wanted to build higher trust on this filter mechanism.

The scenario just described requires an updating criterion different to the one
presented in [5], given that the situation regarding perceptions in OP-DeLP is
much more complex. To solve this, we have devised Algorithm 1, that summarizes
different situations in two conditions. The first one acts when the complement
of the literal Q is already present in the set Ψ . Three different cases can be
analyzed in this setting: (1) If both certainty degrees are equal it means that
both Q and its complement proceed from the same data source. Then the only
reason for the conflict is a change in the state of affairs, thus an update is needed
and the new literal is added. (2) If α > β it means that the data sources are
different, Thus we choose to add (Q,α) since it has the higher certainty degree.
(3) If α < β we keep (Q, β). Note that (1) is an update operation [12] while (2)
and (3) are revisions over Ψ . The difference between updating and revision is
fundamental. Updating consists in bringing the knowledge base up to date when
the world changes. Revision allows us to obtain new information about a static
scenario [12].

DS1 DS2 DSn. . .

�
��?

A
AU

Obs Ψ -�

Defeasible
Rules ∆

-
Dialectical

Graph

Revision & Updating

?

-
Answers

�
Queries

Fig. 2. Architecture for applications using OP-DeLP as underlying framework

The second condition in Algorithm 1 considers the case when Q was in Ψ
with a different certainty degree. Then it chooses the weighted literal with the
highest degree possible. Note that the observations initially codified that have a
certainty degree of 1 cannot be deleted or modified by algorithm 1.

Algorithm 1 UpdateObservationSet

Input: P = 〈Ψ,∆〉, (Q,α)
Output: P = 〈Ψ,∆〉 {With Ψ updated }

If there exists a weighted literal (Q, β) ∈ Ψ such that β ≤ α Then

delete((Q, β)
add((Q,α))

If there exists a weighted literal (Q, β) ∈ Ψ such that α ≤ β Then

delete((Q, β)
add((Q,α))

Finally, fig. 2 summarizes the main elements of the O-DeLP-based architec-
ture. Knowledge is represented by an OP-DeLP program P. Perceptions from
multiple sources may result in changes in the set of observations in P, handled
by the updating mechanism defined in algorithm 1. To solve queries the OP-DeLP

inference engine is used. This engine is assisted by the dialectical graph (Def. 9)
to speed-up the argumentation process. The final answer to a given query Q will
be yes, with the particular certainty degree of the warranted argument support-
ing Q, or no if the system could not find a warrant for Q from P.

5 Conclusions

In this work we have defined an argumentation-based formalism that integrates
uncertainty management. This system was also provided with an optimization
mechanism based on pre-compiled knowledge. Using this, the argumentation
system can comply with real time requirements needed to administer data and
model reasoning over this data in dynamic environments. Another contribution
is the architectural model to integrate OP-DeLP in practical applications to ad-
minister and reason with data from multiple sources.

As future work, we are developing a prototype based on the proposed ar-
chitecture to extend the theoretical complexity analysis with empirical results
and to test the integration of the OP-DeLP reasoning system in real world ap-
plications. We are also working on the integration of OP-DeLP and database
management systems by means of a strongly-coupled approach.

References

1. T. Alsinet, C. I. Chesñevar, L. Godo, S. Sandri, and G. R. Simari. Formalizing
argumentative reasoning in a possibilistic logic programming setting with fuzzy
unification. International Journal of Approximate Reasoning, 48(3):711–729, 2008.

2. T. Alsinet, C. I. Chesñevar, L. Godo, and G. R Simari. A logic programming
framework for possibilistic argumentation: Formalization and logical properties.
Fuzzy Sets and Systems, 159(10):208–228, 2008.

3. L. Berti. Quality and recommendation of multi-source data for assisting tech-
nological intelligence applications. In Proc. of 10th International Conference on
Database and Expert Systems Applications, pages 282–291, Italy, 1999. AAAI.

4. Bryant and Krause. An implementation of a lightweight argumentation engine for
agent applications. Lecture Notes in Computer Science, 4160(1):469–472, 2006.

5. M. Capobianco, C. I. Chesñevar, and G. R. Simari. Argumentation and the dy-
namics of warranted beliefs in changing environments. Journal of Autonomous
Agents and Multiagent Systems, 11:127–151, 2005.

6. M. Capobianco and G. Simari. A proposal for making argumentation computa-
tionally capable of handling large repositories of uncertain data. In Proceedings of
the third international conference on scalable uncertainty management, 2009. to
appear.

7. C. I. Chesñevar, A. G. Maguitman, and R. P. Loui. Logical Models of Argument.
ACM Computing Surveys, 32(4):337–383, 2000.

8. C. I. Chesñevar, A. G. Maguitman, and G. R. Simari. Argument-based critics
and recommenders: A qualitative perspective on user support systems. Data &
Knowledge Engineering, 59(2):293–319, 2006.

9. C. I. Chesñevar, G. R. Simari, T. Alsinet, and L. Godo. A logic programming frame-
work for possibilistic argumentation with vague knowledge. In Proc. of Uncertainty
in Artificial Intelligence Conference (UAI 2004), Banff, Canada (to appear), 2004.

10. A. Garćıa and G. Simari. Defeasible Logic Programming: An Argumentative Ap-
proach. Theory and Practice of Logic Programming, 4(1):95–138, 2004.

11. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, pages 365–385, 1991.

12. H. Katsuno and A. Mendelzon. On the difference between updating a knowledge
base and revising it. In P.Gardenfors, editor, Belief Revision, pages 183–203. Cam-
bridge University Press, 1992.

13. H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In
Handbook of Philosophical Logic, volume 4, pages 219–318. 2002.

14. I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons, and L. So-
nenberg. Argumentation-based negotiation. The Knowledge Engineering Review,
18(4):343–375, 2003.

15. G. R. Simari and R. P. Loui. A Mathematical Treatment of Defeasible Reasoning
and its Implementation. Artificial Intelligence, 53(1–2):125–157, 1992.

