
Web and Semantic Web Query Languages:
A Survey

James Bailey1, François Bry2, Tim Furche2, and Sebastian Schaffert2

1 NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Victoria 3010, Australia
http://www.cs.mu.oz.au/~jbailey/

2 Institute for Informatics,University of Munich,
Oettingenstraße 67, 80538 München, Germany

http://pms.ifi.lmu.de/

Abstract. A number of techniques have been developed to facilitate
powerful data retrieval on the Web and Semantic Web. Three categories
of Web query languages can be distinguished, according to the format
of the data they can retrieve: XML, RDF and Topic Maps. This ar-
ticle introduces the spectrum of languages falling into these categories
and summarises their salient aspects. The languages are introduced us-
ing common sample data and query types. Key aspects of the query
languages considered are stressed in a conclusion.

1 Introduction

The Semantic Web Vision

A major endeavour in current Web research is the so-called Semantic Web, a
term coined by W3C founder Tim Berners-Lee in a Scientific American article
describing the future of the Web [37]. The Semantic Web aims at enriching
Web data (that is usually represented in (X)HTML or other XML formats) by
meta-data and (meta-)data processing specifying the “meaning” of such data
and allowing Web based systems to take advantage of “intelligent” reasoning
capabilities. To quote Berners-Lee et al. [37]:

“The Semantic Web will bring structure to the meaningful content of
Web pages, creating an environment where software agents roaming from
page to page can readily carry out sophisticated tasks for users.”

The Semantic Web meta-data added to today’s Web can be seen as advanced
semantic indices, making the Web into something rather like an encyclopedia. A
considerable advantage over conventional encyclopedias printed on paper, how-
ever, is that the relationships expressed by Semantic Web meta-data can be
followed by computers, very much like hyperlinks can be followed by human
readers and programs. Thus, these relationships are well-suited for use in draw-
ing conclusions automatically:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/18263008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1 A categorisation of books as it might occur in a Semantic Web ontology

Writing

NovelEssay

Historical
Novel

Historical
Essay

Classic Mediæval Modern

“For the Semantic Web to function, computers must have access to struc-
tured collections of information and sets of inference rules that they can
use to conduct automated reasoning.”[37]

A number of formalisms have been proposed for representing Semantic Web
meta-data, in particular RDF [217], Topic Maps [155], and OWL (formerly
known as DAML+OIL) [23, 151]. These formalisms usually allow one to describe
relationships between data items, such as concept hierarchies and relations be-
tween concepts. For example, a Semantic Web application for a book store could
assign categories to books as shown in Figure 1. A customer interested in novels
might also get offers for books that are in the subcategory Historical Novels and
in the sub-subcategories Classic, Mediæval and Modern, although these books
are not directly contained in the category Novels, because the data processing
system has access to the ontology and can thus infer the fact that a book in the
category Mediæval is also a Novel.

Whereas RDF and Topic Maps merely provide a syntax for representing
assertions like “Book A is authored by person B”, schema or ontology languages
such as RDFS [51] and OWL allow one to state properties of the terms used in
such assertions, e.g. “no ‘person’ can be a ‘text’ ”. Building upon descriptions of
resources and their schemas (as detailed in the architectural road map for the
Semantic Web [36]), rules expressed in formalisms like SWRL [150] or RuleML
[43] additionally allow one to specify actions to take, knowledge to derive, or
constraints to enforce.

Importance of Query Languages for the Web and Semantic Web

The enabling requirement for the Semantic Web is an integrated access to the
data on the Web that is represented in any of the above-mentioned formalisms
or in formalisms of the “standard Web”, such as (X)HTML, SVG, or any XML
application. This data access is the objective of Web and Semantic Web query
languages. A wide range of query languages for the Semantic Web exist, ranging
from pure “selection languages” with only limited expressivity, to full-fledged

reasoning languages capable of expressing complicated programs, and from query
languages restricted to a certain data representation format (e.g. XML or RDF),
to general purpose languages supporting several different data representation
formats and allowing one to query data on both the standard Web and the
Semantic Web at once.

Structure and Goals of this Survey

This survey aims at introducing the query languages proposed for the major
representation formalisms of the standard and Semantic Web: XML, RDF, and
Topic Maps. The intended audience are students and researchers interested in
obtaining a greater understanding of the relatively new area of Semantic Web
querying, as well as researchers already working in the field that want a survey of
the state of the art in existing query languages. This survey does not aim to be
a comprehensive tutorial for each of the approximately 50 languages discussed.
Instead, it tries to highlight important or noteworthy aspects, only going in
depth for some of the more widespread languages. The following three questions
are at the heart of this survey:

1. what are the core data retrieval capabilities of each query language,
2. to what extent, and what forms of reasoning do they offer, and
3. how are they realised?

Structure. After briefly discussing the three different representation formats
XML, RDF, and Topic Maps in Section 2.1, each of the languages is introduced
with sample queries against a common Semantic Web scenario (cf. Section 2.2).
The discussion is divided into three main parts, corresponding to the three dif-
ferent data representation formats XML, RDF, and Topic Maps. The survey
concludes with a short summary of language features desirable for Semantic
Web query languages. The outline is as follows:

1. Introduction
2. Preliminaries

2.1 Three Data Formats: XML, RDF and Topic Maps
2.2 Sample Data: Classification-based Book Recommender
2.3 Sample Queries

3. XML Query and Transformation Languages
3.1 W3C’s Query Languages:The Navigational Approach
3.2 Research Prototypes: The Positional Approach to XML Querying

4. RDF Query Languages
4.1 The SPARQL Family
4.2 The RQL Family
4.3 Query Languages inspired from XPath, XSLT or XQuery
4.4 Metalog: Querying in Controlled English
4.5 Query Languages with Reactive Rules
4.6 Deductive Query Languages

4.7 Other RDF Query Languages
5. Topic Maps Query Languages

5.1 tolog: Logic Programming for Topic Maps
5.2 AsTMA?: Functional Style Querying of Topic Maps
5.3 Toma: Querying Topic Maps inspired from SQL
5.4 Path-based Access to Topic Maps

6. Conclusion

Selection of Query Languages. This survey focuses on introducing and com-
paring languages designed primarily for providing efficient and effective access
to data on the Web and Semantic Web. In particular, it excludes the following
types of languages:

– Programming language tools for XML. General-purpose programming lan-
guages supporting XML as native data type are not considered, e.g. XM-
Lambda [206], CDuce [27], XDuce [152], Xtatic (http://www.cis.upenn.
edu/~bcpierce/xtatic/), Scriptol (http://www.scriptol.com/), and Cω
(http://research.microsoft.com/Comega/ [205]). XML APIs are not con-
sidered, e.g.: DOM [9], SAX (http://www.saxproject.org/), and XmlPull
(http://www.xmlpull.org/). XML-related language extensions are not con-
sidered, e.g.: HaXML [276] for Haskell, XMerL [282] for Erlang, CLP(Flex)
[88] for Prolog, or XJ [145] for Java. General-purpose programming lan-
guages with Web service support are also not considered, e.g.: XL [115, 116],
Scala [218], Water [235].

– Reactive languages. A reactive language allows specification of updates and
logic describing how to react when events occur. Several proposals have been
made for adapting approaches such as ECA (Event-Condition-Action) rules
to the Web, cf. [4] for a survey. There is, of course, a close relationship
between such reactive languages and query languages, with the latter often
being embedded within the former.

– Rule languages. Transformations, queries, consequences, and reactive be-
haviours can be conveniently expressed using rules. The serialisation of rules
for their exchange on the Web is investigated in the RuleML [43] initiative.
Similar to reactive languages, rule languages are also closely related to query
languages.

– OWL query languages. Query languages designed for OWL, e.g., OWL-QL
[113], are not considered for two reasons: (1) They are still in their infancy,
and their small number makes interesting comparisons hardly possible, (2)
the languages proposed so far can only query schemas, i.e., meta-data but not
data, and access data only through meta-data, e.g., returning the instances
of a class.

A pragmatic approach has been adopted in this survey: A language of one of the
above-mentioned four kinds is considered if querying is one of its core aspects,
or if it offers a unique form of querying not covered by any of the other query
languages considered in the survey. Authoring tools, such as visual editors, are

only considered with a query language that they are based upon. The storing or
indexing of Web data is not covered (for a survey on storage systems for XML
cf. [280], for RDF cf. to [190]).

Despite these restrictions, the number of languages is still quite large. This
reflects a considerable and growing interest in Web and particularly Semantic
Web query languages. Indeed, standardisation bodies have recently started the
process of standardisation of query languages for RDF and Topic Maps. It is our
hope that this survey will help to give an overview of the current state of the
art in these areas.

2 Preliminaries

2.1 Three Data Formats: XML, RDF and Topic Maps

XML. Originally designed as a replacement for the language SGML as a format
for representing (structured) text documents, XML nowadays is also widely used
as a format for representing and exchanging arbitrary (structured) data:

The “Extensible Markup Language (XML) is a simple, very flexible text
format derived from SGML [. . .]. Originally designed to meet the chal-
lenges of large-scale electronic publishing, XML is also playing an in-
creasingly important role in the exchange of a wide variety of data on
the Web and elsewhere.”3

An “XML document” is a file, or collection of files, that adheres to the general
syntax specified in the XML Recommendation [48], independent of the concrete
application. XML documents consist of an optional document prologue and a
document tree containing elements, character data and attributes, with a dis-
tinguished root element.

Elements. Elements are used to “mark up” the document. They are identified by
a label (called tag name) and specified by opening and closing tags that enclose
the element content. Opening tags are of the form <label ...> and contain the
label and optionally a set of attributes (see below). Closing tags are of the form
</label> and contain only the label.

Elements may contain either other elements, character data, or both (mixed
content). In analogy with the document tree, such content is often referred to as
children of an element. Interleaving of the opening and closing tags of different
elements (e.g. <i>Text</i>) is forbidden. The order of elements is sig-
nificant (so-called document order). This is a reasonable requirement for storing
text data, but might be too restrictive when storing data items of a database.
Applications working with XML data thus often ignore the document order. If
an element contains no content, it may be abbreviated as <label/>, i.e. the
“closing slash” is contained in the start tag.

3 http://www.w3.org/XML/

Attributes. Opening tags of elements may contain a set of key/value pairs called
attributes. Attributes are of the form name = "value", where name may contain
the same characters as element labels and value is a character sequence which is
always enclosed in quotes. An opening tag may contain attributes in any order,
but each attribute name can occur at most once.

References. References of various kinds, (like ID/IDREF attributes and hyper-
text links) make it possible to refer to an element instead of explicitly including
it.

Document Tree. An XML document can be seen as a rooted, unranked4, and
ordered5 tree, if one does not consider the various referencing or linking mecha-
nisms of XML. Although this interpretation is that of the data model retained
for XML (cf. XML Infoset [94], XQuery, XPath [111]) and most XML query lan-
guages, it is too simplistic. Indeed, references (as expressed, e.g. through ID and
IDREF attributes or hypertext links) make it possible to express both oriented
and non-oriented cycles in an XML document.

RDF and RDFS. RDF [25, 172] data is sets of “triples” or “statements” of
the form (Subject,Property,Object). RDF data is commonly seen as a directed
graph, whose nodes correspond to a statement’s subject and object and whose
arcs correspond to a statement’s property (thus relating a subject with an ob-
ject). For this reason, properties are also often referred to as “predicates”. Nodes
(i.e. subjects and objects) are labeled by either (1) URIs describing (Web) re-
sources, or (2) literals (i.e. scalar data such as strings or numbers), or (3) are
unlabeled, being so-called anonymous or “blank nodes”. Blank nodes are com-
monly used to group or “aggregate” properties. Specific properties are prede-
fined in the RDF and RDFS specifications [51, 148, 172, 194], e.g. rdf:type for
specifying the type of properties, rdfs:subClassOf for specifying class-subclass
relationships between subjects/objects, and rdfs:subPropertyOf for specifying
property-subproperty relationships between properties. Furthermore, RDFS has
“meta-classes”, e.g. rdfs:Class, the class of all classes, and rdfs:Property,
the class of all properties.6

RDFS allows one to define so-called “RDF Schemas” or “ontologies”, sim-
ilar to object-oriented data models. The inheritance model of RDFS exhibits
some peculiarities: (1) resources can be classified in different classes that are
not related in the class hierarchy, (2) the class hierarchy can be cyclic (so that
all classes on the cycle are “subclass equivalent”), (3) properties are first-class
objects, and (4) in contrast to most object-oriented formalisms, RDF does not
describe which properties can be associated with a class, but instead the domain
and range of a property. Based on an RDFS schema, “inference rules” can be
specified, for instance the transitivity of the class hierarchy, or the type of an
untyped resource that has a property associated with a known domain.

4 i.e. the number of children of an element is not bounded.
5 i.e. the children of an element are ordered.
6 this survey tries to use self-explanatory prefixes for namespaces where possible.

RDF can be serialised in various formats, the most frequently being XML.
Early approaches to RDF serialisation have raised considerable criticism due to
their complexity. As a consequence, a surprisingly large number of RDF seriali-
sations have been proposed, cf. [56] for a detailed survey.

OWL [23, 204, 261] extends RDFS with a means for defining description
vocabularies for Web resources. OWL is only considered superficially in this
survey, cf. Section 1.

Topic Maps. Topic Maps [155, 232] have been inspired from work in library
sciences and knowledge indexing. The main concepts of Topic Maps are “topics”,
“associations”, and “occurrences”. Topics might have “types” that are topics.
Types correspond to the classes of object-oriented formalisms, i.e., a topic is
related to each of its types in an instance-class relationship. A topic can have one
or more “names”. Associations are n-ary relations (with n ≥ 2) between topics.
Associations might have “role types” and “roles”. Occurrences are information
resources relevant to a topic. An occurrence might have one or several types
characterising the occurrence’s relevance to a topic, expressed by “occurrence
roles” and “occurrence role types” in the formalism HyTM [155], or only by
“occurrence types” in the formalism XTM [232].

“Topic characteristics” denote the names a topic has, what associations it
partakes in, and what its occurrences are. “Facets” (a concept of HyTM but
not of XTM) are attribute-value pairs that can be attached to any kind of topic
map component for explanation purposes. Facets are thus a means to attach to
Topic Maps meta-data in another formalism. “Subject identifiers” denote URIs
of resources (called “subject indicators” or sometimes also “subject identifiers”)
that describe in a human-readable form the subject of a Topic Map component.
Commonly, subjects and topics stand in one-to-one relationships, such that they
can be referred to interchangeably.

Like RDF data, Topic Maps can be seen as oriented graphs with labeled nodes
and edges. Topic Maps offer richer data modeling primitives than RDF. Topic
Maps allow relationships, called associations, of every arity, while RDF only
allows binary relationships, called properties. Initial efforts towards integrating
RDF and Topic Maps are described in [126, 177]. Interestingly, Topic Maps
associations are similar to the “extended links” of the XML linking language
XLink (http://www.w3.org/XML/Linking/).

2.2 Running Example: Classification-Based Book Recommender

In the following, we shall consider as a running example queries in a simple book
recommender system describing various properties and relationships between
books. It consists of a hierarchy (or ontology) of the book categories Writing,
Novel, Essay, Historical Novel, and Historical Essay, and two books The
First Man in Rome (a Historical Novel authored by Colleen McCullough) and
Bellum Civile (a Historical Essay authored by Julius Caesar and Aulus Hir-
tius, and translated by J.M. Carter). Figure 2 depicts this data as a (simplified)

Fig. 2 Sample Data: representation as a (simplified) RDF graph.

The First Man
in Rome

Julius Caesar

Colleen
McCullough

J. M. Carter

Aulus Hirtius

translator

author

Writing

NovelEssay

Historical
Novel

Historical
Essay

foaf:Person
rdfs:domain

rdfs:domain rdfs:range

rdfs:range

author

author

translator foaf:name

author

title

foaf:name

foaf:name

foaf:name

1990

year

Bellum Civile

title

Class

Property (gregorian) Year Literal “is-a” Relation (rdf:type)

“is-a-kind-of” Relation
(rdfs:subClassOf)

String LiteralResource

RDF graph [51, 172, 184]. Note in particular that a Historical Novel is both, a
Novel and an Essay, and that books may optionally have a translator, as is the
case for Bellum Civile. To illustrate the properties of the different kinds of query
languages, the data is in the following represented in the three representation
formalisms RDF, Topic Maps, and XML.

The simple ontology in the book recommender system only makes use of the
subsumption (or “is-a-kind-of”) relation rdfs:subClassOf and the instance (or
“is-a”) relation rdf:type. Though small and simple, this ontology is sufficient to
illustrate the most important aspects of ontology querying. In particular, query-
ing this ontology with query languages for the standard Web already requires
one to model and query this data in an ad hoc fashion, i.e. there is no unified way
to represent this data. A possible representation is shown in the XML example
below.

The RDF, Topic Maps, and XML representations of the sample data refer
to the “simple datatypes” of XML Schema [39] for scalar data: Book titles and
authors’ names are “string”, (untyped or typed as xsd:string), publication
years of books are “Gregorian years”, xsd:gYear. The sample data is assumed
to be stored at http://example.org/books#, a URL chosen in accordance to
RFC 2606 [105] in the use of URLs in sample data. Where useful, e.g when
referencing the vocabulary defined in the ontology part of the data, this URL is
associated with the prefix books.

Sample Data in RDF. The RDF representation of the book recommender
system directly corresponds to the simplified RDF graph in Fig. 2. It is given
here in the Turtle serialisation [24].

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix foaf: <http://xmlns.org/foaf/0.1/> .

:Writing a rdfs:Class ;

rdfs:label "Novel" .

:Novel a rdfs:Class ;

rdfs:label "Novel" ;

rdfs:subClassOf :Writing .

:Essay a rdfs:Class ;

rdfs:label "Essay" ;

rdfs:subClassOf :Writing .

:Historical_Essay a rdfs:Class ;

rdfs:label "Historical Essay" ;

rdfs:subClassOf :Essay .

:Historical_Novel a rdfs:Class ;

rdfs:label "Historical Novel" ;

rdfs:subClassOf :Novel ;

rdfs:subClassOf :Essay .

:author a rdfs:Property ;

rdfs:domain :Writing ;

rdfs:range foaf:Person .

:translator a rdfs:Property ;

rdfs:domain :Writing ;

rdfs:range foaf:Person .

_:b1 a :Historical_Novel ;

:title "The First Man in Rome" ;

:year "1990"^^xsd:gYear ;

:author [foaf:name "Colleen McCullough"] .

_:b1 a :Historical_Essay ;

:title "Bellum Civile" ;

:author [foaf:name "Julius Caesar"] ;

:author [foaf:name "Aulus Hirtius"] ;

:translator [foaf:name "J. M. Carter"] .

Books, authors, and translators are represented by blank nodes without iden-
tifiers, or with temporary identifiers indicated by the prefix “ :”.

Sample Data in Topic Maps. The Topic Map representation of the book
recommender system makes use of the Linear Topic Maps syntax [125]. Subclass-
superclass associations are identified using the subject identifiers of XTM [232].
For illustration purposes, the title of a book is represented as an occurrence of
that book/topic.

/* Association and topic types for subclass-superclass hierarchy */

[superclass-subclass = "Superclass-Subclass Association Type"

@ "http://www.topicmaps.org/xtm/1.0/core.xtm#superclass-subclass"]

[superclass = "Superclass Role Type"

@ "http://www.topicmaps.org/xtm/1.0/core.xtm#superclass"]

[subclass = "Subclass Role Type"

@ "http://www.topicmaps.org/xtm/1.0/core.xtm#subclass"]

/* Topic types */

[Writing = "Writing Topic Type" @ "http://example.org/books#Writing"]

[Novel = "Novel Topic Type" @ "http://example.org/books#Novel"]

[Essay = "Essay Topic Type" @ "http://example.org/books#Essay"]

[Historical_Essay = "Historical Essay Topic Type"

@ "http://example.org/books#Historical_Essay"]

[Historical_Novel = "Historical Novel Topic Type"

@ "http://example.org/books#Historical_Novel"]

[year = "Topic Type for a Gregorian year following ISO 8601"

@ "http://www.w3.org/2001/XMLSchema#gYear"]

[Person = "Person Topic Type" @ "http://xmlns.org/foaf/0.1/Person"]

[Author @ "http://example.org/books#author"]

[Translator @ "http://example.org/books#translator"]

/* Associations among the topic types */

superclass-subclass(Writing: superclass, Novel: subclass)

superclass-subclass(Writing: superclass, Essay: subclass)

superclass-subclass(Novel: superclass, Historical_Novel: subclass)

superclass-subclass(Essay: superclass, Historical_Essay: subclass)

superclass-subclass(Essay: superclass, Historical_Novel: subclass)

superclass-subclass(Person: superclass, Author: subclass)

superclass-subclass(Person: superclass, Translator: subclass)

/* Occurrence types */

[title = "Occurrence Type for Titles" @ "http://example.org/books#title"]

/* Association types */

[author-for-book = "Association Type associating authors to books"]

[translator-for-book =

"Association Type associating translators to books"]

[publication-year-for-book =

"Association Type associating translators to books"]

/* Topics, associations, and occurrences */

[p1: Person = "Colleen McCullough"]

[p2: Person = "Julius Caesar"]

[p3: Person = "Aulus Hirtius"]

[p4: Person = "J. M. Carter"]

[b1: Historical_Essay = "Topic representing the book ’First Man in Rome’"]

author-for-book(b1, p1: author)

publication-year-for-book(b1, y1990)

{b1, title, [[The First Man in Rome]]}

[b2: Historical_Novel = "Topic representing the book ’Bellum Civile’"]

author-for-book(b2, p2: author)

author-for-book(b2, p3: author)

translator-for-book(b2, p4: translator)

{b2, title, [[Bellum Civile]]}

The representation given above has been chosen for illustrating query lan-
guage features. In reality, a different representation might be more natural. For
instance, a ternary association connecting a book with its author(s), translator,
and year of publication could be used. Also, instead of separate associations for
author and translator, use of a generic association between persons and books,
and use of roles for differentiation would be reasonable.

Sample Data in XML. XML has no standard way to express relationships
other than parent-child. The following is thus one of many conceivable ad hoc
XML representations of the data in the book recommender system. Its use is
obviously highly application-specific.

<bookdata xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<book type="Historical_Novel">

<title>The First Man in Rome</title>

<year type="xsd:gYear">1990</year>

<author> <name>Colleen McCullough</name> </author>

</book>

<book type="Historical_Essay">

<title>Bellum Civile</title>

<author> <name>Julius Caesar</name> </author>

<author> <name>Aulus Hirtius</name> </author>

<translator> <name>J. M. Carter</name> </translator>

</book>

<category id="Writing">

<label>Writing</label>

<category id="Novel">

<label>Novel</label>

<category id="Historical_Novel">

<label>Historical Novel</label>

</category>

</category>

<category id="Essay">

<label>Essay</label>

<category id="Historical_Essay">

<label>Historical Essay</label>

</category>

<category idref="Historical_Novel" />

</category>

</category>

</bookdata>

For the sake of brevity, the above representation does not express that authors
and translators are persons. Note the use of ID/IDREF references for expressing
the types (e.g. “Novel”, “Historical_Novel”) of books.

One of the XML-based serialisations of the RDF or Topic Maps represen-
tations of the sample data could be used for comparing XML query languages.
Instead, in this article, the XML representation given above is used, because
these XML-based serialisations of the RDF or Topic Maps representations are
awkward, complicated to query, and can yield biased comparisons.

2.3 Sample Queries

The different query languages are illustrated using five types of queries against
the sample data. This categorisation is inspired by Maier [192] and Clark [87].

Selection and Extraction Queries. Selection Queries simply retrieve parts
of the data based on its content, structure, or position. The first query is thus:

Query 1 “Select all Essays together with their authors (i.e. author items and
corresponding names)”

Selection Queries are used in the following to illustrate basic properties of
query languages, like the basic means of addressing data, the supported answer
formats, or the way related information (like author names or book titles) is se-
lected and delivered (grouping). Extraction Queries extract substructures, and
can be considered as a special form of Selection Query. Such queries are com-
monly found on the Semantic Web. The following query extracts a substructure
of the sample data (e.g. as an RDF subgraph):

Query 2 “Select all data items with any relation to the book titled ‘Bellum
Civile’.”

Reduction Queries. Some queries are more concisely expressed by specifying
what parts of the data not to include in the answer. On the Semantic Web,
such reduction queries are e.g. useful for combining information from different
sources, or for implementing different levels of trust: It might be desirable to
create a simple list of books from the data in the recommender system, leaving
out ontology information and translators:

Query 3 “Select all data items except ontology information and translators.”

Restructuring Queries. In Web applications, it is often desirable to restruc-
ture data, possibly into different formats/serialisations. For example, the con-
tents of the book recommender system could be restructured to an (X)HTML
representation for viewing in a browser, or derived data could be created, like
inverting the relation author:

Query 4 “Invert the relation author (from a book to an author) into a relation
authored (from an author to a book).”

In particular, RDF requires restructuring for reification, i.e. expressing “state-
ments about statements”. When reifying, a statement is replaced by three new
statements specifying the subject, predicate, and object of the old statement. For
example, the statement “Julius Caesar is author of Bellum Civile” is reified by
the three statements “the statement has subject Julius Caesar”, “the statement
has predicate author”, and “the statement has object Bellum Civile”.

Aggregation Queries. Restructuring the data also includes aggregating sev-
eral data items into one new data item. As Web data usually consists of tree-
or graph-structured data that goes beyond flat relations, we distinguish between
value aggregation working only on the values (like SQL’s max(·), sum(·), . . .)
and structural aggregation working also on structural elements (like “how many
nodes”). Query 5 uses the max(·) value aggregation, while Query 6 uses struc-
tural aggregation:

Query 5 “Return the last year in which an author with name ‘Julius Caesar’
published something.”

Query 6 “Return each of the subclasses of ‘Writing’, together with the average
number of authors per publication of that subclass.”

Related to aggregation are grouping (collecting several data items at some
common position, e.g. a list of authors) and sorting (extending grouping by
specifying in which order to arrange data items). Note that they are not mean-
ingful for all representation formalisms. For instance, sorting in RDF only makes
sense for sequence containers, as RDF data in general does not specify order for
statements.

Combination and Inference Queries. It is often necessary to combine in-
formation that is not not explicitly connected, like information from different
sources or substructures. Such queries are useful with ontologies that often spec-
ify that names declared at different places are synonymous:

Query 7 “Combine the information about the book titled ‘The Civil War’ and
authored by ‘Julius Caesar’ with the information about the book with identifier
bellum_civile.”

Combination queries are related to inference, because inference refers to combin-
ing data, as illustrated by the following example: If the books entitled “Bellum
Civile” and “The Civil War” are the same book, and ‘if ‘Julius Caesar” is an
author of “Bellum Civile”, then ‘Julius Caesar’ is also an author of “The Civil
War”.

Inference queries e.g. compute transitive closures of relations like the RDFS
subClassOf relation:

Query 8 “Return the transitive closure of the subClassOf relation.”

Not all inference queries are combination queries, as the following example illus-
trates:

Query 9 “Return the co-author relation between two persons that stand in au-
thor relationships with the same book.”

Some query languages have closure operators applicable to any relation, while
other query languages have closure operators only for certain, predefined re-
lations, e.g., the RDFS subClassOf relation. Some query languages support
general recursion, making it possible and easy to express the transitive closure
of every relation.

3 XML Query and Transformation Languages

Most query and transformation languages for XML specify the structure of the
XML data to retrieve using one of the following approaches:

– Navigational approach. Path-based navigation through the XML data queried.
– Positional approach. Query patterns as “examples” of the XML data queried.
– Relational expressions referring to a “flat” representation of the XML data

queried.

Languages already standardized, or currently in the process of standardisation
by the W3C, are of the first kind, while many research languages are of the
second kind. This article does not consider languages of the third kind, e.g.,
monadic datalog [129, 130] and LGQ [224]. Such languages have been proposed
for formalizing query languages and reasoning about XML queries. This article
also does not consider special purpose languages like ELog [21] which are not tai-
lored towards querying by humans. Finally, this article does not consider XML
query languages focused on information retrieval, e.g., XirQL [120], EquiX [89],
ELIXIR [82], XQuery/IR [49], XXL [270], XirCL [210], XRANK [142], PIX [7],
XSEarch [90], FleXPath [8], and TeXQuery [6]. Although these languages pro-
pose interesting and novel concepts and constructs for combining XML querying
with information retrieval methods, they (a) do not easily compare to the other
query languages in this survey and (b) mostly do not provide additonal insight
on the non-IR features of query languages.

3.1 W3C’s Query Languages: Navigational Approach

Characteristics of the Navigational Approach. The navigational languages for
XML are inspired from path-based query languages designed for relational or
object-oriented databases. Most such database query languages (e.g., GEM [286],
an extension of QUEL, and OQL [73]) require fully specified paths, i.e., paths
with explicitly named nodes following only parent-child connections. OQL ex-
presses paths with the “extended dot notation” introduced in GEM [286]: “SELECT
b.translator.name FROM Books b” selects the name, or component, of the
translator of books (note that there must be at most one translator per book for
this expression to be legal).

Generalized Path Expressions. Generalized (or regular) path expressions [83,
119], allow more powerful constructs than the extended dot notation for speci-
fying paths, e.g., the Kleene closure operator on (sub-)paths . As a consequence
and in contrast to the extended dot notation, generalized path expressions do
not require explicit naming of all nodes along a path.

Lorel. Lorel [3] is an early proposal for a query language originally designed
for semistructured data, a data model that was introduced with the “Object
Exchange Model (OEM)” [127, 230], and can be seen as a precursor of XML.
Lorel’s syntax resembles that of SQL and OQL, extending OQL’s extended dot
notation to generalized path expressions. Lorel provides a means for expressing:

– Optional data: In Lorel, the query SELECT b.translator.name FROM Books
b returns an empty answer, whereas in OQL it causes a type error, if there
is no translator for a book.

– Set-valued attributes: In Lorel, b.author.name selects the names of all au-
thors of a book, whereas in OQL it is only valid if there is only a single
author.

– Regular path expressions, e.g. a (strict) Kleene closure operator for express-
ing navigation through recursively defined data structures and alternatives
in both labeling and structure.

The following Lorel query expresses Query 1 against the sample data (treat-
ing attributes as sub-elements since OEM has no attributes):

select xml(results:(

select xml(result:(

select B, B.author

from bookdata.book B

where B.type = bookdata.(category.id)+

))))

Lines 1 and 2 are constructors for wrapping the selected books and their
authors into XML elements. Note the use of the strict Kleene closure operator
+ in line 5. Note also that Lorel allows entire (sub-) paths to be repeated, as do
most query languages using generalized path expressions.

To illustrate further aspects of Lorel, assume that one is only interested
in books having “Julius Caesar” either as author or translator. Assume also
that, as in some representations of the sample data, cf. 2.2, the literal giving
the name of the author is either wrapped inside a name child of the author
element, or directly included in the author element. Selection of such books can
be expressed in Lorel by adding the following expression to the query after line
5 B.(author|translator).name? = "Julius Caesar".

StruQL. StruQL [114, 118] relies on path expressions similar to that of Lorel.
StruQL is another early (query and) transformation language for semi-structured
data using Skolem functions for construction.

Data Selection with XPath XPath is presented in [86] and [258, 269], as
well as many online tutorials. It was defined originally as part of XSL, an activ-
ity towards defining a stylesheet language for XML (in replacement of SGML’s
stylesheet language DSSSL). XPath provides expressions for selecting data in
terms of a navigation through an XML document. In contrast to the previous
approaches based on generalized path expressions, XPath provides a syntax in-
spired from file systems, aiming at simplicity and conciseness. Conciseness is
an important aspect of XPath, since it is meant to be embedded in host lan-
guages, such as XSLT or XPointer. Other aspects such as formal semantics,
expressiveness, completeness, and complexity, have not played a central role in
the development of XPath but have recently been investigated at length.

Data model. An XML document is considered as an ordered and rooted tree
with nodes for elements, attributes, character data, namespaces declaration,
comments and processing instructions. The root of this tree is a special node
which has the node for the XML document element as child. In this tree, ele-
ment nodes are structured reflecting the element nesting in the XML document.
Attribute and namespace declaration nodes are children of the node of the ele-
ment they are specified with. Nodes for character data, for comments, and for
processing instructions are children of the node of the element in which they
occur, or of the root node if they are outside the document element. Note that
a character node is always “maximal”, i.e., it is not allowed that two character
data nodes are immediate siblings. This model resembles the XML Information
Set recommendation [94] and has become the foundation for most activities of
the W3C related to query languages.

Path expressions. The core expressions of XPath are “location steps”. A location
step specifies where to navigate from the so-called “context node”, i.e., the cur-
rent node of a path traversal. A location step consists of three parts: an “axis”, a
“node-test”, and an optional “predicate”. The axis specifies candidate nodes in
terms of the tree data model: the base axes self, child, following-sibling,
and following (selecting the context node, their children, their siblings, or all el-
ements if they occur later in document order, resp.), the transitive and transitive-
reflexive closure axes descendant and descendant-or-self of the axis child,

and the respective “reverse” (or inverse) axes parent, preceding-sibling,
preceding, ancestor, and ancestor-or-self. Two additional axes, attributes
and namespace, give access to attributes and namespace declarations. Both
node-tests and predicates serve to restrict the set of candidate nodes selected
by an axis. The node-test can either restrict the label of the node (in case of
element and attribute nodes), or the type of the node (e.g., restrict to comment
children of an element). Predicates serve to further restrict elements to some
neighborhood (which nodes are in the neighborhood of the node selected by an
axis and node-test) or using functions (e.g., arithmetic or boolean operators).

Successive location steps are separated by “/” to form a path expression.
A path expression can be seen as a nested iteration over the nodes selected by
each location step. E.g., the path expression child::book/descendant::name
expresses: “for each book child of the context node select its name descendant”.

XPath compares to generalized path expressions as follows:

– XPath allows navigation in all directions, while generalized path expressions
only allow vertical and downwards navigation.

– XPath provides closure axes, but does not allow closure of arbitrary path
expressions, e.g. as provided in Lorel.

– XPath has no means for defining variables, as it is intended to be used
embedded in a host language that may provide such means. In contrast,
Lorel and StruQL offer variables for connecting path expressions, making it
possible to specify so-called tree or graph queries. Instead, XPath predicates
may contain nested path expressions and thus allow the expression of tree
and even some graph queries. However, not all graph queries can be expressed
this way. This has been recognized in XPath 2.0 [31], a revision of XPath
currently under development at the W3C.

Reverse navigation has been considered for generalized path expressions, cf. [68,
69]). However, it has been shown in [225] that reverse axes do not increase the
expressive power of path navigations.

Without closure of arbitrary path expressions, XPath cannot express regular
path expressions such as a.(b.c)*.d (meaning “select d’s that are reached via
one a and then arbitrary many repetitions of one b followed by one c”) and
a.b*.c, cf. [199, 200], where also a first-order complete extension to XPath is
proposed that can express the second of the above-mentioned path expressions.

Query 1 can only be approximated in XPath as follows:

/descendant::book[attribute::type =

/descendant::category[attribute::id = "Essay"]/

descendant-or-self::category/attribute::id]

XPath always returns a single set of nodes and provides no construction.
Therefore, it is not possible to return authors and their names together with the
book.

XPath also has an “abbreviated syntax”. In this syntax the above query can
more concisely be expressed as:

//book[@type = "Essay" or //category[@::id = "Essay"]/

descendant-or-self::category/@id]

Query 2 can be expressed in (abbreviated) XPath as:

//book[title="Bellum Civile"]

XPath returns a set of nodes as result of a query, the serialization being
left to the host language. Most host languages consider as results the sub-trees
rooted at the selected nodes, as desired by this query. The link to the category
is not expressed by means of the XML hierarchy and therefore not included in
the result.

Query 3 can be approximated in XPath (assuming we identify “ontology
information” with category elements):

/bookdata//*[name(.) != "translator" and name(.) != "category"]

This query returns all descendants of the document element bookdata the
labels of which (returned by the XPath function name) are neither "translator"
nor "category". While this might at first glance seem to be a convenient solu-
tion for Query 3 (the set of nodes returned by the expression indeed does not
contain translators and categories), the link between selected book nodes and
the excluded translators is not removed and in most host languages of XPath
the translators would be included as part of their book parent.

Queries 4 and 7–9 cannot be expressed in XPath because they all require
some form of construction.

Aggregations, needed by Query 5, are provided by XPath. Query 5 can be
expressed as follows:

max(//book[author/name="Julius Caesar"]/year)

The aggregation in Query 6 can be expressed analogously. However, Query 6
like Query 1 cannot be expressed in XPath properly due to the lack of construc-
tion.

XPath in industry and research. Thanks to XPath’s ubiquity in W3C standards
(in XML Schema [108], in XSLT [85], in XPointer [135], in XQuery [42], in
DOM Level 3), XPath has been adopted widely in industry both as part of
implementations of the afore-mentioned W3C standards and in contexts not
(yet) considered by the W3C, e.g., for policy specifications. It has also been
included in a number of APIs for XML processing in languages for providing
easy access to data in XML documents.

XPath has also been deeply investigated in research. Formal semantics for
(more or less complete) fragments for XPath have been proposed in [128, 225,
275]. Surprisingly, most popular implementations of XPath embedded within
XSLT processors exhibit exponential behavior, even for fairly small data and
large queries. However, the combined complexity of XPath query evaluation has

been shown to be P-complete [131, 132]. Various sub-languages of XPath (e.g.,
forward XPath [225], Core or Navigational XPath [131], [26]) and extensions
(e.g., CXPath [199]) have been investigated, mostly with regard to expressive-
ness and complexity for query evaluation. Also, satisfiability of positive XPath
expressions is known to be in NP and, even for expressions without boolean
operators, NP-hard [149]. Containment of XPath queries (with or without addi-
tional constraints, e.g., by means of a document schema) has been investigated
as well, cf., e.g., [101, 211, 250, 285]. Several methods providing efficient imple-
mentations of XPath relying on standard relational database systems have been
published, cf., e.g., [137, 138, 226].

Currently, the W3C is, as part of its activity on specifying the XML query
language XQuery, developing a revision of XPath: XPath 2.0 [31]. See [164] for
an introduction. The most striking additions in XPath 2.0 are: (1) a facility
for defining variables (using for expressions), (2) sequences instead of sets as
answers, (3) the move from the value typed XPath 1.0 to extensive support for
XML schema types in a strongly typed language, (4) a considerably expanded
library of functions and operators [193], and (5) a complete formal semantics
[104].

Project pages:
http://www.w3.org/TR/xpath for XPath 1.0
http://www.w3.org/TR/xpath20/ for XPath 2.0

Implementations:
numerous, mostly as part of implementations of XPath host languages or
APIs for processing XML (e.g., W3C’s DOM Level 3)

Online demonstration:
none (offline XPathTester http://xml.coverpages.org/ni2001-05-25-a.
html)

XPathLog. XPathLog [203] is syntactically an extension of XPath but its seman-
tics and evaluation are based on logic programming, more specifically F-Logic
and FLORID [188]. XPathLog extends the syntax of XPath as follows: (1) vari-
ables may occur in path expressions, e.g., //book[name → N] → B binds B to
books and N to the names of the books, and (2) both existential and universal
quantifiers can be used in Boolean expressions. The data model of XPathLog
deviates considerably from XPath’s data model: XML documents are viewed
in XPathLog as edge-labeled graphs with implicit dereferencing of ID/IDREF
references. XPathLog provides means for constructing new or updating the ex-
isting XML data, as well as more advanced reactive features such as integrity
constraints.

Project page:
http://dbis.informatik.uni-goettingen.de/lopix/

Implementation:
With the LoPiX system, available from the project page

Online demonstration:
none

FnQuery. FnQuery [254] is another approach for combining path expressions
with logic programming. Attribute lists are used to define a novel representation
of XML in Prolog called “field-notation”. Data in this representation can then
be queried using FnPath: E.g., the expression

D^bookdata^book-[^title:’Bellum Civile’, ^year:1992]

returns the book with title “Bellum Civile” published in “1990” if the sample
data from Section 2.2 is bound to D. As XPathLog FnQuery allows multiple
variables in a path expression. It has been used, e.g., for visualizing knowledge
bases [256] and querying OWL ontologies [255].

Project page:
http://www-info1.informatik.uni-wuerzburg.de/database/research_
seipel.html

Implementation:
not publicly available

Online demonstration:
none

The Transformation Language XSLT XSLT [85], the Extensible Stylesheet
Language, is a language for transforming XML documents. Transformation is
here understood as the process of creating a new XML document based upon a
given one. The distinction between querying and transformation has become in-
creasingly blurred as expressiveness of both query and transformation languages
increase. Typically, transformation languages are very convenient for expressing
selection, restructuring and reduction queries, such as Query 3 above.

XSLT uses an XML syntax with embedded XPath expressions. While the
XML syntax makes processing and generation of XSLT stylesheets easier (cf.
[279]), it has been criticized as hard to read and overly verbose. Also XPath
expressions use a non-XML syntax requiring a specialized parser.

XSLT computations. An XSLT program (called “stylesheet” reflecting the origin
of XSLT as part of the XSL project) is composed of one or more transformation
rules (called templates) that recursively operate on a single input document.
Transformation rules are guarded by XPath expressions. In a template, one can
specify (1) the resulting shape of the elements matched by the guard expression
and (2) which elements in the input tree to process next with what templates.
The selection of the elements to process further is done using an XPath expres-
sion. If no specific restriction is given, all templates with guards matching these
elements are considered, but one can also specify a single (named) template or
a group of templates by changing the so-called mode of processing. XSLT allows
also recursive templates. However, recursion is limited: except for templates con-
structing strings only, the result of a template is immutable (a so-called result
tree fragment) and cannot be input for further templates except for literal copies.
This means in particular, that no views can be defined in XSLT. Work in [169]
shows that XSLT is nevertheless Turing complete, by using recursive templates
with string parameters and XSLT’s powerful string processing functions.

XSLT 2.0. Recently this and other limitations (e.g., the ability to process only a
single input document, no support for XML Schema, limited support for names-
paces, lack of specific grouping constructs) have lead to a revision of XSLT:
XSLT 2.0 [167]. As with XQuery 1.0, this language is based upon XPath 2.0 [31].
It addresses the above mentioned concerns, in particular adding XML schema
support, powerful grouping constructs, and proper views. The XQuery 1.0 and
XPath 2.0 function and operator library [193] is also available in XSLT 2.0.

Sample Queries. All example queries can be expressed in XSLT. Query 2 and 5
to 8 are omitted as their solutions are similar enough to solutions shown in the
following.

Query 1 can be expressed in XSLT as follows:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<results>

<xsl:apply-templates select="//book[@type =

//category[@id = ’Essay’]/descendant-or-self::category/@id]"/>

</results>

</xsl:template>

<xsl:template match="book">

<result>

<xsl:copy select = "."/>

<xsl:apply-templates select="author|author/name" />

</result>

</xsl:template>

<xsl:template match="author|author/name">

<xsl:copy-of select="." />

</xsl:template>

</xsl:stylesheet>

This stylesheet can be evaluated as follows:

– try to match the root node (matched by the guard / of the template in
line 3) with the guards of templates in the style-sheet (only first template
matches)

– create a <results> element and within it try to recursively apply the tem-
plates to all nodes matched by the XPath expression in the select attribute
of the apply-templates statement in line 5.

– such nodes are book elements matched by the second template which creates
a <result> element, makes a shallow copy of itself and recursively applies
the rules to the book’s author children and their name children.

– for each author or name of an author, copy the complete input to the result.

Aside from templates, XSLT also provides explicit iteration, selection, and as-
signment constructs: xsl:for-each, xsl:if, xsl:variable among others. Us-
ing these constructs one can formulate Query 1 alternatively as follows:

<results xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:for-each select="//book[@type = //category[@id = ’Essay’]/

descendant-or-self::category/@id]">

<result>

<xsl:copy select = "."/>

<xsl:for-each select = "author|author/name">

<xsl:copy-of select="." />

</xsl:for-each>

</result>

</xsl:for-each>

</results>

The xsl:for-each expressions iterate over the elements of the node set se-
lected by the XPath expression in their select attribute. Aside from the ex-
pressions for copying input this very much resembles the solution for Query 1 in
XQuery shown in the following section.

Whereas the first style of programming in XSLT is sometimes referred to
as rule-based, the latter one is known as the “fill-in-the-blanks” style, as one
specifies essentially the shape of the output with “blanks” to be filled with the
result of XSLT expressions. Other programming styles in XSLT can be identified,
cf. [165].

Query 3 can be expressed in XSLT as follows:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="@*|node()">

<xsl:copy>

<xsl:apply-templates select="@*|node()"/>

</xsl:copy>

</xsl:template>

<xsl:template match="translator | category" />

</xsl:stylesheet>

The first template specifies that for all attributes and nodes, the node itself
is copied and their (attribute and node) children are processed recursively. The
second template specifies that for translators and category elements, nothing is
generated (and their children are not processed). Notice that the first template
also matches translator and category elements. For such a case where multiple
templates match, XSLT uses detailed conflict resolution policies. In this case,
the second template is chosen as it is more specific than the first one (for more
the details of resolution rules, refer to [85]).

Query 4 can be expressed in XSLT as follows:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<bookdata>

<xsl:apply-template

select="//author[not(name = preceding::author/name)]" />

</bookdata>

</xsl:template>

<xsl:template match="author">

<person>

<name><xsl:value-of select="name" /></name>

<authored>

<xsl:apply-templates

select="//book[author/name=current()/name]" />

</authored>

</person>

</xsl:template>

<xsl:template match="book">

<book>

<xsl:copy-of select="@*" />

<xsl:copy-of select="*[name() != ’author’]" />

</book>

</xsl:template>

</xsl:stylesheet>

The preceding axis from XPath is used to avoid duplicates in the result. Also
note the use of the current() function in the second template. This function
always returns the current node considered by an XSLT expression. Here, it
returns the author element last matched by the second template. This function
is essentially syntactic sugar to limit the use of variables (cf. solution for Query
9).

Query 9 can be expressed in XSLT as follows:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<results>

<xsl:for-each select="//author">

<xsl:variable name="author" select="." />

<xsl:for-each select="$author/following-sibling::author">

<co-authors>

<name> <xsl:value-of select="$author/name" /> </name>

<name> <xsl:value-of select="current()/name" /> </name>

</co-authors>

</xsl:for-each>

</xsl:for-each>

</results>

</xsl:template>

</xsl:stylesheet>

Here, the solution is quite similar to the XQuery solution for Query 9 shown
below (but can use in following-sibling axis that is only optionally available
in XQuery), as variables and xsl:for-each expressions are used. The solution
uses xsl:for-each, as the inner and the outer author are processed differently. A
solution without xsl:for-each is possible but requires parameterized templates
and named or grouped templates:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<results>

<xsl:apply-template select="//author" />

</results>

</xsl:template>

<xsl:template match="author">

<xsl:apply-template select="following-sibling::author"

mode="co-author">

<xsl:with-param name="first-co-author" select="." />

</xsl:apply-templates>

</xsl:template>

<xsl:template match="author" mode="co-author">

<xsl:param name="first-co-author" />

<co-authors>

<name> <xsl:value-of select="$first-co-author/name" /> </name>

<name> <xsl:value-of select="name" /> </name>

</co-authors>

</xsl:template>

</xsl:stylesheet>

Note that for clarity neither of these solutions avoids duplicates if two persons
are co-authors of multiple books.

XSLT in industry and academia. XSLT has been the first W3C language for
transforming and querying XML and thus has been adopted quickly and widely.
A multitude of implementations exist (e.g. as part of the standard library for
XML processing in Java) as well as good practical introductions (e.g.., [165,
269]).

Research on XSLT has not received the same attention that XPath and
XQuery have, in particular not from the database community. A more detailed
overview of research issues on XSLT and its connection to reactive rules is given
in [13], here only some core results are outlined: Formal semantics for (frag-
ments of) XSLT have been investigated in [38, 171]. [169] gives a proof showing
that XSLT is Turing complete. Analysis of XSLT is examined in [103], which
proposes four analysis properties and presents an analysis method based on the
construction of a template association graph, which conservatively models the
control flow of the stylesheet. There is also an important line of theoretical re-
search with regard to analysis of the behaviour of XSLT. Work in [214] presents
a theoretical model of XSLT and examines a number of decision questions for
fragments of this model. Work in [198] examines the question of whether the out-
put of an XML transformation conforms to a particular document type. Type
checking is also addressed in [272].

Efficient evaluation of XSLT programs is also an important topic. In [156,
186], translations to SQL are considered. Work in [274] describes incremental
methods for processing multiple transformations. Work in [249] proposes a lazy

evaluation for XSLT programs, while [166] describes optimizations based on ex-
periences from the widely used XSLT processor Saxon. Other specific techniques
for optimizing XSLT programs and evaluation are described in [102, 134, 143,
273]. Further engineering aspects of XSLT programs have also received atten-
tion, namely transformation debugging [12] and automatic stylesheet generation
[227, 279].

Project page:
http://www.w3.org/Style/XSL/

Implementation:
very numerous, see project page

Online demonstration:
none

Fxt. fxt [32], the functional XML transformer, is a transformation language sim-
ilar to XSLT, in particular with respect to its syntax. However, instead of XPath
expressions fxt uses fxgrep patterns that are based on an expressive grammar for-
malisms and can be evaluated very efficiently (cf. [33]). Fxt ’s computation model
is also more restricted than that of XSLT due to the lack of named templates.

Project page:
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxt/

Implementation:
available from the project page

Online demonstration:
none

VXT. VXT [233] is a visual language and interactive environment for specifying
transformations of XML documents. It is based on the general purpose trans-
formation language Circus7: Whereas most other XML query languages employ
some form of graph-shaped visualization for both data and queries, VXT uses
treemaps [157] for representing hierarchies: the nesting of the elements in the
document is reflected by nested of nodes. As XSLT, VXT uses rules to specify
transformations. A rule consists in treemap representation of the queried data
and the constructed data. The two representations are linked by various typed
edges indicating, e.g., the copying of a matching node or its content, cf. 3

Project page:
none

Implementation:
not publicly available

Online demonstration:
none

7 http://www.xrce.xerox.com/solutions/circus.html

Fig. 3 Treemap representation of a VXT rule
(Pietriga et al. [233], c© ACM Press)

The Query Language XQuery Shortly before the publication of the final
XPath 1.0 and XSLT 1.0 recommendations, the W3C launched an activity to-
wards specifying an XML query language. In contrast to XSLT, this query lan-
guage aims at a syntax and semantics making it convenient for database systems.
Requirements and use cases for the language have been given in [76, 77, 192].
A number of proposals, e.g., XQL and Quilt, have been published in answer to
this activity, each with varying influence on XQuery [42], the language currently
under standardisation at the W3C:

XQL [244, 246] notably influenced the development of XPath. Although XQL
did not consider the full range of XPath axes, some language features that have
not been included in XPath, e.g., existential and universal quantifiers and an
extended range of set operations, are under reconsideration for XPath 2.0.

Quilt [79] is in spirit already close to the current version of XQuery, mainly
lacking the extensive type system developed by the W3C’s XML query working
group. It can be considered the predecessor of XQuery.

Although the development and standardisation of XQuery [42] is not com-
pleted, XQuery’s main principles have been unchanged during at least the last
two of its four years of development. In many respects, it represents the “state-
of-the-art” of navigational XML query languages.

XQuery Principles. At its core, XQuery is an extension of XPath 2.0 adding
functionalities needed by a “full query language”. The most notable of these
functionalities are:

– Sequences. Where in XPath 1.0 the results of path expressions are node
sets, XQuery and XPath 2.0 use sequences. Sequences can be constructed or
result from the evaluation of an XQuery expression. In contrast to XPath 1.0,
sequences cannot only be composed of nodes but also from atomic values,
e.g., (1, 2, 3) is a proper XQuery sequence.

– Strong typing. Like XPath 2.0, XQuery is a strongly typed language. In par-
ticular, most of the (simple and complex) data types of XML Schema are
supported. The details of the type system are described in [104]. Further-
more, many XQuery implementations provide (although it is an optional
feature) static type checking.

– Construction, Grouping, and Ordering. Where XPath is limited to selecting
parts of the input data, XQuery provides ample support for constructing

new data. Constructors for all node types as well as the simple data types
from XML Schema are provided. New elements can be created either by so-
called direct element constructors (that look just like XML elements) or by
what is referred to as computed element constructors, e.g. allowing the name
of a newly constructed element to be the result of a part of the query. For
examples on these constructors, see the implementations for Query 1 and 3
below.

– Variables. Like XPath 2.0, XQuery has variables defined in so-called FLWOR
expressions. A FLWOR expression usually consists in one or more for, an
optional where clause, an optional order by, and a return clause. The for
clause iterates over the items in the sequence returned by the path expres-
sion in its in part: for $book in //book iterates over all books selected by
the path expression //book. The where clause specifies conditions on the se-
lected data items, the order by clause allows the items to be processed in a
certain order, and the return clause specifies the result of the entire FLWOR
expression (often using constructors as shown above). Additionally, FLWOR
expressions may contain, after the for clauses, let clauses that also bind
variables but without iterating over the individual data items in the sequence
bound to the variable. FLWOR expressions resemble very much XSLT’s ex-
plicit iteration, selection, and assignment constructs described above.

– User-defined functions. XQuery allows the user to define new functions spec-
ified in XQuery (cf. implementation of Query 3 below). Functions may be
recursive.

– Unordered sequences. As a means for assisting query optimization, XQuery
provides the unordered keyword, indicating that the order of elements in
sequences that are constructed or returned as result of XQuery expressions is
not relevant. E.g., unordered{for $book in //book return $book/name}
indicates that the nodes selected by //book may be processed in any order
in the for clause and the order of the resulting name nodes also can be arbi-
trary (implementation dependent). Note that inside unordered query parts,
the result of any expressions querying the order of elements in sequences
such as fn:position, fn:last is non-deterministic.

– Universal and existential quantification. Both XPath 2.0 and XQuery 1.0
provide some and all for expressing existentially or universally quantified
conditions (see implementation of Query 9 below).

– Schema validation. XQuery implementations may (optionally) provide sup-
port for schema validation, both of input and of constructed data, using the
validate expression.

– Full host language. XQuery completes XPath with capabilities to set up the
context of path expressions, e.g., declaring namespace prefixes and default
namespace, importing function libraries and modules (optional), and (again
optionally) providing flexible means for serialization that are in fact shared
with XSLT 2.0 (cf. [168]).

In at least one respect, XQuery is more restrictive than XPath: not all of
XPath’s axes are mandatory, ancestor, ancestor-or-self, following,

following-sibling, preceding, and preceding-sibling do not have to be
supported by an XQuery implementation. This is, however, no restriction to
XQuery’s expressiveness, as expressions using reverse axes (such as ancestor)
can be rewritten, cf. [225], and the “horizontal axes”, e.g., following and
following-sibling, can be replaced by FLWOR expressions using the << and
>> operators that compare two nodes with respect to their position in a sequence.

For a formal semantics for XQuery 1.0 (and XPath 2.0) see [104]. Compre-
hensive but easy to follow introductions to XQuery are given in, e.g., [53, 163].

Sample Queries. All nine sample queries can be expressed in XQuery. In the
following, an expression of Query 2 is omitted because it can be expressed as
a simplification of the XQuery expression of Query 1 given below. Query 5 can
be expressed as for XPath, cf. above. Expressions of Query 8 and 9 are similar.
Since the expression for Query 9 in XQuery exhibits an interesting anomaly, it
is given below and no expression for Query 8 is given.

Query 1 can be expressed in XQuery as follows (interpreting the phrase “an
essay” as a book with type attribute equal to the id of the category “Essay” or
one of its sub-categories represented as descendants in the XML structure):

<results> {

let $doc := doc("http://example.org/books")/bookdata

let $sub-of-essay :=

$doc//category[@id="Essay"]/descendant-or-self::category

for $book in $doc//book

where $book/@type = $sub-of-essay/@id

return

<result>

{ $book }

{ $book/author }

{ $book/author/name }

</result> }

</results>

Note the use of the let clause in line 2: the sequence of all sub-categories of
the category with id “Essay” including that category itself (we use the reflex-
ive transitive axis descendant-or-self) is bound to the variable. However, in
contrast to a for expression, this sequence is not iterated over. Instead of the
where clause in line 4 a predicate could be added to the path expression in line
3 resulting in the expression $doc//book[@type = $sub-of-essay/@id].

Query 3 requires structural recursion over the tree, while constructing new
elements that are identical to the ones encountered, except omitting translator
and category nodes. The following implementation shows the use of a user-
defined, recursive function that copies the tree rooted at its first parameter $e,
except all nodes in the sequence given as second parameter.

declare function

local:tree-except($e as element(),

$exceptions as node()*) as element()*

{

element {fn:node-name($e)} {

$e/@* except $exceptions, (: copy the attributes :)

for $child in $element/node() except $exceptions

return

if $child instance of element()

(: for elements process them recursively :)

local:tree-except($section)

else (: others (text, comments, etc. copy :)

$child

}

};

document {

let $doc := doc("http://example.org/books")/bookdata

let $exceptions := $doc//translator union $doc//category

local:tree-except($doc, $exceptions)

}

Note the typing of the parameters: the first parameter is a single element,
the second, a sequence of nodes and the function returns a sequence of elements.
In the main part of the query, the document constructor is used to indicate that
its content is to be the document element of the constructed tree.

Query 4 can be expressed in XQuery as follows:

<bookdata> {

let $a := doc("http://example.org/books")//author

for $name in distinct-values($a/name)

return

<person>

<name> { $name } </name>

<authored

{

for $b in doc("http://example.org/books")//book

where some $ba in $b/author

satisfies $ba/name = $name

return

<book> { $b/@*, $b/* except $b/author } </book>

}

</authored

</person>

}

</bookdata>

This implementation is in fact similar to the implementation of use case
XMP-Q4 in [76] and exhibits two noteworthy functionalities: (1) The use of
distinct-value in line 3 to avoid duplication in the result, if an author occurs
multiple times in the document. (2) The use of an existentially quantified condi-
tion in lines 10–11, to find books where some (read: at least one) of the authors
have the same name as the currently considered author.

Using aggregation expressions (see lines 8 and 10), Query 6 can be expressed
in XQuery as follows:

<results> {

let $doc := doc("http://example.org/books")/bookdata

for $category in $doc//category[@id="Essay"]//category

return

<category>

{ $category/@id }

<average-number-of-authors>{

fn:avg(for $book in $doc//book

where @type = $category/@id

return fn:count($book/author))

}

</average-number-of-authors>

</category>

}

</results>

Combining data can be expressed in a very compact manner in XQuery, as
the following expression of Query 7 shows:

<book>

{ for $book in doc("http://example.org/books")//book

where title="Bellum Civile" and author/name="Julius Caesar"

return ($book/@*, $book/*)

}

{

for $book in doc("http://example.org/books")//book

where @id="bellum_civile"

return ($book/@*, $book/*)

}

</book>

Query 9 can be expressed in XQuery as follows:

<results>

{ let $doc := doc("http://example.org/books")

for $book in doc("http://example.org/books")//book

for $author in $book/author

for $co-author in $book/author

where $author << $co-author

return

<co-authors>

<name> { $author/name } </name>

<name> { $co-author/name } </name>

</co-authors>

}

</results>

This implementation does not treat the case where two authors co-authored
multiple books. In this case, duplicates are created by the above solution. To
avoid this the following refinement uses the before operator << in combination
with a negated condition, for specifying that only such pairs of authors should be
considered, where there is no book that occurs prior to the currently considered
one and which is also co-authored by the current pair of authors:

<results>

{ let $doc := doc("http://example.org/books")

for $book in doc("http://example.org/books")//book

for $author in $book/author

for $co-author in $book/author

where $author << $co-author and not(

some $pb in doc("http://example.org/books")//book

satisfies ($pb << $book and

$pb//author/name = $author/name and

$pb//author/name = $co-author/name))

return

<co-authors>

<name> { $author/name } </name>

<name> { $co-author/name } </name>

</co-authors>

}

</results>

XQuery in industry and research. From the very start, XQuery’s development
has been followed by industry and research with equal interest (for reports on the
challenges and decisions during this process see, e.g., [106, 109]). Even before the
development has finished, initial practical introductions to XQuery have been
published, e.g., [53, 163]. Industry interest is also visible in the simultaneous
development of standardized XQuery APIs, e.g., for Java [107], and numerous
implementations, both open source (e.g., Galax [112]) and commercial (BEA
[117], IPSI-XQ [110]). Aside from these main-memory implementations, one can
also find streamed implementations of XQuery (e.g., [22, 173]) where the data
flows by as the query is evaluated. First results on implementing XQuery on top
of standard relational databases (e.g., [97, 139]) indicate that this approach leads
to very efficient query evaluation if a suitable relational encoding of the XML
data is used. For more implementations, see the XQuery project page at the W3C
and the proceedings of the first XIME-P workshop on “XQuery Implementation,
Experience and Perspectives”8.

It is intuitively clear that XQuery is Turing complete since it provides re-
cursive functions and conditional expressions. A formal proof of the Turing-
completeness of XQuery is given in [169]. Efficient processing and (algebraic)
optimization of XQuery, although acknowledged as crucial topics, have not yet
been sufficiently investigated. First results are presented, e.g., in [80, 81, 100, 202,

8 http://www-rocq.inria.fr/gemo/Gemo/Projects/XIME-P/

268, 287, 288]. Moreover, techniques for efficient XPath evaluation, as discussed
above, can be a foundation for XQuery optimization.

Beyond querying XML data, it has also been suggested to use XQuery for
data mining [278], for web service implementation [228], for querying heteroge-
neous relational databases [281], for access control and policy descriptions [216],
for synopsis generation [92], and as the foundation of a visual XML query lan-
guage (XQBE) [10], of a XML query language with full-text capabilities [5, 6],
and of an update [54, 78, 243] and reactive [46] language for XML.

Project page:
http://www.w3.org/XML/Query

Implementations:
widely implementated (more than 30 implementations), a list of implemen-
tations is available at the project page

Online demonstrations:
several, e.g.: http://www.oakleaf.ws/xquery/xquerydemo.aspx
http://oasys.ipsi.fhg.de/xquerydemo/
http://131.107.228.20/xquerydemo/demo.aspx

3.2 Research Prototypes:
The Positional Approach to XML Querying

Characteristics of the Positional Approach. The languages discussed in
the following all take the positional approach for locating data in an XML doc-
ument. This approach is often derived from logic or functional programming
where patterns are used to specify the position of interesting data inside larger
structures.

Essentially, positional languages use expressions that mimic the data to be
queried. This allows tree- or graph-shaped queries to be expressed very similar
to tree- or graph-shaped data (as “examples” of the data to be queried, cf.
[290]), whereas navigational languages do not provide this close correspondence.
However, many languages in this sections (e.g., UnQL, TQL, and Xcerpt) do
actually use path expressions mostly as convenient shorthands for parts of queries
that are shaped like a single path.

Languages using this “query-by-example” style for queries mostly fall into
two categories: (a) query languages influenced by logic or functional program-
ming (UnQL, XML-QL, XMAS, XML-RL, TQL) and (b) visual query languages
or visual interfaces for textual query languages (XML-GL, BBQ, and X2’s visual
query interface).

UnQL. UnQL [64–66] (the Unstructured Query Language) is a query language
originally developed for querying semistructured data and nested relational data-
bases with cyclic structures. It has later been adopted to querying XML, but the
origins are still apparent in many language properties (for example, UnQL has
a non-XML syntax that is very similar to OEM’s syntax and does not support
querying or construction of ordered data).

The evaluation model and core language of UnQL is based upon structural
recursion over labeled trees. It provides both a functional-style language for
expressing recursions over trees, cf. [65] and a more approachable surface syntax.9

The following expression uses functional style pattern matching for selecting
all books in a tree.

fun f1(T1 ∪ T2) = f1(T1) ∪ f1(T2)

| f1({ L ⇒ T }) = if L = book then {result ⇒ book ⇒ T} else f1(T)

| f1({}) = {}

| f1(V) = {}

UnQL’s surface syntax uses query patterns and construction patterns and a
query consists of a single select ... where ... or traverse rule that separate
construction from querying. Queries may be nested, in which case the separation
of querying and construction is abandoned.

Query 1 can be expressed in UnQL as

select { results ⇒ {

select { result ⇒ { Book,

select { author ⇒ {

author ⇒ Author,

authorName ⇒ Name

} }

where { author ⇒ \Author } ← Book,

{ name ⇒ \Name } ← Author

where { book ⇒ \Book } ← Bib

where bookdata ⇒ Bib ← DB

The ← scopes a query pattern, i.e., it specifies that the left-hand query
pattern is to be found in bindings for the right-hand variable. The⇒ operator is
the direct edge traversal operator. E.g., book ⇒ author specifies that author is
a direct child of book in the XML document. Recursive traversals can be specified
using regular path expressions including regular expressions over labels. E.g., _*
traverses over arbitrary many elements with any label, [^book]* over arbitrary
many elements with any label except book.

UnQL also provides traverse clauses for reduction and restructuring queries
like Query 3:

traverse DB given X

case translator ⇒ _ then X := {}

case category ⇒ _ then X := {}

case \L ⇒ _ then X := {l ⇒ X}

This query is evaluated by traversing the tree in the database and matching
recursively each element against the three case expressions. All elements except
translators and categories are copied to the newly constructed tree, structured
as in the input data.
9 The syntax from [64, 65] is used and not the slightly differing syntax in [66].

UnQL is probably the first language to propose a pattern-based querying (al-
beit with subqueries instead of rule chaining) for semistructured data (including
XML).

Evaluation and optimization of UnQL has been investigated in [64, 66].
UnQL’s evaluation is founded in graph simulation, see [66]. [64] shows that all
queries expressible in UnQL can be evaluated in PTIME. This is true even for
queries against cyclic graph data (e.g. XML documents using cyclic ID/IDREF
references). This efficiency is reflected by UnQL’s expressiveness: on trees en-
coding relational or nested relational databases, UnQL is exactly as expressive
as relational or nested relational algebra, resp.

Project page:
http://www.research.att.com/~suciu/unql-home.html10

Implementation:
available from the project page

Online demonstration:
none

XML-QL. XML-QL [98, 99] is a pattern- and rule-based query language for
XML developed specifically to address the W3C’s call for an XML query lan-
guage (that resulted in the development of XQuery). Like UnQL, it uses query
patterns (called element patterns in [98]) in a WHERE clause. Such patterns can
be augmented by variables for selecting data. The result of a query is specified
as a construction patterns in the CONSTRUCT clause. An XML-QL query always
consists of a single WHERE-CONSTRUCT rule, which may be divided into several
(nested) subqueries.

Query 1 can be expressed in XML-QL as follows:

WHERE

<bookdata>

<book>

</> ELEMENT_AS $b

</>

CONSTRUCT

<results>

<result>

$b

WHERE <author>

<name> $n </>

</> ELEMENT_AS $a

CONSTRUCT $a

$n

</>

</>

10 Not accessible at the time of writing.

Variables are preceded in XML-QL by $. Note how the grouping of authors
with their books is expressed using a nested query. Also note the tag minimiza-
tion (end tags abbreviated by </> as in SGML), e.g., in line 4 and 5. In line 4,
the variable $b is restricted to data matching the pattern in lines 3 and 4. Such
“pattern restrictions” are indicated in XML-QL using the ELEMENT AS keyword.

One of the main characteristics of XML-QL is that it uses query patterns
containing multiple variables that may select several data items at a time instead
of path selections that may only select one data item at a time. Furthermore,
variables are similar to the variables of logic programming, i.e. “joins” can be
evaluated over variable name equality. Since XML-QL does not allow one to
use more than one separate rule, it is often necessary to employ subqueries to
perform complex queries.

Query 6 cannot be expressed in XML-QL due to lack of aggregation, in
particular structural aggregation (e.g., counting the number of children of an
element). The following query returns all books classified in a sub-category of
“Novel”:

WHERE

<book type=$Sub>

</> ELEMENT_AS $b,

<category id=’Novel’>

<category* id=$Sub>

</>

</>

CONSTRUCT $b

As discussed, above joins are simply expressed by repeated occurrences of the
same variable (lines 2 and 5). In line 5 a further feature of XML-QL is shown:
instead of element labels one can use regular path expressions in patterns.

Transformation queries such as Query 2, where the output closely resembles
the input except for some rather localized changes (e.g., omission of elements or
changing labels), cannot in general be expressed in XML-QL.

Also XML-QL does not provide any means for testing the non-existence of
elements and therefore cannot express queries such as “Return all books that
have no translator.”.

No results on complexity or expressiveness of XML-QL have been published.

Project page:
http://www.research.att.com/~mff/xmlql/doc/

Implementation:
available from the project page

Online demonstration:
none

XMAS. XMAS [189], the XML Matching And Structuring language is an XML
query language developed as part of MIX [18] and builds upon XML-QL. Like
XML-QL, XMAS uses query patterns and construction patterns, and rules of

the form CONSTRUCT ...WHERE However, XMAS extends XML-QL in that
it provides a powerful grouping construct, instead of relying on subqueries for
grouping data items within an element.

Query 1 can be expressed in XMAS as follows:

WHERE

<bookdata>

$B: <book>

$A: <author>

<name> $N </name>

</>

</>

</>

CONSTRUCT

<results>

<result>

$B

<book-author>

$A

<name> $N </name>

</> {$A,$N}

</> {$B}

</>

Here, one can observe the two main syntactic differences to XML-QL: (1)
In XMAS, grouping is expressed by enclosing the variables on whose bindings
the grouping is performed in curly braces and attaching them to the end of the
subpattern that specifies the structure of the resulting instances. In the above
example, a result element is created for every instance of $B (indicated by {$B}
after the closing tag of the element result). Within every such result element,
all authors of a book (indicated by {$A}) are collected nested in book-author el-
ements (the book-author element is necessary for grouping variables are allowed
only after closing tags or single variables in XMAS).

(2) XMAS also provides a more compact syntax for pattern restrictions that
allow one to restrict the admissible bindings of a variable as seen in line 3 ($B
in front of the subpattern instead of XML-QL’s ELEMENT_AS $B at the end).

Grouping queries can be specified even more concisely by using “implicit
collection labels”: instead of specifying the grouping variables explicitly, all vari-
ables nested inside square brackets are considered grouping variables for that
grouping, unless there is another grouping (i.e., block enclosed by square brack-
ets) closer to the variable occurrence. Using implicit collection labels, Query 1
can be expressed as:

WHERE

<bookdata>

$B: <book>

$A: <author>

<name> $N </name>

Fig. 4 Screenshot of BBQ’s query editor
(Munroe and Papakonstantinou [215], c© Kluwer, B.V.)

</>

</>

</>

CONSTRUCT

<results>

[<result>

$B

[<book-author>

$A

<name> $N </name>

</book-author>]

</>]

</>

No results on complexity or expressiveness of XMAS have been published.
BBQ [215] is a visual interface for XMAS that allows browsing of XML data

as well as authoring of XMAS queries based on a DTD of the data to be queried.
Figure 4 shows the two-pane query editor with a query pattern on the left and
an (empty) construct pattern at the right.

Project page:
http://www.db.ucsd.edu/projects/MIX/

Implementation:
publicly available only as part of the BBQ online demonstration

Online demonstration:
using BBQ http://www.db.ucsd.edu/Projects/MIX/BBQ_User_Interface.
html

XML-RL. XML-RL [187] is a a pattern-based query language based on logic
programming. Patterns are expressed by terms that may contain logic variables
and may be partly abbreviated with a path syntax similar to abbreviated XPath.
An XML-RL query program consists of one or more rules denoted by A ⇐
L1, . . . , Ln where A is used for construction and L1, . . . , Ln are query pattern.
Rules may interact via rule chaining and it is possible to use recursion.

Query 1 can be expressed in XML-RL as follows:

/results/result: (book:$b, {author: $a}, {authorName: $n})

⇐
(file:bib.xml)

/bookdata/book: $b(author: $a(name:$n))

The URL in line 3 defines the input data for the query. Analogously it is also
possible to give an URL in the construct part of the query (line 1). Notice the
curly brackets in line 1. They specify, that authors and author names are to be
grouped by book.

XML-RL does not provide specific support for transformation queries such
as Query 3, but they can be solved using recursive rules.

Query 6 can be expressed in XML-RL.

/results/result: ($i, avg-number-of-authors: $avg)

⇐
(file:bib.xml)

/bookdata/category: (@id: Writing, category//category/@id: $i),

(file:bib.xml)

/bookdata/book: #b (@type: $i, author: #a),

$avg = count(#a) ÷ count(#b) ;

/bookdata/category: (@id: Writing, category/@id: $i),

(file:bib.xml)

/bookdata/book: #b (@type: $i, author: #a),

$avg = count(#a) ÷ count(#b)

This rule has two alternative query expressions (separated as in Prolog by ;)
but only a single head. The first alternative covers the case of indirect sub-
categories of “Writing”, the second the case of direct ones. In both cases, the id
attribute of a category is selected and joined with the type attribute of books.
The books are collected in the list variable #b, all their authors in the list variable
#a. Finally, the average number of authors per publication in that sub-category
is computed by dividing the number of elements in the two lists.

No results on complexity or expressiveness of XML-RL have been published.

Project page:
none

Implementation:
not publicly available

Online demonstration:
none

TQL. TQL [70, 93] is an XML query language based upon ambient logic [71], a
modal logic conceived for describing the structural and computational properties
of distributed and mobile computation. Ambient logic uses, for the structural
descriptions at least, a logic of labeled trees and is thus a reasonable foundation
for an XML query language.

[70] describes a representation of XML documents in ambient logic, called
“information trees”: XML is considered an edge-labeled graph. No distinction
between attributes and elements is considered. Also the order of elements in an
XML document is not preserved.

Based upon this data structure, TQL queries are specified as from ...select
rules. Query and construction are separated (except for grouping queries that
are, as in XML-QL and UnQL, expressed using nested queries), the query is spec-
ified in the from clause, the construction in the select clause. TQL programs
consist of a single such rule. Instead of chaining rules, recursion is provided by
a special recursion operator rec similar to the minimal and maximal fix point
operators in modal logic. The following expression (taken from [70]) can be used
as a condition in from clauses and test, recursively, whether a tree is binary:

rec $Binary. 0 Or (%[$Binary] | %[$Binary])

Variables are indicated in TQL using $. The expression %[$Binary] matches
elements with arbitrary label (indicated by the wild card %) and satisfying the
condition specified in square brackets, viz. to be binary trees.

Query 1 can be expressed in TQL as follows (assuming $Bib is bound to the
sample data from Section 2.2:

from $Bib |= .bookdata[.book [$Book]]

select

results [result [

book [$Book]

| from $Book |= .author [

$Author And .name [$Name]]

select

author-and-name [author [$Author], name [$Name

]]

]

]

As stated above, grouping queries are expressed using nested queries. Notice,
how in line 1 (and in line 6) the $Book ($Author) variables are bound to the
sub-tree reached by a matching book (author) edge.

TQL provides a rich path syntax for abbreviating path-shaped queries. E.g.,
the expression

from $Bib |= .bookdata.%*.category[!.id[Writing] | .category*.label[$Label]

select $Label

returns the value of all labels reachable over arbitrary many category edges
(.category*) from a category that may occur at any depth (.%*) and has no
id with value “Writing”.

In [70], it is claimed that TQL is particularly well suited for testing integrity
constraints or schema validation, as it provides full boolean expressions including
negation, existential, universal quantification, and (structural) recursion with the
rec operator.

Project page:
http://www.di.unipi.it/~ghelli/tql/

Implementation:
available from the project page

Online demonstration:
none

Xcerpt. Xcerpt [28, 60, 61, 247, 248] is a query language designed after prin-
ciples given in [57] for querying both data on the “standard Web” (e.g., XML
and HTML data) and data on the Semantic Web (e.g., RDF, Topic Maps, etc.
data). This Section addresses using Xcerpt on the “standard Web”, Section 4.6,
on the Semantic Web.

Xcerpt is “data versatile”, i.e. the same Xcerpt query can access and generate,
as answers, data in different Web formats. Xcerpt is “strongly answer-closed”,
i.e. it not only allows one to construct answers in the same data formats as the
data queries like, e.g., XQuery [77], but also allows further processing of the data
generated by this same query program. Xcerpt’s queries are pattern-based and
allow to incompletely specify the data to retrieve, by (1) not explicitly specify-
ing all children of an element, (2) specifying descendant elements at indefinite
depths (restrictions in the form of regular path expressions being possible), and
(3) specifying optional query parts. Xcerpt’s evaluation of incomplete queries is
based on a novel unification algorithm called “simulation unification” [62, 63].
Xcerpt’s processing of XML documents is graph-oriented, i.e., Xcerpt is aware of
the reference mechanisms (e.g., ID/IDREF attributes and links) of XML. Xcerpt
is rule-based. An Xcerpt rule expresses how data queried can be re-assembled
into new data items. One might say that an Xcerpt rule corresponds to an SQL
view. Xcerpt allows both traversal of cyclic documents and recursive rules, termi-
nation being ensured by so-called memoing, or tabling, techniques. Xcerpt rules
can be chained forward or backward, backward chaining being the processing of
choice for the Web. Indeed, if rules can, like Xcerpt’s rules, query any Web site,
then a forward processing of rule-based programs could require starting a pro-
gram’s evaluation at all Web sites. Xcerpt is inspired from Logic Programming.
However, since it does not offer backtracking as a programming concept, Xcerpt
can also be seen “set-oriented functional”.

All of the queries from Section 2.3 can be expressed in Xcerpt. In the follow-
ing, solutions for Query 2, 5, 7, and 8 are omitted as they are similar to other
solutions shown.

Query 1 can be expressed in Xcerpt as follows:

GOAL

results [

all result [

var Book,

all var Author,

all var AuthorName

]

]

FROM

bookdata {{

var Book → book {{

var Author → author {{

name [var AuthorName] }}

}}

}}

END

As stated above, Xcerpt rules allow a separation of construction and query-
ing. In the query part (enclosed by FROM and END), a pattern of the requested
data is specified: a bookdata element with a book child (associated with the
variable Book using the “pattern restriction” operator →) that in turn has an
author child (bound to the variable Author) with a name child whose content
is bound to the Variable AuthorName. Notice the use of double curly braces in
line 10, indicating an incomplete, unordered pattern. A matching bookdata el-
ement may have additional children not specified in the query and the order
among the children is irrelevant for the query. Square brackets as in line 13 and
in the construct part (between GOAL and FROM) specify that the order of the
children matters. Single brackets specify that the pattern is complete. Note that
incomplete query patterns might result in several alternative variable bindings.

Similar to XMAS, Xcerpt allows to group answers using the constructs all
and some. Intuitively, all t collects all possible different instances of the subex-
pression t that might result from alternative variable bindings. As shown in
the example above, grouping constructs may also be nested. In the example
above, the construct term creates a result subterm for each alternative bind-
ing of Book, and within each such result subterm, it groups all authors and
authornames associated with that particular book.

In general, an Xcerpt program may contain multiple rules, as shown in the
following solution for Query 3:

GOAL

var Result

FROM

transform [bookdata {{ }}, result [var Result]]

END

CONSTRUCT

transform [var Element, result []]

FROM

desc var Element → /translator|category/

END

CONSTRUCT

transform [var Element, result [var Label [all var Child]]]

FROM

and {

desc var Element → var Label [[var Child]]

where {

and { var Label != "translator", var Label != "category }

},

transform [var Child, result [var ChildTransformed]]

}

END

Xcerpt rules come in two flavors: GOAL ... FROM ... END and CONSTRUCT
... FROM ... END. The first may only occur once in a program, specifies the
ultimate result of the entire program similar to Prolog goals, and does not par-
ticipate in rule chaining. The latter form is used for all other rules.

Here, the two lower rules transform (recursively) an input element as specified
in the query: if it is a translator or a category the result of the transformation
is empty, otherwise the children of the element are recursively transformed and
the result of these transformations is used to reconstruct the structure of the
input data.

Notice the use of the desc operator in lines 10 and 17 indicating a pattern
that is incomplete in depth. Also notice the use of a where clause in line 18 to
restrict matches to elements that are neither translators nor categories. In line
17, a label variable is used: whereas the variable Element is bound to the entire
element matched by the pattern, Label is bound to the label of the element, i.e.,
a string such as “book”.

Query 4 can be expressed in Xcerpt as follows:

GOAL

bookdata [

all person [

name [var Name],

authored [

all book [

all var NonAuthorChildren

] group by { var Book }

]

]

]

FROM

bookdata {{

desc var Book → book [[

author {{ name [var Name] }},

var NonAuthorChildren → !/author/ {{ }}

]]

}}

END

In the query part all books (at any depth) are selected together with the
names of their authors and non-author children (notice the use of a negated
regular expression on the label for the non-author children). For each name of
an author, a person element is constructed (note the position of the all in line
3) containing the name and an authored element. In the author element all
books for that author are nested again using all with a group by clause for
explicitly naming the grouping variable.

Query 6 can be expressed in Xcerpt as follows:

GOAL

results [

all category [

attributes [id [var ID]],

average-number-of-authors [

div(count(all var Author), count(all var Book))

]

]

]

FROM

bookdata {{

desc category {{ attributes {{ id [var ID] }} }},

desc var Book → book {{

attributes {{ type [var ID] }},

desc var Author → author {{ }}

}}

}}

END

The average number of authors is calculated in line 6 using the structural
aggregation function count over all books and authors for a category. In typical
logic-programming style, the join between the id attribute of categories and the
type attribute of books is expressed by repeating the same variable.

Query 9 can be expressed in Xcerpt as follows:

GOAL

results [

all co-authors [

name [var Author],

name [var CoAuthor]

]

]

Fig. 5 Xcerpt and visXcerpt representation of a query

FROM

bookdata {{

desc book {{

author {{ name {{ var Author }} }},

author {{ name {{ var CoAuthor }} }}

}}

END

This query profits from two features of Xcerpt: (1) Xcerpt’s simulation uni-
fication is injective. This ensures that the two children of the book element in
line 10 are different without requiring the query author to explicit state that the
author and the co-author must be different. (2) Xcerpt’s grouping is set based
and uses unification for equality, i.e., two terms with same structure and values
are considered equal even if they represent distinct elements in the input. There-
fore the above program does not generate duplicates (as, e.g, the first XQuery
solution for Query 9 in Section 3.1x).

A visual language, called visXcerpt [29, 30], has been conceived as a visual
rendering of textual Xcerpt programs, making it possible to freely switch during
programming between the visual and textual view, or rendering, of a program
(cf. Figure 5 showing a textual and visual representation of an Xcerpt query).

Static type checking methods have been developed for Xcerpt [55, 283] that
are based on seeing tree grammars in their various disguises, e.g., DTD, XML
Schema, RelaxNG, as definitions of abstract data type.

A declarative semantics for Xcerpt has been proposed in [63, 247]. A formal
procedural semantics for Xcerpt has been proposed in [63] in the form of a a proof
procedure. An implementation of this semantic in Haskell has been realized using
Constraint Programming techniques [247]. The XQuery use case [76] has been
worked out in Xcerpt (cf. [174] (in German) and [45]). Based on Xcerpt and
extending it, a reactive language called XChange [58, 59] for updates and events
on the Web is currently being developed.

Project page:
http://www.xcerpt.org/

Fig. 6 Graph representation of an XML-GL query
(Ceri et al. [75], c© Elsevier, Inc.)

Implementation:
available from the project page

Online demonstration:
http://demo.xcerpt.org and, using visXcerpt, http://visxcerpt.xcerpt.
org/

XML-GL. XML-GL [74, 75, 91] is a visual, rule-based query language for XML.
Queries are specified as rules with a clear separation between query and con-
struction. Queries are specified on the left-hand of a rule, construction on the
right-hand. Figure 6 shows an XML-GL rule. Both sides of a rule are essen-
tially (visual) patterns of the graph structure to be matched or constructed,
but enriched with visual representations of a number of additional operators
and functions (such as arithmetic operators, wildcards, predicates, negation, or-
dering, etc.). Connections between the two sides indicate where matched data
occurs in the result.

Although XML-GL programs contain only a single rule, complex queries may
contain multiple left-hand and right-hand sides for expressing set queries, such
as unions, differences, cartesian product, and even heterogeneous unions. The
original proposal of XML-GL does not allow recursive rules, but in [222] an
extension of XML-GL in this direction is proposed.

Recently, a visual interface for XQuery, called XQBE [10, 47], based on XML-
GL has been developed. Figure 7 shows the XQBE representation of the following
XQuery expression (Query XMP-Q1 in [76]):

<bib>

{

for $b in document("www.bn.com/bib.xml")/bib/book

where $b/publisher="Addison-Wesley" and $b/@year>1991

return <book year="{$b/@year}"> {$b/title} </book>

}

</bib>

Based on this visualization of XQuery expressions, an interactive editor for
XQuery expressions is described in [47] (cf. Figure 8).

Fig. 7 XQBE Query
(Braga et al. [47], c© Elsevier, Inc.)

“Addison-Wesley”

> 1991

year

bib

year

publisher

bookbook

title

bib
www.bn.com

Fig. 8 Screenshot of XQBE’s query editor
(Braga et al. [47], c© Elsevier, Inc.)

Fig. 9 Screenshot of X2’s query editor
(Meuss et al. [209], c© Springer-Verlag)

Project page:
XQBE: http://dbgroup.elet.polimi.it/xquery/XQBE.html

Implementation:
XQBE: available from the project page

Online demonstration:
none

X2’s visual interface. X2 [209] is a system for visual exploration and retrieval
of XML databases. It provides an interactive environment for authoring visual
queries, see Figure 9. The employed query language is rather restricted, but
supports querying the order of elements and can be evaluated very efficiently
(see [207]). Instead of constructing new data based on the results of a query,
the system gathers all matched data in a novel data structure called “Complete
Answer Aggregates” [207, 208] and allows the user to browse this structure,
thereby exploring the data contained in the database. While browsing, the user
can refine and reissue the query.

Project page:
http://www.cis.uni-muenchen.de/people/Meuss/caa.html and http://
www.cis.uni-muenchen.de/~weigel/Projekte/X2.html

Implementation:
not publicly available

Online demonstration:
none

4 RDF Query Languages

RDF Query Languages can be grouped into several families that differ in as-
pects like data model, expressivity, support for schema information, and kind of
queries. As a “family”, we consider languages that build upon each other, are
heavily influenced by each other, or share a large part of their properties. In
the following, we shall consider the six families SPARQL, RQL, XPath-, XSLT-,
and XQuery-based Languages, Metalog, Reactive Languages, and Deductive Lan-
guages. In addition, we briefly introduce a number of additional languages that
don’t fall into one of the above-mentioned families.

4.1 The SPARQL Family

The SPARQL family consists of the four query languages SquishQL, RDQL,
SPARQL, and TriQL. Common to all four languages in this family is that they
“regard RDF as triple data without schema or ontology information unless ex-
plicitly included in the RDF source”.

Basic RDF Access: SquishQL and RDQL. The main objectives of SquishQL
[212, 213] are ease-of-use and similarity to SQL. SquishQL relies on a query
model for RDF influenced by [141]. SquishQL offers so-called “triple patterns”
and conjunctions between triple patterns for specifying parts of RDF graphs to
retrieved. “This results in quite a weak pattern language but it does ensure that
in a result all variables are bound.” [213]. SquishQL queries have the following
form:

SELECT variables (identifies the variables whose bindings are returned)
FROM model URI
WHERE list of triple patterns
AND boolean expression (the filter to be applied to the result)
USING name FOR URI, . . .

In SquishQL, Query 1 can be expressed as follows:

SELECT ?essay, ?author, ?authorName

FROM http://example.org/books

WHERE (?essay, <rdf:type>, <books:Essay>),

(?essay, <books:author>, ?author),

(?author, <books:name>, ?authorName)

USING books FOR http://example.org/books#,

rdf FOR http://www.w3.org/1999/02/22-rdf-syntax-ns#

In SquishQL, Query 2 can (almost) be expressed as follows:

SELECT ?property, ?propertyValue

FROM http://example.org/books

WHERE (?essay, <books:book-title>, "Bellum Civile")

(?essay, ?property, ?propertyValue),

USING books FOR http://example.org/books#

A property value can be a node with other properties, that an answer to
Query 2 should return. Since SquishQL has no means to express recursion, such
indirect properties cannot be returned by the above query if the schema of the
data is unknown or recursive.

Other queries from Section 2.3 cannot be expressed in SquishQL.
In a SquishQL query, the AND clause serves to express constraints on variable

values so as filter the bindings returned. The following query returns the URIs
of persons that have authored a book with title “Bellum Civile”.

SELECT ?person

FROM http://example.org/books

WHERE (?book, <books:author>, ?person)

(?book, <books:title>, ?title)

AND ?title = ’Bellum Civile’

An answer to an SquishQL query is a set of bindings for the variables occur-
ring in the query. SquishQL does not support RDFS concepts.

Project page:
Inkling: http://swordfish.rdfweb.org/rdfquery/

Implementation:
Inkling [212]

RDQL, a “RDF Data Query Language”, is an evolution of the SquishQL
versions SquishQL [213], and Inkling [212] influenced by rdfDB [140]. RDQL has
been recently submitted to the W3C for standardisation [213, 251–253]. RDQL
queries have the same form as SquishQL queries. As with SquishQL, an answer
to an RDQL query is a set of bindings for the variables occurring in the query.
Like SquishQL, RDQL supports only selection and extraction queries.

RDQL is intentionally kept simple, operating only on the data level of RDF,
with the goal to make RDQL amenable to standardisation as a “low-level RDF
language”. RDQL’s authors see inferencing as a possible feature of an “RDF
implementation”, not of the query language RDQL: “if a graph implementation
provides inferencing to appear as ‘virtual triples’ (i.e. triples that appear in the
graph but are not in the ground facts), then an RDQL query will include those
triples as possible matches in triple patterns.” [251]. As a consequence, queries
referring to RDFS relations such as type, set or class are cumbersome and/or
complex.

The RDQLPlus (http://rdqlplus.sourceforge.net/) implementation of
RDQL provides a language extension, called RIDIQL [284]. RIDIQL supports
updates and a transparent use of the inference abilities of the Jena Toolkit [136].

Project pages:
http://www.hpl.hp.com/semweb/rdql.htm
RDFStore: http://rdfstore.sourceforge.net/

Implementations:
Jena Toolkit [136, 251–253], RAP (RDF API for PHP) [221], PHP XML

Classes (http://phpxmlclasses.sourceforge.net/), RDFStore [240],
Rasqal (http://www.redland.opensource.ac.uk/rasqal/),
Sesame (http://www.openrdf.org/index.jsp),
RDQLPlus (http://rdqlplus.sourceforge.net/),
3store (http://sourceforge.net/projects/threestore/) [146].

Online demonstrations:
Sesame: http://www.openrdf.org/demo.jsp
RAP: http://www3.wiwiss.fu-berlin.de/rdfapi-php/test/custom_rdql_
test.php
RDFStore: http://demo.asemantics.com/rdfstore/www2003/

SquishQL and RDQL queries cannot be composed. Negation can be used
in filters, or AND clauses, as in the previous query, but not in WHERE clauses,
i.e. triple patterns can only occur positively. Disjunctions and optional matching
cannot be expressed. Although a variable in SquishQL and RDQL queries can be
bound to blank nodes, there is no way to specify blank nodes in SquishQL’s and
RDQL’s triple patterns. As a consequence, a query returning the blank nodes
of a graph cannot be expressed in SquishQL and RDQL. SquishQL and RDQL
have no form of recursion or iteration: By conjunction of triple patterns, one
can express in SquishQL and RDQL only paths of a given length. Only selection
and extraction queries can be expressed in SquishQL and RDQL, i.e., of the
queries of Section 2.3, only Query 1 and (an approximation of) Query 2. Like
SquishQL, RDQL does not support RDFS concepts, although at least one of its
implementations, that given in the Jena Toolkit [136], supports the transitive
closures of the RDFS relations rdfs:subClassOf and rdfs:subPropertyOf. No
formal semantics has been defined for SquishQL or RDQL. The complexity of
SquishQL and RDQL has not been investigated so far.

SPARQL. SPARQL [239], a “Query Language for RDF” formerly called BrQL
[238], has been developed by members of the W3C “RDF Data Access” Working
Group. SPARQL is an extension of RDQL [251] designed according to require-
ments and use cases [87] and is still under development. SPARQL extends RDQL
with facilities to:

– Extract RDF subgraphs.
– Construct, using CONSTRUCT clauses, one new RDF graph with data from

the RDF graph queried. Like RDQL queries, the new graph can be specified
with triple, or graph, patterns.

– Return, using DESCRIBE clauses, “descriptions” of the resources matching
the query part. The exact meaning of “description” is not yet defined, cf.
[267] for a proposal.

– Specify OPTIONAL triple or graph query patterns, i.e., data that should con-
tribute to an answer if present in the data queried, but whose absence does
not prevent to return an answer.

– Testing the absence, or non-existence, of tuples.

SPARQL queries have the following form:

PREFIX Specification of a name for a URI (like RDQL’s USING)
SELECT Returns all or some of the variables bound in the WHERE clause.
CONSTRUCT Returns a RDF graph with all or some of the variable bindings.
DESCRIBE Returns a “description” of the resources found.
ASK Returns whether a query pattern matches or not
WHERE list, i.e., conjunction of query (triple or graph) patterns
OPTIONAL list, i.e., conjunction of optional (triple or graph) patterns
AND boolean expression (the filter to be applied to the result)

An extension of Query 1 returning the translators of a book, if there are some,
can be expressed in SPARQL as follows:

PREFIX books: http://example.org/books#

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

SELECT ?essay, ?author, ?authorName, ?translator

FROM http://example.org/books

WHERE (?essay books:author ?author),

(?author books:authorName ?authorName)

OPTIONAL (?essay books:translator ?translator)

Using the CONSTRUCT clause, restructuring and non-recursive inference queries
can be expressed in SPARQL. Query 4 can be expressed in SPARQL as follows:

PREFIX books: http://example.org/books#

CONSTRUCT (?y books:authored ?x)

FROM http://example.org/books

WHERE (?x books:author ?y)

and Query 9 by

PREFIX books: http://example.org/books#

CONSTRUCT (?x books:co-author ?y)

FROM http://example.org/books

WHERE (?book books:author ?x)

(?book books:author ?y)

AND (?x neq ?y)

Project page:
http://www.w3.org/2001/sw/DataAccess/

Implementation:
none

Online demonstration:
none

TriQL. TriQL extends RDQL by constructs supporting querying of named
graphs [72], as introduced in TriG [40] by the authors of TriQL. Named graphs
allow one to filter RDF statements after their sources or authors, like in the
following query: “Return the books with rating above a threshold of 5, using only
information asserted by Marcus Tullius Cicero.” This can be expressed in TriQL
as follows:

SELECT ?books

WHERE ?graph (?books books:rating ?rating)

(?graph swp:assertedBy ?warrant)

(?warrant swp:authority <http://people.net/cicero>)

USING books FOR http://example.org/books#,

swp FOR <http://www.w3.org/2004/03/trix/swp-1/>

Project page:
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQL/

Implementation:
none

Online demonstration:
none

4.2 The RQL Family

Under “RQL family”, we group the three languages RQL, SeRQL, and eRQL.
Common to these languages is that they support combining data and schema
querying. Furthermore, the RDF data model they rely on slightly deviates from
the standard data model for RDF and RDFS: (1) cycles in the subsumption hier-
archy are forbidden, and (2) for each property, both a domain and a range must
be defined. These restrictions ensure a clear separation of the three abstraction
layers of RDF and RDFS: (1) data, i.e. description of resources such as persons,
XML documents, etc., (2) schemas, i.e. classifications for such resources, and
(3) meta-schemas specifying meta-classes such as rdfs:Class, the class of all
classes, and rdfs:Property the class of all of properties. They make possible a
flexible type system tailored to the specificities of RDF and RDFS.

RQL. RQL, the “RDF Query Language”, is developed at ICS-FORTH [84, 158–
161], and the base for the two other members of the RQL family, SeRQL and
eRQL.

Basic schema queries. A salient feature of RQL is the use of the types from
RDFS schemas. The query subClassOf(books:Writing) returns the sub-classes
of the class books:Writing11. A similar query, using subPropertyOf instead of
subClassOf, returns the the sub-properties of a property . The following query
returns the domain ($C1) and range ($C2) of the property author defined at the
URI named book (The prefix $ indicates “class variable”, i.e., a variable ranging
on schema classes). It can be expressed in RQL in three different manners:

1. using class variables:
SELECT $C1, $C2 FROM {$C1}books:author{$C2}

USING NAMESPACE books = &http://example.org/books#

2. using a type constraint :
11 Assuming: USING NAMESPACE books = &http://example.org/books-rdfs#

SELECT C1, C2 FROM Class{C1}, Class{C2}, {;C1}books:author{;C2}

USING NAMESPACE books = &http://example.org/books#

3. without class variables or type constraints:
SELECT C1, C2 FROM subClassOf(domain(book:author)){C1},

subClassOf(range(books:author)){C2}

USING NAMESPACE books = &http://example.org/books#

The query topclass(books:Historical Essay) returns the top of the sub-
sumption hierarchy, i.e., books:Writing, cf. Figure 2. A similar query returns
leaves of the subsumption hierarchy. The query nca(books:Historical Essay,
books:Historical Novel) returns the nearest common ancestor of the classes
of ‘historical essays’ and ‘historical novels’, i.e., the class books:Essay of ‘essays’.
RQL has “property variables” prefixed by @ using which RDF properties can be
queried (like classes using class variables). The following query, with property
variables prefixed by @, similar to the formerly introduced class variables, re-
turns the properties, together with their actual ranges, that can be assigned to
resources classified as books:Writing:

SELECT @P, $V FROM {;books:Writing}@P{$V}

USING NAMESPACE books = &http://example.org/books#

Combining these facilities, Query 8 is expressible in RQL as follows:
SELECT X, Y FROM Class{X}, subClassOf(X){Y}.

Data queries. With RQL, data can be retrieved by its types, by navigating
to the appropriate position in the RDF graph. Restrictions can be expressed
using filters. Classes, as well as properties, can be queried for their (direct
and indirect12) extent. The query books:Writing returns the resources clas-
sified books:Writing or one of its sub-classes. This query can also be expressed
as follows: SELECT X FROM books:Writing{X}. Prefixing the variable X in the
previous queries, yields queries returning only resources directly classified as
books:Writing, i.e., for which a statement (X, rdf:type, books:Writing) ex-
ists. The extent of a property can be similarly retrieved. The query ^books:author
returns the pairs of resources X, Y that stand in the books:author relation, i.e.,
for which a statement (X, books:author, Y) exists. RQL offers extended dot no-
tation as used in OQL [73], for navigation in data and schema graphs. This is
convenient for expressing Query 1:

SELECT X, Y, Z FROM {X;books:Essay}books:author{Y}.books:authorName{Z}

USING NAMESPACE books = &http://example.org/books#

The data selected by an RDF query can be restricted with a WHERE clause:

SELECT X, Y FROM {X;books:Essay}books:author.books:authorName{Y},

? {X}books:title{T}

WHERE T = "Bellum Civile"

USING NAMESPACE books = &http://example.org/books#

12 i.e. deduceable by inference.

Mixed schema and data queries. With RQL, access to data and schema can be
combined in all manners, e.g., the expression X;books:Essay restricts bindings
for variable X to resources with type books:Essay. Types are often useful for
filtering, but type information can also be interesting on their own, e.g., to return
a “description” of a resource understood as its schema:

SELECT $C, (SELECT @P, Y FROM {Z ; ^$D} ^@P {Y}

WHERE Z = X and $D = $C)

FROM ^$C {X}, {X}books:title{T} WHERE T = "Bellum Civile"

USING NAMESPACE books = &http://example.org/books#

This query returns the classes under which the resource with title “Bellum
Civile” is directly classified; ^$C{X} selects the values in the direct extent of any
class.

Further features of RQL are not discussed here, e.g., support for containers,
aggregation, and schema discovery. Although RQL has no concept of “view”,
extension RVL [191] of RQL gives a facility for specifying views. In RVL the
inverse relation of books:author can be defined as a view as follows:

CREATE NAMESPACE mybooks = &http://example.org/books-rdfs-extension#

VIEW authored(Y, X) FROM {X}books:author{Y}

USING NAMESPACE books = &http://example.org/books#

RQL has been criticised for its large number of features and choice of syntac-
tic constructs (like the prefixes ^ for calls and @ for property variables), which
resulted in the simplifications SeRQL and eRQL of RDF. RQL is far more ex-
pressive than most other RDF query languages, especially those of the SquishQL
family. Most queries of Section 2.3, except those queries referring to the tran-
sitive closures of arbitrary relations, can be expressed in RQL: RDF supports
only the transitive closures of rdfs:subClassOf and rdfs:subPropertyOf.

Query 1 is already given in RQL above. Query 2 cannot be expressed in RQL
exactly, since RQL has no means to select “everything related to some resource”.
However, a modified version of this query, where a resource is described by
its schema, is also given above. Reduction queries, e.g. Query 3, can often be
concisely expressed in RQL, in particular if types are available:

SELECT S, @P, O

FROM (Resources minus (SELECT T FROM {B}books:translator{T})){S},

(Resources minus (SELECT T FROM {B}books:translator{T})){O},

{S}@P{O}

USING NAMESPACE books = &http://example.org/books#

An implementation of the restructuring Query 4 is given above in the exten-
sion RVL of RQL. RQL is convenient for expressing aggregation queries, e.g.,
Query 5:

max(SELECT Y

FROM {B;books:Writing}books:author.books:authorName{A},

{B}books:pubYear{Y}

WHERE A = "Julius Caesar")

Inference queries that do not need recursion, e.g., Query 9, can be expressed
in RQL as follows:

SELECT A1, A2 FROM {Z}books:author{A1}, {Z}books:author{A2}

WHERE A1 != A2

USING NAMESPACE books = &http://example.org/books#

In RVL, an expression of Query 9 can actually create new statements as
follows:

CREATE NAMESPACE mybooks = &http://example.org/books-rdfs-extension#

VIEW mybooks:co-author(A1, A2)

FROM {Z}books:author{A1}, {Z}books:author{A2} WHERE A1 != A2

USING NAMESPACE books = &http://example.org/books#

Both typing rules and a formal semantics for RQL have been specified [161].
No formal complexity study of RDF has been published yet. An implementation
of RDF is given with the so-called “ICS-FORTH RDFSuite”. RQL has influenced
several later proposals for RDF query languages, e.g., BrQL and SPARQL, cf.
Section 4.1.

Project page:
http://139.91.183.30:9090/RDF/RQL/

Implementation:
RDFSuite (http://139.91.183.30:9090/RDF/index.html)

Online demonstration:
http://139.91.183.30:8999/RQLdemo/

SeRQL. SeRQL [52, 67] is derived from RQL and differs from the latter as
follows:

– SeRQL does not support RDF and RDFS types, except literal types.
– SeRQL modifies and extends RQL’s path expressions. SeRQL compound

path expressions instead use an “empty node”, {}, for path concatena-
tion. SeRQL provides a shorthand notation for retrieving several values
of a property in a single path expression, simplifying, e.g., Query 9: In
SeRQL, one can write FROM {Book} <books:author> {X, Y} instead of
FROM {Book} <books:author> {X}, {Book} <books:author> {Y}.
Furthermore, SeRQL supports optional path expressions (using square brack-
ets), e.g.: SELECT * FROM {Book} <books:title> {Title};

[<books:translator> {Translator} [<books:age> {Age}]].
– SeRQL provides a shorthand notation for expressing several properties of a

resource in a FROM clause. The following SeRQL query returns the authors
of books entitled “Bellum Civile” having a translator named “J.M. Carter”
(note the ‘;” separating the different properties):
SELECT Author FROM {Book} <books:title> {"Bellum Gallicum"};

<books:translator>{}<books:translatorName>{"J.M. Carter"};

<books:author> {Author}

USING NAMESPACE books = <!http://example.org/books#>

– SeRQL eases querying a reified statement by enclosing the non-reified version
of the statement in curly brackets.

SeRQL cannot express all queries of Section 2.3. Selection and extraction queries
can be expressed in SeRQL (with the same limitation as with RQL, cf. above).
In contrast to RQL, SeRQL has neither set operations, nor existential or uni-
versal quantification. As a consequence, Query 3 cannot be expressed in SeRQL.
Thanks to the CONSTRUCT clause, SeRQL, like RQL, can express restructuring
and simple inference queries, e.g., Query 4 can be expressed as:

CONSTRUCT {Author} <mybooks:authored> {Book}

FROM {Book} <books:author> {Author}

USING NAMESPACE books = <!http://example.org/books#>

mybooks = <!http://example.org/books-rdfs-extension#>

Aggregation queries cannot be expressed in SeQL (according to [67], adding
aggregation to to SeRQL is planned). The transitive closure of rdfs:subClassOf
is provided in SeRQL’s implementation by means of the RDFS-aware storage of
Sesame. However, neither the transitive closures of arbitrary relations nor general
recursion can be expressed in SerQL.

Project page:
Sesame http://www.openrdf.org/

Implementation:
Implementation in Prolog13: http://gollem.swi.psy.uva.nl/twiki/pl/
bin/view/Library/SeRQL

Online demonstrations:
http://www.openrdf.org/demo.jsp

eRQL. eRQL [271] proposes a radical simplification of RQL based mostly on
a keyword-based interface. It is the expressed goal of the authors of eRQL to
provide with a “Google-like query language but also with the capacity to profit
of the additional information given by the RDF data”.14 eRQL has only three
query constructs:
One-word queries. Single words are valid eRQL queries, e.g., the query CAESAR
returns all statements in which the string “CAESAR” occurs in any manner.
Surprisingly, “phrase queries” like “Bellum civile” do not seem to be expressible
in eRQL.
Neighbourhood queries. Neighbourhood queries are expressed by varying numbers
of curly braces indicating the level of neighbourhood. They return not only the
statements containing a word, as one-word queries, but also the statements re-
lated to (“in the neighbourhood of”) a statement. For instance, the {{CAESAR}}
returns the following statements (cf. Figure 2):

13 Using the Semantic Web library of SWI Prolog http://www.swi-prolog.org/.
14 http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/

_:1 books:author _:2. _:1 books:title "Bellum Civile".

_:1 books:authorName "Julius Caesar". _:1 books:translator _:4.

_:1 books:author _:3.

{{{CAESAR}}} extends the “neighbourhood” one step further, etc.
Conjunctive and disjunctive queries. Both, neighbourhood and one-word queries
can be combined using the boolean operators AND and OR. No negation is pro-
vided, however.

Many queries of Section 2.3 cannot be expressed in eRQL. The extraction
query Query 2 can be approximated in eRQL as: {{"Bellum" AND "Civile"}}.
eRQL does not allow the selection of a neighbourhood of unknown size around
a resource, e.g., for obtaining a “concise-bounded descriptions” [267]. Indeed, in
contrast to the claims of eRQL’s authors, this requires knowledge of the schema
of the data queried. Nevertheless, the need for a language like eRQL is evident
for exploiting RDF data with search engines.

Project page:
http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/eRQL/

Implementation(s):
eRQLEngine cf. project page

Online demonstration:
none

4.3 Query Languages inspired from XPath, XSLT or XQuery

This section is devoted to languages inspired from, or extending XML query
languages. Some of them (viz. [245, 266, 277]) can be implemented with a few
additional functions and/or by normalising the data before querying.

XQuery for RDF: The “Syntactic Web Approach”. [242, 245] propose
to rely on the XML Query Language XQuery (cf. Section 3.1) for querying
RDF data. The approach, called “Syntactic Web”, consists of (1) a preliminary
“normalisation” of the RDF data being queried essentially by (a) serialising RDF
data in XML as collections of statements, and (b) grouping the statements by
their subjects, and (2) defining in XQuery, functions conveying the semantics
of RDFS, e.g., a function rdf:instance-of-class returning the (sequence of
the) resources (represented by their description element) that are (direct or
indirect) instances of a class:

define function rdf:instance-of-class($t as element(description)*,

$base-name as xs:string)

as element(description)*

{

$t[rdf:type = $base-name]

,

for $i in $t[rdfs:subClassOf = $base-name]

return rdf:instance-of-class($t, string($i/@rdf:about))

}

Using the function defined above, and assuming a convenient normalisation
of the RDF data queried, Query 1 can be expressed as follows:

let $t := document("http://example.org/books")//description

for $essay in rdf:instance-of-class($t, "books:Essay"),

$author in $t[rdf:about = $essay/books:author]

return <result> {$essay, $author} </result>

The “Syntactic Web” approach also proposes a normalisation of Topic Maps
and specific XQuery functions for querying Topic Maps data. This approach has
several advantages. It makes it possible to return answers in any possible XML
format and to query both, standard Web and Semantic Web data with the same
query language, providing the uniformity advocated in [231]. [257] suggests a
similar approach.

Project page:
none

Implementation(s):
not publicly available

Online demonstration:
none

XSLT for RDF: TreeHugger and RDF Twig. Similar in spirit to the Syn-
tactic Web Approach [242, 245], TreeHugger [266] proposes to rely on XSLT
for querying and transforming RDF data. Due to limitations of XSTL 1.0, the
normalisation of RDF data is not performed by an XSLT program, but by “ex-
tension functions”. The normalisation of RDF is based on the “striped syntax”
[50], with properties represented both as elements and attributes (causing prob-
lems with multi-valued properties). Three extension functions are provided: (1)
for loading an RDF document, (2) for loading an RDF document and handling
the vocabulary of RDFS, and (3) for loading an RDF document and handling
the vocabulary of both RDFS and OWL. XPath, upon which XSLT relies, is
extended with a prefix inv for querying the inverse of an RDF property.

Query 1 can be expressed as follows in TreeHugger:

<results xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:books="http://example.org/books#"

xmlns:th="http://rootdev.net/net.rootdev.treehugger.TreeHugger"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xsl:version="1.0">

<!-- Load RDF document -->

<xsl:variable name="doc"

select="th:documentRDFS(’http://example.org/books’)" />

<xsl:for-each select="$doc/books:Essay">

<xsl:for-each select="books:author/*">

<result>

<xsl:value-of select="inv:books:author" />

<xsl:value-of select="." />

<authorName>

<xsl:value-of select="books:authorName/*" />

</authorName>

</result>

</xsl:for-each>

</xsl:for-each>

</results>

Project page:
http://rdfweb.org/people/damian/treehugger/

Implementation(s):
Cf. project page

Online demonstration:
http://swordfish.rdfweb.org/discovery/2003/09/treehugger/

RDF Twig [277] is another extension of XSLT 1.0, with functions for query-
ing RDF. It is based on “redundant” or “non-redundant” depth or breadth first
traversals of the RDF graph, , i.e., traversals that repeat or do not repeat el-
ements in the XML-based representation of RDF that are reachable from by
various paths. Two query mechanisms are provided: A small set of logical oper-
ations on the RDF graph, and an interface to RDQL cf. Section 4.1.

Query 1 can be expressed as follows in RDF Twig:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"

xmlns:rt="http://nwalsh.com/xslt/ext/com.nwalsh.xslt.saxon.RDFTwig"

xmlns:twig="http://nwalsh.com/xmlns/rdftwig#"

xmlns:books="http://example.org/books#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<xsl:template match="/">

<xsl:variable name="model"

select="rt:load(’http://example.org/books’)"/>

<!-- this is used as default model from now on-->

<xsl:variable name="pType"

select="rt:property(’http://www.w3.org/1999/02/22-rdf-syntax-ns#’,

’type’)"/>

<xsl:variable name="essays"

select="rt:find($label, ’books:Essay’)"/>

<xsl:variable name="tree"

select="rt:twig($essays)/twig:result"/>

<results>

<xsl:for-each select="rt:find($label, ’books:Essay’)">

<result>

<xsl:value-of select="rt:twig(.)" />

<xsl:value-of select="rt:twig(.)/twig:result/books:author" />

</result>

</xsl:for-each>

</results>

</xsl:template>

Project page:
http://rdftwig.sourceforge.net/

Implementation:
Cf. project page

Online demonstration:
none

Versa. Developed as part of the Python-based 4Suite XML and RDF toolkit15,
Versa [219, 220, 223] is a query language for RDF inspired from, but significantly
different to, XPath. Versa can be used in lieu of XPath in the XSLT version of
4Suite. Like the Syntactic Web Approach, TreeHugger, and RDF Twig, Versa
is aligned with XML. Like XPath, Versa can be extended by externally defined
functions. Versa’s authors claim that Versa is easier to learn than RDF query
languages inspired from SQL.

Versa has constructs for a forward traversal of one or more RDF proper-
ties, e.g., all() - books:author -> * selects those resources that are author
of other resources. Instead of the wildcard *, string-based restrictions can be
expressed. Using Versa’s forward traversal operators, Query 1 can be expressed
as follows:

distribute(type(books:Essay), ".",

"distribute(.-books:author->*, ".", ".-books:authorName->*)")

The function distribute() returns a list of lists containing the result of the
second, third, . . . argument valuated starting from each of the resources selected
by the first argument. As in XPath, . denotes the current node.

Versa has a Forward filter for selecting the subject of a statement, e.g.,
type(books:Essay) |- books:title -> eq("Bellum Civile") returns the es-
says entitled “Bellum Civile”. Versa has also constructs for a backward traversal
(but no backward filter), e.g., the essays entitled “Bellum Civile” can also be re-
turned by (books:Essay <- rdf:type - *) |- books:title -> eq("Bellum
Gallicum"). Versa’s function traverse serves to traverse paths of arbitrary
length, e.g., the following query returns all sub-classes of books:Writing:

traverse(books:Writing, rdf:subClassOf, vtrav:inverse, vtrav:transitive)

Similarly, Versa’s function filter provides a general filter, e.g., all essays en-
titled “Bellum Gallicum” having a translator named “J. M. Carter” are returned
by the following query:

filter(books:Essay <- rdf:type - *,

". - books:title -> eq(’Bellum Gallicum’)",

". - books:translator -> books:translatorName -> eq(’J. M. Carter’)"

15 http://4suite.org/

Selection and extraction queries can be easily implemented in Versa, although
the selection of related items is not very convenient, as the above implementation
of Query 1 demonstrates. In contrast to most RDF query languages, Versa allows
the extraction of RDF subgraphs of arbitrary sizes, as required by Query 2.
Reduction queries can be expressed in Versa, e.g., using negation or set difference.
Query 3 can be implemented in Versa as follows:

difference(all(),

union(type(rdfs:Class),

union(type(rdfs:Property,

all() <- books:translator - *))

)

)

Restructuring, combination, and inference queries cannot be expressed in
Versa, as the result of a Versa query is always a list (possibly a list of lists).
However, Query 4 and 9 can be approximated in Versa as follows:

distribute(all(), ". - books:author -> *", ". - books:author -> *")

Answers to this query include ”Julius Caesar” (as if he would be a co-author
of himself !). This does not seem to be avoidable with Versa. Versa also provides
several aggregation functions. Query 5 can be expressed as follows in Versa:

max(filter(all(),

". - books:author -> books:authorName -> eq(’Julius Caesar’)"

)

- books:year -> *)

Query 6 can be implemented in Versa using the function length as follows:

distribute(traverse(books:Writing, rdf:subClassOf,

vtrav:inverse,vtrav:transitive),

".",

"max(length((. <- rdf:type *) - books:author -> *))"

)

Neither a formal semantics, nor the language complexity have been investi-
gated so far.

Project page:
http://uche.ogbuji.net/tech/rdf/versa/

Implementation(s):
available as part of 4Suite from http://4suite.org/

Online demonstration:
none

Path-Based Access to RDF: RDF Path, RPath, RxPath, RxSLT, and
RxUpdate. [229] sketches a language called RDF Path. RDF Path’s syntax is
similar to that of XPath. Node-tests for RDF data are added, e.g., arc() and
subj(), and constructs of XPath not relevant for RDF are dropped. Functions
and value tests are not considered in depth in this early draft. The fact that,
in contrast to XML trees, RDF graphs do not have roots is not considered. As
a consequence, finding a starting point for an RDF Path expression is an open
issue.

Query 1 is not expressible, since related information cannot be selected. A
variation of Query 2, “Return the names of all authors of historical essays entitled
‘Bellum Civile’.” can be expressed as follows:

*[rdf:type/books:Historical_Essay books:title/"Bellum Civile"]/

books:author/*/books:authorName

Project page:
http://infomesh.net/2003/rdfpath/

Implementation(s):
none

Online demonstration:
none

RPath [201] is another adaption of XPath to RDF, though focused on two
RDF applications, CC/PP, a formalism for expressing device profiles, and UAProf,
a formalism for expressing characteristics of (mobile) computers such as screen
resolution and colour depth. RPath has location steps, vertex-edge-tests corre-
sponding to node-tests in XPath, and predicates. RPath differences from XPath
reflect the differences between the data models of XML and RDF, e.g., RPath’s
axes can follow a path along vertices (RDF predicates) and edges (RDF subjects
and objects). As with RDF Path, the fact that RDF graphs are not rooted is not
considered. Thus, it is not clear where an RPath expression should start from.
This might not be too serious a problem, for the CC/PP and UAProf yield RDF
graphs that are rooted two-level trees.

The variation of Query 2 considered above, “Return the names of all authors
of historical essays entitled ‘Bellum Civile’.” can be expressed as follows:

/@vertex()[

rdf:type/@books:Historical_Essay and

books:title/@vertex()[equals(‘Bellum Civile’)]

]/books:author/books:authorName

In contrast to most RDF query languages inspired from XPath, RPath does
not require specifying paths where expressions match vertices, i.e., RDF classes,
and edges (properties), alternate (like in striped RDF [50]). Thus, the previous
query can also be expressed as follows:

outerVertex::vertex()[

outEdge::rdf:type/outVertex::books:Historical_Essay and

outEdge::books:title/outVertex::vertex()[equals(‘Bellum Civile’)]

]/outEdge::books:author/outEdge::books:authorName

Project page:
none

Implementation(s):
prototype in Java, based on a CC/PP engine from Sun

Online demonstration:
none

RxPath is another adaption of XPath to RDF, defined within the project
Rx4RDF16, aiming at improving the accessibility of RDF for non-experts. In
contrast to RDF Path and RPath, and similarly to TreeHugger and RDF Twig,
RxPath is essentially “a mapping between the RDF Abstract Syntax to the XPath
Data Model” [263]. This mapping is performed in four steps:

1. A top-level XML element is created for every RDF resource where the tag
is the type of the resource,

2. “Each root element has a child element for each statement the resource is
the subject of. The name of each child is [the] name of the property in the
statement” [262],

3. “Each of these children have [a] child text node if the object of the statement
is a literal or a child element if the object is a resource.” [262], and

4. “Object elements have the same name and children as the equivalent root
element for the resource, thus defining a potentially infinitely recursive tree.”
[262].

Since this mapping might lead to infinite trees, RxPath relies on a circularity-test
for the evaluation of such axes ensuring that elements previously encountered
are skipped (as a consequence, blank nodes have to be assigned a unique URI.)
Furthermore, RxPath changes the semantics of the closure axes to only con-
sider elements representing RDF properties in the original RDF model (this is
easy as the mapping from RDF into an XML document discussed above uses
a striped representation of RDF statements [50]). Finally, an expression such
as descendant::rdf:type only matches an element representing an rdf:type
property if all elements on the path to that property that represent any RDF
property actually represent an rdf:type property. Thus, descendant::rdf:type
is actually closer to the regular tree expression (rdf:type._)* than to the XPath
expression descendant::rdf:type.

The variation of Query 2 considered above, “Return the names of all authors
of historical essays with the title ‘Bellum Civile’.” can be expressed as follows
(assuming the prefix books denotes http://example.org/books-rdfs#):

/books:Historical_Essay[books:title = ‘Bellum Civile’]/

books:author/*/books:authorName

16 Phttp://rx4rdf.liminalzone.org/rx4rdf

Based on RxPath, two languages have been defined, RxSLT [264] and Rx-
Update [265]. RxSLT is “syntactically identical to XSLT 1.0” [264], but uses
RxPath instead of XPath 1.0. RxUpdate is syntactically very similar to XUp-
date [185], but again uses RxPath instead of XPath to update RDF models.
Note that RxSLT, like XSLT, is only capable of producing XML. Thus, new
RDF data can only be created by using the XML serialisation of RDF.

Project page:
http://rx4rdf.liminalzone.org/rx4rdf

Implementation(s):
Cf. project page (prototype in Python)

Online demonstration:
none

RDFT and the Query Language of Nexus: XSLT-Style RDF Query
Languages. RDFT [95] is a draft proposal closely related to XSLT 1.0. Like
XSLT 1.0., RDFT uses templates that are matched recursively against the data
structure. Since the structural recursion is performed against an RDF graph
which can be cyclic, termination must be ensured. This issue has not yet been
addressed. RDFT uses an adaption of XPath, called NodePath, for querying
RDF graphs expressed in XML as “striped” [50]. Querying RDFS or OWL data
has not yet been addressed.

RDFT only supports a subset of XSLT. A macro mechanism is introduced,
as illustrated in lines 3–7 and 10 of the following implementation of Query 1 (for
simplicity, only books and their authors are returned without considering the
author’s names):

<rt:stylesheet rt:version="1.0"

xmlns:rt="http://purl.org/vocab/2003/rdft/">

<rt:macro-set rt:prefix="rdf">

<rt:macro name="type"

value="resource(

’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’)/resource()"/>

</rt:macro-set>

<rt:root-template>

<rt:apply-templates

rt:select="/resource()[rdf:type =

resource("http://example.org/books#Essay")/>

</rt:root-template>

<!-- Template for the Essay

<rt:template pattern="resource()[rdf:type =

resource(’http://example.org/books#Essay’)" />

<xsl:value-of select="." />

<rt:apply-templates

rt:select="resource(’http://example.org/books#author’)/resource()/>

</rt:template>

<!-- Template for the author -->

<rt:template

pattern="resource(’http://example.org/books#author’)/resource()">

<xsl:value-of select="." />

</rt:template>

</rdft:stylesheet>

The [95] specification is not clear about the result of such a query: An XML
tree or some form of an RDF graph? The description of rt:element seems to
indicate the former, the description of rt:value-of the latter.

Project page:
http://www.semanticplanet.com/2003/08/rdft/spec

Implementation(s):
none

Online demonstration:
none

[1] sketches another approach to querying RDF, and some form of XML,
using an XSLT-like language. The basic idea is to translate RDF (expressed in
XML) and also some non-RDF XML documents into a hierarchy of (attribute
carrying) elements, based on the relations between the elements. The result of
a query is some (hierarchical) view over this element tree. [1] does not address
cyclic relations among elements but the language used seems to indicate that
only proper hierarchies can be queried. RDF statements are mapped to nodes
of an XML document as follows: Nodes represent RDF properties, an RDF
statement (S, P, O) is represented by edges from all nodes representing some
property with the value S to a node representing the property P with value
O. A resource that never occurs as an object is assigned as value to a special
property called query:seed. [1] seems to indicate that there can be only one such
query:seed node, an assumption that does not hold for general RDF graphs.
The query language provides a means for matching such property nodes based
on the identifier (represented as URI or XML QName) of the property and the
type (as determined by an rdf:type statement) of the value of the property.

Query 1 can be expressed as follows:

<query:plan>

<query:template match="query:seed" type="books:Essay">

<query:call name="query:insert" rename="book">

<query:call name="query:format" rename="title"

value="book:title" />

<query:call name="query:traverse" />

</query:call>

</query:template>

<query:template match="book:author">

<query:call name="query:insert" rename="author">

<query:call name="query:format" rename="name"

value="book:authorName" />

</query:call>

</query:template>

</query:plan>

An excerpt of the result of this query on the sample data from Figure 2 would
be:

...

<book title="Bellum Civile">

<author name="Julius Caesar" />

<author name="Aulus Hirtius" />

</book>

...

Project page:
none

Implementation(s):
not publicly available, no report on any implementation

Online demonstration:
none

XsRQL: An XQuery-Style RDF Query Language. XsRQL [162], an XQuery-style
RDF Query Language, is inspired from XQuery 1.0 [41], aiming at simplicity
and flexibility. XsRQL departs from XQuery as follows: (1) The data model is
adapted from RDF ([162] is rather vague on this point), (2) the path language
considered is adapted to RDF and has only the axis child, (3) RDF properties
are distinguished (from subjects and objects) by using @.17

Query 1 can be approximated in XsRQL as follows:

declare prefix books: = <http://example.org/books#>;

declare prefix rdf: = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>;

for $essay in

datasource(<http://example.org/books>)//*[@rdf:type/books:Essay],

$author in $essay/@books:author/*

return

$essay, $author, $author/@books:authorName/*

XsRQL neither supports closure, nor a descendant-like axis, nor some other
means of traversing an arbitrary-length path in the data structure. Therefore, it
is not possible to also return resources classified by any sub-class of books:Essay.

Project page:
http://www.fatdog.com/xsrql.html

Implementation(s):
none

Online demonstration:
none

17 In XPath, @ indicate (flat) XML attributes. Since RDF properties are structured, in
XsRQL a path expression may follow a @ step.

4.4 Metalog: Querying in Controlled English

Metalog [195–197] is a system for querying and reasoning with Semantic Web
data. Its early proposal has led to the claim that “Metalog has been the first
semantic web system to be designed, introducing reasoning within the Semantic
Web infrastructure by adding the query/logical layer on top of RDF” cf. http:
//www.w3.org/RDF/Metalog/. Metalog notably differs from other RDF query
languages for two reasons: (1) Metalog combines querying with reasoning, and
(2) the language syntax is a controlled natural language (English), i.e., a non-
ambiguous language reminding of natural language.

Query 1 can be expressed in Metalog as follows:

comment: some definitions of variables (or representations)

ESSAY represents the term "Essay"

from the ontology "http://example.org/books#".

AUTHORED-BY represents the verb "author"

from the ontology "http://example.org/books#".

IS represents the verb "rdf:type"

from RDF "http://www.w3.org/1999/02/22-rdf-syntax-ns#".

BELLUM_CIVILE represents the book "Bellum_Civile"

from the collection of books "http://example.org/books#".

comment: RDF triples written as Metalog statements.

BELLUM_CIVILE IS an ESSAY.

BELLUM_CIVILE is AUTHORED-BY "Julius Caesar".

BELLUM_CIVILE is AUTHORED-BY "Aulus Hirtius".

comment: a Metalog query

do you know SOMETHING that IS an ESSAY and that is AUTHORED-BY SOMEONE?

Project page:
http://www.w3.org/RDF/Metalog/

Implementation(s):
Cf. project page

Online demonstration:
none

4.5 Query Languages with Reactive Rules.

Algae. Algae18 is an RDF query language developed as part of the W3C An-
notea project (http://www.w3.org/2001/Annotea/) aiming at enhancing Web
pages with semantic annotations, expressed in RDF and collected from ‘anno-
tation servers’, as Web pages are browsed. Algae is based on two concepts: (1)
“Actions” are the directives ask, assert, and fwrule that determine whether an
expression is used to query the RDF data, insert data into the graph, or to spec-
ify ECA-like rules. (2) Answers to Algae queries are bindings for query variables

18 Also called “Algae2”. This survey follows [237] and retains the name “Algae”.

?title ?translator Proof

“Bellum Civile” “J. M. Carter” _:1 rdf:type <http://exam...ks-rdfs#Essay>.

_:1 books:author _:2.

_:2 books:authorName ‘‘Julius Caesar’’.

_:1 books:title ‘‘Bellum Civile’’.

_:1 books:translator ‘‘J. M. Carter’’.

Table 1. Answer to Query 1

as well as triples from the RDF graph as “proofs” of the answer. Algae queries
can be composed. Syntactically, Algae is based on the RDF syntax N-triples
[133]. Algae extends the N-triple syntax with the above mentioned “actions”
and with so-called “constraints”, written between curly brackets, that specify
further arithmetic or string comparisons to be fulfilled by the data retrieved.

Query 1 can be expressed as follows:

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

ns books = <http://example.org/books#>

read <http://example.org/books> ()

ask (?essay rdf:type <http://example.org/books#Essay> .

?essay books:author ?author .

?author books:authorName ?authorName)

collect(?essay, ?author, ?authorName)

This query becomes more interesting if we are not only interested in the titles
of essays written by “Julius Caesar” but also want the translators of such books
returned, if there are any:

ns rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

ns books = <http://example.org/books#>

read <http://example.org/books> ()

ask (?essay rdf:type <http://example.org/books#Essay> .

?essay books:author ?author .

?author books:authorName ‘‘Julius Caesar’’ .

?essay books:title ?title .

~?essay books:translator ?translator .

)

collect(?title, ?translatorName)

Note ~ used to declare ‘translator’ an optional. This query returns the answer
given in Table 1.

Query 2 and Query 4 cannot be expressed in Algae due to the lack of closure,
recursion, and negation. Queries 5 and 6 cannot be expressed in Algae due to
the lack of aggregation operators. All other queries can be expressed in Algae,
most of them requiring ‘extended action directives’ [236].

No formal semantics has been published for Algae.

Project page:
http://www.w3.org/2004/05/06-Algae/ and for the Annotea project http:
//www.w3.org/2001/Annotea/

Implementation(s):
W3C Annotation Server http://annotest.w3.org/annotations

Online demonstration:
Query interface to the W3C Annotation Server using Algae as query lan-
guage: http://annotest.w3.org/annotations?explain=false

iTQL. iTQL, a query and update language, has been defined for Kowari Meta-
store, an open source database for the storage of RDF data. iTQL offers com-
mands for querying, select, updating, delete and insert, and transaction
management, commit and rollback. The syntax of iTQL is reminiscent of SQL,
and therefore also of RDQL. The querying capabilities of iTQL are limited
like those of RDQL: iTQL supports only simple selections. iTQL allows nested
queries.

Query 1 can be expressed as follows in iTQL:

alias <http://example.org/books#> as books;

alias <http://www.w3.org/2000/01/rdf-schema#> as rdfs;

alias <http://www.w3.org/1999/02/22-rdf-syntax-ns#> as rdf;

select $essay, $author, $authorName

where $essay <books:author> $author

and $author <books:authorName> $authorName

and $essay <rdf:type> $type

and (trans($type <rdfs:subClassOf> <books:Essay>)

or $type <tks:is> <books:Essay>)

iTQL’s function trans computes the transitive closure of a relation, in the
example of rdfs:subClassOf. Paths of arbitrary length in an RDF graph can
be traversed using iTQL’s function walk. Like SQL, iTQL allows sorted answers
and accessing answers in a paged mode using limit and offset.

Project page:
http://www.kowari.org

Implementations:
Kowari Metastor
Tucana Knowledge Server

Online demonstration:
none

WQL. WQL, Wilbur Query Language, is the name given in [182] to query
primitives of Ivanhoe [181], a frame-based API inspired from [153, 178] for the
Nokia Wilbur Toolkit [183], a collection of APIs for XML, RDF, and DAML
written in CLOS, Common Lisp Object System [179].

In WQL, like in Ivanhoe, a RDF or DAML resource is represented as a frame
with a slot for each property. The (possibly multiple) values of a slot correspond
to objects of RDF statements, with the resources represented by the frame as
subjects. Three WQL variants are discussed and compared in [144]:

– a basic query language, WQL proper, with constructs value and all-values
for a path-based selection of one or all resources, and relatedp for testing
resource relations.

– an embedding, called WQL+CL, of the above-mentioned basic language in
Common Lisp.19

– WQL+CL+inference, an extension of WQL+CL, with a data store providing
inferencing based upon the “transparent” (or “hidden”) inference extensions
described in [180].

In the following, WQL proper and, where appropriate, the “transparent infer-
encing” of WQL+CL+inference are considered. WQL+CL is not considered, for
it is more akin to a programming language than a query language.

The following query returns the labels of all classes the book identified by
http://example.org/books#Bellum_Civile belongs to:

(setf *db* (make-instance ’db))

(load-db (make-url "http://example.org/books")

:locator "http://example.org/books")

(add-namespace "books" "http://example.org/books#")

(all-values !"http://example.org/books#Bellum_Civile"

’(:seq !rdf:type (:seq (:rep* !rdfs:subClassOf) !rdfs:label)))

Note :seq constructing a sequence of slots, i.e., RDF relations, to be tra-
versed by the query and :rep* traversing the transitive closure of a slot/relation.
all-values returns all resources, (represented as frames, reachable on the speci-
fied path from the source frame, i.e., the frame with identifier http://example.
org/books#Bellum_Civile.

Project page:
Wilbur Toolkit: http://wilbur-rdf.sourceforge.net/

Implementation:
Cf. project page

Online demonstration:
none

4.6 Deductive Query Languages

N3QL. N3QL, sketched in [34], is derived from the rule fragment of Notation
3 [35] (shorthand N3), a syntax for and extension of RDF with variables, rules,
and quoting for easy expression of statements about statements. N3QL differs

19 It is unclear whether WQL+CL restricts Common Lisp.

from the rule fragment of N3 in that its syntax has “query language style” clauses
such as select and where.

An N3QL query is an N3 expression and all N3QL reserved words are the
RDF properties of an RDF (usually, but not necessarily) blank node representing
the query.

Query 1 can be expressed as follows in N3QL:

@prefix books: <http://example.org/books#>.

@prefix n3ql: <http://www.w3.org/2004/ql#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

[] n3ql:select { n3ql:result n3ql:is (?book ?author ?authorName) };

n3ql:where { ?book rdf:type books:Essay;

?book books:author ?author;

?author books:authorName ?authorName }.

The answer to this query is the RDF graph specified in the n3ql:select
clause, a set of RDF collections (indicated by the collection constructor ()) of
bindings for the three variables.

[34] seems to indicate that a N3QL query is equivalent to a N3 rule, the where
part of the N3QL query being the rule’s premise, and the select part, the rule’s
consequence. However, whereas N3 rules can express transitive closures, this is
not the case of N3QL queries. The following N3 rule specifies the transitive
closure of a RDF property:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

{?x rdfs:subClassOf ?z; ?z rdfs:subClassOf ?y}

=> {?x rdfs:subClassOf ?y}

Note that the description of N3QL does not clearly specify which of the
syntactic constructs of N3 can be used in N3QL. [34] states that N3QL is a
restricted form of N3 where formulae cannot be nested and literals cannot be
subjects of statements. The N3 syntax for anonymous nodes, for navigating in
the RDF graph using path expressions, and for quantified variables gives rise to
concise expressions of of queries such as “Return the books written by the author
named ‘Julius Caesar’.”:

@prefix books: <http://example.org/books#>.

@prefix n3ql: <http://www.w3.org/2004/ql#>.

[] n3ql:select { n3ql:result n3ql:is (?book) };

n3ql:where { ?book!books:author!books:authorName ‘‘Julius Caesar’’ }.

Project page:
http://www.w3.org/DesignIssues/N3QL.html

Implementations:
CWM http://www.w3.org/2000/10/swap/doc/cwm.html
EulerSharp http://eulersharp.sourceforge.net/2003/03swap/

Online demonstration:
none

R-DEVICE. R-DEVICE [20] is a “deductive object-oriented knowledge-base
system for querying and reasoning about RDF metadata.”20 It is a reimplemen-
tation of the X-DEVICE language [19] in the C Language Integrated Produc-
tion System, or CLIPS, cf. http://www.ghg.net/clips/CLIPS.html, using the
CLIPS Object-Oriented Language, COOL. RDF triples are mapped to objects
as follows:

– RDF resources are represented as objects, the types of which are the re-
source’s RDF types, i.e., the values of the rdf:type properties. For resources
that are classified in multiple classes, a ‘dummy class’ is introduced which
represents a common subclass of all the classes the resource is classified in.

– RDF properties are realized as multi-slots, i.e., slots with multiple values,
in the class which is the domain of the property. If no domain is given, i.e.,
if the property can be applied to any resources, a slot is added to the class
representing rdfs:Resource, the top of the RDF resource hierarchy.

Assertions generated, e.g., through rules, can require dynamic class and/or ob-
ject re-definitions.

Query 1 can be expressed as follows:

(deductiverule q1

?book <- (? (rdf:type books:Essay) (books:author ?author))

?author <- (? (books:authorName ?authorName))

=>

(result (book ?book) (author ?author) (authorName ?authorName))

)

Note the production-rule like syntax of R-DEVICE.
R-DEVICE provides constructs for traversing arbitrary length paths of slots

and objects, properties and resources, both with and without restriction on the
type of slot that may be traversed. This allows one to implement both Query 2
and Query 8. Query 2 can be expressed as follows:

(deductive rule q2

?book <- (? (rdf:type books:Essay) (books:title ‘‘Bellum Civile’’)

(($?p) ?related)

=>

(result (book ?book) (related ?related))

)

Project page:
http://lpis.csd.auth.gr/systems/r-device.html

Implementation:
Cf. project page

Online demonstration:
none

20 http://lpis.csd.auth.gr/systems/r-device.html

TRIPLE TRIPLE [147, 259, 260] is a rule-based query, inference, and trans-
formation language for RDF. TRIPLE is based upon ideas published in [96].
TRIPLE’s syntax is close to F-Logic [170]. F-Logic is convenient for querying
semi-structured data, e.g., XML and RDF, as it facilitates describing schema-
less or irregular data [188]. Other approaches to querying XML and/or RDF
are XPathLog and the ontology management platform Ontobroker21. TRIPLE
has been designed to address two weaknesses of previous approaches to query-
ing RDF: (1) Predefined constructs expressing RDFS’ semantics that restrain a
query language’s extensibility, and (2) lack of formal semantics.

Instead of predefined RDFS-related language constructs, TRIPLE offers Horn
logic rules (in F-Logic syntax) [170]. Using TRIPLE rules, one can implement
features of, e.g., RDFS. Where Horn logic is not sufficient, as is the case of OWL,
TRIPLE is designed to be extended by external modules implementing, e.g., an
OWL reasoner. Thanks to its foundations in Horn logic, TRIPLE can inherit
much of Logic Programming’s formal semantics. Referring to, e.g., a represen-
tation of UML in RDF [176, 177], the authors of TRIPLE claim in [260] that
TRIPLE is well-suited to query non-RDF meta-data. This can be questioned,
especially if, in spite of [126], one considers the rather awkward mappings of
Topic Maps into RDF proposed so far.

TRIPLE differs from Horn logic and Logic Programming as follows [260]:

– TRIPLE supports resources identified by URIs.
– RDF statements are represented in TRIPLE by slots, allowing the grouping

and nesting of statements; like in F-Logic, Path expressions inspired from
[119] can be used for traversing several properties.

– TRIPLE provides concise support for reified statements. Reified statements
are expressed in TRIPLE enclosed angle brackets, e.g.:
Julius Caesar[believes-><Junius Brutus[friend-of -> Julius Caesar]>]

– TRIPLE has a notion of module allowing specification of the ‘model’ in
which a statement, or an atom, is true. ‘Models’ are identified by URIs that
can prefix statement or atom using @.

– TRIPLE requires an explicit quantification of all variables.

Query 1 can be approximated as follows:

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.

books := ’http://example.org/books#’.

booksModel := ’http://example.org/books’.

FORALL B, A, AN result(B, A, AN) <-

B[rdf:type -> books:Essay;

books:author -> A[books:authorName -> AN]]@booksModel.

This query selects only resources directly classified as books:Essay. Query 1
is properly expressed below.

TRIPLE’s rules give rise to specify properties of RDF. [260] gives the follow-
ing implementation of a part of RDFS’s semantics:
21 http://www.ontoprise.de/products/ontobroker

rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.

rdfs := ’http://www.w3.org/2000/01/rdf-schema#’.

type := rdf:type.

subPropertyOf := rdfs:subPropertyOf.

subClassOf := rdfs:subClassOf.

FORALL Mdl @rdfschema(Mdl) {

transitive(subPropertyOf).

transitive(subClassOf).

FORALL O,P,V O[P->V] <-

O[P->V]@Mdl.

FORALL O,P,V O[P->V] <-

EXISTS S S[subPropertyOf->P] AND O[S->V].

FORALL O,P,V O[P->V] <-

transitive(P) AND EXISTS W (O[P->W] AND W[P->V]).

FORALL O,T O[type->T] <-

EXISTS S (S[subClassOf->T] AND O[type->S]).

}

Inference from range and domain restrictions of properties are not imple-
mented by the rule given above. This is not limitation of TRIPLE, though, for
the following rules provides them:

FORALL S,T S[type-$>$T] <-

EXISTS P, O (S[P-$>$O] AND P[rdfs:domain-$>$T]).

FORALL O,T O[type->T] <-

EXISTS P, S (S[P-$>$O] AND P[rdfs:range-$>$T]).

With the rules given above, the approximation of Query 1 given above only
needs to be modified so as to express the ‘model’ it is evaluated against: instead
of @booksModel, @rdfschema(booksModel) should be used, i.e., the original
‘model’ should be extended with the above-mentioned implementing RDFS’ se-
mantics. Most queries of Section 2.3 can be expressed in TRIPLE. Aggregation
queries cannot be expressed in TRIPLE, for the language does not support ag-
gregation.

[260] specifies an RDF, and therefore XML, syntax for a fragment of TRIPLE.
By relying on translations to RDF, one can query data in different formalisms
with TRIPLE, e.g., RDF, Topic Maps, and UML. This, however, might lead to
rather awkward queries. Some aspects of RDF, viz. containers, collections, and
anonymous nodes, are not supported by TRIPLE. The complexity of TRIPLE
has not been investigated so far.

Project page:
http://triple.semanticweb.org/

Implementation:
Cf. project page

Online demonstration:
Cf. project page
http://ontoagents.stanford.edu:8080/triple/22

Xcerpt. Xcerpt [28, 60, 61, 248], cf. http://xcerpt.org, is a language for
querying both data on the “standard Web” (e.g., XML and HTML data) and
data on the Semantic Web (e.g., RDF, Topic Maps, etc. data). Using Xcerpt
for querying XML data is addressed in Section 3.2. This Section is devoted to
applying Xcerpt to querying RDF data.

Three features of Xcerpt are particularly convenient for querying RDF data.
(1) Xcerpt’s pattern-based incomplete queries are convenient for collecting re-
lated resources in the neighbourhood of some given resources and to express
traversals of RDF graphs of indefinite lengths. (2) Xcerpt chaining of (possibly
recursive rules) is convenient for expressing RDFS’s semantics, e.g., the transitive
closure of the subClassOf relation, as well as all kinds of graph traversals. (3)
Xcerpt’s optional construct is convenient for collecting properties of resources.

All nine queries from Section 2.3 can be expressed in Xcerpt’s both on the
XML serialization (cf. Section 3.2) and on the RDF serialization of the sample
data from Section 2.2. The following Xcerpt programs show solutions for the
queries against the RDF serialization.

[44] proposes two views on RDF data: as in most other RDF query languages
as plain triples with explicit joins for structure traversal and as a proper graph.

On the plain triple view, Query 1 can be expressed in Xcerpt as follows:

DECLARE ns-prefix rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

DECLARE ns-prefix books = "http://example.org/books#"

GOAL

result [

all essay [

id [var Essay],

all author [

id [var Author],

all name [var AuthorName]

]

]

]

FROM

and{

RDFS-TRIPLE [

var Essay:uri{}, "rdf:type":uri{}, "books:Essay":uri{}

],

RDF-TRIPLE [

var Essay:uri{}, "books:author":uri{}, var Author:uri{}

],

RDF-TRIPLE [

22 Not functioning at the time of writing.

var Author:uri{}, "books:authorName":uri{}, var AuthorName

]

}

END

Using the prefixes declared in line 1 and 2, the query pattern (between
FROM and END) is a conjunction of tree queries against the RDF triples rep-
resented in the predicate RDF-TRIPLE. Notice that the first conjunct actually
uses RDFS-TRIPLE. This view of the RDF data contains all basic triples plus the
ones entailed by the RDFS semantics [148] (cf. [44] for a detailed description).
Using RDFS-TRIPLE instead of RDF-TRIPLE ensures that also resources actually
classified in a sub-class of books:Essay are returned.

Xcerpt’s approach to RDF querying shares with [242] and a few other ap-
proaches in Section 4.3 the ability to construct arbitrary XML as in this rule.

On Xcerpt’s graph view of RDF, the same query can be expressed as follows:

DECLARE ns-prefix rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

DECLARE ns-prefix books = "http://example.org/books#"

GOAL

result [

all essay [

id [var Essay],

all author [

id [var Author],

all name [var AuthorName]

]

]

]

FROM

RDFS-GRAPH {{

var Essay:uri {{

rdf:type {{ "books:Essay":uri {{ }} }},

books:author {{

var Author:uri {{

books:name {{ var AuthorName }}

}}

}}

}}

}}

END

The RDF graph view is represented in the RDF-GRAPH predicate. Here, the
RDFS-GRAPH view is used that extends RDF-GRAPH as RDFS-TRIPLE extends
RDF-TRIPLE. Triples are represented similar to striped RDF/XML: each resource
is a direct child element in RDF-GRAPH with a sub-element for each statement
with that resource as object. The sub-element is labeled with the URI of the
predicate and contains the object of the statement. As Xcerpt’s data model is a
rooted graph this can be represented without duplication of resources.

In contrast to the previous query no conjunction is used but rather a nested
pattern that naturally reflects the structure of the RDF graph with the excep-
tion that labeled edges are represented as nodes with edges to the elements
representing their source and sink.

To illustrate this graph view, consider the following rule showing how to
generate the graph view from the triple view introduced above:

CONSTRUCT

RDF-GRAPH {

all var Subject @ var Subject:var SubjectType {

all optional var Predicate {

^var Object

},

all optional var Predicate {

var Literal

}

} }

FROM

or{

RDF-TRIPLE[

var Subject:var SubjectType{},

var Predicate:uri{},

optional var Literal as literal{{}},

optional var Object:/uri|blank/{{}}

],

RDF-TRIPLE[

/.*/:/.*/{{}},

/.*/:/.*/{{}},

var Subject:var SubjectType{{}}

] }

END

Notice the use of the optional keyword in lines 16 and 17. This indicates
that the contained part of the pattern does not have to occur in the data, but if
it does occur the contained variables are bound appropriately. Optional allows
queries with alternatives to be expressed very concisely and is therefore crucial
for RDF where all properties are optional by default.

In lines 3 and 5 the construction of a graph is shown: by using the operators
@ and ^ a (possibly cyclic) link can be constructed.

Xcerpt rules are convenient for making the language “RDF serialisation
transparent”. For each RDF serialisation, a set of rules expresses a translation
from or into that serialisation. However, the rules for parsing RDF/XML [25],
the official XML serialisation, are very complex and lengthy due to the high
degree of flexibility RDF/XML allows. They can be found in [44], similar func-
tions for parsing RDF/XML in XQuery are described in [245]. The following
rules parse RDF data serialised in the RXR (Regular XML RDF) format [11], a
far simpler and more regular RDF serialisation.

The following rule extracts all triples from an RXR document. Since different
types (such as URI, blank node, or literal) of subjects and objects of RDF triples

are represented differently in RXR, the conversion of the RXR representation
into the plain triples is performed in separate rules, see [44].

DECLARE ns-prefix rxr = "http://ilrt.org/discovery/2004/03/rxr/"

CONSTRUCT

RDF-TRIPLE[

var Subject, var Predicate:uri{}, var Object

]

FROM

and[

rxr:graph {{

rxr:triple {

var S → rxr:subject{{}},

rxr:predicate{ attributes{ rxr:uri{ var Predicate } } },

var O → rxr:object{{}}

}

}},

RXR-RDFNODE[var S, var Subject],

RXR-RDFNODE[var O, var Object]

]

END

Querying RDF data with Xcerpt is the subject of ongoing investigation [44].

4.7 Other RDF Query Languages

RDF-QBE [241] is inspired from QBE [289, 290], the database query language
that introduced the celebrated “Query by Example” paradigm. An RDF graph,
expressed in the syntax of Notation 3 [35]), is used to describe query patterns,
variables are expressed as blank nodes that, according to [172] doe not have
explicit identifiers. The representation of variables as blank nodes leads to a
major restriction of RDF-QBE : Query patterns can only be tree-shaped.23 RDF-
QBE is especially convenient for expressing selection and extraction queries.
However, the expressive power of RDF-QBE is limited: Not all queries of Section
2.3 can be expressed.

Project page:
none

Implementation:
described in [241] but not publicly available

Online demonstration:
none

23 [241] (wrongly) suggests that this restriction reduces query-answering to tree match-
ing because the data queried is not necessarily tree-shaped.

RDFQL. RDFQL is the query language of RDF Gateway [154], a platform
for developing and deploying Semantic Web applications combining a “native”
RDF database engine, a Web server, and a server-side scripting language. The
RDF database engine allows for the integration of standard and Semantic Web
using so-called “virtual tables” and inference rules for deductive reasoning (so
far, libraries for OWL and RDFS are provided). RDF Gateway supports sev-
eral serialisations of RDF, viz. RDF/XML, N3, and NTriples. Although similar
to RDQL, cf. Section 4.1, RDFQL differs from RDQL as follows: (1) RDFQL
includes database commands for transaction management, e.g., commit and roll-
back, (2) RDFQL includes SQL-like update commands, (3) RDFQL allows ac-
cessing data from disk-based, in-memory, or external24 “data sources”, and (4)
RDFQL’s command INFER allows specification of deduction rules to be used
when querying.

With RDFQL’s rules, the semantics of RDFS can be expressed as follows:

RULEBASE rdfs

{

INFER {[rdf:type] ?a [rdf:Property]} from {?a ?x ?y};

INFER {[rdf:type] ?x ?z} from {[rdfs:domain] ?a ?z} and {?a ?x ?y};

INFER {[rdf:type] ?u ?z} from {[rdfs:range] ?a ?z}

and {?a ?x ?u} and uri(?u)=?u;

INFER {[rdf:type] ?x [rdfs:Resource]} from {?a ?x ?y};

INFER {[rdf:type] ?u [rdfs:Resource]} from {?a ?x ?u} and uri(?u)=?u

INFER {[rdfs:subPropertyOf] ?a ?c}

from {[rdfs:subPropertyOf] ?a ?b} and {[rdfs:subPropertyOf] ?b ?c}

INFER {?b ?x ?y} from {[rdfs:subPropertyOf] ?a ?b}

and {?a ?x ?y}

INFER {[rdfs:subClassOf] ?x [rdfs:Resource]}

from {[rdf:type] ?x [rdfs:Class]}

INFER {[rdfs:subClassOf] ?x ?z} from {[rdfs:subClassOf] ?x ?y}

and {[rdfs:subClassOf] ?y ?z}

INFER {[rdf:type] ?a ?y} from {[rdfs:subClassOf] ?x ?y}

and {[rdf:type] ?a ?x}

}

{?P ?S ?O} denotes in RDFQL an RDF statement with subject S, prop-
erty P , and object O, i.e., RDFQL uses a prefix notation for RDF statements.
uri(?u)=?u serves to detect whether the object of an RDF statement is a re-
source (in which case it has an URI and this URI is equal to the “value” of the
resource itself) or a literal.

Query 1 can be implemented as follows:

session.namespaces["books"] = "http://example.org/books#";

var booksdata = new DataSource("http://example.org/books");

SELECT ?essay, ?author, ?authorName USING booksdata WHERE

{[rdf:type] ?essay [books:Essay]}

and {[books:author] ?essay ?author}

24 I.e., identified, e.g., by an URI.

and {[books:authorName] ?author ?authorName}

ORDER BY ?authorName DESC;

Project page:
http://www.intellidimension.com/

Implementations:
RDF Gateway
Cf. project page for a limited, non-commercial use

Online demonstration:
none25

5 Topic Maps Query Languages

5.1 tolog: Logic Programming for Topic Maps

tolog [121–124] is the query language of the Ontopia Knowledge Suite26. tolog
has also been selected in April 2004 as an initial straw-man for the ISO Topic
Maps Query Language. tolog is inspired from Logic Programming and has SQL-
style constructs. tolog provides a means for identifying a topic by its (inter-
nal) identifier and its subject indicator, e.g., the topic (type) “Novel” of the
sample data can be accessed either by its identifier Novel, or its subject indi-
cator i"http://example.org/books#Novel".27 URI prefixes can be used, e.g.,
using books for i"http://example.org/books#" gives rise to the short form
books:Novel for the above-mentioned subject indicator. Note that tolog URI
prefixes contain indicators and therefore differ from XML namespaces. In tolog,
all occurrences of variables must be prefixed with $.

The original version of tolog [123]) has two kinds of Prolog-like “predi-
cates”, “built-in” and “dynamic association predicates”. tolog has a “dynamic
association predicate” for querying the extent of each association type, e.g.,
authors-for-book(b1, $AUTHOR: author) selects the authors of book b1 (note
the association role identifying the topic ‘author’). tolog has only two “dynamic
association predicates” similar to “dynamic occurrence predicates”. The origi-
nal version of tolog has only two “built-in predicates”, instance-of($INSTANCE,
$CLASS) and direct-instance-of($INSTANCE, $CLASS), conveying the seman-
tics of the subsumption hierarchy.

The current version of tolog [122, 124] has further built-in predicates, e.g.,
role-player and association-role, for enumerating the associations, associ-
ation roles, occurrences, and topics. These allow querying arbitrary topic maps
without a-priori knowledge of the types used in the topic maps. Query 2 can
only be implemented only using these predicates:

select $RELATED from

title($BOOK, "Bellum Civile"),

25 However, the project page implemented in RDF Gateway is a show case.
26 http://www.ontopia.net/solutions/products.html
27 The prefix i serves to distinguish different identifiers.

related($BOOK, $RELATED)?

related($X, $Y) :- {

role-player($R1, $X), association-role($A, $R1),

association-role($A, $R2), role-player($R2, $Y) |

related($X, $Z), related($Z, $Y)

}.

Conjunctions are expressed, as in Prolog, by commas. Disjunctions are in
curly braces the disjuncts being separated by |.

The built-in predicates instance-of and direct-instance-of can indeed
be implemented using tolog rules as follows [123]:

direct-instance-of($INSTANCE, $CLASS) :-

i"http://psi.topicmaps.org/sam/1.0/#type-instance"(

$INSTANCE : i"http://psi.topicmaps.org/sam/1.0/#instance",

$CLASS : i"http://psi.topicmaps.org/sam/1.0/#class").

super-sub($SUB, $SUPER) :-

i"http://www.topicmaps.org/xtm/1.0/core.xtm#superclass-subclass"(

$SUB : i"http://www.topicmaps.org/xtm/1.0/core.xtm#subclass",

$SUPER : i"http://www.topicmaps.org/xtm/1.0/core.xtm#superclass").

descendant-of($DESC, $ANC) :- {

super-sub($DESC, $ANC) |

super-sub($DESC, $INT), descendant-of($INT, $ANC)

}.

instance-of($INSTANCE, $CLASS) :- {

direct-instance-of($INSTANCE, $CLASS) |

direct-instance-of($INSTANCE, $DCLASS), descendant-of($DCLASS, $CLASS)

}.

Negation is available, however its semantics in tolog is not yet specified [122].
tolog has constructs for aggregation and sorting (although deemed insufficient
[122]), paged queries using limit and offset as in SQL, and a module concept.
Thanks to tolog’s (possibly recursive) rules, Queries 7 and 8 can be implemented
in tolog.

Neither the formal semantics, nor the complexity of tolog have been investi-
gated yet.

Project page:
http://www.ontopia.net/omnigator/docs/query/tutorial.html28

Implementations:
Ontopia Knowledge Suite: http://www.ontopia.net/solutions/products.
html
Topic Maps toolkit TM4J: http://tm4j.org/

Online demonstrations:
Omnigator: http://www.ontopia.net/
http://www.ontopia.net/omnigator/models/index.jsp29

28 Tutorial.
29 The demonstrator does not seem to support testing tolog queries.

5.2 AsTMA?: Functional Style Querying of Topic Maps

AsTMa? [14, 16] is a functional query language in the style of XQuery [41].
AsTMa? offers several path languages for accessing data in topic maps. With
AsTMa?, answers can be re-structured, yielding new XML documents.

Query 1 can be implemented as follows:

<books>

{ forall [$book (Writing)] in http://example.org/books

return

<book>

{$book,

forall $author in ($book -> author / author-for-book) return

<author>

{$author}

<name>{$author/bn}</name>

</author>

</book> }

</books>

Query 1 can also be implemented as follows, using path expressions for ac-
cessing topics and associations:

<books>

{ forall [$book (Writing)] in http://example.org/books

return

<book>

{$book,

forall [(author-for-book)

Writing : $book

author: $author]

in http://example.org/books return

<author>

{$author}

<name>{$author/bn}</name>

</author>

</book> }

</books>

Project page:
http://astma.it.bond.edu.au/querying.xsp

Implementation):
As part of the Perl XTM module, available via CPAN

Online demonstration:
http://astma.it.bond.edu.au/query/

5.3 Toma: Querying Topic Maps inspired from SQL

Toma [175, 234] combines SQL syntax and path expressions for querying Topic
Maps, i.e., the following query selects all books, specified as topics classified as
Writing, with their authors:

select topic[book], topic[author]

from topic-type["Writing"].topic[book],

topic[book]..assoc[a]..topic[author],

assoc-type["author-for-book"].assoc[a]

Toma provides access to all Topic Maps concepts, including the subsumption
hierarchy. Information about a topic such as topic identifier, basename, and sub-
ject identifier are accessed using the long name, or . notation, common in object-
oriented languages, e.g., $topic.bn = ’Julius Caesar’ compares the base-
name, short bn, of topics, short by $topic, with the string “Julius Caesar”. Asso-
ciations can be traversed using ->, predefined associations with special semantics,
such as the instance-of and superclass-subclass associations, can be traversed
transitively when traversing the subsumption hierarchy. $start.super(1..*)
selects all super-classes of the current class. Instead of 1..*, an interval, or a
single number, can indicate how many superclass-subclass associations should
be traversed. A similar notation is available for instance-of associations.

Query 1 can be expressed as follows:

select $book, $author, $author.bn

where $book.type(1..*).id = ’Writing’

and author-for-book%a->Writing = $book

and author-for-book%a->author = $author

Query 3 can be expressed as follows:

select $topic

where $topic.type(1..*).si.sir != ’http://example.org/books#Translator’

and not exists ($t.type(1) = $topic)

and not exists ($t.type(1..*) = $x and $topic.super(1..*) = $x)

This query selects all topics that are neither used as type of another topic,
nor typed Translator. All topics are selected that neither (a) have the subject
identifier http://example.org/books#Translator, nor (b) are the type of some
topic, nor (c) are a sub-class of some topic that is some topic’s type.

Project page:
http://www.spaceapplications.com/toma/

Implementation:
Not freely available

Online demonstration:
none

5.4 Path-based Access to Topic Maps: XTMPath and TMPath

Following the success of XPath, a number of path-based query languages have
been proposed for Topic Maps, cf. [15] for an overview of a plea for the inclusion
of path navigation in the upcoming ISO Topic Maps query language.

XTMPath [17] is a path-based query language relying on the XTM [232]
serialisation of topic maps in XML. The following path selects all topics that are
(directly) typed
Historical Novel:

topic[instanceOf/topicRef/@href = "\#Historical_Novel"]}

This path expression reflects the XTM serialisation:

<topic id="b1">

<instanceOf> <topicRef xlink:href="#Historical_Novel"/> </instanceOf>

</topic>

Note that (1) Only a limited subset of the XPath constructs is supported by
XTMPath, mostly the child and descendant axis and some simple predicates (in
XPath’s abbreviated syntax), and (2) XTMPath operates on data conforming
to a single DTD30, viz., the DTD of XTM DTD [17], leading to treating the axis
“child” like the axis “descendant” with a few exceptions, e.g., instanceOf.

Project page:
http://cpan.uwinnipeg.ca/htdocs/XTM/XTM/Path.html

Implementation:
Available from CPAN as part of the XTM toolkit

Online demonstration:
none

6 Conclusion: Salient Aspects of the Query Languages
Considered

This article is an attempt to give a survey of both query languages proposed
for the “standard Web” (i.e., basically XML data), and query languages for the
Semantic Web (i.e. mostly RDF and Topic Maps). Query languages targeting
OWL have not been considered in this survey, because as of writing (March
2005), they still are in their infancy and the few languages proposed so far can
only query meta-data.

Inspite of the exclusions described in Section 1 (programming languages tools
for XML, reactive languages for the Web, rules languages, and OWL query
languages) a considerable number of languages have been considered in this
article. Indeed, we are not aware of any other effort to survey Web and/or
Semantic Web query languages at the same level of depth and breadth.

Even though the field is moving extremely fast and new proposals are always
emerging, it is already possible and worthwhile to stress some of the salient
aspects of Web and Semantic Web query languages:

30 Document Type Definition, cf. [48].

Path vs. Logic or Navigational vs. Positional. Web and Semantic Web query lan-
guages express basic queries using one of two paradigms, paths à la XPath, or
Logic, à la Logic Programming. These two paradigms can also be named “naviga-
tional” and “positional”, respectively, stressing that (path-oriented) navigations
inherently conflict with referential transparency. One might expect that both
kinds of languages will continue to be investigated, yielding interesting oppor-
tunities for further comparison and research.

Logical Variables. When Web and Semantic Web query languages have variables,
they almost always are logical variables, i.e., Logic Programming or Functional
Programming variables, as opposed to variables in imperative programming lan-
guages that are amenable to explicit assignments.

Referential Transparency and (Weak or Strong) Answer-Closure. Referential
Transparency (i.e., within the same scope, an expression always means the same),
the trait of declarative languages, is, if not fully achieved, obviously striven for
by both positional and logic, query languages, especially in Semantic Web query
languages. Some query languages are “weakly answer-closed” or “answer-closed”
in the sense of [76], i.e., they deliver answers in the formalism of the data queried.
A few query languages are “strongly answer-closed”, i.e., they make query pro-
grams possible that can further process data generated by these very programs.
Arguably, strong answer-closure is important for structuring programs and sus-
taining the so-called “separation of concerns” in programming. One might expect
that positional Web and Semantic Web query languages will mature into well-
designed, referentially transparent and strongly answer-closed languages.

Backtracking-free Logic Programming or Set-Oriented Functional Query Evalu-
ation. Positional, or logic query languages that offer construct similar to rules
or views, are, with a few exceptions or unclear cases, backtracking-free. Equiv-
alently, they can be called set-oriented functional. This convergence of two pro-
gramming paradigms in Web query languages seems promising for further re-
search.

Incomplete Queries and Answers. Many query languages offer means for incom-
plete specifications of queries, paying tribute to the “semi-structured” [2] nature
of data on the Web, i.e., that data on the Web either has no schemas or does not
fully respect its schema. Incomplete query specifications are extremely useful on
the Semantic Web, too. In querying an RDF graph or topic maps, incomplete
queries are very useful for easily accessing the neighbourhood of resources. Indeed
such incomplete specifications considerably simplify and ease programming.

Versatile vs. Data Format Specific Query Languages. Most RDF query languages
are RDF-specific, and even specifically designed for one serialisation. The au-
thors are convinced that an evolution towards data format “versatile” languages
that are capable of easily accommodating XML, RDF, Topic Maps, OWL, etc.
without requiring “serialisation consciousness” from the programmer, should be
striven for.

Reasoning Capabilities. Interestingly, but not surprisingly, not all XML query
languages have views, rules, or similar concepts allowing the specification of other
forms of reasoning. Surprisingly, the same holds true of RDF query languages.
Many authors of RDF query languages see deduction and reasoning to be a fea-
ture of an underlying RDF store offering materialisation, i.e., completion of RDF
data with derivable data prior to query evaluation. This is surprising, because
one might expect many Semantic Web applications to access not only one RDF
data store at one Web site, but instead many RDF data stores at different Web
sites and to draw conclusions combining data from different stores. Such an RDF
query scenario requires, on the decentralised and open Web, deduction at query
time, i.e., when queries are evaluated.31

Language engineering. Language engineering issues, e.g., abstract data types
and static type checking, modules, polymorphism, and abstract machines, have
clearly not yet made their way in the Web query languages, as they did not in
database query languages. This situation opens avenues for promising research
of great practical, as well as theoretical relevance.

Acknowledgements

The authors are thankful to Renzo Orsini, Ian Horrocks, Michael Kraus, and
Oliver Bolzer for stimulating discussions and useful suggestions during the pro-
duction of the report [56], that has been an important input for this overview.

This research has been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net).

31 Indeed, materialising conclusions from all possible combinations of Web sites is in-
feasible.

Bibliography

[1] Langdale Consultants . Nexus Query Language. Online only, 2000.
[2] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations

to Semistructured Data and XML. Morgan Kaufmann, 1999.
[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel

Query Language for Semistructured Data. International Journal on Digital
Libraries1(1):68-88, April 1997., 1(1):68–88, 1997.

[4] J. Alferes, W. May, and P. Patranjan. State of the Art on Evolution and
Reactivity, 2004.

[5] S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre, D. McBeath,
M. Rys, and J. Shanmugasundaram. XQuery and XPath Full-Text. W3C,
2004. URL http://www.w3.org/TR/xquery-full-text-requirements/.

[6] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: A Full-
Text Search Extension to XQuery. In Proc. Int. World Wide Web Conf.,
2004.

[7] S. Amer-Yahia, M. F. Fernandez, D. Srivastava, and Y. Xu. PIX: Exact
and Approximate Phrase Matching in XML. In Proc. ACM SIGMOD
Conf., 2003.

[8] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. FleXPath: Flexible
Structure and Full-Text Querying for XML. In Proc. ACM SIGMOD
Conf., 2004.

[9] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. L. Hors,
G. Nicol, J. Robie, R. Sutor, C. Wilson, and L. Wood. Document Object
Model (DOM) Level 1 Specification. Recommendation, W3C, 10 1998.

[10] E. Augurusa, D. Braga, A. Campi, and S. Ceri. Design and Implementa-
tion of a Graphical Interface to XQuery. In Proc. Symposium of Applied
Computing, pages 1163–1167. ACM Press, 2003. ISBN 1-58113-624-2.

[11] D. Backett. Modernising Semantic Web Markup. In Proc. XML Europe,
April 2004.

[12] E. Bae and J. Bailey. CodeX: an approach for debugging XSLT trans-
formations. In Web Information Systems Engineering, 2003. WISE 2003.
Proceedings of the Fourth International Conference on, 2003.

[13] J. Bailey. Transformation and Reaction Rules for Data on the Web. In
Proc. Australasian Database Conference, 2005.

[14] R. Barta. AsTMa? Tutorial. Technical report, Bond University, 2003.
[15] R. Barta. Path Language for Topic Maps: Full speed ahead? Online only,

2004.
[16] R. Barta. AsTMa= Language Definition. Online only, 2007.
[17] R. Barta and J. Gylta. XTM::Path, 2002.
[18] C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou, and

P. Velikhov. XML-Based Information Mediation with MIX. In Proc. ACM
SIGMOD International Conference on Management of Data, 1999.

[19] N. Bassiliades and I. Vlahavas. Intelligent Querying of Web Documents
Using a Deductive XML Repository. In Proc. Hellenic Conference on
Artificial Intelligence, April 2002.

[20] N. Bassiliades and I. Vlahavas. Capturing RDF Descriptive Semantics in
an Object Oriented Knowledge Base System. In Proc. International Word
Wide Web Conference, May 2003.

[21] R. Baumgartner, S. Flesca, and G. Gottlob. The Elog Web Extraction
Language. In Proc. International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, December 2001.

[22] R. J. Bayardo, D. Gruhl, V. Josifovski, and J. Myllymaki. An Evaluation
of Binary XML Encoding Optimizations for fast Stream based XML Pro-
cessing. In Proc. Int. World Wide Web Conf., pages 345–354. ACM Press,
2004. ISBN 1-58113-844-X.

[23] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuin-
ness, P. Patel-Schneider, and L. Stein. OWL Web Ontology Language—
Reference. W3C, 2004. URL http://www.w3.org/TR/owl-ref/.

[24] D. Beckett. Turtle - Terse RDF Triple Language, February 2004.
[25] D. Beckett and B. McBride. RDF/XML Syntax Specification (Revised).

W3C, 2004. URL http://www.w3.org/TR/rdf-syntax-grammar/.
[26] M. Benedikt, W. Fan, and G. Kuper. Structural Properties of XPath

Fragments. In Proc. International Conference on Database Theory, 2003.
[27] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-Centric

General-Purpose Language. In Proc. International Conference on Func-
tional Programming, 2003.

[28] S. Berger, F. Bry, O. Bolzer, T. Furche, S. Schaffert, and C. Wieser. Xcerpt
and visXcerpt: Twin Query Languages for the Semantic Web. In Proc. Int.
Semantic Web Conf., 11 2004. I4 I3.

[29] S. Berger, F. Bry, and S. Schaffert. A Visual Language for Web Querying
and Reasoning. In Proc. Workshop on Principles and Practice of Semantic
Web Reasoning, LNCS 2901. Springer-Verlag, December 2003.

[30] S. Berger, F. Bry, S. Schaffert, and C. Wieser. Xcerpt and visXcerpt: From
Pattern-Based to Visual Querying of XML and Semistructured Data. In
Proc. Int. Conf. on Very Large Databases, 2003.

[31] A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay, J. Robie,
and J. Simeon. XML Path Language (XPath) 2.0. W3C, 2005.

[32] A. Berlea and H. Seidl. fxt—A Transformation Language for XML Doc-
uments. Journal of Computing and Information Technology, Special Issue
on Domain-Specific Languages, 2001.

[33] A. Berlea and H. Seidl. Binary Queries for Document Trees. Nordic Journal
of Computing, 11(1):41–71, 2004.

[34] T. Berners-Lee. N3QL—RDF Data Query Language. Online only, 2004.
[35] T. Berners-Lee. Notation 3, an RDF language for the Semantic Web.

Online only, 2004.
[36] T. Berners-Lee. Semantic Web Road Map. Online only, 2004.
[37] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web—A new

form of Web content that is meaningful to computers will unleash a revo-
lution of new possibilities. Scientific American, 2001.

[38] G. J. Bex, S. Maneth, and F. Neven. A Formal Model for an Expressive
Fragment of XSLT. Information Systems, 27(1):21–39, 2002. ISSN 0306-
4379.

[39] P. Biron and A. Malhotra. XML Schema Part 2: Datatypes. W3C, 2001.
URL http://www.w3.org/TR/xmlschema-2/.

[40] C. Bizer. The TriG Syntax. Online only, April 2004.
[41] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, and

J. Simeon. XQuery 1.0: An XML Query Language. W3C, 2005.
[42] S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J. Robie, and J. Si-

mon. XQuery 1.0: An XML Query Language. Working draft, W3C, 2
2005.

[43] H. Boley, B. Grosof, M. Sintek, S. Tabet, and G. Wagner. RuleML Design.
Online only, 2002.

[44] O. Bolzer. Towards Data-Integration on the Semantic Web: Querying RDF
with Xcerpt. Diplomarbeit/Master thesis, University of Munich, 2 2005.

[45] O. Bolzer, F. Bry, T. Furche, S. Kraus, and S. Schaffert. Development of
Use Cases, Part I: Illustrating the Functionality of a Versatile Web Query
Language. Deliverable I4-D3, REWERSE, 3 2005. I4.

[46] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proc.
Int. Conf. on Data Engineering, page 403. IEEE Computer Society, 2002.

[47] D. Braga, A. Campi, S. Ceri, and E. Augurusa. XQuery by Example. In
Proc. Int. World Wide Web Conf., 2003.

[48] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Third Edition). W3C, 2004.
URL http://www.w3.org/TR/REC-xml/.

[49] J.-M. Bremer and M. Gertz. XQuery/IR: Integrating XML Document and
Data Retrieval. In Int. Workshop on the Web and Databases, 2002.

[50] D. Brickley. RDF: Understanding the Striped RDF/XML Syntax. Online
only, October 2001.

[51] D. Brickley, R. Guha, and B. McBride. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. W3C, 2004. URL http://www.w3.org/TR/
rdf-schema/.

[52] J. Broekstra and A. Kampman. SeRQL: A Second Generation RDF Query
Language. In Proc. SWAD-Europe Workshop on Semantic Web Storage
and Retrieval, 2003.

[53] M. Brundage. XQuery: The XML Query Language. Addison-Wesley, 2004.
[54] E. Bruno, J. L. Maitre, and E. Murisasco. Extending XQuery with Trans-

formation Operators. In Proc. ACM symposium on Document Engineering,
pages 1–8. ACM Press, 2003. ISBN 1-58113-724-9.

[55] F. Bry, W. Drabent, and J. Maluszynski. On Subtyping of Tree-structured
Data A Polynomial Approach. In Proc. Workshop on Principles and Prac-
tice of Semantic Web Reasoning, St. Malo, France, volume 3208 of LNCS.
REWERSE, Springer-Verlag, 9 2004. I4 I3.

[56] F. Bry, T. Furche, L. Badea, C. Koch, S. Schaffert, and S. Berger. Identi-
fication of Design Principles for a (Semantic) Web Query Language. De-
liverable I4-D1, REWERSE, 2004.

[57] F. Bry, T. Furche, L. Badea, C. Koch, S. Schaffert, and S. Berger. Query-
ing the Web Reconsidered: Design Principles for Versatile Web Query Lan-
guages. Journal of Semantic Web and Information Systems, 1(2), 2005.
I4.

[58] F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and Appli-
cations of the Language XChange. In Proc. Symposium of Applied Com-
puting. ACM, 3 2005. I4 I5.

[59] F. Bry, P.-L. Pătrânjan, and S. Schaffert. Xcerpt and XChange: Logic
Programming Languages for Querying and Evolution on the Web. In Proc.
Int. Conf. on Logic Programming, LNCS, 2004.

[60] F. Bry and S. Schaffert. A Gentle Introduction into Xcerpt, a Rule-based
Query and Transformation Language for XML. In Proc. Int. Workshop on
Rule Markup Languages for Business Rules on the Semantic Web, 2002.

[61] F. Bry and S. Schaffert. The XML Query Language Xcerpt: Design Prin-
ciples, Examples, and Semantics. In Proc. Int. Workshop on Web and
Databases, volume 2593 of LNCS. Springer-Verlag, 2002.

[62] F. Bry and S. Schaffert. Towards a Declarative Query and Transformation
Language for XML and Semistructured Data: Simulation Unification. In
Proc. Int. Conf. on Logic Programming, volume 2401 of LNCS. Springer-
Verlag, 7 2002.

[63] F. Bry, S. Schaffert, and A. Schröder. A contribution to the Semantics of
Xcerpt, a Web Query and Transformation Language. In Proc. Workshop
Logische Programmierung, March 2004.

[64] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A Query Language
and Optimization Techniques for Unstructured Data. In Proc. ACM SIG-
MOD Conf., pages 505–516. ACM Press, 1996. ISBN 0-89791-794-4.

[65] P. Buneman, S. B. Davidson, and D. Suciu. Programming Constructs for
Unstructured Data. In Proc. Int. Workshop on Database Programming
Languages, page 12. Springer-Verlag, 1996. ISBN 3-540-76086-5.

[66] P. Buneman, M. Fernandez, and D. Suciu. UnQL: A Query Language and
Algebra for Semistructured Data Based on Structural Recursion. VLDB
Journal, 9(1):76–110, 2000.

[67] A. b.v. and S. A. Ltd. The SeRQL query language, chapter 5. Aduna b.v.,
Sirma AI Ltd., 2002.

[68] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Containment
of Conjunctive Regular Path Queries with Inverse. In Proc. Int. Conf. on
the Principles of Knowledge Representation and Reasoning, pages 176–185,
2000.

[69] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. Query
Processing using Views for Regular Path Queries with Inverse. In Proc.
ACM Symposium on Principles of Database Systems, pages 58–66, 2000.

[70] L. Cardelli and G. Ghelli. TQL: a Query Language for Semistructured
Data based on the Ambient Logic. Mathematical Structures in Computer
Science, 14(3):285–327, 2004. ISSN 0960-1295.

[71] L. Cardelli and A. D. Gordon. Anytime, Anywhere: Modal Logics for Mo-
bile Ambients. In Proc. Symposium on Principles of Programming Lan-
guages, pages 365–377. ACM Press, 2000. ISBN 1-58113-125-9.

[72] J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named Graphs, Provenance
and Trust. Technical Report HPL-2004-57, HP Labs, 2004.

[73] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell,
O. Schadow, T. Stanienda, and F. Velez, editors. Object Data Standard:
ODMG 3.0. Morgan Kaufmann, 2000.

[74] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca:.
XML-GL: A Graphical Language for Querying and Reshaping XML Doc-
uments. In Proc. W3C QL’98 – Query Languages, 1998.

[75] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca.
XML-GL: a Graphical Language for Querying and Restructuring XML
Documents. In Proc. Int. World Wide Web Conf., 1999.

[76] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie.
XML Query Use Cases. W3C, 2005.

[77] D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie. XML Query
(XQuery) Requirements. W3C, 2003.

[78] D. Chamberlin and J. Robie. XQuery Update Facility Requirements.
Working draft, W3C, 2005.

[79] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Lan-
guage for Heterogeneous Data Sources. In Proc. Workshop on Web and
Databases, 2000.

[80] L. Chen and E. A. Rundensteiner. ACE-XQ: A CachE-aware XQuery
Answering System. In Proc. Workshop on the Web and Databases, 2002.

[81] Z. Chen, H. V. Jagadish, L. V. Lakshmanan, and S. Paparizos. From Tree
Patterns to Generalized Tree Patterns: On Efficient Evaluation of XQuery.
In Proc. Int. Conf. on Very Large Databases, 2003.

[82] T. T. Chinenyanga and N. Kushmerick. An Expressive and Efficient Lan-
guage for XML Information Retrieval. Journal of the American Society
for Information Science and Technology, 53(6):438–453, 2002.

[83] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating Queries with
Generalized Path Expressions. In Proc. ACM SIGMOD International Con-
ference on Management of Data, pages 413–422, 1996.

[84] V. Christophides, D. Plexousakis, G. Karvounarakis, and S. Alexaki.
Declarative Languages for Querying Portal Catalogs. In Proc. DELOS
Workshop: Information Seeking, Searching and Querying in Digital Li-
braries, 2000.

[85] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C, 1999.
[86] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C,

1999.
[87] K. Clark. RDF Data Access Use Cases and Requirements. W3C, 2004.
[88] J. Coelho and M. Florido. CLP(Flex): Constraint Logic Programming Ap-

plied to XML Processing. In Proc. Int. Conf. on Ontologies, Databases,
and Applications of Semantics for Large Scale Information Systems, vol-
ume 3291 of LNCS. Springer-Verlag, 2004.

[89] S. Cohen, Y. Kanza, Y. Kogan, Y. Sagiv, W. Nutt, and A. Serebrenik.
EquiX—a search and query language for XML. Journal of the Ameri-
can Society for Information Science and Technology, 53(6):454–466, 2002.
ISSN 1532-2882.

[90] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic
Search Engine for XML. In Proc. Int. Conf. on Very Large Databases,
2003.

[91] S. Comai, E. Damiani, and P. Fraternali. Computing Graphical Queries
over XML Data. ACM Transactions on Information Systems, 19(4):371–
430, 2001. ISSN 1046-8188.

[92] S. Comai, S. Marrara, and L. Tanca. XML Document Summarization:
Using XQuery for Synopsis Creation. In Proc. Int. Workshop on Database
and Expert Systems Applications, 2004.

[93] G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghi, and C. Sar-
tiani. The Query Language TQL. In Proc. Int. Workshop on the Web and
Databases, 2002.

[94] J. Cowan and R. Tobin. XML Information Set (Second Edition). W3C,
2004. URL http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.

[95] I. Davis. RDF Template Language 1.0. Online only, September 2003.
[96] S. Decker, D. Brickley, J. Saarela, and J. Angele. A Query and Inference

Service for RDF. In Proc. W3C QL’98 – Query Languages 1998, December
1998.

[97] D. DeHaan, D. Toman, M. P. Consens, and M. T. zsu. A Comprehensive
XQuery to SQL Translation using Dynamic Interval Encoding. In Proc.
ACM SIGMOD Conf., pages 623–634. ACM Press, 2003. ISBN 1-58113-
634-X.

[98] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL:
A Query Language for XML. In Proc. W3C QL’98 – Query Languages
1998. W3C, 1998.

[99] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query
Language for XML. In Proc. Int. World Wide Web Conf., 1999.

[100] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT Logical Frame-
work for XQuery. In Proc. Int. Conf. on Very Large Databases, 2004.

[101] A. Deutsch and V. Tannen. Containment and Integrity Constraints for
XPath Fragments. In Proc. Int. Workshop on Knowledge Representation
meets Databases, 2001.

[102] C. Dong and J. Bailey. Optimization of XML Transformations Using Tem-
plate Specialization. In Proc. Int. Conf. on Web Information Systems
Engineering, 2004.

[103] C. Dong and J. Bailey. Static Analysis of XSLT Programs. In Proc.
Australasian Database Conf., pages 151–160. Australian Computer Society,
Inc., 2004. ISBN 1-111-11111-1.

[104] D. Draper, P. Frankhauser, M. Fernndez, A. Malhotra, K. Rose, M. Rys,
J. Simon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics.
Working draft, W3C, 2 2005.

[105] D. Eastlake and A. Panitz. Reserved Top Level DNS Names. RFC 2606,
IETF, 1999.

[106] A. Eisenberg and J. Melton. An early Look at XQuery. SIGMOD Record,
31(4):113–120, 2002. ISSN 0163-5808.

[107] A. Eisenberg and J. Melton. An early Look at XQuery API for
JavaTM(XQJ). SIGMOD Record, 33(2):105–111, 2004. ISSN 0163-5808.

[108] D. Fallside. XML Schema Part 0: Primer. W3C, 2001. URL http:
//www.w3.org/TR/xmlschema-0/.

[109] P. Fankhauser. XQuery Formal Semantics: State and Challenges. SIGMOD
Record, 30(3):14–19, 2001. ISSN 0163-5808.

[110] P. Fankhauser and P. Lehti. XQuery by the book: The IPSI XQuery
Demonstrator. In XML Conference & Exhibition, 2002.

[111] M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery
1.0 and XPath 2.0 Data Model. W3C, 2004.

[112] M. Fernndez, J. Simon, B. Choi, A. Marian, and G. Sur. Implementing
XQuery 1.0 : The Galax Experience. In Proc. Int. Conf. on Very Large
Databases, 2003.

[113] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL – A Language for Deductive
Query Answering on the Semantic Web. Journal of Web Semantics, To
appear.

[114] D. Florescu, M. Fernandez, A. Levy, and D. Suciu. A Query Language
and Processor for a Web-site Management System. In Proc. Workshop on
Management of Semi-structured Data, 1997.

[115] D. Florescu, A. Grnhagen, and D. Kossmann. XL: An XML Program-
ming Language for Web Service Specification and Composition. In Proc.
International World Wide Web Conference, May 2002.

[116] D. Florescu, A. Grnhagen, and D. Kossmann. XL: An XML Program-
ming Language for Web Service Specification and Composition. Computer
Networks, 42(5), 2003.

[117] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. Westmann,
M. J. Carey, and A. Sundararajan. The BEA Streaming XQuery Processor.
VLDB Journal, 13(3):294–315, 2004. ISSN 1066-8888.

[118] D. Florescu, A. Levy, M. Fernandez, and D. Suciu. A Query Language for
a Web-site Management System. SIGMOD Record, 26(3):4–11, 1997.

[119] J. Frohn, G. Lausen, and H. Uphoff. Access to Objects by Path Expressions
and Rules. In Proc. International Conference on Very Large Databases,
1994.

[120] N. Fuhr and K. Gross. XIRQL: a Query Language for Information Re-
trieval in XML Documents. In Proc. ACM Conference on Research and
Development in Information Retrieval, 2001.

[121] L. Garshol. tolog—A topic map query language. In Proc. XML Europe,
2001.

[122] L. Garshol. Extending tolog—Proposal for tolog 1.0. In Proc. Extreme
Markup Languages, 2003.

[123] L. Garshol. tolog 0.1. Technical report, Ontopia, 2003.
[124] L. Garshol. tolog–Language tutorial. Online only, 2004.
[125] L. Garshol. The Linear Topic Map Notation. Online only, 2007.
[126] L. M. Garshol. Living with Topic Maps and RDF. Online only, 2003.
[127] R. Goldman, S. Chawathe, A. Crespo, and J. McHugh. A Standard Textual

Interchange Format for the Object Exchange Model (OEM). Technical
report, Database Group, Stanford University, 1996.

[128] G. Gottlob and C. Koch. Monadic Queries over Tree-Structured Data.
In Proc. Annual IEEE Symposium on Logic in Computer Science, pages
189–202. IEEE Computer Society, 2002. ISBN 0-7695-1483-9.

[129] G. Gottlob and C. Koch. Monadic Datalog and the Expressive Power of
Languages for Web Information Extraction. In 51, editor, Journal of the
ACM, volume 1, pages 74–113, 2004.

[130] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Process-
ing XPath Queries. In Proc. International Conference on Very Large
Databases, 2002.

[131] G. Gottlob, C. Koch, and R. Pichler. The Complexity of XPath Query
Evaluation. In Proc. ACM Symposium on Principles of Database Systems,
2003.

[132] G. Gottlob, C. Koch, and R. Pichler. XPath Query Evaluation: Improving
Time and Space Efficiency. In Proc. International Conference on Data
Engineering, 2003.

[133] J. Grant and D. Backett. RDF Test Cases. W3C, February 2004.
[134] S. Groppe and S. Bttcher. XPath Query Transformation based on XSLT

Stylesheets. In Proc. Int. Workshop on Web Information and Data Man-
agement, pages 106–110. ACM Press, 2003. ISBN 1-58113-725-7.

[135] P. Grosso, E. Maier, J. Marsh, and N. Walsh. XPointer Framework. W3C,
2003. URL http://www.w3.org/TR/xptr-framework/.

[136] H. L. S. W. R. Group. Jena – A Semantic Web Framework for Java. Online
only, 2004.

[137] T. Grust. Accelerating XPath Location Steps. In Proc. ACM SIGMOD
Conf., 2002.

[138] T. Grust, M. V. Keulen, and J. Teubner. Accelerating XPath Evaluation
in any RDBMS. ACM Transactions on Database Systems, 29(1):91–131,
2004. ISSN 0362-5915.

[139] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In Proc. Int.
Conf. on Very Large Databases, 2004.

[140] R. Guha. rdfDB Query Language. Online only, 2000.
[141] R. Guha, O. Lassila, E. Miller, and D. Brickley. Enabling Inferencing. In

Proc. W3C QL’98 – Query Languages 1998, December 1998.
[142] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked

Keyword Search over XML Documents. In Proc. ACM SIGMOD Conf.,
2003.

[143] Z. Guo, M. Li, X. Wang, and A. Zhou. Scalable XSLT Evaluation. In
Proc. Asia Pacific Web Conference, 2004.

[144] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A Comparison of RDF
Query Languages. In Proc. International Semantic Web Conference, 2004.

[145] M. Harren, M. Raghavachari, O. Shmueli, M. Burke, V. Sarkar, and R. Bor-
dawekar. XJ: Integration of XML Processing into Java. In Proc. Interna-
tional World Wide Web Conference, 2004.

[146] S. Harris and N. Gibbins. 3store: Efficient Bulk RDF Storage. In Proc.
International Workshop on Practical and Scalable Semantic Systems, 2003.

[147] A. Harth. Triple Tutorial. Online only, 2004.

[148] P. Hayes and B. McBride. RDF Semantics. W3C, 2004. URL http:
//www.w3.org/TR/rdf-mt/.

[149] J. Hidders. Satisfiability of XPath Expressions. In Int. Workshop on
Databse Programming Languages, 2003.

[150] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A Semantic Web Rule Language—Combining OWL
and RuleML. W3C, 2004. URL http://www.w3.org/Submission/2004/
SUBM-SWRL-20040521/.

[151] I. Horrocks, F. van Harmelen, and P. Patel-Schneider. DAML+OIL. Joint
US/EU ad hoc Agent Markup Language Committee, 2001. URL http:
//www.daml.org/2001/03/daml+oil-index.html.

[152] H. Hosoya and B. Pierce. XDuce: A Typed XML Processing Language.
ACM Transactions on Internet Technology, 3(2):117–148, 2003.

[153] J. Hynynen and O. Lassila. On the Use of Object-Oriented Paradigm in a
Distributed Problem Solver. AI Communications, 2(3):142–151, 1989.

[154] Intellidimension. RDF Gateway. Online only, 2004.
[155] ISO/IEC 13250 Topic Maps. International Organization for Standardiza-

tion, 1999. URL http://www.y12.doe.gov/sgml/sc34/document/0322_
files/iso13250-2nd-ed-v2.pdf.

[156] S. Jain, R. Mahajan, and D. Suciu. Translating XSLT Programs to Effi-
cient SQL Queries. In Proc. Int. World Wide Web Conf., pages 616–626.
ACM Press, 2002. ISBN 1-58113-449-5.

[157] B. Johnson and B. Shneiderman. Tree-maps: a Space-Filling Approach
to the Visualization of Hierarchical Information Structures. In Proc. Int.
Conf.on Visualization, pages 284–291, 1991.

[158] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and
M. Scholl. RQL: A Declarative Query Language for RDF. In Proc. Inter-
national World Wide Web Conference, May 2002.

[159] G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki.
Querying RDF Descriptions for Community Web Portals. In Proc.
Journees Bases de Donnees Avancees, 2001.

[160] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plex-
ousakis, M. Scholl, and K. Tolle. Querying the Semantic Web with RQL.
Computer Networks and ISDN Systems Journal, 42(5):617–640, August
2003.

[161] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plex-
ousakis, M. Scholl, and K. Tolle. RQL: A Functional Query Language for
RDF. In P. Gray, P. King, and A. Poulovassilis, editors, The Functional Ap-
proach to Data Management, chapter 18, pages 435–465. Springer-Verlag,
2004. ISBN 3-540-00375-4.

[162] H. Katz. XsRQL: an XQuery-style Query Language for RDF. Online only,
2004.

[163] H. Katz, D. Chamberlin, D. Draper, M. Fernandez, M. Kay, J. Robie,
M. Rys, J. Simeon, J. Tivy, and P. Wadler. XQuery from the Experts: A
Guide to the W3C XML Query Language. Addison-Wesley, 1st edition, 8
2003.

[164] M. Kay. XPath2.0 Programmer’s Reference. John Wiley, 8 2004.
[165] M. Kay. XSLT 2.0 Programmer’s Reference. John Wiley, 3rd edition, 8

2004.
[166] M. Kay. XSLT and XPath Optimization. In XML Europe, 2004.
[167] M. Kay. XSL Transformations (XSLT) Version 2.0. W3C, 2005.
[168] M. Kay, N. Walsh, H. Zongaro, S. Boag, and J. Tong. XSLT 2.0 and

XQuery 1.0 Serialization. Working draft, W3C, 2 2005.
[169] S. Kepser. A Simple Proof of the Turing-Completeness of XSLT and

XQuery. In Proc. Extreme Markup Languages, 2004.
[170] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object Oriented

and Frame Based Languages. Journal of ACM, 42:741–843, 1995.
[171] C. Kirchner, Z. Oian, P. Singh, and J. Stuber. Xemantics: a Rewriting

Calculus-Based Semantics of XSLT. Technical Report A01-R-386, LORIA,
2002.

[172] G. Klyne, J. Carroll, and B. McBride. Resource Description Framework
(RDF): Concepts and Abstract Syntax. W3C, 2004. URL http://www.
w3.org/TR/rdf-concepts/.

[173] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. FluXQuery:
An Optimizing XQuery Processor for Streaming XML Data. In Proc. Int.
Conf. on Very Large Databases, 2004.

[174] S. Kraus. Use Cases für Xcerpt: Eine positionelle Anfrage- und Transfor-
mationssprache für das Web. Diplomarbeit/Master thesis, University of
Munich, 2004.

[175] R. Ksiezyk. Answer is just a question [of matching Topic Maps]. In Proc.
XML Europe, 2000.

[176] M. Lacher and S. Decker. On the Integration of Topic Maps and RDF
Data. In Proc. Extreme Markup Languages, 2001.

[177] M. Lacher and S. Decker. RDF, Topic Maps, and the Semantic Web.
Markup Languages: Theory and Practice, 3(3):313–331, December 2001.

[178] O. Lassila. BEEF Reference Manual—A Programmer’s Guide to the BEEF
Frame System, Second Version. Technical Report HTKK-TKO-C46, De-
partment of Computer Science, Helsinki University of Technology, 1991.

[179] O. Lassila. Enabling Semantic Web Programming by Integrating RDF and
Common Lisp. In Proc. Semantic Web Working Symposium, july 2001.

[180] O. Lassila. Taking the RDF Model Theory Out for a Spin. In Proc.
Semantic Web Working Symposium, June 2002.

[181] O. Lassila. Ivanhoe: an RDF-Based Frame System. Online only, 2004.
[182] O. Lassila. Wilbur Query Language Comparison. Online only, 2004.
[183] O. Lassila. Wilbur Semantic Web Toolkit. Online only, 2004.
[184] O. Lassila and R. Swick. Resource Description Framework (RDF) Model

and Syntax Specification. W3C, 1999. URL http://www.w3.org/TR/
1999/REC-rdf-syntax-19990222/.

[185] A. Laux and L. Martin. XUpdate—XML Update Language. XML:DB
Initiative, 2000. URL http://xmldb-org.sourceforge.net/xupdate/
xupdate-wd.html.

[186] J. Liu and M. Vincent. Query translation from XSLT to SQL. In Proc.
Int. Database Engineering and Applications Symposium, 2003.

[187] M. Liu. A Logical Foundation for XML. In Proc. International Conference
on Advanced Information Systems Engineering. Springer-Verlag, 2002.

[188] B. Ludäscher, R. Himmeroeder, G. Lausen, W. May, and C. Schlep-
phorst. Managing Semistructured Data with FLORID: A Deductive
Object-oriented Perspective. Information Systems, 23(8):1–25, 1998.

[189] B. Ludäscher, Y. Papakonstantinou, and P. Velikhov. A Brief Introduction
to XMAs. Database Group, University of California, San Diego, 1999.

[190] A. Magkanaraki, G. Karvounarakis, V. Christophides, D. Plexousakis, and
T. Anh. Ontology Storage and Querying. Technical Report 308, Founda-
tion for Research and Technology Hellas, April 2002.

[191] A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. View-
ing the Semantic Web Through RVL Lenses. In Proc. International Se-
mantic Web Conference, October 2003.

[192] D. Maier. Database Desiderata for an XML Query Language. In Proc.
W3C QL’98 – Query Languages 1998, December 1998.

[193] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and XPath 2.0 Func-
tions and Operators. Working draft, W3C, 2 2005.

[194] F. Manola, E. Miller, and B. McBride. RDF Primer. W3C, 2004. URL
http://www.w3.org/TR/rdf-primer/.

[195] M. Marchiori, A. Epifani, and S. Trevisan. Metalog v2.0: Quick User
Guide. Technical report, W3C, 2004.

[196] M. Marchiori and J. Saarela. Query + Metadata + Logic = Metalog. In
Proc. W3C QL’98 – Query Languages 1998, December 1998.

[197] M. Marchiori and J. Saarela. Towards the Semantic Web: Metalog. Online
only, 1999.

[198] W. Martens and F. Neven. Frontiers of tractability for typechecking simple
XML transformations. In Proceedings of the ACM Symposium on Princi-
ples of Database Systems (PODS), pages 23–34, 2004.

[199] M. Marx. Conditional XPath, the First Order Complete XPath Dialect. In
Proc. ACM Symposium on Principles of Database Systems, pages 13–22.
ACM, 6 2004.

[200] M. Marx. XPath with Conditional Axis Relations. In Proc. Extending
Database Technology, 2004.

[201] K. Matsuyama, M. Kraus, K. Kitagawa, and N. Saito. A Path-Based RDF
Query Language for CC/PP and UAProf. In Proc. IEEE Conference on
Pervasive Computing and Communications Workshops, 2004.

[202] N. May, S. Helmer, and G. Moerkotte. Quantifiers in XQuery. In Proc.
Int. Conf. on Web Information Systems Engineering, 2003.

[203] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML
Data Manipulation Language. Theory and Practice of Logic Programming,
3(4):499–526, 2004.

[204] D. McGuinness and F. van Harmelen. OWL Web Ontology Language—
Overview. W3C, 2004. URL http://www.w3.org/TR/owl-features/.

[205] E. Meijer, W. Schulte, and G. Bierman. Programming with Circles, Tri-
angles and Rectangles. In Proc. XML Conference and Exhibition, 2003.

[206] E. Meijer and M. Shields. XMLambda: A functional language for con-
structing and manipulating XML documents. Online only, 1999.

[207] H. Meuss and K. U. Schulz. Complete Answer Aggregates for Treelike
Databases: a novel Approach to combine querying and navigation. ACM
Transactions on Information Systems, 19(2):161–215, 2001. ISSN 1046-
8188.

[208] H. Meuss, K. U. Schulz, and F. Bry. Towards Aggregated Answers for
Semistructured Data. In Proc. Int. Conf. on Database Theory, pages 346–
360. Springer-Verlag, 2001. ISBN 3-540-41456-8.

[209] H. Meuss, K. U. Schulz, F. Weigel, S. Leonardi, and F. Bry. Visual Ex-
ploration and Retrieval of XML Document Collections with the Generic
System X2. Journal on Digital Libraries, 2005.

[210] H. Meyer, I. Bruder, A. Heuer, and G. Weber. The Xircus Search Engine.
In INEX Workshop, pages 119–124, 2002.

[211] G. Miklau and D. Suciu. Containment and Equivalence for an XPath
Fragment. In Proc. ACM Symposium on Principles of Database Systems,
pages 65–76. ACM Press, 2002. ISBN 1-58113-507-6.

[212] L. Miller. Inkling: RDF query using SquishQL. Online only, 2004.
[213] L. Miller, A. Seaborne, and A. Reggiori. Three Implementations of

SquishQL, a Simple RDF Query Language. In Proc. International Se-
mantic Web Conference, June 2002.

[214] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. In
Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, May 15-17, 2000, Dallas, Texas,
USA, pages 11–22. ACM, 2000. ISBN 1-58113-214-X.

[215] K. D. Munroe and Y. Papakonstantinou. BBQ: A Visual Interface for
Integrated Browsing and Querying of XML. In Proc. Conf. on Visual
Database Systems, pages 277–296. Kluwer, B.V., 2000. ISBN 0-7923-7835-
0.

[216] M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML Access Control using
Static Analysis. In Proc. ACM Conf. on Computer and Communications
Security, pages 73–84. ACM Press, 2003. ISBN 1-58113-738-9.

[217] M. Nilsson, W. Siberski, and J. Tane. Edutella Retrieval Service: Concepts
and RDF Syntax. Online only, June 2004.

[218] M. Odersky. Report on the Programming Language Scala. Technical
report, Ecole Polytechnique Federale de Lausanne, 2002.

[219] U. Ogbuji. Thinking XML: Basic XML and RDF techniques for knowledge
management: Part 6: RDF Query using Versa. Online only, April 2002.

[220] U. Ogbuji. Versa by example. Online only, 2004.
[221] R. Oldakowski and C. Bizer. RAP: RDF API for PHP. In Proc. Interna-

tional Workshop on Interpreted Languages, 2004.
[222] B. Oliboni and L. Tanca. A Visual Language should be easy to use: a Step

Forward for XML-GL. Information Systems, 27(7):459–486, 2002. ISSN
0306-4379.

[223] M. Olson and U. Ogbuji. Versa Specification. Online only, 2003.
[224] D. Olteanu. Evaluation of XPath Queries against XML Streams. Disser-

tation/Ph.D. thesis, University of Munich, 1 2005.
[225] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking Forward. In

Proc. EDBT Workshop on XML-Based Data Management, volume 2490
of LNCS. Springer-Verlag, 3 2002.

[226] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORD-
PATHs: Insert-friendly XML Node Labels. In Proc. ACM SIGMOD Conf.,
pages 903–908. ACM Press, 2004. ISBN 1-58113-859-8.

[227] K. Ono, T. Koyanagi, M. Abe, and M. Hori. XSLT Stylesheet Generation
by Example with WYSIWYG Editing. In Proc. Symposium on Applica-
tions and the Internet, 2002.

[228] N. Onose and J. Simeon. XQuery at your Web Service. In Proc. Int. World
Wide Web Conf., pages 603–611. ACM Press, 2004. ISBN 1-58113-844-X.

[229] S. Palmer. Pondering RDF Path. Online only, 2003.
[230] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange

across Heterogeneous Information Sources. In Proc. International Confer-
ence on Data Engineering, pages 251–260, 1995.

[231] P. Patel-Schneider and J. Simeon. The Yin/Yang Web: XML Syntax and
RDF Semantics. In Proc. International World Wide Web Conference, May
2002.

[232] S. Pepper and G. Moore. XML Topic Maps (XTM) 1.0. TopicMaps.org,
2001. URL http://www.topicmaps.org/xtm/index.html.

[233] E. Pietriga, J.-Y. Vion-Dury, and V. Quint. VXT: a Visual Approach to
XML Transformations. In Proc. ACM Symposium on Document Engineer-
ing, pages 1–10. ACM Press, 2001. ISBN 1-58113-432-0.

[234] R. Pinchuk. Toma - Topic Map Query Language. Online only, 2004.
[235] M. Plusch. Water: Simplified Web Services and XML Programming. Wiley,

2002. ISBN 0764525360.
[236] E. Prud’hommeaux. Algae Extension for Rules. Online only, 2004.
[237] E. Prud’hommeaux. Algae RDF Query Language. Online only, 2004.
[238] E. Prud’hommeaux and A. Seaborne. BRQL – A Query Language for

RDF. Online only, 2004.
[239] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF,

February 2005.
[240] A. Reggiori and D.-W. van Gulik. RDFStore—Perl API for RDF Storage.

Online only, 2004.
[241] D. Reynolds. RDF-QBE: a Semantic Web Building Block. Technical Re-

port HPL-2002-327, HP Labs, 2002.
[242] J. Robie. The Syntactic Web: Syntax and Semantics on the Web. In Proc.

XML Conference and Exposition, December 2001.
[243] J. Robie. Updates in XQuery. In XML Conference & Exhibiton, 2001.
[244] J. Robie, E. Derksen, P. Frankhauser, E. Howland, G. Huck, I. Macherius,

M. Murata, M. Resnick, and H. Schning. XQL (XML Query Language).
Online only, 1999.

[245] J. Robie, L. M. Garshol, S. Newcomb, M. Fuchs, L. Miller, D. Brickley,
V. Christophides, and G. Karvounarakis. The Syntactic Web: Syntax and
Semantics on the Web. Markup Languages: Theory and Practice, 3(4):
411–440, 2001.

[246] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). In Proc.
W3C QL’98 – Query Languages 1998, December 1998.

[247] S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language
for the Web. Dissertation/Ph.D. thesis, University of Munich, 2004.

[248] S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical
Introduction to Xcerpt. In Proc. Extreme Markup Languages, August 2004.

[249] S. Schott and M. L. Noga. Lazy XSL Transformations. In Proc. ACM Sym-
posium on Document Engineering, pages 9–18. ACM Press, 2003. ISBN
1-58113-724-9.

[250] T. Schwentick. XPath Query Containment. SIGMOD Record, 2004.
[251] A. Seaborne. RDQL – A Query Language for RDF. Online only, January

2004.
[252] A. Seaborne. RDQL – RDF Data Query Language. Online only, 2004.
[253] A. Seaborne. A Programmer’s Introduction to RDQL. Online only, 2002

April.
[254] D. Seipel. Processing XML-Documents in Prolog. In Workshop on Logic

Programming, 2002.
[255] D. Seipel and J. Baumeister. Declarative Methods for the Evaluation of

Ontologies. KI–Knstliche Intelligenz, 4:51–57, 2004.
[256] D. Seipel, J. Baumeister, and M. Hopfner. Declaratively Querying and

Visualizing Knowledge Bases in XML. In Proc. Int. Conf. on Applications
of Declarative Programming and Knowledge Management, 2004.

[257] R. Shearer. REX evaluation. Online only, 2004.
[258] J. E. Simpson. XPath and XPointer. O’Reilly, 1st edition, 9 2002.
[259] M. Sintek and S. Decker. TRIPLE—An RDF Query, Inference, and Trans-

formation Language. In Proc. Deductive Database and Knowledge Man-
agement, October 2001.

[260] M. Sintek and S. Decker. TRIPLE—A Query, Inference, and Transfor-
mation Language for the Semantic Web. In Proc. International Semantic
Web Conference, June 2002.

[261] M. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language—
Guide. W3C, 2004. URL http://www.w3.org/TR/owl-guide/.

[262] A. Souzis. RxPath. Online only, 2004.
[263] A. Souzis. RxPath Specification Proposal. Online only, 2004.
[264] A. Souzis. RxSLT. Online only, 2004.
[265] A. Souzis. RxUpdate. Online only, 2004.
[266] D. Steer. TreeHugger 1.0 Introduction. Online only, 2003.
[267] P. Stickler. CBD—Concise Bounded Description. Online only, 2004.
[268] I. Tatarinov and A. Halevy. Efficient Query Reformulation in peer Data

Management Systems. In Proc. ACM SIGMOD Conf., pages 539–550.
ACM Press, 2004. ISBN 1-58113-859-8.

[269] J. Tennison. XSLT and XPath On The Edge. John Wiley, 10 2001.

[270] A. Theobald and G. Weikum. The XXL Search Engine: Ranked Retrieval
of XML Data using Indexes and Ontologies. In Proc. ACM SIGMOD
Conf., pages 615–615. ACM Press, 2002. ISBN 1-58113-497-5.

[271] K. Tolle and F. Wleklinski. easy RDF Query Language (eRQL). On-
line only, 2004. URL http://www.dbis.informatik.uni-frankfurt.de/
~tolle/RDF/eRQL/.

[272] A. Tozawa. Towards Static Type Checking for XSLT. In Proc. ACM
Symposium on Document Engineering, pages 18–27. ACM Press, 2001.
ISBN 1-58113-432-0.

[273] A. Trombetta and D. Montesi. Equivalences and Optimizations in an
Expressive XSLT Fragment. In Proc. Int. Database Engineering and Ap-
plications Symposium, 2004.

[274] L. Villard and N. Layada. An Incremental XSLT Transformation Processor
for XML Document Manipulation. In Proc. Int. World Wide Web Conf.,
pages 474–485. ACM Press, 2002. ISBN 1-58113-449-5.

[275] P. Wadler. Two semantics for XPath. Online only, 2000.
[276] M. Wallace and C. Runciman. Haskell and XML: Generic Combinators or

Type-Based Translation. In Proc. International Conference on Functional
Programming, 1999.

[277] N. Walsh. RDF Twig: accessing RDF graphs in XSLT. In Proc. Extreme
Markup Languages, 2003.

[278] J. W. W. Wan and G. Dobbie. Mining Association Rules from XML data
using XQuery. In Proc. Workshop on Australasian Information Security,
Data Mining Web Intelligence, and Software Internationalisation, pages
169–174. Australian Computer Society, Inc., 2004.

[279] S. Waworuntu and J. Bailey. XSLTGen: A System for Automatically Gen-
erating XML Transformations via Semantic Mappings. In Proc. Int. Conf.
on Conceptual Modeling, 2004.

[280] F. Weigel. A Survey of Indexing Techniques for Semistructured Docu-
ments. Master’s thesis, Institute for Informatics, University of Munich,
http://www.pms.ifi.lmu.de/index.html#PA_Felix.Weigel, 2002.

[281] N. Wiegand. Investigating XQuery for Querying across Database Object
Types. SIGMOD Record, 31(2):28–33, 2002. ISSN 0163-5808.

[282] U. Wiger. XMErl—Interfacing XML and Erlang. In Proc. International
Erlang User Conference, 2000.

[283] A. Wilk and W. Drabent. On Types for XML Query Language Xcerpt. In
Proc. Workshop on Principles and Practice of Semantic Web Reasoning,
LNCS 2901. Springer-Verlag, 2003.

[284] C. Wilper. RIDIQL Reference. Online only, 2004.
[285] P. T. Wood. On the Equivalence of XML Patterns. In Proc. Int. Conf.

on Computational Logic, pages 1152–1166. Springer-Verlag, 2000. ISBN
3-540-67797-6.

[286] C. Zaniolo. The Database Language GEM. In Proc. ACM SIGMOD Conf.,
1983.

[287] X. Zhang, K. Dimitrova, L. Wang, M. E. Sayed, B. Murphy, B. Pielech,
M. Mulchandani, L. Ding, and E. A. Rundensteiner. Rainbow: multi-

XQuery Optimization using Materialized XML Views. In Proc. ACM
SIGMOD Conf., pages 671–671. ACM Press, 2003. ISBN 1-58113-634-X.

[288] X. Zhang, B. Pielech, and E. A. Rundesnteiner. Honey, I shrunk the
XQuery!: an XML Algebra Optimization Approach. In Proc. International
Workshop on Web Information and Data Management, pages 15–22. ACM
Press, 2002. ISBN 1-58113-593-9.

[289] M. Zoof. Query By Example. In Proc. AFIPS National Computer Con-
ference, 1975.

[290] M. Zoof. Query By Example: A Data Base Language. IBM Systems
Journal, 16(4):324–343, 1977.

