143,624 research outputs found
Laboratory investigation of daily food intake and gut evacuation in larvae of African catfish Clarias gariepinus under different feeding conditions
Abstract Temporary accumulation of ascorbic acid 2-sulfate (AAS) was measured to estimate food intake and gut evacuation in larvae of African catfish. Fish larvae were fed decapsulated cysts of Artemia containing AAS. In a first experiment it was found that no biosynthesis of AAS occurs in the larvae of this species. In a second experiment, the gut contents of the fish larvae fed were calculated as they changed during development. In a third experiment, the gut evacuation rate of fish larvae was determined during continuous and discontinuous feeding regimes in the first five days after the start of exogenous feeding. Food consumption by catfish larvae increased from 46.5% of their body dry weight (BDW) on day 1 after the start of exogenous feeding to 53.8% BDW on day 3. Thereafter, food consumption decreased to 27.8% BDW on day 5. A similar pattern was observed for gut evacuation, which increased during the first days of exogenous feeding and decreased as fish growth continued. The rate of gut evacuation in a continuous feeding regime was significantly higher (P <0.05) than that under discontinuous feeding. On day 1 post-hatch and 7 h after first food ingestion the fish larvae evacuated 87% of the food in continuous feeding compared with 43% under discontinuous feeding. It was found that gut emptying differs during larval development. Under continuous feeding, on days 1 and 3 post-hatch and 11 h after the first meal 90% of the food was evacuated compared with 71% evacuated on day 5. The advantages and limitations of the AAS method for estimation of food consumption by fish larvae are discussed
The distribution of estuarine fish larvae: nutritional condition and co-occurrence with predators and prey
Fish larvae were collected monthly between March and September 1997 in the Mira and Guadiana estuaries (southern Portugal). Hydrological parameters were registered and zooplankton samples were obtained simultaneously. Densities of fish larvae (ind.100 m(-3)) were calculated from 211 samples and larval nutritional condition measured as RNA/DNA ratios were obtained for 346 individuals, using a fluorimetric method for nucleic acid quantification. Correlating variables were further studied using multiple regression analysis in order to assess the relative importance of abiotic and biotic factors affecting within-year trends in abundance and nutritional condition of estuarine fish larvae. Results indicated that: 1) the abundance of fish larvae seems conditioned by temperature and predation; and 2) their nutritional condition is dependent on temperature and prey availability. Temperature is an important variable structuring estuaries and therefore conditions the behaviour and physiology of fish larvae. Furthermore, the co-occurrence of predators and larvae might be related to similar feeding patterns or comensalism. Whenever feeding conditions are suitable, they usually determine enhanced growth and nutritional condition. However, predation seems to control this latter relationship through its effect on larval mortality. (C) 2000 Editions scientifiques et Medicales Elsevier SAS.info:eu-repo/semantics/publishedVersio
Swimming abilities of temperate pelagic fish larvae prove that they may control their dispersion in coastal areas
The Sense Acuity and Behavioral (SAAB) Hypothesis proposes that the swimming capabilities and sensorial acuity of temperate fish larvae allows them to find and swim towards coastal nursery areas, which are crucial for their recruitment. To gather further evidence to support this theory, it is necessary to understand how horizontal swimming capability varies along fish larvae ontogeny. Therefore, we studied the swimming capability of white seabream Diplodus sargus (Linnaeus, 1758) larvae along ontogeny, and their relationship with physiological condition. Thus, critical swimming speed (U-crit) and the distance swam (km) during endurance tests were determined for fish larvae from 15 to 55 days post-hatching (DPH), and their physiological condition (RNA, DNA and protein contents) was assessed. The critical swimming speed of white seabream larvae increased along ontogeny from 1.1 cm s(-1) (15 DPH) to 23 cm s(-1) (50 and 55 DPH), and the distance swam by larvae in the endurance experiments increased from 0.01 km (15 DPH) to 86.5 km (45 DPH). This finding supports one of the premises of the SAAB hypothesis, which proposes that fish larvae can influence their transport and distribution in coastal areas due to their swimming capabilities. The relationship between larvae's physiological condition and swimming capabilities were not evident in this study. Overall, this study provides critical information for understanding the link between population dynamics and connectivity with the management and conservation of fish stocks.Funding Agency
Portuguese Foundation for Science and Technology
SFRH/BD/104209/2014
Portuguese Foundation for Science and Technology
UID/Multi/04326/2019
FCT, under the Transitional Norm
DL57/2016/CP[1361]/CT[CT0008
CLIMFISH project-A framework for assess vulnerability of coastal fisheries to climate change in Portuguese coast
n2/SAICT/2017-SAICTinfo:eu-repo/semantics/publishedVersio
Host reaction in paratenic fish hosts against 3rd stage larvae of Anguillicola crassus
Many fish species of Lake Balaton (Hungary) serve as paratenic hosts for the 3rd stage larvae of the eel parasite Anguillicola crassus. The incidence oi different phases of the host reaction varies with paratenic fish host but its nature is basically the same. The appearance of mononuclear cells around the larvae migrating in the tissues or in the abdominal cavity is regarded as a sign of cellular host reaction. The cells adhering to the surface of the larvae gradually assume an epithelioid shape and form a granuloma. With the advancement of the process the larvae and the epithelioid cells surrounding them undergo necrosis, and the granuloma becomes surrounded by a connective tissue capsule. In more chronic cases, the inside of the parasitic nodule surrounded by several layers of connective tissue is filled out by amorphous tissue and parasite debris. In the 'suitable paratenic hosts' Anguillicola sp. larvae not affected by the host's cellular reaction outnumber those affected by it, whereas in the 'less suitable paratenic hosts' the cellular reaction very rapidly forces the larvae into foci and destroys them
Recombinant DnaK orally administered protects axenic European sea bass against vibriosis
Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture and is a hindering factor for successful sustainable aquaculture of this commercially valuable species. Priming of the innate immune system through administration of immunostimulants has become an important approach to control disease outbreaks in marine fish larviculture. This study was conducted to evaluate immunostimulation by Escherichia coli HSP70 (DnaK) in axenic European sea bass larvae in order to protect the larvae against vibriosis. DnaK stimulates the immune response in crustaceans and juvenile fish against bacterial infections. The use of axenic fish larvae allows to study immunostimulation in the absence of an interfering microbial community. At 7 days post-hatching, larvae received a single dose of alginate encapsulated recombinant DnaK. Two non-treated control groups in which animals either received empty alginate microparticles (C1) or no alginante microparticles (C2 and C3) were included in the study. Eighteen hours later, all larvae, except the ones from group C3 (non-infected control) were challenged with V. anguillarum (10(5) CFU, bath infection). Mortality was daily recorded until 120 h post infection and at 18, 24, and 36 h post infection, larvae were sampled for expression of immune related genes. Results showed that V. anguillarum induced an immune response in axenic sea bass larvae but that the innate immune response was incapable to protect the larvae against deadly septicaemic disease. In addition, we showed that administration of alginate encapsulated DnaK to axenic European sea bass larvae at DAH7 resulted in a significant, DnaK dose dependent, upreglation of immune sensor, regulatory and effector genes. Significant upregulation of cxcr4, cas1 and especially of hep and dic was correlated with significant higher survival rates in V. anguillarum infected larvae. In the future recombinant DnaK might perhaps be used as a novel immunostimulant in sea bass larviculture
Lactoferrin Decreases the Intestinal Inflammation Triggered by a Soybean Meal-Based Diet in Zebrafish
Indexación: Web of ScienceIntestinal inflammation is a harmful condition in fish that can be triggered by the ingestion of soybean meal. Due to the positive costs-benefits ratio of including soybean meal in farmed fish diets, identifying additives with intestinal anti-inflammatory effects could contribute to solving the issues caused by this plant protein. This study evaluated the effect of incorporating lactoferrin (LF) into a soybean meal-based diet on intestinal inflammation in zebrafish. Larvae were fed with diets containing 50% soybean meal (50SBM) or 50SBM supplemented with LF to 0.5, 1, 1.5 g/kg (50SBM+LF0.5; 50SBM+LF1.0; 50SBM+LF1.5). The 50SBM+LF1.5 diet was the most efficient and larvae had a reduced number of neutrophils in the intestine compared with 50SBM larvae and an indistinguishable number compared with control larvae. Likewise, the transcription of genes involved in neutrophil migration and intestinal mucosal barrier functions (mmp9, muc2.2, and beta-def-1) were increased in 50SBM larvae but were normally expressed in 50SBM+LF1.5 larvae. To determine the influence of intestinal inflammation on the general immune response, larvae were challenged with Edwardsiella tarda. Larvae with intestinal inflammation had increased mortality rate compared to control larvae. Importantly, 50SBM+LF1.5 larvae had a mortality rate lower than control larvae. These results demonstrate that LF displays a dual effect in zebrafish, acting as an intestinal anti-inflammatory agent and improving performance against bacterial infection.http://www.hindawi.com/journals/jir/2016/1639720
Paratenic hosts for the parasitic nematode Anguillicola crassus in Lake Balaton, Hungary
A 1 yr study was conducted to determine which fish species may play a role in the life cycle of Anguillicola crassus in various habitats of Lake Balaton, Hungary. The prevalence and intensity of the larval infection of fish species acting as paratenic hosts was studied, and observations were made on the types of paratenic host reactions against larvae. With the exception of 1 species, all 20 fish species were infected by A. crassus larvae; however, the prevalence and intensity of infection varied widely. Six species (asp, white bream, Chinese rasbora, pike, river goby, European catfish), hitherto unreported as paratenic hosts, also proved to be infected by larvae in Lake Balaton. Of the 13 fish species examined in large numbers, ruffe and European catfish showed the highest prevalence of infection (100 %), followed by river goby (83 %), white bream (79 %) and bleak (68 %). Of these 13 fish species, ruffe showed the highest intensity of infection by live larvae (mean intensity: 39.3 3rd stage larvae, L3), followed by European catfish (mean number of live larvae: 26.9) and river goby (mean number of live larvae: 9.1). The mean number of live L3 in bleak, a species regarded as the principal food source for eels, was 4.1. Specimens containing only dead or both dead and live larvae were much more common in cyprinid fishes than in species belonging to other taxonomical entities. In these fish, the process of encapsulation and subsequent necrosis of live larvae could also be observed. With knowledge of the feeding habits of eels, it appears that bleak play the most important role in the transmission of anguillicolosis. Other intensively infected fish species (e.g. ruffe) may also contribute to massive infection of individual eels, even if they have a lower share in the eels' food structure
Effects of shear on eggs and larvae of striped bass, morone saxatilis, and white perch, M. americana
Shear stress, generated by water movement, can kill fish eggs and larvae by causing rotation or deformation. Through the use of an experimental apparatus, a series of shear
(as dynes/cm2)-mortality equations for fixed time exposures were generated for striped bass and white perch eggs and larvae. Exposure of striped bass eggs to a shear level of 350 dynes/cm2 kills 36% of the eggs in 1 min; 69% in 2 min, and 88% in 4 min; exposure of larvae to 350 dynes/cm2 kills 9.3% in 1 min, 30.0% in 2 min, and 68.1% in 4 min. A shear level of 350 dynes/cm2 kills 38% of the white perch eggs in 1 min, 41% in 2 min, 89% in 5 min, 96% in 10 min, and 98% in 20 min. A shear level of 350 dynes/cm2 applied to white perch larvae destroys 38% of the larvae in 1 min, 52% in 2 min, and 75% in 4 min. Results are experimentally used in conjunction with the determination of shear levels in the Chesapeake and Delaware Canal and ship movement for the estimation of fish egg and larval mortalities in the field
Quantification of the influence of drugs on zebrafish larvae swimming kinematics and energetics
The use of zebrafish larvae has aroused wide interest in the medical field for its potential role in the development of new therapies. The larvae grow extremely quickly and the embryos are nearly transparent which allows easy examination of its internal structures using fluorescent imaging techniques. Medical treatment of zebrafish larvae can directly influence its swimming behaviours. These behaviour changes are related to functional changes of central nervous system and transformations of the zebrafish body such as muscle mechanical power and force variation, which cannot be measured directly by pure experiment observation. To quantify the influence of drugs on zebrafish larvae swimming behaviours and energetics, we have developed a novel methodology to exploit intravital changes based on observed zebrafish locomotion. Specifically, by using an in-house MATLAB code to process the recorded live zebrafish swimming video, the kinematic locomotion equation of a 3D zebrafish larvae was obtained, and a customised Computational Fluid Dynamics tool was used to solve the fluid flow around the fish model which was geometrically the same as experimentally tested zebrafish. The developed methodology was firstly verified against experiment, and further applied to quantify the fish internal body force, torque and power consumption associated with a group of normal zebrafish larvae vs. those immersed in acetic acid and two neuroactive drugs. As indicated by our results, zebrafish larvae immersed in 0.01% acetic acid display approximately 30% higher hydrodynamic power and 10% higher cost of transport than control group. In addition, 500 μM diphenylhydantoin significantly decreases the locomotion activity for approximately 50% lower hydrodynamic power, whereas 100 mg/L yohimbine has not caused any significant influences on 5 dpf zebrafish larvae locomotion. The approach has potential to evaluate the influence of drugs on the aquatic animal’s behaviour changes and thus support the development of new analgesic and neuroactive drugs
- …
