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Abstract 

The increasing demand for discrete power devices capable of operating in high temperature 

and high voltage applications has spurred on the research of semiconductor materials with the 

potential of breaking through the limitations of traditional silicon. Gallium nitride (GaN) and 

silicon carbide (SiC), both of which are wide bandgap materials, have garnered the attention of 

researchers and gradually gained market share.  Although these wide bandgap power devices 

enable more ambitious commercial applications compared to their silicon-based counterparts, 

reaching their potential is contingent upon developing integrated circuits (ICs) capable of 

operating in similar environments. 

The foundation of any electrical system is the ability to efficiently condition and supply 

power. The work presented in this thesis explores integrated SiC power management solutions in 

the form of linear regulators and switched capacitor converters. While switched-mode converters 

provide high efficiency, the requirement of an inductor hinders the development of a compact, 

integrated solution that can endure harsh operating environments. 

Although the primary research motivation for wide bandgap ICs has been to provide 

control and protection circuitry for power devices, the circuitry designed in this work can be 

incorporated in stand-alone applications as well. Battery or generator powered data acquisition 

systems targeted towards monitoring industrial machinery is one potential usage scenario. 
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CHAPTER 1 INTRODUCTION 

1.1 Overview of Power Management Integrated Circuits 

Developing power management solutions to efficiently condition and regulate a power 

supply voltage has presented a continuing challenge to designers and researchers. The ubiquity of 

battery powered, portable devices such as smartphones and tablets has been a driving force behind 

efforts to improve power management designs. Motivating factors for the continued emphasis on 

power management circuitry include the demand for improving efficiency, decreasing response 

time to load transients, and reducing system footprint (e.g. moving to a system-on-chip solution). 

Without a well-regulated supply voltage, applications with transient loads can experience 

undesirable performance variations or even fail to operate. In the case of smartphones, a 

combination of analog and digital circuitry is reliant upon a battery to supply the energy. However, 

a battery will not provide a consistent voltage throughout its charge/discharge cycle. Even within 

a relatively small time sample of this cycle, the clock dependent load transients of digital circuitry 

can cause a noticeable voltage swing from the battery. This is due in part to the battery chemistry 

and the corresponding internal resistance, which produces a voltage drop during the load transients.  

The regulation of the battery voltage is accomplished with DC-DC converters, which can 

include a combination of linear regulators and switched-mode converters. Switched-mode 

converters encompass several different topologies, with the most common being the traditional 

buck (step-down) and boost (step-up) converters. More complex topologies include the single-

ended primary-inductor converter (SEPIC) which offers the functionality of both the buck and 

boost converters.  
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 Linear regulators provide functionality similar to the buck converter by stepping down the 

supply voltage. The generic diagrams for a linear regulator and buck converter are illustrated in 

Fig. 1.1 and Fig. 1.2, respectively. One noticeable difference is the use of an inductor in the 

switched-mode converter. Although commonly used, an inductor is not required for all switching 

converter implementations. The inductor-less topologies are often referred to as “charge pumps” 

and while they generally do not have the same output current capabilities, a system-on-chip 

topology is made possible by eliminating the need for a discrete inductor.  

An operational amplifier (op-amp) is used in both the linear regulator and switched-mode 

converter to compare the output voltage with a reference voltage. The difference between the 

reference and output voltages is amplified to give a control signal. The mixed-signal nature of the 

buck converter’s feedback loop is one of the key differences between the switching converter and 

its linear regulator counterpart. The linear regulator functions by dynamically controlling the 

conductance of a series pass transistor with its feedback loop to obtain a desired output voltage. 

Fig. 1.1. A generic diagram of a linear regulator. 
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On the other hand, the buck converter uses an op-amp in conjunction with a pulse-width-

modulation (PWM) generator to control the switching transistor with a digital pulse-train. 

Another major difference is that the buck converter can provide higher efficiency compared 

to the linear regulator. The linear regulator achieves a lower output voltage by dropping part of the 

input voltage across a pass transistor which results in wasted power proportional to the load 

current. A switched-mode converter stores energy in an ideally lossless inductor and capacitor 

during half of the switching cycle and discharges the stored energy during the other half of the 

cycle. Low-dropout linear regulators present a possible exception in regards to limited efficiency 

since the input voltage can be made close to the selected output voltage, reducing the voltage drop 

across the pass transistor and lowering the power loss. 

Despite the potential for higher efficiency operation, there are multiple drawbacks to 

switched-mode operation that result in the linear regulator having inherent advantages. In addition 

to eliminating the need for a discrete inductor, linear regulators produce less noise and have lower 

response times. The reduction in noise is due to the linear regulator not having abrupt signals (i.e. 

a digital pulse-train) driving a power transistor which can inject noise into the output as is the case 

Fig. 1.2. A generic diagram of a buck converter. 



 

4 

 

for switch-mode converters. The slower response times of switched-mode converter topologies 

can be linked in part to the requirement of more components and the mixed-signal nature of the 

control scheme. Whereas the feedback network for a linear regulator topology consists primarily 

of an op-amp, switched-mode converters often require multiple mixed-signal blocks including a 

non-overlapping clock generator, pulse-width modulation generator, sawtooth waveform 

generator, and an op-amp.  

The bandwidth of a switched-mode converter also limits its response times since it must 

be below the switching frequency. Although a higher switching frequency allows for higher 

bandwidth and smaller passive components, due to less energy storage requirements per cycle, the 

switching losses of the converter will increase. At higher switching frequencies, the high frequency 

noise component of the digital signals can also substantially impact the control circuitry and 

necessitate the use of filters. For these reasons, the switching frequency of switched-mode 

converters is typically between 20 kHz and 10 MHz. The feedback and compensation required to 

ensure stable operation further limit the regulator’s bandwidth below the selected switching 

frequency. 

1.2 Motivation for Silicon Carbide 

Traditional silicon process technologies have been unable to keep pace with the continued 

demand for increasing power density and operating temperature capabilities of commercial 

applications. Due to the maturity of silicon, it has become imperative to identify new 

semiconductor materials to allow for continued improvement. Silicon carbide’s properties as a 

wide bandgap semiconductor material have enabled the development of power devices capable of 

lower switching losses along with higher temperature and voltage capabilities [1]. Although SiC 

power devices are commercially available, exploring their potential remains a focus within the 
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research community. Packaging continues to be one such area of research. While a SiC power 

MOSFET is theoretically capable of sustained operation at high temperatures, the materials the 

power module is composed of must also be fully capable of enduring the extreme operating 

environment. Similarly, the ability to achieve higher switching frequencies is dependent on the 

parasitic wiring inductances within the power module. Research teams are continuing to examine 

the optimal solders, wire bonding techniques, epoxies, and a host of other packaging related 

concerns.  

Another barrier to unlocking the full potential of SiC power devices is the control and 

protection circuitries around the devices. The present solution is to use silicon and silicon-on-

insulator (SOI) integrated circuitry, but these solutions are limited to approximately 125 ºC and 

250 ºC before reliability concerns begin to arise [2], [3]. In order to withstand the extreme 

operating environments, heat sinks or cooling systems must be used with silicon based ICs. Both 

solutions are costly and result in larger system footprints. Given that the IC must be thermally 

isolated from the heat source, it also prohibits a complete module, or system-in-package, design. 

This ultimately becomes a detriment to the application by increasing parasitic elements due to 

longer wires while reducing system reliability as well as power density [4] – [6]. 

The demand for developing IC technology with operating temperature capabilities similar 

to SiC power devices has been a driving force behind current research efforts in SiC ICs. However, 

it is not the only motivating factor. Research efforts are currently underway to design stand-alone 

sensing and data acquisition ICs capable of operation beyond 300 ºC. From a power management 

standpoint, literature has been published demonstrating the operation of linear regulators 

fabricated on SOI and all-NFET SiC processes at approximately 225 ºC and 300 ºC, respectively 

[7], [8]. Raytheon Systems Limited (RSL) has fabricated SiC CMOS ICs capable of operating at 
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temperatures exceeding 400 ºC, representing a viable path towards creating more complex mixed-

signal circuitry [9] – [11]. This work aims to present the design of SiC CMOS power management 

circuitry in the form of linear regulators and a switched capacitor converter, each of which can 

become a crucial building block for future mixed-signal solutions for high temperature 

applications. 

1.3 Thesis Structure 

This thesis is organized into the following chapters. 

 Chapter 1: Introduction – A brief overview is presented for power management 

integrated circuits along with the motivation for silicon carbide devices and ICs. 

 Chapter 2: Silicon Carbide Integrated Circuits – The properties of silicon carbide are 

briefly analyzed and characteristics of the Raytheon HiTSiC® CMOS process are 

described. Publications detailing the successful fabrication and testing of SiC ICs are 

reviewed. 

 Chapter 3: Overview of Circuits and Systems – A more detailed presentation of power 

management integrated circuitry, specifically linear regulators and switched capacitor 

converters, is given. Standard linear regulator topologies are described and the state-

of-the-art switched capacitor converters are reviewed.  

 Chapter 4:  Design and Simulation – The design process of the SiC CMOS linear 

regulators and switched capacitor converter is presented. Multiple operational amplifier 

topologies are examined for the linear regulators. The building blocks of the switched 

capacitor converter ranging from the digital controller to the voltage-controlled 

oscillator are described. The schematic and simulation results are provided for each of 

the circuits.  
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 Chapter 5: Chip Fabrication and Test Results – The fabrication and test results of the 

Vulcan II linear regulator are presented. Vulcan II is the codename for the University 

of Arkansas’s second fabrication with RSL, which is described in Chapter 2. 

 Chapter 6: Conclusions and Future Work – The conclusions from designing the linear 

regulators and switched capacitor converter are given along with recommendations for 

future work in integrated SiC CMOS technology. 
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CHAPTER 2 SILICON CARBIDE INTEGRATED CIRCUITS 

2.1 Properties of Silicon Carbide 

Wide bandgap semiconductor devices including GaN and SiC have inherent advantages 

over silicon (Si) in power electronics applications. The wide bandgap materials provide higher 

breakdown electric fields and greater thermal conductivity [6]. The development of power 

semiconductor devices using these materials has led to superior breakdown voltages, operation at 

higher junction temperatures, and lower switching losses.  

A comparison between wide bandgap semiconductors and silicon is given in Table 2.1 [6], 

[12]. SiC is reported to have over 150 different polytypes, but research and commercialization has 

primarily focused upon 4H-SiC and 6H-SiC [6]. The breakdown, or critical, electric field of SiC 

is nearly 10 times that of silicon, making it an attractive solution for high voltage applications. 

Table 2.1. A comparison of silicon and wide bandgap semiconductor properties. 

Material 

Bandgap 

Energy 

Eg 

(eV) 

Intrinsic 

Carrier 

Concentration 

ni 

(cm-3) 

Relative 

Dielectric 

Constant 

εs 

Electron 

Mobility 

µn 

(cm2/V*s) 

Breakdown  

Electric 

Field 

EB 

(MV/cm) 

Thermal 

Conductivity 

λ 

(W/cm*K) 

Si 1.1 1.5 x 1010 11.8 1350 0.3 1.5 

GaN 3.39 1.9 x 10-10 9.0 900 3.3 1.3 

4H-SiC 3.26 8.2 x 10-9 
9.76a 

10.32b 

1020a 

1200b 

2.2a 

2.8b 
4.5 

6H-SiC 3.02 2.3 x 10-6 
9.66a 

10.03b 

450a 

100b 

1.7a 

3.0b 
4.5 

Diamond 5.45 1.6 x 10-27 5.5 1900 5.6 20 

Note: a – Perpendicular to c-axis, b – Parallel to c-axis. 
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 As stated in Table 2.1, the thermal conductivity of SiC is three times greater than that of 

silicon. It should be noted that the thermal conductivity is reported to vary substantially across 

temperature in [12]. Despite the temperature dependency, SiC remains superior to Si with respect 

to thermal conductivity and is able to achieve higher operating temperatures.  

In an application with a given voltage rating, the advantages of SiC allow power devices 

to be fabricated at a fraction of the size of silicon devices. The result is not only a smaller footprint 

with increased power density, but also the potential for lower switching losses. The material 

characteristics and advantages have led to the adoption of discrete SiC devices within the power 

electronics market. Nevertheless, the potential of SiC cannot be fully realized without the ability 

to place mixed-signal circuitry in the same module or package as the power device. 

2.2 Background on SiC ICs 

Driven by the motivation of developing a single module consisting of an integrated gate 

driver alongside the power device, research into SiC ICs began in the 1990s. The first literature 

reports of SiC ICs demonstrate the successful fabrication of building block analog and digital 

circuitry in 6H-SiC processes [13] – [16]. A gate driver was successfully designed and fabricated 

in 5 µm 6H-SiC technology by 1999 [17], but manufacturing challenges ultimately led to the 

stagnation of research efforts in SiC IC technology while these fundamental concerns were 

addressed. 

The manufacturing challenges pertaining to both SiC ICs and power devices are reported 

to be linked in part to trapped charges at the SiC/SiO2 interface [18] – [20]. Literature suggests 

that charges become trapped in the oxide, leading to a reduction in mobility, threshold voltage 

instability, and ultimately performance degradation. Improvements to 4H-SiC manufacturing 
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techniques have lowered the change in mobility and threshold voltage by methods such as 

implanting nitrogen in the gate oxide prior to fabrication [21], [22]. 

Process improvements and production of discrete power devices as well as LEDs in 4H-

SiC led to the development of Cree’s 2 µm all-NFET 4H-SiC process. The successfully fabricated 

and tested circuits included a linear regulator and UVLO [8], [23]. General Electric has also 

reported operation of an all-NFET 4H-SiC technology at 500 ºC [24]. Building block circuitry 

such as differential amplifiers and inverters have also been reported in 4H-SiC BJT, JFET, and 

MESFET technologies [25] – [27]. However, the inability to fabricate a 4H-SiC CMOS process 

with minimal defects has prevented the design of more complex and power efficient circuitry. 

2.3 Raytheon’s HiTSiC® Process 

The 1.2 µm CMOS HiTSiC® process developed in 4H-SiC by Raytheon Systems Limited 

has provided a path towards designing more complex ICs. An n-type substrate is used in the 

process as shown in Fig. 2.1 [28]. NFETs are formed in isolated P-wells while PFETs are 

fabricated in the substrate without isolated N-wells. Due to the PFETs being fabricated in the 

substrate, the body connection of each PFET must be tied to the substrate. The n-type substrate 

must be connected to the highest voltage seen by the chip as a result of the p-n junctions between 

Fig. 2.1. The cross-section of Raytheon’s HiTSiC® process. 
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the n-type substrate, p-wells, and p+ regions for PFET drains/sources. If the n-type substrate is 

connected to a voltage less than the source of a PFET, then there is a risk of the formation of a 

forward biased diode. Another consequence of fabricating PFETs in the common n-type substrate 

is that body effect must be taken into consideration when cascoding PFETs. 

The process utilizes a 40 nm thick gate oxide and incorporates a single metal layer for 

routing [28]. Two poly layers are available, both of which can be used to form resistors. One of 

the poly layers has a relatively low sheet resistance that makes it a possible second layer for 

routing. On-chip diodes and capacitors are also available in the process. 

The target temperature for the HiTSiC® process was 400 ºC. The initial circuits designed 

and fabricated by RSL were functional at 300 ºC and demonstrated the potential for higher 

operating temperatures as the process matured [28], [29]. In cooperation with Ozark IC, the 

University of Arkansas Mixed-Signal Computer (MSCAD) Laboratory developed a process design 

kit (PDK) for the HiTSiC® process [30], [31].  

During the first fabrication run with RSL, code named Vulcan I, isothermal BSIM3 models 

were created for 25 ºC, 100 ºC, 200 ºC, and 275 ºC using process control monitor (PCM) test 

structures provided by RSL. The silicon based temperature scaling built into the models 

necessitated making separate models at each of the selected temperatures. For each temperature, 

binned models were added for FET lengths of 1.2 µm, 2 µm, and 5 µm. Model corners were also 

provided to simulate the behavior of commonly observed process variation, described as slow, 

typical, and fast with respect to “typical” devices. The culmination of the effort in Vulcan I resulted 

in the fabrication of voltage and current references, an operational amplifier, a phase-locked-loop 

(PLL), as well as synchronous and asynchronous digital logic [31] – [33].  
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The second fabrication run, Vulcan II, coordinated between RSL and the University of 

Arkansas led to the fabrication of the linear regulator presented in Chapters 4 and 5 [34]. In Vulcan 

II, isothermal BSIM4 models replaced the use of BSIM3 models. The inability of BSIM3 models 

to properly characterize trapped charges at the SiC/SiO2 interface and SiC based parameters such 

as carrier concentration were motivating factors for the transition.  

Similar to Vulcan I, the BSIM4 models were binned at 25 ºC, 100 ºC, 200 ºC, and 300 ºC. 

Model corners were added as before to predict the effects of potential process variation and aging 

on performance. Slow (S), typical (T), and fast (F) corners were developed for both NFETs and 

PFETs at each temperature. For example, the TF model corner predicts the device performance 

based on typical NFETs and fast PFETs. Beyond the world’s first integrated SiC CMOS linear 

regulator presented in this work, the circuits fabricated on Vulcan II included a comparator, a gate 

driver, an RS-485 transceiver, and digital circuitry [11], [35], [36]. 

The work presented in this thesis is designed for Raytheon’s HiTSiC process using the 

BSIM4 models that have been developed. Additional SiC IC foundries exist and the work 

presented here will be applicable to those processes as well if the models and designs, specifically 

FET and passive sizes, are adjusted to account for different process related parameters. 
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CHAPTER 3 OVERVIEW OF CIRCUITS AND SYSTEMS 

This chapter presents an overview of the circuits designed to form a power management 

solution in 4H-SiC. The top-level designs that will be detailed are linear regulators and a switched 

capacitor (SC) converter. The discussion will also extend to the lower-level circuitry required, 

such as operational amplifiers for linear regulators and digital control logic for switched capacitor 

converters. 

3.1 Linear Regulators 

The demands for eliminating the noisy output of switching converters and delivering a 

stable output under a variety of loading conditions while achieving a smaller footprint, particularly 

in system-on-chip applications, are factors behind the continued popularity of linear regulators. 

Linear regulators are commonly designed in a low-dropout (LDO) configuration with a PFET pass 

transistor to achieve greater efficiencies due to the supply voltage being closer to the selected 

output voltage. The dropout voltage indicates the supply voltage at which the linear regulator is no 

longer able to provide the output voltage target due to the minimum FET on-resistance. 

The potential for improved efficiency with the LDO makes it popular in low power designs 

targeted towards portable, battery-powered applications. In cases where energy efficiency is less 

critical, high-bandwidth linear regulators with relatively high dropout voltages are alternative 

solutions. In either configuration, however, the efficiency is limited by the power dissipation 

across the pass transistor plus the regulator’s quiescent current as expressed by (3.1). 

𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 =  
𝑷𝒐𝒖𝒕

𝑷𝒊𝒏
=  

𝑷𝑶𝑼𝑻

(𝑽𝑺𝑼𝑷𝑷𝑳𝒀)(𝑰𝑸+ 𝒊𝑳𝑶𝑨𝑫)
    (3.1) 
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The power dissipation across the pass transistor is inherent to the linear regulator operation. 

The step-down voltage conversion is a result of the voltage drop across the pass transistor, which 

has a feedback loop dynamically controlling its channel resistance. The quiescent current, IQ, is 

primarily due to the op-amp used within the feedback loop. To illustrate this more clearly, the 

basic schematic of an LDO is shown in Fig. 3.1. This topology has quiescent current flowing 

through the feedback network consisting of the feedback resistors RF1 and RF2 along with the op-

amp, which is commonly referred to as the error amplifier.  

The feedback resistors sample the output voltage in a resistor divider and connect the 

sampled voltage to the error amplifier terminal. In the topology given in Fig. 3.1, the feedback 

voltage is connected to the non-inverting input terminal of the error amplifier while the inverting 

terminal is connected to the reference voltage. When the output voltage increases above a 

calculated threshold, the resistor divider will provide a voltage greater than the reference voltage 

Fig. 3.1 An LDO schematic based on a PFET pass transistor. 
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to the non-inverting terminal of the error amplifier. This will cause the op-amp to provide an output 

voltage greater than zero, up to the positive supply rail, to the PFET pass transistor. As the VSG of 

the pass transistor decreases, it will begin to shutoff and the output will fall back to the desired 

value. 

Typically, RF1 and RF2 will be relatively large resistance values and will not significantly 

increase the quiescent current. This leaves the op-amp as the main source of quiescent current. The 

bandwidth of the linear regulator is heavily dependent on the op-amp’s bandwidth, which increases 

with higher bias currents. This creates a tradeoff between the frequency response capabilities of 

the linear regulator and its quiescent current as well as maximum efficiency. 

Due to the linear regulator’s feedback loop, it is essential that the system remains stable. 

An open-loop phase shift of less than 180º at the frequency the linear regulator’s gain crosses the 

0 dB, or unity gain, point is needed for stability. Note that proper error amplifier operation also 

depends on the same stability criterion. Intuitively, the requirement of less than 180º of phase shift 

can be understood by the need to keep the system operating with negative feedback.  

For example, the feedback loop will act to turn the PFET pass transistor off when the output 

voltage increases. If the closed-loop system has more than 180º phase shift, then an AC disturbance 

at the non-inverting input of the error amplifier will produce positive feedback and ultimately 

cause the system to oscillate. The error amplifier’s output will be high during the negative half of 

the AC disturbance and will cause the output of the regulator to go low, which is considered 

positive feedback. Similarly, during the positive half of the AC disturbance the error amplifier’s 

output will go low and increase the linear regulator’s output voltage. The system is operating with 

positive feedback in both halves of the AC disturbance waveform, which causes the system to 
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continuously oscillate. When the system has negative gain, meaning it has transitioned below the 

0 dB point, a phase shift of more than 180º is permissible since negative gain will negate the 

positive feedback. 

There are two poles and one zero in the system shown in Fig. 3.1 that dictate the stability 

of the regulator. As will be discussed in the following sections, it is also possible to have relatively 

high frequency poles due to the op-amp topology selected and if a bypass capacitor is utilized. 

Regardless of additional poles, the potential of an unstable system exists with two poles and one 

zero. This is because each pole will provide a -20 dB/decade gain roll off and a phase shift of 

approximately -90º over two decades (starting one decade before and ending one decade after the 

pole location). Although not always the case, a zero is generally complementary to a pole in that 

it provides +20 dB/decade of gain and a phase shift of +90º over two decades. The system is 

therefore conditionally stable depending on the pole and zero locations since the total contribution 

of two poles is -180º of phase shift. To ensure stability, the zero location must be near to or lower 

than the second pole. 

The first pole is formed by the output resistance of the PFET pass transistor along with the 

load capacitance and its associated equivalent series resistance (ESR). The expression for the first 

pole is given by (3.2) and it is typically the dominant pole in the system, although internally 

compensated regulators provide an exception. 

𝒇𝒑𝟏 =  𝒇𝟑𝒅𝑩 =
𝟏

𝟐𝝅(𝑹𝒐,𝒑𝒂𝒔𝒔+ 𝑹𝑬𝑺𝑹)(𝑪𝑳𝑶𝑨𝑫)
   (3.2) 

The location of the second pole in the system is a function of the error amplifier’s output 

resistance and the inherent capacitances of the pass transistor as expressed by (3.3). 
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𝒇𝒑𝟐 =
𝟏

𝟐𝝅(𝑹𝒐,𝑬𝑨)(𝑪𝑷𝒂𝒔𝒔𝑭𝑬𝑻)
    (3.3) 

Linear regulators commonly use a bypass capacitor that is generally an order of magnitude 

or lower than the load capacitance and has low ESR. It is placed between the output of the linear 

regulator and ground. The pole it forms is typically located beyond fp1 and fp2 due to CLOAD being 

greater than CBypass and Ro,EA being much larger than RESR. The expression for the third pole 

associated with the bypass capacitor is given by (3.4). 

𝒇𝒑𝟑 =
𝟏

𝟐𝝅(𝑹𝑬𝑺𝑹)(𝑪𝑩𝒚𝒑𝒂𝒔𝒔)
    (3.4) 

The zero is a result of the load capacitor’s ESR. Although it is detrimental to the regulator’s 

efficiency due to the power dissipation when the load capacitor is charging/discharging, it is 

beneficial for stability. If a bypass capacitor is used, then the zero will need to be either near the 

second pole or at a lower frequency. The location of the zero is determined by (3.5). 

𝒇𝒛𝟏 =
𝟏

𝟐𝝅(𝑹𝑬𝑺𝑹)(𝑪𝑳𝑶𝑨𝑫)
     (3.5) 

Due to fp1 being dependent upon the output resistance of the pass transistor, there is a 

corresponding dependence of the pole’s location on the amount of current passing through the 

PFET pass device. While in the saturation region, a MOSFET will have an output resistance given 

by (3.6). 

𝒓𝒐 =
𝟏

𝝀𝑰𝑫
     (3.6) 

 The output resistance is therefore dependent upon the channel-length modulation 

parameter (𝜆) and the current through the pass transistor. Equations (3.2) and (3.6) indicate the 

first pole location will be at higher frequencies when the load current is at its maximum value and 

at relatively low frequencies when the regulator is in the no-load condition. The value of RESR for 

typical ceramic capacitors is only a few milliOhms, which allows the fp1 location to extend out to 
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high frequencies that may be the same order of magnitude as fp2 or fp3 (if CBypass is used). It follows 

that the worst-case stability condition is for high load currents where fp1 begins to cluster around 

the other poles, because the gain will not start to roll off until high frequencies. The 0 dB point 

will extend out to higher frequencies, increasing the bandwidth of the regulator but decreasing its 

phase margin (i.e. the phase at the unity gain frequency) to the point of possible instability. For 

this reason, some applications may require the use of a discrete RESR resistor to minimize the 

movement of fp1. 

The open-loop gain of the system is the product of the gain provided by the pass transistor, 

the error amplifier, and the sampling network formed by RF1 and RF2. The expression for the open-

loop gain is given by (3.7), where the gain of the sampling network is given as (3.8). 

𝑨𝑶𝑳 = 𝑨𝑷𝒂𝒔𝒔𝑭𝑬𝑻 ∗  𝑨𝑬𝑨 ∗  𝑨𝑺𝒂𝒎𝒑𝒍𝒊𝒏𝒈    (3.7) 

𝑨𝑺𝒂𝒎𝒑𝒍𝒊𝒏𝒈 =  
𝑽𝑹𝑬𝑭

𝑽𝑶𝑼𝑻
     (3.8) 

Three of the fundamental linear regulator parameters that depend upon the open-loop gain 

are line regulation, load regulation, and power-supply rejection ratio (PSRR). Line regulation is 

defined as the change in output voltage for a given change in input voltage and is expressed in 

(3.9). This demonstrates the ability of the regulator to provide a constant output from a supply that 

may vary relatively slowly over time (not an AC disturbance). 

𝑳𝒊𝒏𝒆 𝑹𝒆𝒈𝒖𝒍𝒂𝒕𝒊𝒐𝒏 =
𝚫𝐕𝑶𝑼𝑻

𝚫𝐕𝑰𝑵
     (3.9) 

Deriving the line regulation begins by solving for the change in output voltage as in (3.10). 

∆𝑽𝑶𝑼𝑻  = (∆𝑽𝑰𝑵)(
𝑹𝑳𝑶𝑨𝑫

𝑹𝒅𝒔,𝒑𝒂𝒔𝒔+ 𝑹𝑳𝑶𝑨𝑫
) − (∆𝑰𝑳𝑶𝑨𝑫)(𝑹𝑳𝑶𝑨𝑫)  (3.10) 

The expression for the change in load current is given in (3.11). 
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𝚫𝑰𝑳𝑶𝑨𝑫 = (𝑨𝑷𝒂𝒔𝒔𝑭𝑬𝑻)(𝑨𝑬𝑨)(𝚫𝑽𝑶𝑼𝑻)(
𝑹𝑭𝟐

𝑹𝑭𝟏+ 𝑹𝑭𝟐
)(

𝟏

𝑹𝒐,𝒑𝒂𝒔𝒔
)  (3.11) 

Substituting (3.11) into (3.10) results in (3.12). The expression in (3.12) can be rearranged 

into (3.13), then the line regulation can be approximated as in (3.14). 

∆𝑽𝑶𝑼𝑻 =
(∆𝑽𝑰𝑵)(𝑹𝑳𝑶𝑨𝑫)

𝑹𝒅𝒔,𝒑𝒂𝒔𝒔+ 𝑹𝑳𝑶𝑨𝑫
− (𝑨𝑷𝒂𝒔𝒔𝑭𝑬𝑻)(𝑨𝑬𝑨)(𝚫𝑽𝑶𝑼𝑻)(

𝑹𝑭𝟐

𝑹𝑭𝟏+ 𝑹𝑭𝟐
)(

𝟏

𝑹𝒐,𝒑𝒂𝒔𝒔
)(𝑹𝑳𝑶𝑨𝑫) (3.12) 

∆𝑽𝑶𝑼𝑻 [𝟏 + (𝑨𝑷𝒂𝒔𝒔𝑭𝑬𝑻)(𝑨𝑬𝑨)(
𝑹𝑭𝟐

𝑹𝑭𝟏+ 𝑹𝑭𝟐
)(

𝟏

𝑹𝒐,𝒑𝒂𝒔𝒔
)(𝑹𝑳𝑶𝑨𝑫)] =

(∆𝑽𝑰𝑵)(𝑹𝑳𝑶𝑨𝑫)

𝑹𝒅𝒔,𝒑𝒂𝒔𝒔+ 𝑹𝑳𝑶𝑨𝑫
  (3.13) 

 𝑳𝒊𝒏𝒆 𝑹𝒆𝒈𝒖𝒍𝒂𝒕𝒊𝒐𝒏 ≈
∆𝑽𝑶𝑼𝑻

∆𝑽𝑰𝑵
=

𝟏

𝑹𝒅𝒔,𝒑𝒂𝒔𝒔+ 𝑹𝑳𝑶𝑨𝑫
∗  

𝑹𝒐,𝒑𝒂𝒔𝒔

(𝑨𝑷𝒂𝒔𝒔𝑭𝑬𝑻)(𝑨𝑬𝑨)(
𝑹𝑭𝟐

𝑹𝑭𝟏+ 𝑹𝑭𝟐
)
 (3.14) 

Improving the line regulation performance is dependent upon increasing the system’s open-

loop gain. It should be noted that the line regulation derivation neglects the voltage reference’s 

drift over temperature. The voltage reference also commonly uses the unregulated input as its 

supply voltage and will vary slightly with a change in supply. 

The regulator’s load regulation is defined as the change in output voltage for a given change 

in output current and is expressed by (3.15). 

𝑳𝒐𝒂𝒅 𝑹𝒆𝒈𝒖𝒍𝒂𝒕𝒊𝒐𝒏 =
𝚫𝐕𝑶𝑼𝑻

𝚫𝐈𝑳𝑶𝑨𝑫
    (3.15) 

The change in output current is determined by the system’s open-loop gain and is given by 

(3.11). The change in output voltage given by (3.16) assumes that the feedback resistor values in 

the sampling network are much larger than the load resistance and that the input voltage is constant. 

The combination of the two expressions yields (3.17) as the load regulation. 

𝚫𝑽𝑶𝑼𝑻 =  (𝚫𝑰𝑳𝑶𝑨𝑫)(𝑹𝑳𝑶𝑨𝑫)    (3.16) 

𝑳𝒐𝒂𝒅 𝑹𝒆𝒈𝒖𝒍𝒂𝒕𝒊𝒐𝒏 =  
𝚫𝐕𝑶𝑼𝑻

𝚫𝐈𝑳𝑶𝑨𝑫
=  

𝑹𝒐,𝒑𝒂𝒔𝒔

(𝑨𝑷𝒂𝒔𝒔𝑭𝑬𝑻)( 𝑨𝑬𝑨)(
𝑹𝑭𝟐

𝑹𝑭𝟏+ 𝑹𝑭𝟐
)
  (3.17) 

Equation (3.17) shows improved load regulation performance with a larger open-loop gain. 
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Whereas the line and load regulation are steady-state performance metrics, PSRR indicates 

the regulator’s ability to reject supply noise (e.g. 60 Hz noise). The expression for PSRR is given 

in (3.18), where AOL is the open-loop gain given in (3.7) for low frequencies. 

𝑷𝑺𝑹𝑹 =
𝚫𝐕𝒔𝒖𝒑𝒑𝒍𝒚

𝚫𝐕𝒐𝒖𝒕
∗  𝑨𝑶𝑳(𝒔)    (3.18) 

PSRR is dependent upon the supply noise frequency and the regulator’s gain over 

frequency. Commercially available linear regulators with datasheets reporting PSRR performance 

typically list PSRR values for multiple frequencies for a given test condition. Most linear 

regulators have poorer PSRR at high frequencies, beyond their bandwidths, compared to low 

frequencies which is a result of the characteristic gain roll off. 

3.1.1 Operational Amplifiers 

The op-amp forms the core of the linear regulator’s feedback loop and serves as a building 

block for a wide range of mixed signal applications. Parameters such as gain and bandwidth are 

vital to the op-amp’s performance, particularly in closed-loop feedback systems. Additional 

parameters such as input common mode range, maximum output swing, power dissipation, and 

slew rate can also vary in degrees of importance based on the application. Outside of a general-

purpose design, the application specifications and understanding of tradeoffs between parameters 

are essential for designing a high-performance op-amp. This section aims to provide an analysis 

of the common op amp topologies, describe design techniques, and compare the characteristics of 

each topology. Note that the analysis throughout this section will be provided based upon long-

channel device characteristics. 
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3.1.1.1 Two-Stage Op-Amp 

The first op-amp that will be discussed is the traditional two-stage op-amp shown in Fig. 

3.2. The first stage is a differential amplifier biased by M1 while the second stage is a common 

source amplifier formed by M7 and its biasing transistor M6. Since the op-amp has a high-

impedance node at the drains of M3 and M5, which is neither the input nor the output, it is not 

considered an operational transconductance amplifier (OTA).  The stability of the op-amp will 

often require the resistor RZ and capacitor CC to be used for compensation, although it will be 

shown why this is not always the case. 

The input common mode range of the op-amp is one of the first parameters to consider. 

The minimum common mode voltage is determined to be (3.19) with a KVL between either of the 

two inputs and ground.  

𝑽𝑪𝑴,𝑴𝑰𝑵 =  𝑽𝑮𝑺𝟐,𝟑 + 𝑽𝑫𝑺,𝑺𝑨𝑻𝟏    (3.19) 

 

Fig. 3.2. The schematic of a two-stage op-amp. 
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Similarly, equation (3.20) expresses the maximum common mode voltage. To simplify this 

equation, it is necessary to find the drain voltage on the NFET M2 (or M3). Rearranging (3.21) to 

(3.22) and (3.23) shows the condition that keeps M2 or M3 in the saturation region. Plugging 

(3.23) into (3.20) yields (3.24).  

𝑽𝑪𝑴,𝑴𝑨𝑿 =  𝑽𝑫𝑫 −  𝑽𝑺𝑮𝟒,𝟓 − 𝑽𝑫𝑺𝟐,𝟑 + 𝑽𝑮𝑺𝟐,𝟑   (3.20) 

𝑽𝑫𝑺  ≥  𝑽𝑮𝑺 +  𝑽𝑻𝑯     (3.21) 

𝑽𝑫 −  𝑽𝑮  ≥  𝑽𝑻𝑯      (3.22) 

𝑽𝑮 −  𝑽𝑫  ≤  𝑽𝑻𝑯      (3.23) 

𝑽𝑪𝑴,𝑴𝑨𝑿 =  𝑽𝑫𝑫 −  𝑽𝑺𝑮𝟒,𝟓 +  𝑽𝑻𝑯𝑵𝟐,𝟑   (3.24) 

A key takeaway from expressions (3.19) and (3.24) is that the value of VCM,MAX will 

typically be closer to VDD than VCM,MIN is to ground. The use of both an NFET and PFET input 

pair allows for obtaining a wider input common mode range, which can extend from below ground 

up to approximately VDD. 

The maximum output swing of the op-amp is limited by the VSD,SAT value of the output 

stage PFET M7 whereas the minimum output swing is limited by the current sink M6’s VDS,SAT. 

The output swing can be increased by designing M6 or M7 with a larger width. However, the 

tradeoffs for this design choice include an increase in power consumption, the potential for 

systematic offset, and a change in the frequency response of the circuit. 

With respect to the types of offsets, random offset results in threshold voltage and mobility 

differences between devices that are intended to be matched such as the NFET pair M2 and M3 in 

Fig. 3.2. These mismatches can be minimized with offset cancellation schemes and with layout 

practices such as the common centroid layout technique. Systematic offset is a function of the 

design and can be seen in simulations. Systematic offset arises when FET pairs within the same 
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stage are not matched (e.g. M2 and M3) or a PFET/NFET branch (e.g. M6 and M7) is not matched 

to sink and source equal amounts of current. Systematic offset is eliminated by making a 

symmetrical design such that the DC bias currents satisfy the equations given in (3.25) and (3.26). 

𝑰𝑫𝟐 =  𝑰𝑫𝟑 =  𝑰𝑫𝟒 =  𝑰𝑫𝟓     (3.25) 

𝑰𝑫𝟔 =  𝑰𝑫𝟕       (3.26) 

The low frequency, open-loop gain of the two-stage op-amp shown in Fig. 3.2 is a product 

of the gains of the differential and output stages, as given by equations (3.27) to (3.30). 

𝑨𝑶𝑳,𝑫𝑪 = 𝑨𝑺𝒕𝒂𝒈𝒆𝟏 ∗  𝑨𝑺𝒕𝒂𝒈𝒆𝟐     (3.27) 

𝑨𝑺𝒕𝒂𝒈𝒆𝟏 = 𝒈𝒎𝟑(𝒓𝒐𝟑 // 𝒓𝒐𝟓)     (3.28) 

𝑨𝑺𝒕𝒂𝒈𝒆𝟐 = 𝒈𝒎𝟕(𝒓𝒐𝟔 // 𝒓𝒐𝟕)      (3.29) 

𝑨𝑶𝑳,𝑫𝑪 = 𝒈𝒎𝟑𝒈𝒎𝟕(𝒓𝒐𝟑 // 𝒓𝒐𝟓)(𝒓𝒐𝟔 // 𝒓𝒐𝟕)    (3.30) 

Based on the hybrid-pi model, the locations of the first and second poles are expressed as 

(3.31) and (3.32), respectively. The values of C1 and C2 in the second pole equation are determined 

by the inherent MOSFET capacitances as shown in equations (3.33) and (3.34). 

𝒇𝒑𝟏 =  𝒇𝟑𝒅𝑩 =
𝟏

𝟐𝝅(𝒈𝒎𝟕)(𝒓𝒐𝟑 // 𝒓𝒐𝟓)(𝒓𝒐𝟔 // 𝒓𝒐𝟕)𝑪𝑪
   (3.31) 

𝒇𝒑𝟐 =
𝒈𝒎𝟕𝑪𝑪

𝟐𝝅[(𝑪𝑪)(𝑪𝟏)+ (𝑪𝑪)(𝑪𝟐)+ (𝑪𝟏)(𝑪𝟐) ]
     (3.32) 

𝑪𝟏 =  𝑪𝒈𝒅𝟑 + 𝑪𝒈𝒅𝟓 + 𝑪𝒔𝒈𝟕       (3.33) 

𝑪𝟐 =  𝑪𝑳𝑶𝑨𝑫 + 𝑪𝒈𝒅𝟔      (3.34) 

A takeaway from the equations for the first and second poles is that the locations of the 

two poles will split apart with a larger CC, a common technique referred to as pole splitting. The 

CC is critical for stability since it effectively provides a large capacitance on the gate of the PFET 

in the second stage (i.e. M7) and a relatively small capacitance at the output of the second stage. 

The input and output capacitances of the second stage, provided by Cgd7, can be expressed as in 
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(3.35) and (3.36) using Miller’s theorem, where AV is the gain of the common source amplifier 

formed by M7. 

𝑪𝑰𝑵 =  𝑪𝒈𝒅𝟕(𝟏 + |𝑨𝑽|)    (3.35) 

𝑪𝑶𝑼𝑻 =  𝑪𝒈𝒅𝟕(𝟏 +
𝟏

|𝑨𝑽|
)    (3.36) 

Intuitively, the input capacitance becomes effectively larger since it is charged without the 

gain provided by the common source amplifier. The gain of the amplifier charges the output 

capacitance faster and is the underlying reason for the effective decrease in output capacitance. 

This demonstrates the importance of pole splitting and why increasing CC results in fp1 and fp2 

moving farther apart. 

However, ignoring RZ momentarily, a larger value of CC results in the output of the 

differential amplifier shorting with the output of the second stage at lower frequencies. As the 

output of the first stage shorts to the output of the second stage, the common source amplifier is 

bypassed and there is no longer an inversion. This creates a zero in the right half plane (RHP), 

which leads to a +20 dB/decade gain and a -45º/decade phase roll off as given by equation (3.37). 

𝒇𝒛 =
𝟏

𝟐𝝅(𝑪𝑪)(
𝟏

𝒈𝒎𝟕
)
     (3.37) 

A zero in the RHP is undesirable due to the decrease in phase. To achieve high speed 

operation, this zero needs to be moved to the left half plane (LHP) such that it contributes +20 

dB/decade gain and +45º/decade phase. The nulling resistor RZ is inserted in series with the 

compensation capacitor CC to attenuate the feedforward current (from the 1st stage to 2nd stage) 

and either cancel the zero (RZ = 1/gm7) or move the zero into the LHP (RZ > 1/gm7). Implementing 

an RZ greater than 1/gm7 forces the feedforward current through the capacitor to be in-phase with 
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the output current such that it negates the effects of the output pole and recovers the phase lost. 

The location of the zero is then determined by the expression (3.38). 

𝒇𝒛 =
𝟏

𝟐𝝅(𝑪𝑪)(
𝟏

𝒈𝒎𝟕
− 𝑹𝒁)

     (3.38) 

When the RHP zero is eliminated, the frequency response of the op-amp is that of a single 

pole system with a phase margin of nearly 90º. However, in practical applications it is difficult to 

make 1/gm7 and RZ equal over all process corners. A solution is to use an op-amp with an indirect 

compensation technique, as in Fig. 3.3, that injects CC’s feedforward current from the 2nd stage 

output, through a low-impedance node (M5A’s source), and into the high impedance node at M3’s 

drain. The RHP zero is eliminated with this method since the feedforward path is blocked (1st to 

2nd stage), but the output can still feed back to the input at high frequencies to reduce the gain. 

This scheme improves the frequency response by moving fp2 to a higher frequency because 

M3’s drain is no longer loaded by CC. The split length devices (e.g. M4A and M4B, M5A and 

M5B, as well as M7A and M7B) are used to reduce the offset by keeping the PFET VDS and VGS 

values the same in both the first and second stages. A PFET based differential amplifier can be 

added to make the input common mode range nearly rail-to-rail, as shown in Fig. 3.4. 

Fig. 3.3. An indirect compensation technique for the two-stage op-amp. 
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3.1.1.2 Folded-Cascode Op-Amp 

The conventional folded-cascode topology shown in Fig. 3.5 offers an improvement in the 

low-frequency, open-loop gain compared to a single stage differential amplifier or a two-stage op-

amp if an output stage is included. The cascoded devices in this topology allow for a relatively 

high output resistance and large DC gain. One of the most notable distinctions of the folded-

cascode topology compared to the two-stage op-amp is that the load capacitance plays a key role 

in the frequency response.  

The maximum value of the input common-mode range is determined by expression (3.39). 

Using the long channel saturation condition equations, as in the two-stage op-amp analysis, allows 

for rearranging the equation into (3.40). 

𝑽𝑪𝑴,𝑴𝑨𝑿 =  𝑽𝑫𝑫 −  𝑽𝑺𝑫,𝑺𝑨𝑻𝟒,𝟓 −  𝑽𝑫𝑺,𝑺𝑨𝑻𝟐,𝟑 +  𝑽𝑮𝑺𝟐,𝟑   (3.39) 

𝑽𝑪𝑴,𝑴𝑨𝑿 =  𝑽𝑫𝑫 −  𝑽𝑺𝑫,𝑺𝑨𝑻𝟒,𝟓 +  𝑽𝑻𝑯𝑵𝟐,𝟑    (3.40) 

Fig. 3.4. A rail-to-rail two-stage op-amp with indirect compensation. 
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The minimum value of the input common mode range is expressed in equation (3.41). A 

solution for designing a nearly rail-to-rail input common mode range for the folded-cascode is to 

add a PFET differential amplifier similar to the two-stage topology in Fig. 3.4. 

𝑽𝑪𝑴,𝑴𝑰𝑵 =  𝑽𝑮𝑺𝟐,𝟑 + 𝑽𝑻𝑯𝑵𝟐,𝟑   (3.41) 

If a PFET input pair is added, then the drain of each PFET connects to the drain of either 

M10 or M11. Note that this will change the sizing of the existing FETs. In the configuration shown 

in Fig. 3.5, the PFETs M4 and M5 are both sourcing current to the differential amplifier and the 

cascode structures. To mitigate systematic offset, the DC current flowing through one branch of 

the differential amplifier should be the same as the corresponding branch of the cascode structure.  

The width of M4 and M5 should therefore be sized appropriately (i.e. twice that of M6 and M7). 

Fig. 3.5. A conventional folded-cascode topology with an NFET input pair. 
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With a PFET input pair added, the NFETs M10 and M11 would likewise need to have their widths 

doubled to account for sinking current to two different branches with equal DC currents. 

The wide swing cascode current mirror configuration implemented by connecting the drain 

of M6 to the gate of M4 (and M5) more accurately mirrors the current through M5’s branch. The 

operation of the current mirror can still be intuitively understood as a single gate-drain connected 

PFET that mirrors current. However, the goal of this approach is to bias M4’s gate such that the 

VSD of M4 places it on the edge of saturation, which closely matches with the VSD of M5.  

If a gate-drain connection was made with M4 and a separate gate-drain connection was 

made with M6, then the finite output resistances of the FETs would result in more poorly matched 

currents through M4 and M5. The gates of M4 and M5 would be biased to (3.42). Likewise, the 

gates of M6 and M7 would be set to (3.43). 

𝑽𝑮𝟒,𝟓 =  𝑽𝑫𝑫 −  𝑽𝑺𝑫𝟒,𝟓 −  𝑽𝑻𝑯𝑷𝟒,𝟓     (3.42) 

𝑽𝑮𝟔,𝟕 =  𝑽𝑮𝟒,𝟓 −  𝑽𝑺𝑫𝟔,𝟕 −  𝑽𝑻𝑯𝑷𝟔,𝟕      (3.43) 

From equation (3.42), the gate voltage of M4 and M5 is set to a threshold drop beyond the 

saturation condition. By decreasing the gate voltage to only VSD4,5 below VDD, the devices can be 

placed on the edge of saturation. This allows for more accurately mirrored currents and it also 

decreases the supply voltage requirement, leading to either lower power consumption or increased 

speed. The wide swing cascode current mirror shown in Fig. 3.5 accomplishes this since the drains 

of M4 and M5 follow equation (3.44). 

𝑽𝑫𝟒,𝟓 =  𝑽𝑫𝑫 −  𝑽𝑺𝑫𝟒,𝟓     (3.44) 

Similarly, the gates of M6 and M7 can now be biased to (3.45), which eliminates a second 

threshold drop as seen by equations (3.42) and (3.43). 
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𝑽𝑮𝟔,𝟕 =  𝑽𝑫𝟒,𝟓 −  𝑽𝑺𝑫𝟔,𝟕 − 𝑽𝑻𝑯𝑷𝟔,𝟕     (3.45) 

The output swing of the folded-cascode topology shown in Fig. 3.5, regardless of whether 

a PFET differential pair is added, is limited to (3.46) and (3.47) for the minimum and maximum, 

respectively. 

𝑽𝑶𝑼𝑻,𝑴𝑰𝑵 =  𝑽𝑫𝑺,𝑺𝑨𝑻𝟗 +  𝑽𝑫𝑺,𝑺𝑨𝑻𝟏𝟏    (3.46) 

𝑽𝑶𝑼𝑻,𝑴𝑨𝑿 =  𝑽𝑫𝑫 −  𝑽𝑺𝑫,𝑺𝑨𝑻𝟓 −  𝑽𝑺𝑫,𝑺𝑨𝑻𝟕   (3.47) 

From the equations given above, it is apparent that the greatest output swing occurs when 

M4 – M7 and M8 – M11 are all biased to be on the edge of saturation.  

The low-frequency, open-loop gain is improved due to the cascoded FETs which result in 

an output resistance that is simplified in equation (3.48). The output resistance of M7 and M9 are 

expressed in (3.49) and (3.50), respectively, which yields (3.51) as the combined output resistance. 

The open-loop DC gain can then be expressed as (3.52). Note that if a PFET differential amplifier 

is also included in the folded-cascode configuration to enable a nearly rail-to-rail input common 

mode range, then the open-loop gain may be up to twice that given in (3.52). 

𝑹𝒐 =  𝑹𝒐𝟕 // 𝑹𝒐𝟗      (3.48) 

𝑹𝒐𝟕 =  (𝒈𝒎𝟕𝒓𝒐𝟕)(𝒓𝒐𝟑 // 𝒓𝒐𝟓)    (3.49) 

𝑹𝒐𝟗 =  (𝒈𝒎𝟗𝒓𝒐𝟗)(𝒓𝒐𝟏𝟏 )     (3.50) 

𝑹𝒐 =  (𝒈𝒎𝟕𝒓𝒐𝟕)(𝒈𝒎𝟗𝒓𝒐𝟗)(𝒓𝒐𝟏𝟏 )(𝒓𝒐𝟑 // 𝒓𝒐𝟓)  (3.51) 

𝑨𝑶𝑳,𝑫𝑪 =
𝑽𝑶𝑼𝑻

𝑽𝑰𝑵
= (𝒈𝒎𝟑)(𝑹𝒐 )     (3.52) 

 The folded-cascode topology given in Fig. 3.5 is considered to be an operational 

transconductance amplifier (OTA) since the input and output are the only high impedance nodes 

and every other node is low impedance, meaning they are either gate-drain connected or are 

connected to sources. The frequency response of this topology is therefore more dependent on the 
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load capacitor than the two-stage op-amp. The dominant pole in the folded-cascode OTA is a 

function of the output resistance and load capacitance as given by (3.53). 

𝒇𝒑𝟏 =  
𝟏

𝟐𝝅(𝑪𝑳𝑶𝑨𝑫)(𝑹𝒐)
     (3.53) 

Multiple high frequency poles exist within the OTA that are due to the inherent MOSFET 

capacitances. The first non-dominant pole, meaning it is the lowest in frequency outside of the 

dominant pole, is generally given by (3.54).  

𝒇𝒑𝟐 =  
𝒈𝒎𝟕

𝟐𝝅(𝑪𝒈𝒔𝟕+ 𝑪𝒈𝒅𝟓)
     (3.54) 

The folded-cascode will typically operate as a single pole system such that the high 

frequency poles do not hinder its stability. As will be explained in Chapter 4, however, 

compensation may be necessary in scenarios where an output stage is used and the op-amp is no 

longer an OTA. 

3.1.1.3 Telescopic Differential Amplifier 

The final op-amp topology that will be analyzed in this section is the telescopic differential 

amplifier. A schematic of one telescopic differential amplifier topology is shown in Fig. 3.6. 

Devices in cascode are the foundation of the telescopic op-amp, as with the folded-cascode 

topology. The output resistance and DC gain of the telescopic op-amp in Fig. 3.6 are given by 

(3.55) and (3.56), respectively. 

𝑹𝒐 =  𝒈𝒎𝟑𝒓𝒐𝟑𝒓𝒐𝟓 // 𝒈𝒎𝟕𝒓𝒐𝟕𝒓𝒐𝟗 
   (3.55) 

𝑨𝑶𝑳,𝑫𝑪 =
𝑽𝑶𝑼𝑻

𝑽𝑰𝑵
= (𝒈𝒎𝟑)(𝑹𝒐 )    (3.56) 
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The drain of M10 is connected to the gates of M4 and M5 as well as to the source of M11. 

This forms a wide swing cascode current mirror configuration and ensures that the VGS of M5 and 

the VDS of M3 stay constant within the input common mode range while keeping each of the 

devices in saturation. The reason for this is the constant current flowing through M10, set by the 

cascode current mirror of M11 and M12. When the input common mode voltage rises, it results in 

an increase in the source voltages of M2 and M3. This causes the voltage on the gates of M4 and 

M5 to increase, leading to higher drain voltages on M2 and M3. The maximum input common 

mode voltage is given in (3.57) and is limited to when M4 and M5 are no longer in saturation. 

𝑽𝑪𝑴,𝑴𝑨𝑿 =  𝑽𝑫𝑫 −  𝑽𝑺𝑮𝟖,𝟗 −  𝑽𝑫𝑺,𝑺𝑨𝑻𝟒,𝟓 + 𝑽𝑻𝑯𝑵𝟐,𝟑  (3.57) 

The minimum input common mode voltage is given by (3.58). 

Fig. 3.6. The schematic of a telescopic differential amplifier. 
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𝑽𝑪𝑴,𝑴𝑰𝑵 =   𝑽𝑮𝑺𝟐,𝟑 + 𝑽𝑫𝑺,𝑺𝑨𝑻𝟏    (3.58) 

Another wide swing cascode current mirror is formed by M6 and M8. Again, this is used 

to keep both M8 and M9 at the edge of saturation to more accurately mirror the current and increase 

the maximum output voltage swing. The minimum and maximum output voltages are provided in 

(3.59) and (3.60), respectively. 

𝑽𝑶𝑼𝑻,𝑴𝑰𝑵 =  𝑽𝑫𝑺,𝑺𝑨𝑻𝟓 +  𝑽𝑫𝑺,𝑺𝑨𝑻𝟑  +  𝑽𝑫𝑺,𝑺𝑨𝑻𝟏  (3.59) 

𝑽𝑶𝑼𝑻,𝑴𝑨𝑿 =  𝑽𝑫𝑫 −  𝑽𝑺𝑫,𝑺𝑨𝑻𝟗 −  𝑽𝑺𝑫,𝑺𝑨𝑻𝟕   (3.60) 

The telescopic op-amp has either comparable or worse input common mode range and 

output voltage swing compared to the folded-cascode. However, it offers relatively high 

bandwidth. The dominant pole is given in (3.61) and is a function of the load capacitance along 

with the output resistance, similar to the folded-cascode OTA. 

𝒇𝒑𝟏 =  
𝟏

𝟐𝝅(𝑪𝑳𝑶𝑨𝑫)(𝑹𝒐)
     (3.61) 

Multiple high frequency poles exist such as at the source of M4 and the source of M7. The 

first non-dominant pole is typically found in the path from M4 to the output (i.e. M4 to M8, 

mirrored over to M9 and then to the output). The total capacitance in the path, ignoring the body 

terminal, can be approximated as in (3.62). 

𝑪𝑻𝒐𝒕𝒂𝒍 =  𝑪𝒈𝒅𝟒 +  𝑪𝒈𝒔𝟖 +  𝑪𝒈𝒅𝟖 + 𝑪𝒈𝒔𝟗 +  𝑪𝒈𝒅𝟗 +  𝑪𝒈𝒔𝟕   (3.62) 

The first non-dominant, or second, pole can then be determined to be (3.63). 

𝒇𝒑𝟐 =  
𝒈𝒎𝟖

𝟐𝝅(𝑪𝑻𝒐𝒕𝒂𝒍)
     (3.63) 

3.1.1.4 A Comparison of Topologies 

The stability of the op-amps discussed hinges upon minimizing the number of poles in the 

signal path. For each op-amp stage used, there will be at least one pole added to the system. The 
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folded-cascode and telescopic op-amps previously discussed are single stage systems and contain 

a dominant pole followed by multiple high frequency poles. Although compensation techniques 

can be implemented, it will typically not impact the op-amp’s bandwidth considerably due to 

already having a dominant pole.  

The two-stage op-amp contains two poles that are relatively close to each other, with one 

pole located at the output of the first stage and the other at the output of the second stage. In the 

two-stage op-amp, pole splitting acts to compensate the op-amp by making a dominant pole. 

Creating a more dominant pole causes the gain to roll off at low frequencies and causes a noticeable 

decrease in bandwidth.  

Literature has demonstrated the operation of multistage op-amps, such as the three-stage 

op-amp [37] – [39]. The same principle of at least one additional pole per stage applies to these 

topologies. While the gain will increase due to the total gain being a product of each stage, the 

bandwidth will decrease as more compensation is necessary for added stages. 

A comparison of the topologies discussed is presented in Table 3.1. Although the two-stage 

op-amp performs relatively well in all categories except bandwidth, the folded-cascode and 

telescopic op-amps discussed were only a single stage. Adding an output stage to the folded-

cascode or telescopic op-amps will increase the gain, but will require compensation and lead to a 

reduced bandwidth. However, publications have recently shown improvements to the folded-

cascode topology that increase the bandwidth and gain by turning biasing transistors into signal 

paths [40] – [42]. 
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Table 3.1. A comparison of the two-stage, folded-cascode, and telescopic topologies. 

Topology Input Common Mode Range Output Swing Gain Bandwidth 

Two-stage High High High Low 

Folded-

cascode 
High Medium Medium Medium 

Telescopic Medium Medium Medium High 

 

The improved folded-cascode topology is referred to as the recycling folded-cascode. The 

potential of this topology exceeds both the two-stage and telescopic designs, particularly when an 

output stage is added. Apart from the two-stage op-amp in the Vulcan II linear regulator, the 

recycling folded-cascode will be the basis of op-amp design in this work and is discussed in greater 

detail in Chapter 4. 

3.1.1.5 Additional Op-Amp Considerations 

Three other op-amp parameters are common-mode rejection ratio (CMRR), power-supply 

rejection ratio (PSRR), and slew rate. Both the CMRR and PSRR of an op-amp are in part a 

function of the DC open-loop gain of the op-amp. As the name implies, the CMRR is the ability 

of the op-amp to not let the input common-mode voltage influence the output. In the two-stage op-

amp, for example, the total common-mode gain is a product of the second stage gain (A2) with the 

first stage’s common-mode gain (AC). The CMRR of the two-stage is given in (3.64). 

𝑪𝑴𝑹𝑹 = 𝟐𝟎𝒍𝒐𝒈 (
𝑨𝑶𝑳

𝑨𝑪∗𝑨𝟐
) =  𝟐𝟎𝒍𝒐𝒈 (

𝑨𝟏∗ 𝑨𝟐

𝑨𝑪∗𝑨𝟐
)   (3.64) 

The PSRR is critical in applications where the output voltage must be precise or if the 

supply voltage is not well regulated. The PSRR is given by the expressions in (3.18) and (3.65). 
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𝑷𝑺𝑹𝑹 = 𝟐𝟎𝒍𝒐𝒈 (
𝑨𝑶𝑳

𝒗𝒐𝒖𝒕/∆𝒗𝒔𝒖𝒑𝒑𝒍𝒚 
) =  𝟐𝟎𝒍𝒐𝒈 (

𝑨𝟏∗ 𝑨𝟐

𝒗𝒐𝒖𝒕/∆𝒗𝒔𝒖𝒑𝒑𝒍𝒚
)  (3.65) 

Finally, the slew rate is defined as the change in output voltage versus time. It’s primarily 

a function of the bias current in the output branch of the op-amp. By increasing the widths of FETs 

to set a higher bias current, the slew rate can be increased. However, the tradeoff is that the power 

dissipation will increase. The slew rate of an op-amp can be expressed as in (3.66). For capacitive 

loads, the equation in (3.67) can be rearranged to express the slew rate as (3.68). 

𝑺𝒍𝒆𝒘 𝑹𝒂𝒕𝒆 = (
𝒅𝑽𝒐𝒖𝒕

𝒅𝒕 
)     (3.66) 

𝑰𝑩𝑰𝑨𝑺 = (𝑪𝑳𝑶𝑨𝑫) (
𝒅𝑽𝒐𝒖𝒕

𝒅𝒕 
)    (3.67) 

𝑺𝒍𝒆𝒘 𝑹𝒂𝒕𝒆 = (
𝑰𝑩𝑰𝑨𝑺

𝑪𝑳𝑶𝑨𝑫
)    (3.68) 

Typically slew rates are on the order of several Volts per microsecond and are not a 

significant concern except for high speed applications, which are generally silicon based and 

outside of the scope of this work, or if a significant amount of compensation is added. 

3.1.2 Stability Criteria and Considerations 

As mentioned in the previous sections, a stable system requires the open loop response of 

the feedback network to have a phase shift of less than 180º. Every node in a system’s small signal 

path will introduce parasitic capacitances due to inherent MOSFET capacitances. These 

capacitances will shunt the signals to AC ground, but generally create poles that lie at relatively 

high frequencies and ideally come into play only after the system’s gain has dropped below 0 dB.  

Both linear regulator and op-amp designs typically target a phase margin of at least 45º, 

which indicates the difference between the phase at the unity gain frequency and 180º of total shift. 

If the phase shift at the unity gain frequency has exceeded 180º, then the system does not have any 

phase margin and is unstable. To ensure a system has the desired phase margin, compensation 
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schemes can be implemented to force a dominant pole that causes the system’s gain to roll off 

sooner and reach 0 dB at lower frequencies. The result is that the system behaves similarly to a 

single pole system and has a total phase shift that approaches only 90º. 

The difference between a phase margin of 45º and 90º is the system’s transient response to 

a disturbance. With 45º of phase margin, the system will typically oscillate three times with a 

relatively large overshoot and undershoot before settling to a steady-state value after three time 

constants. In this scenario, the system is underdamped and the time constant is related to the closed-

loop bandwidth of the system by (3.69). 

𝝉 =
𝟏

𝟐𝝅(𝒇𝑩𝑾,𝑪𝑳)
      (3.69) 

Designing for a phase margin below 45º is not desirable for most applications since 

component variation can result in a phase margin closer to 0º in a fabricated device which can 

cause additional oscillations or instability. For a phase margin of 90º, however, the system 

behavior is more representative of an overdamped system in which there is not an overshoot or 

undershoot. The trade-off is that the system can take longer to settle. This follows theoretical 

operation since a larger phase margin requires the system’s gain to roll off quicker to avoid 

interference by another pole and the resulting bandwidth is lower. 

A compromise is to design a system with a phase margin between 60º and 80º. This causes 

the system to have behavior closer to that of a critically damped system where the system either 

doesn’t have an overshoot/undershoot or it is minimal. Simultaneously, the system bandwidth is 

not reduced as much as in the case with 90º of phase margin. 
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3.2 Switched Capacitor Converter 

The higher efficiencies offered by switching converters make them desirable in power 

management designs. With the rise of wide bandgap semiconductors and the growing demand for 

high temperature applications, passive components required for switching converters have begun 

to receive an increasing amount of attention [43]. Inductors capable of operating up to 700 ºC have 

been reported recently, indicating that state-of-the-art inductors are not a limiting factor for 

traditional inductor-based switching converters [44].  

Motivated by the need for per-core power management solutions for multicore processors 

and fast point-of-load regulation, research efforts have brought fully integrated inductor-based 

switching converters closer to realization [45] – [47]. However, obstacles to achieving financially 

viable, production level fully integrated switching converters still remain due to the relatively low 

energy density of on-die inductors as well as the requirement of augmenting the process with 

magnetic materials or thick metal layers [48]. The literature reports demonstrating fully integrated 

DC-DC converters utilize silicon processes that enable high switching frequencies and relatively 

small passive components. A similar solution in SiC IC technology therefore faces additional 

obstacles since current processes provide substantially lower switching frequencies. 

Unlike off-chip ceramic capacitors that can have relatively small surface mount device 

(SMD) package sizes, inductors suitable for typical switching converters are large enough to 

substantially alter the footprint of a package. Ceramic capacitors are preferable for high 

temperature applications not only due to their small footprint, but also because certain ceramics 

(e.g. C0G ceramic materials) offer extremely temperature stable dielectrics. This is one factor 

benefiting the design of a switched-capacitor (SC) converter with off-chip components consisting 

entirely of capacitors. Recent literature publications have highlighted the high power density and 
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efficiency of SC converters [49] – [54]. One report has demonstrated superior performance in a 

step-down configuration compared to the traditional inductor-based buck converter [55].   

A multitude of SC converter architectures exist and the degree of complexity can vary 

tremendously. The use of SC converters has historically been limited to relatively low power 

applications such as providing memory cells with boosted voltages [56]. The N-stage Dickson 

charge pump shown in Fig. 3.7 is an example of one architecture that is simple and commonly 

used for boosting a given voltage [57]. The MOSFETs act as diodes due to the gate-drain 

connection. When CLK goes low, the source voltage of the NFET MN1 becomes VDD - VTHN. 

When CLK is high, the source voltage of MN1 becomes 2VDD - VTHN and MN2 turns on such 

that its source becomes 2VDD – 2VTHN. The analysis can be continued throughout each stage, 

yielding (N)(VDD) – (N)(VTHN) and (N+1)VDD – (N)(VTHN) as the output voltage depending on 

whether CLK is high or low. The resulting output voltage swing can be reduced by using a larger 

capacitor CN. 

Fig. 3.7. The schematic of a generic N-stage Dickson charge pump. 
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In practice, an excessively large number of stages becomes a challenge due to process 

related constraints. The constraints that are essential to consider for the Dickson charge pump, as 

well as any SC converter, are the breakdown voltages of the capacitors and the MOSFET’s gate 

oxide. With respect to the Dickson charge pump, the number of stages must be limited such that 

the increasing voltage of each stage does not exceed the ratings of the capacitors or oxide.  

A simple 2:1 step-down SC converter configuration is shown in Fig. 3.8. After the 

MOSFETs and capacitor voltage ratings have been determined to be adequate for a given 

application, the operation can be analyzed in two phases. The MOSFETs operating in phase 1 

(PH1) are switched on when the clock is high. When the inverse of the clock signal is high, then 

the MOSFETs designated for phase 2 (PH2) are switched on. The theoretical operation assumes 

that both PH1 and PH2 have a 50% duty cycle. Literature has reported operation with the two 

phases having variable duty cycles, but optimal efficiency has been determined to occur with a 

50% duty cycle [52].   

During the PH1 operation of the circuit shown in Fig. 3.8, current flows through MN1, C1, 

and MN4 to the output such that the circuit behavior corresponds to equation (3.70). In PH2, MN1 

and MN4 are off while MN2 and MN3 are on. The capacitor discharges to the load in this phase 

Fig. 3.8. The schematic of a 2:1 step-down SC converter. 
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and the circuit follows the expression in (3.71). Substituting the expression for VC1 found in 

equation (3.71) into (3.70) yields (3.72). Rearranging expression (3.72) to (3.73) proves the 

resulting 2:1 step-down ratio. 

𝑽𝑶𝑼𝑻  =  𝑽𝑰𝑵,𝑫𝑪 −  𝑽𝑪𝟏    (3.70) 

𝑽𝑶𝑼𝑻  =  𝑽𝑪𝟏      (3.71) 

𝑽𝑶𝑼𝑻 = 𝑽𝑰𝑵,𝑫𝑪 −  𝑽𝑶𝑼𝑻    (3.72) 

𝑽𝑶𝑼𝑻 =
𝟏

𝟐
𝑽𝑰𝑵,𝑫𝑪     (3.73) 

The 2:1 step-down converter presented in Fig. 3.8 acts as a unit cell. Expanding from a 

single unit cell configuration allows for achieving multiple conversion ratios. A single SC 

converter can therefore support step-down conversions such as 2:1, 3:2, or 4:3. An example of a 

SC converter composed of two unit cells and supporting 2:1 as well as 3:2 conversion ratios is 

shown in Fig. 3.9. When operating with a 2:1 conversion ratio, the MOSFET MN5 is off in both 

PH1 and PH2. Ignoring added switching losses due to the additional unit cell, the resulting circuit 

behavior is identical to the single unit cell shown in Fig. 3.8 and follows the expressions in (3.70) 

to (3.73). 

When the SC converter in Fig. 3.9 operates with a 3:2 conversion ratio, the MOSFETs that 

are conducting in PH1 in each unit cell remain the same as in the 2:1 conversion ratio operation. 

The capacitors C1 and C2 are both charged since they are connected between the input and output 

in this phase. In PH2, however, MN5 is turned on and MN7 is switched off. This forms two 

capacitors in series discharging to the output. The operation for the 3:2 conversion ratio follows 

expressions (3.74) and (3.75) for PH1 and PH2, respectively. Substituting the equation for VOUT 
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given by (3.75) into (3.74) produces (3.76), which can be rearranged into the expression given in 

(3.77) to verify the 3:2 conversion ratio.  

𝑽𝑶𝑼𝑻  =  𝑽𝑰𝑵,𝑫𝑪 −  𝑽𝑪𝟏,𝟐, 𝒑𝒉𝒂𝒔𝒆 𝟏    (3.74) 

𝑽𝑶𝑼𝑻  =  𝟐 ∗ 𝑽𝑪𝟏, 𝒑𝒉𝒂𝒔𝒆 𝟐     (3.75) 

𝑽𝑶𝑼𝑻 = 𝑽𝑰𝑵,𝑫𝑪 −  (
𝟏

𝟐
)𝑽𝑶𝑼𝑻     (3.76) 

𝑽𝑶𝑼𝑻 = (
𝟐

𝟑
) 𝑽𝑰𝑵,𝑫𝑪      (3.77) 

Fig. 3.9. A schematic of a SC converter supporting 2:1 and 3:2 conversion ratios. 
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3.2.1 Efficiency Considerations 

The complexity of a SC converter can result in power losses due to multiple factors 

including the control logic to determine the conversion ratio to use, clock generators, and level 

shifters. Switching losses due to charging/discharging the gate capacitances of the MOSFETs are 

also present as with any switching converter and can be expressed as in equation (3.78). The 

constant 𝛼 is considered due to each MOSFET’s activity factor being dependent upon the 

conversion ratio. However, switching losses inherent to the selected SC converter topology should 

also be taken into consideration.  

𝑷𝑮𝒂𝒕𝒆,𝒍𝒐𝒔𝒔 =  𝜶(𝑽𝑮𝑺)𝟐(𝑪𝑮𝑨𝑻𝑬)(𝒇𝒔𝒘)    (3.78) 

As with traditional inductor-based switching converters, the capacitors in the SC converter 

must be appropriately sized to ensure enough charge is stored in each phase. Ignoring CLOAD, the 

switching cycle will typically be faster than the charge/discharge time constant formed by RLOAD 

and the flying capacitors (e.g. C1 and C2 in Fig. 3.9). The reason for this is that the losses 

associated with the SC converter can be attributed in part to the voltage ripple across the output 

and flying capacitors [58]. Referring to the simple 2:1 step-down converter provided in Fig. 3.8, 

the loss across the flying capacitor is given by equations (3.79) through (3.81). The constant “N” 

in equations (3.80) and (3.81) is determined by the converter topology and its output resistance 

[52]. 

𝑷𝑪𝟏 =  (𝑰𝑳𝑶𝑨𝑫) ∗ (
∆𝑽

𝟐
)     (3.79) 

∆𝑽 =
𝟐∗𝑰𝑳𝑶𝑨𝑫

(𝑵)(𝑪𝟏)(𝒇𝒔𝒘)
     (3.80) 

𝑷𝑪𝟏 =  
𝑰𝑳𝑶𝑨𝑫

𝟐

(𝑵)(𝑪𝟏)(𝒇𝒔𝒘)
     (3.81) 
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For a given topology and load, the loss due to the flying capacitor C1 can be minimized by 

either increasing the switching frequency or the capacitance. Equation (3.78) has shown that the 

switching loss due to the MOSFET gate capacitance is proportional to the switching frequency, 

which will act to offset the benefit of lowering the flying capacitor losses. The remaining method 

for reducing the flying capacitor losses is to increase the capacitance value. The available chip area 

ultimately restricts the amount of capacitance that can be used in fully integrated solutions. 

The total conduction loss of each MOSFET is another key factor and is given by equation 

(3.82). The constant Nsw,active is the total number of active switches in a conversion ratio and is 

given by (3.83), where NPH1 and NPH2 refer to the total number of active switches in the 

corresponding phase of operation. The value of RDS,ON can be reduced with a larger channel width, 

although this comes at the expense of an increase in chip area, gate capacitance, and switching 

losses. 

𝑷𝑹𝑫𝑺,𝑶𝑵
= (𝑵𝒔𝒘,𝒂𝒄𝒕𝒊𝒗𝒆)(𝑰𝑳𝑶𝑨𝑫)𝟐𝑹𝑫𝑺,𝑶𝑵   (3.82) 

𝑵𝒔𝒘,𝒂𝒄𝒕𝒊𝒗𝒆 =  𝑵𝒔𝒘,𝒕𝒐𝒕𝒂𝒍[(
𝟏

𝟐
) (𝑵𝑷𝑯𝟏) +  (

𝟏

𝟐
) (𝑵𝑷𝑯𝟐)]    (3.83) 

The result of the efficiency analysis is that the three factors under a designer’s control are 

the switching frequency, the on-resistance of a switch, and the capacitance values used [52]. The 

tradeoffs associated with each factor make it critical to optimize the design to a specific 

application. In addition, a SC converter with a topology for multiple conversion ratios will have 

more losses compared to a converter with a single conversion ratio. This is due to not only the 

overhead of the control logic, but also the greater number of switches and larger total gate 

capacitance that the control signals will be charging/discharging. 
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3.2.2 Control Logic and Supporting Circuitry 

Although the fundamental operation is simple for both the 2:1 and 3:2 SC converters 

presented in the previous section, the control logic and supporting circuitry can lead to a relatively 

complicated design. From a power efficiency perspective, the digital circuitry is ideally operated 

from the lowest available supply voltage in the system. In addition, a separate supply is needed to 

ensure proper start-up given that the input voltage is potentially poorly regulated. 

A linear regulator is a suitable approach to providing a supply voltage to the control 

circuitry. The inherent power dissipation of the linear regulator does present a disadvantage. 

However, the regulator can be designed such that it has a relatively low quiescent current and its 

output current capability also does not need to be excessive. The lower quiescent current can be 

achieved by reducing the current consumption of the selected op-amp which will lower its 

bandwidth. It is preferable to design for a bandwidth of approximately an order of magnitude 

higher than the switching frequency, although this is ultimately dependent upon the application. 

Clock generation is the next core component of the design. Two possible options for clock 

generation, assuming an external clock is unavailable, are a ring oscillator or a voltage-controlled 

oscillator (VCO). The schematic of the generic ring oscillator is shown in Fig. 3.10 and the 

schematic of the current-starved VCO is provided in Fig. 3.11 [57].  

The ring oscillator consists of a chain of inverters which are connected to the output of a 

NAND gate. The number of inverters in the chain must be even since the NAND gate acts as an 

inverter when its enable signal is a logic high. The other input of the NAND gate is the output of 

the inverter chain, which allows for the oscillatory nature of the inverter chain’s output. The drive 

strength of the inverters determines the rise and fall times of the resulting square wave. Targeting 
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lower rise and fall times leads to greater static and dynamic current consumption, which forms a 

tradeoff with power consumption. Load capacitance can be added to slow the transition of each 

inverter’s output and produce a lower frequency.  

The operation of the current-starved VCO is similar to the ring oscillator. An input voltage 

greater than VTHN is provided to the gate of MN1 to control its current, which is identical to the 

current through MP1 due to the series connection. A current mirror configuration between MP1 

and each of the top PFETs in the inverter chain as well as between MN1 and the bottom NFETs in 

the inverter chain serve to starve the current to each inverter. The VCO operation follows from the 

standard capacitor charge/discharge equation in (3.84), where ID assumes the pull-up and pull-

down strengths are equal, to yield the oscillation frequency in (3.85). The value of Ctotal combines 

Fig. 3.10. The schematic of the ring oscillator. 

Fig. 3.11. The schematic of the current-starved VCO. 
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the gate capacitance of the inverter FETs, such as MN5 and MP5 in the second stage, with the 

output capacitance of the inverter. 

𝑰𝑫 =
(𝑪𝒕𝒐𝒕𝒂𝒍)(𝑽𝑫𝑫) 

𝒅𝒕
     (3.84) 

𝒇𝒐𝒔𝒄 =
𝑰𝑫 

(𝑵𝒔𝒕𝒂𝒈𝒆𝒔)(𝑪𝒕𝒐𝒕𝒂𝒍)(𝑽𝑫𝑫)
    (3.85) 

 A non-overlapping clock generator is a requirement for either the ring oscillator or current-

starved VCO. The two phases of operation are ideally each kept at a 50% duty cycle, but a stand-

alone ring oscillator or VCO can potentially make both phases a logic high at the same time. This 

will create a short-circuit condition between the input, output, and ground. The non-overlapping 

clock generator presented in Fig. 3.12 is a solution for ensuring a deadtime between the two phases 

such that both are not high at the same time [57]. The amount of deadtime generated for each of 

the two phases can be controlled by the number of inverters in the chain, along with their drive 

strengths, and the input/output capacitance being charged during each transition. This has an 

impact on efficiency and overall performance since the ideal 50% duty cycle of each phase 

decreases slightly. 

Fig. 3.12. The schematic of the non-overlapping clock generator. 
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 The Dickson charge pump presented in Fig. 3.7 is necessary for boosting the relatively low 

supply voltage available for the control and support circuitry. This is due to some of the MOSFETs 

in the SC converter requiring a gate voltage larger than the available supply voltage, which is a 

possibility for MN1 in Fig. 3.9. It is essential to account for the voltage ratings associated with the 

MOSFET. For example, a maximum VGS rating of 30 V will be exceeded if the MOSFET source 

is connected to ground and the gate is connected to a 3-stage Dickson charge pump with a VDD 

of 15 V and an output of 45 V (ignoring VTH drops). 

 Level shifters are required for translating the digital logic high values, that are limited to a 

relatively low supply voltage, to the larger voltages available from a Dickson charge pump. The 

schematic in Fig. 3.13 provides a general-purpose CMOS approach to the issue. Additional 

solutions exist that vary in complexity and overhead. An example of a second solution is to connect 

the input to an inverter and then connect the inverter’s output to the gate of an NFET in a common 

source amplifier configuration as is shown in Fig. 3.14. The disadvantages of this solution are the 

Fig. 3.13. A schematic of a cross-coupled level shifter. 
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static power consumption when the MOSFET is on and the need for the NFET to block up to VDD 

when it is off.  

The final core component of the SC converter design is the digital control logic. The degree 

of complexity, and power consumption overhead, will undoubtedly rise as the number of possible 

conversion ratios becomes greater. The design that is discussed in Chapter 4 supports up to four 

conversion ratios and therefore the control logic must determine when to swap conversion ratios. 

For example, the application may benefit from an efficiency standpoint if a 2:1 conversion ratio is 

used for an input voltage range of 45 V to 50 V while a 3:2 conversion ratio is advantageous when 

the input is between 40 V and 44 V. Given the complexity of the logic when constructed at the 

gate level, the use of a Verilog synthesizer can be justifiable. 

To determine the input voltage, the digital control logic relies upon comparators. 

Comparators are a building block for a wide range of mixed-signal circuitry including analog-to-

digital converters (ADCs) and digital-to-analog converters (DACs). Various comparator 

architectures exist and can range from using an operational amplifier in an open-loop 

configuration, to a topology with a cross-coupled load that implements a hysteresis band. For 

typical SC converter applications, the input ranges to detect are relatively large at 100 mV to 

Fig. 3.14. A level shifter utilizing a common source amplifier with an inverted input. 
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several Volts. In addition, the input voltage should not vary significantly over a period of several 

milliseconds. This means that the comparator does not need to be high bandwidth or high 

resolution, as would be the requirement for comparators in general-purpose ADCs. 

A general-purpose comparator that is suitable for use in a SC converter is shown in Fig. 

3.15 [57]. The comparator is composed of pre-amplification, decision, and output stages. The pre-

amplification stage can be formed by one or more differential amplifiers. Its purpose is to amplify 

a signal to a large enough voltage that the decision circuit can see and act upon. The differential 

amplifier used in the pre-amplification stage can also have PFET input transistors added if a larger 

common-mode voltage is desired. In the configuration shown in Fig. 3.15, the minimum common 

mode input voltage is represented by equation (3.86). The equation assumes the standard long-

channel saturation conditions for an NFET given in equations (3.87) and (3.88). By simplifying 

Fig. 3.15. A comparator with pre-amplification, decision, and output buffer stages. 
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the saturation condition in (3.88) to (3.89), the maximum common mode voltage can be determined 

by (3.90). 

𝑽𝑪𝑴,𝑴𝑰𝑵 = 𝑽𝑮𝑺,𝑴𝑵𝟐,𝟑 + 𝑽𝑫𝑺,𝑺𝑨𝑻,𝑴𝑵𝟏     (3.86) 

𝑽𝑮𝑺  > 𝑽𝑻𝑯𝑵        (3.87) 

𝑽𝑫𝑺 ≥ 𝑽𝑮𝑺 − 𝑽𝑻𝑯𝑵       (3.88) 

𝑽𝑫 ≥ 𝑽𝑮 − 𝑽𝑻𝑯𝑵       (3.89) 

𝑽𝑪𝑴,𝑴𝑨𝑿 = 𝑽𝑫𝑫 − 𝑽𝑺𝑮,𝑴𝑷𝟏,𝟐 −  𝑽𝑻𝑯𝑵   (3.90) 

The decision circuit consisting of MN4 – MN8, MP3, and MP4 as shown in Fig. 3.15 is 

based on a cross-coupled configuration to increase gain and provide hysteresis if necessary. As the 

non-inverting input of the differential amplifier rises above the inverting input, the voltage on the 

drain of MN5 and MN6 will increase as will the gate voltages of MN5 and MN7. The drain voltage 

of MN7 and MN8 will simultaneously decrease, leading to MN6 and MN8 being turned off. The 

outputs of the decision circuit transition at the point when the current through each branch is equal. 

If MN5 – MN8 are perfectly matched, then the design has no hysteresis. To create a hysteresis 

band, the (W/L) or VTHN values of the FETs must differ. In a practical implementation, an offset 

voltage will be present even if MN5 – MN8 are placed in a common centroid layout and will create 

hysteresis. 

The output stage is necessary for translating the output voltages of the decision circuit into 

digital high or low signals. A differential amplifier can be utilized in the output stage in conjunction 

with an inverter. The differential amplifier acts as a gain stage after the decision circuit, allowing 

for a higher overall comparator speed. The inverter isolates the differential amplifier from potential 

loading effects, with the amplifier’s output only seeing the input capacitance of the inverter. The 

inverter also forms a secondary gain stage.  
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CHAPTER 4 DESIGN AND SIMULATION 

This chapter details the design process and simulation results for the top-level circuits listed 

in Chapter 3. The discussion will include the design of the externally compensated Vulcan II linear 

regulator, fully on-chip linear regulators, and a switched capacitor converter. The designs of the 

sub-circuits for each of the top-level designs, such as op-amps for the linear regulators, will also 

be described. 

4.1 Vulcan II Linear Regulator: Design and Analysis 

The design specifications for the Vulcan II linear regulator were to provide a stable output 

voltage of 15 V with an input voltage range of 20 V to 30 V as well as a load current of between 

0 mA and 100 mA. The specifications were to be met for an operating temperature range of 25 ºC 

to 300 ºC. The intent was to provide a general-purpose linear regulator to serve as a supply for a 

variety of SiC CMOS mixed-signal circuitry. Due to the potential applications requiring fast load 

transients with unknown durations or frequencies, it was necessary to use a load capacitance to 

momentarily provide for the transients if the regulator’s bandwidth was not sufficient. 

The schematic of the Vulcan II linear regulator is shown in Fig. 4.1. The regulator is 

composed of the pass transistor (MN1), sampling network, op-amp, and the corresponding level 

shifting and compensation networks. The bias and reference voltages utilized by the op-amp were 

intended to be provided by external sources for the Vulcan II run. 

The starting point for the design was to select a pass transistor. The overview of linear 

regulators provided in Chapter 3 revolved around using a PFET pass transistor, which is necessary 

for LDOs. Relatively small dropout voltages, lower footprint, and higher gain are the primary 

advantages of using a PFET pass device as opposed to an NFET. 
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The lower dropout voltage is a result of the maximum VSG applied to the PFET being the 

difference between the input voltage and ground. In contrast, an NFET pass device has a maximum 

VGS that is limited to the difference between the input voltage and output voltage. The ability to 

provide a larger magnitude VSG to the PFET allows the pass transistor to have a smaller magnitude 

of VSD,SAT for a given load current. A smaller VSD,SAT leads to the PFET based regulator’s 

minimum input voltage being lower than that of its NFET based counterpart, leading to a higher 

possible efficiency. A benefit of the NFET device is the higher transition frequency (fT) for a given 

VGS due to lower inherent MOSFET capacitances. However, depending on the process parameters, 

a smaller PFET with reduced MOSFET capacitances and a relatively high VSG magnitude can 

potentially achieve an equivalent fT value compared to the NFET. 

Similarly, a PFET device improves the open-loop DC gain of the regulator due to the 

common source (CS) configuration. The gain of the common-source configuration is given by 

Fig. 4.1. The schematic of the Vulcan II linear regulator. 
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(4.1), which can be greater than one. The NFET pass transistor is limited to a gain of one or less 

as given by (4.2) due to the common drain (CD) configuration. 

𝑨𝑽𝟎,𝑪𝑺 = −𝒈𝒎(𝑹𝑳𝑶𝑨𝑫 // 𝒓𝒐)     (4.1) 

𝑨𝑽𝟎,𝑪𝑫 = 𝒈𝒎(𝑹𝑳𝑶𝑨𝑫 // 
𝟏

𝒈𝒎
)     (4.2) 

Referring to Fig. 2.1, the lack of an isolated N-well in the HiTSiC® process presents a 

problem for a PFET pass transistor based design. Without an isolated N-well, every PFET on a 

single die must have its body tied to the N-type substrate. To avoid forward biasing a parasitic 

diode (e.g. when the N-type substrate potential is a diode drop below a P+ region), it is necessary 

to connect the N-type substrate to the highest voltage in the system. If a PFET pass transistor is 

used, then the input voltage must be the substrate voltage. Mixed-signal circuitry connected to the 

linear regulator’s output, including the op-amp shown in Fig. 4.1, would be required to connect 

any PFET body terminals to the substrate.  The result is a significant body effect for all PFETs in 

the system except for the pass transistor. The increased threshold voltage from the body effect led 

to the PFET pass transistor not being a viable option for the Vulcan II linear regulator. 

Proceeding with an NFET pass transistor, the next design step was to size it such that 100-

mA of continuous load current could be provided for the various simulation corners. To determine 

the necessary size of the NFET under worst-case performance, the typical NFET and typical PFET 

(TT) model corner binned at 25 ºC was selected. A safety margin was added to the design such 

that the NFET provided for a load current of at least 150 mA with a VDS of 4 V, corresponding to 

an input voltage of 19 V when using the level shifter formed by RLS0, MN2, and RLS1 in Fig. 4.1.  

The simulation results for the VDS versus load current are shown in Fig. 4.2 for six different 

effective (W/L) values. The (W/L) = 58,333 curve satisfied the safety margin imposed on the 
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design, therefore an effective (W/L) of 70,000 µm / 1.2 µm was selected for the NFET pass 

transistor. The final layout of the device was segmented into a 25 by 50 array of (W/L) = 56 µm / 

1.2 µm devices, allowing for a compact pass transistor footprint while retaining the effective 

(W/L). 

Concerns regarding the potential yield of circuitry in Vulcan II motivated the selection of 

the op-amp. The two-stage op-amp fabricated in Vulcan I had been successfully tested and was 

reported in [31]. Therefore, it was deemed to be a low risk implementation in Vulcan II and was 

selected for use in the linear regulator. The schematic of the two-stage op-amp is provided in Fig. 

4.2. Note that the reference voltage (VINN) was set to 7.5 V and the bias voltage was 4.5 V in this 

design. In addition, as shown in Fig. 4.1, the op-amp utilizes the linear regulator’s output as its 

supply voltage. Load transients change the op-amp’s gain momentarily while the regulator’s 

feedback loop reacts, but the effect is minimal for the rated maximum current of 100 mA or less. 

Due to the op-amp’s maximum output voltage being limited to a VDS,SAT drop below its 

positive supply rail (the linear regulator’s output), the NFET pass transistor could not be placed in 

Fig. 4.2. The VDS vs. ILOAD at 25 ºC (TT) for various pass transistor (W/L) values. 
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the saturation region by directly connecting its gate to the op-amp’s output. A level shifting 

network formed by RLS0, RLS1, and MN2 as shown in Fig. 4.1 was necessary to provide a VGS 

suitable for turning on the pass device MN1. With the level shifting network, the maximum VGS 

of the linear regulator is limited only by the difference between the input and output voltages. 

However, the common source configuration of the level shifter consists of a source degeneration 

resistor (RLS1) and impacts the system gain as given by (4.3). 

𝑨𝑳𝑺 =  
−(𝒈𝒎,𝑴𝑵𝟐)(𝑹𝑳𝑺𝟎) 

𝟏+(𝒈𝒎,𝑴𝑵𝟐)(𝑹𝑳𝑺𝟏)
    (4.3) 

The linear regulator schematic in Fig. 4.1 and its op-amp schematic in Fig. 4.2 can be 

analyzed to determine the linear regulator’s change in load current as expressed by (4.4). The open-

Fig. 4.3. The schematic of the two-stage op-amp used in the Vulcan II linear regulator. 
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loop gain of the two-stage op-amp, or error amplifier, denoted as AEA,OL follows the analysis 

provided in Chapter 3 and is given in (4.5). 

𝚫𝐈𝑳𝑶𝑨𝑫 =  (𝑨𝑷𝒂𝒔𝒔𝑭𝑬𝑻)(𝑨𝑳𝑺)(𝑨𝑬𝑨)(
𝑹𝑭𝟐

𝑹𝑭𝟏+ 𝑹𝑭𝟐
)(𝚫𝐕𝑶𝑼𝑻)(

𝟏

𝑹𝒐,𝒑𝒂𝒔𝒔
)   (4.4) 

𝑨𝑬𝑨,𝑶𝑳 =  (𝒈𝒎,𝑴𝑵𝟗)(𝒓𝒐,𝑴𝑵𝟗//𝒓𝒐,𝑴𝑷𝟐)(𝒈𝒎,𝑴𝑷𝟑)(𝒓𝒐,𝑴𝑵𝟏𝟎//𝒓𝒐,𝑴𝑷𝟑)  (4.5) 

The compensation network given in Fig. 4.1 forms a resistance, denoted as RMIRROR, which 

varies with the frequency of an AC disturbance. The result of the compensation is a resistance 

between the op-amp’s output and ground. Modifying the open-loop gain given by (4.5) to account 

for the compensation results in (4.6), where the closed-loop gain is denoted as AEA,CL and is 

specific to this linear regulator configuration. 

𝑨𝑬𝑨,𝑪𝑳 =  (𝒈𝒎,𝑴𝑵𝟗)(𝒓𝒐,𝑴𝑵𝟗//𝒓𝒐,𝑴𝑷𝟐)(𝒈𝒎,𝑴𝑷𝟑)(𝒓𝒐,𝑴𝑵𝟏𝟎//𝒓𝒐,𝑴𝑷𝟑 //𝑹𝑴𝑰𝑹𝑹𝑶𝑹)  (4.6) 

The open-loop gain of the linear regulator can then be determined by (4.7). 

𝑨𝑶𝑳,𝑹𝑬𝑮 =  (𝑨𝑷𝒂𝒔𝒔𝑭𝑬𝑻)(𝑨𝑳𝑺)(𝑨𝑬𝑨,𝑪𝑳)(
𝑹𝑭𝟐

𝑹𝑭𝟏+ 𝑹𝑭𝟐
)    (4.7) 

From (4.6) and (4.7), it can be determined that the resistance due to the compensation 

network decreases the open loop gain of not only the op-amp but also of the linear regulator. This 

results in a slightly higher load regulation value, which is expressed as. 

𝑳𝒐𝒂𝒅 𝑹𝒆𝒈𝒖𝒍𝒂𝒕𝒊𝒐𝒏 =  
𝚫𝐕𝑶𝑼𝑻

𝚫𝐈𝑳𝑶𝑨𝑫
=  

𝑹𝒐,𝒑𝒂𝒔𝒔

(𝑨𝑷𝒂𝒔𝒔𝑭𝑬𝑻)(𝑨𝑳𝑺)( 𝑨𝑬𝑨,𝑪𝑳)(
𝑹𝑭𝟐

𝑹𝑭𝟏+ 𝑹𝑭𝟐
)
   (4.8) 

The derivation of the Vulcan II linear regulator’s line regulation follows the same approach 

given in Chapter 3 and is expressed as (4.9). 

𝑳𝒊𝒏𝒆 𝑹𝒆𝒈𝒖𝒍𝒂𝒕𝒊𝒐𝒏 ≈
∆𝑽𝑶𝑼𝑻

∆𝑽𝑰𝑵
=

𝟏

𝑹𝒅𝒔,𝒑𝒂𝒔𝒔+ 𝑹𝑳𝑶𝑨𝑫
∗  

𝑹𝒐,𝒑𝒂𝒔𝒔

(𝑨𝑷𝒂𝒔𝒔𝑭𝑬𝑻)(𝑨𝑳𝑺)(𝑨𝑬𝑨,𝑪𝑳)(
𝑹𝑭𝟐

𝑹𝑭𝟏+ 𝑹𝑭𝟐
)
  (4.9) 

Proceeding to the frequency analysis of the linear regulator, the wide range of operating 

conditions presents multiple design challenges related to stability. For example, the threshold 
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voltage of NFETs was found to vary from approximately 1.5 V at 300 ºC up to 2.5 V at 25 ºC. The 

PFETs were more extreme with a threshold voltage range of about 2.5 V at 300 ºC to 5 V at 25 ºC. 

It follows from the large range of threshold voltages that gm and ro values will likewise vary 

substantially over temperature.  

In addition, conventional linear regulators form a dominant pole with a large output 

capacitor to ensure system stability. Material constraints have limited commercially available 

capacitors to maximum temperature ratings of approximately 250 ºC, beyond which the dielectric 

performance begins to degrade [59]. Specialized high temperature ceramic capacitors are available 

with temperature ratings of above 250 ºC, but they must be ordered directly from the manufacturer 

and performance over temperature is not readily available. The capacitance for a given package 

size also decreases substantially for ceramic capacitors with greater maximum temperature ratings.  

The compensation scheme for the Vulcan II linear regulator was developed to minimize 

the system footprint while still retaining the ability to provide for fast transient loads. This was 

accomplished by shifting the dominant pole to the op-amp’s output rather than the linear 

regulator’s output. The design process was influenced by a silicon based external capacitor-less 

LDO presented in [60]. The core of the compensation scheme in Fig. 4.1 consists of MN3 – MN6, 

RBIAS, RCOMP, and CCOMP. The components form a differentiator and allow for creating a dominant 

pole without relying on the output capacitor. The differentiator senses the changes on the output 

and dynamically alters the resistance connected to the output of the op-amp (i.e. MN3 – MN6) to 

vary its gain. At higher frequencies, ROTA and COTA will also play a role by lowering the output 

resistance of the op-amp and causing a subsequent decrease in gain. 

The dominant pole of the linear regulator can be approximated by (4.10). 
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𝒇𝒑𝟏 ≅
𝟏

𝟐𝛑(𝒈𝑴𝑵𝟗)(𝒓𝒐,𝑴𝑵𝟖//𝒓𝒐,𝑴𝑷𝟐)(𝒈𝑴𝑷𝟑)(𝒓𝒐,𝑴𝑵𝟏𝟎//𝒓𝒐,𝑴𝑷𝟑)(𝒈𝑴𝑵𝟔)(𝑪𝑪𝑶𝑴𝑷)(𝑹𝑪𝑶𝑴𝑷)
  (4.10) 

The location of the pole is dependent upon COTA not exceeding approximately 10 nF since 

the value of ROTA selected is 400 Ohms. Increasing the value of COTA results in a low resistance 

path from the op-amp’s output to ground at proportionally lower frequencies. The system’s gain 

would therefore roll-off at lower frequencies and change the expression for the pole’s location. 

The intent of the compensation network was to allow the linear regulator to have a 

frequency response similar to a single-pole system. As discussed in Chapter 3, a single-pole system 

results in a phase margin approaching 90º which produces a stable but relatively slow response to 

load transients. For this application, a phase margin of at least 45º over all corners was deemed to 

be sufficient for minimizing the risk of instability. The subsequent poles and zeroes are given by 

equations (4.11) to (4.14), where RMIRROR in (4.14) denotes the resistance to ground formed by 

MN3 and MN5. 

𝒇𝒛𝟏 ≅
𝟏

𝟐𝛑(𝒈𝑴𝑵𝟔)(𝑪𝑪𝑶𝑴𝑷)(𝑹𝑪𝑶𝑴𝑷)
     (4.11) 

𝒇𝒑𝟐 ≅
(𝒈𝑴𝑵𝟔)(𝒈𝑴𝑷𝟑)

𝟐𝛑(𝑪𝑪)
     (4.12) 

𝒇𝒛𝟐 ≅
𝒈𝑴𝑵𝟐

𝟐𝛑(𝑪𝑪)
       (4.13) 

𝒇𝒑𝟑 ≅
(𝒈𝑴𝑵𝟐)(𝑹𝑬𝑺𝑹//𝑹𝑫𝑺,𝑴𝑵𝟏)(𝑹𝑶𝑻𝑨//𝑹𝑴𝑰𝑹𝑹𝑶𝑹)

𝟐𝛑(𝑪𝑮,𝑴𝑵𝟏)(𝑹𝑳𝑶𝑨𝑫//(𝑹(𝑭𝟏)+𝑹(𝑭𝟐)))(𝒈𝑴𝑵𝟏)
  (4.14) 

The combination of two poles and two zeroes effectively cancels out with the appropriate 

selection of component values. A phase margin of 90º is unlikely due to the locations being 

approximations and other high frequency poles existing within the system. However, a phase 

margin of at least 45º over the operating temperature range is achieved with the linear regulator 

configuration given in Fig. 4.1 and the device sizes provided in Table 4.1.  
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Another takeaway from the expressions for the locations of each pole and zero is that the 

load capacitance does not play a central role. The load capacitance does influence a pole located 

at relatively high frequencies and can reduce phase margin. This occurs if the regulator is operating 

at the lower end of the input voltage range (e.g. 20 V) and the load capacitance is on the order of 

several hundred nanofarads.  

Although an on-chip load capacitance of only a few pF can be used while maintaining 

stability, there are two essential caveats. The first is that the linear regulator still requires capacitors 

in the nanofarad range. Specifically, CCOMP and COTA were designed to be 1.5 nF and 6.8 nF, 

respectively. This means that the capacitors are too large to be located on-chip unless a significant 

amount of die area is used.  

The second caveat is that the Vulcan II linear regulator is intended for general purpose use 

and the targeted application will determine the amount of load capacitance required. For example, 

an on-chip load capacitance of 10 pF will not be able to provide for a 100 mA load transient lasting 

100 ns. A significant undershoot will occur on the regulator’s output voltage in this example, 

because there is nothing to provide for the load transient while the feedback loop attempts to react. 

The sizing of the components used in the Vulcan II linear regulator is provided in Table 

4.1. Note that “m” stands for the number of fingers for FETs. In addition, RZERO and CZERO do not 

impact the design and the intent was to provide a probe point at the gate of the pass transistor. 

CFEEDBACK was made to be 1 pF to provide a small amount of protection against noise at the op-

amp’s non-inverting input. Finally, the values of CIN and CLOAD are not listed in Table 4.1. For 

commercial linear regulators, a 1 µF capacitor is typically used as the CIN. The CLOAD is application 

dependent, although the testing results in Chapter 5 use a CLOAD of 940 nF unless otherwise noted. 
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Table 4.1. Component sizing for the Vulcan II linear regulator. 

Component Device Size Comment 

MN1 
20 µm / 1.2 µm 

 (m = 3,500) 
Pass transistor 

MN2 
20 µm / 2 µm  

(m = 200) 
Level shifting network 

MN3 – MN6 
20 µm / 2 µm 

(m = 200) 
Compensation network 

MN7 
20 µm / 5 µm 

(m = 22) 
Op-amp biasing (1st stage) 

MN8, MN9 
20 µm / 2 µm  

(m = 7) 
Op-amp input (1st stage) 

MN10 
20 µm / 2 µm 

(m = 66) 
Op-amp biasing (2nd stage) 

MP1, MP2 
20 µm / 2 µm 

(m = 36) 
Op-amp active loads (1st stage) 

MP3 
20 µm / 2 µm 

(m = 224) 
Op-amp CS amplifier (2nd stage) 

RZ 7.7 kΩ Op-amp compensation 

CC 2.2 pF Op-amp compensation 

RF1, RF2 28 kΩ Sampling network 

RBIAS 20 kΩ Compensation network biasing 

RCOMP 2.5 kΩ Compensation 

CCOMP 1.5 nF Compensation 

ROTA 400 Ω Compensation 

COTA 6.8 nF Compensation 

RLS0 10 kΩ Level shifting network 

RLS1 500 Ω Level shifting network 

 

4.1.1 Vulcan II Linear Regulator: Simulation Results and Test Setups 

The testing results of the fabricated linear regulator were found to be closely predicted by 

the typical NFET, fast PFET (TF) model corner at each temperature. Unless otherwise noted, the 

simulation results presented in this section are based upon the TF model corner. 
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An overview of the simulation results is presented in Table 4.2. The Vulcan II linear 

regulator achieves a DC open-loop gain of over 50 dB between 25 ºC and 300 ºC while maintaining 

a bandwidth of at least 295 kHz over the temperature range. Similarly, the phase margin ranged 

between 50.8º and 82.1º over temperature. As pointed out in the previous section, a load 

capacitance on the order of hundreds of nanofarads introduces a pole near the unity gain frequency 

which results in a lower phase margin in the 940 nF load capacitance case than the 10 pF case.  

The setup for testing the DC open-loop gain, bandwidth, and phase margin requires 

injecting an AC signal into the non-inverting terminal of the op-amp. It is essential to block the 

AC signal from the sampling network, thus a large AC resistance (i.e. a 1 H inductor) is required 

to be in series with the non-inverting terminal. In addition, the DC component should be blocked 

from interacting with the AC signal being injected. A large DC resistance (i.e. a 1 F capacitor) can 

be used for this configuration. The test configuration shown in Fig. 4.4 demonstrates how the AC 

simulations of the linear regulator were performed. In this case, RAC is a large AC resistance such 

Table 4.2. The simulation results for the Vulcan II linear regulator. 
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as a 1 H inductor while RDC is a large DC resistance such as a 1 F capacitor. The AC signal into 

the non-inverting terminal is injected by the AC source rather than the overall feedback loop. 

In Table 4.2, the quiescent current is shown to range from a minimum of 3.2 mA at 25 ºC 

to a maximum of 4.3 mA at 200 ºC. The quiescent current of the linear regulator is function of the 

current consumption of the op-amp along with the compensation, level shifting, and sampling 

networks. The sampling network has large resistances and accounts for a small percentage of the 

quiescent current. The level shifting and compensation networks consist of relatively low 

resistance paths to ground, which lead to quiescent currents nearly equal to the op-amp. Lowering 

the quiescent current requires altering the op-amp or either of the two networks, each of which 

impacts the regulator’s frequency response. 

The test setup for PSRR requires placing an AC source in series with the DC supply as 

shown in Fig. 4.5. The AC signal to the non-inverting terminal of the error amplifier is blocked 

with a large AC resistance in this configuration, which allows for obtaining the power supply gain 

Fig. 4.4. The AC test configuration for the Vulcan II linear regulator. 
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over frequency. To obtain the PSRR value, the supply gain is subtracted from the linear regulator’s 

open-loop gain. The simulated PSRR values of at least 50 dB at 1 kHz, as provided by Table 4.2, 

show that the regulator can adequately reject supply noise at low frequencies. The PSRR values 

versus frequency at 300 ºC (TF) are shown in Fig. 4.6 for multiple combinations of input voltages 

and load currents. Similar trends occur at lower temperatures, albeit with slightly lower PSRR 

values due to the decrease in open-loop gain. 

The undershoot and overshoot voltages provided in Table 4.2 for a sudden no-load to full-

load transient follow the expectations that performance will suffer significantly with a smaller load 

capacitor. Although the regulator is able to settle to within 1% of its nominal output voltage in less 

than 1.2 µs in each test case, a 10 pF load capacitor results in an output swing of up to 26%. This 

could lead to mixed-signal circuitry on the output going into a failure or reset mode, making a 10 

pF load capacitance undesirable for general-purpose applications despite minimizing system 

footprint.  

Fig. 4.5. The test configuration used to determine the Vulcan II linear regulator’s power 

supply gain. 
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The line and load regulation values perform exceptionally well compared to silicon based 

linear regulators, particularly given the developing nature of SiC CMOS technology. As an 

example, the datasheet for Texas Instrument’s LM78LXX family of LDOs reports a typical line 

regulation of 1.38 mV/V at 25 ºC for an input voltage increase from 7 V to 20 V [61]. A line 

regulation of between 1.9 mV/V to 3.1 mV/V is achieved in the Vulcan II linear regulator over the 

operating temperature range.  

The same LM78LXX product line also has a reported typical load regulation of 0.2 mV/mA 

for a load changing from 1 mA to 100 mA at 25 ºC. Referring to Table 4.2, the load regulation 

when stated in the same units is 0.011 mV/mA to 0.016 mV/mA over the temperature range. The 

load regulation provided in Table 4.2 is also for a full-load swing, whereas the LM78LXX 

datasheet is already conducting 1 mA before transitioning to its full-load condition. It is important 

to note that the datasheet reports measured results, thus a more complete comparison will also need 

to involve the data that will be presented Chapter 5. 

Fig. 4.6. The PSRR simulation results of the Vulcan II linear regulator at 300 ºC. 
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4.2 Fully On-Chip Linear Regulators 

For high temperature applications, one notable design constraint is the availability of 

discrete capacitors capable of enduring the harsh operating environment. Capacitors able to 

withstand up to 280 ºC have been reported in [43]. Specialty manufacturers currently offer 

capacitors with dielectric materials that are stated to operate up to approximately 350 ºC, although 

the performance over temperature and reliability information are not publicly available at the time 

of this writing. The intent of this work is to provide a fully on-chip linear regulator solution that 

eliminates the dependence on an external capacitor while still providing stability for all operating 

conditions. 

With respect to off-the-shelf linear regulators, an external output capacitor of 1 μF or more 

is generally relied upon to provide for sudden transient loads while the regulator reacts. A fully-

on chip solution must limit its on-chip load capacitance based on the amount of die area available, 

which typically constrains the capacitor size to no more than the single digit nanofarad range. Due 

to the output capacitance limitation, the regulator’s bandwidth is ideally made as large as possible 

to quickly counter I = C(dv/dt) effects. 

Improving the regulator’s bandwidth significantly requires replacing the two-stage op-amp 

utilized in the Vulcan II linear regulator. In the following sections, multiple op-amps will be 

designed and evaluated in simulation. A comparison of the op-amps will be provided and the linear 

regulator’s performance with the selected op-amp will be analyzed. The design specifications for 

the linear regulator will limit the op-amp to a total current consumption of approximately 1.5 mA. 

Note that for high performance applications, a larger power budget will enable the regulator to 

achieve greater bandwidths. Similarly, implementing two separate op-amps in parallel as 

suggested in [62] can lead to relatively high bandwidths while also providing a large DC gain. 
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4.2.1 Operational Amplifiers 

To provide a consistent basis for design, each of the op-amps presented in this section 

targets a total current consumption of approximately 1.5 mA and a phase margin of 70º at 300 ºC 

(TF) with a 3 V common-mode voltage.  The current consumption requirement is driven by stand-

alone high temperature applications with limited amounts of power available. The phase margin 

of 70º corresponds to a relatively fast transient response with a small amount of 

undershoot/overshoot. It also provides a large safety margin for avoiding instability due to process 

variation or from process parameter (e.g. threshold voltage) changes over the operating 

temperature range. The choice to use a 3 V common-mode input voltage was made due to the 

bandgap reference that will be utilized by fabricated circuits, which will provide a reference 

voltage of approximately 3 V. In addition, each of the op-amps are internally biased and a 

capacitive load of 4.5 pF is added to each op-amp’s test bench. 

4.2.1.1 Two-Stage Op-Amp 

The conventional two-stage op-amp consisting of an NFET input pair, shown in Fig. 3.3, 

will be operating on the edge of its input common mode range (VICMR) with a common-mode 

voltage (VCM) of 3 V. Implementing a PFET input pair along with the NFET input pair similar to 

Fig. 3.4 allows for a rail-to-rail VICMR. The schematic shown in Fig. 4.7 modifies the rail-to-rail 

op-amp design presented in Fig. 3.4 to enable internal biasing. The biasing scheme uses the VGS 

(or VSG) drops from MN1 – MN3 and MP1 to provide a suitable bias voltage to gates within the 

core of the op-amp. For example, “VBIAS_N1” is a single VGS drop from MN2 and is used for 

MN12 and MN15 that have gate potentials of one VGS drop above ground. The bias current is 

primarily a function of RIBIAS, thus RIBIAS should have the lowest possible temperature coefficient. 
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An indirect compensation scheme is used such that the compensation capacitor CC is 

connected between the op-amp’s output and the source of MP6A to avoid a right-half plane (RHP) 

zero without relying on a nulling resistor [63]. Referring back to Fig. 3.2, the RHP zero is a result 

of the compensation capacitor CC and the gate-drain capacitance of M7A (CGD,M7) forming a 

feedforward path from the differential amplifier output (1st stage) to the op-amp’s output (2nd stage) 

node. Since CC and CGD,M7 are feeding forward current and adding energy to the output of the op-

amp while also inverting the polarity of the op-amp’s output, there is a RHP zero formed. By using 

the indirect compensation approach shown in Fig. 4.7, the feedforward current path is blocked but 

the output can still feed back to the input. This eliminates the RHP zero and causes the unity gain 

frequency to increase since MN14’s drain is no longer loaded by CC. 

Table 4.3 lists the device sizing for the two-stage op-amp shown in Fig. 4.7. As required 

by the specifications, the design achieves a total current consumption of 1.5 mA and a phase 

margin of approximately 70º at 300 ºC (TF). The simulated open-loop frequency response of the 

op-amp over temperature for a 3 V common-mode voltage is provided in Fig. 4.8.  

Fig. 4.7. The rail-to-rail two-stage op-amp schematic with indirect compensation. 
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Table 4.3. The device sizes for the two-stage op-amp shown in Fig. 4.7. 

Component Device Size Comment 

MN1 – MN11, 

MN13 - MN15 
20 µm / 1.2 µm (m = 16) 

Biasing, differential amplifiers, 

output stage 

MN12 20 µm / 1.2 µm (m = 32) NFET differential amplifier biasing 

MP1 – MP3 20 µm / 1.2 µm (m = 64) Biasing, PFET differential amplifier 

MP4 – MP7 20 µm / 1.2 µm (m = 128) 
Differential amplifiers biasing and 

active loads, output stage 

RIBIAS 110 kΩ Biasing 

CC 60 pF Compensation capacitor 

A summary of the frequency response parameters including open-loop gain, phase margin 

(PM), and unity-gain bandwidth (UGBW) over temperature and for a VICMR of 0 V to 15 V is 

Fig. 4.8. The frequency response of the two-stage op-amp shown in Fig. 4.7. 
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presented in Fig. 4.9. The NFET and PFET input pairs allow for a common-mode input voltage 

range spanning from approximately 0 V to 11 V over temperature, with the 300 ºC (TT) aged 

Fig. 4.9. The open-loop DC gain, PM, and UGBW over temperature and a 0-15 V common 

mode input voltage for the two-stage op-amp with indirect compensation in Fig. 4.7. 



 

70 

 

models being more limited at 0 V to 9 V. The open-loop DC gain ranges between 43 dB and 67 

dB over temperature, with 200 ºC and 300 ºC offering the best performance. This indicates that 

stacking PFETs and cascoding NFETs (e.g. MN4 – MN11) result in VDS drops that approach the 

supply voltage at lower temperatures where threshold voltages are generally higher. While the 

aged NFETs do not have an appreciably higher threshold voltage at 300 ºC (TT) than for unaged 

NFETs, the aged PFETs threshold nearly doubles compared to the unaged PFETs at 300 ºC. Due 

to the FETs dropping out of saturation at lower input voltages, the VICMR is limited along with the 

gain for the 300 ºC (TT) model. 

The UGBW of the op-amp peaks in the middle of the common-mode input voltage range 

with 200 ºC and 300 ºC providing up to 3.13 MHz and 3.84 MHz, respectively. The PM remains 

consistent at approximately 70º within the VICMR for each temperature, which achieves the design 

goal. A PM of 70º yields a transient response that does not produce significant 

undershoot/overshoot voltages due to a nearly overdamped nature. To illustrate this point, Fig. 

4.10 shows the transient response of the op-amp in a unity-gain buffer configuration at 300 ºC for 

a 50-mV step input and a load capacitance of 4.5 pF.  

Fig. 4.10. The transient response of the two-stage op-amp shown in Fig. 4.7 driving a 4.5 pF 

load at 300 ºC (TF) for a 50 mV step input in a unity-gain configuration. 
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A systematic offset of approximately 7.9 mV is present due to the NFETs and PFETs not 

sinking/sourcing exactly the same amount of current. While the sizing can be adjusted for one 

temperature to nearly eliminate the systematic offset in simulations, it does not necessarily hold 

for another temperature. In addition, the random offset in a fabricated device will ultimately lead 

to some mismatch in the drive strength of the NFETs and PFETs. 

The 1% settling time (for the rising edge) of 0.40 μs in Fig. 4.10 closely matches with the 

simulated UGBW of approximately 3 MHz at 300 ºC. Note that the 1% settling time denotes the 

time taken to transition from the steady-state output of 3.008 V (accounting for offset) to within 

approximately 0.5 mV of its output after the 50 mV step input. The falling edge of the output is 

dependent on the slew rate of the op-amp. The undershoot while the output is being pulled down 

is the result of the PFET in the 2nd stage (MP7) being shut off during slewing followed by being 

pulled up to the quiescent value once both inputs are the same voltage. The amount of time it takes 

MP7 to go from being turned off to being pulled back up to the quiescent gate voltage results in 

the brief undershoot of approximately 10 mV.  

The fall time and undershoot can be reduced by increasing the size of the 2nd stage NFET 

(MN15) at the expense of added power consumption or decreasing CC at the risk of instability. 

The relationship between slew rate and the 2nd stage NFET size as well as the value of CC can be 

expressed as (4.15). 

𝑺𝒍𝒆𝒘 𝑹𝒂𝒕𝒆 =  
𝑰𝑫,𝑴𝑵𝟏𝟓

𝑪𝑪
     (4.15) 

Increasing the NFET size will result in more quiescent current flowing through the 2nd 

stage, but forms a lower resistance path to ground that the output can discharge through. The slew 

rate is also inversely proportional to CC since a smaller capacitance is discharged faster. Altering 
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either the NFET size or CC will result in a different frequency response. A larger NFET increases 

systematic offset as the drive strength of the output stage’s NFET and PFET begin to differ more. 

While the rising edge of the op-amp’s transient response in Fig. 4.10 is stable, the frequency 

response yielded a PM of 70º which should have almost no overshoot. This is a problem exclusive 

to the unity-gain configuration when the indirect compensation technique is used. The issue is also 

present in other op-amp topologies and is due to the impedance of CC decreasing towards the 1/gm 

value of MP6A. However, using a conventional compensation technique as shown in Fig. 3.2 

where CC and a nulling resistor are connected between the 1st stage and 2nd stage outputs results in 

the expected transient response that is nearly critically damped. In order to form a basis for 

comparison with other op-amp topologies, Fig. 4.11 shows the transient response of the op-amp in 

a non-inverting configuration with a closed-loop gain of two and a 50 mV step input at 300 ºC. In 

this case, the 1% settling time is 0.52 μs. 

Fig. 4.11. The transient response of the two-stage op-amp driving a 4.5 pF load at 300 ºC 

(TF) for a 50 mV step input in a non-inverting configuration. 
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4.2.1.2 Telescopic Op-Amp 

A modified version of the telescopic op-amp discussed in Chapter 3 (Section 3.1.1.3) is 

shown in Fig. 4.12. The schematic includes an output stage and utilizes the indirect compensation 

technique. Rather than connecting CC between split-length devices, as in Fig. 4.7 with MP6A and 

MP6B, it is connected between cascoded PFETs. However, the advantage of the method remains 

the same since the node formed by the drain of MP5 and the source of MP7 is still low-impedance 

as with the split-length devices.  

The goal of this compensation technique, as stated in the previous section, is to avoid a 

RHP zero created in the case where CC is connected between the 1st stage output and the 2nd stage 

output. Although a nulling resistor can be used to shift the RHP zero to the LHP if CC is connected 

between the output of each stage, the resistance value is subject to process variation, shifts over 

temperature, and even aging effects at higher temperatures. A resistance changing substantially 

can lead to instability. In the case of indirect compensation, the value of CC is more stable since 

capacitors in the HiTSiC® process typically have less process variation and shift over temperature.  

Fig. 4.12. The telescopic op-amp schematic with an output stage and indirect compensation. 
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Table 4.4. The device sizes for the telescopic op-amp shown in Fig. 4.12. 

Component Device Size Comment 

MN1 – MN5,  

MN7 – MN11 
20 µm / 1.2 µm (m = 16) 

Biasing, differential amplifiers, 

output stage 

MN6 20 µm / 1.2 µm (m = 32) NFET differential amplifier biasing 

MP1 – MP8 20 µm / 1.2 µm (m = 128) All PFETs 

RIBIAS 35 kΩ Biasing 

CC 21 pF Compensation capacitor 

 

The device sizes listed in Table 4.4 are for the telescopic op-amp shown in Fig. 4.12. As 

with the two-stage op-amp presented in the previous section, the design targets a total current 

consumption of 1.5 mA and a phase margin of approximately 70º at 300 ºC (TF). The simulated 

open-loop frequency response of the telescopic op-amp over temperature and for a 3 V common-

mode voltage is shown in Fig. 4.13. The open-loop DC gain of the telescopic op-amp steadily 

trends downwards with temperature, with the maximum of 78 dB occurring at 300 ºC (TF) and the 

minimum of 63 dB at 25 ºC.  

The output stage of the telescopic op-amp allows its gain to outperform its two-stage 

counterpart. A single stage telescopic op-amp, however, is limited with regards to gain as stated 

in Table 3.1. The overall frequency response of the two-stage telescopic op-amp is representative 

of a typical single pole system similar to the two-stage op-amp using indirect compensation. A 

large value of CC can therefore be used to create a dominant pole while forcing the second pole 

well beyond the unity-gain frequency. 

The open-loop DC gain, PM, and UGBW over temperature and for a 0 to 15 V common 

mode input voltage are shown in Fig. 4.14. The DC gain is at 40 dB or above from approximately 

2 V to 9 V for each temperature, which is to be expected for an NFET input pair. Within the VICMR, 
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the PM exceeds 60º in each case except for the aged 300 ºC models which show a minimum PM 

of 40º. The aged models indicate that a CC larger than 21 pF is required for adequately splitting 

the 1st and 2nd poles apart. The UGBW peaks between a VICM of 3 V to 6 V, with the maximum of 

approximately 7 MHz occurring in the 200 ºC scenario. 

Fig. 4.13. The frequency response of the telescopic op-amp shown in Fig. 4.12. 
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The transient response of the telescopic op-amp for a 50 mV step input in a unity-gain and 

non-inverting (AV = 2) configurations are shown in Fig. 4.15 and Fig. 4.16, respectively. Despite 

Fig. 4.14. The open-loop DC gain, PM, and UGBW over temperature and a 0-15 V common 

mode input voltage for the telescopic op-amp with indirect compensation in Fig. 4.12. 
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the design having 72º of PM for a VCM of 3 V at 300 ºC, the unity-gain configuration displays 

oscillations similar to an underdamped response with approximately 30º of PM. As stated in the 

previous section for the two-stage op-amp, this is a problem exclusive to the unity-gain 

configuration. A transient analysis of the telescopic op-amp for the same conditions, but in the 

Fig. 4.15. The transient response of the two-stage telescopic op-amp driving a 4.5 pF load at 

300 ºC (TF) for a 50 mV step input in a unity-gain configuration. 

Fig. 4.16. The transient response of the two-stage telescopic op-amp driving a 4.5 pF load at 

300 ºC (TF) for a 50 mV step input in a non-inverting configuration. 
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non-inverting configuration yields a behavior similar to the expected critically damped or 

overdamped response without any oscillations. 

The 1% settling time for the unity-gain response in Fig. 4.15 is 0.36 μs, whereas the settling 

time for the non-inverting configuration is 0.42 μs. With a bandwidth of nearly 6 MHz at 300 ºC 

(TF) and for a 3 V input voltage, as shown in Fig. 4.14, the transient response times are slightly 

slower than expected. Both configurations show better performance than the two-stage counterpart 

presented in the previous section, with the non-inverting configuration being 0.10 μs faster under 

the same conditions. 

4.2.1.3 Traditional Folded-Cascode Op-Amp 

A rail-to-rail folded-cascode op-amp with indirect compensation and an output stage is 

shown in Fig. 4.17. As with the two-stage telescopic op-amp, the two-stage folded-cascode op-

amp connects CC between cascoded PFETs in the 1st stage and the output in the 2nd stage. The rail-

to-rail nature of the op-amp is made possible by incorporating NFET and PFET differential pairs. 

Fig. 4.17. The modified traditional folded-cascode op-amp schematic with an output stage 

and indirect compensation. 
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Having both an NFET and PFET pair increases the gain when both are in saturation, although the 

power dissipation will increase. The gain is also increased by cascoded biasing transistors, 

specifically MP4/MP5 and MN8/MN9. When the NFET input pair is on, it steals current from the 

biasing FETs MP8 and MP9. Similarly, the PFET input pair sinks current through the lower biasing 

FETs MN14 and MN15 when it is on. Requiring MN14, MN15, MP8, and MP9 to sink or source 

up to twice the amount of current compared to other FETs in the circuit means that they should be 

sized with twice the effective width. A complete list of the device sizes for the traditional folded-

cascode op-amp is given in Table 4.5. 

The frequency response of the folded-cascode op-amp at 300 ºC (TF) and for a common 

mode input voltage of 3 V is shown in Fig. 4.18. The system’s frequency response is similar to the 

two-stage telescopic op-amp presented in the previous section. Indirect compensation is again 

incorporated into the design and enables pole splitting to ensure an adequate phase margin. In this 

design, a compensation capacitor of only 4.5 pF is necessary for achieving a 70º PM at 300 ºC 

(TF), which leads to a significantly higher slew rate. 

Table 4.5. The device sizes for the traditional folded-cascode op-amp shown in Fig. 4.17. 

Component Device Size Comment 

MN1 – MN5,  

MN6, MN7, MN10 – 

MN13, MN16 

20 µm / 1.2 µm (m = 16) 
Biasing, NFET input pair, 

cascode devices, output stage 

MN8, MN9, MN14, MN15 20 µm / 1.2 µm (m = 32) 
Diff pair biasing and cascode 

biasing 

MP1 – MP5, MP8, MP9 20 µm / 1.2 µm (m = 128) Biasing 

MP6, MP7, MP10, MP11, 

MP12 
20 µm / 1.2 µm (m = 64) 

PFET input pair, cascode 

devices, output stage 

RIBIAS 375 kΩ Biasing 

CC 4.5 pF Compensation capacitor 
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Fig. 4.19 provides the open-loop DC gain, PM, and UGBW for each temperature and a 

VICMR of 0 - 15 V. For a VCM of 3 V, the maximum gain of 56 dB occurs in the 300 ºC (TF) 

condition while the minimum gain is 43 dB at 100 ºC. The design provides a gain of at least 33 dB 

throughout the input range and over temperature, demonstrating the advantage of the rail-to-rail 

topology. However, the telescopic op-amp yields a higher gain for a VCM of 3 V to 7 V. 

Fig. 4.18. The frequency response of the folded-cascode op-amp shown in Fig. 4.17. 
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The PM of the folded-cascode op-amp is significantly more stable over the input range 

than its telescopic counterpart, which is again a benefit of the rail-to-rail topology. The minimum 

Fig. 4.19. The open-loop DC gain, PM, and UGBW over temperature and a 0-15 V common 

mode input voltage for the folded-cascode op-amp with indirect compensation in Fig. 4.17. 
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phase margin of 56º occurs in the 25 ºC case and still provides for a stable transient response. The 

UGBW is lower than the peak values of the telescopic op-amp, but appreciably higher than the 

basic two-stage op-amp. 

The transient response of the folded-cascode op-amp in a unity-gain configuration and for 

a 50 mV step input at 300 ºC (TF) is shown in Fig. 4.20. Oscillations are again present due to the 

indirect compensation technique despite a PM of 70º. As with the telescopic op-amp, a nulling 

resistor and compensation capacitor between the output of each stage yields no issue for the same 

PM. Repeating the non-inverting configuration for the folded-cascode op-amp results in the 

transient response given in Fig. 4.21.  

A 1% settling time of 0.36 μs is obtained in the unity-gain configuration, while the non-

inverting configuration yields a settling time of 0.28 μs. The settling time in the non-inverting 

configuration is therefore decreased by 0.24 μs and 0.14 μs compared to the standard two-stage 

and telescopic op-amp topologies, respectively.   

Fig. 4.20. The transient response of the traditional folded-cascode op-amp driving a 4.5 pF 

load at 300 ºC (TF) for a 50 mV step input in a unity-gain configuration. 
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4.2.1.4 Recycling Folded-Cascode Op-Amp 

The traditional folded-cascode topology is commonly used in a multitude of high frequency 

applications. Similar to the two-stage telescopic op-amp, the traditional folded-cascode was shown 

to provide a single parasitic pole approximately one decade after the unity-gain frequency for an 

appropriately sized CC. The discussion in Chapter 3, Section 3.1.1.2 gave the pole locations of the 

folded-cascode OTA (no output stage) with an NFET input pair. The dominant pole is determined 

by the output resistance and capacitive load while the non-dominant pole is located at the source 

of the cascode FET which is having its current stolen by the differential input pair (i.e. M7’s source 

in Fig. 3.5).  

With respect to the dominant pole, the capacitive load is determined by the application 

while the output resistance can be altered by changing the sizes of the cascoded FETs. Reducing 

the widths of the FETs leads to a higher output resistance but comes at the cost of reduced 

bandwidth, a smaller output voltage swing, and potentially forcing the FETs out of saturation. 

Fig. 4.21. The transient response of the traditional folded-cascode op-amp driving a 4.5 pF 

load at 300 ºC (TF) for a 50 mV step input in a non-inverting configuration. 
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Similarly, increasing the lengths of the cascoded FETs increases the output resistance but will 

result in lower bandwidth. For these reasons, it is generally not desirable to alter the location of 

the dominant pole by design. To enable higher frequency operation, the non-dominant pole must 

be shifted to higher frequencies. This can be achieved by using the recycling folded-cascode (RFC) 

topology shown in Fig. 4.22 [40] - [42].  

The improvement over the traditional folded-cascode topology is a result of turning the 

biasing FETs into signal paths. For example, MN14 and MN15 in Fig. 4.17 conduct a relatively 

large amount of current in the conventional folded-cascode topology but only function as current 

sinks. In the RFC op-amp MN14 corresponds to MN8 and MN9, where MN9 mirrors its current 

over to MN8. The same approach applies to MN15 which now corresponds to MN10 and MN11. 

The mirroring FET (MN9 or MN10) typically has 1/3 of the width of its corresponding FET (MN8 

or MN11) sinking current from the cascode stage.  

Although not used in [41], the combination of MN7 and MN10 forms a wide-swing 

cascode current mirror, allowing for the design to benefit from increased gain while the necessary 
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Fig. 4.22. The RFC op-amp schematic with an output stage and indirect compensation. 
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supply voltage overhead is not substantially increased. Another wide-swing current mirror is 

formed by MN6 and MN9. In each case, the current mirror can be thought of as a single diode 

connected FET. 

The signal path consisting of MP6-MN7-MN10-MN11-MN13 forms a current-mirror as 

presented in [41] which allows the op-amp to have a higher slew rate and a lower setting time. The 

other signal path from MP8-MN11-MN13 results in a feedforward path as in the traditional folded-

cascode op-amp. The signal paths combine in-phase at the source of MN13, resulting in a LHP 

zero that counters the dominant pole (albeit at relatively high frequencies). The pole and zero 

locations are approximated in [41] and are listed in expressions (4.16) to (4.18). 

𝒇𝒑𝟏 ≈  
𝒈𝒎𝟏𝟎

𝟐𝝅(𝑪𝑮𝑺,𝑴𝑵𝟏𝟎)(𝟏+𝑵)
    (4.16) 

𝒇𝒛𝟏 ≈  
𝒈𝒎𝟏𝟎

𝟐𝝅(𝑪𝑮𝑺,𝑴𝑵𝟏𝟎)
     (4.17) 

𝒇𝒑𝟐 ≈  
𝒈𝒎𝟏𝟏

𝟐𝝅(𝑪𝑵)
      (4.18) 

In the equation for fp1, the value of N refers to the ratio between the current mirroring 

devices (i.e. MN10 to MN11) which is set to 1:3 in this design as previously specified. The value 

of CN in the fp2 expression refers to the total capacitance at the source of MN13. 

A complete list of the device sizes for the RFC using indirect compensation is given in 

Table 4.6. The frequency response at 300 ºC (TF) and for a common mode input voltage of 3 V is 

shown in Fig. 4.23. The gain follows a typical single pole system response with a -20 dB/decade 

drop until approximately 10 MHz in each case. The low-frequency gain has a maximum of 67.5 

dB at 300 ºC and decreases to 60.3 dB at 25 ºC. For the 300 ºC aged models, the low-frequency 

gain is only 50.8 dB which indicates that the supply voltage overhead is approaching the available 

15 V because of the PFET threshold voltage increase.  
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Table 4.6. The devices sizes for the recycling folded-cascode schematic in Fig. 4.22. 

Component Device Size Comment 

MN6, MN7, MN9, 

MN10, MN12, MN13 
20 µm / 1.2 µm (m = 8) 

Wide swing current mirrors, cascoded 

FETs 

MN8, MN11 20 µm / 1.2 µm (m = 24) Current sinks 

MN1 – MN5, MN14 20 µm / 1.2 µm (m = 32) Biasing, 2nd stage NFET 

MP5 – MP12 20 µm / 1.2 µm (m = 32) Input pair and cascoded devices 

MP1 – MP4, MP13 20 µm / 1.2 µm (m = 128) 
Biasing for input pair and cascoded 

FETs, 2nd stage PFET 

RIBIAS1 80 kΩ Biasing (1st stage) 

RIBIAS2 50 kΩ Biasing (2nd stage) 

RIBIAS3 125 kΩ Biasing (2nd stage) 

CC 21 pF Compensation capacitor 

Fig. 4.23. The frequency response of the recycling folded-cascode op-amp in Fig. 4.22. 
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A summary of the RFC’s frequency response parameters is presented in Fig. 4.24. The 

low-frequency open-loop gain is about 10 dB lower than the telescopic within the respective VICMR 

Fig. 4.24. The open-loop DC gain, PM, and UGBW over temperature and a 0-15 V common 

mode input voltage for the recycling folded-cascode in Fig. 4.22. 
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of each op-amp. However, the VICMR is significantly greater for the RFC and it also has a more 

consistent PM across the operating temperature range. The peak UGBW is slightly lower than for 

the telescopic for each case, except for 300 ºC (TT) which is limited by the supply voltage 

headroom. 

The transient response of the RFC in a unity-gain configuration at 300 ºC and for a 50 mV 

step input is shown in Fig. 4.25. The indirect compensation again exhibits oscillations on the rising 

and falling edges, although there isn’t a significant undershoot or overshoot as should be expected 

for 70º of PM. In a non-inverting configuration with the same operating conditions, the RFC’s 

transient response is shown in Fig. 4.26. The 1% settling times are 0.19 μs and 0.34 μs for the 

unity-gain and non-inverting configurations, respectively. In the unity-gain configuration, this 

marks a 0.17 μs improvement over the traditional folded-cascode. However, the RFC performs 

slightly worse in the non-inverting configuration versus the folded-cascode with a 0.06 μs longer 

settling time.  

Fig. 4.25. The transient response of the recycling folded-cascode op-amp driving a 4.5 pF 

load at 300 ºC (TF) for a 50 mV step input in a unity-gain configuration. 
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4.2.1.5 Multipath Recycling Folded-Cascode Op-Amp 

In the RFC op-amp presented in the previous section, the AC signal followed the same path 

as the DC current. The multipath RFC shown in Fig. 4.27 increases the overall transconductance 

of the op-amp by separating the AC and DC paths as suggested in [64]. The DC current path for 

the non-inverting input goes through MN7 and MN10, whereas the AC path goes through MN6 

Fig. 4.26. The transient response of the recycling folded-cascode op-amp driving a 4.5 pF 

load at 300 ºC (TF) for a 50 mV step input in a non-inverting configuration. 

Fig. 4.27. The multipath RFC op-amp schematic. 
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and MN13 before it’s mirrored through MN12 to the cascode structure. The result is that the 

multipath RFC provides an increase in gain for the same MN12:MN13 sizing ratio. Alternatively, 

the ratio of MN12:MN13 can be increased since a smaller width of MN13 pushes the parasitic 

pole at its gate to higher frequencies, resulting in a larger bandwidth where the 2nd pole is 

effectively cancelled out by the zero. Additional literature publications have expanded upon the 

multipath approach to achieve higher gain and bandwidth [65], [66]. 

The device sizes of the multipath RFC are listed in Table 4.7. The frequency response 

across the operating temperature range and for a VCM of 3 V is shown in Fig. 4.27. At 300 ºC and 

with no increase in power consumption, the low-frequency gain of 78 dB is a significant boost 

over the 67 dB provided by the conventional RFC. This advantage can be traded for a slightly 

higher UGBW by decreasing the sizes of MN13 and MN14. The pole and zero expressions are 

largely unchanged, therefore the system’s phase response is similar to the RFC as expected. 

Table 4.7. The devices sizes for the multipath RFC schematic in Fig. 4.27. 

Component Device Size Comment 

MN6 – MN11, MN12 – 

MN14, MN16, MN17 
20 µm / 1.2 µm (m = 8) 

Wide swing current mirrors, 

cascoded FETs, added DC path 

MN12, MN15 20 µm / 1.2 µm (m = 24) Current sinks 

MN1 – MN5, MN18 20 µm / 1.2 µm (m = 32) Biasing, 2nd stage NFET 

MP5 – MP12 20 µm / 1.2 µm (m = 32) Input pair and cascoded devices 

MP1 – MP3, MP13 20 µm / 1.2 µm (m = 128) 
Biasing for cascoded FETs, 2nd 

stage PFET 

MP4 20 µm / 1.2 µm (m = 128) Biasing for input pair 

RIBIAS1 80 kΩ Biasing (1st stage) 

RIBIAS2 50 kΩ Biasing (2nd stage) 

RIBIAS3 130 kΩ Biasing (2nd stage) 

CC 36 pF Compensation capacitor 
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The DC open-loop gain, PM, and UGBW results over the operating temperature range and 

for a VCM of 0 V to 15 V are provided in Fig. 4.29. The largest increase in DC gain is present in 

the 200 ºC and 300 ºC cases, although the other temperatures each increase by about 2 to 4 dB as 

well. The PM is relatively consistent as it was in the RFC design with the maximum shift being 

about 15º over the entire temperature range while operating inside the VICMR. The UGBW is 

improved for each temperature versus the conventional RFC. Compared to the telescopic op-amp, 

the multipath RFC only loses in the 200 ºC case for a VCM of 4 V to 7 V and for the 300 ºC (TT) 

aged models where the supply voltage headroom serves as the constraint. 

Fig. 4.28. The frequency response of the multipath RFC op-amp in Fig. 4.27. 
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The transient response of the multipath RFC at 300 ºC in the unity-gain and non-inverting 

configurations is shown in Fig. 4.30 and Fig. 4.31, respectively. The 1% settling time in the unity-

Fig. 4.29. The open-loop DC gain, PM, and UGBW over temperature and a 0-15 V common 

mode input voltage for the multipath RFC in Fig. 4.27. 
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gain configuration is 0.32 μs versus 0.37 μs for the non-inverting configuration. With respect to 

settling time, the multipath RFC underperforms slightly compared to the conventional RFC. The 

non-inverting configuration settling time is only 0.03 μs longer in the multipath topology, but the 

unity-gain configuration is 0.13 μs slower. 

Fig. 4.30. The transient response of the multipath RFC driving a 4.5 pF load at 300 ºC (TF) 

for a 50 mV step input in a unity-gain configuration. 

Fig. 4.31. The transient response of the multipath RFC driving a 4.5 pF load at 300 ºC (TF) 

for a 50 mV step input in a non-inverting configuration. 
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4.2.1.6 Comparing the Op-Amp Architectures 

The foundation of a fully-on chip linear regulator requires a high bandwidth, high gain op-

amp with a frequency response that is nearly representative of a single pole system. Each of the 

op-amps designed and presented in the previous sections have targeted a 70º PM using an indirect 

compensation scheme to split the 1st and 2nd poles of the system. Achieving a high bandwidth for 

the overall linear regulator hinges upon splitting the op-amp’s poles apart to a degree that the 2nd 

pole only marginally impacts the frequency response.  

The two-stage op-amp implemented in the Vulcan II linear regulator had a high bandwidth, 

but relatively close 1st and 2nd poles that lead to a low PM. This ultimately required a significant 

amount of compensation at the top-level of the regulator and resulted in a decreased UGBW. To 

improve upon the Vulcan II regulator design, Table 4.8 provides a comparison of the op-amps 

designed along with the Vulcan II op-amp.  

The first item to note from Table 4.8 is that the Vulcan II op-amp is presented for its 

original design in which it had a VCM of 7.5 V whereas the fully-on chip linear regulators will be 

utilizing a bandgap reference that provides approximately 3 V [67]. The performance with a VCM 

of 7.5 V has a high UGBW as previously stated, but lacks phase margin. It also uses more than the 

1.5 mA current budget. To form a more direct comparison with the op-amps designed, the total 

current consumption is lowered to 1.5 mA and the compensation network is altered such that it 

provides a 70º of PM (RZ = 830 Ω and CC = 8.8 pF in Fig. 4.3). This results in the UGBW 

decreasing to 3.12 MHz, although the settling time remains nearly constant. The settling time in 

the non-inverting configuration is not reported since the results are limited by the 15 V supply rail 

for AV = 2 and VIN = 7.5 V. 
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Table 4.8. An op-amp performance comparison at 300 ºC (TF). 

Parameter 
Vulcan II 

Two-Stage 

Two-

Stage 

(Indirect 

comp.) 

Telescopic 
Folded-

Cascode 
RFC 

Multipath 

RFC 

Current 

Consumption 
2.3 mA 1.5 mA 1.5 mA 1.5 mA 1.5 mA 1.5 mA 

VCM 7.5 V 3.0 V 3.0 V 3.0 V 3.0 V 3.0 V 

Capacitive 

Load 
4.5 pF 4.5 pF 4.5 pF 4.5 pF 4.5 pF 4.5 pF 

DC Gain 64.0 dB 55.5 dB 78.4 dB 56.4 dB 67.5 dB 77.9 dB 

UGBW 9.37 MHz 3.05 MHz 4.40 MHz 3.95 MHz 5.24 MHz 6.10 MHz 

Phase 

Margin 
30.3º 68.4º 72.0º 71.9º 72.7º 71.6º 

1% Settling 

Time 

(Unity-gain) 

0.21 μs 0.40 μs 0.36 μs 0.36 μs 0.19 μs 0.32 μs 

1% Settling 

Time 

(Non-Inv.) 

- 0.52 μs 0.42 μs 0.28 μs 0.34 μs 0.37 μs 

Input 

Common 

Mode Range 

4.4 – 12.4 V 0 – 11.6 V 1.6 – 8.4 V 0 – 15 V 0 – 10.3 V 0 – 10.9 V 

 

The op-amps designed with an indirect compensation scheme also do not rely upon a 

nulling resistor, which is a significant advantage given the process variation observed in Vulcan I 

and Vulcan II. Of the op-amps designed in the previous sections, the telescopic and multipath RFC 

have the best overall performance. An issue for the telescopic op-amp is its input common mode 

range. In Table 4.8, the VICMR is the voltage range that provides a gain greater than 40 dB. As 

shown in Fig. 4.14, the telescopic op-amp’s low-frequency gain over temperature begins to 

decrease significantly below 3 V VCM. If the bandgap reference drifts downwards from the ideal 3 

V, then the performance of the telescopic op-amp will degrade rapidly. Due to these factors, the 

multipath RFC is the best selection for the fully on-chip linear regulator’s op-amp. Note that the 
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performance of the multipath RFC may differ slightly from Table 4.8 when it is implemented in 

the fully-on chip linear regulator. The reasoning for this is that the dominant and non-dominant 

poles will be split further apart to ensure an acceptable phase margin over all operating conditions.  

Before proceeding, the PSRR and CMRR of the multipath RFC are provided in Fig. 4.32 

and Fig. 4.33, respectively. As a comparison to a general-purpose op-amp, Texas Instrument’s 

silicon based LMC660C op-amp reports a (measured) PSRR and CMRR of 63 dB with a total 

current consumption of approximately 0.4 mA [68]. The multipath RFC therefore outperforms the 

silicon based part in all cases except for the PSRR at 25 ºC. Finally, the multipath RFC has a slew 

rate of approximately 15 V/μs at 300º C versus 1.1 V/μs (at 25 ºC) for the LMC660C. 

Fig. 4.33. The CMRR of the multipath RFC over the operating temperature range. 

Fig. 4.32. The PSRR of the multipath RFC over the operating temperature range.  
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4.2.2 Fully On-Chip NFET Pass Transistor Based Linear Regulator 

The proposed schematic of the fully-on chip linear regulator is shown in Fig. 4.34 with the 

multipath RFC now forming the foundation of the feedback loop. The design procedure and 

compensation scheme both derive from the Vulcan II linear regulator in which a fast auxiliary path 

is implemented with a differentiator that dynamically alters the output resistance of the op-amp to 

counter sudden transient disturbances. The RESR connected with CLOAD in the Vulcan II linear 

regulator has been removed to allow the capacitor to better assist with fast transient loads while 

the regulator reacts. This on-chip linear regulator is primarily intended for relatively low-power, 

stand-alone applications. The total quiescent current is therefore limited to 3 mA at 300 ºC. 

Subsequent design specifications include a maximum load current of 50 mA and an input 

voltage range of 20 V to 50 V for 25 ºC to 300 ºC. A safety margin has been added to provide up 

to 50 mA for an input voltage of 19 V at 25 ºC, resulting in MN1’s width being less than half that 

Fig. 4.34. The schematic of the fully on-chip linear regulator with an NFET pass device. 
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of the Vulcan II’s pass device. With respect to the frequency response, the design targets a 

minimum PM of 45º for all operating conditions. 

The process and temperature variation observed in the HiTSiC® resistors make it 

imperative to limit the design’s dependence on resistance values. Inserting RCOMP into the system, 

for example, yields an improved PM and a decrease in UGBW as it pushes a zero near the unity-

gain frequency to lower frequencies. System stability is not critically dependent upon RCOMP, but 

is slightly improved by it. From an efficiency and power budget perspective, perhaps the most 

critical component in the system given the process and temperature variation observed in SiC IC 

technology is RIBIAS. This sets the current flowing through the differentiator and lower values of 

RIBIAS create a proportionally lower resistance path to ground from the op-amp’s output. Selecting 

the lowest temperature coefficient resistor available while also making a longer and wider device 

is one approach to mitigating variation. 

Preliminary simulations indicated that for certain operating conditions the linear regulator 

either had a long start-up time (greater than 100 μs) or never reached the target 15 V output. Under 

these simulation conditions, the output of the regulator was less than 10 V. The start-up circuitry 

shown in Fig. 4.34 was implemented to eliminate this issue. With a drop of approximately 2 V per 

diode and a VTHN of 2 V, the start-up circuit detects when the output is below 10 V.  If the output 

is below 10 V, then the start-up circuit provides a digital low to the level shifting NFET (MN2) to 

turn it off. This applies the full input voltage to the NFET pass transistor (MN1) and ensures the 

system turns on properly. Due to using a tri-state buffer, the start-up circuit’s output goes into a 

high impedance state once the output transitions above 10 V and does not impact the regulator’s 

performance. Inserting an enable pin to momentarily short the input and output is another solution. 
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Table 4.9. The device sizes used in the fully on-chip NFET based linear regulator. 

Component Device Size Comment 

MN1 20 µm / 1.2 µm (m = 1,500) NFET pass transistor 

MN2 – MN6 20 µm / 1.2 µm (m = 8) Level shifting, differentiator 

RLS 25 kΩ Level shifting 

RIBIAS 100 kΩ Biasing - differentiator 

RCOMP 7.5 kΩ Compensation - differentiator 

RF1 240 kΩ Feedback network (sampling) 

RF2 60 kΩ Feedback network (sampling) 

RST1 210 kΩ Start-up circuit (sampling) 

RST2 90 kΩ Start-up circuit (sampling) 

RSTART 200 kΩ Start-up circuit 

CCOMP 24 pF Compensation - differentiator 

CLOAD 90 pF Output capacitor 

 

The fully on-chip NFET based linear regulator’s device sizes are listed in Table 4.9. The 

component sizing used in the multipath RFC are provided in Table 4.7, although CC has been 

increased to 66 pF to further split the op-amp’s 1st and 2nd poles. The comparator used in the start-

up circuit is a modified version of the design in [11] and is discussed later in Section 4.3.6. The 

gates used in conjunction with the tri-state buffer have a pull-up to pull-down ratio of 4:1, a 

minimum NFET width of 4 μm along with a PFET width of 20 μm, and use a length of 1.2 μm. 

The frequency response of the fully on-chip linear regulator across all operating 

temperatures is shown in Fig. 4.35 for an input voltage of 20 V and a load current of 50 mA. The 

low-frequency gain reaches a maximum of 73 dB at 300 ºC and decreases to a minimum of 52 dB 

at 25 ºC. Pole splitting due to indirect compensation within the op-amp has resulted in the system 
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behaving similar to a single pole system until the unity-gain frequency. The UGBW for each 

temperature exceeds 1 MHz with the exception for 300 ºC (TT) which reaches the unity-gain 

frequency at 830 kHz. 

Fig. 4.35. The frequency response of the fully on-chip NFET linear regulator for VIN = 20 V 

and ILOAD = 50 mA across the operating temperature range. 
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The low-frequency gain, PM, and UGBW are shown in Fig. 4.36 for each temperature, an 

input voltage range of 20 V to 50 V, and a load current of 50 mA. The same frequency parameters 

Fig. 4.36. The low-frequency gain, PM, and UGBW of the fully on-chip NFET linear 

regulator with an ILOAD = 50 mA across the temperature range. 
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are subsequently shown in Fig. 4.37 at 300 ºC (TF) over the input voltage range for various load 

currents. 

Fig. 4.37. The low-frequency gain, PM, and UGBW of the fully on-chip NFET linear 

regulator for various load currents over the input voltage range at 300 ºC (TF). 
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The low-frequency gain of the linear regulator is shown to be proportional to temperature 

in Fig. 4.36 and then constant with different load currents in Fig. 4.37. During the op-amp design, 

the trend of gain was found to be somewhat ambiguous between 100 ºC and 300 ºC. However, the 

increase in gain over temperature generally follows expectations that the gm value will go up faster 

than the ro value will decrease. Due to the total system gain being a product of the gain of each 

stage, the relatively high gain for 300 ºC (TT) in Fig. 4.36 indicates that the op-amp is no longer 

hitting a supply voltage headroom as shown in Fig. 4.29. The gain of the regulator being stable for 

various load currents in Fig. 4.37 is expected since the gain of the common-drain pass NFET is 

ideally the only factor that will change. 

A decrease in output resistance of the pass device for higher load currents causes a pole 

near the unity-gain frequency to shift to lower frequencies as expressed by (4.14), where the output 

resistance is considered in place of RESR. This leads to the unity-gain frequency being the highest 

at lower load currents, as shown in Fig. 4.37, and then trending downwards as load current 

increases. As the pole near the unity-gain frequency is pushed outwards for lower load currents, 

parasitic poles begin impacting the system’s frequency response and result in a decrease in PM.  

The PSRR of the NFET based linear regulator is shown in Fig. 4.38. Considering a supply 

ripple frequency of 60 Hz, the maximum PSRR value reaches 96.0 dB at 300 ºC for the 50 mA 

load while the minimum value is 75.6 dB at 25 ºC. The design benefits substantially from not only 

the high gain multipath RFC, but also the configuration of the topology. One influencing factor is 

the use of the level shifting transistor (MN2) in a common-source configuration without also using 

a source degeneration resistor. A second factor is that the op-amp uses the output of the regulator 

as its supply and is shielded from power supply ripple to a degree. This allows the system to 
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outperform the multipath RFC’s stand-alone PSRR given in Fig. 4.32. For a comparison to a 

commercially available linear regulator, the datasheet for Texas Instrument’s UA78L15 linear 

regulator reports a typical PSRR of 39 dB for a 120 Hz ripple frequency [69]. 

The transient response of the linear regulator at 300 ºC (TF) for a continuous load current 

of 25 mA, a pulsed load current of 25 mA, and an input voltage of 25 V is shown in Fig. 4.39. The 

load pulse has rise and fall times of 10 ns. The time taken to reach the 14.85 V to 15.15 V nominal 

output band after a disturbance, or the 1% settling time, is 0.27 μs on the load’s rising edge and 

0.61 μs on its falling edge. The output undershoots to 14.10 V and then overshoots to 15.78 V 

during the load transient, despite the 10 ns rise/fall times, and keeps the regulator within 10% of 

its nominal value without the need for a discrete load capacitor.  

Similarly, Fig. 4.40 shows the transient response of the regulator at 300 ºC (TF) for a pulsed 

load current of 50 mA, no continuous load current, and an input voltage of 25 V. The larger pulsed 

load and 10 ns rise/fall times result in an undershoot to 11.85 V and an overshoot to 16.8 V. The 

Fig. 4.38. The PSRR of the fully-on chip linear regulator for VIN = 25 V and ILOAD = 50 mA 

over the operating temperature range. 
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regulator is able to quickly response with a 1% settling time of 0.26 μs on the load’s rising edge 

and 0.64 μs on its falling edge. If the application is anticipated to have sudden no load to full load, 

such as with a 10 ns rise and fall time, then a larger on-chip load capacitor (e.g. 500 pF) can be 

justified. However, this will cause a high frequency pole to shift towards the unity-gain frequency. 

Fig. 4.39. The transient response of the fully on-chip NFET linear regulator at 300 ºC (TF) 

for VIN = 25 V, a ILOAD,CONT = 25 mA, and a IPULSE = 25 mA. 

Fig. 4.40. The transient response of the fully on-chip NFET linear regulator at 300 ºC (TF) 

for VIN = 25 V, a ILOAD,CONT = 0 mA, and a IPULSE = 50 mA. 
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 The line regulation of the NFET based linear regulator is provided in Table 4.10 for an 

input voltage range of 20 V to 50 V and over the operating temperature range. Line regulation is 

inversely proportional to the regulator’s gain and proportional to load current, as specified by 

equation (4.9), thus the trends shown in Table 4.10 meet expectations. Drawing a comparison to 

Texas Instrument’s UA78L15 linear regulator which has a maximum current of 100 mA and an 

input voltage range of 17.5 V to 30 V, the fully on-chip linear regulator achieves line regulation 

performance that is approximately 1 to 2 orders of magnitude lower and therefore superior [69]. 

 The load regulation of the fully on-chip linear regulator also outperforms the silicon based 

counterpart as shown in Table 4.11. As indicated by expression (4.8), the load regulation is 

inversely proportional of the linear regulator’s gain and has improved performance for higher input 

voltages. In comparison to TI’s UA78L15 regulator, the fully-on chip regulator achieves superior 

performance by at least 1 order of magnitude and nearly 3 orders of magnitude at 300 ºC. 

Table 4.10. The line regulation of the fully on-chip NFET based linear regulator over 

temperature for VIN = 20 V to 50 V compared to TI’s UA78L15 linear regulator. 

Load 

Current 
25 ºC 100 ºC 200 ºC 

300 ºC 

(TF) 

300 ºC 

(TT) 

Texas 

Instruments 

UA78L15* 

0 mA 
0.625 

mV/V 

0.238 

mV/V 

0.135 

mV/V 

0.059 

mV/V 

0.081 

mV/V 

5.8 mV/V 

Typical 

1 mA 
0.628 

mV/V 

0.239 

mV/V 

0.136 

mV/V 

0.059 

mV/V 

0.081 

mV/V 

5 mA 
0.633 

mV/V 

0.240 

mV/V 

0.137 

mV/V 

0.060 

mV/V 

0.082 

mV/V 

10 mA 
0.639 

mV/V 

0.241 

mV/V 

0.138 

mV/V 

0.060 

mV/V 

0.083 

mV/V 

25 mA 
0.652 

mV/V 

0.244 

mV/V 

0.141 

mV/V 

0.062 

mV/V 

0.085 

mV/V 

50 mA 
0.670 

mV/V 

0.248 

mV/V 

0.144 

mV/V 

0.063 

mV/V 

0.087 

mV/V 

*Test conditions: VIN = 20 V to 30 V, ILOAD = 40 mA, junction temperature (TJ) = 25 ºC 
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Table 4.11. The load regulation of the fully on-chip NFET based linear regulator over 

temperature for ILOAD = 0 mA to 50 mA compared to TI’s UA78L15 linear regulator. 

Input 

Voltage 
25 ºC 100 ºC 200 ºC 

300 ºC 

(TF) 

300 ºC 

(TT) 

Texas 

Instruments 

UA78L15* 

20 V 36.9 mV/A 8.46 mV/A 6.78 mV/A 3.49 mV/A 5.00 mV/A 

385 mV/A 

Typical 

25 V 21.3 mV/A 5.03 mV/A 3.81 mV/A 1.72 mV/A 2.41 mV/A 

30 V 17.3 mV/A 4.30 mV/A 3.02 mV/A 1.31 mV/A 1.88 mV/A 

35 V 14.6 mV/A 3.44 mV/A 2.55 mV/A 1.08 mV/A 1.60 mV/A 

40 V 12.4 mV/A 3.23 mV/A 2.19 mV/A 0.93 mV/A 1.39 mV/A 

45 V 10.7 mV/A 3.00 mV/A 1.90 mV/A 0.81 mV/A 1.23 mV/A 

50 V 9.44 mV/A 2.64 mV/A 1.66 mV/A 0.73 mV/A 1.13 mV/A 

*Test conditions: VIN = 23 V, ILOAD = 1 mA to 40 mA, junction temperature (TJ) = 25 ºC 

The quiescent current of the NFET based linear regulator is shown in Fig. 4.41. Although 

the design goal of less than 3.0 mA at 300 ºC is achieved, the quiescent current does increase at 

lower temperatures. The resistance connected between the input and the drain of the level shifting 

FET is a driving factor for the seemingly inconsistent trend. At 25 ºC, for example, the resistance 

is 25 kΩ and then increases over temperature to its maximum of 46.7 kΩ at 300 ºC. This is opposite 

Fig. 4.41. The quiescent current of the fully on-chip NFET based linear regulator for each 

operating temperature and an ILOAD = 0 mA. 
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of the observed trend for HiTSiC® resistances formed with poly, which can decrease substantially 

(-50% of the nominal value has been observed) over temperature. The current consumption of the 

op-amp is another factor for the quiescent current trends. The level shifting NFET (MN2) has a 

lower VTHN at higher voltages, but the pass transistor (MN1) also has a lower VTHN. Therefore, it’s 

not straightforward to determine the voltage required from the output stage of the multipath RFC 

which makes the current through the output stage difficult to predict.   

The dropout voltage of the fully on-chip linear regulator’s NFET pass transistor is shown 

in Fig. 4.42. As stated at the beginning of the section, a safety margin is added to the design such 

that the maximum load current of 50 mA can be provided for a 19 V input at 25 ºC. At 300 ºC, 

ignoring aging effects, the dropout voltage reduces to approximately 3.2 V. 

 A summary of the fully on-chip SiC linear regulator results is given in Table 4.12 along 

with a comparison to external capacitor-less silicon based parts. The SiC regulator has a higher 

quiescent current than the two silicon parts due to factors such as a larger feature size and increased 

Fig. 4.42. The dropout voltage (VDS) of the fully on-chip linear regulator’s NFET pass 

transistor over temperature. 
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threshold voltage, but it is competitive in every other listed metric. For frequency response 

parameters, it outperforms or matches [60] in every case except for the gain at 25 ºC. While [60] 

does report undershoot and overshoot values of 90 mV (3.2%), the test setup uses 1 μs rise and fall 

times for the load pulse. Extending the rise and fall times to 1 μs for the SiC linear regulator in this 

section, rather than the 10 ns initially used, limits the undershoot/overshoot to no more than +/- 

0.5 V (3.3%). Finally, the fully on-chip SiC linear regulator outperforms TI’s TPS731 by more 

than an order of magnitude for load regulation and also has superior line regulation at 300 ºC. 

Table 4.12. A summary of the fully on-chip NFET linear regulator and a comparison to 

silicon based parts. 

Parameter 
Test Condition  

(this work only) 

25ºC  

(TF) 

300 ºC 

(TF) 

300 ºC 

(TT) 

Fully  

On-Chip 

Silicon 

Regulator 

[60] 

Texas 

Instruments 

TPS731 

(Cap-Free) 

[70] 

DC Loop 

Gain 

ILOAD = 50 mA, 

VIN = 25 V 

53.0 dB 74.0 dB 71.1 dB 62 dB N/A 

Phase 

Margin 
80.0º 82.6º 100º 

50º 

(min. value) 
N/A 

Bandwidth 
2.06  

MHz 

2.25  

MHz 

1.15 

MHz 

220 kHz 

(min. value) 
N/A 

PSRR 

F = 100 Hz, 

ILOAD = 0 mA, 

VIN = 25 V 

75.6 dB 95.9 dB 92.6 dB 
57 dB 

(@ 1 kHz) 

58 dB 

(@ 100 Hz) 

IQUIESCENT 
ILOAD = 0 mA, 

VIN = 25 V 
2.4 mA 2.1 mA 1.6 mA 0.065 mA 0.4 mA 

Overshoot 

ΔVOUT ΔILOAD = 50 

mA, 

VIN = 25 V 

(full load  

transient) 

2.16 V 1.80 V 2.11 V N/A N/A 

Undershoot 

ΔVOUT 
3.22 V 3.14 V 3.48 V N/A N/A 

1% 

Settling 

Time 

0.23 μs 0.26 μs 0.41 μs 

3 μs 

(full load 

transient) 

2 μs 

(full load 

transient) 

Line 

Regulation 

ΔVIN = 20 V to 

50 V, 

ILOAD = 50 mA 

0.670 

mV/V 

0.063 

mV/V 

0.085 

mV/V 
N/A 0.35 mV/V 

Load 

Regulation 

ΔILOAD = 50 mA 

VIN = 25 V 

21.3  

mV/A 

1.72 

mV/A 

2.41 

mV/A 
N/A 70 mV/A 
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4.2.3 Fully On-Chip PFET Pass Transistor Based Linear Regulator 

For applications that can utilize a multi-chip module, a PFET pass transistor based linear 

regulator is an alternative to its NFET based counterpart. To avoid body effect, the linear regulator 

must be sub-diced such that any circuitry connected to the output no longer shares a common 

substrate with the regulator. The intended role of a PFET based linear regulator is in applications 

where the input voltage headroom is relatively low compared to the desired output voltage. Its 

ability to lower the dropout voltage versus the NFET based regulator is a result of the VGS 

magnitude available to drive the pass transistor being limited by only the supply rails. 

The proposed schematic of the fully on-chip PFET based linear regulator is presented in 

Fig. 4.43. The design targets a maximum load current of at least 50 mA, a minimum phase margin 

of 45º, and an input voltage range of 17.5 V to 30 V at 25 ºC. To account for an additional 1 V 

safety margin for the supply headroom, the PFET pass device is selected to have an effective width 

of 10,000 μm / 1.2 μm. The dropout voltage of the linear regulator is plotted across temperature in 

Fig. 4.43. The schematic of the fully on-chip linear regulator with a PFET pass device. 
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Fig. 4.44. At 100 ºC and above, the linear regulator achieves a dropout voltage of below 1 V. Aged 

models at 300 ºC provide an exception to this since the threshold voltage begins to increase towards 

the typical values at 25 ºC. 

As opposed to inserting a large output capacitor to create a dominant pole that effectively 

compensates the loop and ensures stability, the goal of this design is to internally compensate the 

system. As with the fully on-chip NFET based linear regulator, the dominant pole must now be at 

the op-amp’s output. With the added gain from the common source amplifier, the open-loop gain 

is often intentionally reduced to avoid having the unity-gain frequency (f0dB) extend out to the 

parasitic pole region (approximately 10 MHz). As stated in [71], the system’s open-loop gain is 

generally made to be between 40 dB and 50 dB which subsequently drops the f0dB for the same 

3dB frequency (f3dB) to mitigate the impact of parasitic poles on loop stability. 

Since the loop gain is a product of each stage, the multipath RFC presents a problem in that 

it can increase the regulator’s low-frequency gain to beyond 90 dB and result in a f0dB that falls 

Fig. 4.44. The dropout voltage (VSD) of the fully on-chip linear regulator’s PFET pass 

transistor over temperature for a W/L = 10,000 μm / 1.2 μm. 
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within the parasitic pole region if not properly compensated for. A compromise is to reduce the 

multipath RFC to a single stage at the cost of lower gain and potentially a severe degradation of 

line and load regulation. However, it reduces design complexity with respect to the compensation 

scheme since the multipath RFC becomes an OTA with the output being the only high impedance 

node in the system other than the inputs. If the two-stage multipath RFC had been used, then the 

typically dominant pole at the output of the op-amp’s 1st stage would be within a decade of the 

pole at the output of its 2nd stage due to the relatively large input capacitance of the pass transistor.  

The compensation scheme can now be implemented with pole splitting techniques and by 

introducing pole-zero pairs in which a relatively low frequency pole causes the gain to roll off 

quicker while a higher frequency zero acts to recover the phase. Leveraging the gain of the pass 

transistor, a common source amplifier, Miller’s theorem can be indirectly applied by connecting a 

capacitance between the regulator’s output and the source of MP12 as shown in Fig. 4.45. 

Compared to connecting the Miller capacitance directly to the op-amp’s output, this eliminates the 

reliance upon a nulling resistor and the possibility of a RHP zero that degrades stability.  

Fig. 4.45. The multipath RFC op-amp schematic modified for the PFET linear regulator. 
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Introducing pole-zero pairs, specifically RLIMIT1-CZ1 and RLIMIT2-CZ2, further compensates 

the system. Both CZ1 and CZ2 feed forward in-phase signals from the differential pair to the output 

of the 1st stage, but neither has a current surpassing MP12’s or MN17’s when the current limiting 

resistors are inserted and no feedforward zeroes occur. The result is that CZ1 shunts the op-amp’s 

output resistance and the associated 1/gm resistance of MP9 at a pole location slightly beyond f3dB. 

The same applies to CZ2, although the 1/gm resistance it shunts is MN17’s. The current through 

CZ1,2 is then limited by RLIMIT1,2 which forms an in-phase LHP zero. The zeroes are located prior 

to the f0dB point if CZ1,2 are appropriately sized and RLIMIT1,2 are large enough that the feedforward 

currents do not exceed the current flowing through MP12 or MN17. Therefore, the poles accelerate 

the fall of the gain and the LHP zeroes recover the phase lost prior to the f0dB. 

The sizes of the components in the fully on-chip PFET based linear regulator are given in 

Table 4.13 along with relevant changes to the multipath RFC. The lower sampling network 

resistances improve the PM by decreasing the output resistance of the pass transistor and shifting 

the output pole to higher frequencies according to equation (3.2), but add quiescent current. 

Table 4.13. The component sizes of the PFET based regulator. 

Component Device Size Comment 

MPASS 20 µm / 1.2 µm (m = 500) PFET pass transistor 

RF1 12 kΩ Sampling network 

RF2 48 kΩ Sampling network 

RESR 250 Ω 
ESR resistance – adds zero 

determined by equation (3.5) 

RZ1, RZ2 7.5 kΩ Compensation 

CZ1, CZ2 60 pF Compensation 

CMILLER, CLOAD 90 pF Compensation, load capacitance 

 



 

114 

 

The frequency response of the PFET based linear regulator is shown in Fig. 4.46 for an 

input voltage of 20 V and a 50 mA load. The response is characteristic of a single pole system until 

the unity-gain frequency due to the dominant pole formed by the indirect compensation technique. 

The pole-zero pairings first introduce a zero near the unity-gain frequency, recovering phase lost 

from the dominant pole, then introduce a pole to kill off the gain. The low-frequency gain decreases 

over temperature similar to the multipath RFC and NFET based linear regulator, with a maximum 

value of 70.4 dB at 300 ºC (TF) and a minimum value of 53.5 dB at 25 ºC. 

Fig. 4.46. The frequency response of the fully on-chip PFET based linear regulator for VIN 

= 20 V and ILOAD = 50 mA across the operating temperature range. 
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The low-frequency, PM, and UGBW are shown across temperature in Fig. 4.47 for a load 

of 50 mA load. The gain of the regulator rises until about 22 V as the pass transistor saturates, then 

Fig. 4.47. The low-frequency gain, PM, and UGBW of the fully on-chip PFET linear 

regulator with an ILOAD = 50 mA across the temperature range. 
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begins to decline due to the op-amp’s bias current increasing with the input voltage. The UGBW 

also increases with input voltage due to the op-amp’s bias current increasing. 

Fig. 4.48. The low-frequency gain, PM, and UGBW of the fully on-chip PFET linear 

regulator for various load currents over the input voltage range at 300 ºC (TF). 
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In Fig. 4.48 on the previous page, the low-frequency gain, PM, and UGBW are shown for 

different input voltages and load currents. The gain generally decreases for a higher load current 

because the load acts a source degeneration resistance. On the contrary, the PM rises with load 

current as the output resistance of the pass transistor drops and pushes the output pole to higher 

frequencies. The UGBW has a minimum at 0 mA load due to the relatively low frequency output 

pole, while the behavior at other loading conditions becomes more complex due to the 

compensation scheme’s impact. 

The PSRR of the PFET linear regulator is shown in Fig. 4.49 for a 20 V input and a load 

of 50 mA. Outside of the 200 ºC case, the PSRR underperforms versus the NFET linear regulator. 

This is a result of the op-amp drawing its supply voltage directly from the input. However, the 

regulator’s PSRR value for all temperatures still exceeds the commercially available UA78L15 

linear regulator that is stated as having a PSRR of 39 dB at 120 Hz [69]. 

The transient response of the PFET linear regulator is shown in Fig. 4.50 for a continuous 

load current of 25 mA in addition to 25 mA pulses at 300 ºC and an input voltage of 25 V. The 1% 

Fig. 4.49. The PSRR of the fully-on chip PFET based linear regulator for VIN = 20 V and 

ILOAD = 50 mA over the operating temperature range. 
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settling time is noticeably longer than the NFET regulator at 1.02 μs. The difference is in part due 

to the PFET regulator’s op-amp having a larger effective capacitance at its output, which limits its 

slew rate. The bias current through the op-amp increases with input voltage, but not significantly 

enough to offset the larger capacitance. The problem worsens at larger loads, resulting in 

undershoot and overshoot values that increase along with settling time.  

The load regulation is noticeable in Fig. 4.50 since the steady-state output voltage does not 

return to 15 V after the 25 mA pulse. The problem arises from the decrease in gain of the regulator 

due to eliminating the 2nd stage of the op-amp for stability purposes. A comparison of the load 

regulation values over temperature with the UA78L15 part is given in Table 4.14. The results are 

anticipated to be worse than the NFET regulator due to the difference in gain and the op-amp using 

the input voltage as its supply, therefore the units are stated as mV/mA rather than mV/A as in 

Table 4.11.  

Fig. 4.50. The transient response of the fully on-chip PFET linear regulator at 300 ºC (TF) 

for VIN = 25 V, a ILOAD,CONT = 25 mA, and a IPULSE = 25 mA. 
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Table 4.14. The load regulation of the fully on-chip PFET based linear regulator over 

temperature for ILOAD = 0 mA to 50 mA compared to TI’s UA78L15 linear regulator. 

Input 

Voltage 
25 ºC 100 ºC 200 ºC 

300 ºC 

(TF) 

300 ºC 

(TT) 

Texas 

Instruments 

UA78L15* 

17.5 V 
6.00 

mV/mA 

2.70 

mV/mA 

2.07 

mV/mA 

1.19 

mV/mA 

2.01 

mV/mA 

0.385 

mV/mA 

Typical 

20 V 
7.04 

mV/mA 

3.52 

mV/mA 

2.62 

mV/mA 

1.44 

mV/mA 

1.26 

mV/mA 

22.5 V 
10.56 

mV/A 

5.35 

mV/mA 

4.08 

mV/mA 

2.17 

mV/mA 

1.79 

mV/mA 

25 V 
17.88 

mV/mA 

8.56 

mV/mA 

6.84 

mV/mA 

3.47 

mV/mA 

2.64 

mV/mA 

27.5 V - 
14.23 

mV/mA 
- 

5.67 

mV/mA 

3.94 

mV/mA 

30 V - - - 
9.36 

mV/mA 

6.02 

mV/mA 

*Test conditions: VIN = 23 V, ILOAD = 1 mA to 40 mA, junction temperature (TJ) = 25 ºC 

For the values not reported, the output of the regulator is above 15.0 V for both the 0 mA 

and 50 mA steady-state loads. This illustrates a limitation arising from eliminating the 2nd stage of 

the op-amp and not having isolated N-wells. The op-amp’s bias current increases along with PFET 

threshold voltages at higher input voltages, resulting in a larger VSD across the cascoded FETs. 

The op-amp must provide the PFET pass transistor’s gate with a voltage relatively close to the 

input voltage to ensure the output is regulated to 15 V. However, the op-amp’s output swing is 

limited by VSD,MP10 + VSD,MP12 which results in the inability to properly regulate the output voltage.  

A variety of solutions exist for this problem, although each comes with a trade-off. The 2nd 

stage can be added back in such that the op-amp’s maximum output swing is only limited by one 

VSD,SAT drop. This will require a more complex compensation strategy and result in a lower 

bandwidth. Another alternative is to eliminate the cascoded current mirror in the single stage op-

amp such that the maximum output swing is again only limited by one VSD,SAT. Eliminating the 

cascoded device reduces gain, which creates the added problem of the other load regulation values 
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going up. A third approach is to either reduce the bias current of the op-amp to achieve lower 

VSD,SAT values, leading to a lower UGBW, or increase the size of the existing FETs for the given 

bias current which results in lower frequency parasitic poles. 

The line regulation performance presented in Table 4.15 suffers from low gain and high 

VSD,SAT values similar to the load regulation. The values not reported did not have an output voltage 

of 15.0 V or below for the input voltage range, indicating that the VDS,SAT drops are an obstacle to 

increasing performance. For higher load currents, the pass transistor needs a lower gate voltage 

and the design provides the desired 15 V output. The low gain remains a factor for poor 

performance, however. The SiC PFET linear regulator eventually outperforms the silicon based 

part at 300 ºC for a load current of 50 mA. 

The quiescent current of the linear regulator is given in Fig. 4.51. Higher input voltages 

lead to substantial increases in quiescent current as expected due to the op-amp drawing its supply 

voltage from the input. Finally, a summary of the simulation results are provided in Table 4.16 

along with a comparison to silicon based parts. 

Table 4.15. The line regulation of the fully on-chip PFET based linear regulator over 

temperature for VIN = 17.5 V to 30 V compared to TI’s UA78L15 linear regulator. 

Load 

Current 
25 ºC 100 ºC 200 ºC 

300 ºC 

(TF) 

300 ºC 

(TT) 

Texas 

Instruments 

UA78L15* 

0 mA - - - - - 

5.8 mV/V 

Typical 

1 mA - - - - - 

5 mA - 78 mV/V - 22 mV/V 12 mV/V 

10 mA 209 mV/V 68 mV/V 75 mV/V 19 mV/V 6.1 mV/V 

25 mA 183 mV/V 48 mV/V 59 mV/V 12 mV/V 1.7 mV/V 

50 mA 145 mV/V 27 mV/V 40 mV/V 3.3 mV/V 1.9 mV/V 

*Test conditions: VIN = 20 V to 30 V, ILOAD = 40 mA, junction temperature (TJ) = 25 ºC 
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Table 4.16. A summary of the fully on-chip PFET linear regulator and a comparison to 

silicon based parts. 

Parameter 
Test Condition  

(this work only) 

25ºC  

(TF) 

300 ºC 

(TF) 

300 ºC 

(TT) 

Fully  

On-Chip 

Silicon 

Regulato

r [60] 

Texas 

Instrumen

ts 

TPS731 

(Cap-Free) 

[70] 

DC Loop 

Gain 

ILOAD = 50 mA, 

VIN = 25 V 

 53.3 dB  70.5 dB 72.5 dB 62 dB N/A 

Phase 

Margin 
102º 111º 119º 

50º 

(min.) 
N/A 

Bandwidth 
2.54 

MHz 

4.88 

MHz 

2.00 

MHz 

220 kHz 

(min.) 
N/A 

PSRR 

F = 100 Hz, 

ILOAD = 0 mA, 

VIN = 25 V 

55.8 dB 65.6 dB 76.3 dB 

57 dB 

(@ 1 

kHz) 

58 dB 

(@ 100 

Hz) 

IQUIESCENT 
ILOAD = 0 mA, 

VIN = 17.5 V 
2.1 mA 1.4 mA 0.8 mA 

0.065 

mA 
0.4 mA 

Overshoot 

ΔVOUT 

ΔILOAD = 25 mA, 

VIN = 25 V 

1.64 V 1.29 V 2.06 V N/A N/A 

Undershoot 

ΔVOUT 
1.97 V 2.20 V 3.45 V N/A N/A 

1% Settling 

Time 
1.31 μs 1.02 μs 1.93 μs 

3 μs 

(full load 

transient) 

2 μs 

(full load 

transient) 

Line 

Regulation 

ΔVIN = 17.5 V to 

30 V, 

ILOAD = 50 mA 

145 

mV/V 

3.3 

mV/V 

1.9 

mV/V 
N/A 

0.35  

mV/V 

Load 

Regulation 

ΔILOAD = 50 mA 

VIN = 25 V 
N/A 

9.36 

mV/mA 

6.02 

mV/mA 
N/A 

0.07  

mV/mA 

Fig. 4.51. The quiescent current of the fully on-chip PFET based linear regulator for each 

operating temperature and an ILOAD = 0 mA. 
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4.3 Switched Capacitor Converter 

The switched capacitor (SC) converter designed in this work follows the operation 

principles set forth in Chapter 3, Section 3.2. The core of the SC converter is provided in Fig. 4.52, 

in which the control logic and support circuitry are not explicitly shown. Due to requiring external 

capacitors, the design is limited by the high temperature capability of state-of-the-art dielectric 

Fig. 4.52. The top-level view of the reconfigurable switching converter. 
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materials and the available PCB area in the application. One notable change from the theoretical 

operation presented in Chapter 3 is that diodes have been added to ensure the converter never 

discharges the output. Without the diodes, it is possible that the charging cycle will cause current 

to flow from the (intended) source to the drain of the PH2 controlled NFETs. The voltage drop 

across the diodes when forward biased will be one source of power dissipation in the SC converter. 

The unit-cells are stacked in the topology given in Fig. 4.52 to allow for a reconfigurable 

conversion ratio. Based on the input voltage, the control logic selects the appropriate NFETs to 

switch on in PH2 to give the desired output voltage. With only a single conversion ratio, the 

topology would be limited to providing a set fraction of the input voltage at the output. The 

derivation for which FETs should turn on for a given conversion ratio is based on the theory 

presented in Chapter 3. For example, a 4:3 conversion ratio requires three capacitors (or a multiple 

of three) to be charged in parallel by the input voltage in PH1. During PH2, the output is charged 

by the three capacitors in series. The derivation of the 4:3 conversion ratio begins with KVL’s for 

PH1 and PH2 given by equations (4.19) to (4.20), respectively. 

𝑽𝑶𝑼𝑻  =  𝑽𝑰𝑵,𝑫𝑪 −  𝑽𝑪𝟏,𝟐,𝟑, 𝒑𝒉𝒂𝒔𝒆 𝟏   (4.19) 

𝑽𝑶𝑼𝑻  =  𝟑 ∗ 𝑽𝑪𝟏, 𝒑𝒉𝒂𝒔𝒆 𝟐     (4.20) 

Substituting the output voltage in (4.20) into (4.19) yields (4.21). 

𝑽𝑶𝑼𝑻 = 𝑽𝑰𝑵,𝑫𝑪 −  (
𝟏

𝟑
)𝑽𝑶𝑼𝑻     (4.21) 

Simplifying the equation results in (4.22). 

𝑽𝑶𝑼𝑻 = (
𝟑

𝟒
) 𝑽𝑰𝑵,𝑫𝑪      (4.22) 

This theory can be extended to a desired number of conversion ratios. A larger number of 

conversion ratios provides greater control for what the converter’s output voltage can be set to. 
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However, as will be discussed, there are efficiency related trade-offs associated with using an 

increasing number of conversion ratios. 

The application of the SC converter designed in this work has an input voltage that can 

gradually vary over time between 20 V and 50 V. The mixed-signal circuitry required for the 

application operates with a 15 V supply. A linear regulator is desirable to provide the 15 V supply 

voltage since it eliminates switching noise, provides a stable output for a multitude of operating 

conditions, and can be integrated fully on-chip as shown in the previous sections. However, the 

linear regulator inherently dissipates an increasing amount of power as the input voltage rises. The 

switching converter is designed to efficiently convert the input voltage to a relatively low voltage 

that allows the linear regulator to operate with less power dissipation. 

The linear regulators previously discussed have minimum input voltages of approximately 

19 V under the worst-case operating conditions (e.g. full-load, 25 ºC). Therefore, the first design 

specification for the development of a power efficient SC converter is to provide an output voltage 

of between 20 V to 25 V. This allows the linear regulator to remain stable and properly regulate 

its output voltage while being relatively efficient when the input voltage of the system is high. 

The second design requirement is to optimize the number of conversion ratios based on 

switching losses and the power overhead of control circuitry. As the number of conversion ratios 

increases, the reconfigurable SC converter can allow for input voltages closer to the desired output 

voltage. However, the switching losses will rise due to more FETs in the converter. The control 

logic will also become more complex and increase power consumption. 

The next specification is to optimize the SC converter’s switching frequency with the 

switching losses. A trade-off is created between the amount of capacitance needed (e.g. the size of 
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C1, C2, and C3 in Fig. 4.52) and the switching losses. A higher switching frequency reduces the 

necessary size of the capacitors but increases the MOSFET switching losses. The application 

allows for approximately 200 nF of off-chip capacitance, therefore the design target is 20 nF or 

less for each flying capacitor. Similarly, the output capacitor is to be 100 nF or less. 

The final specification is that the SC converter must outperform the efficiency of a stand-

alone linear regulator for loads of up to 50 mA. For example, if the overhead of control logic and 

switching losses reduce the SC converter’s efficiency to 70% while the input voltage is only 26 V, 

then it is more power efficient to stop the switching action and short across the SC converter. This 

is the purpose of MN0 shown in Fig. 4.52.  As will be discussed, the design limits the operation of 

the SC converter to input voltages of between 34 V and 50 V. MN0 is switched on above 34 V and 

the input is connected directly to the linear regulator. 

The block diagram shown in Fig. 4.53 provides an overview of the SC converter’s 

operation along with the necessary control logic and support circuitry. For the control and support 

circuitry, the reconfigurable SC converter uses a pre-regulator to provide a stable 15 V output. A 

modified version of the NFET based fully on-chip linear regulator will be utilized. Its bandwidth, 

power consumption, and impact on overall efficiency are reduced for this application.  

A voltage-controlled oscillator (VCO) is implemented to generate a square waveform and 

is supplied by the 15 V output of the pre-regulator as shown in Fig. 4.53. A non-overlapping clock 

generator then takes the input of the VCO and provides two clocks with a duty cycle of slightly 

less than 50%. Without a non-overlapping clock generator, the switching patterns of PH1 and PH2 

can lead to the input shorting directly to the output or ground. Next, an array of comparators allows 

the SC converter to determine the magnitude of the input voltage. Note that the comparators do 
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require a reference voltage, as does the linear regulator, which can be an on-chip SiC CMOS 

solution as demonstrated by the Vulcan II bandgap reference [67]. 

Depending on the output provided by the comparators, digital control logic will determine 

the appropriate switching algorithm to control each FET in the SC converter’s unit-cells. The 

digital control logic operates from a 15 V supply to minimize power consumption. Since the output 

of the digital logic is limited to 15 V, a Dickson charge pump is used to generate a relatively large 

voltage. Level shifters are implemented such that the relatively low voltage logic provided by the 

controller is boosted up to the required voltage for switching each FET in the unit-cells. 

The following sub-sections provide a discussion of each block’s design. The section 

concludes with the simulation results of the complete SC converter. It should be noted that a SC 

converter design ultimately depends on the process limitations, such as oxide breakdown voltage 

and maximum VGS ratings. The design presented in this work is based on the HiTSiC® process 

specifications that included a 70 V breakdown voltage. For lower breakdown voltages, the input 

voltage range of the SC converter may need to be altered. Similarly, the output voltage of the 

Dickson charge pump can be lowered to support different VGS requirements. 

Fig. 4.53. The block diagram of the reconfigurable SC converter. 
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4.3.1 Low Power, Fully On-Chip Pre-Regulator 

The requirements for the pre-regulator are to provide an output voltage of 15 V and a 

maximum load current of 10 mA from an input voltage range of 20 V to 50 V while keeping the 

quiescent current below 2 mA at 300 ºC. The fully on-chip NFET based linear regulator presented 

in Section 4.2.2 is modified to reduce power consumption, primarily by lowering the op-amp’s 

current consumption. This will cause a decrease in bandwidth, but it is acceptable given the 

relatively low switching frequency of the SC converter.  In addition, the unity-gain frequency shifts 

inwards and away from the parasitic pole region such that the design remains stable. 

The changes in device sizes to the linear regulator and its op-amp are listed in Table 4.17. 

The pass transistor size can be reduced if area is a concern, but it isn’t necessary for stability. The 

transient response of the regulator is subsequently shown in Fig. 4.54 for a load pulse of 10 mA 

and an input voltage of 50 V.  

Table 4.17. The relevant device size changes made in the pre-regulator and multipath RFC. 

Component Device Size Comment 

RLS 50 kΩ Level shifting 

RIBIAS1 300 kΩ Biasing – multipath RFC 

Fig. 4.54. The pre-regulator’s transient response - IPULSE = 50 mA and VIN = 50 V (300 ºC). 
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4.3.2 Dickson Charge Pump 

The application for the SC converter has a maximum input voltage of 50 V, which is 

significantly greater than the 15 V available to the digital logic. The PH1 FETs in Fig. 4.52 with 

their drains connected to the input voltage require a gate voltage of approximately a threshold drop 

above the input voltage to turn on. The maximum threshold voltage of NFETs approaches 3 V, 

which leads to a gate voltage requirement of about 53 V on PH1 FETs such as MN1, MN6, MN11, 

and MN16 when the input voltage is at 50 V. 

To convert the 15 V logic high signals to a voltage sufficient for turning on the FETs in the 

SC converter’s unit-cells, a Dickson charge pump is used. The operation follows the theory 

presented in Chapter 3 where each added stage boosts the input voltage by approximately the 

magnitude of the input voltage minus one threshold voltage drop. In the discussion provided in 

Chapter 3, the N-stage Dickson charge pump utilized MOSFETs in gate-drain connected 

configurations that act as diodes. For this Dickson charge pump design, diodes are used rather than 

MOSFETs acting as diodes. MOSFETs can be used for the charge pump, but each MOSFET body 

terminal must be connected to the drain to ensure the FET acts as a diode. 

To calculate the number of stages required for boosting 15 V up to at least 53 V, equations 

(4.23) and (4.24) can be used to calculate the minimum and maximum voltages of each stage. 

𝑽𝑶𝑼𝑻𝑵,𝑴𝑨𝑿 = (𝑵 + 𝟏)(𝑽𝑰𝑵,𝑫𝑪) − (𝑵)(𝑽𝑫)   (4.23) 

𝑽𝑶𝑼𝑻𝑵,𝑴𝑰𝑵 = (𝑵)(𝑽𝑰𝑵,𝑫𝑪) − (𝑵)(𝑽𝑫)   (4.24) 

Setting VOUT equal to 53 V in (4.23) and assuming a diode drop of 3 V at 25 ºC, a total of 

four stages are required. Note that some literature specifies the number of stages to be equal to the 

number of diodes (or gate-drain connected FETs). The number of stages specified in this work 

excludes the last diode, which allows expressions (4.23) and (4.24) to hold true for N-stages. The 
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schematic of the 4-stage Dickson charge pump is shown in Fig. 4.55. Each capacitor is 900 pF and 

is ideally off-chip to conserve die area. The simulation results are given in Fig. 4.56 for the 4-stage 

Dickson charge pump with a 500 kHz clock operating from 25 ºC to 300 ºC (TF). 

 As shown in Fig. 4.56, the maximum voltage of about 66 V at 300 ºC follows expectations 

since the voltage drop across the diode reduces at higher temperatures. If a voltage less than the 

maximum is needed, then a lower stage can be connected to a diode and a capacitor can be used 

to reduce the output ripple as has been done to the last stage in Fig. 4.55. This is important for a 

process that may have a relatively low absolute maximum VGS rating. 

Fig. 4.55. The schematic of the 4-stage Dickson charge pump used in the SC converter. 

Fig. 4.56. The simulated output voltage of the 4-stage Dickson charge pump. 
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4.3.3 Level Shifters 

With digital logic providing a maximum output of 15 V, level shifters are necessary to 

convert the logic signals into the higher voltages provided by the Dickson charge pump. The basic 

topology of the level shifter is shown in Fig. 4.57. The circuit requires that the input be the 

relatively low-voltage signal and the VDD be provided by the larger voltage such as one of the 

Dickson charge pump stages. Note that a multi-chip module or isolated N-wells may be required. 

Analyzing the circuit in this context will show that a low-voltage logic high input of only 

15 V to the gate of MN1 will cause MN1’s drain to short to ground. On the contrary, MN2’s gate 

will be a logic low and it will be turned off. Since MP2’s gate is connected to the drain of MN1, it 

will also be connected to ground. With MP2’s gate set to 0 V, it is turned on and the VDD coming 

from a Dickson charge pump stage is provided at the output. 

For a 0 V input, MN1 is turned off and MN2 is turned on. With MN2 turned on, MP1 is on 

which leads to MP2’s gate being set to approximately VDD. This results in MP2 being turned off. 

Fig. 4.57. A schematic of a basic level shifter. 
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Therefore, the level shifter acts as intended for converting a relatively low-voltage logic high to a 

higher voltage while keeping a logic low held at 0 V. 

The schematic of the level shifter used in the reconfigurable SC converter is provided in 

Fig. 4.61. The fundamental operation of the modified level shifter remains the same as the basic 

level shifter given in Fig. 4.57. The addition of buffers at the output of the first stage of the level 

shifter (i.e. the drain of MN2) allows for increased drive strength. The buffers are beneficial for 

driving the large gate capacitances of the NFETs composing the SC converter’s unit-cells.  

The advantage of this technique is that the digital logic can be made smaller, and have 

reduced power consumption because it is isolated from driving a large capacitive load. The first 

stage of the level shifter has relatively small FETs and presents a small capacitive load to the 

control logic. The buffer chain then increases in size such that the rise and fall times of each stage 

is nearly the same. 

The size of each FET in Fig. 4.58 is provided in Table 4.18. The inverter with its output 

tied to the gate of MN2 is contained within the digital controller and is not listed in the table. 

Fig. 4.58. The level shifter used in the reconfigurable SC converter. 
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Table 4.18. The sizes of the devices used in the level shifter presented in Fig. 4.58. 

Component Device Size Comment 

MN1 - MN3 4 µm / 1.2 µm (m = 4) Level shifter – 1st stage, 1st buffer 

MN4 4 µm / 1.2 µm (m = 8) 1st buffer 

MN5 20 µm / 1.2 µm (m = 4) 2nd buffer 

MN6 20 µm / 1.2 µm (m = 8) 2nd buffer 

MP1, MP2 4 µm / 1.2 µm (m = 4) Level shifter – 1st stage 

MP3 4 µm / 1.2 µm (m = 16) 1st buffer 

MP4 4 µm / 1.2 µm (m = 32) 1st buffer 

MP5 20 µm / 1.2 µm (m = 16) 2nd buffer 

MP6 20 µm / 1.2 µm (m = 32) 2nd buffer 

 

The simulation results of the level shifter are shown in Fig. 4.59 for a 1 MHz square wave 

input and operating at 300 ºC (TF). Although a small amount of propagation delay exists, the level 

shifter accomplishes its intended function of converting the 15 V input to a 50 V supply voltage.  

Fig. 4.59. The level shifter simulation results for a 1 MHz square wave input at 300 ºC 

(TF). 
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A potential problem of applying a large supply voltage to the level shifters is exceeding 

the breakdown voltage of the MOSFETs. For example, when an input voltage above VTHN is 

applied, the level shifter’s output will go high since MP2 in Fig. 4.58 is turned on. If a supply 

voltage of 50 V is applied, then the VSG of MP2 will also be 50 V. As stated previously, the rated 

breakdown voltage of the HiTSiC® process is 70 V. For other processes, the viability of using a 

level shifter at relatively high voltages such as 50 V will be a function of the oxide thickness. A 

quick approximation for the breakdown voltage is given in (4.25), where ECritical is the maximum 

electric field of the gate oxide (approximately 10 MV/cm). 

𝑽𝑩𝒓𝒆𝒂𝒌𝒅𝒐𝒘𝒏 =  
𝑬𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍

𝒕𝒐𝒙
     (4.25) 

Considering the oxide thickness (tox) to be 40 nm, the breakdown voltage is calculated to 

be 40 V. This reinforces the underlying importance of accounting for process parameters in order 

to determine if the MOSFETs (or capacitors) can safely operate in the application.  

4.3.4 Voltage-Controlled Oscillator 

The intended application for the SC converter does not have an external clock available. 

Two possible solutions for internally generating a clock include a ring oscillator or a voltage-

controlled oscillator (VCO) as presented in Fig. 3.10 and Fig. 3.11, respectively. Since the 

application is intended to operate over a wide range of temperatures, it should be expected that 

there will be some deviation in clock frequency over temperature. By controlling the voltage of 

the VCO over temperature, more control over the clock frequency is possible. 

Internally modifying the control voltage over temperature is accomplished by the VCO 

schematic shown in Fig. 4.60. With an increase in temperature, VGS,MN1 will decline slightly since 

the NFET threshold voltage has been observed to decrease by approximately 1 V from 25 ºC to 
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300 ºC. A method to counter threshold voltage decline is to use an RIBIAS with a positive 

temperature coefficient to lessen the current through MN1. The mirroring of MN1’s current to the 

biasing FETs, such as MN2 and MN4, sets the current through each stage. Eliminating the PFETs 

acting as current sources in Fig. 3.11 is advantageous for this application since the PFET thresholds 

vary substantially over temperature from approximately 2.5 V to 5 V. As a result, implementing 

the PFETs in the circuit would cause the bias current to change significantly over temperature. 

This would result in the inverter of each stage having large variations in charge/discharge rates, 

leading to a wide range of output frequencies. 

The design process of the VCO begins by estimating the SC converter’s optimal switching 

frequency. As stated at the beginning of Section 4.3, the load of the target application will be up 

to 50 mA and the acceptable range of output voltages is 20 V to 25 V. The change in output voltage 

due to the switching pattern will be limited to the same 5 V range or less. With the maximum 

output capacitance of 100 nF specified at the beginning of the section, the minimum switching 

frequency for the 5 V output swing can be calculated by (4.26) to (4.28). 

𝑰𝑳𝑶𝑨𝑫 =  𝑪𝑳𝑶𝑨𝑫(
𝒅𝑽𝑶𝑼𝑻

𝒅𝒕
)    (4.26) 

Fig. 4.60. The voltage-controlled oscillator used in the SC converter. 
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𝟓𝟎 𝒎𝑨 = (𝟏𝟎𝟎 𝒏𝑭)(
𝟓 𝑽

𝒅𝒕
)    (4.27) 

 𝒇𝒔𝒘 =
𝟏

𝒅𝒕
=  𝟏𝟎𝟎 𝒌𝑯𝒛    (4.28) 

The calculated minimum switching frequency of 100 kHz represents a worst-case scenario 

since the flying capacitors C1 through C4 in Fig. 4.52 will also assist with keeping the output 

voltage constant leading to an output swing of less than 5 V. To partially account for the assistance 

of the flying capacitors, while also further constraining the output swing, a 150 kHz switching 

frequency is selected. This keeps switching losses relatively small while also ensuring that the 

output voltage ripple isn’t extreme. 

Proceeding with a design requirement of 150 kHz, the next parameters that must be set are 

the number of stages and the VCO’s bias current through MN1. Selecting a 4-stage configuration 

and setting the IBIAS to 100 μA, the capacitance between each stage is calculated by the expression 

(4.29). 

𝑪𝑺𝑻𝑨𝑮𝑬𝟏,𝟐,𝟑,𝟒 =  
𝑰𝑩𝑰𝑨𝑺

(𝑵𝑺𝑻𝑨𝑮𝑬𝑺) (𝒇𝒔𝒘)(𝑽𝑫𝑫)
    (4.29) 

The calculated result of 11.1 pF is based on the assumption that VCONTROL is set to ½ of 

VDD. While this is not exact due to the assumption along with imperfect current mirrors, it does 

provide a starting point for determining a final value via simulation. Based on iterating the design 

in simulation, a final value of 22.5 pF is chosen for CSTAGE1 through CSTAGE4. The list of device 

sizes used in the VCO design is provided in Table 4.19.  

A summary of the simulation results from 25 ºC to 300 ºC (TF) is given in Table 4.20 for 

a CLOAD of 10 pF. The dependence of the bias current on the threshold voltage of MN1 and the 

value of RIBIAS, which trend in opposite directions over temperature, results in 300 ºC having a 

lower oscillation frequency than 100 ºC and 200 ºC. 
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Table 4.19. The sizes of the devices used in the VCO presented in Fig. 4.60. 

Component Device Size Comment 

MN1 – MN10 4 µm / 1.2 µm (m = 4) VCO inverters, 1st buffering inverter 

MN11 4 µm / 1.2 µm (m = 8) 2nd buffering inverter 

MN12, MN13 4 µm / 1.2 µm (m = 16) 3rd buffering inverter 

MP1 – MP5 20 µm / 1.2 µm (m = 4) VCO inverters, 1st buffering inverter 

MP6 20 µm / 1.2 µm (m = 8) 2nd buffering inverter 

MP7 20 µm / 1.2 µm (m = 16) 3rd buffering inverter 

RIBIAS 100 kΩ Biasing resistor 

CSTAGE1 – CSTAGE4 22.5 pF Output capacitance per inverter stage 

 

Table 4.20. Simulation results of the low-frequency VCO from 25 ºC to 300 ºC. 

Parameter 25 ºC 100 ºC 200 ºC 300 ºC 300 ºC (TT) 

fsw 123.8 kHz 171.9 kHz 175.9 kHz 149.6 kHz 97.8 kHz 

Rise Time 38.5 ns 28.3 ns 22.8 ns 26.2 ns 51.1 ns 

Fall Time 38.6 ns 32.8 ns 30.9 ns 32.9 ns 33.2 ns 

Avg. Supply 

Current 
357 μA 495 μA 494 μA 429 μA 268 μA 

 

 A second VCO is designed to provide a higher clock frequency to the Dickson charge 

pump, allowing it to operate with smaller capacitors while limiting the output voltage ripple. The 

high frequency VCO is designed for a switching frequency of approximately 600 kHz at 300 ºC 

(TF) and utilizes two additional inverter stages. Note that the FET driven by an enable signal in 

Fig. 4.60, which is used to reduce power consumption when the input voltage falls below the limit 

of the SC converter, cannot be used in the high frequency VCO. This is due to the Dickson charge 

pump requiring the high frequency VCO. Without it, the charge pump cannot turn on MN0 in Fig. 

4.52 to bypass the SC converter.  
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The high frequency VCO’s simulation results over the operating temperature range are 

provided in Table 4.21. The device sizes are also listed in Table 4.22. 

Table 4.21. Simulation Results of the high-frequency VCO from 25 ºC to 300 ºC. 

Parameter 25 ºC 100 ºC 200 ºC 300 ºC 300 ºC (TT) 

fsw 517.3 kHz 716.3 kHz 733.9 kHz 627.3 kHz 411.2 kHz 

Rise Time 4.04 ns 3.05 ns 2.77 ns 2.99 ns 4.72 ns 

Fall Time 3.5 ns 2.63 ns 2.47 ns 2.64 ns 4.29 ns 

Avg. Supply 

Current 
1.21 mA 1.75 MHz 1.74 mA 1.55 mA 0.87 mA 

 

Table 4.22. The device sizes used in the high frequency VCO and Dickson charge pump. 

Component Device Size Comment 

MN1 – MN9 4 µm / 1.2 µm (m = 4) VCO inverters 

MN10 4 µm / 1.2 µm (m = 8) 1st buffering inverter 

MN11 20 µm / 1.2 µm (m = 8) 2nd buffering inverter 

MN12 20 µm / 1.2 µm (m = 32) 3rd buffering inverter 

MNADDED1 20 µm / 1.2 µm (m = 64) 4th buffering inverter 

MNADDED2 20 µm / 1.2 µm (m = 128) 5th buffering inverter 

MP1 – MP4 20 µm / 1.2 µm (m = 4) VCO inverters 

MP5 20 µm / 1.2 µm (m = 8) 2nd buffering inverter 

MP6 20 µm / 1.2 µm (m = 32) 2nd buffering inverter 

MP7 20 µm / 1.2 µm (m = 64) 3rd buffering inverter 

MPADDED1 20 µm / 1.2 µm (m = 128) 4th buffering inverter 

MPADDED2 20 µm / 1.2 µm (m = 512) 5th buffering inverter 

RIBIAS 100 kΩ Biasing resistor 

CSTAGE1 – CSTAGE4 4.8 pF 
Output capacitance per inverter 

stage 

C1 – C5 900 pF Dickson charge pump, see Fig. 4.55 
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4.3.5 Non-Overlapping Clock Generator 

The two clock phases used in the switched capacitor converter, as shown in Fig. 4.52, 

necessitate the implementation of a non-overlapping clock generator. If a VCO is used and its 

output is inverted to form the second phase, then the rise and fall times of the output square waves 

create a high probability of PH1 and PH2 FETs being on at the same time. This leads to the input 

shorting to the output as well as to ground. Therefore, a non-overlapping clock generator is needed 

to slightly alter the duty cycle of each clock phase from the ideal 50% such that when the non-

inverted clock is high, the inverted clock is low and vice versa. 

The non-overlapping clock generator follows the configuration provided in Fig. 3.12. The 

delay created by the inverters connected to the output of each NAND gate leads to the time 

separation between the two clock phases being high. The schematic of the non-overlapping clock 

generator is shown in Fig. 4.61. A capacitor is connected between the output of the INVX1 and 

ground in both branches to add delay between each clock phase. The size of each device is listed 

in Table 4.23. The notation of the gates, such as INVX1, indicates that the NFETs and PFETs each 

have one finger. The NAND gates have two NFETs in series, hence the doubled width. 

NANDX1 INVX1 INVX4 INVX16

CLK_OUT

NANDX1 INVX1 INVX4 INVX16

CLK’_OUT

CLK

INVX1

ST1

ST2

ST2

ST1

C1

C2

Fig. 4.61. The schematic of the SC converter’s non-overlapping clock generator. 
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Table 4.23. Device sizes for the SC converter’s non-overlapping clock generator. 

Component Device Size Comment 

MN,INVX1 4 µm / 1.2 µm (m = 1) NFET in INVX1 

MN,NANDX1 8 µm / 1.2 µm (m = 1) NFET in NANDX1 

MNX4 4 µm / 1.2 µm (m = 4) NFET in INVX4 

MNX16 4 µm / 1.2 µm (m = 16) NFET in INVX16 

MPX1 20 µm / 1.2 µm (m = 1) PFET in INVX1 and NANDX1 

MPX4 20 µm / 1.2 µm (m = 4) PFET in INVX4 

MPX16 20 µm / 1.2 µm (m = 16) PFET in INVX16 

C1, C2 1.2 pF 
Additional CLOAD for INVX1 in delay 

chains 

 

An evaluation of the non-overlapping clock generator’s performance is conducted by 

placing it in a test bench with the VCO and level shifters, as shown in Fig. 4.62. The output of the 

VCO is connected to the input of the non-overlapping clock generator. Each of the two level-

shifted phases of the non-overlapping clock are connected to a 10 pF load capacitance, which is 

intended to represent the gate capacitance of one of the SC converter’s core FETs. 

Table 4.24 presents the simulation results from 25 ºC to 300 ºC (TF) for an input voltage 

of 50 V. Note that the duty cycles are not 50%, thus the switching frequencies do not exactly match 

with the VCO results presented in Table 4.20. The dead time values indicate the amount of time 

that each clock phase (prior to level shifting) is below 1 V before one of the phases transitions to 

a logic high. The rise time of the level shifted PH1 and PH2 is the time it takes the signal to go 

from 5 V (10%) to 45 V (90%), with the inverse being true for the fall times. Finally, the 15 V and 

50 V supplies implemented in the test bench are ideal. In the final implementation, the 15 V will 

be provided by the pre-regulator and the voltage greater than 50 V will be provided by the Dickson 

charge pump. 
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Table 4.24. Simulation results for the non-overlapped clock generator from 25 ºC to 300 ºC. 

Parameter 25 ºC 100 ºC 200 ºC 300 ºC 300 ºC (TT) 

fsw 124.6 kHz 173.4 kHz 177.3 kHz 150.8 kHz 98.3 kHz 

Duty Cycle – 

PH1 
50.6 % 50.7% 46.9 % 47.4 % 44.4 % 

Duty Cycle – 

PH2 
47.2 % 47.4% 43.7 % 44.4 % 41.6 % 

Dead Time 

(PH1 falling, 

PH2 rising) 

42 ns 30 ns 27 ns 28 ns 65 ns 

Dead Time 

(PH1 rising, 

PH2 falling) 

43 ns 31 ns 28 ns 29 ns 67 ns 

Rise Time 

(PH1 and 

PH2) 

350 ns 277 ns 338 ns 331 ns 560 ns 

Fall Time 

(PH1 and 

PH2) 

253 ns 217 ns 207 ns 208 ns 227 ns 

Avg. Supply 

Current 

(15 V) 

346 μA 493 μA 488 μA 433 μA 257 μA 

Avg. Supply 

Current 

(50 V) 

218 μA 376 μA 595 μA 504 μA 555 μA 

 

CLK_OUT

CLK’_OUT

Voltage-
Controlled 
Oscillator 

(VCO)

Non-overlapping 
Clock Generator

Level 
Shifter

Level 
Shifter50 V Supply

15 V Supply

Input, 20 V to 50 V

Pre-Regulator, 15 V

Fig. 4.62. The test bench used for the SC converter’s non-overlapping clock generator. 
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4.3.6 Digital Controller 

The SC converter’s controller is composed of digital logic along with comparators 

implemented to detect the input voltage range. The comparator selected for this purpose is a 

modified version of the reported Vulcan II comparator [67]. The schematic of the modified 

comparator is shown in Fig. 4.63 and the device sizes are listed in Table 4.25. The operation 

principles follow those presented for the general-purpose comparator in Chapter 3, Section 3.2.2. 

In addition to the pre-amplification, decision making, and output stages, a fourth stage is added to 

internally bias the comparator. Note that hysteresis can be added intentionally by sizing the FETs 

in the decision stage differently. However, it’s not critical for this application and process variation 

will inevitably add hysteresis. 

The changes made to the comparator allow it to operate without external biases and with 

relatively low current consumption. A decrease in bandwidth will result from the lower bias 

current, but it is an acceptable trade-off in this application since the input voltage to the SC 

Fig. 4.63. The SC converter’s comparator used in conjunction with the digital controller. 
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converter will change slowly. The transient response of the comparator with its non-inverting input 

at 3 V and inverting input varying from 2.9 V to 3.1 V is shown in Fig. 4.64 for 300 ºC (TF). 

Table 4.25. Device sizes for the comparator used in conjunction with the digital controller. 

Component Device Size Comment 

MN1, MN2, MN5, 

MN6 
20 µm / 2 µm (m = 8) Biasing, Pre-amplification 

MN3, MN4, MN8 – 

MN13, MN19 
20 µm / 2 µm (m = 4) 

Pre-Amplification, decision making, 

output stages 

MN7 20 µm / 5 µm (m = 4) Pre-Amplification (biasing) 

MN14, MN17 4 µm / 5 µm (m = 8) 
Decision making and output (post-

amplification) biasing 

MN18 4 µm / 2 µm (m = 4) Output stage (1st inverter) 

MP1 20 µm / 2 µm (m = 32) Biasing 

MP2 – MP4, MP6 – 

MP8 
20 µm / 2 µm (m = 8) Pre-amplification, decision making 

MP5 20 µm / 5 µm (m = 8) Pre-amplification (biasing) 

MP9, MP10 4 µm / 5 µm (m = 16) Output stage (pre-amplification) 

MP11 4 µm / 2 µm (m = 16) Output stage (1st inverter) 

MP12 20 µm / 2 µm (m = 16) Output stage (2nd inverter) 

Fig. 4.64. The transient response of the comparator for VREF = 3 V and a ramp input from 

2.9 V to 3.1 V at 300 ºC (TF). 
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A total of four comparators are implemented alongside the digital controller to determine 

if the input voltage is above 34 V, 37 V, 42 V, or 49 V. With the comparators determining the 

range that the input voltage falls in, the digital controller selects the conversion ratio that provides 

the desired output voltage of 20 V to 25 V. The controller choses the conversion ratio as follows: 

(1) A 2:1 conversion ratio is selected for 49 𝑉 ≤ 𝑉𝐼𝑁  

(2) A 3:2 conversion ratio is selected for 42 𝑉 ≤ 𝑉𝐼𝑁 <  49 𝑉  

(3) A 4:3 conversion ratio is selected for 37 𝑉 ≤ 𝑉𝐼𝑁 <  42 𝑉  

(4) A 5:4 conversion ratio is selected for 34 𝑉 ≤ 𝑉𝐼𝑁 <  37 𝑉  

(5) The bypass MOSFET MN0, shown in Fig. 4.52, is switched on for 𝑉𝐼𝑁 <  34 𝑉 

The MOSFETs in Fig. 4.52 that operate in PH1 are independent of the conversion ratio, 

thus the controller is only intended for the MOSFETs switched on in PH2. The digital controller 

used in the SC converter is shown in Fig. 4.65. Other controller implementations are possible and 

a synthesizer can be beneficial given the increasing complexity with each added conversion ratio. 

The device sizing for each gate follows the convention presented in Table 4.23, where a width of 

4 µm (m = 1) and a length of 1.2 µm is the smallest feature size for an NFET. Similarly, a width 

of 20 µm (m = 1) and a length of 1.2 µm is the smallest feature size of a PFET. 

Both the non-inverted and inverted outputs for each PH2 MOSFET’s control logic is 

provided. This is necessary since the control logic of each FET must be level shifted from 15 V to 

a voltage that provides a large enough VGS for turning on the FET.  
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Fig. 4.65. The schematic of the SC converter’s digital controller. 
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4.3.7 Switched Capacitor Converter: Simulation Results 

The final SC converter implementation includes the pre-regulator, VCOs, non-overlapping 

clock generator, digital controller, Dickson charge pump, level shifters, and the core unit-cells. 

The digital controller operates based off of the PH2 clock from the non-overlapping clock 

generator and the controller outputs are connected to level shifters. The supply voltage for each 

level shifter is generated by the Dickson charge pump and is selected based upon the required VGS 

of the unit-cell FETs. In the simulation results presented, the bypass NFET MN0 shown in Fig. 

4.52 has a W/L equal 20 µm / 1.2 µm (m = 500). This allows the input to be shorted to the output 

whenever the input voltage is below 34 V and the SC converter can no longer properly convert the 

input to the desired output voltage. 

The transient response of the SC converter is shown in Fig. 4.66 and Fig. 4.67 for NFETs 

with a W/L equal to 20 µm / 1.2 µm (m = 25) at 25 ºC and 300 ºC (TF), respectively.  In each case, 

Fig. 4.66. The transient response of the SC converter at 25 ºC for NFETs in the unit-cells 

sized to be 20 µm / 1.2 µm (m = 25) and ILOAD = 50 mA. 
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the input voltage is stepped down in 0.5 V increments every 0.1 ms. The reconfigurable operation 

of the SC converter results in an average output voltage that is above 20 V for all input voltages at 

300 ºC (TF). At 25 ºC, the minimum voltage is approximately 19.5 V due to the NFETs having 

larger VDS values and the forward diode voltage drops increasing. While the desired output voltage 

is 20 V and 25 V, the fully on-chip NFET linear regulator was designed with a safety margin to 

allow for a minimum input voltage of 19.0 V at any operating temperature and a 50 mA load.   

The efficiency of the SC converter over the operating temperature range and for FETs with 

m = 25 is shown in Fig. 4.68. The simulation test bench incorporates the complete system and 

accounts for all of the support circuitry along with the power dissipation arising from VDS and 

diode drops in the core unit-cells. At 25 ºC and 300 ºC (TT), the efficiency ranges from 

approximately 75% and 85% between a 34 V and 48 V input voltage. The reasoning for these two 

temperatures offering the greatest efficiency is a result of the VCO switching frequencies 

decreasing and subsequently lower switching losses. Other circuitry, such as the pre-regulator, also 

Fig. 4.67. The transient response of the SC converter at 300 ºC (TF) for NFETs in the unit-

cells sized to be 20 µm / 1.2 µm (m = 25) and ILOAD = 50 mA. 



 

147 

 

generally has lower power dissipation at these temperatures compared to higher temperatures 

without aging conditions. The downside of the lower switching frequency is that the overall swing 

of the output voltage will increase given the flying and output capacitor values do not change.  

Increasing the NFET sizes in the core unit-cells to 20 µm / 1.2 µm (m = 50) results in the 

transient response waveforms shown in Fig. 4.69 and Fig. 4.70 for 25 ºC and 300 ºC (TF), 

respectively. The VDS drops across the NFETs in the unit-cells are decreased at the expense of 

increased switching losses. A comparison of the SC converter’s efficiency is shown Fig. 4.71 for 

25 ºC, 300 ºC (TF), and 300 ºC (TT) when the NFETs are sized for m=50. The results at 25 ºC and 

300 ºC (TT) again outperform the 300 ºC (TF) case. Comparing the efficiency results in Fig. 4.68 

to those given in Fig. 4.71, in which the FETs were half the size with m=25, shows a decrease in 

efficiency of approximately 10%. For load currents below 50 mA, the efficiency will decrease as 

the static power dissipation of the support circuitry will begin to dominant the conduction and 

switching losses.  

Fig. 4.68. The efficiency of the SC converter across the operating temperature range for 

NFETs in the unit-cells sized to be 20 µm / 1.2 µm (m = 25) and ILOAD = 50 mA. 
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Fig. 4.70. The transient response of the SC converter at 300 ºC (TF) for NFETs in the unit-

cells sized to be 20 µm / 1.2 µm (m = 50) and ILOAD = 50 mA. 

Fig. 4.69. The transient response of the SC converter at 25 ºC for NFETs in the unit-cells 

sized to be 20 µm / 1.2 µm (m = 50) and ILOAD = 50 mA. 
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4.3.8 Switched Capacitor Converter: Optimizations 

The efficiency results presented demonstrate that the SC converter has the best 

performance for NFETs sized with m=25. One area of optimization is the VCOs which were both 

designed to have sufficiently low rise and fall times for the m=50 case. Decreasing the buffer sizes 

in each of the VCO’s output stages by half the original size will lead to lower dynamic and short-

circuit power dissipation during the PH2 clock’s rise and fall times. If the current consumption of 

the VCO’s are decreased, then the pre-regulator is an additional component of the design that can 

have lower power dissipation. Lower current pulses due to the resized VCO means that the 

regulator’s design requirements can be relaxed.  

Another area of optimization is the level shifters. Each NFET gate voltage was driven by 

level shifters which had a VDD of 55 V to 65 V as provided by the Dickson charge pump. For 

NFETs connecting to the output, the VGS value can be decreased to approximately 35 V which will 

lessen the dynamic and short-circuit power consumption of the level shifters. 

Fig. 4.71. The efficiency of the SC converter across the operating temperature range for 

NFETs in the unit-cells sized to be 20 µm / 1.2 µm (m = 50) and ILOAD = 50 mA. 
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CHAPTER 5 CHIP FABRICATION AND TEST RESULTS 

5.1 Chip Fabrication, Packaging, and Test Setup 

The SiC CMOS linear regulator designed for the Vulcan II run was fabricated on 4-inch 

wafers consisting of 21 mm by 12.5 mm reticles. The reticles were arranged into a total of twelve 

different subsites. Circuits designed by the University of Arkansas MSCAD team were primarily 

organized into seven different 5 mm by 5 mm subsites. Between every subsite, 200 µm wide dicing 

lanes were inserted to allow for individually dicing out the subsites. 

The linear regulator is highlighted in red on the die micrograph of an individual reticle 

shown in Fig. 5.1. An image of the linear regulator die with labels indicating the pin configurations 

is shown in Fig. 5.2. A total of 18 pads were implemented in the linear regulator and were arranged 

based upon the layout size relative to adjacent circuits in the subsite. Multiple pads were used for 

Fig. 5.1. The complete die micrograph from the Vulcan II fabrication run. The linear 

regulator is highlighted in red. 
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the ground connection, while the input and output pads were made substantially larger than the 

standard 100 µm by 100 µm analog pads. Other pads, such as VINP, were not necessary for a 

preliminary pass/fail test. Due to only 6 of the 18 pads being required for a heartbeat test, initial 

testing was conducted with the Semiprobe probe station. After determining that the circuit was 

functional, a wafer was diced and the individual die were attached to 68-pin ceramic leaded chip 

carrier (LDCC) packages with Epotek P1011 conductive epoxy.  

Wire bonds between the die and package were then formed with 1 mil gold ball bonding 

using the K&S 4700 wirebonder in the University of Arkansas High Density Electronics Center 

(HiDEC). The package with the attached die and wire bonds to the pads is shown in Fig. 5.3. Next, 

the package was soldered onto a Rogers 4350 printed circuit board (PCB) consisting of header 

pins to make external connections to breakout boards, oscilloscope probes, etc. The module 

consisting of the LDCC package soldered onto the Rogers 4350 board is shown in Fig. 5.4. 

Mounting holes were created in the PCB to allow the board to be supported by a testing fixture 

when using a hot plate and focusing heat on the die. 

Fig. 5.2. A die micrograph of the linear regulator without adjacent circuitry. 
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Following the LDCC package being soldered onto the Rogers 4350 board, the module was 

mounted onto the aluminum apparatus shown in Fig. 5.5. The apparatus was constructed with four 

mounting stands corresponding to the PCB drill holes and a center cylindrical support (or “hot 

Fig. 5.3. The diced linear regulator subsite die attached to the LDCC package with 

connections formed by wirebonds. 

Fig. 5.4. The LDCC package soldered onto the Rogers 4350 board. 



 

153 

 

finger”) for applying focused heating to the bottom of the die. A notch was made in the hot finger 

to insert a thermocouple probe and accurately measure the temperature seen by the die. The 

thermocouple was then connected to the hot plate being used, allowing the hot plate to be set to a 

desired temperature.  The bottom of the LDCC package underneath the SiC die is ideally the only 

point to see the heat source. However, the ambient temperature around the Rogers-4350 board will 

rise proportionally to the temperature seen by the IC. With the hot plate temperature set to 

approximately 400 ºC, the ambient temperature rises significantly enough that the solder joints 

between the LDCC package and Rogers-4350 board will reflow. Extended high temperature 

testing was typically limited to 400 ºC due to the packaging concerns along with performance 

degradation due to aging and multiple temperature cycles. 

The breakout board shown in Fig. 5.6 was designed to connect to the linear regulator die 

mounted on the high temperature testing apparatus. The intent of the breakout board was to 

thermally isolate components necessary for characterizing the linear regulator, such as capacitors 

Fig. 5.5. A side-view of the high temperature test fixture.  
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which are limited to approximately 250 ºC unless ordered from a specialty manufacturer. 

Potentiometers were also soldered onto the breakout board to characterize the linear regulator with 

various load currents. Similar functionality could have also been achieved with a source meter 

such as the Tektronix Series 2600B. To create a pulsed load scenario with the potentiometers, a 

MOSFET was placed in series with each of the potentiometers. A function generator providing a 

square waveform pulse-train to the gate of the MOSFETs could therefore create load transients. 

A block diagram of the linear regulator test setup, excluding the optional source meter and 

function generator, is shown in Fig. 5.7. In addition to the supply voltage, the reference and bias 

voltages for the two-stage op-amp were provided by the external power supply. The complete high 

temperature test setup is shown in Fig. 5.8. Although an oscilloscope was utilized throughout the 

testing procedure to measure transient outputs, the resolution limitations of the oscilloscope did 

necessitate the use of a digital multi-meter (DMM) for more accurate output voltage measurements 

in steady-state scenarios. 

Fig. 5.6. The breakout board created for characterizing the linear regulator. 
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An automated test script, provided in Appendix A, was written in Python to characterize 

the linear regulator. The script was created for reliability testing in which the output load was set 

to a fixed 100 mA. The potentiometers on the PCB were used in this case rather than implementing 

the source meter into the setup. The goal of the automation script was to replicate an offset 

compensation scheme used in conjunction with the linear regulator. 

Fig. 5.8. The linear regulator high temperature test setup. 

Fig. 5.7. A block diagram for the linear regulator test setup. 
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5.2 Test Results 

After performing an initial heartbeat test on the linear regulator using the Semiprobe probe 

station, seven different reticles were packaged.  The packaged reticles are represented by shaded 

cells on the wafer map shown in Fig. 5.9. Each of the packaged reticles was tested and determined 

to have yielded properly. Variations in threshold voltages, even between devices that were 

intended to be matched, were the primary source of performance differences.  

The most notable variation is within the two-stage op-amp where the input FETs, along 

with the PFET active loads, were placed in a common centroid configuration with the intent of 

being matched. However, the FET mismatches caused the reference voltage required to obtain a 

15 V output to vary significantly from the ideal 7.5 V. In the case of the Row 5, Column 2 (R5C2) 

reticle, a 6.90 V reference voltage was necessary to obtain a 15 V output at 300 ºC. For comparison, 

a 7.20 V reference voltage was necessary for the same output voltage from the R4C2 reticle. 

Fig. 5.9. The wafer map with shaded cells indicating the tested reticles. 
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As mentioned in the previous section, the performance of the linear regulator was found to 

degrade after operating at high temperature for long periods of time and multiple temperature 

cycles. For this reason, all but one test was limited to 400 ºC or less. In addition, not all of the 

packaged linear regulator die were used for the same experiment. Throughout the testing process, 

a bias voltage of 4.5 V was applied to the op-amp. The reference voltage applied to the VINN 

terminal of the op-amp was also calibrated such that the offset voltage was cancelled out. 

The dropout voltage was the first parameter measured. For the clarity of this test, the 

dropout voltage is defined as being the difference between input and output voltages when the 

linear regulator output drops below 95% of its nominal value as the input voltage is decreased. The 

dropout voltages measured over various load currents and temperature are shown in Fig. 5.10. A 

limitation of 180 mA was placed on the experiment, which was achieved by the linear regulator 

for each of the temperatures tested. 

The safety margin added to the linear regulator, as discussed during the design section, was 

intended to allow for 150 mA of load current at 19 V according to the 25 ºC TT models. With a 

Fig. 5.10. The dropout voltage of the linear regulator (R4C2 reticle). 
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dropout voltage of 4 V corresponding to a 19 V input voltage, the results provided in Fig. 5.10 

show that the goal was nearly achieved on this reticle. Rather than the desired 150 mA, the linear 

regulator in this reticle (R4C2) was able to provide approximately 140 mA. This indicates that the 

NFET pass transistor’s threshold voltage is marginally higher than predicted by the 25 ºC TT 

models. Nevertheless, the safety margin ensured that the targeted maximum load current of 100 

mA was achieved at each of the tested temperatures. 

Line regulation was the next parameter tested. Defined as being the change in output 

voltage for a given change in input voltage, line regulation is an indicator of the linear regulator’s 

performance over a range of input voltage. The line regulation measurements for the 100 mA, or 

full load, condition are shown in Fig. 5.11. The line regulation of 1.5 mV/V at 400 ºC represents 

the worst-case operation during the full load case. On the contrary, the best line regulation 

performance of 0.8 mV/V occurs at 300 ºC for the full load case. The measured line regulation 

under the no-load condition is shown in Fig. 5.12. Without a load applied, the worst-case line 

Fig. 5.11. Measured line regulation at full load (100 mA) from 25 ºC to 400 ºC. 
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regulation performance is measured to be 3.3 mV/V at 25 ºC whereas the best performance is 0.8 

mV/V at 100 ºC and 200 ºC. 

Table 5.1 on the following page shows the line regulation measurements in mV/V and as 

a percentage. Table 5.2 compares the measured and simulated results for the line regulation at 100 

mA load. Models are not available for 400 ºC, therefore only the measured results have been listed 

for this item in Table 5.2. An analysis of the linear regulator shows a dependence of the line 

regulation on the loop gain, load resistance, and the RDS value of the pass transistor. The line 

regulation performance is expected to improve over temperature, since the loop gain increases and 

the RDS of the pass transistor decreases per the simulation models. This is generally the case for 

both the 0 mA and 100 mA cases. A comparison of the measured results at 25 ºC to the results at 

300 ºC shows that the line regulation performance is noticeably better. However, the 400 ºC 

performance indicates that the trend of devices improving over temperature is not uniform. In 

addition, the trend between 100 ºC and 300 ºC is not clearly defined. 

Fig. 5.12. Measured line regulation with no load from 25 ºC to 400 ºC. 
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Table 5.1. The line regulation performance over temperature with 0 mA and 100 mA loads. 

ILOAD 

(mA) 

Temp 

(ºC) 

Line Regulation 

(mV/V) 

Line Regulation 

(%) 

0 

25 3.3 0.22 

100 0.8 0.05 

200 0.8 0.05 

300 1.0 0.07 

400 1.5 0.10 

100 

25 1.4 0.09 

100 1.4 0.09 

200 1.3 0.09 

300 0.8 0.05 

400 1.5 0.10 

 

Table 5.2. A comparison of the measured and simulated values for line regulation with a 

100 mA load. 

ILOAD 

(mA) 

Temp 

(ºC) 

Line Regulation 

(mV/V) 

Line Regulation 

(%) 

Texas Instruments 

UA78L15 

Measured Simulated Measured Simulated Measured* 

100 

25 1.4 3.1 0.09 0.021 

5.8 mV/V 

Typical 

100 1.4 2.6 0.09 0.017 

200 1.3 2.2 0.09 0.015 

300 0.8 2.2 0.05 0.015 

400 1.5 - 0.10 - 

*Test conditions: VIN = 20 V to 30 V, ILOAD = 40 mA, junction temperature (TJ) = 25 ºC 

A comparison of the Vulcan II linear regulator’s line regulation to TI’s UA78L15 linear 

regulator is also given in Table 5.2. At all operating temperatures, the Vulcan II regulator 

outperforms the UA78L15 regulator. Other commercially available regulators can provide slightly 

improved performance, as shown in  Table 4.12 with TI’s TPS731, which generally traces back to 

an op-amp with a higher gain. 

Load regulation indicates the ability of the linear regulator to provide a consistent output 

voltage over a range of load currents. It is defined as being the change in output voltage for a given 

change in load current. The load regulation of the linear regulator is shown in Fig. 5.13 and Fig. 
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5.14 for 20 V and 30 V, respectively. For a 20 V input, the worst-case load regulation at 400 ºC 

was measured to be 33 mV/A. Similarly, the test conducted at 400 ºC yielded the worst 

performance for a 30 V input with 42 mV/A. 

Fig. 5.13. The measured load regulation over temperature for a 20 V input. 

Fig. 5.14. The measured load regulation over temperature for a 30 V input. 
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The simulation values indicate the load regulation should improve at temperatures above 

25 ºC, although there isn’t a consistent trend between 100 ºC to 300 ºC. A theoretical analysis 

points towards a consistently improving load regulation over temperature since it is proportional 

to the loop gain, which does generally rise with increasing temperature. The remaining factors for 

the discrepancy between simulations and measurements is the output resistance of the pass 

transistor and the channel-length modulation. The measured results are summarized in Table 5.3 

and a comparison is given with the simulation results in Table 5.4 for the 20 V input case. A 

comparison to TI’s UA78L15 regulator is also provided. 

Table 5.3. The load regulation over temperature for input voltages of 20 V and 30 V. 

VIN 

(V) 

Temp 

(ºC) 

Load Regulation 

(mV/mA) 

Load Regulation 

(%) 

20 

25 0.15 0.010 

100 0.13 0.009 

200 0.20 0.013 

300 0.14 0.009 

400 0.33 0.022 

30 

25 0.20 0.013 

100 0.28 0.019 

200 0.41 0.027 

300 0.26 0.017 

400 0.42 0.028 

 

Table 5.4. A comparison of the measured and simulated load regulation values over 

temperature for the 20 V case. 

VIN 

(V) 

Temp 

(ºC) 

Load Regulation 

(mV/mA) 

Load Regulation 

(%) 

Texas 

Instruments 

UA78L15 

Measured Simulated Measured Simulated Measured* 

20 

25 0.15 0.16 0.010 0.011 

0.385 mV/mA 

100 0.13 0.11 0.009 0.007 

200 0.20 0.13 0.013 0.009 

300 0.14 0.12 0.009 0.008 

400 0.33 - 0.022 - 

*Test conditions: VIN = 23 V, ILOAD = 1 mA to 40 mA, junction temperature (TJ) = 25 ºC 
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The quiescent current of the Vulcan II linear regulator is shown in Fig. 5.15. A maximum 

quiescent current of approximately 5 mA occurs at 30 V for 200 ºC to 400 ºC. The rise over 

temperature is due to the op-amp bias current increasing as threshold voltages decrease and the 

current consumption of the level shifter also increasing as the resistance values drop. An increase 

in input voltage further increases the quiescent current primarily due to the voltage drop across the 

resistances of the level shifting and the compensation scheme. Comparing the measured results to 

the simulated values in Table 4.2, which listed the quiescent current for an input voltage of 20 V, 

the measured quiescent current of the linear regulator was lower than in simulations. For the die 

tested for Fig. 5.15, this is primarily attributed to larger resistances than designed for. 

After characterizing the linear regulator’s dropout voltage, quiescent current, along with 

line and load regulation performance, the R4C2 die used throughout the measurements was taken 

up to 530 ºC to determine its functionality. The packaging concerns for operating temperatures 

Fig. 5.15. The measured quiescent current of the Vulcan II linear regulator over 

temperature and input voltage. 
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above 400 ºC, primarily the reflow of solder joints, limited the amount of time available to test 

using the test configuration with a hot plate. Therefore, pulsed load tests were performed such that 

the input voltage was 20 V and the load current was varied from 0 mA to 100 mA.  

An initial pulsed load test was conducted at 300 ºC to serve as a reference. The results in 

Fig. 5.16 show the input and output voltage, both of which are AC coupled. During the load 

transient, the AC coupled output spikes by approximately 140 mV from the nominal 15.0 V DC 

output on the 100 mA to 0 mA load transition. The output then drops by approximately 300 mV 

during the 0 mA to 100 mA transition. In each case, the output has a 1% settling time of less than 

10 µs which is consistent with the simulation results reported in Chapter 4. 

The results of the pulsed load test at 530 ºC are shown in Fig. 5.17. Note that the time scale 

has changed to 2 µs per division from 40 µs per division in Fig. 5.16. In addition, the output is DC 

coupled as opposed to AC coupled. The spike of the output voltage during the 100 mA to 0 mA 

Fig. 5.16. The 100 mA pulsed load test at 300 ºC. 
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load transient is approximately 200 mV. Similarly, the drop of the output voltage during the 0 mA 

to 100 mA transition is approximately 400 mV. Neither case marks a drastic difference from the 

300 ºC pulsed load test. This is to be expected since the load capacitance in each case is 940 nF. 

However, the settling time of the output voltage decreases to less than 5 µs in the 530 ºC test. This 

indicates that the linear regulator’s bandwidth has extended out to higher frequencies, supporting 

the trend of FETs becoming faster at higher temperatures. 

The reliability of the linear regulator was the final point of emphasis in the testing process. 

Future SiC power management ICs can be better optimized by finding potential failure 

mechanisms with the Vulcan II linear regulator. Due to previously observed aging and temperature 

cycling effects, it was decided that an untested die would be more suitable for this effort than 

continuing to use R4C2. The R5C2 reticle was therefore selected for this test.  

The automation script for reliability testing presented in Appendix A was used to measure 

the input and output voltages every five minutes. The reference voltage was also calibrated when 

necessary throughout the test to keep the output voltage within +/- 100 mV of the nominal 15 V 

Fig. 5.17. The 100 mA pulsed load test at 530 ºC. 
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output. The reference voltage shifts based upon the two-stage op-amp’s offset voltage that results 

from mismatches in the active load PFETs and input NFETs. The calibration technique was 

implemented to represent the potential of an offset compensation scheme. Prior to starting the 

reliability test, the op-amp had a 0.6 V offset voltage at 300 ºC. With the feedback network set to 

provide a 7.5 V input to the op-amp with a 15.0 V output, the required reference voltage due to the 

offset was 6.9 V.  

The output voltage of the regulator operating over 30 hours is shown in Fig. 5.18. The 

automatically calibrated reference voltage is subsequently shown in Fig. 5.19. Sustained operation 

of the circuit was carried out in 10 hour increments followed by cool down periods of 14 hours. 

The results indicate that there was an initial burn-in period in which the offset voltage gradually 

increased. The offset voltage then began to decrease, reaching 6.90 V at the end of the 1st 

temperature and power cycle. Beginning with the 2nd cycle, the reference voltage started closer to 

the ideal value at 6.92 V. The offset again increased and caused the reference to once more stabilize 

Fig. 5.18. The regulator’s output voltage over the 30-hour reliability test at 300 ºC 
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at 6.90 V. The offset voltage primarily decreased throughout the 3rd cycle, resulting in a higher 

reference voltage. 

The results of the reliability test demonstrate the difficulty of accurately modeling a trend 

of the offset voltage over power and temperature cycles. Nevertheless, the reference voltage only 

shifted by a maximum of 40 mV from its original value of 6.90 V corresponding to an output 

voltage delta of approximately 80 mV. Accounting for the reference voltage variation and the 

maximum output voltage change of 100 mV in Fig. 5.17, the overall shift of the output voltage did 

not exceed  +/- 200 mV over the 30-hour reliability test. A 200 mV potential variation equates to 

a change of only 1.33%, which is relatively stable performance given the developing nature of SiC 

IC technology. 

 

 

Fig. 5.19. The reference voltage applied to the regulator throughout the reliability test. 
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

6.1 Conclusions and Contributions to the State of the Art 

This work has presented multiple solutions for the advancement of power management 

integrated circuitry in SiC. The first SiC CMOS linear regulator was designed for operation from 

room temperature to over 300 ºC and was subsequently fabricated and determined to be functional 

up to 530 ºC. Reliability testing was conducted on the linear regulator and showed stable 

performance with only 1.33% change in output voltage over 30 hours of operation at 300 ºC. 

The design of the linear regulator has been refined in the form of fully on-chip linear 

regulators. A low-dropout linear regulator design with a PFET pass transistor has been shown 

along with an NFET pass transistor based design. These regulators reduce the system footprint by 

eliminating the requirement of external surface mount capacitors. The reliability and operating 

temperature range of the regulator are both improved since there is no longer a constraint posed 

by capacitor dielectric materials, which are limited to 250 ºC in commercially available capacitors 

or approximately 350 ºC when ordered from specialized manufacturers. 

In conjunction with the effort to design the fully-on chip linear regulators, multiple 

operational amplifier architectures were designed and evaluated in simulation. The multipath 

recycling folded-cascode op-amp was determined to be suitable for the on-chip linear regulators 

since it provided high gain (60 dB or more over temperature) and relatively high bandwidth. It also 

allowed for an acceptable distance between the frequency of the 1st and 2nd poles, which ultimately 

improved the stability and overall frequency response of the linear regulators. 

Due to the relatively high gain of the multipath recycling folded-cascode op-amp, the 

NFET pass transistor based fully on-chip linear regulator has demonstrated significantly improved 
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line and load regulation performance in simulations versus the Vulcan II linear regulator. In 

Chapter 4, the performance was compared to Texas Instrument’s TPS731 external capacitor-less 

silicon linear regulator. With respect to the silicon based counterpart, the fully on-chip SiC linear 

regulator with an NFET pass transistor offers a line regulation that is almost one order of 

magnitude better and a load regulation that is superior by nearly two orders of magnitude. Line 

and load regulation performance can be further improved by using a high gain op-amp, such as a 

standard three-stage or four-stage op-amp, in parallel with the multipath recycling folded-cascode 

op-amp. The enhanced performance allows applications with potentially large output current and 

input voltage swings to suffer less severe changes in supply voltage. 

Finally, a switched capacitor converter was designed to provide a more efficient DC-DC 

converter solution. As discussed in Chapters 3 and 4, this design is contingent upon the application 

requirements and the MOSFETs being rated to withstand certain gate voltages. If the MOSFETs 

have the necessary voltage ratings, then the switched capacitor converter can enable step-down 

efficiencies of more than 70% according to simulations. This enables remote, extreme environment 

applications to demand less power while also being more flexible to the available power supply. 

For system-in-package applications such as sensing and data acquisition system, the enhanced 

power efficiency can allow for devoting more power to the state-of-the-art SiC analog-to-digital 

converter (ADC) and improving its resolution [72]. 

6.2 Future Work 

As SiC IC technology continues to develop and proceed to commercially available 

products, process variation and reliability of the circuits will be key issues. Identifying an offset 

cancellation scheme to negate transistor mismatches within the linear regulator’s op-amp will be 

one challenge to overcome. It has been shown in Chapter 5 that MOSFETs in a common centroid 
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configuration can have a threshold difference of hundreds of millivolts, making an offset 

cancellation scheme vital for obtaining a well-regulated output. 

Multiple sub-circuits ranging from a VCO and digital controller were used to form the 

switched capacitor converter. For new process technologies, an efficiency analysis of each block 

will be required to determine how to size the MOSFETs, what switching frequency to use, and 

how many conversion ratios to implement. Another potential improvement is simplifying the 

digital logic if possible. Utilizing a synthesizer, with the appropriate timing analysis, can lead to a 

more power efficient digital controller. 
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APPENDIX A 

A.1 Python Script #1: Automated Reliability Testing 

# Linear Regulator - Automated Reliability Testing   

 

# ----- Required Equipment List ----- 

# 1. Utilize a Tektronix MSO 4104 Mixed Signal Oscilloscope to capture the following: 

#   (a) Input voltage  

#   (b) Output Voltage (Mean) 

#   (c) Output Voltage (High) 

#   (d) Output Voltage (Low) 

# 2. Utilize a Rigol DP832 Programmable DC Power Supply to provide the following: 

#   (a) The supply voltage to the linear regulator 

#   (b) The bias voltage of 4.5 V to the error amplifier. 

#   (c) The reference voltage to the error amplifier of 7.5 V. 

# ----- End of Required Equipment List ----- 

 

# ----- Test Plan ----- 

# 1. Connect the linear regulator to the PCB and set the output voltage to 15 V. 

#   (a) Adjust the reference voltage to keep the output voltage fixed at 15 V. 

#   (b) Record the reference voltage required to keep a 15 V output. 

#   (c) Record the resistances of R_F1 and R_F2 (At 25C and 300 C) 

#   (d) Taking into account the feedback resistances and the reference voltage, determine 

the error amplifier offset. 

# 2. Measure the mean of the input voltage. 

# 3. Measure the high, low, and mean of the output voltage. 

# ----- End of Test Plan ----- 

 

import sys 

import os 

import re 

import datetime 

from time import gmtime, strftime 

from time import sleep, time 

 

# The line below will allow for importing all instruments. 

from instruments import * 

 

#import utils.input as input 

 

import logging 

#import utils.log 

 

import time 

import string 
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import subprocess 

import csv 

 

def data_Write(): 

 # Writes the data to a .txt file. 

 # Note: In the open(x, y) format, using an "a" in place of the "y" will append the 

data written. This is necessary for multiple tests. 

 # In order to write to a file one time, simply use "w" in place of the "y". 

  

    f = open('LinearRegulator_R' + str(reticleRow) + 'C' + str(reticleColumn) + '_TXT.txt', 

"a") 

    f.write("----- The time is: " + str(current_Time) + " -----" + "\n" ) 

    f.write("The measurement # is: " + str(measurementNumber) + "\n" ) 

    f.write("Input voltage (mean): " + str(inputMean) + "\n" ) 

    f.write("Output voltage (mean): " + str(outputMean) + "\n" ) 

    f.write("Output voltage (high): " + str(outputHigh) + "\n") 

    f.write("Output voltage (low): " + str(outputLow) + "\n") 

    f.write("Reference voltage: " + str(referenceVoltage) +  "\n" ) 

    f.write("Input supply current: " + str(readCurrent1) +  "\n" + "\n") 

  

    f.write("-------------------------------------------") 

    f.write( "\n" + "\n" ) 

    f.close() 

  

 # End of data writing. 

  

def csv_Write(): 

 # Writes the data to a .csv file. 

 # Note #1: In the "with open(x, y)" format, using an "ab" in place of the "y" will 

append the data written. On the contrary, using "wb" in place of the "y" will overwrite the 

file and not append new data. 

 # In order to write to a file one time, simply use "wb" in place of the "y". 

  

     with open('LinearRegulator_R' + str(reticleRow) + 'C' + str(reticleColumn) + '.csv', 'ab') 

as csvfile: 

         wr = csv.writer(csvfile, delimiter=',') 

         data_2 = [runNumber, str(measurementNumber), current_Time, str(inputMean), 

str(outputMean), str(outputHigh), str(outputLow), str(referenceVoltage), 

str(readCurrent1)] 

         wr.writerow(data_2) 

 

# Creates the .csv file to be used during the automation run 

def csv_Create(): 

    with open('LinearRegulator_R' + str(reticleRow) + 'C' + str(reticleColumn) + '.csv', 'ab') 

as csvfile: 

        wr = csv.writer(csvfile, delimiter=',') 
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        data_1 = ['Run Number', 'Measurement #', 'Time', 'Input Voltage (Mean)', 'Output 

Voltage (Mean)', 'Output Voltage (High)', 'Output Voltage (Low)', 'Reference Voltage', 

'Input Supply Current'] 

        wr.writerow(data_1) 

 

# ----- Configuring the instruments ----- 

# 

 

# Configuring the Rigol DP832 DC power supply. 

psu = PSU_RIGOL_DP832() 

print('The power supply has been turned on.') 

sleep(1) 

 

# The first PSU output will be connected to the linear regulator supply voltage rail (VDD) 

def psu_Output1_ON(): 

    psu.enable(1) 

    supplyVoltage_Increment = 0 

    while supplyVoltage_Increment <= supplyVoltage: 

        psu.setVoltage(1, supplyVoltage_Increment) 

        supplyVoltage_Increment = supplyVoltage_Increment + 1 

        sleep(0.2) 

    psu.enableOverCurrentProtection(1) 

    psu.setCurrentLimit(1, 0.150) 

    readCurrent1= psu.readCurrent(1) 

    print('The current supplies by channel 1 is: ' + str(readCurrent1) + ' A') 

    sleep(1) 

 

# The second PSU output will be connected to the reference voltage (error amplifier) 

def psu_Output2_ON(): 

    psu.enable(2) 

    referenceVoltage_Increment = 0 

    while referenceVoltage_Increment <= referenceVoltage: 

        psu.setVoltage(2, referenceVoltage_Increment) 

        referenceVoltage_Increment = referenceVoltage_Increment + 0.1 

        sleep(0.05) 

    psu.enableOverCurrentProtection(2) 

    psu.setCurrentLimit(2, 0.005) 

    readCurrent2 = psu.readCurrent(2) 

    print('The current supplies by channel 2 is: ' + str(readCurrent2) + ' A') 

    sleep(1) 

 

# The third PSU output will be connected to the bias voltage (error amplifier) 

def psu_Output3_ON(): 

    psu.enable(3) 

    biasVoltage_Increment = 0 

    while biasVoltage_Increment <= biasVoltage: 
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        psu.setVoltage(3, biasVoltage_Increment) 

        biasVoltage_Increment = biasVoltage_Increment + 0.1 

        sleep(0.05) 

    psu.enableOverCurrentProtection(3) 

    psu.setCurrentLimit(2, 0.005) 

    readCurrent3 = psu.readCurrent(3) 

    print('The current supplies by channel 3 is: ' + str(readCurrent3) + ' A') 

    sleep(1) 

 

print('The power supply has been configured.') 

 

# Configuring the MSO 4104 oscilloscope. 

scope = SCOPE_MSO4104() 

print('The oscilloscope has been turned on.') 

sleep(1)   

   

# Set the oscilloscope time scale to 10 us. This allows for enough resolution to capture 

potential oscillations. 

scope.setTimePerDiv(0.00001) 

   

# The first channel will read in the measurements (e.g. rise times, fall times, and duty cycle) 

from the variable PWM. 

scope.enableChannel(1) 

scope.setVoltsPerDiv(1, 5) 

scope.movePositionTo(1, -2) 

scope.sync() 

scope.configureMeasurement(1, "MEAN", 1) 

   

# The second channel will read in the voltage of the reset pin from the FPGA. 

# In addition, the scope will be set to trigger on 14.9 V of Channel 2. 

scope.enableChannel(2) 

scope.setVoltsPerDiv(2, 2) 

scope.movePositionTo(2, -5) 

scope.sync() 

scope.configureMeasurement(2, "MEAN", 2) 

scope.configureMeasurement(3, "HIGH", 2) 

scope.configureMeasurement(4, "LOW", 2) 

   

# Sets the oscilloscope to trigger at 14.9 V on Channel 2.  

scope.setTriggerSource(2) 

scope.setTriggerLevel(2, 14.9) 

   

print('The oscilloscope has been configured.') 

sleep(1) 

 

# ----- End of Instrument Configuration ----- 
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# Channel 1: Reads the input voltage. 

# Channel 2: Reads the output voltage. 

 

# Print out the row and column of the reticle being tested. 

reticleRow = 5   

reticleColumn = 2 

print('The reticle being tested is SS02_R' + str(reticleRow) + 'C' + str(reticleColumn) + '.') 

               

# Sets the Rigol DP832 output voltages. 

supplyVoltage = 30 

referenceVoltage = 4.5 

biasVoltage = 4.5 

psu_Output1_ON() 

psu_Output2_ON() 

psu_Output3_ON() 

 

runNumber = 1                       # Denotes the run number (e.g. temperature number of 

temperature cycles) 

measurementNumber = 1               # Denotes the measurement number within a single run. 

timeScale = 0.00001                 # Denotes the oscilloscope time scale used. Must be changed 

when taking PSRR measurements. 

csv_Create()                        # Create the CSV file for the run. 

 

scope.setTimePerDiv(0.00001) 

psu.enable(1) 

psu.setVoltage(1, 30) 

sleep(1) 

print('Starting the automated test script.') 

 

# Start taking measurements with a supply voltage of 12 V, then repeat the measurements 

for a supply voltage of 15 V. 

while 1:  

     

    # Read in the input and output voltages from the oscilloscope. 

    # Also read in the input current from the Rigol DP832 power supply. 

    inputMean = scope.readMeasurement(1) 

    outputMean = scope.readMeasurement(2) 

    outputHigh = scope.readMeasurement(3) 

    outputLow = scope.readMeasurement(4) 

    readCurrent1= psu.readCurrent(1) 

    current_Time = time.strftime('%X, %x') 

     

    # Calibration of the reference voltage. 

    while outputMean < 14.9: 

        referenceVoltage = referenceVoltage + 0.01 
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        psu.setVoltage(2, referenceVoltage) 

        sleep(0.1) 

        outputMean = scope.readMeasurement(2) 

        sleep(0.1) 

    while outputMean > 15.1: 

        referenceVoltage = referenceVoltage - 0.01 

        psu.setVoltage(2, referenceVoltage) 

        sleep(0.1) 

        outputMean = scope.readMeasurement(2) 

        sleep(0.1) 

         

    #Print out the measurements to the console. 

    print('-----------------------------------------') 

    print('----- Run #: ' + str(runNumber) + ' -----') 

    print('The current time is: ' + str(current_Time)) 

    print('The current measurement number is: ' + str(measurementNumber)) 

    print('The input voltage (mean): ' + str(inputMean) + ' V') 

    print('The output voltage (mean): ' + str(outputMean) + ' V') 

    print('The output voltage (high): ' + str(outputHigh) + ' V') 

    print('The output voltage (low): ' + str(outputLow) + ' V') 

    print('The reference voltage is: ' + str(referenceVoltage) + ' V') 

    print('The input supply current is: ' + str(readCurrent1) + ' A') 

    print('-------------- End of Run --------------') 

         

    data_Write() 

    csv_Write() 

     

    measurementNumber = measurementNumber + 1 

     

    # Sleep for 5 minutes before taking another measurement. 

    # A for() loop is implemented to allow for easily stopping the program. 

    for i in range (0, 299): 

        sleep(1) 

    i = 0 

             

# ----- End of automation script ----- 
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