
D2.1

Reasoning & Querying – State of the Art:
Keyword-based querying for XML and RDF

Project title: Knowledge in a Wiki
Project acronym: KIWI
Project number: ICT-2007.4.2-211932
Project instrument: EU FP7 Small or Medium-scale Focused Research Projects (STREP)
Project thematic priority: Information and Communication Technologies (ICT)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: ICT211932/LMU Munich/D2.1/D/PU/b1
Responsible editors: Klara Weiand
Authors: Klara Weiand, François Bry and Tim Furche
Reviewers: Pavel Smrz, Christoph Wieser
Contributing participants: LMU Munich
Contributing workpackages: WP2
Contractual delivery: 31 August 2008
Actual delivery:

Abstract
Various query languages for Web and Semantic Web data, both for practical use and as an area of
research in the scientific community, have emerged in recent years. At the same time, the broad
adoption of the internet where keyword search is used in many applications, e.g. search engines, has
familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this
easy-to-use querying, traditional query languages require knowledge of the language itself as well as of
the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the
two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context
of the emerging Semantic Web. This article presents an overview of the field of keyword querying for
XML and RDF.

Keyword List
query languages, keyword query languages, label-keyword query languages, Web query languages,
Semantic Web, social software, social media

Project funded by the European Commission within the Seventh Framework Programme. c© KIWI 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12175094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii



Reasoning & Querying – State of the Art:
Keyword-based querying for XML and RDF

Klara Weiand, François Bry and Tim Furche

Institute for Informatics
University of Munich, Germany

Email: weiand@pms.ifi.lmu.de, bry@lmu.de, tim@furche.net

31 August 2008

Abstract
Various query languages for Web and Semantic Web data, both for practical use and as an area of
research in the scientific community, have emerged in recent years. At the same time, the broad
adoption of the internet where keyword search is used in many applications, e.g. search engines, has
familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this
easy-to-use querying, traditional query languages require knowledge of the language itself as well as of
the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the
two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context
of the emerging Semantic Web. This article presents an overview of the field of keyword querying for
XML and RDF.

Keyword List
query languages, keyword query languages, label-keyword query languages, Web query languages,
Semantic Web, social software, social media



iv



Contents
1 Introduction 1

2 Data on the Semantic Web: XML and RDF 3
2.1 Extensible Markup Language (XML) . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 XML in 500 Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Resource Description Framework (RDF) . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 RDF in 500 Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Queries as Programs: Database-Style Query Languages 8
3.1 Trees & Documents—XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 XPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 XQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Reachability in Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.4 Tree Queries on Tree Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.5 Supporting Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Graphs & Resources—RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 SPARQL 1000 Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Optionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Existential Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Queries as Keywords: Keyword-based Query Languages 25
4.1 Characteristics of keyword query languages . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Using structural information for keyword querying . . . . . . . . . . . . . . . . . . . 27

4.2.1 Computing query answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Keyword Query Languages Implemented as Stand-alone Systems . . . . . . . . . . . 31

4.3.1 Querying XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Querying RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Translation Keyword Query Languages . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Keyword-enhanced Query Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Summary and Discussion 50

v



vi



1 Introduction

Few technologies have been as disruptive to the way we process and manage information than the rapid
adaption of the World Wide Web. Getting at information is less and less a question of means, station,
race, or location. Rather we have to adapt to new challenges: how to find, among the vast stores of
knowledge available, the right information for satisfying our information need.

As part of addressing this challenge, we have seen the emergence of Web queries and query lan-
guages that provide us with technological interfaces for accessing information on the Web. The aim is
to alleviate some of the burden incurred by the ever increasing volume of information automatically or
semi-automatically.

When we talk about Web queries, we subsume two rather diverse areas of research and technology:
Web search as Google or Yahoo! provide and database-style queries on Web (mostly XML or RDF) data
as provided through languages such as XQuery or SPARQL and incorporated in one form or another in
most modern database products.

Web search is about discovering information among the vast amount available on the Web: a search
engine sifts through an index of, all or a substantial portion of, Web data and filters out what seems
most relevant to the query intent, specified through a very simple query interface (usually just a bag
of words). In contrast to traditional information retrieval, Web search exploits for finding and ranking
relevant documents not only the content of each individual documents but also their relations expressed
as hypertext links. Yet this information must be exploitable without sacrificing scalability to millions
or (nowadays) billions of documents. Thus, Web Search engines employ PageRank [143] and similar
approaches to harvest structural (or link) ranking as well as non-local search terms (e.g., anchor text
used to link to a document or tags used to annotate that document) at indexing time only. This allows
the actual evaluation of a search request on each document (and its associated results of the harvesting
process) independently and thus allows highly parallel (and thus scalable) evaluation of Web searches.

The downside of Web search, even more than in the case of traditional information retrieval, is
that the results to a search request are often rather vaguely related to the search intent and, at best,
a ranking can be provided. There is, however, no certainty that each and every returned document
is actually related to the search request. Only once they are gauged by a human we can be sure of
that. Summarizing, Web search allows us to filter down the huge amount of Web data to what is likely
related to our search request. The price for the ability to operate on such a diverse and rapidly changing
collection of information is that we can never be sure that the results are precisely what is relevant to
our search request.

Database-style Web queries (formulated in languages such as XQuery or SPARQL) are, in many
respects, the exact dual of Web search: we peak inside of (a small set of) documents to find precise data
items such as the price of a book, the capital of a country, etc. These data items can then be processed
automatically, e.g., to place an order for a book as soon as its price is below a certain threshold. We can
also deduce or detect “new” knowledge rather than just discover what knowledge is already there: e.g.,
the number of books someone authored or that there are people who have published in all top five com-
puter science conferences of the current year. Such queries can not be answered by a Web search engine
unless that knowledge is already provided a priori. In contrast to the traditional databases, database-
style Web queries operate on Web data formats such as XML and RDF, the presumptive foundation for
the Semantic Web. Both differ from, e.g., the relational data model first and foremost by more flexible
schemata where repetition and recursion are common. This pushes issues such as the influence of tree
queries or tree data on query evaluation or efficient reachability queries in trees and graphs to the front,
issues that have been treated only cursorily for relational data.

The price we pay for the ability to precisely select individual data items of a certain characteristic

1



and to automatically process them is twofold: First, compared to Web search interfaces Web query
languages such as XQuery or SPARQL are significantly more complex. Writing correct (let alone
efficient) Web queries requires significant training and is comparable to a programming task. Second,
most Web query languages such as XQuery or SPARQL scale not better than traditional SQL database
technology, and thus are clearly unable to process significant subsets of all Web data. Rather, it is
unavoidable to preselect a fairly small collection of documents on which to evaluate the queries.

To summarize, where Web search allows us to operate on (nearly) all the Web, (database-style) Web
queries operate only on a small fraction of the Web’s data. Where Web search is limited to filtering
relevant documents (for human consumption), Web queries allow the precise selection of data items
in Web documents as well as their processing, reorganization, aggregation, or deduction of new data.
Where Web search can operate on all kinds of Web documents at the same time, Web queries are
usually restricted to a more homogeneous collection of documents (e.g., only XHTML documents,
only DocBook documents). Where Web search requires a human in the loop to ultimately judge the
relevance of a search result, Web queries allow automated processing, aggregation, and deduction of
data. Where Web search can be used by untrained users, Web queries usually require significant training
to be employed effectively.

In the context of a Wiki, in particular a Semantic Wiki [158], both aspects of Web queries play an
essential role: We want to be able to, automatically, derive new information, to, automatically, check
consistency or trigger change alerts, all operations that squarely fall into the domain of database-style
Web queries. On the other hand, the essential premise of the Wiki idea is accessibility to untrained
users: that everyone can contribute to the information stored in the Wiki. In this sense, it has more
commonalities with Web search.

Unfortunately, these two areas of research and technology have been mostly separate in the past.
Fortunately, this is starting to change in more than one way:

1. Web search engines are beginning to integrate also “peaking” inside Web documents into search
results, e.g., to provide the precise answer to “What is the price of milk?” rather than just to point
to a document containing that information. For instance, Google integrates querying of structured data
about videos, images, and items from Google Base into the search result listing. Yahoo1 provides similar
features, that can be managed by providers of structured data (online bookstores, online movie databases
etc.).

2. There has been considerable research into adding information retrieval functionality and prim-
itives to XQuery and similar XML query languages. This effort has culminated in a (candidate) rec-
ommendation [7] by the W3C which proposes selection and ranking (or scoring) operators for XQuery
inspired by traditional information retrieval. For an overview of relevant articles and proceedings, see
recent tutorials on XQuery and XML retrieval [6, 9].

3. The most significant effort towards combining some of the virtues of Web search, viz. being ac-
cessible to untrained users and able to cope with vastly heterogeneous data, with those of database-style
Web queries is here categorized under the label keyword-based Web query languages for XML and
RDF documents. Theses languages operate essentially in the same setting as XQuery or SPARQL but
with an interface for untrained users instead of a complex programming language. The interface is often
(in label-keyword query languages) enhanced to allow, e.g., not only a bag-of-word query but some an-
notations to each word, most notably a context (e.g., only within the author or title of an article). Results
are still excerpts of the queried documents, though the precise extent is often determined automatically
rather than by the user. Thus, keyword-based query languages trade some of the precision, that lan-
guages like XQuery allow the user in formulation exactly what data to select and how to process it, for

1http://developer.yahoo.com/searchmonkey/

2

http://developer.yahoo.com/searchmonkey/


an easier interface accessible also to untrained or barely trained users. The yardstick for these languages
becomes an easily accessible interface (or query language) that does not sacrifice the essential premise
of database-style Web queries, that selection and construction are precise enough to fully automate data
processing tasks.

In this survey we focus on the last mentioned keyword-based Web query language as the most
promising direction for combining the ease of use of Web search engines with the automation and
deduction features of database-style Web query languages such as XQuery and SPARQL.

To ground the discussion of keyword-based query languages, we first give a concise summary of
what we perceive as the main contributions of research and development on Web query languages in
the past decade (Section 3). This summary is focused specifically on what sets Web query languages
apart from their predecessors for traditional (mostly relational) databases. It comes in two parts, one on
XML (Section 3.1), one on RDF (Section 3.2). For XML, we consider three contributions: reachability
(as expressed, e.g., in XPaths descendant axis) in trees, how the restriction to tree queries and tree
data enables highly efficient query evaluation, and the effect of order as a first class concept of the data
model. For RDF we consider again three contributions: reachability in graphs, dealing with RDF’s
multi-valued, optional properties, and how existential information (or blank nodes) affects querying and
construction.

In both discussions we also briefly introduce the preeminent exemplars of XML, resp. RDF query
languages: XQuery and SPARQL. Where illuminating or necessary for the context we also reference
other query languages. However, for more extensive introductions into and an extensive comparison of
the mentioned query languages (and many more) we refer to previous surveys of XML and RDF query
languages [14, 82].

The main part (Section 4) of this survey is dedicated to keyword-query languages, the first such
endeavor the authors are aware of: We start with a brief overview of the principles and motivation of
keyword-based query languages as well as their relation to Web search. Then we compare existing
keyword-based query languages in three groups: In the most basic case, keyword-based query lan-
guages are implemented as any other query language (Section 4.3). However, since keyword-based
query languages can also be considered as more easily accessible interfaces to full, traditional query
languages, some are implemented by translation into XQuery or SPARQL (Section 4.4). Finally, some
approaches consider keyword queries not as an alternative interface but as an enhancement or extension
of an existing query language such as XQuery (Section 4.5).

We conclude this survey with a (1) summary of how keyword-based query languages for XML and
RDF aim to bring the ease of use of Web search together with the automation and deduction capabilities
of traditional Web queries, (2) a discussion where the existing approaches succeed in this aim and what,
in our opinion, are the most glaring open issues, and (3) where, beyond keyword-based query languages,
we see the need, the challenges, and the opportunities for combining the ease of use of Web search with
the virtues of Web queries.

2 Data on the Semantic Web: XML and RDF

2.1 Extensible Markup Language (XML)
XML [32] is, by now, the foremost data representation format for the Web and for semi-structured data
in general. It has been adopted in a stupendous number of application domains, ranging from document
markup (XHTML, Docbook [172]) over video annotation (MPEG 7 [127]) and music libraries (iTunes2)

2http://www.apple.com/itunes/

3

http://www.apple.com/itunes/


to preference files (Apple’s property lists [11]), build scripts (Apache Ant3), and XSLT [109] stylesheets.
XML is also frequently adopted for serialization of (semantically) richer data representation formats
such as RDF or TopicMaps.

XML is a generic markup language for describing the structure of data. Unlike in HTML (HyperText
Markup Language), the predominant markup language on the web, neither the tag set nor the semantics
of XML are fixed. XML can thus be used to derive markup languages by specifying tags and structural
relationships.

The following presentation of the information in XML documents is oriented along the XML Infoset
[59] which describes the information content of an XML document. The XQuery data model [75] is,
for the most parts, closely aligned with this view of XML documents.

Following the XPath and XQuery data model, we provide a tree shaped view of XML data. This
deviates from the Infoset where valid / links are resolved and thus the data model is graph, rather
than tree shaped. This view is adopted in some XML query languages such as Xcerpt [41] and Lorel
[3], but most query languages follow XPath and XQuery and consider XML tree shaped.

2.1.1 XML in 500 Words

The core provision of XML is a syntax for representing hierarchical data. Data items are called el-
ements in XML and enclosed in start and end tags, both carrying the same tag names or labels.
<author>...</author> is an example of such an element. In the place of ‘. . . ’, we can write other
elements or character data as children of that element. The following listing shows a small XML frag-
ment that illustrates elements and element nesting:

<bib xmlns:dc="http://purl.org/dc/elements/1.1/">
2 <article journal="Computer Journal" id="12">

<dc:title>...Semantic Web...</dc:title>
4 <year>2005</year>

<authors>
6 <author>

<first>John</first> <last>Doe</last> </author>
8 <author>

<first>Mary</first> <last>Smith</last> </author>
10 </authors>

</article>
12 <article journal="Web Journal">

<dc:title>...Web...</dc:title>
14 <year>2003</year>

<authors>
16 <author>

<first>Peter</first> <last>Jones</last> </author>
18 <author>

<first>Sue</first> <last>Robinson</last> </author>
20 </authors>

</article>
22 </bib>

In addition, we can observe attributes (name, value pairs associated with start tags) that are essen-
tially like elements but may only contain character data, no other nested attributes or elements. Also, by
definition, element order is significant, attribute order is not. For instance

3http://ant.apache.org/

4

http://ant.apache.org/


(1)

bib

(2)

article

(13) 

article

(6) 

author

(3)

title

(4)

year

(5) 

authors

(12)

journal

(9) 

author

(14)

title

(15)

year

(16) 

authors

(23)

journal

(17)

author

(7)

first

(8)

last

(10)

first

(11)

last

... Semantic 

Web ...

John Doe Mary Smith

2005 Computer Journal

(18)

first

(19) 

last

Peter Jones

(20) 

author

(21)

first

(22)

last

Sue Robinson

Web Journal...Web... 2003

Figure 1: Visual representation of sample XML document

<author><last>Doe</last><first>John</first></author>

represents different information than the author element in lines 6–9, but

<article id="12" journal="Computer Journal">...</article>

represents the same element information item as lines 2–15.
Figure 1 gives a graphical representation of the XML document that is referenced in preceding

illustrations. When represented as a graph, an XML document without links is a labeled tree where
each node in the tree corresponds to an element and its type. Edges connect nodes and their children,
that is, elements and the elements nested in them, elements and their content and elements and their
attributes. Since the visual distinction between the parent-child relationship can be made without edge
labels and since attributes are not addressed or receive no special treatment in the research presented in
this text, edges will not be labeled in the following figures.

Elements, attributes, and character data are XML’s most common information types. In addition,
XML documents may also contain comments, processing instructions (name-value pair with specific
semantics that can be placed anywhere an element can be placed), document level information (such as
the XML or the document type declarations), entities, and notations, which are essentially just other
kinds of information containers.

On top of these information types, two additional facilities relevant to the information content of
XML documents are introduced by subsequent specifications: Namespaces [31] and Base URIs [126].
Namespaces allow the partitioning of element labels used in a document into different namespaces,
identified by a URI. Thus, an element is no longer labeled with a single label but with a triple consisting
of the local name, the namespace prefix, and the namespace URI. E.g., for the dc:title element in line

5



3, the local name is title, the namespace prefix is dc, and the namespace URI (called “name” in [59])
is http://purl.org/dc/elements/1.1/. The latter can be derived by looking for a namespace dec-
laration for the prefix dc. Such a declaration is shown in line 1: xmlns:dc="http://. . . It associates the
prefix dc with the given URI in the scope of the current element, i.e., for that element and all elements
contained within unless there is another nested declaration for dc, in which case that declaration takes
precedence. Thus, we can associate with each element a set of in-scope namespaces, i.e., of pairs names-
pace prefix and URI, that are valid in the scope of that element. Base URIs [126] are used to resolve
relative URIs in an XML document. They are associated with elements using xml:base="http://. . .
and, as namespaces, are inherited to contained elements unless a nested xml:base declaration takes
precedence.

The above features of XML are covered by most query languages. Additionally some languages
(most notably XQuery) also provide access to type information associated via DTD or XML Schema
[72]. These features are mentioned below where appropriate but not discussed in detail here.

2.2 Resource Description Framework (RDF)
As the second preeminent data format on the Semantic Web, the Resource Description Format (RDF)
[125, 112, 99] is emerging. RDF is, though much less common than XML, a widespread choice for
interchanging (meta-) data together with descriptions of the schema and, in contrast to XML, a basic
description of its semantics of that data.

Not to distract from the salient points of the discussion, we omit typed literals (and named graphs)
from the following discussion.

2.2.1 RDF in 500 Words

RDF graphs contain simple statements about resources (which, in other contexts, are be called “enti-
ties”, “objects”, etc., i.e., elements of the domain that may partake in relations). Statements are triples
consisting of subject, predicate, and object, all of which are resources. If we want to refer to a spe-
cific resource, we use (supposedly globally unique) URIs, if we want to refer to a resource for which
we know that it exists and maybe some of its properties, we use blank nodes which play the role of
existential quantifiers in logic. However, blank nodes may not occur in predicate position. Finally, for
convenience, we can directly use literal values as objects.

RDF may be serialized in many formats (for a recent survey see [28]), such as RDF/XML [18], an
XML dialect for representing RDF, or Turtle [13] which is also used in SPARQL. The following Turtle
data represents roughly the same data as the XML document discussed in the previous section:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
2 @prefix dct: <http://purl.org/dc/terms/> .
@prefix vcard: <http://www.w3.org/2001/vcard−rdf/3.0#> .

4 @prefix bib: <http://www.edutella.org/bibtex#> .
@prefix ex: <http://example.org/libraries/#> .

6 ex:smith2005 a bib:Article ; dc:title "...Semantic Web..." ;
dc:year "2005" ;

8 ex:isPartOf [ a bib:Journal ;
bib:number "11"; bib:name "Computer Journal" ] ;

10 bib:author [ a rdf:Bag ;
rdf:_1 [ a bib:Person ;

12 bib:last "Smith" ; bib:first "Mary" ] ;
rdf:_2 [ a bib:Person ;

6



smith2005 Article

Computer 
Journal11

Doe

authorisPartOf
2005

_1

_2

John 

Mary

Smith

first

last

first

last

Bag

type
namenumber

...Semantic 
Web...

title

Person

Person

year

Journal

type

type

type

type

Class Literal Other 
Resource

Legend

Figure 2: Visual representation of sample RDF graph

14 bib:first "John" ; bib:last "Doe" ] ] .

Following the definition of namespace prefixes used in the remainder of the Turtle document (omit-
ting common RDF namespaces), each line contains one or more statements separated by colon or semi-
colon. If separated by semi-colon, the subject of the previous statement is carried over. E.g., line 1 reads
as ex:smith2005 is a (has rdf:type) bib:Article and has dc:title “. . . Semantic Web. . . ”. Lines 3–4 show
a blank node: the article is part of some entity which we can not (or don’t care to) identify by a unique
URI but for which we give some properties: it is a bib:Journal, has bib:number “11”, and bib:name
“Computer Journal”.

Figure 2 shows a visual representation of the above RDF data, where we distinguish literals (in
square boxes) and classes, i.e., resources that can be used for classifying other resources, and thus can
be the object of an rdf:type statement (in square boxes with rounded edges) from all other resources
(in plain ellipses).

7



3 Queries as Programs:
Database-Style Query Languages

3.1 Trees & Documents—XML

As discussed in Section 2.1, XML is set apart from both from the relational and previous semi-structured
data models (as in [3]) by a focus on ordered tree data. Both are direct consequences of XML’s heritage
as a simplified variant of SGML, primarily used for document markup. Documents in formats such
DocBook [172] or (X)HTML exhibit an intrinsic hierarchical organisation of the data and are strictly
ordered, just like in printed form. It is clearly not acceptable to reorder paragraphs even within the
same section, or sections within the same chapter. Though previous (relational or semi-structured) data
models allow the modeling of tree data (and sometimes even ordered tree data), XML is the first data
format that limits itself to tree data while placing a premium on the maintenance of sibling and document
order.

These novelties are reflected well in the contributions of XML query languages over previous ap-
proaches and will guide the following discussion. First, we illustrate how XML’s focus on tree data
pushes the issue of reachability (or descendant and ancestor) queries to the center stage (Section 3.1.3)
and how different XML query languages address this issue. Second, we summarize the effect of order as
a first class citizen in XML on XML query languages in Section 3.1.5. Finally, we briefly recall how the
limitation to tree data and consequently tree queries has yielded a number of novel evaluation strategies
tailored to this setting that significantly outperform traditional, less focused approaches.

We start off the discussion of XML query languages with a closer look at two of the more prominent
exemplars: XPath and XQuery. These introductions are focused on the essentials of these languages
necessary for the remainder of this article. For a more in-depth comparison of (more than two dozen)
XML query languages see [14].

XML trees as relational structures. Following [21], we formalize an XML tree as a relational struc-
ture (for defining the semantics of XPath and XQuery): An XML tree is considered a relational struc-
ture T over the schema ((Labλ)λ∈Σ,Rchild,Rnest-sibling, relRoot). The nodes of this tree are labeled us-
ing the symbols from σ which are queried using Lλ (note, that λ is a single label not a label set).
The parent-child relations are represented by Rchild. The order between siblings is represented by
Rnest-sibling. The root node of the tree is identified by root. There are some additional derived relations,
viz. Rdescendant, the transitive, Rdescendant-or-self the transitive reflexive closure of Rchild, Rfollowing-sibling,
the transitive closure of Rnext-sibling, Rself relating each node to itself, and Rfollowing the composition of
R−1

descendant-or-self ◦ Rfollowing-sibling ◦ Rdescendant-or-self. Finally, we can compare nodes based on their label
using � which contains all pairs of nodes with same label. XQuery also considers two more forms of
equality: one based on node identity, =nodes which relates each node to itself, and deep equality =deep

which holds for two nodes if there exists an isomorphism between their respective sub-trees.

For example, the XML document <a>1 <b/>2 <c>3<c/>4</c> </a> (denoting node id’s by in-
teger subscripts) is represented as T = (Laba = {1}, Labb = {2}, Labc = {3, 4},Rchild =

{(1, 2), (1, 3), (3, 4)},Rnest-sibling = {(2, 3)}, root = {1}) over the label alphabet {a, b, c}. All other rela-
tions can be derived from this definition.

In the following, we also allow unions of such structures, i.e., XML “forests”.

8



4 – May 31, 2004

then the last step selects nodes of any kind that are among the descendants of the top

element “book” and have a “citation” child element. Previous examples are all abso-

lute XPath expressions (since they involve a leading “/”). The general meaning of an

expression is defined relatively to a context node in the tree. Starting from a particu-

lar context node in the tree, every other nodes can be reached. This is because XPath

defines powerful navigational capabilities, including a full set of axes, as captured on

figure 1. For more informal details on the complete XPath language, the reader can refer

to the specification [6].

self

an
ces
tor

descendant

p
re
ce
d
in
g

fo
llo
w
in
g

following-sibling

preceding-sibling

child

parent

Fig. 1. Axes: partitions of document nodes from a particular context node.

Abstract syntax: a compositional fragment. For the remaining part of the paper, we

focus on a restricted but significant fragment of XPath, composed of all XPath axes.

The abstract syntax of the fragment is given on figure 2. In order to make the XPath

syntax fully compositional, two variants are included: the void path ⊥ and the explicit
root node ∧ (respectively proposed in [18] and [19]). An other extension concerning

qualifiers is the inclusion constraint p1 " p2 over set of nodes selected by p1 and p2.

First defined in [19], the authors believe that this feature brings useful expressive power

without increasing cost of formal treatment (however this will be verified along our on-

going work on path containment). Note that it turns the construct p1[p2] into a syntactic

sugar for p1[not (p2 " ⊥)]. Although the XPath fragment we consider already covers
a significant range of real world use cases, our intent is to extend it to cover the XPath

standard as much as possible.

Figure 3: XPath axis (from [84])

3.1.1 XPath

Unary selection of XML elements is, by now, almost always done using XPath or some variant of XPath
(such as XPointer). XPath provides an elegant and compact way of describing “paths” in an XML
document viewed as an ordered tree. Paths are made up of “steps” each specifying a direction, called
axis, in which to navigate through the document, e.g., child, following, or ancestor, cf. Figure 3 for the
full set of axes. Together with the axis, a step contains a restriction on the type or label of the data
items to be selected, called node test. Node tests may be labels of element or attribute nodes, node kind
wildcards such as * (any node with some label), element(), node(), text(), or comment(). Any step may
be adorned by one or more qualifiers each expressing additional restrictions on the selected nodes and
denoted with square brackets. Compared to other query languages such as XQuery, SQL, or SPARQL,
the most distinctive feature of XPath is the lack of explicit variables. This makes it impossible to express
n-ary queries and limits XPath, for the most part, to two-variable logic, see [130, 27] for details.

XPath examples. For instance, the XPath expression /descendant::article/child::author con-
sists of two steps, the first selecting article elements that are descendants of the root (“of the root” is
indicated by the leading slash), the second selecting author children of such article elements. More

9



interesting queries can be expressed by exploiting XPath’s qualifiers, e.g., the following XPath expres-
sion that selects all authors that are also PC members of a conference (more precisely that have node
children with the same label):

/child::conference/descendant::article/child::author[. =
2 /child::conference/child::member]

In addition to the strict axis plus node test notation, XPath uses also an abbreviated syntax where
child axis may be omitted, descendant is (roughly) abbreviated by //, the current node is referenced by
. etc. In the following, we only use the full syntax. We also limit ourselves to the core feature of XPath
as discussed here and thus present a view of XPath similar to Navigational XPath of [89] and [21]. Due
to [140], we also limit ourselves to forward axes such as child and following, rewriting expressions with
reverse axes such as parent, ancestor, or preceding where necessary.

Syntax of navigational XPath. The syntax of navigational XPath is defined as follows (again follow-
ing [89] and [21]):

〈path〉 ::= 〈step〉 | 〈step〉 ‘/’ 〈path〉 | 〈path〉 ‘∪’〈path〉 | ‘/’ 〈path〉

〈step〉 ::= 〈axis〉 ‘::’ 〈node-test〉 | 〈step〉‘[’〈qualifier〉‘]’

〈axis〉 ::= ‘child’ | ‘descendant’ | ‘descendant-or-self’
| ‘next-sibling’ | ‘following-sibling’ | ‘following’

〈node-test〉 ::= 〈label〉 | ‘node()’

〈qualifier〉 ::= 〈path〉 | 〈path〉 ‘∧’〈path〉 | 〈path〉 ‘∨’〈path〉 | ‘¬’〈path〉
| ‘lab()’ ‘=’ ‘λ’
| 〈path〉 ‘=’ 〈path〉

Semantics of navigational XPath The semantics of a navigational XPath expression over a relational
structure T representing an XML tree (as defined above) is defined in Table 1 by means of ~ �Nodes (n)
where n is a node, called context node. ~ �Nodes (n) associates each XPath expression and context node
with a set of nodes that constitutes the semantics of that expression if evaluated with the given context
node. It uses ~ �Bool (n) for the semantics of qualifiers under a context node n.

Most parts of the semantics are fairly straightforward: Axes are mapped to their respective relational
representations (line 1), paths correspond conjunctions (line 4) where the current (or context) variable
changes with each step. Qualifiers (treated by ~ �Bool) have an inherent existential semantics: as line 6
shows they are true if the contained expression evaluates to a non-empty node-set, i.e., if there is at least
one node for which that expression matches.

For more details on the semantics as well as differences to full XPath see [21].
XPath has also been deeply investigated in research. Formal semantics for (more or less complete)

fragments for XPath have been proposed in [171, 140, 86]. Surprisingly, most popular implementations
of XPath embedded within XSLT processors exhibit exponential behavior, even for fairly small data
and large queries. However, the combined complexity of XPath query evaluation has been shown to be
P-complete [87, 88]. Various sub-languages of XPath (e.g., forward XPath [140], Core or Navigational
XPath [87], [19]) and extensions (e.g., CXPath [128]) have been investigated, mostly with regard to
expressiveness and complexity for query evaluation. Also, satisfiability of positive XPath expressions is
known to be in NP and, even for expressions without boolean operators, NP-hard [100]. Containment
of XPath queries (with or without additional constraints, e.g., by means of a document schema) has

10



~ axis �Nodes (n) = {(n′ : Raxis(n, n′)}

~ λ �Nodes (n) = {(n′ : Labλ(n′)}

~ node() �Nodes (n) = Nodes(T )�
axis::nt[qual]

�
Nodes (n) = {n′ : n′ ∈ ~ axis �Nodes ∧ n′ ∈ ~ nt �Nodes ∧

�
qual
�

Bool (n′)}�
step/path

�
Nodes (n) = {n′′ : n′ ∈

�
step
�

Nodes (n) ∧ n′′ ∈
�

path
�

Nodes (n′)}�
path1 ∪ path2

�
Nodes (n) =

�
path1

�
Nodes (n) ∪

�
path2

�
Nodes (n)

�
path
�

Bool (n) =
�

path
�

Nodes (n) , ∅�
path1 ∧ path2

�
Bool (n) =

�
path1

�
Bool (n) ∧

�
path2

�
Bool (n)�

path1 ∨ path2
�

Bool (n) =
�

path1
�

Bool (n) ∨
�

path2
�

Bool (n)�
¬path

�
Bool (n) = ¬

�
path
�

Bool (n)

~ lab() = λ �Bool (n) = Labλ(n)�
path1 = path2

�
Bool (n) = ∃n′, n′′ : n′ ∈

�
path1

�
Nodes (n) ∧ n′′ ∈

�
path2

�
Nodes (n)

∧ � (n′, n′′)

Table 1: Semantics for navigational XPath (following [21])

been investigated as well, cf., e.g., [179, 67, 134, 163]. For a recent summary of fundamental results on
XPath complexity, containment, etc. see [21]. Several methods providing efficient implementations of
XPath relying on standard relational database systems have been published, cf., e.g., [91, 92, 141].

Recently, the W3C has, as part of its activity on specifying the XML query language XQuery, devel-
oping a revision of XPath: XPath 2.0 [24]. See [108] for an introduction. The most striking additions in
XPath 2.0 are: (1) a facility for defining variables (using for expressions), (2) sequences instead of sets
as answers, (3) the move from the value typed XPath 1.0 to extensive support for XML schema types in
a strongly typed language, (4) a considerably expanded library of functions and operators [124], and (5)
a complete formal semantics [69].

3.1.2 XQuery

Though not nearly as common as XPath, XQuery has nevertheless achieved the status of predominant
XML query language, at least as far as database products and research are concerned (in total, XSLT
[53] is probably still more widely supported and used). XQuery is essentially an extension of XPath
(though some of its axis are only optional in XQuery), but most of XPath becomes syntactic sugar in
XQuery. This is particularly true for XPath qualifiers which can be reduced to where or if clauses
in XQuery. Indeed, the XQuery standard is accompanied [69] by a normalization of XQuery to a core
dialect of the language.

XQuery Principles. At its core, XQuery is an extension of XPath 2.0 adding features needed to cap-
ture all the use cases in [43], i.e., to become a “full query language” and not only a language for (mostly
tree-shaped) node selection. The most notable of these features are:

1. Sequences. Where in XPath 1.0 the results of path expressions are node sets, XQuery and XPath
2.0 use sequences. Sequences can be constructed or result from the evaluation of an XQuery expression.
In contrast to XPath 1.0, sequences cannot only be composed of nodes but also from atomic values, e.g.,

11



(1, 2, 3) is a proper XQuery sequence.
2. Strong typing. Like XPath 2.0, XQuery is a strongly typed language. In particular, most of

the (simple and complex) data types of XML Schema are supported. The details of the type system
are described in [69]. Furthermore, many XQuery implementations provide (although it is an optional
feature) static type checking.

3. Construction, Grouping, and Ordering. Where XPath is limited to selecting parts of the input
data, XQuery provides ample support for constructing new data. Constructors for all node types as
well as the simple data types from XML Schema are provided. New elements can be created either by
so-called direct element constructors (that look just like XML elements) or by what is referred to as
computed element constructors, e.g. allowing the name of a newly constructed element to be the result
of a part of the query. For examples on these constructors, see the implementations for Query 1 and 3
below.

4. Variables. Like XPath 2.0, XQuery has variables defined in so-called FLWOR expressions. A
FLWOR expression usually consists in one or more for, an optional where clause, an optional order
by, and a return clause. The for clause iterates over the items in the sequence returned by the path
expression in its in part: for $book in //book iterates over all books selected by the path expres-
sion //book. The where clause specifies conditions on the selected data items, the order by clause
allows the items to be processed in a certain order, and the return clause specifies the result of the en-
tire FLWOR expression (often using constructors as shown above). Additionally, FLWOR expressions
may contain, after the for clauses, let clauses that also bind variables but without iterating over the
individual data items in the sequence bound to the variable. FLWOR expressions resemble very much
XSLT’s explicit iteration, selection, and assignment constructs described above.

5. User-defined functions. XQuery allows the user to define new functions specified in XQuery (cf.
implementation of Query 3 below). Functions may be recursive.

6. Universal and existential quantification. Both XPath 2.0 and XQuery 1.0 provide some and all
for expressing existentially or universally quantified conditions (see implementation of Query 9 below).

7. Schema validation. XQuery implementations may (optionally) provide support for schema vali-
dation, both of input and of constructed data, using the validate expression.

8. Full host language. XQuery completes XPath with capabilities to set up the context of path
expressions, e.g., declaring namespace prefixes and default namespace, importing function libraries and
modules (optional), and (again optionally) providing flexible means for serialization that are in fact
shared with XSLT 2.0 (cf. [110]).

9. Unordered sequences. As a means for assisting query optimization, XQuery pro-
vides the unordered keyword, indicating that the order of elements in sequences that
are constructed or returned as result of XQuery expressions is not relevant. E.g.,
unordered{for $book in //book return $book/name} indicates that the nodes selected
by //book may be processed in any order in the for clause and the order of the resulting name nodes
also can be arbitrary (implementation dependent). Note that inside unordered query parts, the result
of any expressions querying the order of elements in sequences such as fn:position, fn:last is
non-deterministic.

In at least one respect, XQuery is more restrictive than XPath: not all of XPath’s axes are mandatory,
ancestor, ancestor-or-self, following,
following-sibling, preceding, and preceding-sibling do not have to be supported by an
XQuery implementation. This is, however, no restriction to XQuery’s expressiveness, as expressions
using reverse axes (such as ancestor) can be rewritten, cf. [140], and the “horizontal axes”, e.g.,
following and following-sibling, can be replaced by FLWOR expressions using the « and » op-
erators that compare two nodes with respect to their position in a sequence.

12



Comprehensive but easy to follow introductions to XQuery are given in, e.g., [107, 36].

Composition-Free XQuery in 1000 Words. In the following, we focus on a fragment of XQuery,
called non-compositional XQuery [113, 20], that has a well-defined, fairly easy to understand semantics
and illustrates all issues salient for this article. It is slightly academic as we restrict the syntax far more
than necessary to minimize the constructs to consider for the formal semantics of composition-free
XQuery. However, many of the restrictions to the syntax can be dropped (e.g., we could integrate full
navigational XPath as discussed in Section 3.1.1) without affecting expressiveness and complexity, see
also [20]. The only real restriction of composition-free XQuery in comparison to full XQuery is that
it disallows any querying of constructed nodes, i.e., the domain of all relations is limited to the input
nodes. This limitation clearly does not hold for full XQuery (even if we do not consider user-defined
functions) and its effect on expressiveness and complexity is discussed in detail in [113].

(Composition-free) XQuery is built around controlled iterations over nodes of the input tree, ex-
pressed using for expressions. Controlled iteration is important for XQuery as it founded on sequences
of nodes rather than sets of nodes (as XPath 1.0). In this respect it is more similar to languages such as
DAPLEX [164] or OQL [42] than to XPath 1.0. (For) loops use XPath expressions for navigation and
XML-look-a-likes for element construction all of which can be, essentially, freely nested. The following
query gives an example of XQuery expressions. It creates a articlelist containing one author element
for each author in the input XML tree (bound here and in the following to the canonical input variable
$inp). For each such author, the nested for loop creates a list of all its articles. The latter expression
can be more elegantly expressed in full XQuery using XPath qualifiers or where clauses but here it is
shown in the “normalized” syntax of composition-free XQuery after [113].

<paperlist>
2 for $a in $inp/descendant::author return

<author> for $p in $inp/descendant::article return
4 if some $x in $p/descendant::author satisfies deep-equal($x, $a)

then $p
6 </author>
</paperlist>

We choose to use deep-equal, XQuery’s structural equality that tests whether the sub-trees at $x
and $a are isomorphic, as authors can be represented using last and first name elements in our context
and both have to be equal for it to be the same author.

A full definition of the syntax of composition-free XQuery is given in Table 2. It deviates only
marginally from [113] and [20]. In addition to the specification in Table 2, the usual semantic restrictions
apply, e.g., the label of the start and end tags must be the same, variables must be defined (using for)
before use, etc. As stated, there is one exception from the latter, viz. the canonical input variable $inp
which is always bound to the input XML tree.

In Table 2, we use a general equality. XQuery provides in fact three kinds of equality, viz. node,
atomic (or value), and deep equality. For all forms of equality the productions of Table 2 apply.

Again, compared to full XQuery the principle omission is the ability to query constructed nodes
or values. In the syntax, this leads most prominently to the restriction of expressions following in in
a for, i.e., expressions that provide bindings for variables, to XPath steps with variables. This way
variables are always bound only to nodes from the input tree (anything reachable from $inp using
XPath expressions). Another important omission is the absence of let clauses, which provide set-
valued variables to XQuery. Conditional expressions are normalized to if clauses, where XQuery
offers XPath qualifiers, where clauses, and if clauses.

13



〈query〉 ::= 〈query〉 〈query〉 | 〈element〉 | 〈variable〉
| 〈step〉 | 〈iteration〉 | 〈conditional〉

〈element〉 ::= ‘<’ 〈label〉 ‘>’ 〈query〉 ‘<’ 〈/label〉 ‘>’
| ‘<’ ‘lab(’ 〈variable〉 ’)>’ 〈query〉 ‘</’ ‘lab(’ 〈variable〉 ‘)>’

〈step〉 ::= 〈variable〉 ‘/’ 〈axis〉 ‘::’ 〈node-test〉

〈iteration〉 ::= ‘for’ 〈variable〉 ‘in’ 〈step〉 ‘return’ 〈query〉

〈conditional〉 ::= ‘if’ 〈condition〉 ‘then’ 〈query〉

〈condition〉 ::= 〈variable〉 ‘=’ 〈variable〉 | 〈variable〉 ‘=’ ‘<’ 〈label〉 ‘/>’ | ‘true’
| ‘some’ 〈variable〉 ‘in’ 〈step〉 ‘satisfies’ 〈condition〉
| 〈condition〉 ‘and’ 〈condition〉 | 〈condition〉 ‘or’ 〈condition〉 | ‘not’ 〈condition〉

〈axis〉 ::= ‘child’ | ‘descendant’ | ‘descendant-or-self’
| ‘next-sibling’ | ‘following-sibling’ | ‘following’

〈node-test〉 ::= 〈label〉 | ‘node()’

〈variable〉 ::= ‘$’〈identifier〉

Table 2: Syntax of composition-free XQuery

Though order-by clauses are omitted, the result of an XQuery expression is always an ordered tree
and the order of node construction must be precisely preserved (as given by the iteration of the for
clauses which iterated over their respective node sequences mostly in document order).

The semantics of a composition-free XQuery expression is defined in [20].

XQuery in industry and research. From the very start, XQuery’s development has been followed by
industry and research with equal interest (for reports on the challenges and decisions during this process
see, e.g., [70, 73]). Even before the development has finished, initial practical introductions to XQuery
have been published, e.g., [107, 36]. Industry interest is also visible in the simultaneous development of
standardized XQuery APIs, e.g., for Java [71], and numerous implementations, both open source (e.g.,
Galax [76]) and commercial (BEA [77], IPSI-XQ [74]). Aside from these main-memory implementa-
tions, one can also find streamed implementations of XQuery (e.g., [114, 17]) where the data flows by
as the query is evaluated. First results on implementing XQuery on top of standard relational databases
(e.g., [64, 95]) indicate that this approach leads to very efficient query evaluation if a suitable relational
encoding of the XML data is used. For more implementations, see the XQuery project page at the
W3C and the proceedings of the first XIME-P workshop on “XQuery Implementation, Experience and
Perspectives”4.

It is intuitively clear that XQuery is Turing complete since it provides recursive functions and con-
ditional expressions. A formal proof of the Turing-completeness of XQuery is given in [111]. Efficient
processing and (algebraic) optimization of XQuery, although acknowledged as crucial topics, have not
yet been sufficiently investigated. First results are presented, e.g., in [184, 48, 183, 51, 131, 66, 167].
Moreover, techniques for efficient XPath evaluation, as discussed above, can be a foundation for XQuery
optimization.

Beyond querying XML data, it has also been suggested to use XQuery for data mining [173], for

4http://www-rocq.inria.fr/gemo/Gemo/Projects/XIME-P/

14

http://www-rocq.inria.fr/gemo/Gemo/Projects/XIME-P/


web service implementation [142], for querying heterogeneous relational databases [178], for access
control and policy descriptions [136], for synopsis generation [57], and as the foundation of a visual
XML query language (XQBE) [12], of a XML query language with full-text capabilities [8, 7], and of
an update [153, 37, 44] and reactive [30] language for XML.

Recently, the W3C has proposed a revision [45] to XQuery 1.0, called XQuery 1.1, which among
minor changes adds explicit grouping (using a new group-by clause) and iteration windows (or block-
wise iteration, using a new window clause with several flavors). However, work on this revision is still
in its infant stages.

3.1.3 Reachability in Trees

With XPath and XQuery as exemplars, we can broaden our attention to investigate how different query
languages express reachability (or descendant and ancestor) queries in trees.

As XPath most XML query languages provide some form of path expression or axis for expressing
different forms of reachability in a graph, most notably direct reachability or child axis vs. descendant
axis. Path expressions have been introduced already for relational database, e.g., in GEM [181], an ex-
tension of QUEL, and for object-oriented databases, e.g., in OQL [42]). However, here path expressions
require fully specified paths, i.e., paths with explicitly named nodes following only parent-child con-
nections. OQL expresses paths with the “extended dot notation” introduced in GEM [181]: “SELECT
b.translator.name FROM Books b” selects the name, or component, of the translator of books (note
that there must be at most one translator per book for this expression to be legal).

Generalized (or regular) path expressions [79, 52], extend this notion with operators similar to
regular expressions, e.g., the Kleene closure (and thus indirect reachability) operator on (sub-)paths but
maintaining that each component is a node label. As a consequence and in contrast to the extended
dot notation, generalized path expressions do not require explicit naming of all nodes along a path.
Lorel [3] is an early exemplar of a semi-structured query language, yet based on a (graph-shaped) data
model. Lorel’s syntax resembles that of SQL and OQL, extending OQL’s extended dot notation to
generalized path expressions. To illustrate this aspect of Lorel, assume that one is only interested in
books having “Julius Caesar” either as author or translator. Assume also that the literal giving the name
of the author is either wrapped inside a name child of the author element, or directly included in the
author element. Selecting only such books can be expressed in Lorel by a where clause filter on all
books B: where B.(author|translator).name? = "Julius Caesar".

Seeing that these efforts precede XPath significantly, it might seem surprising that XPath choose
not to offer general path expressions but only the weaker axes. To recall, XPath allows navigation in
all directions (vertical with descendant and ancestor, horizontal with following and preceding and
their respective -siblings variants), while generalized path expressions only allow vertical navigation.
However, it only provides closure axes (i.e., a path with any number of arbitrarily labeled nodes), but
no closure of actual expressions. Thus it is, e.g., not possible to express that two elements are connected
by only nodes with a certain label.

The first difference is clearly motivated by the particular emphasize placed on order in XML. How-
ever, the choice to provide only closure axes is less obvious. Without closure of arbitrary path expres-
sions, XPath cannot express regular path expressions such as a.(b.c)*.d (meaning “select d’s that
are reached via one a and then arbitrary many repetitions of one b followed by one c”) and a.b*.c.
Moreover it turns out that such a feature (called sometimes conditional axes) is exactly what is missing
from XPath to become a first-order complete language on ordered trees [129, 128].

Moreover, the inclusion of reverse axes in XPath has been shown in [140] not to increase the ex-
pressive power of XPath. Consequently, they are used infrequently and, with the exception of the trivial

15



time space

Structural Joins, relational join O(q · n · log n) O(q · n2)
—————, structure-aware join O(q · n) O(q · n2)

Twig or Stack Joins O(q · n) O(q · n + n · d)

PDA-based (here: SPEX) O(q · n · d) O(q · n)

Interval-based (here: ) O(q · n) O(q · n)

Table 4: Approaches for XML Tree Query Evaluation. n: number of nodes in the data, d: depth of data; q: size of
query. We assume constant membership test for all structural relations.

parent axis, are considered optional features in XQuery that do not have to be provided by a conforming
implementation.

Nevertheless, the efficient realisation of closure axes has proved to be one of the more fruitful issues
on the road towards a scalable XML query language. In the following section, we classify approaches
for implementing tree queries expressed in XPath or XQuery. All of these approaches have to deal in
some form or the other with the presence of closure axes.

3.1.4 Tree Queries on Tree Data

Though XQuery (and even full XPath 1.0) can express also more powerful (graph) queries, the most
significant results have been achieved on the implementation of tree queries (often roughly considered
equivalent to navigational XPath, possibly without set operations and equality).

For tree queries, the restriction of XML to tree data can be exploited to provide highly efficient
(linear time and space) evaluation of XML queries even in the absence of sophisticated indices.

To keep the discussion focused we ignore index-based evaluation of XML which is survey in [176].
Though path indices such as the DataGuide [85] or IndexFabric [58] and more recent variants [50]
can significantly speed up path queries they suffer from two anomalies: First, if a tree query contains
many branching nodes (i.e., nodes with more than one children) they generally do not perform better
than, e.g., the structural join approach below. Second, even though only path queries can be directly
answered from the index, the index size can be significantly higher than the size of the original XML
documents.

We can classify most of the remaining approaches to the evaluation of XML tree queries in four
classes (the corresponding complexity for evaluation XPath (and similar) tree queries on tree data is
summarized in Table 4):

1. Structural joins: The first class is most reminiscent of query evaluation for relational queries
and arguable inspired by earlier research on acyclic conjunctive queries on relational databases [90].
Tree queries are decomposed into a series of (structural) joins. Each structural join enforces one of
the structural properties of the given query, e.g., a child or descendant relation between nodes or a
certain label. Proposed first in [5], structural joins have also been used to great effect for studying the
complexity of XPath evaluation and proposing the first polynomial evaluation of full XPath [89]. Due to
its similarity with relational query evaluation it has proved to be an ideal foundation for implementing
XPath and XQuery on top of relational databases [91]. It turns out, however, that the use of standard

16



joins is often not an ideal choice and structure- or tree-aware joins [29] (that take into consideration, e.g.,
that only nodes in the sub-tree routed at another node can be that nodes a-descendants) can significantly
improve XPath and XQuery evaluation.

2. Twig joins: In sharp contrast, the second class employs a single (thus called holistic) operator
for solving an entire tree query rather than decomposing it into structural joins. These approaches are
commonly referred to as twig or stack join [38, 49] and essentially operate by keeping one stack for each
step in, e.g., an XPath query representing partial answers for the corresponding node-set. Theses stacks
are organized hierarchically with (where possible, implicit) parent pointers connecting partial answers
for upper stack entries to those of lowers. The approaches mostly vary in how the stacks are populated.
In contrast to the other approaches, twig joins are limited to vertical, i.e., child and descendant, axes
and have not been adapted for the full range of XPath axes. They also, like structure-aware joins [29],
exploit the tree-shape of the data and can, at best, be adapted to DAGs [47].

3. PDA-based: Where twig joins assume one stream of nodes from the input document for each
stack (and thus XPath step), the third class of approaches based on pushdown automata aims to evaluate
XPath queries on a single input stream similar to a SAX event stream. SPEX, e.g., [139, 138, 137] also
maintains a record of partial answers for each XPath step, but minimizes used memory more efficiently
and exploits the existential nature of most XPath steps by maintaining only generic conditions rather
than actual pointers to elements from the XML stream (except for candidates of the actual results set,
of course). Also it supports all XPath axes in contrast to the twig join approaches. The cost is a slightly
more complex algorithm.

4. Interval-based: Finally, interval-based approaches are a combination of the tree awareness in
twig joins and SPEX and the structural join approach: The query is decomposed into a series of struc-
tural relations, but each relation is organised in such a way that all elements related to one element
of its parent step are in a single continuous interval. This allows both an efficient storage and join of
intermediate answers. The first interval-based approach are the Complete Answer Aggregates (CAA)
[133, 132]. In [80] the  algebra is proposed which improves on the complexity of CAA (to the
linear complexity given in Table 4) and covers, in contrast to CAA, arbitrary tree-shaped relations. It is
also shown that interval-based approaches can be extended even to a large, efficiently detectable class
of graph data (so called continuous-image graphs) that is not covered by any of the other linear time
approaches discussed above.

Currently, extensions of the above algorithms for larger classes of graph data are investigated, e.g.,
in [47] and [80], see also Section 3.2.2 on reachability in RDF graphs.

3.1.5 Supporting Order

In the previous sections, we have focused on the tree aspect of XML and its effect on query languages
and their evaluation. However, XML is also set apart from many other data formats by an emphasize
on ordered data that is very appropriate in a document setting such as XHTML or DocBook [172].
For query languages, which traditionally prefer a set-oriented perspective under the assumption that it
enables more diverse evaluation strategies and thus better automatic optimization, this is a challenge
that has been addressed in different ways in XML query languages.

Most of the early proposals ignore order in XML documents entirely or support it only superficially.
Though XPath 1.0 allows querying the order, its results are either in document or in reverse document
order, depending on the axis of the final step. This is fitting as XPath 1.0 is focused on selection and not
(re-) construction of nodes.

For query languages like XQuery that also support construction of new XML trees, however, this is
utterly insufficient. E.g., selecting authors together with their articles from the sample data in Section 2.1

17



and then constructing one XHTML section for each author containing a list of its articles requires control
over the order in which section elements (e.g., h1s) and list elements (ul or ol) are intertwined.

This need is recognized in XQuery and, in many ways, all of XQuery is designed around proper
support for ordered XML. Where in XPath 1.0 the results of path expressions are node sets, XQuery
and XPath 2.0 use sequences. Sequences can be constructed or result from the evaluation of an XQuery
expression. In contrast to XPath 1.0, sequences cannot only be composed of nodes but also from atomic
values, e.g., (1, 2, 3) is a proper XQuery sequence. Combined with XQuery’s iteration expression
(for) we control precisely how we iterate both over nodes of the input and in which order we create new
nodes. In this respect it is more similar to languages such as DAPLEX [164] which provide precise
control over iteration on sequences of relational tuples, than to SQL, which only allows control over the
order of the result sequence, let alone (set-based) relational algebra.

XSLT 2.0 [109] goes even further than XQuery in this respect. It is based on the same data model
as XQuery (sequences of nodes), but also provides grouping based on order using the group-adjacent
attribute of xsl:for-each-group.

The disadvantage of XQuery’s (and XSLT 2.0’s) choice to make order such prevalent in the lan-
guage is that implementations have to painstakingly maintain this order to conform to the specification,
see, e.g., [93] for a detailed account. In XQuery this has been partially recognized by providing the
unordered keyword that allows a sub-query to be evaluated order indifferent, as if it had a set-based
semantics. See, e.g., [94] on how to exploit order indifference in XQuery. Similarly, some alterna-
tive query languages, most notably Xcerpt [157] provide both ordered and unordered queries without
preference for either.

This concludes our brief overview of XML query languages. For a comparison of a larger set of
XML query languages see [14]. Here, we focus on highlighting some of the most innovative issues
around XML query languages, viz. how languages cope with the need to query not only direct structural
relations but also reachability, how the restriction on tree queries and tree data allows for a more efficient
evaluation than on arbitrary relational data, and how order as a central concept in XML affects XML
query languages. In all three cases, XML has triggered the development of novel approaches to query
evaluation that have considerably extended our understanding of hierarchical queries in general. In the
next section, we turn to RDF and try to illustrate where similar questions arise for RDF querying, though
RDF being a considerably less established data format and topic of research shows in the comparative
lack of significant advances to existing knowledge about query evaluation.

3.2 Graphs & Resources—RDF
Compared with XML query languages, the field of RDF query languages is less mature and has not
received as much attention from research, just as RDF in general. Recently, the W3C has started to
derive a standard RDF query language, called SPARQL [150], that is, visibly influenced by languages
such as RDQL [135], RQL [106], and SeRQL [35], aiming to create a stable foundation for use, imple-
mentation, and research on RDF databases and query languages. Where XML query languages focus
on trees and order, RDF query languages have to deal with the simple, but also highly flexible RDF:
RDF data comes (see Section 2.2) in the shape of arbitrary (usually node- and edge-labeled) graphs.
Yet surprisingly and in stark contrast to the XML case, many RDF query languages only provide access
to direct properties, but not to reachability information, see Section 3.2.2. In contrast to relational or
object-oriented (which can also be considered representing graph data) data all properties (i.e., outgo-
ing edges) are optional and multi-valued. For instance, an author may or may not have a last name and
may even have many such names. How query languages deal with this inherent optionality is discussed
in Section 3.2.3. Resources (i.e., nodes) are in general labeled with (globally) unique identifiers that

18



allow us to talk about the same resource in different data sets. However, RDF also allows blank nodes
which play the role of local-only identifiers. Blank nodes are like existential data and pose particular
challenges for RDF query evaluation (see Section 3.2.4).

Again, we start off the discussion of RDF query languages with a closer look at one of the more
prominent exemplars: SPARQL. This introduction is focused on the essentials of SPARQL. For a more
in-depth comparison of (more than a dozen) RDF query languages see [82].

3.2.1 SPARQL 1000 Words

Fundamentally, SPARQL is a fairly simple query language in the spirit of basic subsets of SQL or OQL.
However, the specifics of RDF have lead to a number of unusual features that, arguably, make SPARQL
more suited to RDF querying than previous approaches such as RDQL [135]. However, the price is a
more involved semantics complemented by a tendency in [150] to redefine or ignore established notions
from relational and XML query languages rather than build upon them.

Nevertheless, SPARQL is expected to become the “lingua franca” of RDF querying and thus well
worth further investigation. In the following sections, we first briefly introduce into SPARQL and its
semantics (based on [146] and [147] but extended to full SPARQL queries rather than only patterns).

Example. The following SPARQL query selects from the graph in Section 2.2 all articles in the journal
with name “Computer Journal” and returns a new graph where the bib:isPartOf relation of the original
graph is inverted to bib:hasPart.5

CONSTRUCT { ?j bib:hasPart ?a }
2 WHERE { ?a rdf:type bib:Article AND ?a bib:isPartOf ?j

AND ?j bib:name ‘Computer Journal’ }

The query illustrates SPARQLs fundamental query construct: a pattern (s, p, o) for RDF triples (whose
components are usually thought of as subject, predicate, object). Any RDF triple is also a triple pat-
tern, but triple patterns allow variables for each component. Furthermore, SPARQL also allows literals
in subject position, anticipating the same change also in RDF itself. We use the variant syntax for
SPARQL discussed in [146] to ease the definition of syntax and semantics of the language. For in-
stance, standard SPARQL, uses . instead of AND for triple conjunction. We consider two forms of
SPARQL queries, viz. SELECT queries that return list of variable bindings and CONSTRUCT queries that
return new RDF graphs. Triple patterns contained in a CONSTRUCT clause (or “template”) are instan-
tiated with the variable bindings provided by the evaluation of the triple pattern in the WHERE clause.
We omit named graphs and assume that all queries are on the single input graph. An extension of the
discussion to named graphs is easy (and partially demonstrated in [147]) but only distracts from the
salient points of the discussion.

The full grammar of SPARQL queries as considered here (extending [146] by CONSTRUCT queries)
is as follows:

〈query〉 ::= ‘CONSTRUCT’ 〈template〉 ‘WHERE’ 〈pattern〉
| ‘SELECT’ 〈variable〉+ ‘WHERE’ 〈pattern〉

〈template〉 ::= 〈triple〉 | 〈template〉 ‘AND’ 〈template〉 | ‘{’ template ‘}’

〈triple〉 ::= 〈resource〉‘,’ 〈predicate〉‘,’ 〈resource〉

5Here, and in the following we use namespace prefixes to abbreviate IRIs. The usual IRIs are assumed for rdf, rdfs, dc (dublin
core), foaf (friend-of-a-friend), vcard vocabularies. bib is a prefix bound to an arbitrary IRI.

19



〈resource〉 ::= 〈iri〉 | 〈variable〉 | 〈literal〉 | 〈blank〉

〈predicate〉 ::= 〈iri〉 | 〈variable〉

〈variable〉 ::= ‘?’ 〈identifier〉

〈pattern〉 ::= 〈triple〉 | ‘{’ 〈pattern〉 ‘}’
| 〈pattern〉 ‘FILTER’ ‘(’ 〈condition〉 ‘)’ |

| 〈pattern〉 ‘AND’ 〈pattern〉 | 〈pattern〉 ‘UNION’ 〈pattern〉
| 〈pattern〉 ‘MINUS’ 〈pattern〉 | 〈pattern〉 ‘OPT’ 〈pattern〉

〈condition〉 ::= 〈variable〉 ‘=’ 〈variable〉 | 〈variable〉 ‘=’ (〈literal〉|〈iri〉)
| ‘BOUND(’ 〈variable〉 ‘)’ | ‘isBLANK(’ 〈variable〉 ‘)’
| ‘isLITERAL(’ 〈variable〉 ‘)’ | ‘isIRI(’ 〈variable〉 ‘)’
| 〈negation〉 | 〈conjunction〉 | 〈disjunction〉

〈negation〉 ::= ‘¬’〈condition〉

〈conjunction〉 ::= 〈condition〉 ‘∧’ 〈condition〉

〈disjunction〉 ::= 〈condition〉 ‘∨’ 〈condition〉

We pose some additional syntactic restrictions: SPARQL queries are range-restricted, i.e., all vari-
ables in the “head” (CONSTRUCT or SELECT clause) also occurs in the “body” (WHERE clause) of the
query. We assume error-free SPARQL expressions (in contrast to [146] and [147]), i.e., for each FILTER
expression all variables occurring in the (right-hand) condition must also occur in the (left-hand) pattern.
The first limitation is as in standard SPARQL, the second is allowed in standard SPARQL but can easily
recognized a-priori and rewritten to the canonical false FILTER expression (as FILTER expressions with
unbound variables raise errors which, in turn, are treated as a false filter, see “effective boolean value”
in [150].

Finally, we allow only valid RDF constructions in CONSTRUCT clauses, i.e., no literal may occur as a
subject, all variables occurring in subject position are never bound to literals, and all variables occurring
in predicate position are only ever bound to IRIs (but not to literals or blank nodes). The first condition
can be enforced statically, the others by adding appropriate isIRI or negated isLITERAL filters to the
query body.

A formal semantics for SPARQL can be found in [146] and [147].
Recently, SPARQL has been the target of a number of studies and extensions. Its complexity and

formal semantics have been studied in [146], where it is shown, that, unsurprisingly, full SPARQL
patterns are just as expressive as relational algebra and thus PSPACE-complete w.r.t. query complexity.
This is somewhat disappointing as thus many graph queries (including simple reachability queries) are
not expressible in SPARQL, yet highly desirable for RDF query languages, see, e.g., [10]. Extensions
of SPARQL with rules [147, 159] have received some attention in part as they can address some of these
weaknesses and as they are seen as the natural next step towards a Semantic Web query engine. Also
studied have been several embeddings of SPARQL in XQuery or vice versa, see, e.g., [148].

3.2.2 Reachability

In stark contrast to the XML case, many RDF query languages do not provide means to access reach-
ability information or any other form of navigation in the RDF graph beyond direct edge traversal. In
[10], a set of graph queries that are desirable for an RDF query language are described, but neither
SPARQL nor RQL can express the majority of these constructs.

However, if we look beyond SPARQL and RQL we find that RDF query languages actually support
a wide variety of path expressions:

20



1. Basic path expressions are only abbreviations for triple patterns as seen in SPARQL or RQL.
They allow only the specification of fixed length traversals, i.e., the traversed path in the data is of same
length as the path expression. These path expressions are not more expressive than triple patterns (and
therefore SPJ queries), but are nevertheless encountered in several query languages as “syntactic sugar”.
Examples of query languages with only basic path expressions are GEM [181], OQL [42], SPARQL
[150], and RQL [106].

2. Unrestricted closure path expressions are a common class of path expressions that adds to the
basic path expressions the ability to traverse arbitrary-length paths. XPath path expressions (disregard-
ing XPath predicates for the moment) fall into this category with closure axes such as descendant.
This type of path expressions is very common in XML query languages (e.g., XML-QL [65], Quilt
[46], XPath and all XML query languages based on XPath). It is also used in the RDF query language
iTQL[1]. Its expressiveness is indeed higher than that of basic triple patterns (SPJ queries). It can be
realized in languages that provide only triple patterns but additionally (at least linear) recursive views.
SQL-99 is an example of a language that provides no closure path expressions but linear recursion and
thus can emulate (unrestricted) closure path expressions. For RDF, there are few query languages that
fall into this class since RDF has, in contrast to XML, no dominating hierarchical relation but many
relations of equal importance. This makes unrestricted closure often too unrestrictive for interesting
queries.

3. Therefore, several RDF query languages provide generalized or regular path expressions. Here,
full regular expression syntax including repetition and alternative is provided on top of path expressions.
E.g., a*.((b|c).e)+ traverses all paths of arbitrary many a properties followed by at least one repeti-
tion of either a b or a c in each case followed by an e. Such regular path expressions are provided, e.g.,
by Versa’s traverse operator, Xcerpt’s qualified descendant, or the XPath extension with conditional
axes [129]. The latter work showed that regular path expressions are even more expressive than unre-
stricted closure path expressions and a path language like XPath becomes indeed first-order complete
with the addition of regular path expressions. Nevertheless, direct language support is not only justified
by the ease of use for the query author but also by complexity results, e.g., in [128] that show that regular
path expressions do not affect the complexity of a query language such as XPath and can be evaluated in
polynomial time w.r.t. data and query size. Simulation of regular path expressions using triple patterns
(SPJ queries) and recursive views is possible but the resulting queries become excruciatingly complex
even for simple regular path expressions.

Summarizing, path expressions provide convenient means to specify structural constraints in RDF
queries and are therefore supported by a large number of RDF query languages. However, surprisingly
many RDF query languages ignore (unrestricted or regular) closure path expressions. This is surprising
as these path expressions make query authoring (they allow avoiding recursive views) easier and can
be implemented efficiently as research on these constructs for XML query languages has shown. In
particular, unrestricted closure path expressions can be implemented nearly as efficiently as basic path
expressions:

Evaluation of reachability queries on graphs. For tree data, membership in closure relations can be
tested in constant or almost constant time (e.g., using interval encodings [68] or other labeling schemes
such as [177]). However, for graph data this is not so obvious. Fortunately, there has been considerable
research on reachability or closure relations and their indexing in arbitrary graph data in recent years.
Table 6 summarizes the most significant approaches for RDF querying.

Obviously, we can obtain constant time for the membership test if we store the full transitive closure
matrix. However, for large graphs this is clearly infeasible. Therefore, two classes of approaches have

21



approach characteristics query time index time index size

Shortest path [144] no index O(n + e) – –
Transitive closure full reachability matrix O(1) O(n3) O(n2)

2-Hop [54] 2-hop covera O(
√

e) ≤ O(n) O(n4) O(n ·
√

e)
HOPI [160] 2-hop cover, improved approxima-

tion algorithm
O(
√

e) ≤ O(n) O(n3) O(n ·
√

e)

Graph labeling [4] interval-based tree labeling and
propagation of intervals of non-
tree descendants.

O(n)b O(n3) O(n2)c

SSPI [47] interval-based tree labeling and
recursive traversal of non-tree
edges

O(e − n) O(n + e) O(n + e)

Dual labeling [174] interval-based tree labeling and
transitive closure over non-tree
edges

O(1)d O(n + e + e3
g) O(n + e2

g)

GRIPP [169] interval-based tree labeling plus
additional interval labels for edges
with incoming non-tree edges

O(e − n) O(n + e) O(n + e)

aIndex time for approximation algorithm in [54].
bMore precisely, the number of intervals per node. E.g., in a bipartite graph this can be up to n, but in most (sparse) graphs

this is likely considerably lower than n.
cMore precisely, the total number of interval labels.
d[174] introduces also a variant of dual labeling with O(log eg) query time using a, in practical cases, considerably smaller

index. However, worst case index size remains unchanged.

Table 6: Cost of Membership Test for Closure Relations. n, e: number of nodes, edges in the data, eg: number of
non-tree edges, i.e., if T (D) is a spanning tree for D with edges ET (D), then eg = |ED \ ET (D) |.

22



been developed that allow with significantly lower space to obtain sub-linear time for membership test.
The first class are based on the idea of a 2-hop cover [54]: Instead of storing a full transitive closure,

we allow that reachable nodes are reached via at most one other node (i.e., in two “hops”). More
precisely, each node n is labeled with two connection sets, in(n) and out(n). in(n) contains a set of nodes
that can reach n, out(n) a set of nodes that are reachable from n. Both sets are assigned in such a way,
that a node m is reachable from n iff out(n) ∪ in(m) , ∅. Unfortunately, computing the optimal 2-hop
cover is NP-hard and even advanced approximation algorithms [160] have still rather high complexity.

A different approach [4, 47, 174, 169] is to use interval encoding for labeling a tree core and treating
the remaining non-tree edges separately. This allows for sublinear or even constant membership test,
though constant membership test incurs lower but still considerable indexing cost, e.g., in Dual Labeling
[174] where a full transitive closure over the non-tree edges is build. GRIPP [169] and SSPI [47] use
a different trade-off by attaching additional interval labels to non-tree edges. This leads to linear index
size and time at the cost of increased query time.

This consideration shows that reachability (at least in its basic form) does not need to significantly
degrade the performance of RDF query evaluation (and clearly does not affect its complexity, seeing
that already SPARQL SELECT queries are PSPACE-complete).

3.2.3 Optionality

So far, we have mostly focused on pure conjunctive queries only. Disjunction or equivalent union con-
structs allow the query author to collect data items with different characteristics in one query. E.g., to
find “colleagues” of a researcher from an RDF graph containing bibliography and conference informa-
tion, one might choose to select co-authors, as well as co-editors, and members in the same program
committee. On RDF data, disjunctive queries are far more common place than on relational data since
all RDF properties are by default optional. Many queries have a core of properties that have to be de-
fined for the sought-for data items but also include additional properties (often labeling properties or
properties relating the data items to “further” information such as Web sites) that should be reported if
they are defined for the sought-for data items but that may also be absent. E.g., the following SPARQL
query returns pairs of articles and editors for articles that have editors and just articles otherwise. If one
considers the results of a query as a table with nil values, the translator column is nil in the latter case,
i.e., if there is no bib:editor property for that article.

1 SELECT ?article, ?editor
WHERE { ?article a bib:Article AND

3 OPTIONAL { ?article bib:editor ?editor } }

Such optional selection eases the burden both on the query author and the query processor consider-
ably in contrast to a disjunctive or union query which has to duplicate the non-optional part:

1 SELECT ?article, ?editor
WHERE { ?article a bib:Article AND

3 ?article bib:editor ?editor }
UNION

5 { ?article a bib:Article }

Furthermore, the latter is not actually equivalent as it returns also for writings X with translators one
result tuple (X, nil). Indeed, this points to the question of the precise semantics of an optional selection
operator. One can observe that the answer to this question is not the same for different RDF (or XML)
query languages. The main difference between the offered semantics in languages such as SPARQL,
Xcerpt, or XQuery lies in the treatment of multiple optional query parts with dependencies. E.g., in the

23



expression A∧optional(B)∧optional(C) the same variable V may occur in both B and C. In this case, if
we just go forward and use the B part to determine bindings for V those bindings may be incompatible
with C, i.e., prevent the matching of C. The way this case of multiple interdependent optionals is
handled allows to differentiate the following four semantics for optional selection constructs:

1. Independent optionals: Interdependencies between optional clauses is disregarded by imposing
some order on the evaluation of optional clauses. SPARQL, e.g., uses the order of optional clauses in
the query: The following query selects articles together with editors and, if that editor is also an author,
also the author name.

1 SELECT ?article, ?person, ?name
WHERE { ?article a bib:Article AND

3 OPTIONAL { ?article bib:editor ?person }
OPTIONAL { ?article bib:author ?person AND

5 ?person bib:name ?name } }

If we change the order of the two optional parts, the semantics of the query changes: select all articles
together with authors and author names (if there are any). The second optional becomes superfluous, as
it only checks whether the binding of ?person is also an editor of the same essay but whether the check
fails does not affect the outcome of the query.
It should be obvious that this semantics for interdependent optionals is equivalent to allowing only a
single optional clause per conjunction that may in turn contain other optional clauses. Therefore, the
above query could also be written as follows:

1 SELECT ?article, ?person, ?name
WHERE { ?article a bib:Article .

3 OPTIONAL { ?article bib:editor ?person
OPTIONAL { ?article bib:author ?person AND

5 ?person bib:name ?name }
} }

This observation, however, only applies if the optional clauses are interdependent. If they are not inter-
dependent multiple optional clauses in the same conjunction differ from the case where they are nested.

2. Maximized optionals: Another form of optional semantics considers any order of optionals: In
the example it would return the union of the orders, i.e., either first binding translators than checking
whether they are also authors or first binding authors and author names then checking whether they are
also translators. This is more involved than the above form and assigns different semantics to adjunct
optionals vs. nested optionals. The advantage of this semantics is that it is equivalent to a rewriting
of optional to disjunctions with negated clauses: A ∧ optional(B) ∧ optional(C) is equivalent to (A ∧
not(B) ∧ not(C)) ∨ (A ∧ not(B) ∧ C) ∨ (A ∧ B ∧ not(C) ∨ (A ∧ B ∧ C). This semantics ensures that
the maximal number of optionals for a certain (partial) variable assignment is used. This semantics has
been introduced in Xcerpt [157].

3. All-or-nothing optional: A rare case of optional semantics is the “all-or-nothing” semantics
where either all optional clauses are consistent with a certain variable assignment or all optional vari-
ables are left unbound. This semantics can be achieved in SPARQL and Xcerpt using a single optional
clause instead of multiple independent ones.

3.2.4 Existential Information

Recall, that RDF data may contain specifically marked resources (called blank nodes) that remain with-
out identity but express only existential information. In fact, if we consider an RDF graph as a logical

24



conjunction of triples they become existential quantifiers over the resulting formula. They pose a num-
ber of challenges for RDF query evaluation.

First, when blank nodes are selected by a query should a query language return them like any other
resource? Recall, that blank nodes are essentially local identifiers and thus outside the scope of their
original graph may not carry much information. Furthermore, blank nodes express existential infor-
mation and such information may be redundant, i.e., already implied by the other data. E.g., if the
data contains the statement that the article smith2005 is part of issue 11 of some journal in addition
to the data from Figure 2 that information is obviously implied already from the remaining data (that
smith2005 is part of the issue 11 of the journal “Computer Journal”) and thus can be safely omitted. An
RDF graph without such redundant information is called lean [99]. Ideally, we might expect an RDF
query language to return only blank nodes that are non-redundant (and for these maybe enough addi-
tional information to retrieve them again, e.g., a concise bounded description [166]). However, simply
computing the lean graph for any given RDF graph is already -NP-complete [97] and thus undesirable
for most query evaluation. Thus most RDF query languages choose to ignore this issue and return blank
nodes just like any other resource.

Second, when constructing new RDF graphs (e.g., through SPARQL’s CONSTRUCT clause) we need
to be able to construct also new blank nodes to obtain an adequate RDF query language. However, such
blank node construction easily introduces a form of construction: Say we want to construct a new blank
node with edges to all articles selected by this query. Then a single blank node for all articles is needed.
However, we might also want to construct, for each article, a new blank node with edges to each of its
authors. Now we need one “fresh” blank node for each article (otherwise all articles share all authors)
but only one for each group of authors of the same article. SPARQL only allows the construction
of blank nodes that are in the scope of all query variables and thus can express neither of the above
queries. In RDFLog [40, 39] the effect of blank nodes on RDF querying is studied in detail. It is shown,
in particular, that the combination of blank node support (even as in SPARQL) with (recursive) rules
(as, e.g., in [159]) immediately leads to an undecidable, Turing-complete language that can be reduced,
using Skolemization and a novel form of un-Skolemization, to standard logic programming. It is also
shown that arbitrary scoping of blank nodes is not more expensive as SPARQL-style ∀∃ scopes and that,
at least in presence of rules, the two are actually equivalent.

This concludes our brief summary of core issues on RDF querying and RDF query languages. For
a comparison of a larger set of RDF query languages see [82]. The above discussion shows clearly that
RDF querying is yet a less mature field of research than the XML case, but that there are a number of
open questions that urgently need to be addressed for efficient and convenient access to RDF, and thus
arguably the entire Semantic Web vision to move forward.

4 Queries as Keywords:
Keyword-based Query Languages

In the literature, the term keyword-based query language is used to refer to a group of query languages
that use (relatively) unstructured bags of words that the user deems significant as queries or a part
thereof. A typical characteristic of keyword query languages is the implicit conjunctive semantics, that
is, by default the data must contain all words in a query to be a match without this being explicitly
expressed in the query.

The traditional query languages for semi-structured data discussed in the introduction require at
least some knowledge of the structural organization of the data to be queried as well as of the syntactic

25



constructs and principles of the query language. In contrast to this, the motivation behind developing
keyword-based query languages for XML and RDF is to enable casual users to construct queries and
obtain useful results without having to undergo training in a query language, having to know the under-
lying structure of the data and even without having a clear understanding of the data structures. Another
advantage of these query languages is that they allow for querying over heterogeneous data i.e. data
with different underlying schemas.

Keyword queries are not only easy to construct, but have proven to be surprisingly effective in
helping the user to localize relevant information. Consequently, keyword querying has become an es-
tablished technique for finding information that virtually all Web users are familiar with. Keyword
search is used in a wide variety of applications and domains, in Web search engines such as Google6

and Yahoo!7 which allow for general internet search over various types of documents as well as in more
specialized contexts and domains. For example, the query “XML Web” entered into Google yields a
lists of Web pages in which the terms occur. On the shopping site Amazon8 and the auction site Ebay9 it
results in a list of products available on the site and on the social networking site Facebook10, the search
results for the same query contain relevant user groups, events, user profile add-ons and users who are
interested in the Web and XML.

Since keyword-based querying is established and shows great effectiveness in querying the Web
in a variety of domains, it is a promising and worthwhile approach to achieve non-expert querying of
XML and RDF data. Various keyword query languages have been proposed in recent years. The goal
of this section is to present the different approaches taken and to give an overview over the different
paradigms and concepts as well as the expressive power of the individual languages. Keyword querying
in relational databases (see e.g. [102]) is a related topic that will not be treated here.

4.1 Characteristics of keyword query languages
Keyword querying as normally used on the Web on the one hand and traditional RDF and XML query
languages on the other hand can be seen as two extremes with respect to the degree to which querying
the structure of the data is possible; in the former, the structure of the data cannot normally be queried.
For example, Amazon’s regular search interface does not allow to indicate that a keyword should be
matched on authors’ names. In the latter case, the structure of the data may (but does not necessarily
have to be, see below) fully specified, for example in SPARQL and XPath.

Based on this observation, at least three different types of keyword-based query languages for struc-
tured data can be distinguished according to where they fall on this spectrum:

1. Keyword-only query languages, the simplest variant. Here, queries consist of a number of words,
which are usually matched on the textual content of nodes in an XML or RDF document. In some
cases, the keywords may also be matched against node or, in the case of RDF, edge labels, but
generally, the query makes no reference to the structure of the data.

Most keyword query languages for XML and RDF presented in the following fall into this cate-
gory, for example XKeyword [15],[101], XRank [96] and XKSearch [180].

2. Label-keyword query languages, e.g. XSearch [56], where a query term is a label-keyword pair
of the form l:k. The term matches data where a node with the label l has textual content, either

6http://www.google.com/
7http://www.yahoo.com/
8http://www.amazon.com/
9http://www.ebay.com/

10http://www.facebook.com/

26



directly or through a descendant node, matching the associated keyword k. It is thus possible to
indicate some structure in the query.

Depending on the query language, either the label or the keyword may be optional, meaning that
query terms may be of the form :k, l: or l:k. For example, the query “title:Web” applied to the
example data, an excerpt from a fictional bibliographical XML database (figure 1) matches nodes
3 and 17. The query “:Web” on the other hand, a keyword-only query since no label is specified,
matches nodes 3, 17 and 26, since it does not impose constraints on the node label.

The difference between keyword-only languages that match both on labels and content and label-
keyword languages is that in the latter case, the association between label and keyword and the
kind of element each keyword refers to (node label or node content) is represented, allowing for
more targeted queries since label-content or parent label-descendant content relationships can be
explicitly specified.

3. Keyword-enhanced query languages like for instance Schema-Free Query [120] integrate tradi-
tional query languages like XPath with simple keyword querying as described in this article. They
allow for the specification of the structure to the degree that it is known, but also include constructs
that make it possible to use keyword-querying where it is not, thus offering a smooth transition
between keyword querying and creating fully specified queries.

Keyword-enhanced query languages constitute extensions of traditional query languages, mean-
ing that they provide their full power.

Since traditional query languages offer ways to specify queries when the user lacks knowledge
about the data structure, e.g. through regular path expressions in XPath, the question arises how
traditional query languages and Keyword-enhanced query languages can be differentiated. As
is pointed out in [78] and [162], regular path expressions are useful if the the structure is not
completely known to the user, but are not practical if the user has no knowledge of the structure
at all.

One important difference is thus that keyword querying aims at accommodating the lack of knowl-
edge about the structure in a more fundamental and comprehensive way and thus has a philosophy
and caters to a community that are different from those of traditional query languages.

A second, complementary characteristic of keyword query languages is how they are realized:

1. The majority of keyword query languages are implemented as a stand-alone system that handles
the query evaluation and determining and, where applicable, ranking of the return entities.

2. Another group of keyword query languages translate the keyword queries into another query
language and thus outsource the query evaluation.

3. Keyword-enhanced query languages combine conventional query languages like XPath or XML-
QL with keyword-querying techniques and thus build on existing systems.

4.2 Using structural information for keyword querying
As mentioned, keyword querying is an established technique in various Web applications like search
engines.

In these applications, most queries are keyword-only queries although for instance Google supports
a limited set of label-keyword-like constructs in queries like allintitle:XML which retrieves Web
sites that have the word XML in their title element.

27



Figure 4: The Amazon advanced search interface

But overall, querying the structure of Web documents is only enabled to a very limited degree, for
example, it is not possible to specify an arbitrary HTML tag as a surrounding context for a keyword. At
least in the case of Web search engines which process an extremely big amount of data (in July 2008,
Google stated their link processing system had found more than 1 trillion individual links, although
not all pages found are indexed11), this can be attributed to the fact that indexing and retrieving struc-
tural information would increase the data and processing load even further, decreasing the efficiency of
search.

Amazon on the other hand which operates on less numerous, and homogenous data in a limited
domain, offers advanced search12 (see figure 4) for various categories of products like books and maga-
zines. Here, the user can fill in values for a number of given attributes, for instance author and language
when she is looking for a book. While the advanced search is realized as filling out a form, it essen-
tially constitutes the equivalent of a very limited label-keyword query language. For example, providing
“XML” as a value for the “title” field in the form can be seen as being equal to a query “title:XML”.

However, this form of label-keyword querying relies on clean, structurally homogenous data and
thus does not constitute a suitable solution for flexible and versatile querying of generic XML or RDF

11http://googleblog.blogspot.com/2008/07/we-knew-Web-was-big.html
12http://www.amazon.com/gp/browse.html?node=241582011

28



(1)

article

(4) 

author

(2)

title

(3) 

authors

(7) 

author

(5)

first

(6)

last

(8)

first

(9)

last

... Semantic 

Web ...

John Doe Mary Smith

(10)

body

(12)

title

(11)

section

(13)

subsection

(16)

subsection

(14)

title

(17)

title

(15)

content

(18)

content

(19)

section

(20)

title

(21)

content

Introduction

...XML...
...Web...

...XML...
...RDF... ...Web...

...Semantic Web...

...XML...

...RDF...

...Web...

Figure 5: Document-centric XML representing an excerpt of an article

data.

4.2.1 Computing query answers

In keyword querying on the Web, some structural information may be taken into account when ranking
the results, for example by assigning different scores depending on whether a keyword occurs in the title
or is printed in big or bold text [34], but the structure of a document plays no role when determining
the return value type which is fixed. Apart from efficiency, two reasons can be seen for this. First,
Web or Wiki pages are typically of a comparably small size, and it is thus reasonable to return results
at the granularity of whole Web pages. Secondly, in the case of domain-specific querying on a limited,
homogeneous data set like on shopping Web sites, querying only serves one task, i.e. finding matching
products and there are only few types of objects, e.g. books and DVDs, and the return types (or the
information initially displayed in the results list) can easily be predefined. For example, keywords
matching a book might yield a return entity of type book which by default displays the title, author and
price, while the return entity for DVDs might show the title, price and region code.

On the other hand, when applying the concept of keyword-search to RDF or XML documents, we
may be dealing with a single big document that e.g. represents a bibliography or an address book which
contain thousands of entries or more. In this case, it is not meaningful to return the whole document,
but only parts of it. Defining return types manually may be feasible but is harder to realize than in the
above-mentioned examples since the data may represent many different types of entities.

Therefore, it is preferable to employ some method to automatically determine a useful return value, a

29



semantic entity. In order to achieve this, matched nodes have to be connected, that is, grouped according
to their membership in semantic entities, particularly when there are several matches for some or all
keywords. Note that grouping into semantic entities also serves the goal of establishing the domain of
the answer, potentially enabling the targeted selection of return values like retrieving the publication
years of all books by a certain author.

Additionally, a metric for ranking these result elements that, unlike rankings of HTML documents,
performs at the granularity of the returned structures is needed. That means that the entities to be ranked
are not complete documents but fragments of structured data. Finally, RDF and often XML have a
deeper, more semantically meaningful structure than HTML, meaning that they profit more from a more
comprehensive exploitation of the structure of the results in ranking.

However, note that XHTML is an application of XML which illustrates that it is necessary to keep
in mind that XML documents are not always data-centric like bibliographies (figure 1) but may also
be document-centric and represent a text and its structure or formatting (as shown in figure 5). A truly
versatile keyword-based query language for XML should ideally yield useful results for both kinds of
documents (and any that might exist in between) and not impose restrictions on the type of documents.

As an illustration of the return value problem, consider the XML document representing a bibliogra-
phy in figure 1. A query K = {w1, ...,wk}matched on an XML data set T yields the result L = {L1, ..., Lk}

where each Li = {v1, v2, ...} consists of all nodes v which contain wi.
Applied to the data in figure 1, the first word in the query K = {S mith,Web} (conjunction is assumed

here and in the following) has one match, the content of node 11 which is the last name of one of the
authors of an article (L1 = {11}), while “Web” matches the titles of both articles and thus L2 = {3, 17}.

Returning only the matched nodes would not provide useful information for the user, as would
returning the whole document which might contain many more entries. Given the nature of the data
and the query, the user can be assumed to be interested in receiving information about articles whose
data contain his search terms. That means that the “article” nodes in the data govern the subtrees which
constitute meaningful semantic entities that should be returned, as a whole or in part, as answers to the
query.

A common approach to the evaluation of matches in keyword-based query languages is to find
the most specific element that is an ancestor to at least one match instance of each keyword and to
construct a return value from this node, e.g. take the subtree of which it is the root. The idea behind
this is that the ancestor-descendant relationship indicates a strong semantic connection, especially when
the distance between ancestor and descendant is small. Correspondingly, a node which is the closest
common ancestor of instances of all keywords is assumed to encode the most specific concept that the
keyword matches have in common.

In the case of tree-shaped XML data, this is defined as the Lowest Common Ancestor (LCA) [98], a
common concept in graph theory which takes an answer set S i and computes the lowest node that has all
nodes in S i among its descendants. Depending on the application and specific algorithm, S = {S 1, S 2, ...}
may contain either all answer sets that cover the query exactly, i.e. contain one matched node for each
keyword (‖S i‖ = ‖K‖), or allow the answer sets to contain more than one match instance for each
keyword.

In this example, assuming the latter case, the three answer sets are S 1 = {11, 3} S 2 = {11, 17}
and S 3 = {11, 3, 17} with the respective LCA nodes LCA(S 1) = 2, LCA(S 2) = 1 and LCA(S 3) = 1.
Intuitively, the subtree governed by node 2 constitutes the domain of the best answer of the query and is
preferred to the other answers which are not specific enough and should not be displayed or should be
ranked lower.

Several adaptations of LCA have been proposed to remedy the problems of false positives, that is,
results which are not relevant. These variants, which will be presented in the following, reduce the set

30



of answers by filtering out false positives. As will be shown, in this process, false negatives can be
introduced, that is, not all relevant answer are retrieved.

But false positives and false negatives are not the only problem that LCA grouping and related
methods have; sometimes, a relevant answer may not be contained in the LCA subtree. For example,
a query K = {author : Doe, author : S mith} yields node 5 as the LCA, implying an answer that is not
necessarily informative since it is only concerned with the authors’ names, while it can plausibly be
assumed that the user is interested in further information like the titles of the articles they coauthored..

Basic approaches to ranking use the length of the paths from the matched nodes to the LCA node
to determine ranking order, shorter paths are assumed to mean that the answer is more specific, that is,
better.

For both tasks, determining the domain of the return value and ranking, the structure of the queried
data set proves helpful in finding a solution and thus structural analysis is employed in keyword-based
query languages even though the structure may not always be queried explicitly.

The majority of research is concerned with querying XML data, but keyword-based query languages
for RDF data, more complex to realize because of the graph structure, labeled edges and blank nodes,
do exist and will be presented in the following. Familiarity with XML, RDF and their data models is
assumed, see section 2.

4.3 Keyword Query Languages Implemented as Stand-alone Systems

In the following section, the approaches are presented grouped according to their type of technical
realization as outlined above as well as the kind of data they operate and are sorted in chronological
order.

4.3.1 Querying XML

Xkeyword Unlike almost all later approaches to XML keyword querying which can be applied only
to tree-shaped data, XKeyword13 [15],[101] can be used on XML graphs and does not require the XML
data to have one common root node. As in most other keyword query languages, queries are simply
keywords whose list is assumed to be in conjunction. Keywords are matched both on node labels and
values. To achieve semantically meaningful return values, the XML schema graph is manually grouped
into possible return types, target objects, which are annotated with their relationships to other target
objects. For example, a target object of type article could consist of article, author and title nodes and
stand in a contained in relation to a target object of type proceedings.
The system stores the XML data in a relational database as a set of connection relations and an inverted
index that indicates for every keyword the elements in which it occurs. Queries are then processed by
retrieving the relevant objects for the keywords and generating minimal cycle-free subgraphs that con-
tain all input keywords. These in turn can be mapped onto subtrees of the target object graph, yielding
the query results. The results are generated in parallel, meaning that smaller results are generated first,
resulting in a ranking of the results according to size.

The results can be be displayed in a list or as a presentation graph that can be navigated through
clicking and expanding results. Trivial and duplicate matches are initially hidden and results are grouped
by their schema.

13Project Pages: http://db.ucsd.edu/XKeyword/

31



XSearch [56] is a label-keyword query language for XML that includes a ranking mechanism. Search
terms can be of the form l :, : k or l : k. A term l : k matches a node if the node has label l and a
descendant in whose content k is contained. All terms are optional unless prepended with “+”.

Matched nodes are grouped into entities according to the interconnection relationship which says
that the path from two nodes v1 and v2 to their LCA may not contain distinct nodes with the same labels
except for v1 and v2. An answer set contains only one match for each keyword in the query and is
interconnected if either it contains a node, the star center, that is interconnected with all other nodes in
the set (star related) or if all nodes are pairwise connected (all-pairs related). The type of connection
condition may be chosen depending on the data.

A query result is defined as an answer set that fulfills the selected interconnection constraint.
As an example, consider the query K = {+last : S mith,+ : Web} evaluated on the example data. As

in the similar query before, L1 = {11} and L2 = {3, 17}. Since every answer set must have the cardinality
of the query and every keyword must be matched, the answer sets are S 1 = {11, 17} and S 2 = {11, 3}.
The shortest path between objects 11 and 3 contains every node label only once which means that they
are interconnected. On the other hand, nodes 17 and 3 are not interconnected since nodes 2 and 16
which both lie on the path between the respective nodes and the LCA node “bib” have the same label,
“article”. The only answer to the query is thus S 1 = {11, 3}. The interconnection relation in this case
avoids grouping matches together that belong to different articles as simple LCA-based grouping does.

Since there are only two elements in each S i in the previous example, the interconnected nodes are
both star-related and all-pairs related. However, since star-relatedness is a relaxation of the constraint
of all-pair relatedness in the sense that for a set of nodes to be all-pairs related, every node has to
be a star center, this is not always the case as illustrated by the following example: The query K =

{+last : S mith,+last : Doe,+year : 2005} yields the answer set S 1 = {11, 8, 4}. Nodes 11 and 8 are
not interconnected since the path between them passes two nodes with label “author”. Node 4 however
is interconnected with both 11 and 8. Consequently, S 1 = {11, 8, 4} is not a query answer if all-pairs
interconnection is used, but it is according to star related interconnection.

Grouping using all-pairs related interconnection is thus more restrictive than star related intercon-
nection which in turn is more restrictive than simple lowest common ancestor calculation.

The above example also illustrates that all-pairs interconnection can lead to false negatives, since
S 1 is a valid answer to the query K. Additionally, both types of interconnection semantics are sensitive
to false positives when node labels are different but refer to similar concepts. In figure 23, the query
K = {+ : S mith,+ : 2003} with S 1 = {11, 18} and LCA(S 1) = 1, the root node is wrongly returned
as a result of the query since “article” and “book” are different labels but signify conceptually related
entities.

The query answers are ranked using the vector space model [156] and the tf-idf measure [105]
applied at the granularity of individual nodes. Other factors in calculating the ranking score distance be-
tween the nodes in the answer set and the number of pairs of nodes that stand in an ancestor-descendant
relationship, since this relationship generally indicates a strong connection.

The system is implemented using inverted indices for keywords and labels, an interconnection index
and a path index. The interconnection index contains the pre-computed interconnection relations be-
tween all pairs in a document, while the path index stores for each keyword the paths by which it can be
reached which allows to compute answers in ranking order when only the subtree size and the number
of ancestor-descendant pairs are considered. The interconnection index which stores the interconnec-
tion relationships between nodes can be pre-computed or generated incrementally online as queries are
evaluated.

32



(1)

bib

(2)

article

(13) 

book

(6) 

author

(3)

title

(4)

year

(5) 

authors

(12)

journal

(9) 

author

(14)

title

(15)

year

(16) 

authors

(23)

journal

(17)

author

(7)

first

(8)

last

(10)

first

(11)

last

... Semantic 

Web ...

John Doe Mary Smith

2005 Computer Journal

(18)

first

(19) 

last

Peter Jones

(20) 

author

(21)

first

(22)

last

Sue Robinson

Web Journal...Web... 2003

Figure 6: False positives in interconnection semantics

XRank [96], as the name suggests, puts a bigger focus on result ranking and employs more refined
ranking techniques than the above-mentioned approaches. The system allows for querying a mix of
(graph-shaped, i.e. containing hyperlinks) XML and HTML documents. When dealing with XML,
query results are XML fragments, but XRank behaves like a traditional Web search engine when dealing
with HTML documents, returning complete documents as search results. XRank is one of the few query
languages presented here that assume document-centric XML and exemplify the grouping on such data.

XML query evaluation in XRank proceeds by first matching the keywords on the content of nodes.
Hyperlinks are ignored when calculating query results. A query result then is computed by finding R0
the set of nodes that contain at least of instance of each keyword in the query via an ancestor-descendant
relationship.

A query result node then is a node in R0 for which it holds that, for each keyword, it contains at least
one match instance that is not contained in any of its descendant nodes also in R0. Formulated in terms
of the Lowest Common Ancestor, the procedure yields those LCA nodes which either are not ancestors
to any further possible LCA nodes or, if they are, which are also LCA nodes when ignoring the keyword
matches in the contained LCA subtree.

As an example, consider the query K = {XML,Web} evaluated on the data in 7. The keyword match
lists are L1 = {13, 15} and L1 = {2, 12, 13, 16, 19}. Based on this, some exemplary answer sets are
S 1 = {13}, S 2 = {15, 16}, S 3 = {13, 12} and S 4 = {15, 19}. S 1 consists only of one node which contains
all keywords, meaning that the LCA of S 1 is identical with its element, node 13. Since this node is the
LCA node and does not have any children, it is a result of the query. Similarly, node 14, the LCA of S 2,
is also a result node. On the other hand, S 3 and S 4 both have the LCA node 11 which is an ancestor of

33



(1)

article

(4) 

author

(2)

title

(3)

authors

(7) 

author

(5)

first

(6)

last

(8)

first

(9)

last

... Semantic 

Web ...

John Doe Mary Smith

(10)

body

(12)

title

(11)

section

(13)

content

(14)

subsection

(17)

subsection

(15)

title

(18)

title

(16)

content

(19)

content

Introduction:...

...Semantic Web...

...XML...
...Web...

...RDF... ...Web...

...Semantic Web...

...XML...

Figure 7: Document-centric XML data

nodes 13 and 14, that, as explained, are themselves LCA nodes. k2 = Web has an occurrence contained
by 11 which is not part of an LCA, namely in node 12. However, there is no match of k1 = XML in
a descendant of node 11 which is not also contained in an LCA. Therefore, node 11 cannot be a return
node.

The intent behind ruling out non-minimal LCAs is to retrieve only maximally specific query results.
However, since document-centric XML represents a cohesive text where structurally close elements can
be expected to be strongly interrelated in their topic, it is also of interest to account for such matches.

The XRank grouping mechanism is susceptible to the same types of false positives are LCA and
interconnection semantics (in the case of synonym or near-synonym labels) are, that is, unrelated entities
may be grouped together.

Three criteria, specificity, keyword proximity and the connections between elements are used to rank
the results. Specificity refers to the distance between the matched leaf nodes and the return node, while
keyword proximity means the distance between the keyword matches themselves. Specificity –vertical
distance– and keyword proximity –horizontal distance– thus combine into a two-dimensional proximity
metric. Finally, a variant of Google’s PageRank, ElemRank, is used to let the links between elements
factor into a result node’s ranking value.

The PageRank value of a Web site represents the probability of reaching it through randomly follow-
ing links [34]; the algorithm employs link-based propagation of ranking values. ElemRank is an adapta-
tion of PageRank that takes specific characteristics of XML data into account, namely the bi-directional
propagation of ElemRanks through links, the aggregation semantics for reverse containment relation-
ships and the distinction between containment links and hyperlinks. While hyperlinks are ignored when
matching the keywords, they are considered when calculating ElemRanks. Since containment links,
the parent-child relationship between XML elements, represent a stronger relation than hyperlinking

34



0

article

0.1.0 

author

0.0

title

0.1

authors

0.1.1 

author

0.1.0.0

first

0.1.0.1

last

0.1.1.0

first

0.1.1.1

last

... Semantic 

Web ...

John Doe Mary Smith

0.2

body

0.1.2.0

title

0.1.2

section

01.2.1

content

0.1.2.2

subsection

0.1.2.3

subsection

0.1.2.2.0

title

0.1.2.3.0

title

0.1.2.2.1

content

0.1.2.3.1

content

Introduction:...

...Semantic Web...

...XML...
...Web...

...XML...
...RDF... ...Web...

...Semantic Web...

...XML...

Figure 8: XML data from figure 7, enumerated with Dewey IDs

through e.g. IDREFs, the two are handled separately with the propagation of ElemRank value between
elements connected by containment edges being bi-directional. Additionally, the ElemRank of a node
is defined as the sum of the ElemRanks of its children, meaning that the ranking values of an entity’s
subparts in turn combine into that entity’s ranking value.

The ranking value of each instance of a keyword match is then calculated as its ElemRank value,
scaled by a decay factor that is inversely proportional to the distance between the result node and the
keyword match.

Finally, the ranking value of the result tree is the sum of the ranking values of the contained keyword
occurrences multiplied by a measure of keyword proximity which is based on the size of the smallest
text window containing all matches.

If a keyword has several occurrences in the subtree governed by the result node, the value of the
node with the highest ElemRank value is used.

In summary, the criterion of specificity is realized as the decay scaling factor where the decay in-
creases as the distance between a keyword occurrence and the result node grows, meaning that the
ElemRank calculated from the link connections between the elements becomes smaller. The keyword
proximity criterion on the other hand is represented as the scaling factor of the overall ranking value
of the result, here, a bigger distance between the keyword occurrences corresponds to a lower scaling
factor.

The calculation of the result nodes themselves is implemented via evaluation of Hybrid Dewey
Inverted Lists. Dewey ID enumeration [168] is a system to enumerate nodes in an XML tree. A Dewey
ID is a vector that summarizes the path from the root node of a document to a node. Figure 8 shows the
data from the previous figure enumerated using Dewey IDs. In this enumeration scheme, the ID of an
ancestor node is a prefix of the IDs of its descendants. The Lowest Common Ancestor of a set of nodes
can thus be easily computed by determining the longest prefix shared by all nodes’ Dewey IDs. For

35



(1)

article

(5) 

author

(2)

title

(3)

year

(4) 

authors

(11)

journal

(8) 

author

(6)

first

(7)

last

(9)

first

(10)

last

... Semantic 

Web ...

John Doe Mary Smith

2005 Computer Journal

(12)

references

(13)

article

(14)

title

(15) 

authors

(16) 

author

(17)

first

(18)

last

Mary Smith

Web Querying...

Figure 9: Sample XML data

example, S 2 = {15, 16} and S 4 = {15, 19}, using Dewey enumeration, become S 2 = {0.1.2.2.0, 0.1.2.2.1}
and S 4 = {0.1.2.2.0, 0.1.2.3.1} and this information suffices to compute the respective LCA nodes,
0.1.2.2 and 0.1.2. This property allows for the efficient computation of result nodes in a single pass
when all keywords are stored in an inverted list associated with their Dewey ID.

The authors present two techniques for the calculation of result nodes which can produce the top-k
results, meaning that not all results have to be generated before ranking can occur. A hybrid model
allows for the combination of both techniques depending on whether there is a high or low correlation
between the occurrences of the keywords.

XKSearch 14 [180] introduces the notion of the Smallest Lowest Common Ancestor which extends the
definition of LCA by a minimality criterion. Only LCA nodes that do not have further LCA nodes among
their descendants are also SLCA nodes. Note that this definition is stricter than that of result nodes in
XRank in that SLCA generally forbids LCA nodes that have LCA nodes among their descendants, while
XRank only constrains the context in which an LCA may contain another LCA. Further, SLCA only
allows one match instance for each keyword in an answer set.

SLCA addresses the problem of false positives as described in section 4: Evaluation of the query
K = {S mith,Web} on the data in figure 1 leads to the resulting LCA nodes 2 and 1. Node 2 represents a

14Project Pages: http://db.ucsd.edu/People/yu/xksearch/index.htm

36



node of type article and constitutes a meaningful result, while node 1 is the root node of the document
and the keyword matches are distributed over two different articles.

According to SLCA semantics, only node 2 is a suitable result node since it does not contain LCA
nodes. Node 1 is a LCA node but not a return node since it is an ancestor of another LCA node, node 2.

However, false positives are still possible when SLCA is used for grouping. The query K =

{S mith, 2003} has S 1 = {11, 14} and LCA(S 1) = 1 as a result according to SLCA. This query an-
swer is not meaningful since the keyword matches are distributed over two different articles, but is not
filtered out since there is no valid result and thus no further LCA in the data.

Additionally, disallowing nested LCAs can also lead to false negatives, for example when the same
query, K = {S mith,Web}, is applied to the data in figure 9, resulting in, among others, the answer sets
S 1 = {18, 14} and S 2 = {10, 2} and the corresponding groupings LCA(S 1) = 13 and LCA(S 2) = 1.
Both LCA nodes represent articles which contain both of the query terms and thus can be considered
suitable results. However, since the second LCA is an ancestor of the first, SLCA filters out the latter.
Consequently, only the article referenced in the other article is retrieved as a result.

The authors present two efficient algorithms for calculating SCLA nodes, Indexed Lookup Eager
and Scan Eager, that are based on the observation that a set of nodes lying close together in the tree
translates to their LCA being in closer proximity to them, meaning that for each keyword match, only
the nearest two matches for the other keywords have to be taken into consideration when computing the
SCLA.

Pradhan [149] presents a keyword-only approach targeted at querying XML data representing textual
documents, e.g. Web sites or books.

Document-centric XML has a more variable schema and weaker semantics than data-centric XML
since the XML structure may represent formatting or structural subdivision in e.g. paragraphs.

Due to these differences, Pradhan argues that while the LCA subtree containing one match for each
keyword may be a suitable query answer for data-centric XML, it does not constitute a meaningful query
answer in the case of document-centric XML documents where adjacent paragraphs may each contain
one or more of the query terms.

A query is matched on node content and a query answer may contain more than one match instance
of each keyword. An answer is constructed from sets of answer fragments where each set contains a
matching node for one keyword. These fragments are then joined, connected along the shortest path
through the XML tree, to yield answer candidates. All combinations of elements from the sets are
computed and filtered, for example by the size or height of the resulting answer. The query answer may
be a single node if all keywords are matched in its textual content.

Since the computational cost of this procedure can be very high when there are many keyword
matches, the author suggests optimizing the calculation by iteratively applying joins and removing re-
dundant elements in the fragment sets, that is, fragments that would be subsumed by a join of some
other fragments in the set, or, more informally, fragments that lie in the path that directly connects two
other fragments in the same set.

In addition to filtering, the number or query answers is reduced by eliminating duplicates.

Abbaci et al. [2] present a keyword-only query language that, compared to the other approaches dis-
cussed here, offers a relatively complex syntax, namely the operators AND (conjunction), OR (inclusive
disjunction), INC (inclusion, one operand must occur in a node that is a descendant of the node con-
taining the other operand) , SIB (sibling) and NOT (negation) and additionally parentheses to indicate

37



AND

web

NOT

semantic

Figure 10: Query Tree

precedence. The query language operates on XML documents and keywords are matched on node labels
as well as node content.

Query evaluation is realized by transforming the query into a binary tree where the leaf nodes contain
the keywords and the other nodes contain the operators. Next, sets of matching elements are constructed
for each leaf node, that is, each keyword. If a node vi contains a keyword wi, all ancestors of vi are also
represented in the list of matches for wi since they contain it indirectly. The data structure in which the
matches are recorded represents the ID of the node in which the keyword term occurs, the type of the
occurrence and the distance from the keyword match to the respective node (i.e. the distance is 0 when
the node contains the keyword directly). The answer sets for each leaf node are then further processed
by applying the operator specified in a node to the answer sets of its children. AND corresponds to
the intersection of two sets, OR to the union and NOT to the difference. INC and SIB are realized via
constraints on the distance from the keyword match. The query tree is processed in a bottom-up fashion
and once the root node of the query tree has been processed, only the nodes matching the full query
remain. Since indirect matches via ancestors are included in the answer sets, in the case of conjunctive
queries, the LCA node is among the query results.

As an illustration, consider the query “Web AND NOT semantic” evaluated on the data in figure
1. The query tree of this query is displayed in figure 10. The query is then evaluated by first adding
information about matching nodes to the leaf nodes as shown in figure 11. Note that for simplicity’s
sake here only the IDs of the matching nodes are shown in the lists and not the information about the
match types and distances which is only used for ranking. The keyword “Web” is contained directly in
nodes 26, 17 and 3 and indirectly, i.e. via a descendant, in nodes 2, 1 and 16. “semantic” is contained
directly in node 3 and indirectly in all ancestors of 3, that is, nodes 2 and 1. To apply the NOT operator,
the difference between the set of all nodes in the XML data and the nodes containing “semantic” is
taken, yielding the set of nodes that do not contain “semantic” either directly or via an ancestor. Finally,
to find the nodes that fulfill both conditions, the intersection of the sets of nodes that contain “Web” and
those that do not contain “semantic” is taken. The node list after application of the AND operator is the
final result since the root node has been reached.

Saito et al. The label-keyword query language for XML data conceived by Saito et al. [155] has
a syntax that allows for the use of some XPath operators and constructs, for example paths or parts
thereof can be specified through the use of the child and descendant operators. The query language

38



AND

web

NOT

semantic

16

1

2

3

17

26

1

2

3

16

17

26

26...4

Figure 11: Query evaluation

might thus also be considered a keyword-enhanced query language, but since the extent of XPath and its
expressions that can be used in this query language are unclear and not discussed further, we consider
the query language to be a keyword-label query language that offers some support for paths rather than
the other way around. An example of a label-keyword query term is k = //last/text() =“S mith”, while
only the nodes containing “Smith”, regardless of their labels, are matched for k =“S mith”.

The method used for grouping matched nodes is called Amoeba join. An Amoeba is an answer set
which contains its LCA node, that is, one of the nodes in the answer set is in an ancestor-descendant
relationship with all other nodes in the set. The authors refer to this as the nodes being bound to the
Amoeba root and state that the relationship between nodes in an answer set is “very weak” if their LCA
node is not also an Amoeba root.

For example, the query K1 = {“S mith”,“Web”,“article”} applied to the data in figure 1 yields,
among others, the answer sets S 1 = {11, 17, 2} and S 2 = {11, 3, 2}. The former is not an Amoeba since
LCA(S 1)=1, i.e. the root node is the LCA node of S 1. Consequently, S 1 does not constitute a result to
the query according to Amoeba join. S 2 on the other hand has node 2 as its LCA. Since node 2 is also
contained in the set, S 2 is an answer to the query.

However, Amoeba join can be too restrictive, leading to false negatives and unintuitive behavior; the
query K2 = {“S mith”,“Web”} finds no results in the data in figure 1 although it is a relaxation of K1 and
all query answers of K1 should also be answers to K2.

On the other hand, recursive elements can lead to false positives as discussed in [170].

Li et al. The work of Li et al. [119] is concerned with improving on the shortcomings of LCA and
SLCA when grouping the matches and determining the return entity. As discussed above, the application

39



of LCA and SLCA can lead to matches that are not very informative for instance when a user queries
for a name and words from a paper’s title and is returned two distinct publications, one written by an
author with the name given in the query and one having the other keyword in its title.

On the other hand, nested XML structures can lead to false negatives, that is, results that are not
retrieved although they would be an informative answer to a query. As explained in section 4, when the
XML representation of an article matches all keywords and contains another article that also matches
the query in its references, only the latter will be returned according to SLCA semantics.

To resolve these problems, the authors introduce the concept of Valuable LCA (VLCA). A VLCA
is an LCA where the keyword-matching nodes are homogeneous. A set of matched nodes is defined
to be homogeneous if no node label in the paths between them (excluding the labels of the matched
nodes themselves) and their LCA occurs more than once. That means, each element in the set of the
labels encountered when traversing from each matched node to the common LCA should be unique. For
example, in figure 1, nodes 7 and 22 are not homogenous since there are two nodes with label “article”
in the path between them, nodes 2 and 16. Nodes 3 and 5 on the other hand are homogenous.

VLCA is conceptually identical to all-pairs related interconnection semantics in XSearch and has
the same problems with false positives and false negatives as described above in 4.3.1.

To achieve faster computation of VLCA nodes, the authors present the notion of Compact VLCAs
and Compact answers. Compact VLCAs are compact in that they enforce maximally specific results.

A Compact LCA node is the LCA node of an answer set that dominates all the nodes in the set.
A node vi dominates another keyword-match node v j if there is no answer set involving v j that has an
LCA which is a descendant of vi. Put more simply, an LCA is only a Compact LCA if it holds for
all contained matched keywords that they could not be part of a grouping of matches that has a more
specific LCA.

Accordingly, a CVLCA is a CLCA that is also a VLCA. The Compact Answer to a keyword query
contains only the CVLCA node and the labels and content of the matched nodes governed by it.

The authors further present a stack-based algorithm to efficiently calculate Compact Answers that
exploits the fact that one matching node can only have one CVLCA.

XSeek 15 [122, 121] places emphasis on methods of inferring return structures from keyword queries
to XML data. Most approaches to keyword querying XML focus on grouping the matches into semantic
entities and establishing their root nodes. The return value is then taken to be either only the root node,
the whole semantic entity (that is, subtree) or the paths from the keyword matching nodes to the root
node.

The authors point out that all these approaches are suboptimal since the second strategy may lead to
large return trees of which only a small portion is relevant, while the first and the third do not provide
enough information to be helpful.

In addition to these points raised by the authors, more targeted return values also allow for a more
sophisticated and controlled querying that has some more of the power of traditional query languages.
As mentioned, a query for two authors’ names on bibliographic data can reasonably be expected to
return information about publications they co-authored, yet none of the approaches presented so far that
use LCA-based grouping would yield this result.

XSeek matches queries both on node labels as well as on content and employs VLCA to group the
resulting matches. The keywords in the query are automatically grouped into those that express search
predicates and those that specify return information. If a keyword wi matches a node label and no other

15Project Pages: http://xseek.asu.edu/intro/Home.htm

40



keyword in the query matches the node content of a descendant of wi, then wi is considered to be a return
node. All nodes that cannot be determined to be return nodes are predicates.

If no return nodes can be inferred, the entities in the paths from the matched nodes to the VLCA
node as well as the VLCA node’s lowest ancestor entity are considered to be the return nodes. A node
is considered an entity if it is in a many-to-one relationship with its parent. For example, a bibliography
often has several article nodes among its children, making article nodes entities. These relationships can
be inferred from the relations in the data or, if present, from the schema.

A node that is not an entity and has only one child which is a value on the other hand is considered
to be an attribute, while nodes that are neither attributes nor entities are connection nodes.

According to these rules, the “article” and “author” nodes in figure 1 are entities, “title”, “year”,
“journal”, “first” and “last” are attributes and “authors” is a connection node.

The result of a query is constituted of two parts, the return nodes and their associated information
and the paths from the VLCA to the matched nodes.

The information that is displayed for each return node depends on its type, attributes are displayed
as their name and value, while for entities and connections, the subtree rooted by the node is included.
Since the resulting subtree may be large, child entities are initially shown collapsed.

Kong et al. To allow for more flexible and complete query results, Kong et al. [115] introduce the
idea of Relaxed Tightest Fragments (RTF) which is another method for connecting node matches for
keyword-only queries on XML data. In addition, they present a ranking mechanism for RT fragments
and an efficient algorithm for their computation.

In many previous approaches to the problem of connecting keyword matches, only one match in-
stance of each keyword is considered for the computation of the common root; RTF on the other hand
allows for multiple matches of a keyword to be present in one result fragment. The keywords in the
query are matched against node contents only.

RTF imposes the constraints that, for a given answer set S i, no subset which is also an answer set
may have an LCA that is different from the LCA of S i. Additionally, the set of keyword matches has
to be the maximum set of matches for the given LCA. That is, it should not be possible to add further
keyword matches to the set without the addition resulting in a different LCA. Finally, the third constraint
says that no keyword match node in the set can be part of a keyword answer set whose LCA node is a
descendant of the LCA of S i.

Essentially, RTF is a variation of CVLCA where the mode of generation of the answer set and the
first two constraints ensure that the result subtrees are complete with respect to the keyword matches
while still being as small as needed to cover at least one instance of each keyword match.

For example, the query K = {XML,RDF} executed on the data figure 1 yields keyword match lists
L1 = {14, 15, 21} and L2 = {17, 21} and, among others, answer sets S 1 = {14, 17} and S 2 = {14, 15, 17}
with LCA(S 1, S 2) = 11. S 1 fulfills the first requirement since it contains no subset answer sets. But
keyword matches could be added to S 1 without changing the LCA node, so S 1 is not a valid query
answer. S 2 has an answer set subset, namely the elements of S 1, but the LCA nodes of S 1 and S 2
are identical. The only keyword match that could be added to S 2 is node 21, which would change the
LCA node to node 10. There are no possible LCA nodes below the LCA node of S 2. Therefore, all
constraints are fulfilled and S 2 is considered a query answer. The root node of S 2 together with the
keyword matches and the paths to them form the return entity, a Relaxed Tightest Fragment.

RTF can lead to false positives when keyword matches are distributed over several unrelated seman-
tic entities (see above).

The RTFs for a query could be calculated by generating all candidates and applying the constraints
in order to filter out results which are not RTFs. Since this would be very costly, the authors present the

41



Layered Intersection Scan Algorithm which efficiently generates RT fragments. The algorithm is based
on the observation that, given lists of matches for all keywords, the intersection of all Dewey prefixes
can represent an RTF root node under certain conditions.

The ranking system XKSMetaRank computes an RTF’s meaningfulness as the weight of its root
node. This in turn is computed recursively as a function of the weight of a node which is given through
its label’s weight and the weight of its descendants. At the lowest level of the recursion, the weight of a
leaf node is given as the overlap between the keyword query and the content of the leaf node.

4.3.2 Querying RDF

QuizRDF [62] is a browse and query system for Web pages that combines full text search with query-
ing, where present, RDF annotations. The motivation for this combined querying is that not all Web
data is annotated and furthermore it is not possible to capture every detail of the content of a text in its
annotations, meaning that combining full text search with RDF querying can improve recall.

QuizRDF is described as an “information-seeking system” where finding information is an interac-
tive, gradual process rather than a targeted, single-step search. This approach is similar to what [162]
propose and allows users to explore the data, refining their queries as they gain more information about
the nature of the data.

Initially, a so-called ontological index is created from both the textual content of a Web site and its
RDF annotations which are linked to the RDF Schema [33] ontology. This index can then be queried
using keyword search which returns a list of matching Web sites, ranked using the tf-idf [105] measure.
For the Web sites in which RDF annotations are present, the search results can then be refined by
restricting matches to a certain RDF resource class and entering literal values for RDF properties. To
provide information about the ontological structure, QuizRDF also displays superclasses of the currently
selected class as well as relations to to other classes.

Suggested enhancements of QuizRDF include the ranking of clusters of documents belonging to the
same resource class and chaining in the form of allowing the combination of several queries at the RDF
level.

Q2RDF [151] is a system for querying RDF data using keyword-only queries and ranking the results
that is relatively similar to Q2Semantic. Q2RDF operates on an RDF sentence graph [182], an undi-
rected graph consisting of RDF sentences and the connections between them. An RDF sentence is the
set of all RDF triples that are b-connected, that is, that contain the same blank node. B-connectedness
is transitive and RDF statements which do not contain blank nodes are separate sentences. The label of
a node in an RDF sentence graph are the words contained in the subjects, predicates and objects it sum-
marizes. Any RDF graph can be collapsed into an RDF sentence graph. Figure 12 shows an example of
an RDF graph and its grouping into sentences. Due to the transitivity of the b-connectedness relation,
RDF sentences are not stable and may change when a blank node is introduced in another part of the
RDF graph (compare figures 12 and 13).

In the preprocessing step, an inverted index which indicates which word appears in which sentences
and the path index are created. The path index indicates for each node which other nodes it can reach
and all shortest paths between nodes can be constructed from it. The shortest paths are calculated using
Dijkstras single source shortest path algorithm.

When a user poses a query, the keywords are first mapped onto the RDF sentences in which they
appear.

42



smith2005 Article

Computer 
Journal11

Doe

authorisPartOf
2005

_1

_2

John 

Mary

Smith

first

last

first

last

Bag

type
namenumber

...Semantic 
Web...

title

Person

Person

year

Journal

type

type

type

type

Figure 12: RDF sentence graph

43



smith2005 Article

Computer 
Journal11

Doe

authorisPartOf
2005

_1

_2

John 

Mary

Smith

first

last

first

last

Bag

type
namenumber

...Semantic 
Web...

title

Person

Person

year

Journal

type

type

type

s1

s2

s3

s4

type

Figure 13: RDF sentence graph

44



The goal is then to find answer trees, that is, trees that contain all keywords and in which all leaf
nodes contain contain at least one keyword. This is realized by starting from the matched nodes and
gradually visiting nodes until a path connecting all matched nodes is found. The next node to visit is
determined by first choosing the set of keyword match nodes with the lowest cardinality, i.e. the smaller
number of elements and expanding them first. Then, the closest node from the node currently being
expanded is visited and added to the set of nodes to expand.

Using this method, it is possible to generate the top-k answer trees without having to generate all
answer trees first if only tree size is considered as a measure of goodness since the length of the paths
and thus the results trees grow as the number of visited nodes increases (the same is true for finding the
top-k lowest cost answer trees in Q2Semantic since all cost values are positive).

The algorithm can result in isomorphic answer trees, the duplicate answers are discarded. The
generated answer trees are ranked using a variant of the term frequency measure.

4.4 Translation Keyword Query Languages

SemSearch [117] is a search engine for Web documents augmented with RDF annotations and as an
output returns a ranked list of matching HTML documents. Only the RDF data but not the documents
themselves are processed during query evaluation.

The syntax of SemSearch consists of pairs of subjects and keywords, connected by a colon and the
operators “and” and “or” to indicate conjunction and disjunction.

During evaluation, the keywords are matched only to semantic entities, that is, classes, properties
and instances, but not to relations. It is assumed that query subjects refer to RDF classes and specify
the return type. If no classes match the subject, the type of the subject is determined and rules are used
to infer the return type from the types of entities of the keyword and subject. For instance, Mary:John
are both instances and the rule for that case says that the return type should also be an instance, e.g. an
article which Mary and John co-authored.

Using the list of matching entities and their types, the user query is then translated into SeRQL
through employing templates. Multiple queries are constructed if a keyword matches several semantic
entities. As the number of queries can be very big when one or more keywords in the query have
multiple matches, rules are employed to reduce the number of constructed queries. For example, only
the most specific class is considered if there are several matches of type class. The application of the
rules can be expected to decrease the recall of the search.

For ranking, two factors, namely the distance between each keyword and its matches and the num-
ber of keywords satisfied by a search result are considered; it is not clear in detail how the former is
quantified or measured or how the two are combined.

Finally, the retrieved documents are displayed in ranking order, the individual results are augmented
with information about the matched entities.

SPARK [185] is a search system for RDF data that translates keyword-only queries into SPARQL
and ranks the resulting queries. The keywords are mapped onto resources, that is, classes, instances,
properties and literals, in the knowledge base. This is achieved using both the form and the semantics of
the keywords. The form-based mapping uses string comparison techniques like the Edit distance [118]
and in addition applies stemming [123]. The semantics-based mapping retrieves semantically related
words like synonyms using thesauri. One query term can be mapped to several resources of different
resource types in this process. The different mappings are augmented with confidence scores based on
the similarity between the keyword and the concept.

45



In the next step, the query sets are constructed. If all keywords were uniquely mapped to one
resource, there is only one query set, otherwise all combinations of query sets where each query set
contains one resource for each keyword are generated. For each query set, a query graph is constructed
using Kruskal’s Minimum Spanning Tree algorithm [116] and missing relations and concepts are intro-
duced to form a connected graph which is then translated into a SPARQL query.

Finally, the ranking scores of the generated queries are computed from the the similarity of the
keywords and the concepts they are mapped to, the proportion of overlap in resources between the
keyword query and the corresponding SPARQL query and the information content of the query.

Q2Semantic 16 [175] provides a system for querying RDF data using keyword-only queries that are
translated into formal queries which in turn can be mapped directly onto SPARQL queries. The system
aims at providing higher efficiency than comparable approaches since it operates on summarized RDF
graphs, RACK graphs, instead of the original data, thus reducing the data space.

Q2Semantic ranks the query results and uses Wikipedia to find related concepts for keyword query
terms. These are also used to assist the user in entering his keyword query as the interface offers auto-
completion for RDF literals and Wikipedia terms.

When displaying the query results, Q2Semantic also shows the portion of the RDF data used in the
query as well as the translated formal query and its natural language explanation.

An RDF graph is converted into a so-called RACK graph by mapping relations, attributes, instances
and attributes values onto R- and A-Edges and C- (instances) and K-nodes (attributes) respectively. R-
and A-Edges and C-nodes are then clustered together if they have the same labels and, for the edges,
the same connections. K-Nodes are merged when they connect to the same A-Edge and the new merged
node inherits the labels of both or all K-Nodes. Costs are calculated for edges and nodes based on the
number of elements merged to obtain them.

A keyword query is first matched against an inverted index which stores the K-Node labels and is
augmented with terms extracted from Wikipedia, e.g. the anchor text of articles linking to an article
whose title is a K-node label, to allow for a broader vocabulary in the queries. Keywords are thus only
matched to RDF attribute values. If there are several matches for one term, all are returned and used in
the next step.

Starting from the matched K-Nodes for all query terms and using the cost functions of the edges as
a heuristic for guiding the search, a tree is then gradually built up in the graph in a round robin fashion.
To avoid recursion, repeated exploration of the same node within one path is penalized through adding a
high number to the cost. A formal query is found when a root that is common to at least one instance for
each keyword is reached. Note that this concept is similar to the idea of the Lowest Common Ancestor.

Since there may be several possible formal queries for one keyword query, a ranking function is
employed that uses the lengths of the paths in the formal query, the scores of the matched K-nodes
present in the formal query and tf-idf-like measure for determining the importance of the individual
query elements to calculate ranking scores.

As mentioned, Q2Semantic and Q2RDF represent similar approaches which both summarize the
initial RDF graph and then construct minimal answer trees containing all matched nodes to find the
top-k results which are then ranked using a tf-idf-like measure.

The main differences between the two approaches lie in the way in which they evaluate results –
Q2Semantic translates queries into complex queries while Q2RDF retrieves the results directly–, reduce
the RDF graph, the element types against which keywords are matched and the cost function that guides
the search for the answer trees. Additionally, since Q2Semantic merges edges and attributes only when

16Project Pages: http://q2semantic.apexlab.org/

46



select $p

from bib
e
→ article $p

$p
e
→ authors

e
→ authors

e
→ last

e
→ cdata $a

$p
e
→ title cdata $t

where $a = "Smith"
and $t like "Web"

Figure 14: An example query

select meet(o1,o2)

from *
e
→ cdata

e
→ string o1, *

e
→ cdata

e
→ string o2

where o1 contains "Smith"
and o2 contains "Web"

Figure 15: An example query using the meet operator

they have the same label while Q2RDF collapses all elements that belong to the same sentence into a
node, Q2Semantic’s answer trees reflect a lower granularity.

4.5 Keyword-enhanced Query Languages

Schmidt et al. [162] present one of the first approaches to keyword querying XML data. Their goal
is to enable explorative querying when the schema is unknown, that is, querying is seen as an interactive
process where the user can refine her query based on the result of a previous, less specific query. The
keyword querying presented in this approach is implemented as part of a traditional query language
where the results of the keyword querying provide information for the construction of complex queries.
The query keywords here are matched only to the content of leaf nodes and not to node labels.

The query language being enhanced [161] is a variant of SQL that allows to specify paths and path
variables. A query which selects publications by authors with the last name “Smith” whose title contains
“Web” from data structured as those in figure 1 is shown in figure 14.

A query returns the nearest concept, that is, the LCA node that encompasses all search terms.
The authors present the meet operator which, given an arbitrary number of keywords, returns their

LCA node. A query using the meet operator which returns results identical to the path query in the figure
above is shown in figure 15. The output of the meet operator calculated on the Monet transform [161] of
an XML document, a path-centric representation of XML data, proceeding in a bottom-up fashion from
the matched leaf nodes. Nodes are contracted until the meet node is found or the root node is reached.
This procedure is only suited for tree-shaped XML data, meaning that XML containing IDs and IDREFs
cannot be queried.

The results can be further restricted, for instance by allowing only certain types of nodes as a result
or setting a maximum on the distance between keyword-matched leaf nodes.

Further, the authors suggest the use of thesauri on the keyword search terms when only few answers
are returned, since the user may not be aware of the names of the node labels. Their suggested technique
thus combines explorative querying with (semantic) query relaxation.

47



where <article><authors><author><last>$N</last></author></authors>
2 <title>$T</title><year> 2005 </year>

</article> ELEMENT_AS $E IN "bib.xml",
4 $N like *Smith*, $T like *Web*
construct $E

Figure 16: An XML-QL query

1 where <article> <authors> </authors> ELEMENT_AS $A, <title>$T</title>
</article> ELEMENT_AS $E IN "bib.xml",

3 contains($A,"Smith",3, any), $T like *Web*, contains($E,"2005",3,any)
construct $E

Figure 17: The query from figure 16 reformulated using the contains predicate

For ranking, the distance between the leaf nodes and the meet node is used as a simple heuristic as
the keyword matches can be assumed to be more strongly associated if the distance between them is
smaller.

Florescu et al. The work presented by Florescu et al. [78] is based on extending XML-QL with a
contains predicate. This addition makes it possible for a query language to be usable both by naive
users who do not know the structure of the data or the syntactic constructs of the query language as well
as experts whose queries may require more precision than keyword-based querying can offer.

The query language presented operates on a set of documents that contain XML that does not contain
IDREFs.

The contains predicate takes four arguments, namely a signifier for an XML element that function as
the root of the subtree in which the search is conducted, a keyword, an integer specifying the maximum
depth at which to search and a set of boolean expressions to constrain the type of XML element, tag or
attribute name and content or attribute value, in which the keyword may appear.

This provides flexibility to the user who can fully specify XML-QL queries to the degree that her
knowledge of the structure of the data and of the query language allow and who can use the convenient
contains predicate where needed.

For example, the queries in figures 16 to 18 all express the same intention, namely retrieving articles

contains($E,"Smith",3, any), contains($E,"2005",3,any),
2 contains($E,"Web",3, any)
construct $E

Figure 18: The query from figure 16 reformulated using the contains predicate

48



1 for $a in mlcas doc("bib.xml")//author
$b in mlcas doc("bib.xml")//title,

3 $c in mlcas doc("bib.xml")//year
where $a/text() = "Mary"

5 return <result> {$b, $c} </result>

Figure 19: Schema-Free XQuery

1 for $r in doc("bib.xml")//bib[1],
$a in mlcas $r//author,

3 $b in mlcas $r//author
where $a/text() = "Mary" and $a != $b

5 return $b

Figure 20: Schema-Free XQuery

written by Dingle in 1999 that contain the term “Web” in the title, but they display different levels of
specificity. The query in figure 16 is regular XML-QL, figure 17 shows a query that could have been
created by a user who has only a vague idea of the structure of bib.xml, and finally query 18 presupposes
no knowledge of the structure besides the presence of an article element. Note that the granularity of
the return value depends on how much of the query is explicitly specified, for example, in query 18, it
would not be possible to retrieve the contents of the author element, since its presence is not stated in
the query and thus no variable can be bound.

The query system is implemented in a relational database where for each keyword the nodes con-
taining it are represented in an inverted index. The authors observe that this technique leads to a storage
size about ten times that of the original XML document, which may be problematic if a big amount of
data is present in the system.

Compared to pure XML-QL, usage of the contains predicate leads to a lower precision which is
not surprising given the less specific queries. It is suggested that users can refine queries incrementally,
using the answer from one query to formulate a further, more specific query.

Schema-Free XQuery [120] aims at enabling using XQuery without full knowledge of the schema
of the XML data. To this end, the MLCAS (Meaningful Lowest Common Ancestor Structure) function
is added to standard XQuery.

An example of a query in Schema-Free XQuery is displayed in figure 4.5. The result of this query
are the years and titles of works by the author “Mary”. Since the MLCAS keyword is present, upon
evaluation, the variables $a, $b and $c and are bound to nodes with labels “author”, “title” and “year”
respectively. In order to obtain a meaningful result, the constraint that all three nodes have to be part of
the same MLCA structure is imposed.

The MLCA node of a set of nodes is its LCA node given that for each pair of nodes, there are no
other combinations of nodes with the same label that has an LCA node which is a descendant of their

49



1 for $y in mlcas doc("bib.xml")//year,
$a1 in mlcas doc("bib.xml"//author,

3 $t1 in mlcas doc("bib.xml")//title,
$t2 in

5 {
for $a in mlcas doc("bib.xml")//author,

7 $t in mlcas doc("bib.xml")//title
where $a/text() = "Mary"

9 return $t
}

11 where $t1 = $t2
return <result> {$y, $a1} </result>

Figure 21: Schema-Free XQuery

LCA node. Intuitively, this means that for all keywords, the node with the keyword label that is most
closely related to the other matched nodes is found. This technique is based on the assumption that
a lower LCA means a stronger connection. The concept (and the problems) of MLCA is very similar
to that of SLCA with the difference that SLCA does not impose constraints on the node labels. The
MLCAS then is the structure consisting of the nodes among which the MLCA relationship holds.

Having determined the MLCAS, the variables are then bound to the content of the children of the
respective nodes in the MLCAS. The keyword-aspect of Schema Free XQuery thus pertains to node
labels and not, as in many other keyword query languages, to the content. As can be seen in the example
in figure 4.5, restrictions on the content are imposed in the where clause of the query.

The user can create more complex queries using regular XQuery as is shown in the query in figure
4.5 which retrieves co-authors of Mary. All uses of the MLCAs keyword within the same query refer to
the same mlcas, but nesting allows for separate MLCA structures as demonstrated in the query in figure
4.5.

Another feature of Schema-Free XQuery that furthers the goal of creating a query language that
does not require knowledge of the schema is term expansion. Term expansion means that a user does
not have to indicate the exact node label in a query if she is not sure. It has been found that less than
20% of people chose the same name for a common object [83] and it can be assumed that node labels
referring to the same entities are similarly varied. The solution suggested in Schema-Free XQuery is the
use of an expand function that the user can employ to indicate that she is not sure she used the correct
node label in the query. These node labels are then matched in a thesaurus which retrieves possible
alternatives. To avoid having to evaluate multiple queries, this synonym relationship is represented in
the database.

For the computation of MLCA structures, the authors present a stack-based algorithm which signif-
icantly improves performance over exhaustively computing trees and removing those whose root node
is an ancestor of another from the answer set.

5 Summary and Discussion
The majority of keyword query languages discussed in this article target keyword-only querying of
XML data. Few proposals address querying RDF data and several of them translate keyword queries

50



into traditional query languages. On the other hand, XML keyword query languages for the most part
are implemented as systems that evaluate the query without mapping it onto another query language.

However, most keyword query languages for XML limit themselves to processing tree-shaped data,
that is, XML without any kind of hyperlinks. Those query languages that do work on graph-shaped
XML, for example XRank, do not incorporate hyperlinks during the grouping of the matches. There
is work on extending interconnection semantics to deal with XML data containing IDREF links [55]
which due to its purely theoretical nature has not been discussed here. So far, to the best of the authors’
knowledge, no keyword query language for graph-shaped XML that makes full use of the document
links exists.

As [162] point out, one contributing reason for this is the expected increase in complexity and thus
processing time which is detrimental in an application area dealing with large amounts of data.

Correspondingly, the lack of RDF keyword query languages that evaluate queries directly can be
attributed to the fact that RDF is graph-shaped and cannot be easily converted into tree-shaped data like
XML can. In addition, querying RDF poses the additional problems of treating labeled edges and blank
nodes. One approach is to summarize the RDF graph into a different structure [151], [175], but this
means that the structure of the data is partially ignored and the granularity of the query result is reduced.

In XML querying on the other hand, connecting or grouping matches is of great concern and a
focus of many of the presented approaches. Several heuristics for grouping have been proposed as
refinements to the established LCA concept, for example SLCA [180]), MLCA [120], CVLCA [119]
and interconnection semantics [56]. All these approaches can be interpreted as extensions of LCA
which add constraints in order to remedy the false positive problem of LCA and achieve improvement
in grouping matched nodes according to their semantic entities. The difference between the algorithms
for the computation of SLCA, VLCA etc. is thus the filter that they apply to remove undesirable results
from the set of LCA nodes and, given a query and data, they produce a set of results that is a subset of
the results obtained by applying LCA computation.

Determining semantic entities in structured data is important to keyword querying since, unlike in
traditional query languages, queries are never fully specified –and indeed often do not allow the user
to fully specify the query–, and consequently, the inferred semantics are used to retrieve informative
results. While the approaches above determine the LCA, that is, the root node of the common entity of all
keyword matches, based on keyword match instances, an alternative approach that was only used in the
works discussed in this article in XKeyword [15],[101], but also mentioned in connection with XRank
[96] and employed in keyword querying databases [25], [61] is to manually group the data into concepts
and thus pre-define the possible query answer components. The difference between the two approaches
is that the latter uses an extra level of processing where parts of query answers are defined a priori and
therefore independent of a specific query. While this has the arguable disadvantage of requiring manual
annotation, it foregoes two fundamental problems of LCA-based methods for automatic grouping:

The first is the underlying assumption that no element not in the subtree governed by the concept root
node is relevant to the query answer. As mentioned in section 4, this means that relevant information
about an entity is not returned when the keywords in a query are contained in a subtree of the tree
representing the entity. Returning to the example data in figure 1, this means for instance that the
queries K = {Doe, S mith} and K = {S emantic, 2005} will yield trivial results but not more information
about the respective articles, for example the title and year of coauthored articles in the first case and the
names of the authors in the second.

There are two different approaches to overcome this problem, namely displaying the query result in
conjunction with the data and to enable search and browse behavior, or to allow matching on label nodes
and enable a more targeted specification of a return value. Then, for example, the first keyword query
could be extended to K = {Doe, S mith, title, journal}, meaning that the concept node (i.e. the root node

51



of the semantic entity) is of type “article” and not “authors” and the entity subtree contains the desired
information. This is possible in Cohen et al.’s query language [56] and XSeek [122, 121] and will be
discussed further below.

The first problem might be indicative of the second problem, namely that the different heuristics for
grouping aim at being universal, or, at least, versatile solutions (which is why grouping is required in the
first place, recall Amazon and their Advanced Search and uniform data structure mentioned in section
4), but on the other hand appear to be data-driven solutions which make assumptions about the relations
between structure and semantics which may not be universal. For example, the difference between data-
centric and document-centric XML suggests different requirements concerning grouping and return
values with multiple occurrences of the keywords within an XML subtree being indicative of particular
relevance when document-centric XML is queried, which is not necessarily the case for data-centric
XML. Consequently, all grouping strategies presented are not universally applicable and under certain
circumstances lead to both false positives and false negatives. This observation raises the question to
what extent it is even possible to reliably deduce semantics purely from structural characteristics of
XML data.

In summary, manual grouping at the schema level performs well but has the obvious disadvantage
that it requires users or administrators to invest time and effort to define the groupings. Manual grouping
also has the advantage that data containing hyperlinks does not pose a problem. On the other hand,
LCA and its variations are computed automatically but all algorithms rely on the presence of certain
characteristics in the data to perform well.

Based on these observations, one way to achieve good grouping performance could be to simply
consider the manual grouping as another, potentially optional, step of semantic annotation and to employ
means to encourage users to perform the grouping.

A more promising solution is the use of modes to determine which grouping mechanism is appro-
priate given a certain data set or combination of query and data set. Since different assumptions about
the relation between syntax and semantics in the data underlie the various grouping algorithms, the best
algorithm could then be selected automatically, potentially leading to an improved overall performance.

To evaluate the feasibility of this approach, several questions have to be addressed: On the one
hand, it is not clear how many –and which– grouping algorithms should be used, whether there is a uni-
versally optimal combination of grouping mechanisms or whether the selection should be application-
and domain-dependent. Another, more basic, question is according to what characteristics the grouping
mechanisms should be selected – it may be advantageous to use only a small number of maximally
complementary algorithms to make the mode selection easier, but a combinations of a bigger number of
algorithms could improve results since it could prove more versatile.

Another aspect are the questions which features or characteristics of the data or query should be
considered to trigger a change of mode, how the optimal mode should be selected and, finally, how to
combine the two, that is, create a mechanism that, given certain observed characteristics in the data,
selects the preferred mode.

Possible features could be for example the amount of content relative to the amount of structural
information, term frequency distributions and structural characteristics derived either from the schema
or the data itself.

Learning, either through implicit or explicit feedback, could prove useful in arriving at a system
which automatically selects the appropriate mode. Implicit feedback could for example be based on
an analysis of which results are favored and disfavored by the users based on which results are clicked
and which are skipped on a page of results [152]. Explicit feedback could be employed in the form of
learning from a manually annotated training set or Query-By-Example type queries [186] where the user
indicates the intended form of the result. Querying semi-structured data using the Query-By-Example

52



paradigm has been researched previously, resulting in the query languages visXcerpt [23],[22] which
both operate on XML data.

Even if automatic mode selection proves feasible, the issue of treating cyclic data remains since none
of the automatic grouping mechanisms can operate on data containing hyperlinks. It is thus desirable to
find a generalized universal grouping mechanism which can be applied both to XML and RDF data.

While connecting keyword matches is the focus in many of the keyword languages discussed, the
form of the query answers themselves is less addressed. Strategies are for example to return the subtree
governed by the concept node, the paths from the keyword matches to the concept nodes, or just the
label of the concept node. These different return structures vary in their balance of the tradeoff between
conciseness and information value. One important characteristic of traditional query languages, namely
the targeted and flexible retrieval of elements, is present only in two of the presented stand-alone key-
word query languages, namely Cohen et al.’s approach [56] and XSeek [122, 121]. In principle, the
selection of the content of a node is realized in both through returning the content of a node whose label
is matched. However, neither query language makes it possible to bind specific values to variables, and
therefore it is not possible to further use query results in construct terms, as is a desirable feature in
various applications, for example when embedding queries in Wiki pages.

Keyword-enhanced query languages, on the other hand, allow for more targeted selection and con-
struction to varying degrees. Schmidt et al. [162] only retrieve the label of the LCA node, Florescu et
al.’s approach [78] makes the granularity of the return value dependent on the specificity of the query
and Schema-Free XQuery allows for the binding of variables to specific nodes in an entity subtree.

Unsurprisingly, keyword-enhanced query languages in general have greater expressiveness than the
translation-based languages and those implemented as stand-alone systems. Almost all of the translation
keyword query languages have a very simple syntax with queries consisting only of keywords or label-
keyword pairs. SemSearch, and Abbaci et al.’s [2] and Saito et al.’s [155] approaches are exceptions to
this. SemSearch only offers a disjunction operator in addition to the implicit conjunction common to
most other keyword query languages, while [155] allow for the use of some XPath operators. Among
the stand-alone keyword query languages presented here, that in Abbaci et al.’s approach [2] has the
most comprehensive query syntax with operators for disjunction, inclusion, parent-child relationship
and negation. This query language is not directly concerned with grouping, but proposes a method
for applying query operators by performing operations on sets of matched nodes that could potentially
be combined with grouping heuristics to yield a query language that is both expressive and performs
grouping while still having a simpler syntax than keyword-enhanced query languages.

Another focus in the area of keyword querying is the ranking of the results which in general is based
on the principle that a smaller distance between matched nodes and between matched nodes and concept
nodes means more specific and thus better results. Ranking usually is realized using the Vector Space
Model and a variant of the tf-idf measure. It is advantageous to rank the results before fully generating
them since this makes it possible to retrieve only the top k results, meaning that the results can be shown
faster to the user and that processing time can be saved when the user is not interested in all results.

Another relevant issue is how to convey the vocabulary for queries. Keyword query languages are
flexible with respect to the structure of the data and are the ability to query over heterogeneous data
is emphasized as one of the advantages of keyword query languages. Heterogeneity can refer either to
differences in the structural organization of the data or to differences in the vocabulary.

Figure 22 shows the data from figure 1 in a different structural organization17, namely here the
articles are grouped by their authors. Due to the automatic grouping, one keyword query can be used

17The repetitions of the article subtrees are left out for reasons of legibility

53



(1)

authors

(2)

author

(3)

first

(4)

last

(5)

bib

... Semantic 

Web ...
2005

(6)

article
John Doe

(7)

title

(8)

year

(9)

journal

Computer Journal

(10)

author

(11)

first

(12)

last

(13)

bib

(14)

article
Mary Smith

(18)

author

(19)

first

(20)

last

(21)

bib

...Web... 2003

(22)

article
Peter Jones

(23)

title

(24)

year

(25)

journal

Web Journal

(26)

author

(27)

first

(28)

last

(29)

bib

(30)

article
Sue Jones

... ...

Figure 22: Alternative XML-formalization of the data in 1

54



(1)

bibliography

(2)

paper

(13) 

paper

(3)

name

(4)

published

(6) 

first

(9) 

second

(5)

creators

(12)

publication

(14)

name

(15)

published

(17)

first

(7)

forename

(8)

surname

(10)

forename

(11)

surname

... Semantic 

Web ...

John Doe
Mary Smith

2005 Computer Journal

(18)

forename

(19) 

surname

Peter Jones

(20) 

second

(21)

forename

(22)

surname

Sue Robinson

Web Journal...Web... 2003

(16)

creators

(23)

publication

Figure 23: Alternative XML-formalization of the data in 1

to query both documents. However, the query results may of course differ since the grouping uses
structural characteristics to find query answers.

Figure 23 displays another reformulation of the data in figure 1 where the structure is identical but
node labels differ. Queries involving node labels over 1 and 23 can never successfully retrieve results
from both documents since they use different vocabularies. For example, the label-keyword queries
K1 = {published : 2005, surname : S mith} and K2 = {year : 2005, last : S mith} express the same
informational need, but do so in different words. Consequently, K1 does not have any matches in the
data in figure 1, and the same is true for K2 and 23. The problem is thus that a term can have many
different synonyms and the user may not know which words to use to express her query. The problem
also exists when data that is homogeneous with respect to their vocabulary are queried, since the user
initially does not know which terms are used in the data, but is of particular concern when heterogeneous
data using different vocabularies is queried, since there, no standardized vocabulary that the user could
learn exists.

In a seminal study of the vocabulary problem, [83] found that participants used a big number of
different terms are used to refer to the same concepts. The probability of two people choosing the same
word for a given object was found to be below 20%. At most 36% of the participants chose the “best”,
that is, most frequent term for an object. The proposed solution to remedy this problem is to establish
lists of synonyms or aliases for each term. For example, a system could map the term “published” to
“year”, thus enabling the use of both terms in queries.

Query expansion is thus applied to improve the recall in information retrieval applications through
finding synonyms, morphological variations and misspellings. A variety of techniques for automatic
query expansion have been proposed [60],[165],[63],[104], some of which are employed in the key-

55



word query languages presented: Q2Semantic uses Wikipedia to find terms similar to the keywords.
The authors of Schema-Free XQuery list several possibilities for obtaining a domain-specific thesaurus
to be used with the “expand” function, namely deriving the synonyms for each terms from the corpus
of XML data, creating it either manually or through information retrieval techniques like bootstrap-
ping. If no domain-specific thesaurus is available, they suggest the use of a universal thesaurus, for
example WordNet. This is also how semantic mapping functions in SPARK. In addition, morphological
mapping is employed, which functions on the form (and not the semantics) of the keywords and uses
stemming and other methods and measures from Natural Language Processing. Each term mapping is
augmented with a confidence score, meaning that the list of synonyms can also serve as a controlled
way to semantically relax the query.

Finally, one issue addressed in little of the presented works is the combined querying of RDF and
XML data. SemSearch and QuizRDF can query Web documents augmented with RDF annotations, but
the former only evaluates the query on the RDF annotations, meaning that it is not possible to impose
conditions on both the document itself and its annotations in a query.

QuizRDF on the other hand allows to restrict the Web documents matching a given query through
their RDF annotations. However, it is not possible to query the structure of the Web documents or
combine XML and RDF search in a single query. Further, QuizRDF is a search-and-browse system and
returns Web documents, that is, there is no grouping of entities and consequently no flexible return val-
ues, meaning that the system is suited for interactive exploration of data rather than expressive querying
at a high granularity.

The combined querying of XML and RDF is desirable in the context on the Semantic Web where
not all content of the data (XML) is necessarily represented in metadata (e.g. RDF) and vice versa [26].
If querying of the two formalisms is possible using only one query language, recall is thus increased and
further casual users only need to familiarize themselves with one query language, making the benefits
of the Semantic Web accessible to a broad user base.

Integrated querying of RDF and XML is generally possible through serializing RDF into “flat
triples” in XML, however this method is disadvantageous over the more natural view of RDF data as
graphs [103], [81]. Integrated access to RDF and XML has been investigated, among others, in [154],
[16], [145] and [81].

Acknowledgements
The authors would like to thank James Bailey, Oliver Bolzer, Georg Gottlob, Ian Horrocks, Michael
Kraus, Benedikt Linse, Renzo Orsini, Dimitris Plexousakis, and Sebastian Schaffert for many fruitful
discussions on the topic of Web query languages, that culminated in two previous surveys [14, 82] on
the topic.

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement no 211932. See also http://www.
kiwi-project.eu/.

56

http://www.kiwi-project.eu/
http://www.kiwi-project.eu/


References
[1] iTQL Commands. Online only, 2004. http://www.kowari.org/271.htm.

[2] F. Abbaci, J. Valsamis, and P. Francq. Index and Search XML Documents by Combining Content
and Structure. International Conference on Internet Computing, Las Vegas, Nevada, USA. June
26-29, 2006, 2006.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wienerm. The Lorel Query Language
for Semistructured Data. Intl. Journal on Digital Libraries, 1(1):68–88, 1997.

[4] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient Management of Transitive Relationships
in Large Data and Knowledge Bases. In Proc. ACM Symp. on Management of Data (SIGMOD),
pages 253–262, New York, NY, USA, 1989. ACM.

[5] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu. Structural Joins:
A Primitive for Efficient XML Query Pattern Matching. In Proc. Int. Conf. on Data Engineering,
page 141, Washington, DC, USA, 2002. IEEE Computer Society.

[6] S. Amer-Yahia, R. Baeza-Yates, M. P. Consens, and M. Lalmas. XML Retrieval: DB/IR in
Theory, Web in Practice. In Proceedings of the Interntional Conference on Very Large Databases
(VLDB), 2007.

[7] S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre, M. Holstege, J. Melton, M. Rys, and
J. Shanmugasundaram. XQuery and XPath Full Text 1.0. Candidate recommendation, W3C,
May 2008.

[8] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: A Full-Text Search Extension
to XQuery. In Proc. Int. World Wide Web Conf., 2004.

[9] S. Amer-Yahia and J. Shanmugasundaram. XML Full-Text Search: Challenges and Opportuni-
ties. In Proceedings of the International Conference on Very Large Databases (VLDB), 2005.

[10] R. Angles and C. Gutierrez. Querying RDF Data from a Graph Database Perspective. In Proc.
European Semantic Web Conf. (ESWC), volume 3532 of LNCS, 2005.

[11] Apple Inc. plist — Property List Format, 2003.

[12] E. Augurusa, D. Braga, A. Campi, and S. Ceri. Design and Implementation of a Graphical
Interface to XQuery. In Proc. Symposium of Applied Computing, pages 1163–1167. ACM Press,
2003.

[13] D. Backett. Turtle—Terse RDF Triple Language. Technical report, Institute for Learning and
Research Technology, University of Bristol, 2007.

[14] J. Bailey, F. Bry, T. Furche, and S. Schaffert. Web and Semantic Web Query Languages: A
Survey. In Reasoning Web: First International Summer School, 2005.

[15] A. Balmin, V. Hristidis, N. Koudas, Y. Papakonstantinou, D. Srivastava, and T. Wang. A Sys-
tem for Keyword Proximity Search on XML Databases. In vldb’2003: Proceedings of the 29th
international conference on Very large data bases, pages 1069–1072. VLDB Endowment, 2003.

57

http://www.kowari.org/271.htm


[16] S. Battle. Round-Tripping between XML and RDF. In International Semantic Web Conference
(ISWC), 2004.

[17] R. J. Bayardo, D. Gruhl, V. Josifovski, and J. Myllymaki. An Evaluation of Binary XML Encod-
ing Optimizations for fast Stream based XML Processing. In Proc. Int. World Wide Web Conf.,
pages 345–354. ACM Press, 2004.

[18] D. Beckett and B. McBride. RDF/XML Syntax Specification (Revised). W3C, 2004.

[19] M. Benedikt, W. Fan, and G. Kuper. Structural Properties of XPath Fragments. In Proc. Interna-
tional Conference on Database Theory, 2003.

[20] M. Benedikt and C. Koch. Interpreting Tree-to-Tree Queries. In Proc. Int’l. Symp. on Automata,
Languages and Programming (ICALP), pages 552–564, 2006.

[21] M. Benedikt and C. Koch. XPath Leashed. In ACM Computing Surveys, 2007.

[22] S. Berger, F. Bry, O. Bolzer, T. Furche, S. Schaffert, and C. Wieser. Xcerpt and visXcerpt: Twin
Query Languages for the Semantic Web. Proc. Int. Semantic Web Conf, 11, 2004.

[23] S. Berger, F. Bry, S. Schaffert, and C. Wieser. Xcerpt and visXcerpt: from pattern-based to visual
querying of XML and semistructured data. Proceedings of the 29th international conference on
Very large data bases-Volume 29, pages 1053–1056, 2003.

[24] A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay, J. Robie, and J. Simeon. XML
Path Language (XPath) 2.0. W3C, 2005.

[25] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching and
browsing in databases using BANKS. Data Engineering, 2002. Proceedings. 18th International
Conference on, pages 431–440, 2002.

[26] K. Bischoff, C. S. Firan, W. Nejdl, and R. Paiu. Can All Tags Be Used for Search? In CIKM
2008: Proceedings of the 17th ACM Conference on Information and Knowledge Management,
Napa Valley, California, USA, 2008.

[27] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable Logic
on Data Trees and XML Reasoning. In Proc. ACM Symp. on Principles of Database Systems
(PODS), pages 10–19, New York, NY, USA, 2006. ACM.

[28] O. Bolzer. Towards Data-Integration on the Semantic Web: Querying RDF with Xcerpt. Diplo-
marbeit/Master thesis, University of Munich, 2 2005.

[29] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner. MonetDB/XQuery:
a fast XQuery Processor powered by a Relational Engine. In Proc. ACM Symp. on Management
of Data (SIGMOD), pages 479–490, New York, NY, USA, 2006. ACM Press.

[30] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proc. Int. Conf. on Data
Engineering, page 403. IEEE Computer Society, 2002.

[31] T. Bray, D. Hollander, A. Layman, and R. Tobin. Namespaces in XML (2nd Edition). Recom-
mendation, W3C, 2006.

58



[32] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup Lan-
guage (XML) 1.0 (Third Edition). Recommendation, W3C, 2004.

[33] D. Brickley and R. Guha. RDF Vocabulary Description Language 1.0: RDF Schema. Recom-
mendation, W3C, 2004.

[34] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Comput.
Netw. ISDN Syst., 30(1-7):107–117, 1998.

[35] J. Broekstra and A. Kampman. SeRQL: A Second Generation RDF Query Language. In Proc.
SWAD-Europe Workshop on Semantic Web Storage and Retrieval, 2003.

[36] M. Brundage. XQuery: The XML Query Language. Addison-Wesley, 2004.

[37] E. Bruno, J. L. Maitre, and E. Murisasco. Extending XQuery with Transformation Operators. In
Proc. ACM symposium on Document Engineering, pages 1–8. ACM Press, 2003.

[38] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XML Pattern Matching. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 310–321, New York, NY, USA,
2002. ACM Press.

[39] F. Bry, T. Furche, C. Ley, B. Linse, and B. Marnette. RDFLog: It’s like Datalog for RDF. In
Proc. Workshop on (Constraint) Logic Programming (WLP), 2008.

[40] F. Bry, T. Furche, C. Ley, B. Linse, and B. Marnette. Taming Existence in RDF Querying. In
Proc. Int’l. Conf. on Web Reasoning and Rule Systems (RR), 2008.

[41] F. Bry and S. Schaffert. A Gentle Introduction into Xcerpt, a Rule-Based Query and Trans-
formation Language for XML. In Proceedings of the International Workshop on Rule Markup
Languages for Business Rules on theSemantic Web, 2002.

[42] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow,
T. Stanienda, and F. Velez, editors. Object Data Standard: ODMG 3.0. Morgan Kaufmann,
2000.

[43] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie. XML Query Use Cases.
W3C, 2005.

[44] D. Chamberlin and J. Robie. XQuery Update Facility Requirements. Working draft, W3C, 2005.

[45] D. Chamberlin and J. Robie. XQuery 1.1. Working draft, W3C, 2008.

[46] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Language for Heterogeneous
Data Sources. In Proc. Workshop on Web and Databases, 2000.

[47] L. Chen, A. Gupta, and M. E. Kurul. Stack-based Algorithms for Pattern Matching on DAGs. In
Proc. Int’l. Conf. on Very Large Data Bases (VLDB), pages 493–504. VLDB Endowment, 2005.

[48] L. Chen and E. A. Rundensteiner. ACE-XQ: A CachE-aware XQuery Answering System. In
Proc. Workshop on the Web and Databases, 2002.

[49] T. Chen, J. Lu, and T. W. Ling. On Boosting Holism in XML Twig Pattern Matching using
Structural Indexing Techniques. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 455–466, New York, NY, USA, 2005. ACM Press.

59



[50] Z. Chen, J. Gehrke, F. Korn, N. Koudas, J. Shanmugasundaram, and D. Srivastava. Index Struc-
tures for Matching XML Twigs using Relational Query Processors. Data & Knowledge Engi-
neering (DKE), 60(2):283–302, 2007.

[51] Z. Chen, H. V. Jagadish, L. V. Lakshmanan, and S. Paparizos. From Tree Patterns to Generalized
Tree Patterns: On Efficient Evaluation of XQuery. In Proc. Int. Conf. on Very Large Databases,
2003.

[52] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating Queries with Generalized Path Ex-
pressions. In Proc. ACM SIGMOD International Conference on Management of Data, pages
413–422, 1996.

[53] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C, 1999.

[54] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and Distance Queries via 2-hop
Labels. In Proc. ACM Symposium on Discrete Algorithms, pages 937–946, Philadelphia, PA,
USA, 2002. Society for Industrial and Applied Mathematics.

[55] S. Cohen, Y. Kanza, B. Kimelfeld, and Y. Sagiv. Interconnection Semantics for Keyword Search
in XML. Proceedings of the 14th ACM International Conference on Information and Knowledge
Management, pages 389–396, 2005.

[56] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSearch: A Semantic Search Engine for XML. In
The 29th International Conference on Very Large Databases (VLDB), 2003.

[57] S. Comai, S. Marrara, and L. Tanca. XML Document Summarization: Using XQuery for Synop-
sis Creation. In Proc. Int. Workshop on Database and Expert Systems Applications, 2004.

[58] B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon. A Fast Index for
Semistructured Data. In Proc. Int. Conf. on Very Large Databases, pages 341–350, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[59] J. Cowan and R. Tobin. XML Information Set (2nd Ed.). Recommendation, W3C, 2 2004.

[60] H. Cui, J. Wen, J. Nie, and W. Ma. Probabilistic query expansion using query logs. Proceedings
of the 11th international conference on World Wide Web, pages 325–332, 2002.

[61] S. Dar, G. Entin, S. Geva, and E. Palmon. DTL’s DataSpot: Database exploration using plain
language. Proceedings of the 24rd International Conference on Very Large Data Bases, pages
645–649, 1998.

[62] J. Davies and R. Weeks. QuizRDF: Search Technology for the Semantic Web. In Proceedings of
the 37th Annual Hawaii International Conference on System Sciences (HICSS’04), page 40112,
Washington, DC, USA, 2004. IEEE Computer Society.

[63] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by latent semantic
analysis. Journal of the American Society for Information Science, 41(6):391–407, 1990.

[64] D. DeHaan, D. Toman, M. P. Consens, and M. T. Özsu. A Comprehensive XQuery to SQL
Translation using Dynamic Interval Encoding. In Proc. ACM SIGMOD Conf., pages 623–634.
ACM Press, 2003.

60



[65] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query Language
for XML. In Proc. W3C QL’98 – Query Languages 1998. W3C, 1998.

[66] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT Logical Framework for XQuery. In
Proc. Int. Conf. on Very Large Databases, 2004.

[67] A. Deutsch and V. Tannen. Containment and Integrity Constraints for XPath Fragments. In Proc.
Int. Workshop on Knowledge Representation meets Databases, 2001.

[68] P. F. Dietz. Maintaining Order in a Linked List. In Proc. ACM Symp. on Theory of Computing
(STOC), pages 122–127, New York, NY, USA, 1982. ACM.

[69] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys, J. Siméon, and P. Wadler.
XQuery 1.0 and XPath 2.0 Formal Semantics. Recommendation, W3C, 2 2007.

[70] A. Eisenberg and J. Melton. An early Look at XQuery. SIGMOD Record, 31(4):113–120, 2002.

[71] A. Eisenberg and J. Melton. An early Look at XQuery API for JavaTM(XQJ). SIGMOD Record,
33(2):105–111, 2004.

[72] D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second Edition. Recommendation,
W3C, 2004.

[73] P. Fankhauser. XQuery Formal Semantics: State and Challenges. SIGMOD Record, 30(3):14–19,
2001.

[74] P. Fankhauser and P. Lehti. XQuery by the book: The IPSI XQuery Demonstrator. In XML
Conference & Exhibition, 2002.

[75] M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and XPath 2.0 Data
Model. Recommendation, W3C, 2007.

[76] M. Fernández, J. Siméon, B. Choi, A. Marian, and G. Sur. Implementing XQuery 1.0 : The Galax
Experience. In Proc. Int. Conf. on Very Large Databases, 2003.

[77] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. Westmann, M. J. Carey, and
A. Sundararajan. The BEA Streaming XQuery Processor. VLDB Journal, 13(3):294–315, 2004.

[78] D. Florescu, D. Kossmann, and I. Manolescu. Integrating Keyword Search into XML Query
Processing. In Proceedings of the 9th International World Wide Web Conference on Computer
networks : The International Journal of Computer and Telecommunications Networking, pages
119–135, Amsterdam, The Netherlands, 2000. North-Holland Publishing Co.

[79] J. Frohn, G. Lausen, and H. Uphoff. Access to Objects by Path Expressions and Rules. In Proc.
International Conference on Very Large Databases, 1994.

[80] T. Furche. Implementation of Web Query Language Reconsidered: Beyond Tree and Single-
Language Algebras at (Almost) No Cost. PhD thesis, Ludwig-Maxmilians University Munich,
2008.

[81] T. Furche, F. Bry, and O. Bolzer. XML Perspectives on RDF Querying: Towards Integrated
Access to Data and Metadata on the Web. In Grundlagen von Datenbanken 2005, 2005.

61



[82] T. Furche, B. Linse, F. Bry, D. Plexousakis, and G. Gottlob. RDF Querying: Language Constructs
and Evaluation Methods Compared. In Reasoning Web, Second International Summer School
2006, 2006.

[83] G. Furnas, T. Landauer, L. Gomez, and S. Dumais. The vocabulary problem in human-system
communication. Communications of the ACM, 30(11):964–971, 1987.

[84] P. Genevès and J.-Y. Vion-Dury. XPath Formal Semantics and Beyond: A Coq-Based Approach.
In Proc. Int’l. Conf. on Theorem Proving in Higher Order Logics (TPHOLs), pages 181–198, Salt
Lake City, Utah, United States, August 2004. University Of Utah.

[85] R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases. In Proc. Int’l. Conf. on Very Large Data Bases (VLDB), pages 436–
445, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[86] G. Gottlob and C. Koch. Monadic Queries over Tree-Structured Data. In Proc. Annual IEEE
Symposium on Logic in Computer Science, pages 189–202. IEEE Computer Society, 2002.

[87] G. Gottlob, C. Koch, and R. Pichler. The Complexity of XPath Query Evaluation. In Proc. ACM
Symposium on Principles of Database Systems, 2003.

[88] G. Gottlob, C. Koch, and R. Pichler. XPath Query Evaluation: Improving Time and Space Effi-
ciency. In Proc. International Conference on Data Engineering, 2003.

[89] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath Queries. ACM
Transactions on Database Systems, 30(2):444–491, 2005.

[90] G. Gottlob, N. Leone, and F. Scarcello. The Complexity of Acyclic Conjunctive Queries. Journal
of the ACM, 48(3):431–498, 2001.

[91] T. Grust. Accelerating XPath Location Steps. In Proc. ACM Symp. on Management of Data
(SIGMOD), 2002.

[92] T. Grust, M. V. Keulen, and J. Teubner. Accelerating XPath Evaluation in any RDBMS. ACM
Transactions on Database Systems, 29(1):91–131, 2004.

[93] T. Grust and J. Rittinger. Jump Through Hoops to Grok the Loops — Pathfinder’s Purely Rela-
tional Account of XQuery-style Iteration Semantics. In Proc. ACM SIGMOD/PODS Workshop
on XQuery Implementation, Experience and Perspectives (XIME-P), 2008.

[94] T. Grust, J. Rittinger, and J. Teubner. eXrQuy: Order Indifference in XQuery. In Proc. Int’l.
Conf. on Data Engineering (ICDE), 2007.

[95] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In Proc. Int. Conf. on Very Large
Databases, 2004.

[96] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked Keyword Search over
XML Documents. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data, pages 16–27, New York, NY, USA, 2003. ACM.

[97] C. Gutierrez, C. Hurtado, and A. O. Mendelzon. Foundations of Semantic Web Databases. In
Proc. ACM Symp. on Principles of Database Systems (PODS), pages 95–106, New York, NY,
USA, 2004. ACM Press.

62



[98] D. Harel and R. Tarjan. Fast Algorithms for Finding Nearest Common Ancestors. SIAM Journal
on Computing, 13(2):338–355, 1984.

[99] P. Hayes and B. McBride. RDF Semantics. Recommendation, W3C, 2004.

[100] J. Hidders. Satisfiability of XPath Expressions. In Int. Workshop on Databse Programming
Languages, 2003.

[101] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword Proximity Search on XML Graphs.
In Proceedings of the 19th International Conference on Data Engineering, 2003.

[102] A. Hulgeri and C. Nakhe. Keyword Searching and Browsing in Databases Using BANKS. In
ICDE ’02: Proceedings of the 18th International Conference on Data Engineering, page 431,
Washington, DC, USA, 2002. IEEE Computer Society.

[103] E. Hung, Y. Deng, and V. Subrahmanian. RDF aggregate queries and views. Data Engineering,
2005. ICDE 2005. Proceedings. 21st International Conference on, pages 717–728, 2005.

[104] Y. Jing and W. Croft. An association thesaurus for information retrieval. Proceedings of RIAO,
94(1994):146–160, 1994.

[105] K. Jones et al. A Statistical Interpretation of Term Specificity and Its Application in Retrieval.
Journal of Documentation, 28(1):11–21, 1972.

[106] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl, and
K. Tolle. RQL: A Functional Query Language for RDF. In P. Gray, P. King, and A. Poulovassilis,
editors, The Functional Approach to Data Management, chapter 18, pages 435–465. Springer-
Verlag, 2004.

[107] H. Katz, D. Chamberlin, D. Draper, M. Fernandez, M. Kay, J. Robie, M. Rys, J. Simeon, J. Tivy,
and P. Wadler. XQuery from the Experts: A Guide to the W3C XML Query Language. Addison-
Wesley, 1st edition, 8 2003.

[108] M. Kay. XPath 2.0 Programmer’s Reference. John Wiley, 8 2004.

[109] M. Kay. XSL Transformations, Version 2.0. Recommendation, W3C, 2007.

[110] M. Kay, N. Walsh, H. Zongaro, S. Boag, and J. Tong. XSLT 2.0 and XQuery 1.0 Serialization.
Working draft, W3C, 2 2005.

[111] S. Kepser. A Simple Proof of the Turing-Completeness of XSLT and XQuery. In Proc. Extreme
Markup Languages, 2004.

[112] G. Klyne, J. J. Carroll, and B. McBride. Resource Description Framework (RDF): Concepts and
Abstract Syntax. Recommendation, W3C, 2004.

[113] C. Koch. On the Complexity of Nonrecursive XQuery and Functional Query Languages on
Complex Values. tods, 31(4), 2006.

[114] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. FluXQuery: An Optimizing XQuery
Processor for Streaming XML Data. In Proc. Int. Conf. on Very Large Databases, 2004.

63



[115] L. Kong, R. Gilleron, and A. Lemay. Retrieving Top Relaxed Tightest Fragments for XML
Keyword Search. online, 2008.

[116] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

[117] Y. Lei, V. Uren, and E. Motta. SemSearch: A Search Engine for the Semantic Web. Proceedings
of the 5th International Conference on Knowledge Engineering and Knowledge Management
Managing Knowledge in a World of Networks, Lecture Notes in Computer Science, pages 238–
245, 2006.

[118] V. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707, 1966.

[119] G. Li, J. Feng, J. Wang, and L. Zhou. Effective Keyword Search for Valuable LCAs over XML
Documents. In CIKM ’07: Proceedings of the Sixteenth ACM Conference on Conference on
Information and Knowledge Management, pages 31–40, New York, NY, USA, 2007. ACM.

[120] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. In VLDB ’04: Proceedings of the
Thirtieth International Conference on Very Large Data Bases, pages 72–83. VLDB Endowment,
2004.

[121] Z. Liu and Y. Chen. Identifying Meaningful Return Information for XML Keyword Search. In
SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, pages 329–340, New York, NY, USA, 2007. ACM.

[122] Z. Liu, J. Walker, and Y. Chen. XSeek: A Semantic XML Search Engine Using Keywords.
Proceedings of the 33rd International Conference on Very Large Data Bases, pages 1330–1333,
2007.

[123] J. Lovins. Development of a Stemming Algorithm. Mechanical Translation and Computational
Linguistics, 11:22–31, 1968.

[124] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and XPath 2.0 Functions and Operators.
Working draft, W3C, 2 2005.

[125] F. Manola, E. Miller, and B. McBride. RDF Primer. Recommendation, W3C, 2004.

[126] J. Marsh. XML Base. Recommendation, W3C, 2001.

[127] J. M. Martínez. MPEG-7 Overview. Technical Report ISO/IEC JTC1/SC29/WG11N6828, IN-
TERNATIONAL ORGANISATION FOR STANDARDISATION (ISO), 2004.

[128] M. Marx. Conditional XPath, the First Order Complete XPath Dialect. In Proc. ACM Symposium
on Principles of Database Systems, pages 13–22. ACM, 6 2004.

[129] M. Marx. XPath with Conditional Axis Relations. In Proc. Extending Database Technology,
2004.

[130] M. Marx. First Order Paths in Ordered Trees. In Proc. Int’l. Conf. on Database Theory (ICDT),
pages 114–128, 2005.

64



[131] N. May, S. Helmer, and G. Moerkotte. Quantifiers in XQuery. In Proc. Int. Conf. on Web
Information Systems Engineering, 2003.

[132] H. Meuss and K. U. Schulz. Complete Answer Aggregates for Treelike Databases: a novel
Approach to combine querying and navigation. ACM Transactions on Information Systems,
19(2):161–215, 2001.

[133] H. Meuss, K. U. Schulz, and F. Bry. Towards Aggregated Answers for Semistructured Data. In
Proc. Int. Conf. on Database Theory, pages 346–360. Springer-Verlag, 2001.

[134] G. Miklau and D. Suciu. Containment and Equivalence for an XPath Fragment. In Proc. ACM
Symposium on Principles of Database Systems, pages 65–76. ACM Press, 2002.

[135] L. Miller, A. Seaborne, and A. Reggiori. Three Implementations of SquishQL, a Simple RDF
Query Language. In Proc. International Semantic Web Conference, June 2002.

[136] M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML Access Control using Static Analysis. In
Proc. ACM Conf. on Computer and Communications Security, pages 73–84. ACM Press, 2003.

[137] D. Olteanu. SPEX: Streamed and Progressive Evaluation of XPath. IEEE Transactions on Knowl-
edge and Data Engineering, 2007.

[138] D. Olteanu, T. Furche, and F. Bry. An Efficient Single-Pass Query Evaluator for XML Data
Streams. In Data Streams Track, Proc. Symposium of Applied Computing. ACM, 3 2004. I4.

[139] D. Olteanu, T. Furche, and F. Bry. Evaluating Complex Queries against XML streams with
Polynomial Combined Complexity. In Proc. British National Conference on Databases, 2004.

[140] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking Forward. In Proc. EDBT Workshop
on XML-Based Data Management, volume 2490 of Lecture Notes in Computer Science. Springer
Verlag, 2002.

[141] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs: Insert-friendly
XML Node Labels. In Proc. ACM Symp. on Management of Data (SIGMOD), pages 903–908.
ACM Press, 2004.

[142] N. Onose and J. Simeon. XQuery at your Web Service. In Proc. Int. World Wide Web Conf.,
pages 603–611. ACM Press, 2004.

[143] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing Order
to the Web. Technical Report SIDL-WP-1999-0120, Stanford University, 1999.

[144] R. Paige and R. E. Tarjan. Three Partition Refinement Algorithms. SIAM Journal of Computing,
16(6):973–989, 1987.

[145] P. Patel-Schneider and J. Siméon. The Yin/Yang Web: XML Syntax and RDF Semantics. In
WWW ’02: Proceedings of the 11th international conference on World Wide Web, pages 443–
453, New York, NY, USA, 2002. ACM.

[146] J. Perez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. In Proc. Int’l.
Semantic Web Conf. (ISWC), 2006.

65



[147] A. Polleres. From SPARQL to Rules (and Back). In Proc. Int’l. World Wide Web Conf. (WWW),
pages 787–796, New York, NY, USA, 2007. ACM.

[148] A. Polleres, T. Krennwallner, J. Kopecky, and W. Akhtar. XSPARQL: Traveling between the
XML and RDF worlds – and avoiding the XSLT pilgrimage. In Proc. European Semantic Web
Conf. (ESWC), 2008.

[149] S. Pradhan. An Algebraic Query Model for Effective and Efficient Retrieval of XML Fragments.
Proceedings of the 32nd International Conference on Very Large Data Bases, pages 295–306,
2006.

[150] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Proposed recommen-
dation, W3C, 2007.

[151] Y. Qu. Q2RDF: Ranked Keyword Query on RDF Data. Technical report, Southeast University,
P.R. China, 2008.

[152] F. Radlinski and T. Joachims. Query Chains: Learning to Rank from Implicit Feedback. In
KDD ’05: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 239–248, New York, NY, USA, 2005. ACM.

[153] J. Robie. Updates in XQuery. In XML Conference & Exhibiton, 2001.

[154] J. Robie, L. M. Garshol, S. Newcomb, M. Biezunski, M. Fuchs, L. Miller, D. Brickley,
V. Christophides, and G. Karvounarakis. The Syntactic Web. Markup Lang., 3(4):411–440,
2001.

[155] T. Saito and S. Morishita. Amoeba Join: Overcoming Structural Fluctuations in XML Data. Proc.
of WebDB, Chicago, USA, pages 38–43, 2006.

[156] G. Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic Indexing. Communi-
cations of the ACM, 18(11):613–620, 1975.

[157] S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction to Xcerpt. In
Proc. Extreme Markup Languages (Int’l. Conf. on Markup Theory & Practice), 2004.

[158] S. Schaffert, R. Westenthaler, and A. Gruber. Ikewiki: A User-Friendly Semantic Wiki. In 3rd
European Semantic Web Conference (ESWC06), Budva, Montenegro, 2006.

[159] S. Schenk and S. Staab. Networked Graphs: a Declarative Mechanism for SPARQL Rules,
SPARQL Views and RDF Data Integration on the Web. In Proc. Int’l. World Wide Web Conf.
(WWW), pages 585–594, New York, NY, USA, 2008. ACM.

[160] R. Schenkel, A. Theobald, and G. Weikum. HOPI: An Efficient Connection Index for Complex
XML Document Collections. In Proc. Extending Database Technology, 2004.

[161] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient Relational Storage and Retrieval
of XML Documents. International Workshop on the Web and Databases, 2000.

[162] A. Schmidt, M. L. Kersten, and M. Windhouwer. Querying XML Documents Made Easy: Nearest
Concept Queries. In Proceedings of the 17th International Conference on Data Engineering,
pages 321–329, Washington, DC, USA, 2001. IEEE Computer Society.

66



[163] T. Schwentick. XPath Query Containment. SIGMOD Record, 2004.

[164] D. W. Shipman. The Functional Data Model and the Data Languages DAPLEX. ACM Transac-
tions on Database Systems, 6(1):140–173, 1981.

[165] K. Sparck Jones. Automatic keyword classification for information retrieval. London, 1971.

[166] P. Stickler. CBD—Concise Bounded Description. Online only, 2004.

[167] I. Tatarinov and A. Halevy. Efficient Query Reformulation in peer Data Management Systems.
In Proc. ACM SIGMOD Conf., pages 539–550. ACM Press, 2004.

[168] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang. Storing and
Querying Ordered XML Using a Relational Database System. Proceedings of the 2002 ACM
SIGMOD international conference on Management of data, pages 204–215, 2002.

[169] S. Trißl and U. Leser. Fast and Practical Indexing and Querying of Very Large Graphs. In Proc.
ACM Symp. on Management of Data (SIGMOD), pages 845–856, New York, NY, USA, 2007.
ACM.

[170] Z. Vagena, L. S. Colby, F. Özcan, A. Balmin, and Q. Li. On the Effectiveness of Flexible Querying
Heuristics for XML Data. In XSym, Lecture Notes in Computer Science, pages 77–91, 2007.

[171] P. Wadler. Two semantics for XPath. Online only, 2000.

[172] N. Walsh and L. Muellner. DocBook: The Definitive Guide. O?Reilly, 10 1999.

[173] J. W. W. Wan and G. Dobbie. Mining Association Rules from XML data using XQuery. In Proc.
Workshop on Australasian Information Security, Data Mining Web Intelligence, and Software
Internationalisation, pages 169–174. Australian Computer Society, Inc., 2004.

[174] H. Wang, H. He2, J. Yang, P. S. Yu, and J. X. Yu. Dual Labeling: Answering Graph Reach-
ability Queries in Constant Time. In Proc. Int’l. Conf. on Data Engineering (ICDE), page 75,
Washington, DC, USA, 2006. IEEE Computer Society.

[175] H. Wang, K. Zhang, Q. Liu, D. T. Tran, and Y. Yu. Q2Semantic: A Lightweight Keyword
Interface to Semantic Search. In Proceedings of the 5th International Semantic Web Conference
(ESWC’08), 2008.

[176] F. Weigel. A Survey of Indexing Techniques for Semistructured Documents. Master’s thesis,
Institute for Informatics, University of Munich, http://www.pms.ifi.lmu.de/index.html#
PA_Felix.Weigel, 2002.

[177] F. Weigel, K. U. Schulz, and H. Meuss. The BIRD Numbering Scheme for XML and Tree
Databases – Deciding and Reconstructing Tree Relations Using Efficient Arithmetic Operations.
In Proc. Int’l. XML Database Symposium (XSym), volume 3671 of LNCS, pages 49–67. Springer-
Verlag, 2005.

[178] N. Wiegand. Investigating XQuery for Querying across Database Object Types. SIGMOD
Record, 31(2):28–33, 2002.

[179] P. T. Wood. On the Equivalence of XML Patterns. In Proc. Int. Conf. on Computational Logic,
pages 1152–1166. Springer-Verlag, 2000.

67

http://www.pms.ifi.lmu.de/index.html#PA_Felix.Weigel
http://www.pms.ifi.lmu.de/index.html#PA_Felix.Weigel


[180] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search for Smallest LCAs in XML Databases.
In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD International Conference on Manage-
ment of Data, pages 527–538, New York, NY, USA, 2005. ACM.

[181] C. Zaniolo. The Database Language GEM. In Proc. ACM SIGMOD Conf., 1983.

[182] X. Zhang, G. Cheng, and Y. Qu. Ontology summarization based on RDF sentence graph. Pro-
ceedings of the 16th international conference on World Wide Web, pages 707–716, 2007.

[183] X. Zhang, K. Dimitrova, L. Wang, M. E. Sayed, B. Murphy, B. Pielech, M. Mulchandani, L. Ding,
and E. A. Rundensteiner. Rainbow: multi-XQuery Optimization using Materialized XML Views.
In Proc. ACM SIGMOD Conf., pages 671–671. ACM Press, 2003.

[184] X. Zhang, B. Pielech, and E. A. Rundesnteiner. Honey, I shrunk the XQuery!: an XML Al-
gebra Optimization Approach. In Proc. International Workshop on Web Information and Data
Management, pages 15–22. ACM Press, 2002.

[185] Q. Zhou, C. Wang, M. Xiong, H. Wang, and Y. Yu. SPARK: Adapting Keyword Query to Se-
mantic Search. Proceedings of the 6th International Semantic Web Conference, pages 694–707,
2007.

[186] M. M. Zloof. Query-by-Example: A Data Base Language. IBM Systems Journal, 16(4):324–343,
1977.

68


	Introduction
	Data on the Semantic Web: XML and RDF
	Extensible Markup Language (XML)
	XML in 500 Words

	Resource Description Framework (RDF)
	RDF in 500 Words


	Queries as Programs: Database-Style Query Languages
	Trees & Documents---XML
	XPath
	XQuery
	Reachability in Trees
	Tree Queries on Tree Data
	Supporting Order

	Graphs & Resources---RDF
	SPARQL 1000 Words
	Reachability
	Optionality
	Existential Information


	Queries as Keywords: Keyword-based Query Languages
	Characteristics of keyword query languages
	Using structural information for keyword querying
	Computing query answers

	Keyword Query Languages Implemented as Stand-alone Systems
	Querying XML
	Querying RDF

	Translation Keyword Query Languages
	Keyword-enhanced Query Languages

	Summary and Discussion

