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ABSTRACT  

 

Good quality stream water and sediments are crucial for the support of healthy stream flora and 

fauna but urban runoff degrades watercourses leaving a legacy of pollution in the stream sediments.  

The sediment pollution load influences the development of macroinvertebrates which, as the lowest 

member of the food chain, influences the whole ecological structure.  This review focuses on defining 

the sources and impacts of zinc, nickel, copper and oil derivative polycyclic aromatic hydrocarbon 

(PAH) contaminants in urban runoff. The impact of pollutants as measured by laboratory, field and 

modelling procedures are considered.  Land use, position and connectivity of the runoff and 

sediment are seen to have an effect on the ecological integrity of the watercourse but case examples 

are sparse. The literature indicates that while reduced species diversity has been identified at a 

number of sites the dynamics are not well understood nor well modelled. These results are 

compared with field evidence from a study of 62 headwater streams with urban industrial and 

motorway land uses. From the review and field results it is evident that there is still an important 

need for process-based field measurements of urban water quality parameters. Forecasting the 

ecological status of watercourses would seem to benefit from data on sediment chemistry that 

considers the interaction effects of metals and PAHs.   
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1.  BACKGROUND 

Surface runoff in urban areas modifies and degrades stream water and sediments to the detriment of 

abstracted drinking water, recreational users and the aquatic and riparian ecology (Chandler, 1994; 

Ellis and Hvitved-Jacobsen, 1996).  Concerns include the proliferation of toxic contaminants from 

point and non-point sources, but despite increased Government and public awareness, 

anthropogenic activities continue to impair watercourses (Karr and Chu, 2000; McCormick and 

Cairns, 1994; Moog and Chovanec, 2000).  Improvement in the chemical quality of water in the 

UK and elsewhere has been achieved through large-scale curtailment of point source discharges and 

upgrading of combined sewer outflows, but these mitigation measures have highlighted the impact of 

non-point source pollution particularly storm water runoff from urban structures: pavements, streets, 

roofs, guttering and buildings ((Lazaro 1990; Malmqvist, 1983; Marsalek, 1990; Quek and Forster, 

1993). This is of major concern for managers of freshwater ecology and considered the principal, 

critical, limiting factor in achieving ecological integrity in urban watercourses (Characklis and 

Wiesner, 1997; House et al., 1993; Lee and Bang, 2000; Lenat and Crawford, 1994; Pitt et al., 

1995). Contamination of the water and the attachment of pollutants to streambed sediments impairs 

aquatic flora and fauna. Macroinvertebrates at the base of the food chain are particularly vulnerable 

and therefore can act as indicators of a river’s biological health. In an effort to characterise more 

accurately the cumulative impact of human activities on ecosystems, monitoring is slowly moving 

away from reliance on chemical indicators towards use of ecological measures (McCormick and 

Cairns, 1994; Rochfort et al., 2000).  

 

This review discusses the research available on the sources and impacts of three heavy metals and 

PAH contamination on macroinvertebrate communities in streams. Copper, zinc, and nickel are 
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critical micro-nutrients, but also the most commonly detected metals in urban runoff (Marsalek, 

1990). The evidence available on their ecological impact in streams from laboratory and field 

research is patchy and partial. It has tended to focus on expected worst-case field sites and 

controlled studies. The review is used to place in context the results from a study that sampled non-

point source contamination of sediments at 62 headwater stream sites with natural, residential and 

industrialised catchment land uses. Heavy metal and oil contamination and the concomitant 

impairment of stream ecology is measured through BMWP scores and compared with RIVPACS 

forecasts for clean streams (Wright, 2000).  Recommendations for further research concludes the 

discussion.   

 

2. RIVER WATER QUALITY AUDITING  

Control of contaminant discharges to aquatic environments began with the 1974 Paris Convention 

on the Prevention of Marine Pollution from Land Based Sources. The intention was to eliminate 

pollution by ‘Black List’ substances and to strictly limit ‘Grey List’ pollution.  These were integrated 

into European legislation through the Council Framework Directive 76/464/EEC in 1976.  The 131 

contaminants on the Black List were considered to be of significant toxicity, persistent and capable 

of bioaccumulation in aquatic environments. The EEC sought to set limit values or emission 

standards (the latter set by reference to Environmental Quality Objectives, EQOs) for Black List 

substances at the Community level, and to promulgate daughter Directives on individual substances 

(Phillips and Rainbow, 1993). Contaminants on the Grey List were considered to exert deleterious 

impacts on aquatic environments, but it was thought that these could be confined to specific areas 

(of local, not regional or global concern).  National control of Grey List substances operates through 

the setting of national emission standards designed to meet EQOs, not through community-wide 
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limits. Further UK legislation includes the Water Act 1989, the Environmental Protection Act 1990 

and the establishment of Statutory Water Quality Objectives (SWQOs). In the USA toxicants of 

aquatic concern total 126 and are recorded on the Priority Pollutants List.  

 

Current water quality auditing in the UK by the Environment Agency (EA) is based on two 

interrelated functions originating from the National Water Council (NWC) classification system 

established in 1977.  The EA (1997) use a General Quality Assessment (GQA) system for defining 

water quality and set a range of use-related Statutory Water Quality Objectives (SWQOs).  The 

GQA defines quality for several components or ‘windows’ including chemical, biological, nutrient 

and aesthetic status.  To date, only the chemical and biological components are established with 

greater emphasis placed on chemical status (Faulkner et al., 2000).  Limitations of the current audit 

arise from the original NWC system where only three chemical determinants, biological oxygen 

demand, dissolved oxygen and ammonia are routinely monitored.  There is no biological grade 

separation for example in terms of Biological Monitoring Working Party (BMWP) score or Average 

Score Per Taxon (ASPT).  Using the River InVertebrate Prediction and Classification System 

(RIVPACS) (Wright et al., 1993a; 1993b), predict BMWP and ASPT scores for pristine 

watercourses and observed and predicted values are compared to produce an Ecosystem Quality 

Index (EQI) for selected reaches.  The intention in the future is that the EQI will be used to develop 

a range of SWQOs for different uses of the watercourse.  In the UK the River Ecosystem SWQOs 

is based on water column chemical rather than stream sediment chemistry audits.  

 

Benthic macroinvertebrates live within the upper layers of streambed sediments in constant direct 

contact with contaminants,  receiving prolonged exposure via cell osmosis and ingestion. This makes 
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them excellent biomonitors of the ecological condition of a watercourse and as will be argued here 

monitoring sediment quality is potentially  more consistent and valuable than monitoring water 

column chemistry 

 

3. URBAN RUNOFF 

There is considerable evidence that important sources of diffuse-source toxicants are related to 

heavily trafficked roads, industrial processes and storage areas.  Vehicle-related sources affect the 

quality and quantity of road dust particles and pollutant residuals through petrol and oil spills, 

deposition of exhaust products and wear of tyre, brake and paving materials.  Urban landscaping 

produces vegetation cuttings, fertilizer and pesticide residues in runoff, and the re-suspension and 

deposition of atmospheric pollutants adds to the pollutant load (Bannerman et al., 1993; Marsalek 

et al., 1999; Pitt et al., 1995).  Pollutants include oil products, phenolic compounds, cyanide, 

arsenic, heavy metals (lead, zinc, copper, nickel, chromium, cadmium and mercury), chlorinated 

hydrocarbons, nitrates, sulphates, rubber, bitumen, glass, aggregate, tarmac derivatives and 

particles, derivatives from shoes, de-icing salt and spills from any type of transported load, animal 

wastes and everyday litter (Haslam, 1990). But example determinations of the full range of effluents 

in polluted water courses are rare. 

 

Arguably, road runoff is the principal pollution source with heavily trafficked catchments producing 

more pollutants than lightly trafficked catchments (Andoh, 1994; Marsalek et al., 1999).  Road-

vehicle related pollutants include oil and tar products, dioxins, oxygenated compounds, halogenated 

phenols, metals, hydrocarbons, de-icing salts, and asbestos.  Road runoff therefore contains a 

complex mixture of potential toxicants that can be transported untreated into receiving waters (Table 
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1).  Surface roughness, vegetative cover, gradient, hydraulic connections to a drainage system, 

rainfall intensities, duration, antecedent dry period, pollutant availability and the natural and regional 

sources of pollutants may also be significant variables. The relative importance of the different source 

areas is therefore a function of catchment characteristics, pollutant wash off, and rainfall 

characteristics. Relatively few studies have described the fate of these contaminants, or have 

assessed the effect of road runoff on fresh water communities. 

 

In this study 62 headwater sampling sites were selected in the Yorkshire region to consider the 

wider picture (Figure 1). Macroinvertebrates, heavy metals, water column chemistry variables, 

PAHs and physical environmental variables were sampled using standard methods and those used 

by the Environment Agency for RIVPACS forecasts to allow comparability with other studies. Sites 

were selected on different land use types rather than examining a specific ‘probable worst case land 

use’.  Samples were taken on residential, industrial and motorway sub-catchments. Where possible, 

samples were taken 25 m above and below a storm water inflow, and in sequence through 

residential and industrial areas. Amongst the sites were some that received runoff from motorways 

and road junctions. A sequential extraction technique was applied to the silt and sand fractions to 

determine the 
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Table 1   Sources of heavy metals in pavement runoff,  ** Primary Source, * Secondary 

Source (after Sansalone and Buchberger, 1997). 

 

 

 VEHICLES PAVEMENT SURFACE 

DEBRIS 

 Brakes Tyres Frame 

and 

Body 

Fuels 

and 

Oils 

Concrete  Asphalt  De-icing 

Salts 

Litter 

Cadmium * **       

Chromium  **       

Copper ** **       

Iron  ** **     ** 

Lead * *  *   *  

Nickel  **       

Vanadium    **     

Zinc ** ** **      

Chlorides       **  

Organic 

Solids 

     **  ** 

Inorganic 

Solids 

  *  * **  ** 

PAHs    *  **   

Phenols      **   

 

 

importance of particle size and geochemical phases which heavy metals preferentially adhere to.  In 

the Figures 2-8 the sites are ordered subjectively from those hypothesised to be the cleanest to 

those likely to be polluted, but within this ordering there is considerable noise because all sites on the 

same stream are plotted together. Identification of the most important contaminants in terms of their 

influence on macroinvertebrate community compositions was achieved using partial canonical 

correlation analysis (pCCA).  
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4.  CONTAMINATED SEDIMENTS 

Urban runoff entrains sediments that accumulate on surfaces between runoff events (Estèbe et al., 

1997).  Data from the USA indicated that urban runoff contained 250 - 300 mg l
-l
 of suspended 

sediment (Haughton and Hunter, 1994).  Upon reaching the receiving water body the majority of the 

sediment settles out. This accumulation of contaminated streambed sediments is the principal 

underlying reason for reduced biointegrity for reasons well summarised by Power and Chapman 

(1992):   

• Various toxic contaminants that are found in barely detectable amounts in the water column can 

accumulate in sediments at much higher levels 

• Sediments can serve as both a sink for contaminants and a source of contaminants to the water 

column and organisms. 

• Sediments integrate contaminant concentrations over time, whereas water column contaminant 

concentrations are much more variable and dynamic. 

• Sediment contaminants (in addition to water column contaminants) affect bottom dwelling 

organisms and other sediment associated organisms, as well as the organisms that feed on them.  

• Sediments are an integral part of the aquatic environment that provide habitat, feeding, spawning 

and rearing area for many aquatic organisms. 

Short term inputs of suspended sediment from construction sites have been shown to reduce the 

abundance of fish and invertebrates during and after construction (Ogbeibu and Victor, 1989). In 

Ontario, Taylor and Roff (1986) showed road construction runoff led to noticeable reductions in the 

abundance of species downstream for six years. So impacts may be long-lived.  The  time  scale  of  

the  impact  depends  on  many  factors  including  the  scale  of  

Figure 1:   Location of sampling stations in relation to major urban areas. 
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construction, soil, climate, the size of receiving water body, the hydrological pathways linking the 

construction area with the receiving watercourse and the historic record of sedimentation and 

contamination in the catchment. (Catallo and Gambrell, 1987; Salomons et al., 1987; Wilber and 

Hunter, 1977). 

 

5.   MACROINVERTEBRATES AS QUALITY INDICATORS 

Macroinvertebrates in streambed sediments are in constant contact with contaminants, receiving 

prolonged exposure via gill cell osmosis and ingestion, so assemblages adapt to the physical, 

chemical and ecological characteristics of their habitat (Cook, 1976; Griffiths, 1991; McCall and 

Soster, 1990; Milbrink, 1983; Plante and Downing, 1989). Their feeding facilitates the microbial 

degradation of the particulate organic matter and they are an important food resource for littoral and 

pelagic fish and birds (Amyot et al., 1994; Ciborowski and Corkum, 1988; Dermott and Lum, 

1986; Katalin, 1988). Reduced macroinvertebrate diversity produces a negative feedback reducing 

overall ecological diversity (Ankley et al., 1992; Giesy et al., 1988). Because of their wide variation 

in sensitivity to contaminants, the presence or absence of sensitive or tolerant groups within 

communities make them excellent biomonitors of urban runoff pollution, relating sediment chemistry 

with biological quality.  They possess advantages over fish as biomonitors as Metcalfe (1989) 

suggests: 

• Benthic macroinvertebrate are ubiquitous, abundant and relatively easy to collect. 

• They have long enough life spans to provide a record of environmental conditions. 

• They are relatively sedentary and thus representative of local conditions. 

• They are differentially sensitive to pollutants of various types and consequently are capable of a 

graded response to a broad range of kinds and degrees of stress. 
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The GQA quality monitoring scheme presents some problems, especially since it ignores many of the 

most toxic substances such as heavy metals and hydrocarbons. Discrepancies between chemical and 

biological grades of water quality are common because of the difference in auditing practice. 

Snapshot chemical auditing represents conditions at the particular time of sampling and may imply a 

higher grade of water than biological monitoring would suggest. Macroinvertebrates represent a 

time-integrated tool, indicating the relatively long-term status of the watercourse.  Ideally a water 

quality index should include those determinants which are increasing in the environment and those 

with the greatest deleterious impact on stream ecology.  

 

Macroinvertebrate distribution at the 62 Yorkshire sites (Figure 2) indicate a decline in species 

numbers and diversity with land use change. Applying the RIVPACS model (Wright 2000) 

forecasts higher quality and more diverse ecological communities at all the sites. The total numbers 

and diversity decline as the catchments are more trafficked. 

 

6.  INORGANIC CHEMICALS 

Since all metals are part of the earth’s crust, distinction must be made as to whether the metals 

originate from natural or anthropogenic sources. Haughton and Hunter (1994) propose that 

domestic and industrial waste waters and sewage sludge are the principle sources, whereas Novotny 

(1995) states that urban and industrial non-point sources are the primary  

Figure 2: RIVPACS forecast and actual BMWP scores for all sampling stations, May 1999 
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cause of pollution  by  toxic  metals.  Within  urban  areas  metals  originate  from  vehicles;  corrosion, 

brakes, tyres, emissions and the deterioration (Table 2).  A switch from metals such as nickel and 

chromium to plastics could help to curtail pollution. 

 

Table 2:   Summary of inorganic contaminant sources in urban runoff (Makepeace et al., 

1995). 

 

Element Reported range 

(mg l-1) 

Typical sources 

Arsenic 0.001 to 0.21 Industrial emissions, fossil fuel combustion, smelting, 

laundry products, pesticides, weed killers, defoliants, 

preservatives. 

Cadmium 0.00005 to 13.75 Combustion, wear of tyres and brake pads, combustion 

of lubricating oils, metal-finishing industrial emissions, 

agricultural use of sludge, fertilisers and pesticides, and 

corrosion of galvanised metals. 

Copper 0.00006 to 1.41 Wear of tyres and brake linings, combustion of lubricating 

oils, corrosion of building materials, wear of moving parts 

in engines, smelter activity, metallurgical and other 

industrial emissions, algicides, fungicides, pesticides. 

Lead 0.00057 to 26.00 Emissions from gasoline-powered vehicles, gasoline 

additives. 

Nickel 0.001 to 49.00 Corrosion of welded metal plating, wear of moving parts 

in engines, electroplating and alloy manufacturing, activity 

of smelters, food production. 

Zinc 0.0007 to 22.00 Wear from tyres, brake pads, combustion of lubrication 

oils, activity of smelters, corrosion of building materials 

and metal objects. 

 

Other significant sources of pollution by metals in urban areas include metallic roofs, gutters and 

downspouts, metallic corrugated pipes, old lead pipes, storage areas, parking lots, scrap yards and 

landfill sites.  A comprehensive study of 150 surface and CSO runoff samples by Pitt and Barron 

(1989) showed CSO sites had the highest toxicities, followed by samples from parking and storage 

area runoff (Table 3).  
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Table 3:  Concentrations of priority pollutants in runoff from urban source areas (Pitt and 

Barron, 1989: In Novotny, 1995). 

 

Source areas Constituent 

(µg l-1) Roofs Parking Storage Streets Vehicle 

service area 

Landscaped 

area 

Cadmium 0.8 –30 0.7 – 70 2.4 – 10 0.7 - 220 8 - 30 0.04 – 1 

Chromium 7 – 510 18 – 310 60 – 340 3.3 - 30 19 - 320 100 – 250 

Copper 17 – 900 20 – 770 30 – 300 15 – 1250 8.3 - 580 80 – 300 

Lead 13 – 170 30 – 130 30 – 330 30 - 150 75 - 110 9.4 – 70 

Nickel 5 –70 40 – 130 30 – 90 3 – 70 35 - 70 30 – 130 

Zinc 100- 1580 30 –150 66 – 290 58 - 130 67 - 130 32 – 1160 

 

 

The principal concerns about heavy metals are their persistency in the environment as they do not 

generally degrade, volatilize or decay by photolysis (Novotny, 1995), and their ability to become 

concentrated in living tissue (bioaccumulation) thus threatening predators at the head of the food 

chain.  As well as ultimately causing the death of aquatic organisms, some metals exert sub-lethal 

effects on aquatic organisms and predators such as birds and mammals, adversely affecting 

reproduction and behaviour (Beyer et al., 2000).  

 

There are real comparability issues in the different measurement and presentation scales used by 

various authors to present their data. Figure 3 reports total heavy metal concentrations at the 

Yorkshire sites. Increasing concentrations are seen as expected as sites become more affected by 

urbanisation, but total metal concentrations are of limited value in ecological studies. In looking at the 

impact on stream flora and fauna it is the available metals that are extracted during the first stage of 
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analysis that are of interest. In the next section the bio-available metal results are the focus of the 

discussions.  

 

Figure  3   Total heavy metal concentrations for May 1999. 
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6.1 Nickel 

Nickel is one of five metals (copper, zinc, chromium and lead) in the top sixteen most commonly 

discharged priority pollutants on the EEC Grey List and the USA Priority Pollutants List.  As well as 

at point sources, relatively high concentrations are present in urban surface runoff (Novotny, 1995; 

National Safety Council, 1997).  Natural rock concentrations of 60 to 90 mg kg
-1
 are increasingly 

complemented by anthropogenic sources associated with the production of over 3000 different 

alloys, electroplating, mining and smelting, household appliances, batteries, welding products, pulp 

and paper, and fossil fuel combustion emissions. These sources have been responsible for almost 

doubling the concentration of nickel in recipient freshwaters every decade since 1930 (Biney et al., 

1994; Sreedevi et al., 1992).  Of the 51.3 million kilograms of nickel emitted into the atmosphere 

world wide, 52 percent originates from residential and fuel oil consumption; 14 percent from mining 

and refining operations; 10 percent from incineration; 9.3 percent from naturally windblown dust and 

4.9 percent from volcanoes (National Safety Council, 1997). 

 

The predominant oxidation state in natural waters is Ni
++

 within the pH range 5 to 9.  Nickel, like 

ferrous metals, has a high electronegativity and as such has a high affinity to clay minerals.  

Adsorption to clay minerals means that concentrations in sediments are several orders of magnitude 

greater than in the overlying water column (Stokes, 1988).  Nickel also occurs as soluble salts and 

organic complexes.  However, difficulties in quantifying the fraction of nickel present as organic 

complexes and knowledge that adsorbed metal is not, a priori, readily available for toxicological 

processes means water quality criteria are based on total soluble nickel (Biney et al., 1994). 

Nickel was initially considered to have no essential biological function, but research since 1975 

indicates that nickel is significantly involved in plant, animal and bacterial systems (Boyle and 
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Robinson, 1988).  Plant physiologists showed that nickel was a constituent of urease and absolute 

requirements of the element were discovered to be widespread in marine microalgae (Stokes, 

1988).  There is as yet no determination of the absolute requirements for nickel in fresh water algae, 

or other aquatic organisms. But nickel, though essential in trace quantities, is highly harmful to the 

survival and productivity of aquatic fauna. In higher concentrations it affects populations of 

commercially important marine and fresh water food fishes, and consumption of nickel contaminated 

fish by humans may cause a number of disorders (Chaudhry and Kedarnath, 1985; Moore and 

Ramamoorthy, 1984). 

 

Low pH and the presence of chloride, nitrate, sulphate, and soluble (colloidal) humic matter 

promote the migration of nickel in natural waters.  Factors that limit the migration of nickel are high 

pH and the presence of PO4

3-

, CO3

2-

, OH
-

, and H2S, which precipitate the metal as insoluble salts.  

The presence of organic (chelating) substances, humus, hydroxides of iron, manganese, aluminium, 

and silica-alumina complexes (clay minerals) remove nickel from the water column by absorbance 

and adsorption. 

 

Nickel concentrations within sediments vary depending on the type of geological terrain and on the 

presence of nickeliferous rocks and deposits, proximity of nickel smelters, electroplating plants, 

industrial and domestic contamination including transport emissions.  Boyle and Robinson (1988) 

disclosed a hierarchy in which streams sediments commonly possessed a greater nickel content than 

river and lake sediments consequent of receiving the ‘first flush’ of pollution, greater wetted 

perimeter and less dilution.  Typically concentrations lie between 1 to 150 ppm for uncontaminated 

sites rising by 3 to 10 fold in the presence of nickeliferous rocks and deposits. Concentrations of 
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nickel (measured as total nickel) in UK rivers ranges from 0.0007 to 0.0037 mg l
-1

 for clean and 

from 0.012 to 0.073 mg l
-1

 for polluted waters (EIFAC, 1984; Biney et al., 1994).  Boyle and 

Robinson (1988) quoted similar values of 0.0005 to 0.02 mg l
-1

 (Table 4). Concentrations in North 

American fresh waters have been reported to be slightly greater at 0.003 to 0.017 mg l
-1

 (Biney et 

al., 1994; Jenkins, 1980).  

 

Table 4  Average or range of nickel concentrations in natural waters (Boyle and Robinson, 

1988). 

 

Description Ni content 

(mg l-1) 

Rainwater and snow (mostly in particulate matter) Up to 0.001 

Hot springs 0.0005-0.4 

Groundwaters and cold springs 0.0005-4.5 

Groundwaters, cold springs, and mine waters in vicinity of nickeliferous deposits Up to 75 

Stream, river, and lake waters 0.0005-0.02 

Natural stream and river waters in vicinity of nickeliferous deposits Up to 5 

Contaminated stream, river, and lake waters in vicinity of nickel mines and 

smelters 
Up to 6.4 

Ocean and seawaters 0.0015 

Normal Fe-Mn precipitates (dry matter) from springs 7-100 

Fe-Mn precipitates (dry matter) from springs in vicinity of nickeliferous deposits 20-2000+ 

Stream and river sediments (dry matter) 1-150 

Natural stream and river sediments (dry matter) in vicinity of nickeliferous 

deposits 
Up to 1000 

Contaminated stream, river, and lake sediments (dry matter) in vicinity of nickel-

mining areas 
Up to 3000 

Studies of nickel toxicity to macroinvertebrates are too scarce to assess properly the influence of 

environmental factors on toxicity (Biney et al., 1994). Stokes (1988) identified Oligochaetes and 

Crustaceans as displaying the greatest degree of sensitivity (Table 5). He suggested that benthic 

organisms are likely to display a greater tolerance than planktonic organisms in the same system as 
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higher nickel concentrations are associated with sediments.  However, sub-lethal responses to the 

presence of nickel such as changes in the growth rate, enzyme activity and reproductive rate have 

been reported, but again data are limited.  There seem to be no studies that show the mechanisms of 

nickel toxicity in macroinvertebrates. 

 

Table 5   Effect of nickel on selected macroinvertebrates (Stokes, 1988). 

Organism Conditions Test Nickel concentration 

causing toxicity (mg l-1) 

Daphnia magna (fresh 

water cladoceran) 

18°C 45mg l
-1
 LC50 <0.32 

Asellus aquaticus (fresh 

water isopod) 

Soft water LC50  48hr 435 

Crangonyx 

pseudogracilis (fresh 

water amphipod) 

Soft water LC50  48hr 252 

Chironomus (fresh 

water midge larvae) 

Freshwater LC50 48hr 79-169 

Clistoronia magnificans 
(caddisfly) 

Freshwater Life cycle prevented 

from completion 

0.25 

Juga plicifera (fresh 

water snail) 

Freshwater LC50 96hr 0.237 

Allorchestes compressa 
(marine amphipod) 

Saltwater LC50 96hr 35 

Macoma balthica  
(marine deposit feeder) 

Saltwater LC50 5-54 

 

 

At the Yorkshire sites (Figure 4) nickel tends to show an equal affinity to both silt and sand fractions 

with only marginally lower values observed in sand. Unlike cadmium, chromium and copper at these 

sites, the percentage in each extraction phase is similar  (28%, 32% and 40% for extracts 1, 2 and 

3). Unlike the other metal results in this study, total nickel contamination is also high at the pristine 

upstream reference sites.  So although from Figure 4 it would appear that those stations receiving 
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motorway drainage are relatively heavily contaminated with nickel so too are their upstream stations.  

Contamination at the upstream motorway stations may have a vehicular source or may be due to 

natural lithological enrichment. What is perhaps easier to establish is the pattern of stations recording 

low concentrations.  The most interesting fact is that stations 31-37 on two adjacent stream systems 

have low values, supporting the inference of natural lithological controls.  Both stream systems are 

located on the northern edge of the coal measures and Sherwood sandstone. However the highest 

values are found at the sites with significant road runoff from the motorway and industrial areas and 

sites with on-street parking and denser road networks.  

 

6.2  Copper 

The average concentration of copper in the earth’s crust is 4.5 mg kg
-1

 and is widely distributed as 

sulphides, oxides, carbonates, arsenides and chlorides. Copper deposits occur as the ore 

chalcopyrite (CuFeS2), cuprite (Cu2O), chalcocite (Cu2S) and malachite Cu2CO3(OH)2  

(Mance et al., 1984).  World consumption is approximately 8 million tonnes, of which the UK 

consumes 330000 tonnes and Europe 2.2 million tonnes.  Copper is widely used in the manufacture 

of alloys with zinc, nickel and tin, in metal plating and in the production of copper  wire  and  piping.   

Compounds of copper  are used in a  variety  of  manufacturing  

Figure 4   Concentrations of nickel in silt (<63µm) and sand (>63µm) for each sequential 

extraction phase,  May 1999. 
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industries: copper nitrate in plating and textile dyeing processes; copper chloride in the manufacture 

of glass and ceramics and as a catalyst in the production of vinyl chloride. Copper compounds 

including cuprous oxide, cupric sulphate and cupric acetate are used as fungicides, in the 

manufacture of wood preserving agents, rayon and paint pigments. In products such as wire, piping 

and plated metal copper is generally immobilised, although some release can occur, for example, 

from water heating systems.  Copper from fungicide products may also find its way into the aquatic 

environment. Using copper sulphate as an algicide can result in its direct addition to water supply 

reservoirs (Mance et al., 1984). 

 

Copper is also an essential nutrient and is therefore present in human and animal wastes. 

Copper may exist in a natural water system either in the dissolved form as the cupric ion or 

complexed with inorganic ions or organic ligands such as carbonates, chlorides, humic and fulvic 

acids, or as suspended sediment when present as precipitates (e.g. hydroxides, phosphates, 

sulphides) or adsorbed by particulate matter.  Alternatively it can be adsorbed to sediments or exist 

as settled precipitates.  The concentration of each of these forms depends on the complex 

interaction of variables including the concentration of copper, hardness, alkalinity, salinity, pH, 

concentration of bicarbonate, carbonate, sulphide, phosphate, organic ligands and with other metal 

ions competing for ligands and adsorption sites. 

 

In fresh waters, in the absence of organic ligands, hydrolysis and precipitation are the most important 

processes influencing the oxidation chemistry and determining the predominant copper species; 

expected to be Cu
++

 below pH 6 and carbonate complexes between pH 6 and 9.3.  At the pH 

values of most aerated fresh waters, basic copper carbonate and cupric hydroxide precipitate out of 
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solution or form colloidal suspension at concentrations greater than about 0.5 mg Cu l
-1

.  The 

presence of humic acids, fulvic acids, and detergents alter this equilibrium such that most of the 

copper becomes organically complexed. 

 

The capacity of river waters to remove copper from solution may be greater than lake waters 

because of the larger amounts of particulate matter in suspension.  The fate of copper associated 

with the particulate matter is influenced by several factors.  Copper introduced into river systems 

from municipal and industrial discharges is often incorporated into sediments near the sources.  

However, intermittent high stream flows which re-suspend sediments and change local water 

chemistry may lead to the re-mobilization of copper.  For instance a change from anaerobic to 

aerobic conditions, a decrease in pH or the presence of complexing agents could all release copper 

into the overlying water.  The proportion of copper associated with particulate matter transported in 

rivers may range between 20 and 90 percent (Mance et al., 1984).  

 

The toxicity of copper to freshwater invertebrates has been most recently reviewed by Mance et al. 

(1984).  The available information for acute and chronic toxicity is summarized in Tables 6 and 7. 

From these results and others using microcosms, higher concentrations have been found to be 

acceptable in areas where a history of copper contamination has allowed acclimatization (Courtney 

and Clements, 2000), or where the presence of organic materials leads to complexation of the 

copper. 
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Table 6    The short-term lethal tolerance of freshwater macroinvertebrates to copper 

(Mance et al., 1984). 

 

Organism Duration Hardness 

(mg l-1 Ca CO3) 

LC50 

(mg l-1) 

OLIGOCHAETA    

Limnodrilus hoffmeisteri 96h 100 0.100 

INSECTA    

Acroneuria lycorias 96h 44 8.3 

Ephemerella subvaria 96h 44 0.32 

ROTIFERA    

Philodina acuticornis 96h 25 0.7 

Philodina acuticornis 96h 81 1.1 

GASTPROPODA    

Biomphalaria glabrata 24h  3.2 

Campeloma decisum 96h 45 1.7 

Physa integra 96h 45 0.039 

Physa sp.  (25?) 0.035* 

Physa sp.  (160?) 0.083* 

Gyraulus circumstriatus  100 0.11* 

Physa heterotropha  (pre-adult)  20 0.016* 

Physa heterotropha  (pre-adult)  100 0.013* 

Physa heterotropha (adults)  100 0.069* 

Goniobasis livescens 48h 150 0.86 

Lymnaea emarginata 48h 150 0.3 

CRUSTACEA    

Gammarus pseudolimnaeus 96h 45 0.02 

Daphnia magna 48h 45 0.06 

Daphnia magna 72h 130 - 160 0.08 - 0.085 

Daphnia pulex 72h 130 - 160 0.086 

Daphnia parvula 72h 130 - 160 0.072 

Daphnia ambigua 72h 130 - 160 0.0677 

*Exposure times less than 96h. 
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Table 7 Chronic toxicity of copper to freshwater macroinvertebrates (Mance et al., 1984). 

 

Organism Hardness  

(mg l-1 as Ca CO3) 

Copper concentration 

(µg l-1) 

Effect 

Daphnia (4 spp.) 130 - 160 60 Longevity reduced  

7 weeks 

Gammarus 

seudolimnaeus 

44 28 100% mortality  

6 weeks 

Gammarus 

seudolimnaeus 

44 15  

Gammarus 

seudolimnaeus 

44 8 100% mortality  

15 weeks 

Physa integra 44 28 90% mortality  

6 weeks 

Campeloma decisum 44 28 80% mortality  

6 weeks 

Campeloma decisum 44 15 50% mortality  

6 weeks 

Hydropsyche betteni 46 32000 14-d LC50 

 

 

Leland et al. (1989) expressed concern over typical laboratory assays of metal toxicity to aquatic 

insects in that they tend to expose middle or late-instar stages from natural streams when they are in 

their intermoult status. They advocate testing during early developmental stages and periods of 

moult, which are times of exceptional stress and sensitivity instead.  A heightened sensitivity to 

copper (5 or 10 µg l
-1

 CuT) at early development stages was reflected in the different concentrations 

seen during autumn 1978 and 1979 effecting population declines of many benthic insects in their 

Convict Creek study.  By initiating dosing earlier in 1979 than 1978, they observed a lack of early 

instars in the autumn.  As with other aquatic insects little is known regarding the mechanism causing 

the sensitivity to metals, but it may be attributed to damage of respiratory membranes.  Species size 

was a factor suggesting that some single species toxicity tests may identify higher metal tolerances 

through using larger specimens (Hickey and Clements, 1998).  Declines in population density of 
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species representing all major orders (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera and 

Diptera) occurred at copper concentrations of 5 and 10µg l
-1

 (Leland et al., 1989). 

 

In the Yorkshire sampling (Figure 5) there is considerable station to station variability in copper. 

Most noticeable are the high values in both fractions and for all three extracts for station 16 in May. 

This was probably associated with road works on a major road above station 16 with  regular 

braking leading to wear of tyre and brake pads. However the impacts of such short-term variations 

in catchment sediment chemistry requires further investigation. 

 

Most of the copper is bound to the sediment until the third extraction. Only 10 percent of the total 

concentration is released in the first extract compared to approximately 75 percent released in 

extraction phase 3.  For the majority of sampling stations this means low bioavailable concentrations, 

but for stations such as 54, 428.86 mg kg
-1
 is available from the sand fraction.  

 

Copper contamination appears to be related to the flow of vehicles and the road network 

characteristics.  The variability in the data suggests strongly that high vehicle numbers on roads with 

moderate gradients and motorway exit lanes or roundabouts or junctions are associated with the 

highest copper values. The majority of sample stations are identified as having copper levels in silt 

which exceed levels at the control sites for all three extracts, and  
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Figure 5 Concentrations of copper in silt (<63µm) and sand (>63µm) for each sequential 

extraction phase,  May 1999. 
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particularly extract 3.  This was expected given that copper is a major component of vehicle brake 

pads and vehicles are common to all the study catchments 

 

6.3   Zinc 

Zinc is one of the most commonly used metals in the world (EBI, 1998).  The global production of 

zinc increased steadily during the 20th century and almost doubled in the 1990s. The largest use is in 

galvanizing iron and steel products, brass products and zinc-based alloys.  It is also used in synthetic 

rubber, paints, cosmetics, ceramics, manufacturing and dyeing of textiles, wood preserves and the 

purification of fats (Radhakrishnaiah et al., 1993).  Despite increasing use and release into the 

environment, there is a paucity of information concerning its aquatic chemistry.  Most zinc enters the 

environment as a result of human activities, such as mining, purifying of zinc, lead and calcium ores, 

steel production, coal burning, burning of wastes and from municipal waste treatment discharges.  

Zinc though essential for certain biological functions in minute quantities, is highly toxic beyond these 

requirements.  Many zinc salts are highly soluble in water and with half-lives greater than 200 days 

(EBI, 1998) they pose serious toxic threats to aquatic flora and fauna. 

 

Maltby and Naylor (1990) used brooding female Gammarus pulex to compare the effect of zinc 

on Scope for Growth (SfG) and on reproduction. Brooding females were used to evaluate short-

term stress changes in the energy budget, as measured by the SfG assay, which might relate to 

longer term effects on reproduction.  Increased zinc concentrations produced a significant reduction 

in energy absorbed, but no change in respiratory loss that resulted in a significant reduction in SfG.  

The lowest concentration of zinc to be significantly different from the control was 0.3mg Zn l
-1

.  
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Results demonstrated that brooding females were more sensitive than males.  Zinc caused an 

increase in the number of broods aborted but there was no reduction in the number of offspring 

produced in either the present or subsequent broods.  The authors suggested that the effect of zinc 

on the reproductive output of Gammarus pulex was to influence energy allocation rather than to kill 

broodlings or eggs.  Such stress induced reductions in offspring size and brood viability could 

influence profoundly the population as a whole.  Other things being equal, it has been found that 

smaller offspring take longer to mature (Sibly and Calow, 1985) and such animals may reproduce at 

a smaller size, which for both males and females, means reduced fecundity. 

 

The pattern of zinc concentrations in the Yorkshire streams increases as sites become more 

urbanised. The proportion of total zinc extracted shows limited variability between size fractions 

(Figure 6). The percentage extracted is reduced slightly with progression from extracts 1 through to 

3, which means that, as with cadmium in this study, the largest proportion of total zinc is released in 

the first extraction step. Almost 40% is bioavailable and susceptible to uptake by organisms. 

 

The highest zinc contamination is associated with industrial and motorway land uses.  As with 

copper, zinc is a major component of tyres and brake pads and so was expected to be highest 

where wear and tear of these vehicle parts is most likely to occur.  This is substantiated by the fact 

that the highest concentrations occur, as with copper, at stations receiving runoff roundabouts, 

junctions and on exit roads.  Contamination is severe at sample  

Figure 6 Concentrations of zinc in silt (<63µm) and sand (>63µm) for each sequential 

extraction phase, May 1999. 
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station 16, most noticeably in the silt fraction, where there are high vehicle flows and a steep gradient 

on the busy ‘A’ road from which the runoff derives.  Stations 9-12 and 20-30  have high zinc 
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concentrations which is perhaps explained by the dense road networks of the adjacent housing 

estates, on street parking and possible historical industrial activity. 

 

For silt extract 1, 73 percent of sample stations have zinc levels in excess of 200% of the control site 

values.  This high percentage demonstrates the widespread spatial distribution of elevated zinc that 

includes all of the land uses studied. Those stations where exceptionally high values are recorded 

are, as expected, sub-catchments that contain major ‘A’ roads, industrial and motorway land use.  

 

6.4   Tolerance to combinations of metals 

More recently single metal and single species bioassays have been complemented by multispecies 

experiments using indigenous stream organisms and mixtures of metals tested in artificial stream 

microcosms (Courtney and Clements, 2000; Harrahy and Clements, 1997; Kiffney and Clements, 

1994a, 1994b, 1996a, 1996b). Subjecting a natural assemblage to a mixture of cadmium, copper, 

and zinc at chronic criteria values, Kiffney and Clements (1994a) identified that the majority of 

Ephemeroptera (mayflies) and Plecoptera (stoneflies) species were sensitive to metal contamination.  

They found increased densities of Chironomidae and reduced densities of Baetidae, 

Heptageniidae and Ephemerellidae once exposed to the metal mixture (Table 8).  Such results 

support the findings of Clements (1991b) and Clements and Rees (1997) who identified a tolerance 

continuum in the order Chironomids > Trichoptera > Plecoptera > Ephemeroptera.  Nelson and 

Roline (1996) also  

Table 8     Relative change in abundance of dominant taxa, major insect groups, and 

community-level indices in 1 x treatment streams (n = 3) compared with control streams (n 

= 3), (Kiffney and Clements, 1994b). 
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Taxa % change 

Ephemeroptera - 68 

Heptageniidae - 90 

Baetis tricaudatus - 76 

Drunella grandis - 65 

D. doddsi - 66 

Plecoptera - 44 

Pteronaecella badia - 60 

Suwallia pallidula - 36 

Sweltsa coloradensis 0 

Trichoptera - 12 

Lepidostoma ormeum - 17 

Chironomidae + 56 

Tanypodinae sp. + 94 

Orthocladiinae sp. +  5 

Chironomini sp. + 8 

Tanytarsini sp. + 84 

Number of individuals - 20 

Number of taxa - 22 

 

 

recognised that Heptageniidae could be a metal sensitive indicator species given its preference for 

metal free streams.  Such tolerance is different at family and species level (Clements, 1991a).  

Differences to metal tolerance have also been related to a number of other factors such as altitude 

(Clements and Kiffney, 1995; Kiffney and Clements, 1996b), stream order (Kiffney and Clements, 

1994b), stream metal histories (Courtney and Clements, 2000) and organism size (Kiffney and 

Clements, 1996a).  In their study on altitude Kiffney and Clements (1996b) found that assemblages 

from small, high altitude streams were 12 – 85 percent more sensitive to metal pollution in 

comparison to those from larger, low altitude streams.  Similarly with stream order, assemblages 

from 4
th
 order streams were more tolerant than their 3

rd
 order counterparts, as were assemblages 

from streams with a metal pollution history compared to those from a clean reference stream.   
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Some microcosm studies are validated with complementary field experiments.  Hickney and 

Clements (1998) found good agreement between toxicity tests and measures of community structure 

in streams in New Zealand, especially at stations where elevated metal concentrations dominated 

other confounding factors.  The New Zealand results were similar to those obtained in both North 

America and Europe, re-enforcing the idea that responses of macroinvertebrate assemblages to 

metal contamination are consistent and predictable. 

 

In an attempt to identify principal toxicants many studies have focused on in situ bioassays, 

exposing single indicator species to a mixture of metals within the streams themselves. Mulliss et al. 

(1994, 1996a, 1996b) exposed caged Asselids and Gammarus pulex to a mixture of contaminants 

from a storm water overflow.  Using Principal Components Analysis (PCA) they show that total 

aqueous copper affected both species mortality, and that total aqueous lead and dissolved copper 

and zinc affected the mortality of Gammarus.  However, Maltby et al. (1995b) found that stream 

water contaminated with motorway runoff was not toxic to Gammarus whereas, exposure to 

contaminated sediments resulted in a reduction in survival rates over a 14 day exposure period.  In 

this study the authors identified PAHs, copper and zinc as the major toxicants. 

 

In a field study Van Hessel et al. (1980) observed elevated metal concentrations in sediments, 

macroinvertebrates and fish at stations receiving road runoff indicating the threat of roads as a major 

contaminant source.  Shutes (1985) identified bioconcentration with higher tissue concentrations of 

lead, cadmium, copper and zinc in those macroinvertebrates inhabiting urbanised streams compared 

with a semi-rural stream (Table 10). 
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Table 9   Mean metal concentrations in dry weight of samples (µg g-1) (Shutes, 1985). 

 

Organism Station Cadmium Copper Lead Zinc 

Gammarus pulex 1.1a Ndt 48.4 ndt 114.4 

 1.1 0.5 80.3 ndt 74.8 

 1.3 0.6 79.4 ndt 74.8 

 1.4 0.3 77.6 ndt 77.2 

 1.6 1.3 102.8 ndt 98.4 

 2.1 13.8 108.3 114.4 735.5 

 2.2 2.0 126.3 187.2 607.7 

Asellus aquaticus 2.2 43.3 115.9 233.5 313.0 

Erpobdella octoculata 2.2 Ndt 151.3 ndt 626.6 

 2.4 1.8 405.0 69.5 1246.4 

Limnephilus sp. 2.1 2.3 49.0 174.4 741.7 

Limnaea peregra 2.2 10.3 69.0 91.2 274.5 

 2.3 11.2 75.3 56.7 169.3 

 2.4 11.1 131.0 153.7 510.1 

 2.5 8.8 335.4 134.2 355.7 

 2.6 7.3 142.2 347.7 618.7 

 

 

Lenat and Crawford (1994) studied three streams in the piedmont eco-region of North Carolina to 

evaluate the effect of land use (forested, agricultural, urban) on water quality and aquatic biota. The 

greatest sediment yield and highest concentrations of heavy metals (chromium, copper and lead) 

were in streams associated with urban land use.  The fish community at the urban site showed 

reduced species richness, low biomass, and an abundance of metal-tolerant species.  

Macroinvertebrate taxa richness, and the number of unique species (found at only one site) indicated 

moderate stress (fair water quality) at the agricultural site and severe stress at the urban site.  Taxa 

richness decreased significantly for nine taxonomic groups, increasing only for tolerant Oligochaeta.  
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Dominant macroinvertebrates groups shifted from Ephemeroptera at the forested site, to 

Chironomids at the agricultural site and Oligochaeta at the urban site (unique species at the urban 

stream were limited to the most tolerant groups: Oligochaeta, 55 percent and Diptera, 24 percent).  

The authors concluded that this pattern is typical of highly stressed streams.   

 

Parallel community changes were found by Kemp and Spotila (1997) in Valley Creek, 

Pennsylvania, and by Whiting and Clifford (1983) who observed depressed macroinvertebrate 

diversity and species richness in an inner city stream in Alberta, Canada.  Most noticeable was the 

loss of certain Ephemeroptera, Gammarus and Tricoptera taxa and their replacement within the 

assemblage by Oligachaetes and Chironomids.  Examining residential runoff in Illinois, Casper 

(1994) found a subtle shift in community structure with a 76 percent reduction in the main predator 

Salis resulting from elevated metal concentrations in sediment.  The result was a significant increase 

in population abundance of pollution tolerant prey. 

A literature review by Goodyear and McNeill (1999) concluded that the relationships between zinc 

concentrations in sediments and in macroinvertebrates were significant for collector - gatherers, 

scraper – grazer and predators at the one percent level.  The same result was true for copper 

indicating the animals appear to take up the metals in direct proportion to levels in the sediment.  

 

However, not all research has revealed such strong relationships between metal concentrations and 

a decline in biointegrity.  Smith and Kaster (1983) concluded that drainage from a rural highway 

with a relatively light traffic flow of 7000 – 8000 vehicles per day exerted minimal effect on the 

macroinvertebrate community.  Similarly, Perdikaki and Mason (1999) found no evidence of 

sediment metal contamination at stations downstream of ten trunk roads in East Anglia and only 
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subtle impairment of the macroinvertebrate communities.  The study however, did not isolate surface 

runoff as the only discharge to the streams, and as the authors themselves confessed, supposedly 

clean upstream stations may have been polluted by other discharges, masking the effects of road 

runoff. 

 

As in the Van Hessel et al. (1980)  and  Shutes (1985) the data from the sixty-two Yorkshire sites 

indicates a decline in macroinvertebrate numbers  linked to increasing road densities, traffic numbers 

and the incidence of braking (Figure 2).  The in-stream biological community structures  indicate that 

the small headwater streams in this study have been adversely effected by storm water runoff.  Fifty 

percent of sample stations surveyed were found to have less diverse and contained fewer pollution 

sensitive taxa than the control site assemblages and only one of the 62 stations was classed as having 

‘good’ biological quality as opposed to the approximately 90 percent predicted by the RIVPACS 

model. 

 

7.   ORGANIC CHEMICALS 

Natural streamwater conditions are associated with limited organic material and plentiful dissolved 

oxygen (DO).  Limited organic matter restricts microbial populations, and the DO otherwise used in 

decomposition remains relatively constant.  The natural system becomes overloaded when excess 

anthropogenic inputs enter the receiving water.  This may lead to an explosion in the numbers of 

microbial decomposers and consequent reduction in DO in the water column and sediments.  

Anoxic conditions arise in instances of severe organic pollution, with both the water column and 

sediments becoming devoid of oxygen (Andoh, 1994; Haughton and Hunter, 1994). 

 



 37 

 

Research into organic chemicals has focused primarily on compounds that are toxic to plants, 

animals and humans, and those which are persistent, causing bioaccumulation in organisms and along 

food chains (Haughton and Hunter, 1994). Organochlorine compounds which include 

chlorofluorocarbons (CFCs), polychlorinated biphenyls (PCBs),  the pesticides aldrin, dieldrin eldrin 

and dichloro-diphenyl-trichloroethane (DDT), and various dioxins have received much attention.  

Other substances in solution such as ammonia, nutrients and PAHs may propagate imbalances.  

Ammonia is toxic to fish above a certain threshold, while nitrates and phosphates can cause 

eutrophication (Lenat and Crawford, 1994).  PAHs although common in the urban environment and 

increasing because of greater vehicle use have received little attention.  In urban storm water 

discharge PAHs are likely to be the main group of organic contaminants with the greatest potential 

toxicity.  

 

 

7.1   Polycyclic Aromatic Hydrocarbons (PAHs) 

Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic compounds with a 

widespread occurrence in the environment as a consequence of the combustion of fossil fuels and 

industrial processes.  Coring studies have shown that concentrations of PAHs have been increasing 

over the past 20 – 40 years (van Metre et al., 2000) and concurrent with these increases has been 

a change in the assemblages indicating greater contributions from combustion sources. The increase 

in concentrations correlates strongly with the increase in vehicle use even in catchments that have not 

undergone significant land use changes (van Metre et al., 2000).  Generally a concentration gradient 

exists from urban and industrial areas to rural areas (Bomboi et al., 1999).  Given the known 

carcinogenic properties, particularly of benzo(a)pyrene, benzo(a)anthracene and chrysene in humans 
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and other animals (Christiensen et al., 1975; Mastran et al., 1994), the fate of PAHs in the 

environment and identification of sites where they may accumulate to significant concentrations is 

important.  Despite their known toxicities and widespread occurrence, hydrocarbons have received 

much less attention than heavy metals in water quality studies.  There is a noticeable bias in the 

literature towards research focusing on the marine environment and a paucity of studies concerning 

the fate and impact of PAHs within freshwater systems. 

 

Early work indicated urban storm water runoff as responsible for a considerable petroleum 

hydrocarbon load to the environment (Hallhagen, 1973; Wakeham, 1977).  As with heavy metals, 

hydrocarbons preferentially enrich fine particles because of their surface adsorption. MacKenzie and 

Hunter (1979) identified 86.4 percent of hydrocarbons were associated with particulates, while 

Hoffman et al. (1982) suggested the figure was as high as 93%, highlighting the importance of 

sediments as the principal sources of PAH exposure to freshwater fauna and flora.  Furthermore, 

evidence exists that PAHs demonstrate the same ‘food chain effects’ as heavy metals and therefore 

impact across whole ecotones (Whipple, 1981; Clements et al., 1994). 

Examining the impacts of storm water runoff from sections of a UK motorway  Shutes (1984) and 

Maltby et al. (1995a, 1995b) both found impoverished macroinvertebrate assemblages at the 

downstream stations.  There were fewer pollution sensitive taxa downstream, notably Gammarus 

pulex. Shutes (1984) recorded a decrease in mean monthly numbers from 75 upstream of the M1 

discharge to 14.6 downstream and complete eradication at stations 5 – 6 km further downstream.  

The loss of Diptera from downstream stations meant a reduction in Erpobdella octoculata, as 

Diptera larvae are a known food resource.  Impoverishment was attributed to the direct toxic effects 



 39 

 

of heavy metals and PAHs in the water column and bed sediment  as no significant between station 

differences in either the abundance of epilithic algae or detritus and associated fungi were observed.  

Furthermore, the major changes observed could not be explained on the basis of changes in 

substrate particle size or total organic content.  

 

The general distribution pattern of PAHs in sediments in the Yorkshire streams is shown in Figure 7. 

Figure 8 picks up the distribution of naphthalene as a particular example where its link to the more 

industrialised and motorway sites is strong. This research also showed detailed variations on the 

general pattern.  Certain residential sub-catchments, for example stations 46 and 47 are capable of 

contributing higher concentrations of PAHs than motorways as a result of their catchment 

characteristics.  Small affluent residential sub-catchments where the majority of vehicles are stored in 

off-road garages do not accumulate PAHs to the same degree as housing estates with few garages 

or where vehicles are predominantly parked on the roadside.  Evidence supporting the importance 

of parked vehicles in producing high PAH levels, particularly fluoranthene, phenanthrene and pyrene 

comes from stations 45 and 59,  

 Figure 7  Total PAH contamination. 
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Figure 8    Sediment concentrations of the PAH  Naphthalene 

 

 
 

 

 

where heavily used lay-bys add to high downstream PAH levels.  It is suggested this is due to the 

increased incidence of fuel and oil leaks onto the surface which are then entrained by storm water 

runoff.  Vehicle emissions appear to be a less important source of PAHs with the exception of 

napthalene.  The present research has also found that the concentrations of PAHs are controlled by 

the physical characteristics of the receiving watercourse.  Large, fast flowing streams with substrates 

dominated by gravel or cobbles do not provide the opportunity for high PAH levels because of their 

dilution and dispersion potential.  This may be responsible for masking the true level of PAH 

contamination from motorways as three of the streams exhibited such characteristics.  Whether 
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station 59 recorded high levels because of the lay-bye or because the stream offered little dispersion 

potential would require further investigation. 

 

 

8.    MODELLING SPECIES – ENVIRONMENT RELATIONS 

There are limitations concerning both laboratory and field based investigations. There is a tendency 

for laboratory bioassays to concentrate on a few sensitive species of uniform age and size, ignoring 

the heterogeneous responses of a natural population and nutrition, physiological interactions, 

substrate, stream current, predation and competition factors.  Artificial streams provide restricted 

physical and ecological conditions.  Field based research on the other hand, is not capable of 

determining toxicity thresholds, hence the complementary nature of the techniques.  To overcome 

these deficiencies some researchers have investigated modelling macroinvertebrate assemblages 

from environmental variables (Brown and May, 2000; Ormerod and Edwards, 1987; Weatherley 

and Ormerod, 1987).  One advantage of this approach is that ‘natural’ stress parameters are also 

included (Reinhold-Dudok van Heel and den Besten, 1999).  Work that focused on physical 

variables and catchment characteristics (Armitage et al., 1983; Furse et al., 1987; Moss et al., 

1987, Wright et al., 1993a, 1993b, 2000), lead to the development of the RIVPACS model 

currently employed by the EA in the UK and in Australia. RIVPACS predicts BMWP and ASPT 

scores for pristine watercourses from catchment data including stream width and depth, catchment 

elevation and particle size.  

 

Contaminants, physical variables and macroinvertebrate species models have been used to study 

community structures (Gower et al., 1994, 1995; Nelson and Roline, 1999; Reinhold-Dudok van 
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Heel and den Besten, 1999).  Reinhold-Dudok van Heel and den Besten (1999) using Redundancy 

Analysis (RDA) and Canonical Correspondence Analysis (CCA) found that for the sediment types 

fine sand, sand silt and silt, sediment toxicity explained part of the variation in species composition, 

but no particular element was identified.  Research by Gower et al. (1994, 1995) used CCA to 

examine elevated metal concentrations in the water columns draining mines in the South West of 

England.  They were able to identify copper as the most important determinant in influencing the 

community structure.  A notable finding that agreed with many of the other studies presented here, 

was the sensitivity of Ephemeroptera to elevated concentrations of metals and the tolerance of 

Chironimidae.  It is evident from the literature that although becoming increasingly common in 

applied ecology, very few studies exist concerning the relations between macroinvertebrates and 

environmental contaminants.  Moreover, no research was evident investigating bioavailable sediment 

metal concentrations and PAHs derived from urban storm water runoff – a potentially limiting factor 

in achieving ecological integrity. 

 

Partial Canonical Correspondence Analysis (PCCA) was used to investigate relationships in the 

Yorkshire dataset. The heavy metals, 16 PAHs, BMWP data and the environmental variables 

identical to those recorded for RIVPACs forecasts, were included. Only the bioavailable metals 

from extract 1 were used. Looking at the metals in isolation showed Zinc, Dissolved oxygen, 

Electrical Conductivity, Nickel and lead as the most influential factors (Table 9). This contrasts with 

the studies reviewed here which identified copper as a critical variable. Here it appears eighth. 

Looking at the results when PAH data is included the most significant controls on macroinvertebrate 

community composition were found to be zinc, followed by nickel, naphthalene, iron and 

benzo(b)fluoranthene.  Interestingly this mixes metals and PAHs showing the importance of 
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considering their influence in combination (Table 9). The metals and PAHs  account for 24% of the 

variance and the environmental variables account for  a further 23%. The important influence of zinc 

and nickel is clear in both analyses.  

 

Table 10     First ten rankings from PCCA analyses using weighted total metal 

concentrations (extract 1); and PAHs and weighted total metal concentrations (extract 1) 

combined, using unrestricted Monte Carlo significance tests.  F values significant at 

P<0.05 

 

Weighted total metal concentrations 

(extract 1). 
 PAHs and weighted total metal 

concentrations (extract 1) combined. 

Variable F Variable F 

Zinc 3.31 Zinc       3.36 

Dissolved oxygen 2.34 Nickel      3.14 

Electrical Conductivity 1.76 Naphthalene 1.83 

Nickel 1.85 Iron 1.46 

Lead 1.94 Benzo(b)fluoranthene 1.43 

PH 1.01 Electrical Conductivity 1.63 

Iron 1.19 Fluoranthene 1.68 

Copper 0.91 pH      1.39 

Chromium 0.64 Indeno(1,2,3-cd)pyrene 1.34 

Cadmium 0.61 Dibenz(a,h)anthracene 1.17 

 

 

Looking in more detail at the ordination diagrams it is clear that sites containing naphthalene tolerant 

communities are predominantly associated with streams receiving motorway runoff.  The sites that 

have communities tolerant to one or more of the PAHs are associated with streams receiving runoff 

from mainly industrial land use or from heavily trafficked main ‘A’ roads. By contrast sites containing 

communities sensitive to PAH contamination are largely associated with control or lightly trafficked 

residential land uses.  Looking in detail at the macroinvertebrate families the plots show that 

Hydrophilidae, Physidae, Sphaeridae, Valvatidae, Erpobdellidae, and Asellidae are tolerant 
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indicator species for both metals and PAHs.  Leptoceridae, Leptophlebiidae, Ephemeridae, 

Hydrometridae and Philopotamidae are indicative of streams with very little contamination by 

either metals or PAHs. 

 

PCCA reveals that the variables recorded for this study are capable of explaining variations in 

macroinvertebrate community compositions moderately well, demonstrating the usefulness of the 

technique in relation to bed sediment quality.  Strong relationships are identified from the ordination 

diagrams and rankings for several variables, particularly zinc.  The ordination diagrams successfully 

differentiate community composition between sites and pick out indicator species for both metals 

and PAHs independently, and in combination.  

 

 

9.   DISCUSSION AND FUTURE DIRECTIONS 

 Despite evidence that metals and PAH contaminants pose a serious threats to stream ecology this 

review shows there is relatively little research which explicitly identifies contamination sources within 

catchments, bioavailable as distinct from total metal concentrations, or the importance of sediments 

in storing contaminants.  Heavy metals and PAHs are of concern because of their increasing release 

into the environment and their toxicity to aquatic fauna and flora. Trace metals, cobalt, copper, 

chromium, iron, manganese, nickel, molybdenum, selenium and zinc, are important micronutrients in 

plant and animal nutrition where they play an essential role in tissue metabolism and growth 

(Amundsen et al., 1997). But severe metal imbalances are toxic and marginal imbalances contribute 

to deformities and impede health.  
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Both metals and PAHs preferentially enrich fine particles because of their surface adsorption 

However, the chemical forms in which they exist determine the bioavailability of these contaminants.  

The chemical forms of heavy metals are governed by many factors that include their concentration, 

water hardness, presence and concentration of other metal ions, and organic ligands such as 

carbonates, and iron and manganese hydroxides.  There is a lack of information concerning the 

factors that influence the bioavailability of PAHs. 

 

Few studies have examinined specific metal toxicities on macroinvertebrates.  Laboratory research 

examining sub-lethal effects demonstrates deleterious changes in growth rates, enzyme activity and 

reproductive rates of macroinvertebrates subjected to low doses of nickel, copper and zinc.  Toxic 

concentrations have been found to differ for individual species and under different water chemistry.  

Similarly, there is considerable variation between species concerning lethal toxicity concentrations.  

Factors such as species life stage, exposure history, and origin in terms of stream order and altitude 

have been shown to be important in determining metal tolerance.  There is agreement in the literature 

that laboratory assays should be undertaken during a species’ early development stage and periods 

of moult, which are times of exceptional stress and sensitivity.  By doing so, guidelines would be set 

that are capable of effectively protecting macroinvertebrate species.  Declines in populations of all 

major taxon subjected to copper concentrations as low as 5 – 10 µg l
-1

 have been reported in the 

literature.  Similarly, zinc concentrations as low as 0.3 mg l
-1

 have been shown to reduce the 

offspring numbers and size of female Gammarus pulex. 

 

The aim of the field investigations was to explore relationships between streambed sediment 

contaminants and macroinvertebrate assemblages in a range of urban streams. The results of this 



 47 

 

research show the quality of streambed sediments is impaired generally and the importance of 

looking at both metal and oil contaminants together.  The sediments from nearly all the Yorkshire 

sites have lower BMWP and ASPT scores than the environment-based RIVPACS model forecast 

(Figure  2).  The sites below inputs collecting runoff from housing or roads all show reduced 

macroinvertebrate numbers. Heavy metals and PAHs are elevated in most sediments compared to 

the natural, pristine control sites.  With few exceptions total concentrations of both contaminant 

groups in descending order of concentration are motorways > industry > residential > pristine.  This 

order, and detailed variations within the data, suggests that vehicles are a major contributing source 

of contaminants but by no means the only source.   

 

Previous field studies typically show impoverished macroinvertebrate assemblages downstream of 

urban runoff discharge points and in streams subjected to mine drainage where there are elevated 

concentrations of heavy metals. The use of PCCA or CCA has identified copper as a major 

influence in determining the community composition. Maltby et al. (1995b) identified PAHs, copper 

and zinc as the major toxicants. In this study zinc and nickel are shown to be the more influential 

metals (Table 9).  This may be linked, in part, to the local geology but indicates also the importance 

of taking samples from a range of sites not just from anticipated problem areas.  Clearly this work 

would benefit from comparative studies at sites with alternative substrates.   

 

The use of ordination techniques identified a metal tolerance continuum identical to that revealed in 

laboratory toxicity experiments in the order Chironomidae > Trichoptera > Plecoptera > 

Ephemeroptera. This is encouraging but also points up the lack of  parallel research examining PAHs 

in association with metals. Their omission may mean the metal results are less informative about the 
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causes of impoverished macroinvertebrate assemblages. The PCCA analyses have explained 47% 

of the variation in macroinvertebrate assemblages in the Yorkshire dataset and the importance of 

looking at oils and metals together 

 

Ecological water quality has been qualitatively linked to road traffic flows, observations of oil leaks, 

braking and urbanisation factors for sites in Yorkshire. There is need for research on downstream 

persistence of urban runoff pollutants and into the long-term impacts of metal and oil contamination 

in streams that have a historic legacy of receiving CSOs, point source pollution. Such information 

concerning the severity and spatial extent of any downstream impairment is important for prioritising 

sub-catchments for control measures. These data should be integrated with a GIS holding traffic 

flow, car ownership, parking and more detailed land use information to more explicitly account for 

catchment and anthropogenic influences. Given that urban runoff is influenced by spatial factors 

relating to stream and catchment characteristics a GIS is the most appropriate tool for storing and 

analysing such data. A GIS based forecasting tool could further our understanding of the 

relationships between variables such as catchment size, catchment topography, vehicle flows, 

population densities, surrounding habitat quality and catchment hydrology with streambed sediment 

contamination and macroinvertebrate community compositions. 

 

There is a tension between the time and expense involved in detailed catchment studies, which can 

tease out the local relationships and the need to forecast at the larger scale.  In the long term these 

results could contribute towards the development of a RIVPACS type model for contaminated 

streams, but local studies are a fundamental step towards the more global model.  At present there is 
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a lack of local data that quantitatively links individual contaminants with specific catchment 

characteristics which impedes current forecasting.   
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