400 research outputs found

    A Silicon Carbide Power Management Solution for High Temperature Applications

    Get PDF
    The increasing demand for discrete power devices capable of operating in high temperature and high voltage applications has spurred on the research of semiconductor materials with the potential of breaking through the limitations of traditional silicon. Gallium nitride (GaN) and silicon carbide (SiC), both of which are wide bandgap materials, have garnered the attention of researchers and gradually gained market share. Although these wide bandgap power devices enable more ambitious commercial applications compared to their silicon-based counterparts, reaching their potential is contingent upon developing integrated circuits (ICs) capable of operating in similar environments. The foundation of any electrical system is the ability to efficiently condition and supply power. The work presented in this thesis explores integrated SiC power management solutions in the form of linear regulators and switched capacitor converters. While switched-mode converters provide high efficiency, the requirement of an inductor hinders the development of a compact, integrated solution that can endure harsh operating environments. Although the primary research motivation for wide bandgap ICs has been to provide control and protection circuitry for power devices, the circuitry designed in this work can be incorporated in stand-alone applications as well. Battery or generator powered data acquisition systems targeted towards monitoring industrial machinery is one potential usage scenario

    Estimation and control techniques in power converters

    Get PDF
    This thesis develops estimation and control techniques in power converters. The target applications are voltage regulators for modern microprocessors (VRM) and distributed DC power systems (DPS). A method for the on-line calibration of a circuit board trace resistance at the output of a buck converter is described. This method is applied to obtain an accurate and high-bandwidth measurement of the load current in the VRM applications, thus enabling an accurate DC load-line regulation as well as a fast transient response. Experimental results show an accuracy well within the tolerance band of this application, and exceeding all other popular methods. A method for estimating the phase current unbalance in a multi-phase buck converter is presented. The method uses the information contained in the voltage drop at the input capacitor's ESR to estimate the average current in each phase. The method can be implemented with a low-rate down-sampling A/D converter and is not computationally intensive. Experimental results are presented, showing good agreement between the estimates and the measured values. An online adaptation method of the gain of an output current feedforward path in VRM applications is developed. The feedforward path can improve substantially the converter's response to load transients but it depends on parameters of the power train that are not known with precision. By analyzing the error voltage and finding its correlation with the parameter error, a gradient algorithm is derived that makes the latter vanish. Experimental results show a substantial improvement of the transient response to a load current step in a prototype VRM. Impedance interactions between interconnected power subsystems are analyzed. Typical examples of these interconnections are a power converter with a dynamic load, a power converter with an input line filter, power converters connected in parallel or cascade, and combinations of the above. A survey of the most relevant results in this area is presented together with detailed examples. Fundamental limits on the performance of the interconnected systems are exposed and a system-level design approach is proposed and corroborated with simulations

    Fuzzy control of synchronous buck converters utilizing fuzzy inference system for renewable energy applications

    Get PDF
    In the present research, an innovative fuzzy control approach is developed specifically for synchronous buck converters utilized in renewable energy applications. The proposed control strategy effectively manages load changes, nonlinear loads, and input voltage variations while improving both stability and transient response. The method employs a fuzzy inference system (FIS) that integrates adaptive control, feedforward control, and multivariable control to guarantee optimal performance under a wide range of operating conditions. The design of the control scheme involves formulating a rule base connecting input variables to an output variable, which signifies the duty cycle of the switching signal. The rule base is configured to dynamically modify control rules and membership functions in accordance with load conditions, input voltage fluctuations, and other contributing factors. The performance of the control scheme is evaluated in comparison to conventional techniques, such as proportional integral derivative (PID) control. Results indicate that the advanced fuzzy control approach surpasses traditional methods in terms of voltage regulation, stability, and transient response, particularly when faced with variable load conditions and input voltage changes. As a result, this control scheme is highly compatible with renewable energy systems, encompassing solar and wind power installations where input voltage and load conditions may experience considerable fluctuations. This research highlights the potential of the proposed fuzzy control approach to significantly enhance the performance and reliability of renewable energy systems

    High power-supply rejection current-mode low-dropout linear regulator

    Get PDF
    Power management components can be found in a host of different applications ranging from portable hand held gadgets to modern avionics to advanced medical instrumentations, among many other applications. Low-dropout (LDO) linear regulators are particularly popular owing to their: ease of use, low cost, high accuracy, low noise, and high bandwidth. With all its glory, however, it tends to underperform switched-mode power supplies (SMPS) when with comes to power conversion efficiency, although the later generates a lot of ripple at its output. With the growing need to improve system efficiency (hence longer battery life) without degrading system performance, many high end (noise sensitive) applications such as data converters, RF transceivers, precision signal conditioning, among others, use high efficiency SMPS with LDO regulators as post-regulators for rejecting the ripple generated by SMPS. This attribute of LDO regulators is known as power supply rejection (PSR). With the trend towards increasing switching frequency for SMPS, to minimize PC board real estate, it is becoming ever more difficult for LDO regulators to suppress the associate high frequency ripple since at such high frequencies, different parasitic components of the LDO regulator start to deteriorate its PSR performance. There have been a handful of different techniques suggested in the literature that can be used to achieve good PSR performance at higher frequencies. However, each of these techniques suffers from a number of drawbacks ranging from reduced efficiency to increased cost to increased solution size, and with the growing demand for higher efficiency and smaller power supplies, these techniques have their clear limitations. The objective of this research project is to develop a novel current-mode LDO regulator that can achieve good high frequency PSR performance without suffering from the afore mentioned drawbacks. The proposed architecture was fabricated using a proprietary 1.5 um Bipolar process technology, and the measurement results show a PSR improvement of 20dB (at high frequencies) over conventional regulators. Moreover, the proposed LDO regulator requires a small 15nF output capacitor for stability, which is far smaller than some of the currently used techniques.M.S.Committee Chair: Rincón-Mora, Gabriel; Committee Member: Ghovanloo, Maysam; Committee Member: Leach, W. Marshal

    Control and monitoring of solar photovoltaic panel using PLC

    Get PDF
    A renewable energy source plays an important role in electricity generation. Various renewable energy sources like wind, solar, geothermal, ocean thermal, and biomass can be used for generation of electricity and for meeting our daily energy needs. Energy from the sun is the best option for electricity generation as it is available everywhere and is free to harness. On an average the sunshine hour in Malaysia is about eight hours annually also the sun shine shines in Malaysia for about nine months in a year. Electricity from the sun can be generated through the solar photovoltaic modules (SPV). The SPV comes in various power output to meet the load requirement. Maximization of power from a solar photo voltaic module (SPV) is of special interest as the efficiency of the SPV module is very low. A peak power tracker is used for extracting the maximum power from the SPV module. The present work describes the potential system benefits of simple tracking solar system using stepper motor and light sensor. This method increases power collection efficiency by developing a device that tracks the sun to keep the panel at the right angle to its rays. A solar tracking system is designed, implemented and experimentally tested. The design details and the experimental results are shown

    A Novel Control Method For Grid Side Inverters Under Generalized Unbalanced Operating Conditions

    Get PDF
    This thesis provides a summary on renewable energy sources integration into the grid, using an inverter, along with a comprehensive literature research on variety of available control methods. A new generalized method for grid side inverter control under unbalanced operating conditions is also proposed. The presented control method provides complete harmonic elimination in line currents and DC link voltage with adjustable power factor. The method is general, and can be used for all levels of imbalance in grid voltages and line impedances. The control algorithm proposed in this work has been implemented by using MATLAB Simulink and dSPACE RT1104 control system. Simulation and experimental results presented in this thesis are in excellent agreement

    Design of analog predistorter

    Get PDF
    Abstract. In this thesis, two analog predistorter circuits are designed for linearizing the CMOS power amplifier in MIMO transceivers. The first circuit uses two parallel transistors as conventional derivative superposition, where derivatives of the transistor drain currents are biased to have opposite phases for 3rd-order distortion components. This results in the cancellation and thus providing a very linear 3rd-order response. The other design, using complementary derivative superposition topology, has p- and n-type transistors with a common drain self-biasing to achieve expansive power gain. This is used to improve the 1-dB compression point of the CMOS power amplifier. Simulation results of conventional derivative superposition circuit show over 25 dB improvement in distortion level, while still providing a fair amount of power gain. Implementation with a CMOS power amplifier shows a 2.6 dB improvement in 1 dB compression point. With the circuit having expansive characteristics, adjustable gain-expansion behaviour is achieved. With the implemented digital bias control, expansion between 2.5 dB and 4 dB is achieved, with gain variation between -2.4 dB and 1 dB. With a CMOS power amplifier, 3.5 dB improvement in 1 dB compression point is achieved, allowing the power amplifier to be used with greater efficiency. Both circuits are implemented using 22nm CMOS SOI technology and submitted to fabrication

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Tehonhallinta integroidulle hermosignaalin hallintapiirille

    Get PDF
    Wireless biosignal measurement is a growing opportunity to increase the efficiency of medical procedures: An integrated circuit (receiver) is implanted inside human tissue and it’s output can be read wirelessly with a transmitter that also provides energy for the implant. This method requires RFID technology, where wireless data is transmitted in the RF-band back-and-forth between the receiver and transmitter. The receiver can be implemented either as an active design, where a local power supply is required inside the receiver, or as a passive design without internal energy storage. However, as the modern CMOS process is fairly advanced and the power consumption is low - passive designs are the most common. In the passive design the power for the receiver is drawn from the electromagnetic field transmitted to the chip, generally with electromagnetic induction. A design and implementation of an 860 MHz UHF-band RFID power system is presented in this work and its performance evaluated. The system was designed for a wireless EEG (electroencephalography) reader that can be implanted under the skalp – but the design principles can be expanded upon any RF-band RFID system. The final system works with an input power of -6.8 dBm with a startup time of slightly below 40 µs with specifications of 700 mV to 150 µA load. The LDO line regulation achieves a -51 dB level at DC with the full bandwidth covered. The RF Rectifier uses the design principles of a cross-coupled rectifier and a 63% conversion efficiency is achieved with the proposed matching circuitry. The reference circuitry is designed with the Betamultiplier architecture and expanded slightly to improve the current consumption in the circuit. The reference current is set at 100 nA and reference voltage at 400 mV.Langaton biosignaalien mittaus mahdollistaa yleisien lääketieteellisien signaalien mittauksien tehokkuuden kasvamista: Integroitu elektroninen piiri voidaan asentaa ihmisen kudokseen ja tämän sirun ulosantama tieto voidaan lukea langattomasti lukijalla, mikä useassa tapauksessa toimittaa myös energian sirulle. Tämä teknologia vaatii RFID teknologiaa, mikä on hyvin tunnettu ja tutkittu langattoman datan siirtämiseen kehitelty teknologia radiotaajuuksilla lukijan ja vastaanottimen välillä. Lukija voidaan suunnitella sekä passiiviseksi että aktiiviseksi, mutta modernin CMOS- teknologian tehonkulutus ominaisuuksien vuoksi RFID-lukijat ovat yleisesti passiivisia. Passiivisessa RFID suunnittelussa lukija vastaanottaa tarvitsemansa energian vastaanottimelta yleisesti elektromagneettisen induktion avulla. 860 MHz UHF-kaistan suunnitelu ja toteutus käydään läpi tässä työssä ja suorityskyky on mitattu simulaatioilla. Itse järjestelmä oli alunperin suunniteltu langattomaan EEG-lukijaan (aivosähkökäyrä), minkä pystyisi asentamaan päänahan alle - mutta periaatteet pätevät mihin tahansa RF-kaistan järjestelmään. Lopullinen järjestelmä toimii -6.8 dBm sisääntuloteholla ja käynnistysmisaika on hieman alle 40µs 700 mV ja 150 µA kuormaan. Linjaregulaatio saavuttaa -51 dB arvon alhaisilla taajuuksilla ja regulaatio on koko kaistan kattava. RF-tasasuuntaaja saavuttaa 63 % AC-DC huippu tehonmuutosarvon ehdotetulla impedanssien sovituspiirillä. Referenssipiiri on suunnitellu Betamultiplier-arkkitehtuurilla ja modifioitu pienentämään virrankulutusta. Referenssit ovat 100 nA ja 400 mV
    corecore