8,756 research outputs found

    Flora Health Wireless Monitoring with Plant-Microbial Fuel Cell

    Get PDF
    Abstract We propose a self-sustainable wireless sensor node capable to monitor both environmental data and flora health state, exploiting a Microbial Fuel Cell combined with a plant. This bio-electrochemical system is used both as a power generator to supply the wireless embedded electronics and as a biosensor for estimating the status of the plant. We demonstrate that the sub-milliwatt power provided by the fuel cell is enough for achieving an energy-neutral smart sensor that samples and sends data. Moreover, the rate of the harvested power is correlated with the health of the flora living in symbiosis with the bacteria colony. The proposed system has been conceived to address the needs of future smart agriculture applications, providing an unobtrusive and energy neutral monitoring system open to a broad range of applications, thanks to the bacteria species that populate almost any soil on Earth

    Controlled ecological life support system - biological problems

    Get PDF
    The general processes and controls associated with two distinct experimental paradigms are examined. Specific areas for research related to biotic production (food production) and biotic decomposition (waste management) are explored. The workshop discussions were directed toward Elemental cycles and the biological factors that affect the transformations of nutrients into food, of food material into waste, and of waste into nutrients were discussed. To focus on biological issues, the discussion assumed that (1) food production would be by biological means (thus excluding chemical synthesis), (2) energy would not be a limiting factor, and (3) engineering capacity for composition and leak rate would be adequate

    Impacts of local human activities on the Antarctic environment

    Get PDF
    We review the scientific literature, especially from the past decade, on the impacts of human activities on the Antarctic environment. A range of impacts has been identified at a variety of spatial and temporal scales. Chemical contamination and sewage disposal on the continent have been found to be long-lived. Contemporary sewage management practices at many coastal stations are insufficient to prevent local contamination but no introduction of non-indigenous organisms through this route has yet been demonstrated. Human activities, particularly construction and transport, have led to disturbances of flora and fauna. A small number of non-indigenous plant and animal species has become established, mostly on the northern Antarctic Peninsula and southern archipelagos of the Scotia Arc. There is little indication of recovery of overexploited fish stocks, and ramifications of fishing activity oil bycatch species and the ecosystem could also be far-reaching. The Antarctic Treaty System and its instruments, in particular the Convention for the Conservation of Antarctic Marine Living Resources and the Environmental Protocol, provide a framework within which management of human activities take place. In the face of the continuing expansion of human activities in Antarctica, a more effective implementation of a wide range of measures is essential, in order to ensure comprehensive protection of the Antarctic environment, including its intrinsic, wilderness and scientific values which remains a fundamental principle of the Antarctic Treaty System. These measures include effective environmental impact assessments, long-term monitoring, mitigation measures for non-indigenous species, ecosystem-based management of living resources, and increased regulation of National Antarctic Programmes and tourism activities

    The ecology of microorganisms in a small closed system: Potential benefits and problems for space station

    Get PDF
    The inevitble presence on the space station of microorganisms associated with crew members and their environment will have the potential for both benefits and a range of problems including illness and corrosion of materials. This report reviews the literature presenting information about microorganisms pertinent to Environmental Control and Life Support (ECLS) on the space station. The perspective of the report is ecological, viewing the space station as an ecosystem in which biological relationships are affected by factors such as zero gravity and by closure of a small volume of space. Potential sites and activities of microorganisms on the space station and their environmental limits, microbial standards for the space station, monitoring and control methods, effects of space factors on microorganisms, and extraterrestrial contamination are discussed

    Electronic Design of a DC-DC Boost Converter for Powering a Lo-Ra Communication Board with Bioelectricity by “Plantas Andinas”

    Get PDF
    The use of bioelectricity in various areas of science has made it indispensable to resort to new technologies to take full advantage of this natural resource. Plants are living beings, and through their biochemical processes produce a small amount of electricity derived from oxidation-reduction processes. For this reason, it is proposed to use electronic and power techniques to increase the flow of electrons produced by plants of Andean characteristics, and consequently feed a Lo-Ra type communication card, meeting the needs of long-distance data transmission, used in the collection of field information, either in areas where access or availability of power lines is complex. This proposal motivates us to continue working on sustainable energy and the exploitation of natural resources. This document details the theory, practice, and methods used to meet the objective of supplying power to a wireless communication system over a long distance. First, a description of the most important issues to be addressed is developed, and then special focus is given to the design for development of the power electronics circuit, specifically an elevator type DC-DC converter. Finally, the results obtained through the implementation used in this case are documented. Keywords: bioelectricity, MFC, boost-converter, Andean plants, totora, Lo-Ra TTGO. Resumen El uso de bioelectricidad en diversas áreas de la ciencia ha hecho indispensable recurrir a nuevas tecnologías para aprovechar al máximo este recurso natural. Las plantas, como seres vivos, producen una pequeña cantidad de electricidad a través de sus procesos bioquímicos, derivada de procesos de oxidación-reducción. Por esta razón, se propone utilizar técnicas electrónicas y de potencia para aumentar el flujo de electrones producidos por plantas de características andinas, y alimentar así una tarjeta de comunicación de tipo Lo-Ra, satisfaciendo las necesidades de transmisión de datos a larga distancia, utilizadas en la recolección de información de campo, ya sea en áreas donde el acceso o la disponibilidad de líneas eléctricas es compleja Esta propuesta motiva a continuar trabajando en energía sostenible y en la explotación de recursos naturales. Este documento detalla la teoría, práctica y los métodos utilizados para cumplir con el objetivo de suministrar energía a un sistema de comunicación inalámbrico a larga distancia. En primer lugar, se desarrolla una descripción de los temas más importantes a abordar, y luego se presta especial atención al desarrollo del diseño del circuito de electrónica de potencia, específicamente un convertidor DC-DC tipo elevador; y finalmente, se documentan los resultados obtenidos a través de la implementación utilizada en este caso. Palabras Clave: bioelectricidad, CCM, convertidor-elevador, plantas andinas, totora, TTGO Lo-Ra

    Electrobioremediation of oil spills

    Get PDF
    Annually, thousands of oil spills occur across the globe. As a result, petroleum substances and petrochemical compounds are widespread contaminants causing concern due to their toxicity and recalcitrance. Many remediation strategies have been developed using both physicochemical and biological approaches. Biological strategies are most benign, aiming to enhance microbial metabolic activities by supplying limiting inorganic nutrients, electron acceptors or donors, thus stimulating oxidation or reduction of contaminants. A key issue is controlling the supply of electron donors/acceptors. Bioelectrochemical systems (BES) have emerged, in which an electrical current serves as either electron donor or acceptor for oil spill bioremediation. BES are highly controllable and can possibly also serve as biosensors for real time monitoring of the degradation process. Despite being promising, multiple aspects need to be considered to make BES suitable for field applications including system design, electrode materials, operational parameters, mode of action and radius of influence. The microbiological processes, involved in bioelectrochemical contaminant degradation, are currently not fully understood, particularly in relation to electron transfer mechanisms. Especially in sulfate rich environments, the sulfur cycle appears pivotal during hydrocarbon oxidation. This review provides a comprehensive analysis of the research on bioelectrochemical remediation of oil spills and of the key parameters involved in the process

    Macroinvertebrates, Heavy Metals and PAHs in Urban Watercourses

    Get PDF
    Good quality stream water and sediments are crucial for the support of healthy stream flora and fauna but urban runoff degrades watercourses leaving a legacy of pollution in the stream sediments. The sediment pollution load influences the development of macroinvertebrates which, as the lowest member of the food chain, influences the whole ecological structure. This review focuses on defining the sources and impacts of zinc, nickel, copper and oil derivative polycyclic aromatic hydrocarbon (PAH) contaminants in urban runoff. The impact of pollutants as measured by laboratory, field and modelling procedures are considered. Land use, position and connectivity of the runoff and sediment are seen to have an effect on the ecological integrity of the watercourse but case examples are sparse. The literature indicates that while reduced species diversity has been identified at a number of sites the dynamics are not well understood nor well modelled. These results are compared with field evidence from a study of 62 headwater streams with urban industrial and motorway land uses. From the review and field results it is evident that there is still an important need for process-based field measurements of urban water quality parameters. Forecasting the ecological status of watercourses would seem to benefit from data on sediment chemistry that considers the interaction effects of metals and PAHs

    Treatment and hygiene of farm slurry and food waste

    Get PDF

    Effects of Ground Level Ozone on Vegetation

    Get PDF
    All the experiments conducted in this project use ozone exposures that either are already currently occurring or are expected to occur over UK uplands this century, if predictions of increasing „background‟ ozone exposure are correct. Uplands are particularly vulnerable to such increases, because they are windy and wet – conditions which favour ozone uptake by vegetation. Consequently, the observations on ozone effects on upland plant species are likely to occur in the foreseeable future, if they are not already happening. The novel field ozone exposure system at Keenley Fell (Northumberland) has been operating since spring 2007. Seasonal average increases in ozone exposure at 10 m from the release point were very small in 2007, increasing to around 5 ppb above ambient in 2008 and 2009. The effects of the ozone treatments on this conservation-managed grassland should be seen in the context of this very modest increase in annual mean exposure. Average deposition velocity for ozone at Keenley Fell was between 1 mm/s (night) and 5 mm/s (mid-day), varying with weather conditions. These flux data will assist with the modelling of ozone deposition to upland grasslands. Limited flux measurements for CO2 showed uptake during the day and release at night, as expected, and will contribute to modelling interactions between ozone and carbon fluxes under these conditions. The ozone treatments at Keenley Fell had no effect on total above-ground production in any of the three years. However, there was a cumulative decrease in forb biomass, with an associated change in forb species composition, over the three years. This was accompanied by an increase in grass biomass. These effects of ozone are antagonistic to the objectives of the conservation management at this site. The biomass and flowering of a small number of individual forb species were significantly reduced by ozone exposure at Keenley Fell. Importantly, these species included the hemi-parasite Rhinanthus minor which is frequently used to enhance species diversity in this type of conservation management. Hence, the observed effects of ozone on species composition may partly have been caused through its adverse effects on Rhinanthus . Data compiled from several experiments show adverse effects of ozone on semi-natural plant species at concentrations as low as 30 ppb, with 12 of the species studied showing effects at concentrations below 50 ppbv. Effects on roots were greater than on shoots, with potentially significant implications for overwintering, drought tolerance and carbon sequestration
    corecore