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 Electrobioremediation is an innovative approach for contaminants removal
 Petrochemical compounds can be successfully removed by electrobioremediation
 Several parameters (e.g. electrode, potential, mediators) influence the process
 Microbiological processes can be complex and sulfur cycle has an important role
 The scale up of the technology is the future challenge
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26 Abstract

27 Annually, thousands of oil spills occur across the globe. As a result, petroleum substances and 

28 petrochemical compounds are widespread contaminants causing concern due to their toxicity and 

29 recalcitrance. Many remediation strategies have been developed using both physicochemical and 

30 biological approaches. Biological strategies are most benign, aiming to enhance microbial 

31 metabolic activities by supplying limiting inorganic nutrients, electron acceptors or donors, thus 

32 stimulating oxidation or reduction of contaminants. A key issue is controlling the supply of electron 

33 donors/acceptors. Bioelectrochemical systems (BES) have emerged, in which an electrical current 

34 serves as either electron donor or acceptor for oil spill bioremediation. BES are highly controllable 

35 and can possibly also serve as biosensors for real time monitoring of the degradation process. 

36 Despite being promising, multiple aspects need to be considered to make BES suitable for field 

37 applications including system design, electrode materials, operational parameters, mode of action 

38 and radius of influence. The microbiological processes, involved in bioelectrochemical contaminant 

39 degradation, are currently not fully understood, particularly in relation to electron transfer 

40 mechanisms. Especially in sulfate rich environments, the sulfur cycle appears pivotal during 

41 hydrocarbon oxidation. This review provides a comprehensive analysis of the research on 

42 bioelectrochemical remediation of oil spills and of the key parameters involved in the process.

43

44 1. Introduction

45 Thousands of accidents occur every year that lead to crude oil being spilled and entering the 

46 environment (Figure 1). Crude petroleum is a complex mixture containing more than 17,000 

47 identified chemical components. Saturated and aromatic hydrocarbons represent the majority of the 

48 non-polar fraction (Head et al., 2006), halogenated hydrocarbons are not found in crude oil but are 

49 typically derived from petroleum hydrocarbons and include a halogen such as F, Cl, Br, and I. Both 

50 halogenated and non-halogenated hydrocarbons can be released into the environment and 

51 contaminate soil and water (Moran et al., 2007; Poulsen et al., 1992). These compounds have a 
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52 broad range of detrimental effects on the environment (Badawi et al., 2000; Durmusoglu et al., 

53 2010), and therefore need to be removed efficiently.

54 The technologies to remove contaminants from a polluted site can be grouped into two main 

55 categories and applied individually or in synergy: physicochemical technologies, and biological 

56 technologies (bioremediation) (Alvarez and Illman, 2006). Physicochemical technologies can 

57 include physical removal (i.e. excavation of soil and sediment or groundwater pumping), washing 

58 by co-solvents or surfactants, thermal desorption, electrokinetic movement of contaminants and 

59 oxidation or reduction via chemical agents (Alvarez and Illman, 2006; Trombly, 1994). 

60 Bioremediation exploits the vast metabolic diversity of microorganisms to degrade organic 

61 contaminants by using the pollutant as a source of energy and carbon (Alvarez and Illman, 2006). It 

62 is often inexpensive compared to physicochemical methods, and allows the complete mineralization 

63 of the pollutants. However, it typically requires more time to achieve full remediation (Atlas, 1995). 

64 Remediation technologies can be divided into ex-situ (involving the extraction of the contaminated 

65 matrix for treatment on-site, or off-site) and in-situ (which does not involve extraction of the 

66 contaminated matrix). In-situ microbial mediated reactions have been successfully used for the 

67 reduction and oxidation of petroleum derived contaminants (Alvarez and Illman, 2006). The goal of 

68 bioremediation is to stimulate the removal of contaminants by overcoming the limitations to 

69 microbial metabolism that would otherwise prevent contaminant removal. A common approach is 

70 to supply electron donors to stimulate the degradation (i.e. reduction) of halogenated compounds, or 

71 electron acceptors to stimulate the degradation (i.e. oxidation) of non-halogenated compounds 

72 (Alvarez and Illman, 2006) (Table 1).

73 Aerobic metabolism is stimulated by adding oxygen (e.g. by air sparging, Figure 2) (Farhadian et 

74 al., 2008), which has the benefit of faster rates of hydrocarbon removal compared to anaerobic 

75 bioremediation strategies (Weelink et al., 2010). Furthermore, even though the oxidation of 

76 hydrocarbons can occur in anaerobic environments (Weelink et al., 2010), oxygen is an important 

77 reactant for hydrocarbon breakdown (Baldwin et al., 2009). However, oxygen solubility in water is 
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78 low and it can be consumed by unwanted side reactions with reduced species (e.g. Fe2+ or Mn2+) 

79 which are usually abundant in contaminated matrices (Broden et al., 1997; Tuxen et al., 2006). 

80 Anaerobic microbial metabolism can be effectively enhanced with the addition of chelators, which 

81 solubilize Fe3+, or with the addition of soluble electron shuttles (e.g. humic substances) able to 

82 promote electron transfer to insoluble electron acceptors, such as Fe3+ or Mn4+ oxides (Lovley et al., 

83 1996; Lovley et al., 1994). Anaerobic biodegradation can be stimulated also by adding sulfate or 

84 nitrate (Coates et al., 1996; Mihelcic and Luthy, 1988; Vaiopoulou et al., 2005; Weiner et al., 1998). 

85 The main drawback of the strategies mentioned above is that the supplemented reagents are 

86 consumed rapidly and naturally migrate away from the contaminated area. Continuous amendment 

87 with the depleted reagents or electron acceptors is therefore required, and this increases the cost 

88 (Zhang et al., 2010).

89 Halogenated hydrocarbons can be effectively remediated by reductive dehalogenation by microbes 

90 that use them as a terminal electron acceptors during anaerobic respiration, and are thus reduced to 

91 less halogenated, or non-halogenated, compounds which can be more biodegradable (de Bruin et 

92 al., 1992; Seshadri et al., 2005). Stimulation of microbial reduction can be achieved by supplying 

93 electron donors (Table 1). The typical electron donor for the dehalogenation is hydrogen (H2), 

94 although some studies suggest that acetate may also be used (Aulenta et al., 2006; He et al., 2002). 

95 H2 can be delivered directly or by passive dissolution using hollow fibre membranes (Fang et al., 

96 2002; Ma et al., 2003). Another strategy to indirectly supply H2 for the reductive dechlorination is 

97 by using organic substrates, such as butyric acid, ethanol or lactic acid that can be fermented at low 

98 H2 partial pressure (Aulenta et al., 2005; Fennell et al., 1997; Panagiotakis et al., 2007). However, 

99 these approaches can be costly due to the need for continuous supply of water-soluble electron 

100 donors. Furthermore, controlling the supply rate of the electron donors can be a crucial step to avoid 

101 unwanted side reactions and the accumulation of fermentation products (e.g. volatile fatty acids; 

102 VFA) with deterioration of water quality. For example, VFA and dissolved metals accumulated in 

103 microcosms amended with lactate during reductive dechlorination and as a result increased 
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104 groundwater ecotoxicity (Aulenta et al., 2007b). H2 can be consumed, not only by dechlorinating 

105 bacteria, but also by other H2 consuming microorganisms, such as methanogens, homoacetogens 

106 and sulfate reducers, thus lowering the efficiency of the process (Aulenta et al., 2007a, 2007b; 

107 Zanaroli et al., 2015). Experimental evidence, however, suggested that dechlorinating 

108 microorganisms can outcompete other H2 consumers at low H2 concentrations (Aulenta et al., 

109 2008a; Smatlak et al., 1996; Yang and McCarty, 1998) (e.g. the half-velocity constants (Ks) 

110 measured for dechlorination and methanogenesis are 100 ± 50 nM and 960 ± 180 nM (Smatlak et 

111 al., 1996), respectively).

112 Recently, bioelectrochemical systems (BES) have been suggested as an alternative strategy to 

113 overcome some of the limitations of the current bioremediation technologies (Wang et al., 2015). 

114 The use of benthic BES has recently been reviewed (Li and Yu, 2015), however sediments are not 

115 the only environmental matrix that can be treated with a BES-based approach. BES can also be used 

116 effectively for the bioremediation of soils and water.

117 In this article the state of the art of this innovative approach for the bioremediation of oil spills in 

118 soil, sediment and water will be extensively reviewed. The scope is to investigate the potential of 

119 BES to remove oil spills, elucidating: (i) the key parameters that influence the process; (ii) the main 

120 advantages and limitations; (iii) the microorganisms and the biological processes involved; (iv) 

121 future research opportunities to improve understanding and field application of BES-based 

122 bioremediation approaches.

123

124 2. Bioelectrochemical systems

125 A BES uses microorganisms to catalyze redox reactions on or near electrodes (Logan et al., 2006). 

126 A typical reactor design consists of an anode and a cathode separated by an ion conductive matrix 

127 (Figure 3). Microorganisms can interact with the electrodes either by direct contact (e.g. 

128 microorganisms directly exchange electrons with an electrode) or via an indirect mechanism where 

129 a chemical compound acts as an electron shuttle (Figure 3). These electron shuttles can be secreted 
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130 by the microorganisms (e.g. phenazines of Pseudomonas spp.) (Rabaey et al., 2005) or can be added 

131 exogenously (Logan et al., 2006). 

132 A BES can be used to generate power (microbial fuel cell; MFC) by linking anodic oxidation of a 

133 reduced substrate to cathodic reduction of a high potential electron acceptor (e.g. oxygen) (Logan et 

134 al., 2006). It can also function with addition of power to drive the desired reaction (microbial 

135 electrolysis cell; MEC) (Rozendal et al., 2006). A microbial anode in combination with a biological 

136 or chemical cathode can be implemented to achieve production of H2 in a MEC. This system 

137 requires about 3 times less potential difference compared to a conventional chemical electrolysis 

138 cell, in which the reactions at the electrodes are not mediated by microorganisms (Rozendal et al., 

139 2006). When operating a MEC, there are two electrical control strategies (i) operation at a fixed 

140 potential (Rozendal et al., 2006) or (ii) operation at a fixed current (Andersen et al., 2013). 

141 Operation at a fixed potential has the advantage that a desired reaction can be driven, or favourable 

142 conditions for a certain (bio)catalyst can be created. The drawback is that reaction rates at the 

143 electrode are controlled by the (bio)catalyst and not by the operator. Operation of a MEC at a fixed 

144 current allows the operator to control the reaction rates but not the type of reaction that occurs. This 

145 can be used, for example, when the aim is to produce large amounts of oxygen or hydrogen.

146

147 3. Bioelectrochemical processes for oil spill remediation

148 3.1. Anodic oxidation and oxygen generation

149 The microbial mediated anodic oxidation of organic compounds in BES was initially applied as a 

150 technology to reduce Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD) 

151 in domestic wastewater, with concomitant energy production (Logan et al., 2006). Recently, a 

152 number of studies have exploited BES technologies to stimulate the anaerobic oxidation of 

153 petroleum and petroleum-derived compounds (Table 2). The anode of a BES can be used to collect 

154 electrons produced from the oxidation of organic contaminants. It can be buried in anoxic benthic 

155 sediment, or in a contaminated aquifer, and electrically connected to a cathode placed in the 



ACCEPTED MANUSCRIPT

7

156 overlying water (Bond et al., 2002; Williams et al., 2010). The anode can be pre-inoculated or 

157 readily colonized by members of the resident microbiota with electron transfer abilities. Electrons 

158 collected from the anaerobic oxidation of the contaminant, flow through an electrical connection to 

159 the cathode in the aerobic water column, were they can be used to reduce oxygen (Lovley and 

160 Nevin, 2011). A similar set-up could be used to stimulate bioremediation in hydrocarbon 

161 contaminated aquifers. Indeed it has been demonstrated that a borehole anode can serve as an 

162 electron acceptor with a cathode embedded at the ground surface, meters above (Williams et al., 

163 2010). A simpler configuration can be obtained by using so-called “electrochemical snorkels”. In 

164 this strategy, the electrode material is a conductive rod which spans the aerobic and the anaerobic 

165 zones, functioning both as a cathode and as an anode. With this configuration, however, electrical 

166 power is not harvested nor can activity be monitored (Cruz Viggi et al., 2015; Lovley, 2011).

167 Early studies in this field reported the use of complex mixtures of highly contaminated refinery 

168 wastewater and diesel contaminated groundwater as suitable electron donors in MFCs, coupling 

169 hydrocarbon removal with power production (Morris et al., 2009; Morris and Jin, 2008). Using an 

170 anode as electron acceptor, Diesel Range Organics (DRO) removal was 82%, whereas in the open 

171 circuit control only 31% was removed (Morris et al., 2009). Both alkanes and aromatic 

172 hydrocarbons can be degraded in BES. Toluene is the easiest degradable component of BTEX 

173 compounds (Benzene, Toluene, Ethylbenzene and Xylenes), and its degradation has been studied at 

174 a variety of anode potentials, both with pure cultures and consortia (Daghio et al., 2016; Friman et 

175 al., 2012; Lin et al., 2014; Zhang et al., 2010). Benzene was degraded in the anode of a BES by 

176 mixed cultures enriched from contaminated sediments (Zhang et al., 2010), groundwater (Rakoczy 

177 et al., 2013; Wei et al., 2015), wastewater (Wu et al., 2013) and anaerobic sludge (Adelaja et al., 

178 2015). Polycyclic aromatic hydrocarbons (PAHs) degradation has also been reported in several 

179 studies (Adelaja et al., 2015, 2014; Yan et al., 2012; Zhang et al., 2010). Phenol has been 

180 bioelectrochemically degraded both by mixed cultures and a pure culture of Cupriavidus basilensis 

181 (Friman et al., 2013; Huang et al., 2011). In contaminated sites, however, mixtures of different 
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182 hydrocarbons rather than single compounds are present. Total petroleum hydrocarbons (TPH) 

183 degradation has been extensively assessed in different studies (Chandrasekhar and Venkata Mohan, 

184 2012; Cruz Viggi et al., 2015; Li et al., 2015, 2014, Lu et al., 2014a, 2014b; Morris and Jin, 2012; 

185 Venkata Mohan and Chandrasekhar, 2011; Wang et al., 2012; Zhang et al., 2015). Although there 

186 are increasing numbers of studies regarding the oxidation of non-halogenated hydrocarbons in BES, 

187 biodegradation of widespread mixtures, such as gasoline, still remains to be assessed. The oxidation 

188 of halogenated hydrocarbons has also been investigated and bioelectrochemical oxidation of 1,2-

189 dichloroethane (1,2-DCA) with different microbial inocula has been shown to be an attractive 

190 technology for the bioremediation of chlorinated compounds (Pham et al., 2009).

191 A major bottleneck of electrochemical bioremediation of hydrocarbons under anaerobic conditions 

192 is initiation of the degradation pathway (Bertrand et al., 2011). In aerobic conditions the first step of 

193 the degradation pathway involves an oxygenase that catalyzes the addition of hydroxyl groups. 

194 Under anaerobic conditions less efficient processes than aerobic activation usually take place. The 

195 initial biodegradation step can occur either by fumarate addition or by carboxylation for n-alkanes 

196 and either by fumarate addition, hydroxylation or carboxylation for aromatic compounds (Fuchs et 

197 al., 2011; Head et al., 2014; Widdel and Rabus, 2001). Presence of a limited amount of oxygen 

198 could benefit and initiate the process of primary hydrocarbon bio-oxidation (Baldwin et al., 2009; 

199 Weelink et al., 2010) and such strategies have already been presented (Table 1). From this 

200 perspective, an anode can not only serve as alternative electron acceptor during hydrocarbon 

201 biodegradation (Bond et al., 2002; Cruz Viggi et al., 2015; Lovley and Nevin, 2011; Williams et al., 

202 2010), but also contribute to the initiation phase by oxygen production and altering the pH in its 

203 proximity. Despite known standard oxygen potential values (i.e + 1,230 mV vs SHE, all potentials 

204 are relative to SHE unless otherwise stated), in real applications, oxygen evolution overpotential 

205 depends on the electrode material (Anglada et al., 2009). Oxygen evolution through water oxidation 

206 usually results in a decrease in pH that may impose further effects on biodegradation. Type, design 

207 and electrode material are determining factors of oxygen evolution potential and treatment 
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208 efficiency (Radjenovic and Sedlak, 2015). Specifically, under anaerobic conditions in a marine 

209 medium, the electrochemical potential of oxygen evolution can vary depending on seawater nature 

210 (e.g. salinity, ions species and concentration), presence of other water-soluble constituents from the 

211 sediment, and environmental conditions (e.g. pH and temperature) in addition to the electrode 

212 properties. High potential electrodes can be used to deliver oxygen in the anaerobic environment 

213 where it can act as final electron acceptor for microorganisms during biodegradation of 

214 contaminants. An example of electrochemical stimulated removal of organic contaminants via 

215 oxygen evolution has been recently reported for cis-dichloroethene (cis-DCE). A polarized graphite 

216 electrode (+ 1,500 mV) was able to successfully stimulate the removal of cis-DCE (85 µmol/L) 

217 when ethene was provided as a co-metabolic substrate (Aulenta et al., 2013). Furthermore in a 

218 recently published paper, water electrolysis was driven by applying an external voltage (2 V) on 

219 Dimensionally Stable Anodes (DSA; i.e. Ti mesh covered with mixed metal oxides, primarily 

220 consisting of Ir and Ru) to produce oxygen for the stimulation of TPH removal (20 g kg-1) in marine 

221 sediments. After 202 days of operation TPH removal in the open circuit control was 44 ± 1 %, 

222 while a slightly higher removal (i.e. 58 ± 3 %) was observed when oxygen was produced by 

223 constantly applying 2 V (Bellagamba et al., 2016).

224

225 3.2. Hydrogen generation and cathodic reduction

226 The reduction reactions at the cathode in a BES can be exploited to reduce a large number of 

227 oxidized compounds such as metals (Tandukar et al., 2009; Xafenias et al., 2013) or halogenated 

228 compounds (Aulenta et al., 2007a; Kong et al., 2014). Several studies have reported the stimulation 

229 of microbial dechlorination by using a cathode as a direct electron donor or by in-situ H2 production 

230 (Table 3). Early studies investigated the electrochemical production of H2 as a suitable strategy for 

231 the dehalogenation of 2,6-dichlorophenol (2,6-DCP) by applying currents from -1 to -15 mA 

232 (Skadberg et al., 1999). The same technology was subsequently used for trichloroethene (TCE) 

233 removal (Aulenta et al., 2008c). The use of a BES is an innovative approach to produce in-situ H2, 
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234 because the energy requirement is lower compared to a purely electrochemical process (Rosenbaum 

235 et al., 2011). However, in order to control the process and avoid side reactions that consume H2 and 

236 lead to low efficiencies, direct electron uptake from the cathode, without the production of H2, is a 

237 preferable strategy. Pioneering studies focused on TCE removal by using a redox mediator to 

238 promote electron transfer from the cathode to the biocatalyst, resulting in complete dechlorination 

239 of TCE via cis-DCE and vinyl chloride (VC) to ethene (Aulenta et al., 2007a). Subsequent studies 

240 suggested that TCE removal can be stimulated by direct electron transfer from the cathode (Aulenta 

241 et al., 2011, 2010a, 2010b, 2009, 2008b; Verdini et al., 2015). The more oxidized tetrachloroethene 

242 (PCE) was reduced to cis-DCE by a pure culture of Geobacter lovleyi able to utilise an electrode as 

243 sole electron donor (Strycharz et al., 2008). Whereas in a separate innovative study, PCE was 

244 reduced to ethene using H2 from water electrolysis concomitant with the electrochemically 

245 produced O2 which was used to stimulate the microbial oxidation of the dechlorination products 

246 (Lohner and Tiehm, 2009). Other studies have focused on the dechlorination of the reduced 

247 intermediates produced during TCE removal, such as cis-DCE (Aulenta et al., 2010b; Lai et al., 

248 2015). Furthermore, the dechlorination of 1,2-DCA was achieved in a BES reactor inoculated with 

249 a mixed culture enriched in Dehalococcoides spp. (Leitão et al., 2015).

250

251 4. Effects of materials and operational parameters

252 4.1. Electrode material

253 The choice of an appropriate anodic material affects the selectivity and efficiency of the 

254 hydrocarbon removal process (Anglada et al., 2009). The electrode material should comply with the 

255 following properties: i) high physical and chemical stability, ii) high electrical conductivity, iii) 

256 catalytic activity and selectivity for the target compounds, and iv) low cost/life ratio. Inexpensive 

257 and long life service materials should be favoured for the oxidation of hydrocarbons. Oxidation 

258 reactions may act synergistically or compete with the side reaction of oxygen evolution at the 

259 anode, depending on the choice of material. In real applications, the Oxygen Evolution Reaction 
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260 overpotential (OER; i.e. difference between the value of the voltage at which the oxidation of water 

261 actually begins to take place, and the theoretical thermodynamic value (Chen, 2004)) depends 

262 mainly on the electrode material (Anglada et al., 2009). Anodes with low OER overpotential, such 

263 as graphite or platinum, are characterized by a high electrochemical activity towards the OER and 

264 low chemical reactivity toward oxidation of organics. Thereafter, low current densities are applied 

265 at such anodes to drive pollutant oxidation; at higher current densities, current efficiency is 

266 expected to decrease due to the production of oxygen. In contrast, anodes with a high OER 

267 overpotential, such as a DSA, higher current densities can be applied without the concern that 

268 current efficiency is reduced due to occurrence of the OER. 

269 For stimulation of microbial metabolism with anodes serving as electron acceptors, stainless steel 

270 electrodes (Morris et al., 2009; Morris and Jin, 2012, 2008; Yan et al., 2012) or conductive carbon 

271 and graphite have been used (Table 2). A comparison of anodic materials used in different studies, 

272 in terms of removal efficiencies, is difficult, because factors other than the electrode material may 

273 affect the degradation rate. A slightly higher removal efficiency (78.7%) was observed with a 

274 biochar anode compared to a carbon cloth anode (73.1%) over 64 days of operation both starting 

275 from an initial TPH concentration of 11.46 g (kg soil)-1. The authors attributed the higher removal 

276 efficiency of the biochar to the higher sorption capabilities that facilitated hydrocarbon diffusion in 

277 the anode (Lu et al., 2014a). In a separate study, a biochar electrode was also compared with a 

278 graphite granule anode. The two materials showed similar performances in terms of TPH removal, 

279 but the graphite granule anode generated a higher current density (70.4 ± 0.2 mA m-2) compared to 

280 the biochar anode (35.2 ± 0.8 mA m-2) (Lu et al., 2014b).

281 Adsorption of hydrocarbons on carbon and organic phases in soil and sediment is known to reduce 

282 their bioavailability, however adsorption on the electrode surface does not appear to negatively 

283 affect biodegradation of  hydrocarbon contaminants. Studies with [14C]-toluene and [14C]-benzene 

284 and isotopic analysis during benzene degradation showed that contaminants adsorbed onto the 

285 electrode could still be metabolized (Rakoczy et al., 2013; Zhang et al., 2010).
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286

287 4.2. Redox potential

288 The anode in a BES is the final electron acceptor in microbial metabolism. The energy gain for the 

289 microorganisms is higher using electron acceptors with a more positive potential (Madigan et al., 

290 2011), thus it is reasonable to hypothesize that a more positive anodic potential can enhance 

291 hydrocarbon oxidation in BES. However, results correlating anodic potential to bioelectrochemical 

292 oxidation of organic substrates are controversial and do not confirm this expectation. With easily 

293 biodegradable substrates (e.g. acetate) a positive correlation between anode potential and current 

294 production was observed, but other studies have shown the opposite trend (Aelterman et al., 2008; 

295 Wagner et al., 2010). Recently, it was observed that polarizing an anode at a positive potential (> + 

296 397 mV) resulted in a lower current production with a pure culture of Shewanella oneidensis MR-1, 

297 because electron transfer proteins were damaged at higher potentials (TerAvest  and Angenent, 

298 2014).

299 Most studies related to hydrocarbon degradation in BES used an MFC configuration, without 

300 controlling the anodic potential. Toluene degradation was studied with an anode poised at potentials 

301 from + 275 to + 700 mV using a pure culture of Pseudomonas putida F1 and current production 

302 increased with increasing anodic potential (Friman et al., 2012). Another study tested the ability of 

303 mixed cultures enriched from a contaminated marine sediment to degrade toluene, and confirmed 

304 the correlation between current and potential, but no effect on the degradation rate was observed in 

305 a potential window from + 200 mV to + 500 mV (Daghio et al., 2016). Thus, in the range of + 200 

306 till + 700 mV data are scarce and further investigation is warranted to reach solid conclusions about 

307 the role of anode potential on biodegradation of recalcitrant compounds.

308 Oxygen evolution is a process that could affect the electrobioremediation both by stimulating the 

309 activation of hydrocarbon, or by acting as a side reaction delivering electrons to the anode which 

310 are not linked to the oxidation of the contaminant, decreasing the efficiency. In this context it is 

311 important to consider the potential of the OER when the anodic potential is selected. Cyclic 
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312 voltammetry provides information on oxidation potentials and can assist in determining the 

313 appropriate anode potential for specific applications. For example, oxygen evolution commenced at 

314 around + 750 mV on a carbon felt anode when cyclic voltammetry was run both in artificial and 

315 real seawater at neutral pH at a scan rate of 5 mV s-1 (unpublished data from CMET, UGent, 

316 Belgium).

317 Cathode potential is an important parameter that can affect the performance of e.g. dechlorination of 

318 chlorinated hydrocarbons, by controlling competing reactions, particularly methanogenesis due to 

319 H2 evolution. Cathodic potentials from - 600 mV to - 800 mV can be applied to stimulate TCE 

320 dechlorination via H2 production. The best performance was achieved around - 650 mV. However, 

321 methane production was also stimulated in the same range of potentials thus reducing the efficiency 

322 of the dechlorination process (Aulenta et al., 2008c). A strategy to enhance efficiency of microbial 

323 reductive dechlorination and to eliminate side reactions could be to supply electrons directly from 

324 the electrode. The first evidence of this process was reported with a culture of Geobacter lovleyi 

325 that was able to reduce PCE to cis-DCE with an electrode poised at - 300 mV serving as electron 

326 donor (Strycharz et al., 2008). A further study demonstrated that mixed cultures could also use an 

327 electrode poised at - 450 mV as sole electron donor (Aulenta et al., 2009). A higher dechlorination 

328 rate was obtained by further decreasing the cathodic potential to - 550 mV (Aulenta et al., 2010b). 

329 An accurate study of the effect of the electrode potential was performed using a continuous flow 

330 reactor. Five cathodic potentials ranging from - 250 mV to - 750 mV were tested without exogenous 

331 nor endogenous redox mediators. At - 250 mV the TCE dechlorination rate was low (15.5 ± 1.2 

332 µmol e- L-1) but rapidly increased when the cathodic potential was decreased to - 450 mV (58 ± 1 

333 µmol e- L-1). Decreasing the potential increased the H2 production rate, thus increasing the 

334 dechlorination rate. However, the coulombic efficiency of the dechlorination process was nearly 

335 100 % at - 250 mV, but decreased to less than 1 % at - 750 mV, because methanogenesis acted as 

336 an electron sink (Aulenta et al., 2011). A similar result was observed during 1,2-DCA 

337 dechlorination with cathodic potentials from - 300 mV to - 900 mV. The dechlorination rate 
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338 increased linearly by decreasing the cathodic potential whereas the coulombic efficiency was near 

339 70% at - 300 mV and decreased to less than 2% for potentials lower than - 600 mV (Leitão et al., 

340 2015). The study of the dechlorination of cis-DCE in a flow reactor at potentials between - 550 and 

341 - 750 mV, showed that nitrate reduction and sulfate reduction can also represent an electron sink at 

342 more negative potentials (below - 550 mV), decreasing the coulombic efficiency from more than 

343 90% at - 550 mV to 60% at - 750 mV (Lai et al., 2015). Recently, it was reported that the applied 

344 cathodic potential has to be considered together with the velocity of groundwater flow (Verdini et 

345 al., 2015). TCE dechlorination rate increased almost linearly with the flow velocity (from 0.3 m d-1 

346 to 1.7 m d-1) at more reducing potentials (- 450 mV) but the influence of the mass transport 

347 decreased at higher potentials (- 350 mV and - 250 mV). This observation suggests that the effect of 

348 flow velocity at the lower potential was probably due to the influence of electrolytically generated 

349 hydrogen. Hydrogen was transported with the water flow and sustained the dehalogenation process, 

350 while only direct extracellular electron transfer occurred at the higher potential (Verdini et al., 

351 2015).

352

353 4.3. Redox mediators

354 Redox mediators enable electron transfer to and from an electrode. Neutral red (100-300 µM) and 

355 ferricyanide (100-2000 µM) were used as redox mediators in the anodic chamber in order to 

356 investigate their influence on toluene degradation. It was found that toluene removal decreased with 

357 both the mediators compared to a control without redox mediators (Lin et al., 2014). The negative 

358 effect was probably due to the toxicity of the mediators (Lin et al., 2014; Smolinská and Takáčová, 

359 2012). The effect of riboflavin and anthraquinone-2-sulfonate (AQS) on the degradation of 

360 phenanthrene and benzene in an MFC was also investigated. Riboflavin (30 µM) highly improved 

361 the power density and reached 26.17 ± 0.08 mW m-2 compared to AQS (30 µM) and to the control 

362 without the addition of mediators that reached 0.57 ± 0.05 mW m-2 and 0.47 ± 0.01 mW m-2 
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363 respectively. No significant effects were shown on hydrocarbon removal that were almost 

364 completely removed regardless of the presence of exogenous redox mediators (Adelaja et al., 2015).

365 Studies with exogenous redox mediators have also been performed during the bioelectrochemical 

366 removal of halogenated hydrocarbons. It was demonstrated that with an electrode poised at - 500 

367 mV dechlorination was stimulated only when methyl viologen (MV) was in the medium (Aulenta et 

368 al., 2007a). When the potential was further decreased to -800 mV, H2 was produced but the 

369 dechlorination rate did not increase (Aulenta et al., 2007a). In another study at low MV 

370 concentration (25-750 µM) only dechlorination was stimulated, but when the MV concentration 

371 was increased up to 5,000 µM, H2 was produced. It was suggested that at high MV concentrations 

372 the rate at which the electrons were transferred to the microorganisms exceeded the electron 

373 utilization for the dehalogenation process. The electrons were thus diverted to H2 production via a 

374 hydrogenase (Aulenta et al., 2008b). An alternative mediator is the humic acid analogue 

375 antraquinone-2,6-disulfonate (AQDS). Humic acids are ubiquitous redox active compounds in the 

376 environment and several studies have demonstrated their involvement in biodegradation processes 

377 (Van der Zee and Cervantes, 2009). AQDS was successfully used to reduce TCE to cis-DCE but 

378 was unable to further stimulate the dechlorination to vinyl chloride (Aulenta et al., 2010a).

379 As artificial mediators can be toxic and inhibitory to microbial activity, mediator-free BES are 

380 preferable during bioremediation. Artificial mediators also pose some of the same disadvantages of 

381 the soluble electron acceptors, as they could diffuse away from the reaction area and interact with 

382 other processes therefore decreasing the efficiency.

383 Endogenously produced mediators have been detected during toluene degradation. Friman and 

384 colleagues (2012) detected the presence of a redox active compound with a potential of + 470 mV. 

385 The authors attributed the oxidation peak to 3-methyl catechol (Friman et al., 2012). Catechol and 

386 3-methyl catechol are typical intermediates produced during aerobic toluene degradation and their 

387 presence could be explained by a low levels of oxygen penetrating into the reactor, however, it is 

388 unlikely that this redox active compound could have acted as a mediator for electron transfer in this 
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389 system, since the anode was poised at + 325 mV, a potential considerably lower than the midpoint 

390 potential of the detected redox active molecule.

391 The production of a redox active moiety involved in electron transfer to an anode polarized at + 500 

392 mV was also described in a mixed culture dominated by sulfate-reducing bacteria during toluene 

393 degradation. The midpoint potential of the redox active site was around + 400 mV, but the nature of 

394 the redox mediator was not identified (Daghio et al., 2016).

395 Further studies are needed to elucidate the role of redox mediators when hydrocarbons compounds 

396 other than toluene are oxidized. So far only one study on other petrochemicals reported the presence 

397 of an unidentified mediator (+ 140 mV) self-produced by a pure culture of Cupriavidus basilensis 

398 with an anode polarized at + 325 mV during bioelectrochemical oxidation of phenol (Friman et al., 

399 2013).

400 Recent advances in the description of cathodic electron transfer mechanisms have revealed that 

401 some dechlorinating bacteria are able to accept electrons directly from a graphite electrode, without 

402 the addition of external mediators (Aulenta et al., 2010b, 2009; Strycharz et al., 2008). An 

403 unidentified redox active moiety with a midpoint potential around - 400 mV was detected in the 

404 supernatant during TCE dechlorination. This molecule was not detected when the culture was 

405 grown with H2 as electron donor, therefore it was possible to hypothesize that it had a role in the 

406 electron transfer from the solid electron donor (Aulenta et al., 2009).

407 Experimental evidence suggests that in the environment natural molecules may also play an 

408 important role in the electron transfer to solid electron acceptors. Humic acids can act as electron 

409 shuttles in MFCs (Milliken and May, 2007) as well as acting as electron acceptors in their own right 

410 (Lovley et al., 1996a). Several reviews discuss the role of natural mediators during the 

411 bioremediation of contaminants (Hong and Gu, 2009; Martinez et al., 2013; Van der Zee and 

412 Cervantes, 2009).  For example, anaerobic toluene degradation linked to reduction of humic 

413 compounds has been reported (Cervantes et al., 2001). Also the more recalcitrant benzene was 

414 degraded using AQDS as sole electron acceptor by two microbial consortia (Cervantes et al., 2011) 
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415 and by a pure culture of Geobacter (Zhang et al., 2012). Humic substances have formal potentials, 

416 at pH 7, of approximately + 740 mV and thus are potentially very good electron acceptors (Struyk 

417 and Sposito, 2001). The redox active component of the humic acid is thought to be quinone 

418 moieties (Scott et al., 1998). In crude oil the asphaltene fraction can contain up to around 5% 

419 oxygen. The oxygen is present in a number of functional groups including possibly quinones 

420 (Speight, 2014). While asphaltenes (and associated resin fractions of crude oils), are much less 

421 functionalised than humic acids it is possible that these more polar components of crude oils could 

422 provide an organic, macromolecular electron shuttle for anaerobic microbial metabolism. The 

423 intriguing possibility therefore exists that, in environments contaminated with complex mixtures of 

424 petroleum hydrocarbons such as crude oil, humic acids in soils and sediments or asphaltenes in 

425 crude oils might themselves act as electron shuttles promoting bioelectrochemical oxidation 

426 coupled to anodes provided in the soil/sediment. Electrodes in BES may serve to recycle the natural 

427 mediators, which can be reoxidized at the anode, providing a continuous source of electron 

428 acceptors for the degradative microorganisms.

429

430 4.4. Radius of influence

431 The extension of the radius of influence of an electrode is one of the most important aspects to 

432 address before applying BES-based technologies for the bioremediation of soil and sediment.

433 A first attempt at evaluating the radius of influence during TPH degradation in soil was conducted 

434 using a saline soil (conductivity 8.32 mS cm-1). A high conductivity decreases the electrical 

435 resistance, but in spite of that, the degradation rate was enhanced only in samples collected close to 

436 the electrode (<1 cm) after 25 days of incubation, while the removal rate farther from the anode (1-2 

437 cm and 2-3 cm) was similar to the removal rate in open circuit controls (Wang et al., 2012). In 

438 another study, TPH degradation was enhanced during 64 days of operation both at <1 cm and also 

439 at 5 cm from the anode, compared to the controls (Lu et al., 2014a). The difference in the results 
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440 may be attributed to variations in the configuration of the bioelectrochemical systems, or to 

441 different characteristics of the soil used.

442 A recent study showed that the measured radius of influence can be up to 34 cm away from the 

443 electrode over a period of 120 days. Hydrocarbon degradation was initially observed close to the 

444 anode (1 cm), but the influence of the bioelectrochemical stimulation increased over time. The 

445 authors assumed a linear correlation between the distance from the anode and the enhanced TPH 

446 removal and predicted a maximum radius of influence of 90 cm after 45 days with a BES radius of 

447 7.5 cm, corresponding to a ratio of maximum radius of influence to radius of BES equal to 12. This 

448 estimation, however, was not supported by experimental data at a distance greater than 34 cm from 

449 the electrode (Lu et al., 2014b). Other factors, such as ohmic losses, might lead to a non-linear 

450 correlation between TPH removal enhancement and the radius of influence over long distances 

451 (Arends et al., 2014; Logan et al., 2006), thus decreasing the predicted extension of the radius of 

452 influence. However, a correlation between the radius of influence and the radius of BES can be 

453 made (Lu et al., 2014b), suggesting that, with cylindrical electrodes, the radius of influence may be 

454 extended by increasing the radius of the electrode. Further studies can be conducted to better clarify 

455 this aspect in a real field bioremediation. The mass transfer of the chemical species (e.g. 

456 groundwater flow) could extend the radius of influence of the electrode, particularly if the function 

457 of the electrode is to generate a soluble electron donor or acceptor in situ.

458 It was proposed that by increasing the porosity of a soil (e.g. by the addition of sand) it is possible 

459 to enhance mass transfer and promote the performance of  BES-driven TPH degradation. The 

460 charge output increased from 2.5 C g-1 soil (no sand) to 2.9 C g-1 soil (soil to sand content of 5:1 

461 w/w) and 3.5 C g-1 soil (soil to sand content of 2:1 w/w) over 135 days. Similarly, TPH removal was 

462 higher with 2:1 soil to sand ratio (22 ± 0.5 %) compared to 5:1 soil to sand ratio (15 ± 0.1 %) or no 

463 sand (12 ± 0.4 %). Bacteria from the genus Alcanivorax, known obligate hydrocarbon-degrading 

464 organisms, were also strongly enriched close to the air-cathode when soil was amended with sand, 

465 indicating that sand promoted the growth of hydrocarbon degrading bacteria (Li et al., 2015).
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466 The reported studies clearly indicate that several factors may affect the radius of influence in field 

467 applications (e.g. electrode design, water content, soil type, mass transport) and these parameters 

468 may have to be evaluated in site specific conditions in order to obtain the best treatment efficiency.

469

470 5. Microbial communities in bioelectrochemical systems during oil spill remediation

471 Iron reducing bacteria were first used as an inoculum in an MFC containing hydrocarbons as an 

472 energy source (Zhang et al., 2010) (Table 2). One of the first studies showed the ability of 

473 Geobacter metallireducens to use graphite electrodes as electron acceptor for the degradation of 

474 toluene (Zhang et al., 2010). Recently, the degradation of phenanthrene by Shewanella oneidensis 

475 MR1 14063 in an MFC was reported (Adelaja et al., 2014). However, strict anaerobes are not the 

476 only microorganisms studied. Pseudomonas aeruginosa NCTC 10662 has been shown to degrade 

477 phenanthrene faster (54.7 µM d-1) than Shewanella oneidensis (25.2 µM d-1) under similar 

478 operational conditions in a MFC (Adelaja et al., 2014). Other reports seem to indicate that aerobes 

479 and facultative anaerobes are able to oxidize hydrocarbons with an anode as sole electron acceptor. 

480 Cupriavidus basilensis was able to degrade phenol with an anode via electron transfer mediated by 

481 a self-produced shuttle (Friman et al., 2013); while the presence of the catabolic intermediate 

482 catechol was hypothesized during bioelectrochemical toluene degradation by Pseudomonas putida 

483 F1 (at oxygen levels of 0.78 mg O2 L-1) (Friman et al., 2012). This finding poses open questions 

484 regarding the degradation pathway and the role of oxygen for hydrocarbon degradation by 

485 Pseudomonas sp. with an anode. Indeed, microorganisms belonging to this genus are well-described 

486 hydrocarbon degraders in aerobic conditions and the hydrocarbon activation proceeds by addition of 

487 hydroxyl groups catalyzed by an oxygenase, requiring molecular oxygen (Jindrová et al., 2002). 

488 Whether aerobes and facultative anaerobes require a low concentration of oxygen for the activation 

489 reaction to couple hydrocarbon degradation to current production in a BES is therefore an 

490 interesting and important question. A first step in hydrocarbon biodegradation catalyzed by a 

491 monooxygenase followed by further anaerobic removal of the intermediate has also been proposed 
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492 during bioelectrochemical benzene removal from groundwater fed reactors (Rakoczy et al., 2013; 

493 Wei et al., 2015). 

494 These findings are intriguing in the context of recent studies of hydrocarbon rich environments that 

495 are considered to be primarily anoxic and have been subject to anaerobic hydrocarbon degradation, 

496 which does not require molecular oxygen. The widespread occurrence of microorganisms that 

497 would be typically considered aerobes in these environments (An et al., 2013) (including 

498 Pseudomonas spp.) has been interpreted either as resulting from contamination with oxygen during 

499 sampling, contamination with exogenous organisms, oxygen ingress into these environments or the 

500 existence of mechanisms that lead to in-situ generation of reactive oxygen species (e.g. radiolytic 

501 splitting of water) (An et al., 2013; Head et al., 2014). The final possibility is that the putative 

502 aerobes observed are much more versatile in their use of electron acceptors than has hitherto been 

503 appreciated. Pseudomonas spp., while classically thought of as catabolically versatile aerobes or 

504 facultative aerobes that can utilize NO3
- and other oxidized nitrogen species as alternative electron 

505 acceptors to oxygen, are probably more cosmopolitan in their use of electron acceptors than 

506 commonly considered. Pseudomonas aeruginosa is known to use solid phase anodes in a MFC as 

507 an electron acceptor by using phenazine electron shuttles (Rabaey et al., 2005). The shuttles 

508 produced by Pseudomonas could also be used by non-electroactive microorganisms, increasing thus 

509 the diversity of the microbial communities in BES.

510 This still poses a dilemma regarding the mechanism of hydrocarbon activation in anoxic BES by 

511 microorganisms that use molecular oxygen requiring mono- and dioxygenase systems. Some 

512 evidence related to the occurrence of hydrocarbon activation mechanisms that might be relevant to 

513 BES have been offered by studies of methanogenic crude oil and alkane degradation.  In one 

514 methanogenic crude oil-degrading system inoculated with oil reservoir production water, the 

515 possibility has recently been raised that Pseudomonas spp. may have a role in hydrocarbon 

516 fermentation coupled to methanogenesis by syntrophic interactions with methanogens (Berdugo-

517 Clavijo and Gieg, 2014).  In this study, a methanogenic oil degrading consortium, dominated by a 
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518 Smithella sp., a candidate alkane-fermenting microorganism, and a range of acetoclastic and CO2-

519 reducing methanogens, was inoculated into anoxic sand columns containing residual oil, and 

520 incubated in an anoxic chamber for over 300 days. The sand columns actively degraded crude oil 

521 hydrocarbons and generated methane.  When the microbial communities in the sand columns were 

522 analysed, their composition had changed considerably with CO2-reducing methanogens 

523 predominating in the community. However the most intriguing observation was that the most highly 

524 represented bacterial taxon was a Pseudomonas sp. (Berdugo-Clavijo and Gieg, 2014)  While the 

525 authors were measured in their interpretation that this Pseudomonas sp. might represent the 

526 syntrophic hydrocarbon-degrading partner of the methanogens in the culture, the results do raise the 

527 intriguing possibility that some Pseudomonas spp. have evolved to occupy a niche whereby they are 

528 active under highly reducing conditions. This study implies that, provided that the identified 

529 Pseudomonas spp. strain is indeed capable of alkane fermentation, it must harbour metabolic 

530 pathways that allow activation of alkanes in the absence of oxygen. As noted above a number of 

531 Pseudomonas spp. have the capacity to synthesise and utilize soluble electron shuttles that could be 

532 involved in electron transfer either to methanogenic partners in syntrophic consortia, or equally, in 

533 the presence of an anode as an alternative electron acceptor, it may use the anode.

534 Pure cultures were not the only microbial inocula used during the bioelectrochemical oxidation of 

535 hydrocarbons. Many studies reported the anodic oxidation of hydrocarbons in a BES by using 

536 mixed cultures as microbial inocula (Table 2). Although, few studies characterized the microbial 

537 communities that developed in the reactors during the treatment, they suggest that both the presence 

538 of recalcitrant substrates and the availability of alternative electron acceptors may affect the 

539 selection of the microbial populations. Iron reducers are often described in the anodic communities 

540 that develop in BES reactors fed with readily biodegradable substrates, such as acetate (Daghio et 

541 al., 2015a; Kiely et al., 2011; Zhu et al., 2014). However, they seem to play only a marginal role 

542 during hydrocarbon degradation in BES. This implies that the recalcitrant character of the substrate 

543 drives other mechanisms than direct electron transfer to an electrode (Lu et al., 2014a; Rakoczy et 
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544 al., 2013). Morris and colleagues (2009) found that NO3
- reducing bacteria dominated the anodic 

545 community in a single chamber MFC in which diesel was degraded with simultaneous current 

546 production (Morris et al., 2009). The high abundance of bacteria capable of nitrate reduction, 

547 however, could be attributed to the MFC architecture used in this study. The air cathode used could 

548 have allowed small amount of oxygen to diffuse into the reactor, thus providing favourable 

549 conditions for facultative anaerobes such as some NO3
- reducers. In a recent study aerobes and 

550 facultative anaerobes were enriched on the anode in a single chamber MFC during diesel removal 

551 together with anaerobic bacteria (Venkidusamy et al., 2016). This observation suggested that 

552 different niches were present in the reactor. In other investigations, microbial communities 

553 dominated by microorganisms belonging to the Chloroflexi and to the Nitrospira were described 

554 during PAHs degradation (Yan et al., 2012). A recent detailed analysis performed after remediation 

555 of TPH-contaminated soil with a BES highlighted that Proteobacteria (especially 

556 Betaproteobacteria and Gammaproteobacteria) was the most abundant phylum after the treatment 

557 (Lu et al., 2014a). Among the Betaproteobacteria and Gammaproteobacteria the most abundant 

558 genera were Bordetella, Comamonas and Pseudomonas. While some species of the last two genera 

559 have been described as exoelectrogens, microorganisms belonging to the genus Bordetella are not 

560 typically reported in electroactive communities. This further indicates that in the presence of 

561 complex and recalcitrant contaminants, factors other than the ability to actively transfer electrons to 

562 the anode affect the selection of specific microbial populations. When an easily biodegradable 

563 carbon source is provided (e.g. acetate), the electrodes are colonized by microorganisms which have 

564 more efficient external electron transfer pathways; conversely, if the carbon source is recalcitrant, 

565 microorganisms possessing less efficient external electron transfer pathways, but able to oxidize the 

566 electron donor, might be favoured. This observation was highlighted in recent studies in which a 

567 key role of microorganisms involved in the sulfur cycle was suggested during hydrocarbon 

568 oxidation in marine sediments and BES (Cruz Viggi et al., 2015; Daghio et al., 2016). The role of 

569 the sulfur cycle in the process will be reviewed in the next section.
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570 Similar to the studies on bioelectrochemical oxidation of hydrocarbons, pioneer studies on the 

571 bioelectrochemically mediated reduction of chlorinated hydrocarbons used pure cultures (Table 3). 

572 The first studies used Geobacter lovleyi as a biocatalyst (Aulenta et al., 2009; Strycharz et al., 2008) 

573 showing that Geobacter spp. are able to use electrodes both as electron acceptors and electron 

574 donors. The most extensively tested microorganisms in dechlorinating BES belong to the genus 

575 Dehalococcoides (Table 3). To date, Dehalococcoides spp. are the only known microorganisms 

576 able to completely dechlorinate TCE to ethene (Maymó-Gatell et al., 2001; West et al., 2008); 

577 indeed, the presence of these bacteria was confirmed by FISH analysis both in the communities 

578 attached to the cathode and in the medium, thus demonstrating that the cells are likely active and 

579 involved in TCE dechlorination in BES (Aulenta et al., 2010b, 2009). The presence of 

580 Dehalococcoides on the cathode seems to be correlated with the electrode potential. The first 

581 enzymes involved in the electron transport chain in this microorganism during chloroethene 

582 reduction were suggested to be hydrogenases (Aulenta et al., 2010a). These enzymes typically work 

583 close to the redox potential of the couple H2/H+ (- 414 mV at pH 7) (Armstrong et al., 2009), 

584 consistent with experimental data in a Dehalococcoides enriched mixed community (Aulenta et al., 

585 2009). At higher potentials, other electron transfer pathways might be involved, leading to the 

586 enrichment of different groups, such as Desulfitobacterium spp. (Aulenta et al., 2010a). These 

587 findings were confirmed by the results of a recent study in which a detailed characterization of the 

588 cathodic communities involved in TCE dechlorination by CARD-FISH was performed. 

589 Dehalococcoides was the dominant genus in the range from - 550 to - 750 mV; conversely, an 

590 unidentified member of the Chloroflexi phylum outcompeted the Dehalococcoides when the 

591 cathode potential was higher (i.e. from - 250 to - 450 mV) (Di Battista et al., 2012). Another study 

592 showed that Dehalococcoides were the main planktonic bacterial cells in the cathodic chamber 

593 during dechlorination of 1,2-DCA in a bioelectrochemical system, but about 40% of the bacterial 

594 cells collected from the electrode remained unidentified (Leitão et al., 2015).

595
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596 5.1. Effect of sulfur cycle

597 Sulfate, one of the most abundant electron acceptors in marine sediments (in seawater up to 28 mM) 

598 (Thauer et al., 2007), has been estimated to support the mineralization of about 50% of the organic 

599 matter deposited in continental shelves (Jørgensen, 1982). During the last two decades, hydrocarbon 

600 degradation under sulfate-reducing conditions gained interest due to several in vitro and in-situ 

601 studies suggesting the potential of this process for the removal of hydrocarbons in the marine 

602 environment (Coates et al., 1997; Hayes et al., 1999; Widdel et al., 2010) (Equation 1).

603

604 Equation 1

605 C16H34 (Hexadecane) + 12.25 SO4
2- + 8.5H+ → 16HCO3

- + 12.25H2S + H2O (Mbadinga et al., 

606 2011)

607

608 The bioremediation and biodegradation of spilled hydrocarbons in marine systems has been 

609 extensively studied in the aftermath of the deepest and largest offshore spill in US history which 

610 occurred in the Gulf of Mexico in April 2010 (i.e. the BP Deepwater Horizon spill) (Atlas and 

611 Hazen, 2011; Kimes et al., 2013; King et al., 2015; Rodriguez-R et al., 2015). Genes and 

612 metabolites involved in anaerobic hydrocarbon degradation were identified in a metagenomic study 

613 of cores collected near the MC-252 wellhead (Kimes et al., 2013). Many of the reads from the 

614 metagenomes were related to sequences from known anaerobic hydrocarbon degraders (e.g. 

615 Desulfatibacillum alkenivorans AK-01, a sulfate-reducing, hydrocarbon-degrading 

616 Deltaproteobacterium) (So and Young, 1999).

617 There is increasing evidence that the role of sulfur cycle in the anaerobic degradation of crude oil in 

618 some sulfate-containing environments is complex and that other groups of microorganisms in 

619 addition to sulfate reducing bacteria (SRB) may play a role. For example, an anaerobic microcosm 

620 approach used to investigate crude oil biodegradation under sulfate-reducing conditions showed 

621 degradation of C7-C34 alkanes concomitant with sulfate removal over 300 days in oil-amended 
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622 microcosms (Sherry et al., 2013). Microbial community analysis of 16S rRNA genes in the oil-

623 amended microcosms that were actively reducing sulfate identified sequences from 

624 Gammaproteobacteria most closely related to Marinobacterium sp. and members of the family 

625 Peptostreptococcaceae within the Firmicutes at the highest frequency, rather than conventional 

626 SRB (Sherry et al., 2013). Furthermore, a broad survey of microbial community data from a range 

627 of oil and hydrocarbon-impacted anoxic environments, demonstrated that Firmicutes were the most 

628 commonly detected followed by the Gamma-, Delta- and Epsilonproteobacteria (Gray et al., 2010). 

629 In a further study where the focus was solely on microbial communities in petroleum reservoirs the 

630 findings were remarkably similar, with Firmicutes followed by Gamma-, Epsilon- and 

631 Deltaproteobacteria being most common (Hubert et al., 2012).

632 In marine sediments, it has been estimated that 80 to 90% of the sulfide produced by sulfate 

633 reduction (Equation 1) is re-oxidized to sulfate through sulfur compounds of intermediate oxidation 

634 state (Zopfi et al., 2004).

635 Complex interactions within the sulfur cycle have also been highlighted during the 

636 electrobioremediation process (Figure 4). In sulfide rich groundwater treated in a MFC bioreactor, 

637 aerobic hydrocarbon degraders from the order Burkholderiales were enriched probably due to a 

638 small amount of oxygen that diffused into the reactor and this process was speculated to be coupled 

639 with sulfide oxidation to sulfate and sulfur occurring at the anode (Rakoczy et al., 2013). In another 

640 experiment, during bioelectrochemical toluene degradation, members of the Desulfobulbaceae and 

641 Desulfobacteraceae outcompeted other microbial populations, originating from a contaminated 

642 marine sediment, because of their potential to degrade hydrocarbons while an anode and sulfate 

643 both acted as electron acceptors (Daghio et al., 2016). In parallel, sulfate in anoxic conditions is 

644 reduced to sulfide which can be oxidized to elemental sulfur on an anodic surface. Sulfide oxidation 

645 on anodes can be either a chemical process (Dutta et al., 2008) or a biological process, as suggested 

646 by the enrichment of Desulfobulbaceae (Daghio et al., 2016; Rakoczy et al., 2013). Indeed, some 

647 members of the family Desulfobulbaceae are the so called cable bacteria, which are able to oxidize 
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648 sulfide in marine sediment and to deliver the electrons over long distances (Pfeffer et al., 2012; 

649 Schauer et al., 2014). Sulfur may then be reduced again to sulfide which can be reoxidized and this 

650 cycle can go on and on, enhancing the current production (Dutta et al., 2009). Another possible 

651 mechanism is the back oxidation of sulfur to sulfate (Zhang et al., 2014), which provides a 

652 continuous source of electron acceptors for SRB. In the above mentioned processes sulfide can 

653 serve as an electron shuttle to deliver the electrons from the microorganisms to the electrode (Dutta 

654 et al., 2009; Rakoczy et al., 2013).

655 These observations open new possibilities for the application of the electrobioremediation 

656 processes. Sulfide present in solution can be oxidized on an anode to elemental sulfur which can be 

657 further oxidized to sulfate (Dutta et al., 2008; Zhang et al., 2014) leading to a reduction in toxicity 

658 due to sulfide removal. Experimental data suggest that competition between the anode and iron 

659 minerals as a sink for sulfide has to be considered. Recent results indicated that when using an 

660 anode as electron acceptor, iron sulfide as well as elemental sulfur deposition occurred during 

661 toluene removal in a sulfate rich environment (Daghio et al., 2016). Further research is required to 

662 determine if the use of electrodes for sulfide removal (Figure 4) can be a useful strategy in 

663 contaminated environments and to what degree the electrode competes with sulfide removal via a 

664 reaction with iron minerals.

665

666 6. In-situ monitoring and sensing

667 The use of BES technology as a monitoring tool in the field of bioremediation provides an 

668 interesting outlook in addition to the stimulation of contaminants removal. Many studies have tried 

669 to assess the correlation between the electrical output and the bioelectrochemical degradation of 

670 organic matter. The electrical current is proportional to the number of electrons that flow into the 

671 circuit per unit time (Equation 2):

672

673 Equation 2
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674 1A = 1C / 1s

675

676 where A = ampere; C = coulomb, s = second. The charge exchanged in the reaction (C) is given by 

677 the number of electrons transferred (n) and Faraday’s constant (F; 9.64853 x 104 C/mol) (Equation 

678 3):

679

680 Equation 3

681 C = n x F

682

683 The current into the circuit should therefore be proportional to the rate at which the electrons are 

684 transferred to the electrode by the oxidation reaction (for the anodic process), or diverted by the 

685 reduction reaction (for the cathodic process). Hypothesizing that only one metabolic process is 

686 occurring on the electrode surface, the produced current can thus be used as a real time parameter to 

687 quantify the rate of a specific metabolic process (Prévoteau et al., 2015) or a measure of the 

688 substrate concentration available for microbial degradation. Previous studies demonstrated that the 

689 current production can be correlated to COD and BOD and that a relationship can be described by 

690 Monod type kinetics (Kim et al., 2003; Kumlanghan et al., 2007; Min and Logan, 2004). Tront and 

691 colleagues found that acetate concentration in the range 0-2.3 mM was correlated with current 

692 production in a MFC inoculated with a pure culture of Geobacter sulfurreducens. Increasing acetate 

693 concentration above 2.3 mM did not lead to an increase in the electrical signal, probably due to 

694 limitations attributed to system design parameters (Tront et al., 2008a). The same relationship was 

695 observed in a MFC inoculated with Shewanella oneidensis and fed with lactate (0-41 mM) (Tront et 

696 al., 2008b). These data indicate that, in the range of concentrations tested, the substrate 

697 consumption is governed by first order kinetics. However, further studies on degradation kinetics 

698 are required, in order to apply BES based biosensors for monitoring concentrations of recalcitrant 

699 compounds (e.g. hydrocarbons). A recent study showed that a MFC based biosensor was an 
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700 effective alternative to measure the extent of  bioremediation in-situ. Graphite anodes were installed 

701 in an aquifer where U(VI) bioreduction was stimulated by supplying acetate. The current was 

702 correlated with uranium removal and the indigenous microorganisms in the aquifer were able to 

703 colonize the electrode responding quickly to the change in the electron donor concentration 

704 (Williams et al., 2010). 

705 BES based biosensors could easily be installed in existing monitoring well networks which would  

706 decrease both the number of analyses and the time required to assess microbial activity (Tront et al., 

707 2008a). However, the presence of a background signal generated by the oxidation of carbon sources 

708 other than the contaminant should be considered, which could be addressed by placing control 

709 biosensors outside of the contaminated area. An alternative solution to eliminate the interference of 

710 side reactions could be the development of enzymatic biosensors with a high selectivity for the 

711 target contaminants.

712 An innovative approach for monitoring TPH removal by resistivity survey in sandy soil treated with 

713 BES has been recently suggested. A decrease in TPH concentration was linked to an increase in soil 

714 conductivity (Mao et al., 2016). It is thus possible to hypothesize that a complementary monitoring 

715 approach with geoprobes and BES based biosensors can be a successful strategy.

716

717 7. Advantages of bioelectrochemical processes

718 There are several advantages of BES-based approaches for the stimulation of in-situ bioremediation 

719 (Table 4). One of the main benefits lies in the fact that the conversion of contaminants can be 

720 manipulated by altering the potential of the anode or of the cathode. The energy levels can be set, 

721 thus setting favourable thermodynamic conditions for the reaction and adapting to in-situ 

722 circumstances. Furthermore, the flux of electrons can be maintained stably for extended time 

723 periods. For example during the stimulation of reductive dechlorination with BES, the H2 delivery 

724 rate in a contaminated site can be controlled and thus the negative effects of side reactions of 

725 overdosing organics (e.g. CH4 production) will decrease (Aulenta et al., 2011, 2010b, 2009). The 
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726 possibility of a constant electron flow implies that the electrode can serve as a virtually 

727 inexhaustible electron acceptor/donor, lowering the operational costs because continuously 

728 supplying electron acceptors/donors is not needed (Morris and Jin, 2008). Furthermore, since no 

729 chemical injection is required, the expenses and need for transport and storage are eliminated 

730 (Rabaey and Keller, 2008). Overall, this makes the bioelectrochemical approach a cleaner and 

731 cheaper process compared to traditional strategies (Aulenta et al., 2009, 2008c).

732 It is important to note that a complete evaluation of the cost associated to the application of BES for 

733 bioremediation is not possible yet due to the lack of experimental data on large scale plants. It is 

734 reasonable to hypothesize that the main installation cost for in-situ treatment can be associated to 

735 the cost of electrode materials which can vary between 30-50 euro m-2 up to 500-1000 euro m-2 if a 

736 stable anode (i.e. DSA) is used. However this cost must be considered together with the lifetime of 

737 the components, which has never been evaluated in real applications. In terms of operational costs 

738 of an in-situ bioremediation plant, the example of PCE dehalogenation to ethane can be considered. 

739 This reaction requires 8 mol of e- for each mol of PCE. If 1 V is needed, with 100 W a constant 

740 current of 100 A is achieved, leading to ~ 89 (mol e-) d-1 available for the dechlorination without 

741 considering possible side processes. It is thus possible to reduce ~ 10 (mol PCE) d-1 (i.e. 1.66 kg d-1) 

742 with 2.4 kWh with 2.4 kWh energy input which translates to direct operational cost of about 0.24 

743 euro (considering 0.1 euro / kWh). If however an ex-situ treatment is needed, a considerable higher 

744 cost for pumping is incurred but these would be similar to traditional methods.

745 Another important advantage of BES-based approaches is the selectivity that can be achieved 

746 compared to physicochemical strategies that may lead to the formation of products with greater 

747 toxicity than the parent contaminants. For example, the conversion of nitrobenzene to aniline (a less 

748 toxic and more degradable compound) was achieved using a biocathode. The study obtained a 

749 reduction of almost 99 % of nitrobenzene to aniline without the production of nitrosobenzene, a 

750 more toxic contaminant (Wang et al., 2011) which was produced during the purely electrochemical 

751 reduction (Mu et al., 2009).
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752 An increase in the efficiency of the process can also be reached when graphite electrodes, or 

753 electrodes, made from other carbon materials are used. Hydrocarbons can be adsorbed onto the 

754 electrode thus increasing the contaminant concentration in a highly metabolically active area that is 

755 directly associated with the electron acceptor/donor and the biocatalyst (Rabaey and Keller, 2008; 

756 Zhang et al., 2010).

757 In some contaminated sites biodegradation of pollutants could be limited by the lack of 

758 microorganism carrying the required metabolic pathways. In such cases the addition of selected 

759 microbial populations can be a suitable strategy (El Fantroussi and Agathos, 2005). Persistence of 

760 the inoculated microorganisms however can be limited due to competition with indigenous 

761 microbial communities, predation and/or unfavourable environmental conditions (Careghini et al., 

762 2015; Daghio et al., 2015b). BES-based approaches may facilitate bioaugmentation by enabling 

763 microbial inoculum to persist by using electrodes pre-colonized with acclimated  populations 

764 (Venkidusamy et al., 2016).

765 In terms of process monitoring, the electric signal generated in a BES may be used as a real time 

766 measurement of the in-situ microbial activity in order to gain information about degradation rates 

767 (Tront et al., 2008a; Williams et al., 2010). The energy harvested could also be used to power other 

768 electrical sensors for in-situ monitoring (Lovley, 2006; Shantaram et al., 2005).

769 As well as the advantages previously reported, the use of BES-based approaches for the removal of 

770 oil spills can also have disadvantages. The main drawback during the oxidation of hydrocarbons is 

771 that aerobic degradation is usually a faster process compared to biodegradation in the absence of O2, 

772 because of the more efficient activation of oxygenases during the first step of the pathway (Weelink 

773 et al., 2010). Furthermore, when an MFC is used to stimulate oxidation of organic contaminants the 

774 efficiency of the kinetic process at the cathode is crucial and may limit the efficiency of the device 

775 and the oxidation rate at the anode, as demonstrated by early studies on BES (Liu and Logan, 2004; 

776 Zhao et al., 2006). Conversely, when using a MEC in a marine environment, care should be taken 

777 not to produce chlorine gas which is potentially more toxic than the original contaminant, and can 
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778 chemically react with organic and inorganic compounds producing toxic chemicals, similar to the 

779 generation of disinfection by products that are known to be produced during drinking water 

780 treatment (Richardson et al., 2007).

781 Other issues, such as the choice of appropriate materials and potentials, or the effect of the radius of 

782 influence and limitations during scale-up should not be overlooked during electrobioremediation 

783 feasibility studies.

784 Although the discussion in this review is more focused on in-situ application of BES for 

785 electrobioremediation of oil spills, it could be possible to develop bioelectrochemical reactors for 

786 ex-situ treatment (e.g. groundwater can be extracted and treated above ground). Ex-situ treatment 

787 typically allows a better control of the conditions and a faster removal of the contaminants, 

788 nevertheless the operational cost increases due to energy consumption for the extraction of the 

789 contaminated matrix (Alvarez and Illman, 2006), likely decreasing the advantages of BES 

790 technology.

791

792 8. Future research perspectives

793 Future research directions should perhaps be directed towards adjustment of physicochemical 

794 conditions in-situ to promote the activity of organisms involved in the bioelectrochemical removal 

795 of contaminants. Bacterial activity is affected by pH and most microorganisms have an optimum at 

796 circum-neutral pH (Alvarez and Illman, 2006), however in contaminated sites acidic or alkaline 

797 conditions may occur (Bamforth and Singleton, 2005). In such environments, adjusting the pH 

798 could be a strategy to improve the bioremediation process. Caustic or acid can be generated in-situ 

799 by water electrolysis however, proton and oxygen generation occur simultaneously as well as 

800 hydroxyl and hydrogen gas production (Lin et al., 2016). Changes in pH can also affect the 

801 availability of alternative electron acceptors such as Fe3+ which may affect bioelectrochemical 

802 anode reduction reactions.
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803 BES could also be used to change the chemical equilibrium by scavenging metabolites that 

804 accumulate during the biodegradation of contaminants and which may inhibit further degradation. 

805 An example can be represented by sulfide scavenging as previously reported (Daghio et al., 2016; 

806 Dutta et al., 2008; Rakoczy et al., 2013; Zhang et al., 2014). However other mechanisms of 

807 metabolite scavenging are worthy of investigation. A worthwhile course of action may be to insert 

808 an anode, colonized for example with Geobacter spp., that is able to efficiently scavenge reducing 

809 equivalents (H2) from a syntrophic reaction, thus removing a thermodynamic barrier (Dolfing, 

810 2014; Sun et al., 2012). 

811 Recently, it has been reported that bioelectrogenic bacteria on the anodes of sediment MFC can use 

812 plant root exudates as substrates leading to several beneficial effects, such as electricity production 

813 (Kaku et al., 2008; Schamphelaire et al., 2008) or reduction of greenhouse gas emissions (Arends et 

814 al., 2014). The combined treatment with the macrophyte Acorus Calamus and MFC for the 

815 degradation of pyrene and benzo[a]pyrene in contaminated sediments has also been proposed. The 

816 combination of phytoremediation and a MFC led to a higher degradation rate compared to 

817 phytoremediation or MFC treatment alone (Yan et al., 2015). This provides a promising opportunity 

818 to test the effect of a combined treatment phytoremediation-BES also with other substrates.

819 Another innovative opportunity to use BES for the bioremediation comes from the possibility to 

820 drive the production of organic compounds (e.g. acetate) at the cathode (Logan and Rabaey, 2012). 

821 As already mentioned, H2 is the typical substrate for reductive dehalogenation but it was suggested 

822 that in some case also acetate may be used (Aulenta et al., 2006; He et al., 2002). Acetate 

823 production could thus be driven at the cathode, providing electron donors for the reduction of 

824 halogenated contaminants. In such strategy however, attention should be paid to side processes (e.g. 

825 acetate consumption by other microorganisms such as sulfate reducers) which may cause a low 

826 dehalogenation efficiency.

827

828 8.1. Field scale application of bioelectrochemical systems
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829 Despite considerable scientific interest, field scale bioelectrochemical systems have not yet been 

830 tested and verified under fully representative conditions and concerns have also been raised 

831 regarding their actual scalability (Table 4). Although the scalability of a bioelectrochemical system 

832 poses some intrinsic challenges, lessons can be learned from pure electrochemical processes where 

833 hundreds of small units provide high production rates and volumes. Indeed, to date a number of 

834 consolidated electrochemical remediation technologies are commercially available and widely 

835 applied for in-situ treatment of a variety of inorganic and organic pollutants (Trombly, 1994). These 

836 technologies are not typically used for the direct degradation of the contaminants but apply low-

837 voltage direct current, by means of electrode arrays, to favour the electrokinetic movement of 

838 pollutants from soils into “treatment zones” where they are removed from the water by adsorption, 

839 immobilization, or (bio)degradation. Electric current flows between pairs of anodes and cathodes 

840 suitably deployed in the contaminated subsurface environments (e.g., the vadose zone of an 

841 aquifer). In such systems, the applied current density is in the range of a few Amperes per square 

842 meter (A m-2), driven by a potential difference that is typically in the order of a few Volts per 

843 centimetre (V cm-1). One relevant example is the “Lasagna Process” (Ho et al., 1995), developed by 

844 a consortium of industries (DuPont, General Electrics, and Monsanto) in collaboration with US 

845 Federal Agencies (EPA; DOE), providing large-scale demonstrations of the feasibility of the 

846 technology for in-situ treatment of a variety of contaminants, including TCE (Ho et al., 1999a, 

847 1999b).

848 In principle, similar configurations could also be adopted for bioelectrochemical remediation 

849 systems. Along this line, one of the first designs being proposed involves the use of non-corrosive 

850 carbon-based electrodes (i.e. graphite granules) placed within the contaminated aquifer to form 

851 permeable reactive barriers (PRB) intercepting (and treating) the contamination plume. Here, the 

852 granules serve both as support material for biofilm formation and as electron donors or acceptors 

853 for contaminant degradation. In theory, by placing an anodic-PRB downgradient of a cathodic-PRB 

854 it would be possible to achieve a sequential reductive-oxidative treatment (Figure 5) which is 
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855 critical to achieve complete degradation (and detoxification) of certain classes of subsurface 

856 contaminants, such as chlorinated solvents, or when multiple contaminants are simultaneously 

857 present (e.g. metals and hydrocarbons). 

858 This sequential (cathodic-anodic) treatment has, however, some intrinsic limitations. Indeed, the 

859 distance between cathode and anode should be kept as short as possible to minimize voltage losses 

860 due to the Ohmic resistance of groundwater. As an example, assuming a typical groundwater 

861 conductivity of 1,000 µS cm-1 and a current density of 1 A m-2 of electrode surface area, the Ohmic 

862 loss would be 10 V for each meter of distance between cathode and anode (Arends et al., 2014; 

863 Rozendal et al., 2008). Based on this calculation, it is obvious that electrode spacing higher than a 

864 few meters would ultimately result in unacceptable energy inputs. Alternatively, if the 

865 bioremediation process is driven by water electrolysis (H2 generation at the cathode and O2 

866 generation at the anode), maintaining a certain spacing between electrodes is essential to prevent the 

867 back diffusion of oxygen to the cathode which could lead to the inhibition of anaerobic 

868 microorganisms thriving at the cathode. In principle, a better scenario would probably result from 

869 the stimulation of reductive and oxidative degradation pathways via direct electron transfer since 

870 lower power inputs would be involved, as well as, no (or minimal) H2 and O2 would be produced. 

871 To overcome these limitations, a number of alternative configurations are presently being 

872 considered (e.g. involving concentric electrodes), whereby the spacing between electrodes is kept as 

873 small as possible without adversely affecting process performance.

874

875 9. Conclusions

876 The electrobioremediation of oil spills is a rapidly growing field. The potential of this innovative 

877 technology for the bioremediation of a variety of hydrocarbons, both halogenated and non-

878 halogenated compounds, is revealed by several studies. The main issue to be faced in the near future 

879 will be the scale-up of this technology from lab scale reactors to field scale systems. This will allow 
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880 a better comparison of the electrobioremediation strategies with current technologies used for in situ 

881 bioremediation.
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1422 Figure captions

1423

1424 Figure 1 – Oil fate after a spill in marine environments. A) The non-soluble compounds form a non-

1425 aqueous phase on the surface. The light compounds evaporate. The soluble fraction slowly dissolve 

1426 in water, is dispersed in the water column and the heavy compounds reach the seafloor where can 

1427 be degraded by microorganisms. In the oxic zone (water column and sediment surface) aerobic 

1428 degradation takes place. Deeper in the sediment anoxic and anaerobic biodegradation (becomes the 

1429 prevalent mechanisms (red arrows). B) Detail of microbial metabolisms in the sediment. The 

1430 electron acceptors with higher redox potential are consumed close to the sediment surface. The 

1431 order in which the electron acceptors are consumed in an idealised system is O2 > NO3
- > Fe3+ > 

1432 SO4
2- > CO2.

1433

1434 Figure 2 - Hydrocarbon contaminated groundwater treated by air sparging. Air is injected below the 

1435 water table to supply oxygen and to stimulate aerobic biodegradation.

1436

1437 Figure 3 - Scheme of a typical BES. In the anodic compartment a non-halogenated hydrocarbon is 

1438 oxidized to CO2. In the cathodic chamber an halogenated hydrocarbon is reduced. The two 

1439 chambers are separated by a Cation Exchange Membrane (CEM). The electron exchange is reported 

1440 with the flash, the metabolic reactions that lead to the oxidation/reduction of the contaminants are 

1441 reported with the dashed lines. The electron transfer mechanisms with the electrode involve both 

1442 abiotic reactions (shuttles and H2 production) or biotic reactions (use of pili or outer membrane 

1443 cytochromes).

1444

1445 Figure 4 - Possible role of sulfur cycle during hydrocarbon degradation in BES. A) Sulfate reducers 

1446 oxidize hydrocarbons and reduce SxOy to HS-. B) HS- can be oxidized to S0 on the anodic surface. 

1447 C) S0 can then be reduced to HS- or D) back oxidized to SxOy forming a cycle.
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1448

1449 Figure 5 - Scheme of a possible configuration for a sequential electro-reductive-oxidative treatment. 

1450 The cathode is placed upstream the anode and it is used to stimulate the reductive dehalogenation of 

1451 tetrachloroethene (PCE) and trichloroethene (TCE). The reduced compounds flow downstream to 

1452 the anode where the oxidation can take place.

1453
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1454 Tables

1455

1456 Table 1 - Advantages and disadvantages of in situ bioremediation approaches for oil spill removal.

Bioremediation approach Process stimulated Advantages Disadvantages Reference

Aerobic degradation (O2 
supplying)

Oxidation Lower cost compared to 
physicochemical 
technologies

Fast growth of 
microorganisms and 
high biodegradation 
rate due to the high 
potential of the couple 
O2/H2O (+820 mV vs. 
SHE)

A wide range of 
contaminants can be 
attacked by oxygenases

High energy input

Possible O2 
consumption by side 
reactions (e.g. Fe2+ 
oxidation, which causes 
aquifer clogging)

O2 can diffuse away 
from the reaction area

(Alvarez and Illman, 
2006; Broden et al., 
1997; Tuxen et al., 
2006; Zhang et al., 
2010)

Use of alternative 
electron acceptors in 
anaerobic conditions 
(e.g. NO3

-, SO4
2-)

Oxidation Lower cost compared to 
physicochemical 
technologies

No side reactions that 
can consume the 
electron acceptor

Slower growth rate 
compared to aerobic 
degradation

Soluble electron 
acceptors can diffuse 
away from the reactive 
area

SO4
2- may result in 

production of toxic HS-

NO3- could lead to 
eutrophication of 
surface water

(Alvarez and Illman, 
2006; Anderson and 
Lovley, 2000; Rivett et 
al., 2008; Zhang et al., 
2010)

Use of H2 releasing 
compounds (e.g. lactic 
acid, propionic acid)

Reduction Lower cost compared to 
physicochemical 
technologies

The contaminants are 
transformed into less 
toxic and more 
degradable compounds

Detrimental effects on 
groundwater quality due 
to the accumulation of 
fermentation products 
(e.g. VFA)

Competition of 
dehalogenating 
microorganisms and 
other microorganisms 
(e.g. SO4

2- reducers, 
methanogens) for H2

Possible aquifer 
clogging due to high 
biomass growth

Explosion hazards due 
to CH4 accumulation

(Aulenta et al., 2007a, 
2007b; Zanaroli et al., 
2015)
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1458 Table 2 - Summary of the key studies regarding oxidation in a BES for the remediation of oil spills.

Compound / 
mixture

Microorganism / mixed 
culture Redox mediator* Working electrode 

material Medium treated Working electrode 
potential (vs. SHE)**

Maximum current / 
power / voltage Removal capability Reference

Diesel

Mixed culture dominated 
by NO3

- - reducing bacteria 
(i.e. Citrobacter sp., 
Pseudomonas sp.and 
Stenotrophomonas sp.)

Not detected Stainless steel 
scrubber

Refinery 
wastewater and 
mineral medium 
(50:50)

N.A. 120 mW m-2 of 
cathode N.A. (Morris and Jin, 2008)

Mixed culture Not detected Stainless steel 
scrubber

Phosphate buffer 
and diesel 
contaminated 
groundwater (1:1)

N.A. 60 - 65mV 82 % removal within 21 
days from 176 mg L-1 (Morris et al., 2009)

Mixed culture rich in γ-
Proteobacteria Not detected Carbon fibre brush Mineral medium N.A. 114.54 mA m-2 93.5 ± 0.6 % removal from 

8000 mg L-1 within 30 days (Venkidusamy et al., 2016)

Toluene Geobacter metallireducens Not detected Unpolished 
graphite rod Mineral medium + 500 mV 1 mA N.A. (Zhang et al., 2010)

Mixed culture Not detected Unpolished 
graphite rod

Sediment-seawater 
slurry (1:4) + 500 mV N.A. 100 % removal from 10 µM (Zhang et al., 2010)

Pseudomonas putida F1 Not detected*** Graphite rod Mineral medium + 325 mV 23 mA m-2
80 % removal within 147 
hours after five additions 
(100 mg L-1 each) 

(Friman et al., 2012)

Mixed culture Not detected Carbon cloth Mineral medium N.A. 53.5 mV 100 % removal within 16.2 
hours from 11.09 mg L-1 (Lin et al., 2014)

Mixed culture
Neutral red

(100-300 µM)
Carbon cloth Mineral medium N.A. 109.7 mV (200 µM 

neutral red)

100 % removal within 34.1 
± 0.05 hours from 11.09 mg 
L-1

(Lin et al., 2014)

Mixed culture
Ferricyanide

(100-2000 µM)
Carbon cloth Mineral medium N.A. 88.2 mV (300 µM 

ferricyanide)

100 % removal within 25.3 
hours from 11.09 mg L-1 
(500 µM ferricyanide)

(Lin et al., 2014)

Mixed culture dominated 
by SO4

2- reducers (i.e. 
Not detected Graphite plate Artificial sea water + 200 mV 301 mA m-2 ~ 1 mg L-1 d-1 (Daghio et al., 2016)
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Desulfobulbaceae and 
Desulfobacteraceae)

Mixed culture dominated 
by SO4

2- reducers (i.e. 
Desulfobulbaceae and 
Desulfobacteraceae) 

Self produced 
mediator (+400 mV 
vs SHE)

Graphite plate Artificial sea water + 500 mV 431 mA m-2 ~ 1 mg L-1 d-1 (Daghio et al., 2016)

Benzene Mixed culture Not detected Unpolished 
graphite rod

Sediment-seawater 
slurry (1:4) + 500 mV N.A. 100 % removal from 9 µM (Zhang et al., 2010)

Mixed culture dominated 
by δ-Proteobacteria (i.e. 
Desulfobacteraceae, 
Desulfobulbaceae and 
Geobacteraceae)

Not detected Graphite fibers

Benzene and 
sulfide 
contaminated 
groundwater

N.A. 550 µA 18 - 80 % removal from 
150-250 µM (Rakoczy et al., 2013)

Mixed culture Not detected Carbon cloth Mineral medium N.A. 45.2 mV 100 % removal within 150 
hours from 10.87 mg L-1 (Wu et al., 2013)

Mixed culture Not detected Graphite granules Contaminated 
groundwater N.A. 316 mW m-3

80 % removal from ~15 mg 
L-1 with an hydraulic 
retention time of 27 hours

(Wei et al., 2015)

Mixed culture Not detected Carbon felt Mineral medium N.A. 1.15 ± 0.18 mW m-2 
at 40 °C 510 ± 5.67 µM d-1 at 40 °C (Adelaja et al., 2015)

Naphthalene Mixed culture Not detected Unpolished 
graphite rod

Sediment-seawater 
slurry (1:4) + 500 mV N.A. ~ 100 % removal within 9 

days from 100 µM (Zhang et al., 2010)

TPH Mixed culture Not detected Graphite plate Domestic sewage N.A. 53.11 mW m-2 41 ± 3 % within 17 days (Venkata Mohan and 
Chandrasekhar, 2011)

Mixed culture Not detected Graphite plate Domestic sewage N.A. 53.11 mW m-2 N.A. (Chandrasekhar and 
Venkata Mohan, 2012)

Mixed culture Not detected Stainless steel 
brush

Contaminated 
sediment N.A. 190 mV 24.4 % removal within 66 

days from 15,958 mg kg-1 (Morris and Jin, 2012)

Mixed culture Not detected Carbon mesh Contaminated soil N.A. 0.85 ± 0.05 mW m-2 15.2 ± 0.6 % removal within 
25 days (Wang et al., 2012)

Mixed culture dominated 
by β-Proteobacteria (e.g. 

Not detected Carbon cloth Contaminated soil N.A. 73.0 ± 0.1 mA 73.1 % removal within 64 
days from 11.46 g kg-1 (Lu et al., 2014a)
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Bordetella sp.) and γ-
Proteobacteria (e.g. 
Pseudomonas)

Mixed culture dominated 
by β-Proteobacteria (e.g. 
Comamonas sp.) and γ-
Proteobacteria (e.g. 
Pseudomonas)

Not detected Biochar Contaminated soil N.A. 85.9 ± 0.1 mA m-2 78.7 % removal within 64 
days from 11.46 g kg-1 (Lu et al., 2014a)

Mixed culture Not detected Graphite granules Contaminated soil N.A. 70.4 ± 0.2 mA m-2 
(8.8 ± 0.3 mW m-2)

82.1–89.7 % removal within 
120 days from 12.25 ± 0.36 
g kg-1

(Lu et al., 2014b)

Mixed culture Not detected Biochar Contaminated soil N.A. 35.2 ± 0.8 mA m-2 
(3.4 ± 0.1 mW m-2)

82.1–89.7 % removal within 
120 days from 12.25 ± 0.36 
g kg-1

(Lu et al., 2014b)

Mixed culture dominated 
by α-Proteobacteria, γ-
Proteobacteria and δ-
Proteobacteria

Not detected Graphite rod Marine sediment N.A. N.A.
21 ± 1 % removal within 
200 days from 11.9 ± 0.12 g 
kg-1

(Cruz Viggi et al., 2015)

Mixed culture Not detected Carbon mesh Contaminated soil N.A. 37 mW m-2 N.A. (Li et al., 2014)

Mixed culture Not detected Carbon mesh Contaminated soil N.A. 0.282±0.015 V 12.5 ± 0.6 % removal within 
135 days from 25.7 g kg-1 (Zhang et al., 2015)

Mixed culture Not detected Carbon mesh Contaminated soil N.A.
0.28 ± 0.00 mA m-2 
g-1 soil (2.76 ± 0.07 
10-4 mW m-2 g-1 soil)

22 ± 0.5 % removal within 
135 days (Li et al., 2015)

Phenantrene
Mixed culture dominated 
by Nitrospira sp and 
Chloroflexi

Not detected Stainless steel 
(mesh)

Freshwater 
sediment N.A.

17.1 ± 3.8 mV 
(average over 240 
days)

0.0836 d-1 (0-22 days) with 
the addition of FeOOH (Yan et al., 2012)

Pseudomonas aeruginosa Not detected Carbon felt Mineral medium N.A. 0.19 ± 0.05 mW m-2 54.70 ± 0.60 µM d-1 (Adelaja et al., 2014)

Shewanella oneidensis Not detected Carbon felt Mineral medium N.A. 0.51 ± 0.03 mW m-2 25.20 ± 5.15 µM d-1 (Adelaja et al., 2014)

Mixed culture Not detected Carbon felt Mineral medium N.A. 0.37 ± 0.05 mW m-2 35.70 ± 2.73 µM d-1 (Adelaja et al., 2014)

Mixed culture Not detected Carbon felt Mineral medium N.A. 1.15 ± 0.18 mW m-2 
at 40 °C 320 ± 4.81 µM d-1 at 40 °C (Adelaja et al., 2015)
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Pyrene
Mixed culture dominated 
by Nitrospira sp and 
Chloroflexi

Not detected Stainless steel 
(mesh)

Freshwater 
sediment N.A.

17.1 ± 3.8 mV 
(average over 240 
days)

0.1363 d-1 (0-22 days) with 
the addition of FeOOH (Yan et al., 2012)

Phenol Mixed culture Not detected Carbon felt Waterlogged soil N.A. 2.1 mA 0.390 d-1 (Huang et al., 2011)

Cupriavidus basilensis
Self produced 
mediator (+140 mV 
vs SHE)

Graphite rod Mineral medium + 325 mV 478 mA m-2 0.36 mg L-1 h-1 (Friman et al., 2013)

1,2-DCA Enrichment form MFCs 
reactors Not detected Graphite granules Mineral medium NA 0.17 ± 0.02 mA 45.6 ± 0.5 mg L-1 d-1 (Pham et al., 2009)

* The midpoint potential is reported in brackets
** The potential at which the working electrode was poised is reported
*** A redox active moiety (putative cathecol) was detected but the midpoint potential was higher than the anodic potential

1459
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1461 Table 3 - Summary of the key studies targeting reduction in a BES for the remediation of oil spills.

Compound Microorganism / mixed 
culture Redox mediator* Working electrode 

material Medium treated Working electrode 
potential (vs SHE)**

Maximum current / 
voltage Removal capability Reference

TCE Mixed culture containing 
Dehalococcoides spp.

Methyl viologen 
(100 µM) Glassy carbon Mineral medium - 500 mV 20 µA N.A. (Aulenta et al., 2007a)

Mixed culture containing 
Dehalococcoides spp. Methyl viologen Glassy carbon Mineral medium - 800 mV N.A. N.A. (Aulenta et al., 2007a)

Mixed culture containing 
Desulfitobacterium sp. and 
Dehalococcoides spp.

Methyl viologen

(25-7500 µM)
Glassy carbon Mineral medium - 450 mV ∼250 μA (methyl 

viologen 500 µM) N.A. (Aulenta et al., 2008b)

Mixed culture containing 
Dehalococcoides spp. Not detected Unpolished 

graphite rod Mineral medium - 650 mV N.A. 3.73 ± 0.02 µeq h-1 (Aulenta et al., 2008c)

Mixed culture containing 
Desulfitobacterium sp. and 
Dehalococcoides spp.

Self produced 
mediator (-400 mV 
vs SHE)

Carbon paper Mineral medium - 450 mV N.A. N.A. (Aulenta et al., 2009)

Geobacter lovleyi Not detected Carbon paper Mineral medium - 450 mV N.A. N.A. (Aulenta et al., 2009)

Mixed culture containing 
Dehalococcoides spp.

AQDS

(50-1500 µM)
Glassy carbon Mineral medium - 250mV N.A. 180 ± 23 µeq L-1 d-1 (AQDS 

1500 µM) (Aulenta et al., 2010a)

Mixed culture containing 
Desulfitobacterium sp. and 
Dehalococcoides spp.

Self produced 
mediator (-550 mV 
vs SHE)

Carbon paper Mineral medium - 550mV 20 µA 22.4 µeq L-1 d-1 (Aulenta et al., 2010b)

Mixed culture dominated 
by Chloroflexi 
(unidentified Chloroflexi 
and Dehalococcoides spp.)

Not detected Graphite granules Mineral medium - 250mV 15.0 ± 0.8 µA 15.5 ± 1.2 µeq L-1 d-1 (Aulenta et al., 2011; Di 
Battista et al., 2012)

Mixed culture dominated 
by Chloroflexi 
(unidentified Chloroflexi 
and Dehalococcoides spp.)

Not detected Graphite granules Mineral medium - 450mV N.A. 58 ± 1 µeq L-1 d-1 (Aulenta et al., 2011; Di 
Battista et al., 2012)

Mixed culture dominated 
by Chloroflexi 
(Dehalococcoides spp.)

Not detected Graphite granules Mineral medium - 550 mV 266 ± 5 µA 
(average) 62 ± 2 µeq L-1 d-1 (Aulenta et al., 2011; Di 

Battista et al., 2012)
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Mixed culture dominated 
by Chloroflexi 
(Dehalococcoides spp.)

Not detected Graphite granules Mineral medium - 650 mV N.A. N.A. (Aulenta et al., 2011; Di 
Battista et al., 2012)

Mixed culture dominated 
by Chloroflexi 
(Dehalococcoides spp.)

Not detected Graphite granules Mineral medium - 750 mV N.A. N.A. (Aulenta et al., 2011; Di 
Battista et al., 2012)

Mixed culture containing 
Dehalococcoides spp.

Not detected
Graphite granules Mineral medium -250 mV N.A. ~71 % removal from 35 µM 

(flow rate 0.4 mL min-1) (Verdini et al., 2015)

Mixed culture containing 
Dehalococcoides spp.

Not detected
Graphite granules Mineral medium -350 mV N.A.

~97 % removal from 35 µM 
(flow rate 0.4 mL min-1)

(Verdini et al., 2015)

Mixed culture containing 
Dehalococcoides spp.

Not detected
Graphite granules Mineral medium -450 mV N.A.

~90 % removal from 35 µM 
(flow rate 0.4 mL min-1)

(Verdini et al., 2015)

PCE Geobacter lovleyi Not detected Unpolished 
graphite rod Mineral medium - 300 mV N.A. ~ 25 µmol d-1 from 100 

µmol (Strycharz et al., 2008)

Mixed culture containing 
Desulfitobacterium sp. and 
Dehalococcoides spp.

Not detected Stainless steel mesh Mineral medium NA 0.05 mA cm-2 
(applied)

~ 23 µmol d-1 from 24 - 45 
µmol L-1 (Lohner and Tiehm, 2009)

Mixed culture containing 
Desulfitobacterium sp. and 
Dehalococcoides spp.

Not detected Stainless steel mesh
Mineral medium / 
Contaminated 
groundwater

NA 0.5 mA (applied)
100 % removal  with a load 
of 1.5 µmol d-1 in mineral 
medium***

(Lohner et al., 2011)

cis-DCE
Mixed culture containing 
Desulfitobacterium sp. and 
Dehalococcoides spp.

Self produced 
mediator (-550 mV 
vs SHE)

Carbon paper Mineral medium - 550 mV 2 µA 1.5 µeq L-1 d-1 (Aulenta et al., 2010b)

Mixed culture Not detected Graphite granules Contaminated 
groundwater -550 mV N.A. N.A. (Lai et al., 2015)

Mixed culture Not detected Graphite granules Contaminated 
groundwater -650 mV N.A. N.A. (Lai et al., 2015)

Mixed culture Not detected Graphite granules Contaminated 
groundwater -750 mV N.A.

4.89 ± 0.46 µM residual 
concentration (14.2 ± 0.7 
µM influent concentration)

(Lai et al., 2015)

1,2-DCA Mixed culture containing 
Dehalococcoides spp. Not detected Graphite rods Mineral medium - 300 mV N.A. 10 ± 4 µeq L-1 d-1 (Leitão et al., 2015)



ACCEPTED MANUSCRIPT

65

Mixed culture containing 
Dehalococcoides spp. Not detected Graphite rods Mineral medium - 500 mV N.A. N.A. (Leitão et al., 2015)

Mixed culture containing 
Dehalococcoides spp. Not detected Graphite rods Mineral medium - 600 mV N.A. N.A. (Leitão et al., 2015)

Mixed culture containing 
Dehalococcoides spp. Not detected Graphite rods Mineral medium - 700 mV N.A. 24.3 ± 17.5  µeq L-1 day-1 (Leitão et al., 2015)

Mixed culture containing 
Dehalococcoides spp. Not detected Graphite rods Mineral medium - 900 mV N.A. 37 ± 10 µeq L-1 d-1 (Leitão et al., 2015)

Nitrobenzene Mixed culture Not detected Carbon cloth Mineral medium N.A. 0.5 V (applied) Over 99 % from 0.5 mM (Wang et al., 2011)

Mixed culture Not detected Carbon cloth Mineral medium N.A. 0.3 V (applied) 0.135 ± 0.015 h-1 (with 2.78 
mM of glucose) (Liang et al., 2014)

* The midpoint potential is reported in brackets
** The potential at which the working electrode was poised is reported
*** A sequential reductive – oxidative treatment was performed



ACCEPTED MANUSCRIPT

66

1463 Table 4 - Summary of the advantages and the disadvantages of electrobioremediation for oil spill 

1464 removal.

Advantages Disadvantages

The energy level and the flux of electrons can be 
set and maintained constant

The process is clean

The operational cost is lower

High selectivity towards the target compounds

Hydrocarbons can be adsorbed on the electrodes 
when graphite (or carbon) is used

Electrodes can be used to improve the 
bioaugmentation efficiency

The electrical signal can be used as a monitoring 
tool

Anaerobic degradation is usually slower compared 
to aerobic degradation

When an MFC is used the cathodic reaction may 
limit the anodic reaction

Chlorine gas can be produced in marine 
environments

The scale-up of the technology is challenging

The process may be affected by pH changes that 
can occur in a contaminated site or close to the 
electrodes (e.g. H+ production at the anode and H+ 
consumption at the cathode)
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