967 research outputs found

    SMOQE: A System for Providing Secure Access to XML

    Get PDF
    XML views have been widely used to enforce access control, support data integration, and speed up query answering. In many applications, e.g., XML security enforcement, it is prohibitively expensive to materialize and maintain a large number of views. Therefore, views are necessarily virtual. An immediate question then is how to answer queries on XML virtual views. A common approach is to rewrite a query on the view to an equivalent one on the underlying document, and evaluate the rewritten query. This is the approach used in the Secure MOdular Query Engine (SMOQE). The demo presents SMOQE, the first system to provide efficient support for answering queries over virtual and possibly recursively defined XML views. We demonstrate a set of novel techniques for the specification of views, the rewriting, evaluation and optimization of XML queries. Moreover, we provide insights into the internals of the engine by a set of visual tools. 1

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    Type-Based Detection of XML Query-Update Independence

    Get PDF
    This paper presents a novel static analysis technique to detect XML query-update independence, in the presence of a schema. Rather than types, our system infers chains of types. Each chain represents a path that can be traversed on a valid document during query/update evaluation. The resulting independence analysis is precise, although it raises a challenging issue: recursive schemas may lead to infer infinitely many chains. A sound and complete approximation technique ensuring a finite analysis in any case is presented, together with an efficient implementation performing the chain-based analysis in polynomial space and time.Comment: VLDB201

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    XML access control using static analysis

    Get PDF

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Staircase Join: Teach a Relational DBMS to Watch its (Axis) Steps

    Get PDF
    Relational query processors derive much of their effectiveness from the awareness of specific table properties like sort order, size, or absence of duplicate tuples. This text applies (and adapts) this successful principle to database-supported XML and XPath processing: the relational system is made tree aware, i.e., tree properties like subtree size, intersection of paths, inclusion or disjointness of subtrees are made explicit. We propose a local change to the database kernel, the staircase join, which encapsulates the necessary tree knowledge needed to improve XPath performance. Staircase join operates on an XML encoding which makes this knowledge available at the cost of simple integer operations (e.g., +, <=). We finally report on quite promising experiments with a staircase join enhanced main-memory database kernel

    Feeds as Query Result Serializations

    Full text link
    Many Web-based data sources and services are available as feeds, a model that provides consumers with a loosely coupled way of interacting with providers. The current feed model is limited in its capabilities, however. Though it is simple to implement and scales well, it cannot be transferred to a wider range of application scenarios. This paper conceptualizes feeds as a way to serialize query results, describes the current hardcoded query semantics of such a perspective, and surveys the ways in which extensions of this hardcoded model have been proposed or implemented. Our generalized view of feeds as query result serializations has implications for the applicability of feeds as a generic Web service for any collection that is providing access to individual information items. As one interesting and compelling class of applications, we describe a simple way in which a query-based approach to feeds can be used to support location-based services

    Mapping Large Scale Research Metadata to Linked Data: A Performance Comparison of HBase, CSV and XML

    Full text link
    OpenAIRE, the Open Access Infrastructure for Research in Europe, comprises a database of all EC FP7 and H2020 funded research projects, including metadata of their results (publications and datasets). These data are stored in an HBase NoSQL database, post-processed, and exposed as HTML for human consumption, and as XML through a web service interface. As an intermediate format to facilitate statistical computations, CSV is generated internally. To interlink the OpenAIRE data with related data on the Web, we aim at exporting them as Linked Open Data (LOD). The LOD export is required to integrate into the overall data processing workflow, where derived data are regenerated from the base data every day. We thus faced the challenge of identifying the best-performing conversion approach.We evaluated the performances of creating LOD by a MapReduce job on top of HBase, by mapping the intermediate CSV files, and by mapping the XML output.Comment: Accepted in 0th Metadata and Semantics Research Conferenc
    corecore