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Access control policies for XML typically use regular path expressions such as XPath for specifying

the objects for access-control policies. However such access-control policies are burdens to the query

engines for XML documents. To relieve this burden, we introduce static analysis for XML access-

control. Given an access-control policy, query expression, and an optional schema, static analysis

determines if this query expression is guaranteed not to access elements or attributes that are

hidden by the access-control policy but permitted by the schema. Static analysis can be performed

without evaluating any query expression against actual XML documents. Run-time checking is

required only when static analysis is unable to determine whether to grant or deny access requests.

A side effect of static analysis is query optimization: access-denied expressions in queries can be

evaluated to empty lists at compile time. We further extend static analysis for handling value-based

access-control policies and introduce view schemas.
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1. INTRODUCTION

XML [Bray et al. 2004] has become an active area in the IT industry.
XPath [Clark and DeRose 1999] and XQuery [Boag et al. 2003] from the W3C
have come to be widely recognized as query languages for XML, and their imple-
mentations are actively in progress. In this paper, we are concerned with fine-
grained (element- and attribute-level) access control for XML database systems.

An earlier version [Murata et al. 2003] of this paper was presented at the 10th ACM Conference

on Computer and Communications Security (CCS), but it did not have value-based access control

or the view schemas shown in Sections 5 and 6, respectively. In addition, the performance of static

analysis has been significantly improved.
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We believe that access control plays an important role in XML database sys-
tems, as it does in relational database systems. XML access control is also
applicable to XML publish/subscribe systems and XML content management
systems among others. Some early experiences [Kudo and Hada 2000; Damiani
et al. 2000; Bertino et al. 2001] with access control for XML documents have
already been reported.

Access control for XML documents should ideally provide expressiveness as
well as efficiency, that is, (1) it should be easy to write fine-grained access-control
policies, and (2) it should be possible to efficiently determine whether access to
an element or an attribute is granted or denied according to those fine-grained
access-control policies. It is difficult to fulfill both of these requirements, since
XML documents have richer structures than relational databases. In particular,
access-control policies, query expressions, and schemas for XML documents are
required to handle an infinite number of paths, since there is no upper bound
on the height of XML document trees.

Existing languages [e.g., Kudo and Hada 2000; Damiani et al. 2000] for XML
access control achieve expressiveness by using XPath [Clark and DeRose 1999]
as a simple and powerful mechanism for handling an infinite number of paths.
For example, to deny accesses to name elements that are immediately or non-
immediately subordinate to article elements, it suffices to specify a simple
XPath expression //article//name as part of an access-control policy.

However, XPath-based access-control policies are additional burdens for
XML query engines. Whenever an element or attribute in some XML docu-
ment is accessed at run time, a query engine is required to check whether or
not this access is granted by the access-control policies. Since such accesses
are frequently repeated during query evaluation, naive implementations for
checking access-control policies can lead to unacceptable performance. Many
researchers have attempted to improve the performance of run-time checking
of access-control policies (see Section 3.3).

In this paper, we introduce static analysis as a new approach for XML access-
control. Static analysis examines access-control policies and query expressions
as well as schemas, if present. Unlike the run-time checking described above,
static analysis does not examine actual XML documents. Thus, static analysis
does not have to be repeated even when a query is evaluated many times or
when a query accesses many elements or attributes in the actual XML docu-
ments. Static analysis can often grant or deny access requests, thereby making
run-time checking unnecessary. Run-time checking is required only when static
analysis is unable to grant or deny access requests without examining the ac-
tual XML documents. Static analysis has two more advantages. First, it helps
programmers to make sure that their queries do not cause access-control er-
rors. Second, static analysis facilitates query optimization, since access-denied
XPath expressions in queries can be rewritten as empty lists at compile time.

The key idea for our static analysis is to use automata for representing and
comparing queries, access-control policies, and schemas. Our static analysis
has two phases. In the first phase, we create regular expressions or automata
from queries, access-control policies, and (optionally) schemas: (1) regular ex-
pressions created from queries, called query regular expression, represent paths
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to elements or attributes as accessed by these queries; (2) those created from
access-control policies, called access-control automata, represent paths to ele-
ments or attributes as exposed by these access-control policies; and (3) those
created from schemas, called schema automata, represent paths to elements
or attributes as permitted by these schemas. In the second phase, we compare
these regular expressions and automata while applying the following rules: (1)
accesses by queries are always granted if the intersection of the query regu-
lar expressions and the schema automata is subsumed by the access-control
automata; (2) they are always denied if the intersection of the query regular
expressions, schema automata, and access-control automata is empty; and (3)
they are statically indeterminate, otherwise.

After introducing static analysis, we extend our framework by introducing
view schemas. A view schema is derived from an original schema by enforcing
an access-control policy statically. Unlike the original schema, the view schema
allows only those elements or attributes that are exposed by the policy. Since
the view schema hides superfluous information about access-denied elements
or attributes, it is more programmer friendly than the original schema.

1.1 Related Works

Fine-grained access-control for XML documents has been studied by many re-
searchers [Bertino et al. 1999, 2001; Kudo and Hada 2000; Damiani et al.
2000; Gabillon and Bruno 2001]. Their access-control policies are similar to
ours. They all provide run-time checking of access-control policies, but do
not consider static analysis. Their algorithms for run-time checking all as-
sume that the XML documents are in the main memory and can be examined
repeatedly.

Several researchers (e.g., [Gottlob et al. 2002; Altinel and Franklin 2000;
Chan et al. 2002; Li and Moon 2001; Baeza-Yates and Navarro 2002]) have de-
veloped sophisticated techniques for evaluating XQuery or XPath expressions.
Such techniques include XPath evaluation algorithms [e.g., Gottlob et al. 2002],
stream processing [e.g., Altinel and Franklin 2000; Chan et al. 2002; Green et al.
2002; Barton et al. 2003], index files [e.g., Li and Moon 2001; Baeza-Yates and
Navarro 2002], and so forth.

Access control for an RDBMS is driven by views, which hide some informa-
tion (typically attributes in relations) in the RDBMS. Queries written by users
do not access-actual databases, but rather access these views. View-driven ac-
cess control is typically efficient, since view and user queries are optimized
together and then executed. In other words, access control is provided partly
by optimization at compile-time and partly by checking at run time.

Object-oriented database systems (OODBMS) provide richer structures than
RDBMSs or XML. In fact, an OODBMS can provide network structures and
class hierarchies. Access-control frameworks for OODBMSs have appeared in
the literature [Bertino 1992; Rabitti et al. 1991]. Such frameworks typically
rely on run-time checking and do not use static analysis.

Our static analysis for XML access-control is made possible by the tree-
structured nature of XML. First, the schemas for XML are regular tree
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grammars from which we can generate automata that represent the permis-
sible paths. Second, both access-control policies and queries for XML can use
regular path expressions (XPath) for locating elements or attributes. We can,
therefore, use those automata and regular expressions for uniformly handling
schemas, queries, and access-control policies.

The use of automata for XML is not new. Many researchers have used au-
tomata (string automata or tree automata) for handling queries, schemas,
patterns, or integrity constraints. Furthermore, recent works apply Boolean
operations (typically the intersection operation) to such automata. These works
include type checking [e.g., Hosoya and Pierce 2003; Draper et al. 2004], query
optimization using schemas [e.g., Fernández and Suciu 1998], query optimiza-
tion using views [e.g., Papakonstantinou and Vassalos 1999; Deutsch and
Tannen 2001; Miklau and Suciu 2004; Neven and Schwentick 2003; Wood 2003],
or consistency between integrity constraints and schemas [e.g., Fan and Libkin
2002]. Our static analysis uses similar techniques. However, to the best of our
knowledge, our static analysis is the first application of automata for XML
access control.

XPath containment [Deutsch and Tannen 2001; Miklau and Suciu 2004;
Neven and Schwentick 2003; Wood 2003] is similar to our static analysis, since
we compare XPath expressions for queries and those for access-control policies.
However, denial rules (shown in Section 3) in access-control policies require
that our static analysis apply the negation operation to automata and use both
over- and underestimation of access-control automata.

After the publication of an earlier version [Murata et al. 2003] of this paper,
Fan et al. [2004] and Luo et al. [2004] were published. Fan et al. [2004] in-
troduced view-based access-control for XML. Although their work is restricted
to DTDs and XPath, it uses view schemas for eliminating access-denied infor-
mation from schemas. Our view schemas are inspired by their work, but the
construction algorithm is entirely different. Luo et al. [2004] provides static
analysis similar to ours, but their implementation is significantly faster than
our previous result. We have borrowed one of their ideas for improving the
performance of our static analysis.

1.2 Outline

The rest of this paper is organized as follows. After presenting the fundamen-
tals of XML, schemas, XPath, and XQuery in Section 2, we introduce access-
control policies for XML documents in Section 3. We introduce static analysis in
Section 4 and then extend it to handle value-based access control in Section 5.
We then introduce view schemas in Section 6. In addition, we show a real-
world example and demonstrate the scalability of static analysis in Section 7.
In Section 8, we conclude.

2. PRELIMINARIES

In this section, we introduce the basics of XML, schema languages, XPath, and
XQuery.
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Fig. 1. An XML document example.

2.1 XML

An XML document consists of elements, attributes, and text nodes. These el-
ements collectively form a tree. The content of each element is a sequence of
elements or text nodes. An element has a set of attributes, each of which has a
name and a value. We hereafter use �E and �A as a set of tag names and that
of attribute names, respectively. To distinguish between the symbols in these
sets, we prepend “@” to symbols in �A.

An XML document representing a medical record is shown in Figure 1. This
XML document describes diagnosis and chemotherapy information for a certain
patient. Several comments have been inserted to this document. For the rest of
this paper, we use this document as a motivating example.

2.2 Schema

A schema is a description of permissible XML documents. A schema language is
a computer language for writing schemas. DTD, W3C XML Schema [Thompson
et al. 2001], and RELAX NG [Clark and Murata 2001] from OASIS (and now
ISO/IEC) are notable examples of schema languages.

We do not use any particular schema language in this paper, but rather
use tree regular grammars [Comon et al. 1997] as a formal model of schemas.
Murata et al. [2005] have shown that tree regular grammars can model DTD,
W3C XML Schema, and RELAX NG.1

A schema is a five tuple G = (N , �E , �A, S, P ), where:

— N is a finite set of nonterminals,

—�E is a finite set of element names,

—�A is a finite set of attribute names,

— S (start set) is a subset of �E × N ,

— P is a set of production rules X → r A, where X ∈ N , r is a regular expression
over �E × N , and A is a subset of �A.

1However, each schema language (most notably W3C XML Schema) has features that cannot be

precisely captured by tree regular grammars. For more about this, see Murata et al. [2005].
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Production rules collectively specify permissible element structures. We sep-
arate nonterminals and element names, since we want to allow elements of the
same name to have different subordinates depending on where these elements
occur. Although examples in this paper can be captured without separating
nonterminals and element names, W3C XML Schema and RELAX NG require
this separation. Unlike the definition in Murata et al. [2005], we allow produc-
tion rules to have a set of permissible attribute names.2

For the sake of simplicity, we do not allow schemas to specify constraints on
text nodes or attribute values. In the case of DTDs, this restriction amounts to
the confusion of #PCDATA and EMPTY.

A schema is said to be recursive if it does not impose any upper bound on
the height of XML documents. The above schema is recursive, since record
elements are allowed to nest freely. Since most schemas (e.g., XHTML and Doc-
Book) for narrative documents are recursive, our static analysis must handle
recursive schemas and an infinite number of permissible paths.

A limitation of our approach is the omission of simple types such as integers.
This omission is one of the reasons that our static analysis sometimes provide
indeterminate answers.

2.2.1 Example. A schema for our motivating example is G1 = (N1, �E
1 , �A

1 ,
S1, P1), where

N1 = {Record, Diag, Chem, Com, Patho, Presc},
�E

1 = {record, diagnosis, chemotherapy,
comment, pathology, prescription},

�A
1 = {@patientId, @type},

S1 = {record[Record]},
P1 = {Record → (diagnosis[Diag]∗,

chemotherapy[Chem]∗,
comment[Com]∗, record[Record]∗) {@patientId},

Diag → (pathology[Patho], comment[Com]∗) ∅,
Chem → (prescription[Presc]∗, comment[Com]∗) ∅,
Com → ε ∅, Patho → ε {@type}, Presc → ε ∅}.

An equivalent DTD is shown below.

<!ELEMENT record (diagnosis*,chemotherapy*,

comment*,record*)>

<!ATTLIST record patientID CDATA #REQUIRED>

<!ELEMENT diagnosis (pathology,comment*)>

<!ELEMENT chemotherapy (prescription*,comment*)>

<!ELEMENT comment (#PCDATA)>

<!ELEMENT pathology (#PCDATA)>

2RELAX NG provides a more sophisticated mechanism for handling attributes [Hosoya and Murata

2002].
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<!ATTLIST pathology type CDATA #REQUIRED>

<!ELEMENT prescription (#PCDATA)>

2.3 XPath

Given an XML document, we often want to locate certain elements by specify-
ing conditions on the elements and on their ancestor elements. For example,
we may want to locate all anchors (e.g., <a ...>...</a> in XHTML) occurring
in paragraphs (e.g., <p ...>...</p> in XHTML). In this example, “anchor” is a
condition on elements and “occurring in paragraphs” is a condition on ancestor
elements. Such conditions can easily be captured by regular path expressions,
which are regular expressions describing permissible paths from the root ele-
ment to elements or attributes.

XPath [Clark and DeRose 1999] provides a restricted variation of regular
path expressions. XPath is widely recognized in the industry and is used by
XSLT [Clark 1999] and XQuery. We focus on XPath in this paper, although our
framework is applicable to any regular path expression.

XPath uses axes for representing the structural relationships between nodes.
For example, the above example can be captured by the XPath expression
//p//a, where // is an axis called “descendant-or-self.” Although XPath pro-
vides many axes, we consider only three of them, namely, “descendant-or-self”
(//), “child” (/), and “attribute” (@) in this paper. Extensions for handling other
axes are discussed in Section 8. Namespaces and wild cards are outside the
scope of this paper, although our framework can easily handle them.

XPath allows conditions on elements to have additional conditions. For ex-
ample, we might want to locate foo elements such that their @bar attributes
have "abc" as the values. Such additional conditions are called predicates. This
example can be captured by the XPath expression //foo[@bar = "abc"], where
[@bar = "abc"] is a predicate.

2.4 XQuery

Several query languages for XML have recently emerged. Although they
have different query algebras, most of them use XPath for locating ele-
ments or attributes. Our framework can be applied to any query language
as long as it uses regular path expressions for locating elements or at-
tributes. However, we focus on XQuery [Boag et al. 2003] in the rest of this
paper.

FLWOR (For, Let, Where, Order by, Return) expressions are of central im-
portance to XQuery. A FLWOR expression consists of a FOR, LET, WHERE,
ORDER BY, and RETURN clause.

The FOR or LET clause associates one or more variables with XPath expres-
sions. By evaluating these XPath expressions, the FOR and LET clauses in a
FLWOR expression create tuples. The WHERE clause imposes additional con-
ditions on tuples. Those tuples not satisfying the WHERE clause are discarded.
The ORDER BY clause reorders the remaining tuples. Finally, for each of the
tuples in sequence, the RETURN clause is evaluated and a value or sequence
of values is returned.
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The following query lists the pathology-comment pairs for gastric cancer.

<TreatmentAnalysis>
{
for $r in document("medical_record")/record
where $r/diagnosis/pathology/@type

= "Gastric Cancer"
return
$r/diagnosis/pathology, $r//comment

}
</TreatmentAnalysis>

3. ACCESS CONTROL FOR XML DOCUMENTS

In this paper, access control for XML documents means element- and attribute-
level access control for a certain XML instance. Each element and attribute is
handled as a unit resource to which access is controlled by the corresponding
access-control policies. In the following sections, we use the term node-level
access-control when there is no need to separate the element-level access control
from the attribute-level access control.

3.1 Syntax of Access-Control Policy

The access-control policy consists of a set of access-control rules. Each rule
consists of an object (a target node), a subject (a human user or a user process),
an action, and a permission (grant or denial) meaning that the subject is (or is
not) allowed to perform the action on the object. The subject value is specified
using a user ID, a role, or a group name, but is not limited to these. For the
object value, we use an XPath expression. The action value can be either read,
update, create, or delete, but we deal only with the read action in this paper
because the current XQuery does not support other actions. The following is
the syntax of our access-control policy:3

(Subject, +/-Action, Object)

The subject has a prefix indicating the type of the subject, such as role and
group. “ +” means grant access and “−” means deny access. In this paper, we
sometimes omit specifying the subject if the subject is identical with the other
rules.

Suppose there are three access-control rules for the document described in
Section 2.1:

Role: Doctor
+R, /record

Role: Intern
+R, /record
-R, //comment

3The syntax of the policy can be represented in a standardized way using XACML [Godik and

Moses (Eds) 2003], but we use our syntax for simplicity.
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Each rule is categorized by the role of the requesting subject. The first rule
says that “Doctor can read record elements.” The second rule says that “Intern
can read record elements.” The third rule says that “Intern cannot read any
comment elements,” because commentnodes may include confidential information
and should be hidden from access by Intern. (Please refer to Section 3.2 for more
precise semantics.)

3.1.1 Using X Path for XML access control. Many reports [Kudo and Hada
2000; Damiani et al. 2000; Bertino et al. 2001; Gabillon and Bruno 2001] on
the node-level access control for XML documents use XPath to locate the target
nodes in the XML documents.

There are a couple of reasons why we use XPath for our access-control policy.
First, XPath provides a sufficient number of ways to refer to the smallest unit of
an XML document structure, such as an element, an attribute, a text node, or a
comment node. Therefore, it allows a policy writer to write a policy in a flexible
manner (e.g., grant access to a certain element but deny access to the enclosing
attributes). In this paper, for simplicity, we limit target nodes of the policy to
only the elements and attributes. We assume that other nodes, such as text and
comment nodes, are governed by the policy associated with the parent element.

Second, it is often the case that the access to a certain node is determined
by a value in the target XML document. For a medical record, a patient may
be allowed to read his or her own record, but not another patient’s record.
Therefore, the access-control policy should provide a way to represent a nec-
essary constraint on the record. By using an XPath predicate expression,
such a policy could be specified as (Role:patient, +R, /record[@patientId =
$userid]).4 This policy says that the access to a record element and its subor-
dinates is allowed if the value of the patientId attribute is equal to the user ID
of the requesting subject. We use the term value-based access control to refer
to an access-control policy (or rule) that includes such an XPath predicate that
references a value. Given value-based policies, our static analysis sometimes,
but not always, provide determinate answers (i.e., “always granted” or “always
denied”), as shown in Section 5.

Powerful predicates of XPath allow more sophisticated access-control poli-
cies. For example, (Role:somebody, +r, //x[foo/@a = bar/@b]) allows the ac-
cess to an x element when the value of the a attribute of some foo child element
is equal to the value of the b attribute of some bar child element. Given such
sophisticated policies, our static analysis typically provides indeterminate an-
swers, thus requiring run-time checking.

3.2 Semantics of Access-Control Policy

Access-control policies, in general, should satisfy the following requirements:
succinctness, least privilege, and soundness. Succinctness means that the policy
semantics should provide a way to specify a smaller number of rules rather than
to specify rules on every single node in the document. Least privilege means

4We use a variable $user id to refer to the identity of the requesting user in the access-control

policies.
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Fig. 2. The XML document that Intern can see.

that the policy should grant the minimum privilege to the requesting subject.
Soundness means that the policy evaluation must always generate either a
grant or a denial decision in response to any access request.

To satisfy the above requirements, we adopt the “denial-takes-precedence”
principle5 and define the semantics of our access-control policies as follows:

1. An access-control rule with +R or -R (capital letter) propagates downward
through the XML document structure. An access-control rule with +r or -r
(small letter) does not propagate and just describes the rule on the specified
node.

2. A rule with denial permission for a node overrules any rules with grant
permission for the same node.

3. If no rule is associated with a certain node, the default denial permission “-”
is applied to that node.

Now we informally describe an algorithm to generate an access decision ac-
cording to the above definitions. First, the algorithm gathers every grant rule
with +r and marks “+” on the target nodes referred to by the XPath expression.
If the node type is an element, the algorithm marks “+” on immediate children
nodes (e.g., a text and comment nodes), except for the attributes and the ele-
ments. It also marks a “+” on all the descendant nodes if the action is R. Next,
the algorithm gathers the remaining rules (denial rules) and marks “-” on the
target nodes in the same way. The “-” mark overwrites the “+” mark if any.
Finally, the algorithm marks “-” on every node that is not yet marked. This
operation is performed for each subject and action independently.

For example, the access-control policy in Section 3.1 is interpreted as follows:
The first rule marks the entire tree with “+” and, therefore, Doctor is allowed
to read every node (including attributes and text nodes) equal to or below any
record element. The second and third rules are policies for Intern. The second
rule marks the entire tree with “+” as the first rule does and the third rule
marks comment elements and subordinate text nodes with “-,” which overwrites
+marks. Thus, three comment elements and text nodes are determined as “access
denied.” The XML document that Intern can see is shown in Figure 2.

5We could adopt the “grant-takes-precedence” principle. That is, we could make grant rules overrule

denial ones and use the default grant permission “+.” In Section 4, we show how our static analysis

is modified accordingly.
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A rule that uses +R or -R can be converted to the rule with +r or -r. For
example, (Sbj, +R,/a) is semantically equivalent to a set of three rules: (Sbj,
+r,/a), (Sbj, +r,/a//*), and (Sbj ,+r,/a//@*). Thus, +R and -R are techni-
cally syntactic sugar, but enable a more succinct representation of the policy
specification.

3.3 Run-Time Checking of Access-Control Policies

For the integration of access control and query processing, we assume that if
there are access-denied nodes in a target XML document, the query processor
behaves as if they do not exist in the document.6

We will now explain how the semantics described above are enforced by the
access-control system at run-time. The sample scenario is the following: When-
ever an access to a node (and its descendant nodes) is requested, the node-level
access controller makes an access decision on each node. The controller first
retrieves the access-control rules applicable to the requested node(s). The con-
troller then computes the access decision(s) according to the rules and returns
grant or denial for each node. A naive implementation of this scenario can lead
to poor performance, since the XPath expressions in the rules are evaluated
whenever a node is accessed. Many researchers (including the third author
of the present paper) have attempted to improve the performance of run-time
checking. Some create index files or other data structures from XML docu-
ments and access-control policies in advance, and use them for efficient run-
time checking. Others [Naishin Qi 2005] convert access-control policies to other
devices, which can be efficiently evaluated when an XML document is given.

Our static analysis is not intended to entirely eliminate run-time checking,
but rather intended to complement it. When static analysis cannot provide
determinate answers, we rely on run-time checking.

4. STATIC ANALYSIS

In this section, we introduce our framework for static analysis. The key idea
is to use automata for comparing schemas, access-control policies, and regular
query expressions.

Figure 4 depicts an overview of our static analysis. Static analysis has four
steps:

Step 1: Creating schema automata from schemas

Step 2: Creating access-control automata from the access-control policies

Step 3: Creating query regular expressions from the XQuery queries

Step 4: Comparing the schema automata, access-control automata, and query
regular expressions

Schema automata represent paths to elements or attributes as permitted by
the schemas. Access-control automata represent paths to elements or attributes

6Another semantic model is to raise an access violation error whenever the query processor en-

counters an access-denied node. With the exception of query optimization in Section 4.6, our static

analysis and view schemas are applicable to this semantic model as well.
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Fig. 3. Framework of the analysis. Summary of Steps 1 thru 4.

as exposed by the access-control policies. Query regular expressions represent
paths to elements or attributes as accessed by the queries.

When schemas are not available, we skip Step 1 and do not use the schema
automata in Step 4.

4.1 Automata and XPath Expressions

In preparation, we introduce automata and show how we capture XPath ex-
pressions by using automata. Note that automata in this paper are not tree
automata but rather traditional automata, which accept strings.

A nondeterministic finite state automaton (NFA) M is a tuple (�, Q , Q init,
Qfin, δ), where � is an alphabet, Q is a finite set of states, Q init ⊆ Q is a set of

ACM Transactions on Information and System Security, Vol. 9, No. 3, August 2006.



304 • M. Murata et al.

initial states, Qfin ⊆ Q is a set of final states, and δ is a transition function from
Q × � to the power set of Q [Hopcroft and Ullman 1979]. The set of strings
accepted by M is denoted L(M ).

Recall that we have allowed only three axes of XPath (see Section 2.3). This
restriction allows us to capture XPath expressions with automata. As long as an
XPath expression contains no predicates, we can easily construct an automaton
from it. We first create a regular expression by replacing “/” and “//” with “·” and
“· (�E )∗·,” respectively, where “·” denotes the concatenation of two regular sets,
and then create an automaton from this regular expression. The constructed
automaton accepts a path if, and only if, it matches the XPath expression.

When an XPath expression r contains predicates, we cannot capture its se-
mantics exactly by using an automaton. However, we can still approximate r by
constructing an overestimation r and an underestimation r and then construct
automata for them. To construct r, we assume that predicates are always satis-
fied. That is, r is created by removing all of the predicates from r. Obviously, r
accepts all paths matching r and may accept other paths (overestimation). For
example, if r is /record[. . . ], then L(r) = {/record}.

Meanwhile, to construct r, we assume that the predicates occurring in r are
never satisfied. That is, if some step in r contains one or more predicates, r is
(), which is an XPath 2.0 expression denoting the empty set (underestimation).
If no steps in r contain any predicates, r is r. For example, if r is /record[...],
then L(r) is the empty set.

As a special case, when r does not contain any predicates, r is identical to r,
and we simply write r to denote either expression.

4.2 Step 1: Creating Schema Automata

Since we are interested in permissible paths rather than permissible trees, we
construct a schema automaton from a schema. A schema automaton accepts
permissible paths rather than permissible documents.

Let G = (N , �E , �A, S, P ) be a schema. To construct a schema automaton
from G, we use all nonterminals (i.e., N ) of G as final states. We further intro-
duce an additional final state qfin and a start state qini. Formally, the schema
automaton for G is

M G = (�E ∪ �A, N ∪ {qini, qfin}, {qini}, N ∪ {qfin}, δ),

where δ is a transition function from (N ∪ {qini, qfin}) × (�E ∪ �A) to the power
set of N ∪ {qini, qfin} such that

δ(x, e) = {x ′ | e[x ′] occurs in r for some x → rA in P} ∪ {x ′ | x = qini, e[x ′] ∈ S},
δ(x, a) = {qfin | a ∈ A for some x → r A in P},
where e is an element name in �E and a is an attribute name in �A.

For example, consider the example schema in Section 2. The schema automa-
ton for this schema is

M G = (�E ∪ �A, N ∪ {qini, qfin}, {qini}, N ∪ {qfin}, δ)
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where

�E = {record, diagnosis, chemotherapy, comment,
pathology, prescription},

�A = {@type},
N = {Record, Diag, Chem, Com, Patho, Presc},
δ(qini, record) = {Record}, δ(Record, diagnosis) = {Diag},
δ(Record, chemotherapy) = {Chem}, δ(Record, comment) = {Com},
δ(Record, record) = {Record}, δ(Diag, pathology) = {Patho},
δ(Diag, comment) = {Com}, δ(Chem, prescription) = {Presc},
δ(Chem, comment) = {Com}, δ(Patho, @type) = {qfin}.

Observe that this automaton accepts the following paths.

/record,
/record/comment,
/record/diagnosis,
/record/diagnosis/pathology,
/record/diagnosis/pathology/@type,
/record/diagnosis/comment,
/record/chemotherapy,
/record/chemotherapy/prescription,
/record/chemotherapy/comment,
/record/record,
/record/record/comment,...
/record/record/record,
/record/record/record/comment,...

Since the example schema in Section 2 allows record elements to nest freely,
this automaton allows an infinite number of paths.

4.3 Step 2: Creating Access-Control Automata

An access-control policy consists of rules, each of which applies to some roles.
For each role, we create a pair of automata: an underestimation access-control
automaton and an overestimation access-control automata. This pair captures
the set of those paths to elements or attributes that are exposed by the access-
control policy.

In preparation, we replace +R and −R rules with +r and −r rules, respec-
tively (see Section 3.2). Let r1, . . . , rm be the XPath expressions occurring in
the grant rules (+r) and let r ′

1, . . . , r ′
n be the XPath expressions occurring in the

denial rules (-r).
We first assume that none of r1, . . . , rm, r ′

1, . . . , r ′
n contain predicates. Re-

call that we interpret the policy according to the “denial-takes-precedence”
principle7 M� accepts those paths, which are allowed by one of r1, . . . , rm, but

7If we adopt the “grant-takes-precedence” principle, M� is modified as follows:

L(M�) = L(M [r1]) ∪ · · · ∪ L(M [rm]) ∪ ¬ (L(M [r ′
1]) ∪ · · · ∪ L(M [r ′

n]))

The rest of our static analysis remains the same.
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are denied by any of r ′
1, . . . ., r ′

n. Formally,

L(M�) = (L(M [r1]) ∪ · · · ∪ L(M [rm])) \ (L(M [r ′
1]) ∪ · · · ∪ L(M [r ′

n]))

where � = �E ∪ �A and “\” denotes the set difference. We can construct M�

by applying Boolean operations to M [r1], . . . , M [rm], M [r ′
1], . . . , M [r ′

n].
We demonstrate this construction for the access-control policy in Section 3.1.

For the role Intern, this policy contains a grant rule and a denial rule, both of
which propagate downward. The grant rule contains an XPath /record, while
the denial rule contains an XPath //comment. Thus,

L(M�) = {record}· (�E )∗· (�A ∪ {ε}) \ (�E )∗· {comment}· (�E )∗· (�A ∪ {ε})
Now, let us consider the case that predicates occur in r1, . . . , rm, r ′

1, . . . , r ′
n.

Since predicates cannot be captured by automata, we have to construct an over-
estimation access-control automaton M� as well as an underestimation access-
control automaton M�. Rather than exactly accepting the set of exposed paths,
these automata overestimate and underestimate this set, respectively. Observe
that L(M [r1]), . . . , L(M [rm]) are positive atoms and L(M [r ′

1]), . . . , L(M [r ′
n]) are

negative atoms in the above equation. To construct an under estimation access-
control automaton M�, we underestimate positive atoms and overestimate neg-
ative atoms. On the other hand, to construct an overestimation access-control
automaton M�, we overestimate positive atoms and underestimate negative
atoms. Formally,

L(M�) = (L(M [r1]) ∪ · · · ∪ L(M [rm])) \ (L(M [r ′
1]) ∪ · · · ∪ L(M [r ′

n]))

L(M�) = (L(M [r1]) ∪ · · · ∪ L(M [rm])) \ (L(M [r ′
1]) ∪ · · · ∪ L(M [r ′

n]))

Again, we can construct M� and M� by applying Boolean operations to the
automata occurring in the right-hand side of the above equations.

Suppose that the grant rule and denial rules in the example policy use
/record[...] and //comment[...], respectively. Then,

L(M�) = ∅· (�E )∗· (�A ∪ {ε}) \ (�E )∗· {comment}· (�E )∗· (�A ∪ {ε})
= ∅,

L(M�) = {record}· (�E )∗· (�A ∪ {ε}) \ (�E )∗· ∅· (�E )∗· (�A ∪ {ε})
= {record}· (�E )∗· (�A ∪ {ε})

4.4 Step 3: Creating Query Regular Expressions from the XQuery Queries

Given a FLWOR expression of XQuery, we first extract the XPath expressions
occurring in it. If an XPath expression contains variables, we replace each of
them with the XPath expression associated with that variable.

It is important to distinguish XPath expressions in RETURN clauses and
those in other (FOR, LET, ORDER, and WHERE) clauses. XPath expressions in
FOR, LET, ORDER, or WHERE clauses examine elements or attributes, but do
not access their subordinate elements. On the other hand, XPath expressions
in RETURN clauses return subtrees including subordinate elements and
attributes.
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Let us create a query regular expression Er for each r of the extracted XPath
expressions. If r occurs in a FOR, LET, ORDER, or WHERE clause, then Er

is a regular expression created from r. Observe that we overestimate r, since
we would like to err on the safe side in our static analysis. When r occurs in
a RETURN clause, we want to capture those paths which reference to descen-
dants of nodes matching r. Thus, Er is created by appending · (�E )∗· (�A ∪ {ε})
to the regular expression created from r.

As an example, consider the XQuery expression given in Section 2.4. From
this XQuery expression, we extract the following XPath expressions. Observe
that the variable $r is expanded.

FOR-LET-ORDER-WHERE:

/record
/record/diagnosis/pathology/@type

RETURN.
/record/diagnosis/pathology
/record//comment

Let r be the query regular expression for /record//comment, which is the
second XPath expression occurring in the RETURN clause. Then, Er accepts
/record/comment, /record/comment/@type, /record/comment/record, /record/
comment/diagnosis, and so forth.

It is not always possible to extract a finite set of XPath expressions from
a given XQuery query, since the query may be recursive or invoke itself for
different nodes. Such recursive queries cannot be handled by our static analysis.

4.5 Step 4: Comparing the Schema Automata, Access-Control Automata,
and Query Regular Expressions

We are now ready to compare schema automata, access-control automata, and
query regular expressions. For simplicity, we first assume that predicates do
not appear in the access-control policy.

The XPath expression r is always granted if every path accepted by both
the query regular expression Er and schema automaton M G is accepted by the
access-control automaton M�, that is,

L(Er ) ∩ L(M G) ⊆ L(M�)

However, we use an equivalent formula shown below, since it can be much
more efficiently tested (see Appendix).

L(Er ) ∩ (L(M G) \ L(M�)) = ∅
When schemas are unavailable, we assume that M G allows all paths and

examine whether

L(Er ) ∩ (¬L(M�)) = ∅
where ¬ denotes the complement set.
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The XPath expression r is always denied if no path is accepted by all of
the query regular expression Er , schema automaton M G , and access-control
automaton M�. That is,

L(Er ) ∩ L(M G) ∩ L(M�) = ∅
When schemas are unavailable, we examine whether

L(Er ) ∩ L(M�) = ∅
The path expression r is statically indeterminate if it is neither always

granted nor always denied.
As an example, we use the XQuery expression in Section 2.4, the DTD in

Section 2.2, and the access-control policy in Section 3.1. We have already con-
structed a schema automaton in Section 4.2, an access-control automaton in
Section 4.3, and a query automaton for /record//comment in Section 4.4. It
can be easily seen that L(Mr ) ∩ L(M G) is a singleton set containing /record/
comment and that L(M�) does not contain this path. Thus, the last XPath ex-
pression ($r//comment) in the example query is always denied.

When predicates appear in the access-control policy, we have to use M� and
M� rather than M�. We use an underestimation M� when we want to deter-
mine whether or not a query is always granted. That is, we examine whether

L(Er ) ∩ (L(M G) \ L(M�)) = ∅
When schemas are unavailable, we examine whether

L(Er ) ∩ (¬L(M�)) = ∅
Likewise, we use an overestimation M� when we determine whether or not a
path expression is always denied. That is, we examine whether

L(Er ) ∩ (L(M G) ∩ L(M�)) = ∅
When schemas are unavailable, we examine if

L(Er ) ∩ L(M�) = ∅

4.6 Query Optimization

When an XPath expression r in a XQuery expression is always denied, we can
replace r by an empty list. This rewriting makes it unnecessary to evaluate
r as well as unnecessary to perform run-time checking of the access-control
policy for r, and may trigger further optimizations if we have an optimizer for
XQuery.

Recall our example XQuery expression in Section 2.4. When the role is Doc-
tor, static analysis reports that every XPath expression is always granted.
Run-time checking is thus unnecessary. If the role is Intern, static analysis
reports that the last XPath expression is always denied. We can thus rewrite
the query as follows. Observe that comments are not returned by this rewritten
query.
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<TreatmentAnalysis>

{

for $r in document("medical_record")/record

where $r/diagnosis/pathology/@type="Gastric Cancer"

return

$r/diagnosis/pathology

}

</TreatmentAnalysis>

5. VALUED-BASED ACCESS CONTROL

In this section, we extend static analysis to handle value-based access
control.

Value-based access-control requires that XPath expressions in the access-
control policy contain predicates, which, in turn, contain values. Query expres-
sions may also use XPath predicates containing values. We have approximated
such access-control policies and query expressions by creating underestima-
tion and overestimation automata. However, these approximations make some
queries statically indeterminate.

For example, recall the example of value-based access-control policy in
Section 3.1.1. That access-control policy is shown again here.

Role: patient
+R, /record[@patientId = $userid]

Suppose that a patient wants to issue this query:

<AboutMe>

{

for $r in document("medical_record")/record[@patientId = $userid]

return

$r/diagnosis

}

</AboutMe>

It is obvious that this query does not access those elements or attributes
that are hidden by the access-control policy. However, our static analysis
fails to report that the query is always granted. The reason is over- and
underestimation. As we have already seen in Section 4.3, the underestima-
tion access-control automata accepts no paths; i.e., L(M�) = ∅. On the other
hand, the query regular expression Er for /record[@patientId = $userid] in
the FOR clause is computed by overestimation, i.e., L(Er ) = {record}. Thus,
L(Er ) ∩ (L(M G) \ L(M�)) = ∅ does not hold.

However, when an access-control policy and a query expression specify
the same predicate, we can incorporate it into the underlying alphabet. In
the above example, if we consider record[@patientId = $userid] as a “sym-
bol” (say ownRecord), we have L(M�) = {ownRecord}· (�E )∗· (�A ∪ {ε}) and
L(Mr ) = {ownRecord}, thus ensuring L(Er ) ∩ (L(M G) \ L(M�)) = ∅.
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On the basis of this observation, we extend our static analysis for handling
value-based access control. This extension is effected as a preprocessing step
before executing Steps 1 thru 4, as shown in Section 4.

1. First, we find “symbols” from the access-control policy and query. For each
tag name t, we try to find a predicate p such that

—t[p] appears in both of the access-control policy and query,
—t[not(p)] appears in both of the access-control policy and query,
—t[p] appears in the access-control policy while t[not(p)] appears in the

query, or
—t[not(p)] appears in the access-control policy while t[p] appears in the

query.

2. Second, we introduce symbols t1 and t2 for capturing t[p] and t[not(p)], re-
spectively.

3. Third, we rewrite the schema. This is done by replacing t with t1 and
t2. Formally, we replace each t[x] in the production rules with t1[x] |
t2[x].

4. Fourth, we rewrite the access-control policy and query. We replace t with-
out predicates by t1 | t2, and replace t[p] and t[not(p)] with t1 and t2,
respectively.

As an example, let us consider the schema in Section 2.2 as well as the access-
control policy and query shown above. First, we find record[@patientId =
$userid] in this access-control policy, and choose this and record[not
(@patientId = $userid)] as “symbols,” denoted by record1 and record2,
respectively.

Second, we rewrite the schema in Section 2.2 as G2 = (N2, �E
2 , �A

2 , S2, P2),
where

N2 = {Record, Diag, Chem, Com, Patho, Presc},
�E

2 = {record1, record2, diagnosis, chemotherapy,
comment, pathology, prescription},

�A
2 = {@patientId, @type},

S2 = {record1[Record] | record2[Record]},
P2 = {Record → (diagnosis[Diag]∗,

chemotherapy[Chem]∗,
comment[Com]∗,
(record1[Record] | record2[Record])∗ {@patientId},

Diag → (pathology[Patho], comment[Com]∗) ∅,
Chem → (prescription[Presc]∗,

comment[Com]∗) ∅,
Com → ε ∅, Patho → ε {@type}, Presc → ε ∅}

Third, we rewrite the access-control policy as

Role: patient
+R, /record1/diagnosis
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and further rewrite the query as

<AboutMe>

{

for $r in document("medical_record")/record1

return

$r/diagnosis

}

</AboutMe>

The rest of static analysis is straightforward. The access-control automa-
ton M� accepts {record1}· (�E )∗· (�A ∪ {ε}). The query automaton Mr for
the XPath expression /record1 in the FOR clause accepts {record1} and
the query regular expression Er ′

for the XPath expression $r/diagnosis in
the RETURN clause accepts {record1}· (�E )∗· (�A ∪ {ε}), respectively. Since
L(Mr )∩(L(M G)\ L(M�)) = ∅ and L(Mr ′

)∩(L(M G)\ L(M�)) = ∅ obviously hold,
our static analysis can successfully report that the query is always granted.

In this example, the rewritten access-control policy and the query do not have
predicates and, thus, we did not need over- or underestimation. However, the
preprocessing for value-based access control does not always eliminate predi-
cates completely. Thus, we may still need over- and underestimation, but these
estimation are made more proper.

Our preprocessing technique may lead to indeterminate results when values
are not normalized. For example, consider another policy shown below:

Role: patient
+R, /record[@patientId = "100"]

This policy specifies "100" as the value of the attribute parentId. Meanwhile,
the following query specifies " 0100."

<AboutMe>

{

for $r in document("medical_record")/record[(@patientId = " 0100 ")]

return

$r/diagnosis

}

</AboutMe>

Since "100" are "0100" are different values, our preprocessing fails to find
common “symbols.” Thus, our static analysis has to rely on over- and underes-
timation, thereby failing to report that the new query is always granted.

To remedy this problem, values in documents, queries, and access-control
policies have to be normalized in advance. Several XML normalizations [Boyer
2001; Atkinson 2002] are already available.

6. VIEW SCHEMA

Hitherto we have concentrated on static access control, which eases the burden
of run-time access control. In this section, we address a different, but equally
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important problem. Specifically, we attempt to help the programmer by elimi-
nating superfluous information from schemas.

Recall that a schema defines the set of permissible XML documents in terms
of elements, attributes, and their structural relationships. When access control
is present, however, the elements or attributes permitted by the schemas are not
always accessible to the programmer. In other words, the exposed documents
are different from the documents permitted by the schema. Such a schema is
not only confusing, but may also allow malicious programmers to guess hidden
information [Fan et al. 2004].

To overcome this problem, we derive a view schema from an input schema.
A view schema is equivalent to the input schema, except that it does not allow
those elements and attributes that are hidden by the policy.

The key idea for constructing view queries is to simulate the execution of
the access-control automaton, as well as the derivation of the schema.8 This is
done by using (nonterminal, state) pairs as “nonterminals,” where nonterminals
are taken from the schema and states are borrowed from the access-control
automaton. Observe that a “nonterminal” comprising a nonfinal state is used
only for deriving access-denied elements or attributes. A view schema can then
be obtained by renaming access-denied elements and deleting access-denied
attributes.

Formally, the view schema G� is defined as follows. Let the access-control
automaton M� be a deterministic automaton (�A ∪ �E , Q , q0, δ, Q F ), where
q0 ∈ Q , Q F ⊆ Q , and δ is a function from Q × (�A ∪ �E ) to Q . We first
construct the product of G and M� as below:

1. The set of nonterminals is the cross product of the nonterminal set N of G
and the state set Q of M�.

2. The underlying alphabets (namely, �E and �A) for elements and attributes
are borrowed from G, but terminals not appearing in any production rules
or start sets are deleted.

3. The start set is constructed from S as well as q0 and δ; for every e[x] in S, we
introduce e[(x, δ(q0, e))], where δ(q0, e) simulates the execution of M� from
q0 via e.

4. The set of production rules is constructed from P as well as δ. For every
production rule x → r A of G and every state q in M�, a production rule is
introduced. Its left-hand side is (x, q) and its right-hand side is obtained by
replacing each e[x ′] in r with e[(x ′, δ(q, e))], which simulates the execution of
M� from q via e.

5. Element or attribute names not appearing in any production rules are
removed.

To create a view schema from this product, we only have to make the access-
denied elements and attributes invisible. First, we rename elements that leads
M� to nonfinal states. The new names for invisible elements are accessDenied.
Second, we delete attributes that leads M� to nonfinal states.

8This approach is a special case of the schema transformation shown by the first author in Murata

[2001].
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We now formally introduce view schemas. Let

eq =
{

e (δ(q, e) ∈ Q F )

accessDenied (otherwise).

A view schema is

G� = (N ′, (�E )′, (�A)′, S′, P ′)

where:

N ′ = N × Q ,

S′ = {eq[(x, q)] | e[x] ∈ S, q = δ(q0, e), q ∈ Q F },
P ′ = {(x, q) → r ′ A′ | x → r A ∈ P, q ∈ Q ,

r ′ is the regular expression obtained from r by replacing

each e[x] occurring in r with eq[(x, δ(q, e))], and

A′ = {a ∈ A | δ(q, a) ∈ Q F } },
(�E )′ = {e ∈ �E ∪ {accessDenied} | e occurs in S′ or P ′},
(�A)′ = {a ∈ �A | a occurs in P ′}.

6.1 Example

A view schema for our motivating example is G1 = (N1, �E
1 , �A

1 , S1, P1), where

N1 = {Record1, Diag1, Chem1, Com1, Patho1, Presc1},
�E

1 = {record, diagnosis, chemotherapy,
pathology, prescription, accessDenied},

�A
1 = {@patientId, @type},

S1 = {record[Record1]},
P1 = {Record1 → (diagnosis[Diag1]∗,

chemotherapy[Chem1]∗,
accessDenied[Com1]∗, record[Record1]∗) {@patientId},

Diag1 → (pathology[Patho1]∗, accessDenied[Com1]∗) ∅,
Chem1 → (prescription[Presc]∗1, accessDenied[Com1]∗) ∅,
Com1 → ε ∅, Patho1 → ε {@type}, Presc1 → ε ∅}.

Note that the tag name comment is replaced with accessDenied in this view
schema, since our access-control policy (shown in Section 3) has a denial rule
(-R, //comment).

One might argue that accessDenied elements in view schemas hamper read-
ability and that they be removed from the view schema. Indeed, we could have
removed accessDenied elements from the previous view schema. However, since
access-denied elements may have access-granted elements as descendants, we
cannot remove accessDenied elements always. Only when the access-control
policy satisfies denial downward consistency (i.e., it does not deny the access
to elements without denying the access to their descendants as well), we can
safely remove accessDenied elements from view schemas.
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7. EXPERIMENTS

We have implemented our static analysis algorithm in Java (see Appendix).
In this section, we present two experiments based on this implementation.
In the first experiment, we evaluate how much the cost of query evaluations
will be reduced by our static analysis and query optimization. In addition, we
observe that view schemas eliminate superfluous information. In the second
experiment, we measure the scalability of our static analysis for very large
policies and schemas.

7.1 Effectiveness of Static Analysis

First, using a well-known collection of queries, we show which queries are made
more efficient. Second, using an example document and the same collection of
queries, we measure the number of nodes exempted from access or run-time
checking.

7.1.1 Settings. We use a DTD and sample queries developed by the XMark
project,9 which is a well-known benchmark framework for XQuery based on an
auction scenario. The DTD has 77 element types. An XML document valid
against the DTD represents a list of auction items, participants’ information,
etc. There are 20 sample queries. For example, the following is Query #4.

for $b in document("auction.xml")//open_auction

where $b/bidder/personref[@person="person18829"]

before $b/bidder/personref[@person="person10487"]

return <history>{$b/reserve/text()}</history>

We wrote a sample access-control policy for six roles, each of which was
associated with 1 through 8 access-control rules. The policy is shown in Figure 4
and its semantics are summarized in Table I. Take, for example, the rules
associated with the role Seller. The first rule says that a Seller is allowed to
read the document root (/). Furthermore, this grant permission (+R) propagates
downward, i.e., from the document root (/) to all other nodes. However, there are
other rules with denial permission. Recall that the $userid variable represents
the id of the user requesting the access. Therefore, a seller can read the contents
of his own //person/creditcard and //person/profile, but not the credit cards
and profiles of other users.

Note that this policy is an example of value-based access control. However,
since none of the XPath predicates in it appear in the XMark queries, our static
analysis relies on over- and underestimation, as described in Section 4.

7.1.2 Queries Made Efficient. For each query/role pair, we check whether
or not our static analysis removes run-time checking. We performed the experi-
ment for two cases: with the DTD and without the DTD. We statically analyzed
all of the XPath expressions for each query.

Tables IIa and IIb show the results of our static analysis with and without
the DTD, respectively. Each entry in the table indicates the result by either “G,”

9The XMark project page is available at http://monetdb.cwi.nl/xml/.
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Fig. 4. The definition of the sample policy.

“D,” or “−.”

� “G” indicates that all XPath expressions in the query are always granted.
� “D” indicates that at least one of the XPath expressions in the query is always

denied and that all of the other XPath expressions are always granted.
� “−” indicates that at least one XPath expression in the query is statically

indeterminate.

A query marked by “G” contains no XPath expressions requiring run-time
checking. If a query is marked by “D,” it contains XPath expressions that are al-
ways denied. However, in this case, we rewrite such expressions as null lists in
advance. Finally, if queries are marked by “−,” run-time checking is necessary,
since its result is not predictable.

For example, we can see from Table IIa that the mark for Query #4 for role
IM is “D.” This means that when a user in the role IM makes Query #4, we can
eliminate run-time checking by rewriting the query.
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Table I. The Sample Access-Control Policy

Role Name Rule Semantics

1 M (Maintainer) Access to all information is granted.

2 MM (Member Mgmt.) Access to member info. (//people) or auction info.

(//open auctions and //open auctions) is granted.

3 IM (Item Mgmt.) Access to item info. (//regions, //categories, and

//catgraph) is granted.

4 S (Seller) A seller cannot see bidder info., privacy info., or personal

info. (credit card info. and profiles). A seller can see who

bought his item.

5 B (Buyer) A buyer cannot see bidder info., privacy info., or personal

info. A buyer can see his own purchases.

6 V (Visitor) A visitor cannot see privacy info., or personal info, and

cannot see who sells, bids or buys an item.

Table II. Results of Static Analysis of XMark Queries

(a) With the DTD

Query# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M G G G G G G G G G G G G G G G G G G G G

MM G G G G G D — G D G G G D D G G G G D G

IM D D D D D G — D D D D D G G D D D D G D

S G G G D G G G — — — — — G G G G G G G —

B G G G — G G G — — — — — G G G G G G G —

V D G G D G G D D D D D D G G G D D G G D

(b) Without the DTD

Query# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M G G G G G G G G G G G G G G G G G G G G

MM G G G G G — — G D G G G — — G G G G — G

IM — — — — — G — — — — — — G — — — — — G —

S G G G D G — — — — — — — — — G — — G — —

B G G G — G — — — — — — — — — G — — G — —

V D G G D G — — D D D D D — — G — D G — D

Tables IIa and IIb show that 88 and 54% of the query/role pairs, respectively
(i.e., “G” + “D”), do not require any run-time checking. Furthermore, for 27 and
9% of the query/role pairs (i.e., “D”), we can optimize the queries by rewriting.

From Table II b, we conclude that even when no DTDs are available, our static
analysis can result in significant optimizations of the queries. From Table IIa,
we conclude that the analysis can be further refined by exploiting the DTD in-
formation. Note that the sample policy contains XPaths with predicates, which
cause over- and underestimation of the access-control automata. Even in such
cases, our static analysis frequently makes run-time checking unnecessary.

7.1.3 Nodes Exempted from Access or Run-Time Checking. Here we con-
sider how much the cost of query evaluation is reduced by our static analysis
and query optimization. As the metric of reduced cost, we count the number
of nodes exempted from access or run-time checking by our static analysis and
query optimization.
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Fig. 5. Nodes exempted from access or run-time checking.

Table III. Size of View Schemas

Role M MM IM S B V

Number of element types 77 46 32 74 74 51

in view schemas

As an example document, we use an auction document from the XMark
project. This document has 250,000 nodes and was generated by specifying
the factor parameter as 0.05 (see the XMark project page).

When a query is evaluated against this document, certain nodes in the doc-
ument are accessed by the XPath expressions in the query. We classify these
nodes into three groups, which are defined as follows:

� no access. These nodes are exempted from access. In other words, the original
query accesses these nodes, but the rewritten query does not.

� access without run-time checking. These nodes are exempted from run-time
checking of access-control policies, but they must still be read.

� access with run-time checking. These nodes are not exempted from run-time
checking or accesses. In other words, the rewritten query accesses these nodes
and these accesses require run-time checking.

The bar chart (Figure 5) shows, for each role, the number of nodes in the
three categories. These are the averages for Queries #1 through #20.

We observe that the cost of query evaluation for roles M, MM, IM, and V is
reduced significantly, because the third portion is very small. In particular, in
the case of Maintainer (M) we do not require run-time checking at all, because
a maintainer has access to all nodes. On the other hand, for IM and V, we have
a large number of skipped nodes that do not even need to be examined during
the query evaluation.

Finally, we study whether view schemas eliminate superfluous information
contained by the original schema. Since we have not implemented the algorithm
(shown in Section 6) for constructing view schemas, we created view schemas
by hand.

The number of element types in the original schema (DTD) is 77. Table III
summarizes the size of view schemas for each role. When the role is MM, IM, or
V, view schemas are significantly smaller than the original schema. Otherwise,

ACM Transactions on Information and System Security, Vol. 9, No. 3, August 2006.



318 • M. Murata et al.

Fig. 6. Random policy example.

view schemas are almost the same as the original schema. From this result, we
conclude that view schemas are, at least occasionally, very useful in eliminating
superfluous information.

7.2 Scalability of Static Analysis

In the scalability test, we measure the running-time of our analysis itself. We
use real-world DTDs and random policies with large sets of rules.

In this test, we distinguish two phases of the analysis, and examine each
phase independently. The first phase is an initialization phase (Steps 1 and
2), where we first compute a schema automaton M G , then compute an access-
control automaton M� for each role in the policy. The second phase is the anal-
ysis phase (Steps 3 and 4), where we statically analyze the XPath expressions
in each query to determine whether they are always denied or always granted.
When there are many queries, we cache M G and M�, which we computed in the
initialization phase, and, later in the analysis phase, we repeatedly use them.

7.2.1 Settings. Three large DTDs were used, the xmlspec-v21.dtd from
W3C XML Working Group [Bray et al. 2004], which has 157 element types,
the version 1.2 of cXML.dtd (commerce XML),10 which has 378 element types,
and the version 4.2 of docbookx.dtd by OASIS DocBook technical committee, 11

which has 393 element types.
We use access-control policies with different sizes, with 1 through 500 rules

per role. For each of the given DTDs, 10 access-control policies are randomly
generated by using element names or attribute names defined in the DTD.
As an example, Figure 6 shows an access-control policy generated from the
xmlspec-v21.dtd.

For each of the DTDs, we statically analyze a query with 12 XPath expres-
sions. Each query is derived from the Query #10 of XMark, in which each XPath
expression has one // and several /. We chose element names appearing in these
XPath expressions according to the corresponding DTDs.

10http://www.cxml.org.
11http://www.oasis-open.org/committees/docbook.
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Table IV. Step 1

DTD Elapsed Time [ms] # of States of M G

xmlspec-v21.dtd 180 214

cxml.dtd 204 623

docbookx.dtd 332 501

7.2.2 Results. Our test environment was a 2.4 GHz Pentium 4 machine
with 512 Mbytes memory and the J2RE 1.4.0 IBM build for Linux. To maximize
the performance of the JIT compiler, we performed several runs before the
measured runs.

The initialization phase consists of Steps 1 and 2. Table IV shows the run-
ning times for creating schema automata M G (Step 1), which is not affected
by the access-control policies. This table also shows the number of states of
M G . Figure 7(a) shows the running times for creating access-control automata
(Step 2). Each point indicates the time required to compute an access-control
automaton for each role in the randomly generated policies.

Figure 7(b) shows the running times for the analysis phase (Steps 3 and 4),
where each point indicates the average time required for analyzing each XPath
expression in the query.

In both phases, the performance is much better for cXML.dtd than for
xmlspec-v21.dtd or docbookx.dtd. This is because xmlspec-v21.dtd and doc-
bookx.dtd contain many recursive definitions and are more complicated than
cXML.dtd.

The initialization phase (computing M G and M�) takes more than 10 s for
large policies and the running times increases nonlinearly. On the other hand,
in the analysis phase, the running times increases almost linearly with the
number of rules. In the real world, we perform the initialization phase just
once per policy, while we perform the analysis phase once per XPath expression
in queries. Therefore, we conclude that our static analysis scales with respect
to the size of the schemas and the access-control policies.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have attempted to ease the burden of checking access-control
policies for XML documents by distributing the burden between static anal-
ysis and run-time checks. The key idea for our static analysis is to use au-
tomata for representing and comparing queries, access-control policies, and
schemas. We have built a prototype of our static analysis, demonstrated its ef-
fectiveness, and experimented with its performance. Our experiment (shown
in Section 7) reveals that (1) static analysis frequently makes run-time checks
unnecessary and also provides significant optimizations, and (2) our proto-
type scales nicely when the schemas, access-control policies, and queries are
large.

We have also attempted to help the programmer by eliminating superfluous
information from the schemas. This is done by creating view schemas from
the input schemas and access-control policies. In other words, we derive view
schemas from input schemas by enforcing access-control policies statically.
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Fig. 7. Results of scalability tests.

However, our static analysis has some limitations. We summarize these lim-
itations.

� Simple types. Simple types (e.g., integers) in schemas are ignored in con-
structing schema automata. This omission makes static analysis impre-
cise. For example, suppose that one of the access-control rules specifies
/record[@patientId = "foo"] as the object and that the schema specifies in-
tegers as the simple type for the patiendId attribute. Obviously, this equality
never holds. However, our static analysis assumes that it may hold.

� Backward axes of XPath. Our static analysis does not cover all axes (e.g.,
backward axes) of XPath. Although we can use tree automata (rather than
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string automata) to capture all of the axes of XPath, tree automata are more
complicated and make implementations significantly harder. However, as a
special case, we can easily handle some of the backward axes by rewriting
backward axes as forward ones [Olteanu et al. 2002].

� The interaction of predicates and schemas. XPath predicates may reference to
descendant elements and attributes, which are controlled by schemas. How-
ever, our static analysis does not consider the interaction of predicates and
schemas. For example, suppose that one of the access-control rules specifies
//foo[a and b] as the object and that the schema specifies either a or b,
but not both, as the child of foo. Since the predicate [a and b] requires the
presence of both a and b, this rule is never used. However, our static analysis
assumes that it may be used.

� Recursive queries. We have significantly simplified XQuery here, but the full
set of XQuery allows recursive queries. Since we cannot extract a finite set of
XPath expressions from a recursive query, we are forced to rely on run-time
checking.

Our next step is to incorporate static analysis as part of an XML database
system and seek a good balance between run-time checking and static analysis.

APPENDIX

Implementation

Here we present a few techniques for improving the performance of our imple-
mentation. These techniques contribute substantially to the performance and
scalability reported in Section 7.2.

Our static analysis is built on top of an automata library. It provides the
Boolean operations (∩, ∪, \) as well as the determinization and minimization
operations.

From our experience, the performance of our static analysis largely depends
on the minimization operation, since Step 2 performs this operation repeat-
edly. To improve its performance, we use a very efficient algorithm by Hopcroft
[1971]. In addition, in constructing intersection (∩) and difference (\) automata,
we avoid minimization when we can make automata small enough by removing
redundant states (i.e., unreachable states and deadend states).

While computing M� and M� in Step 2 (see Section 4.3), we always deter-

minize intermediate automata and finally determine M� and M�. By doing so,

we can efficiently perform \ in Step 4 (see Section 4.5). If M� and M� were
large nondeterministic automata, \ (which requires determinization) would be
prohibitively expensive.

Each formula in Step 4 (see Section 4.5) is of the form L(Er ) ∩ X = ∅, where
Er is a query regular expression and X is a regular set (e.g., L(M G) \ L(M�)
or L(M G) ∩ L(M�)). To examine if the formula holds, we could construct an
automaton from Er , compute the intersection automaton, and examine if the
intersection automaton does not accept anything. In fact, our early implemen-
tation shown in Murata et al. [2003] was based on this approach. However,
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since Er (which is created from an XPath expression r) does not exploit the
full power of the Kleene star operator (∗), we can devise a significantly faster
algorithm. It was inspired by the look-up table of Luo et al. [2004].

We assume that X is represented by a nondeterministic automaton M X . For
each u in (�E ∪ �A)∗, let Qu be the set of states that are reached by executing
M X against u. Let Q Er be the union of Qu such that u matches Er . The formula
in question holds if, and only if, Q Er contains no final states of M X .

It remains to construct Q Er . In preparation, for each state of M X , we com-
pute the set of states reachable (directly or indiretly) from this state by �E

transitions and store this set in a look-up table. We begin with the start state
set of M X as the current state set and examine Er from the beginning. Recall
that Er is a sequence of “(�E )∗” or symbols in �E ∪ �A. When “(�E )∗” is en-
countered, we construct the next state set by examining the look-up table for
every state in the current state set. When a symbol in �E ∪ �A is encountered,
we construct the next state set by applying the transition function of M X to
each state in the current state set. We have Q Er by repeating this construction
until the end of Er is reached.
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