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SUMMARY 

 

Power management components can be found in a host of different applications 

ranging from portable hand held gadgets to modern avionics to advanced medical 

instrumentations, among many other applications. Low-dropout (LDO) linear regulators 

are particularly popular owing to their: ease of use, low cost, high accuracy, low noise, 

and high bandwidth. With all its glory, however, it tends to underperform switched-mode 

power supplies (SMPS) when with comes to power conversion efficiency, although the 

later generates a lot of ripple at its output. With the growing need to improve system 

efficiency (hence longer battery life) without degrading system performance, many high 

end (noise sensitive) applications such as data converters, RF transceivers, precision 

signal conditioning, among others, use high efficiency SMPS with LDO regulators as 

post-regulators for rejecting the ripple generated by SMPS. This attribute of LDO 

regulators is known as power supply rejection (PSR). With the trend towards increasing 

switching frequency for SMPS, to minimize PC board real estate, it is becoming ever 

more difficult for LDO regulators to suppress the associate high frequency ripple since at 

such high frequencies, different parasitic components of the LDO regulator start to 

deteriorate its PSR performance. 

There have been a handful of different techniques suggested in the literature that 

can be used to achieve good PSR performance at higher frequencies. However, each of 

these techniques suffers from a number of drawbacks ranging from reduced efficiency to 

increased cost to increased solution size, and with the growing demand for higher 

efficiency and smaller power supplies, these techniques have their clear limitations. The 



 

 xii 

objective of this research project is to develop a novel current-mode LDO regulator that 

can achieve good high frequency PSR performance without suffering from the afore 

mentioned drawbacks. The proposed architecture was fabricated using a proprietary 1.5 

μm Bipolar process technology, and the measurement results show a PSR improvement 

of 20dB (at high frequencies) over conventional regulators. Moreover, the proposed LDO 

regulator can supply 5mA of load current at input voltages as low as 1.4V, and the 

regulator only requires a small 15nF output capacitor for stability, which is far smaller 

than some of the currently used techniques. 
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CHAPTER I 

INTRODUCTION 

 

With the drive towards better system performance and higher efficiency (longer 

battery life), power management ICs are proliferating in portable, industrial, medical, 

communications, and automotive applications. These feature rich devices incorporate a 

variety of electronic circuitries such as high-speed digital processors, high-precision 

analog circuitries, and low-noise RF circuitries, among others. Each of these blocks have 

different supply voltage requirements, ranging from low voltage, high efficiency, and fast 

transient response for digital cores to low noise, high power-supply rejection (PSR), and 

high accuracy requirements for analog/RF components; hence the need for multiple 

voltage regulators to meet these diverse power-supply requirements [1], [12].  

1.1 Power Management Overview 

Power management can broadly be divided into two categories: i) input power 

management which includes battery chargers among others, and ii) output power 

management which includes voltage regulators. Furthermore, there are a couple 

commonly used topologies of voltage regulators: i) linear regulators and ii) inductor 

based switched-mode power supplies (SMPS) [7], [16].  Linear regulators, as shown in 

Figure 1.1 (a), achieve regulation by linearly controlling the impedance between the input 

supply voltage and the output load. It is essentially a resistive voltage divider, whereby 

the upper impedance is actively controlled to achieve the desired output voltage, 

irrespective of any changes at the input supply voltage or the load current. Depending on 
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the operating conditions, significant power can be dissipated in the active resistor of 

linear regulators; and hence, they can potentially suffer from poor efficiency.  

(a) (b)

vIN

vOUT

RL

RP

vIN

vSW

vOUTEfficient Low 

Pass Filter

RL

S

S

 

Figure 1.1: Conceptual step down converters: (a) Linear regulator and (b) Switched-

mode converter. 

SMPS, on the other hand, as shown in Figure 1.1(b), achieve voltage regulation 

by continuously turning switch S ON and OFF (at controlled duty cycles) to generate the 

desired output voltage. The average voltage at the vSW node is a controlled fraction of the 

input supply voltage, and for Figure 1(b), it is given as follows: 

 INSW DVV   (1.1) 

Because power is transferred to the output only when either S is completely turned OFF 

or is completely ON, no power is ideally lost in the conversion process. However, in 

order to efficiently generate a DC output voltage from vSW, an efficient low-pass filter 

(hence inductive based) needs to be connected between vSW and the output node. 

Although SMPS can ideally offer conversion efficiencies close to 100%, they exhibit 

inferior performance compared to linear regulators when it comes to noise, accuracy, 

bandwidth, cost, integration, and ease of use. These important reasons make linear 

regulators very attractive to a wide variety of applications [1], [7], [16]. 
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1.2 Linear Regulators 

  A variety of different topologies of linear regulators, as shown in the figure 

below, can be obtained depending on how the active resistor (also known as the pass 

element/power transistor) is implemented. The choice and design of the pass element 

depends on the efficiency, maximum current, and bandwidth requirements, among others, 

of the application. Broadly speaking, based on process technology, the power transistor 

can be implemented either using a BJT transistor or a MOSFET transistor.  

vIN

vOUT

+

-
vDSsat

+

-
vGS

vOUT

vIN

+

-
vDSsat

NPN PNP

vIN

vOUT

+

+

-

-

vCEsat

vBE

vOUT

vIN

+

-

vCEsat

NMOS PMOS
 

Figure 1.2: Comparison of different pass element structures. 

One of the major benefits of using MOSFET based pass elements is that they do 

not require any gate drive current in steady state conditions. Moreover, due to the 

availability of advanced fine geometry CMOS process technologies, linear regulators 

implemented using MOSFET devices occupy smaller silicon real estate compared to their 

BJT counterparts. With all its glory, however, there are some drawbacks with MOSFET 

devices. One is that BJT devices offer higher bandwidth operation compared to their 

MOSFET counterparts. Secondly, bipolar power devices can be used for high voltage 

applications since diffusion breakdown is inherently higher than oxide breakdown, and 

finally, BJT based regulators can deliver higher load currents than their MOSFET 

counterparts [1], [14]. Based on these advantages of BJT devices and the availability of 

Linear Technology Corporation’s (LTC) 1.5μm Bipolar process technology, a BJT based 
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voltage regulator is used for this research project. Please note that although 

implementations using BJT transistors will be detailed in this literature, similar 

implementations using MOSFET devices can be readily extrapolated.  

One way of implementing the active resistor is by using an NPN transistor in 

follower configuration. The collector and the emitter of the NPN transistor are 

respectively connected to the input and the output terminals of the regulator, and the 

resistance between the two terminals is modulated by changing the base current into the 

NPN. A major drawback of this implementation, however, is that the minimum required 

voltage (i.e. dropout voltage: VDO) between the input and output terminals of the 

regulator to maintain regulation is fairly high, as shown below, therefore resulting in poor 

efficiency:  

 CEsatBENPNDO VVV  . (1.2) 

Referring to Figure 1.2, the efficiency of linear regulators can be improved by 

using a PNP pass transistor as it will lower the minimum (required) differential voltage 

between the input and output terminals of the regulator, as shown in the equation below: 

 CEsatPNPDO VV  . (1.3) 

One of its demerits, though, is that the base current now flows to the ground (instead of 

the output as in NPN), which can lower the overall current efficiency of the regulator. 

However, depending on the current gain (β) of the PNP transistor, this downside can be 

minimized. Also, if PMOS devices are used instead, then this drawback is no longer an 

issue [1], [5], [6], [14]. 

Owing to their high popularity, such regulators are commonly referred to as low-

dropout (LDO) linear regulators. Moreover, at low input-output voltage differentials, 
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LDO regulators offer sufficient conversion efficiency. In particular, as the supply 

voltages of digital circuitries continues to decrease, the demand for LDO regulators is 

projected to increase, as in this range, in addition to all their other benefits, they can offer 

efficiencies rivaling that offered by SMPS [8], [9].  

1.3 Relevant LDO Characteristics 

As shown in the figure below, a basic LDO regulator consists of a stable voltage 

reference, an error amplifier, and a pass element that controls the flow of power from the 

input to the output. Some of the most important parameters to consider when designing 

an LDO regulator are: dropout voltage, load and line regulation (accuracy), power-supply 

rejection (PSR), load transient response, and the overall solution size. 

+

-

QP

CEA

VREF

vIN

REA vOUT

IL

CO

RESRRFB1

RFB2

RL

GEA
vEA

vFB

ZO

Load

 

Figure 1.3: A conventional LDO regulator. 

 The dropout voltage, as mentioned earlier, is defined as the minimum difference 

between the input and the output voltages of the regulator before it ceases to regulate. 

The lower the dropout voltage, the more efficient the LDO regulator can become. 

Moreover, because of how PNP devices are physically implemented, as the regulator 

begins to operate near its dropout voltage, the effective current gain (β) of its power PNP 
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will degrade, and this needs to be addressed when designing PNP based LDO regulators 

[13], [27]. 

 Load regulation (LDR) is another important specification for voltage regulators. It 

can be defined as the change in output voltage per unit change in load current, and it can 

be mathematically defined as follows: 

  
LG1

R

I

V
LDR OLo

L

OUT







   (1.4) 

and L2FB1FBopOLo R||)RR(||rR  , (1.5) 

where Ro-OL is the open-loop output resistance of the regulator, rop is the output resistance 

of the power device, and LG is the loop gain of the regulator. Thus, for a given set of 

operating conditions, as the regulator’s loop gain is increased, its load regulation 

performance will improve [1].  

 Line regulation (LNR) is another important specification parameter for LDO 

regulators, and it can be defined as the change in output voltage per unit change in input 

voltage, and it can be mathematically described as follows: 

 
IN

OUT

V

V
LNR




 . (1.6) 

As the case with load regulation, line regulation is improved with increasing loop gain. It 

is important to note that although line and load regulations are both important parameters 

in determining the overall accuracy of LDO regulators, they are by no means the 

complete representation of regulator accuracy. Reference’s temperature co-efficient, error 

amplifier’s input-referred offset, and output voltage variation across process are some of 

the additional parameters that determine the regulator’s accuracy [1], [14]. 
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 Power-supply rejection (PSR), also commonly known as power-supply ripple 

rejection, is another critical metric for LDO regulators, especially for high-performance 

noise-sensitive applications. Technically speaking, it is essentially the line regulation 

across frequency, and it can be mathematically represented as follows: 

 
out

in

IN v

v

A

1
PSR  . (1.7) 

Qualitatively, the PSR transfer function of an LDO regulator can be thought of as a 

voltage divider due to the impedance between the input and output and the impedance 

between the output and ground [2], [17], [19]. PSR will be more rigorously treated in the 

following chapter. 

 Another parameter of particular importance to high speed digital loads powered 

using LDO regulators is the closed-loop bandwidth of the regulator. High speed digital 

circuits can switch from no-load (standby state) to full-load in a few tens of nano-

seconds, consequently demanding a high speed regulator. The transient output voltage 

variation resulting from a sudden load dump can be anticipated using the regulator’s 

bandwidth, output capacitor, and load current, as shown in the equation below: 

 ESLESRBW

O

L
trO vvt

C

I
v 









 
  , (1.8) 

where ∆vO-tr is the change in the output voltage, ∆IL is the maximum change in the load 

current, CO is the output capacitor, ∆tBW is the regulator’s response time, and ∆vESR and 

∆vESL are the instantaneous changes in the output voltage due to parasitic series resistance 

and inductance, respectively, associated with the output capacitor. It is important to note 

that ∆tBW does not account for any slew rate limited delays, and it will further deteriorate 

the output voltage variation [1], [2], [4]. 
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 Finally, with the ever decreasing solution size of portable/handheld electronic 

devices, system designers are increasingly concerned about the PCB real estate occupied 

by power supply circuitries. As is typically the case, off-chip passive components usually 

end up consuming a large portion of the solution space, and this is particularly the case 

with large output capacitor (CO) LDO regulators. A large output capacitor helps improve 

the high frequency PSR and load transient performance of LDO regulators, in addition to 

easing the task of stabilizing the regulator’s control loop. As a consequence, however, a 

formidable challenge arises in designing LDO regulators with good PSR and transient 

performance while maintaining a smaller overall solution size by using a smaller output 

capacitor, for example. 

1.4 LDO Design Challenges 

Before going further into the objective of this research, it would be appropriate to 

gain a little perspective on some of the challenges involved in designing high 

performance LDO regulators. Although the challenges vary from application to 

application, one common difficulty found in designing most LDO regulators is 

maintaining stability across a wide range of load currents, which can span over six orders 

of magnitude, as well as across different types and sizes of output capacitors. As 

illustrated in Figure 1.3 above, and shown below for convenience, a basic LDO regulator 

consists of at least two poles. 
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X
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Figure 1.4: (a) A conventional LDO regulator and (b) Its frequency response. 

The first pole, or the dominant pole, occurs at the output of the regulator, and it is 

formed by the parallel combination of the output capacitor and the equivalent open-loop 

resistance at the regulator’s output (Ro-OL): 

 
OOLo

PO
CR2

1
f


 . (1.8) 

As the load current varies, however, Ro-OL varies with it and so does the output pole. The 

second pole (fP2) occurs (as shown below) at the base of the power transistor, and it can 

get to quite low frequencies depending on the size of the power transistor, which is 

dictated by the maximum load current and the dropout voltage requirements of the 

regulator: 

 
EAEA

PEA
CR2

1
f


 . (1.9) 

With the presence of two low-moderate frequency poles, an LDO is inherently 

unstable. To stabilize the regulator, at least one left-half-plane (LHP) zero is needed. 

Depending on the type of the output capacitor used, an LHP zero (fESR) can be obtained 

from the ESR (equivalent series resistance) of the output capacitor: 



 

 10 

 
OESR

ZESR
CR2

1
f


 . (1.10) 

However, the location of (fESR) can vary over a wide range, as ESR is not a well 

controlled parameter. Moreover, large values of ESR resistance can deteriorate the high 

frequency PSR performance of the regulator, as well as its transient response, as shown 

earlier [1], [5], [6], [14]. Another approach of generating an LHP zero (fZFF) is by placing 

a small feed-forward capacitor (CFF) across the top resistor (RFB1) in the feedback divider 

network [11]. However, as a by-product, it introduces a high frequency pole (fPFF) located 

at the frequency shown in the equation below: 

 
FF1FB

ZFF
CR2

1
f


  (1.11) 

and 
FF2FB1FB

PFF
C)R||R(2

1
f


 . (1.12) 

 All of the major performance parameters of LDO regulators as stated above are 

affected by the stability of the regulator. For instance, achieving higher loop gain and 

stability under all conditions and at higher bandwidth may not be feasible, and thus 

tradeoffs involving the regulator’s line regulation, load regulation, transient response, 

PSR performance, among others, are indispensable. In particular, achieving good high 

frequency PSR performance is especially challenging. As with any feedback system, the 

higher the loop gain of the system, the more effectively can the loop suppress any 

external disturbances. However, as the loop gain degrades at higher frequencies (i.e. 

bandwidth limited), the noise rejection performance of the system will deteriorate – and 

similar holds true with PSR for LDO regulators.  
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To achieve good PSR performance at lower frequencies, the DC loop gain (LGDC) 

of the regulator needs to be high. However, with high LGDC, as with any linear circuit, 

achieving wider bandwidth can become near impossible. Consequently, achieving good 

high frequency PSR performance, without trading-off other performance parameters, can 

quickly become challenging. Furthermore, LDO regulators with significantly lower 

dropout voltages often achieve so by considerably increasing the size of the power 

transistor, and thereby pushing the pole located at the base of the power device closer to 

the output pole, further deteriorating its stability. As a result, it becomes even more 

difficult to design LDO regulators with very low dropout voltages and good high 

frequency PSR performance. 

1.5 Research Objective 

To achieve longer battery life, many high performance applications such as data 

converters, RF transceivers, precision signal conditioning, among others, use switched-

mode power supplies (SMPS) followed by LDO regulators (being low noise supplies) as 

post-regulators for noise suppression. However, with the increasing switching 

frequencies of SMPS (on the order of 10MHz), attenuating the associated high frequency 

ripple is proving increasingly difficult for LDO regulators since at such high frequencies, 

different parasitic components start deteriorating the regulator’s PSR performance [3]. A 

handful of different techniques ranging from employing a simple low-pass filter at the 

regulator’s input to connecting two regulators back-to-back to cascoding the regulator 

with an N-type transistor have been reported to improve the PSR performance of LDO 

regulators. However, as will be rigorously detailed in the following chapter, each of these 

techniques suffers from significant drawbacks ranging from large size to decreased 



 

 12 

efficiency to increased circuit complexity, which diminishes their efficacy [17], [21], 

[22].  

In power management, as in most facets of electronics, miniaturization is the rule 

rather than the exception. Large passive components, especially the capacitors, place a 

major bottle-neck in reducing the overall size of LDO regulator solutions. Nevertheless, a 

number of challenges come up with the use of smaller output capacitors. As had been 

stated earlier, it is difficult to achieve adequate phase margin, and even stability in some 

cases, with smaller output capacitors. Moreover, it becomes considerably more difficult 

to achieve good high frequency PSR performance with smaller output capacitors. With 

this in mind, it is the objective of this research project is to develop a high performance 

LDO regulator with good high frequency PSR performance without relying on large 

passive components or deteriorating the power conversion efficiency of the regulator. 

1.6 Synopsis 

In this chapter, different types of power supplies such as linear regulators and 

SMPS that can be used to power portable electronic devices have been presented. 

Although SMPS are more efficient than linear regulators, at low input-output voltage 

differentials, their efficiency benefit is not as impressive; moreover, many noise sensitive 

applications such as analog and RF circuitries require the use of linear regulators. In 

addition, a variety of different topologies of linear regulators can be obtained depending 

on how the pass element is implemented. The pass element of an LDO regulator can be 

implemented either using a PNP or a PMOS transistor. In the following chapter, the state-

of-the-art in high PSR LDO regulators followed by an introduction to the proposed 

current-mode LDO regulators will be meticulously presented. 
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CHAPTER 2 

POWER-SUPPLY REJECTION IN LDO REGULATORS 

 

Power-supply rejection (PSR) is an important performance metric for low-dropout 

(LDO) linear regulators, especially for noise-sensitive applications that use switched-

mode power supply (SMPS) for high efficiency with LDO regulator as a post-regulator 

for ripple suppression. A detailed PSR analysis of LDO regulators, followed by the state-

of-the-art in high PSR regulators together with their drawbacks will be presented in this 

chapter. Finally, a brief overview addressing the benefits of the proposed current-mode 

LDO regulator compared to the state-of-the-art techniques will be presented. 

1.1 PSR Analysis 

The PSR transfer function of an LDO regulator can be modeled as shown in 

Figure 2.1 (b) below.  

(a) (b)

+

-

QP

CEA

VREF

vIN

REA vOUT

IL

CO

RESRRFB1

RFB2

RL

GEA
vEA

vFB

ZO

Load

zo

rop

vin

vout

zo-reg

 

Figure 2.1: (a) Conventional LDO Regulator and (b) Its intuitive small-signal PSR 

model.  
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Based on this model, an LDO regulator’s PSR response can be modeled of as a voltage 

divider resulting from the impedance between the input supply and the output and the 

impedance between the regulator’s output and ground [2], [17], [19]. In addition, the PSR 

of an LDO regulator can be shown mathematically as follows:  

 
INA

1
PSR   (2.1) 

and 
regoOoP

regoO

in

out
IN

z||zr

z||z

v

v
A






 , (2.2) 

where roP is the output resistance of QP, and the effect of the regulator’s feedback loop is 

embedded inside zo-reg. As shown in the equation below, zo-reg decreases with increasing 

loop gain (LG): 

 




OL

oPOoPO

rego
A

r||z

LG

r||z
z . (2.3) 

Combining the above three equations yield Equations 2.4 and 2.5 for PSR, 

respectively, at low-to-moderate frequencies and at high frequencies:  

 
O

oP

.freq.modtoLow
z

rLG
PSR   (2.4) 

and 
O

oP

freqHigh
z

r
PSR  . (2.5) 

Based on the intuitive model shown in the Figure 2.1 (b) and the above mathematical 

relationships, the PSR response of an externally compensated LDO (dominant output 

pole) across a wide range of frequencies is illustrated in Figure 2.2 below [2], [17], [19].  

Around low frequencies, the feedback loop gain is significantly high, and so the 

regulator’s output impedance is considerably low, therefore resulting in good PSR 

performance. Moreover, it is important to note that the occurrence of the output pole (PO) 
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does not deteriorate the PSR performance since both the numerator and the denominator 

in Equation 2.4 decrease at the same rate.  However, as shown in the figure below, 

beyond the pole located at the error amplifier’s output, PEA, the feedback loop gain (in the 

numerator) starts decreasing at twice the rate as the term in the denominator (of Equation 

2.4), and consequently the regulator’s PSR starts to deteriorate.  
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Figure 2.2: PSR response across wide frequency range. 

The resulting PSR degradation continues until around the unity-gain bandwidth of 

the regulator, beyond which point, the LDO regulator’s output impedance is essentially 

determined by the output capacitor. As the output capacitor’s impedance is decreasing 

with increasing frequency, the LDO regulator’s PSR starts to improve, and continues 

doing so until the parasitic components of the output capacitor (such as ESR) start to 

impede any further improvement in PSR [2], [17], [19]. In essence, the above 

analysis/illustration highlights the importance of higher loop gain and higher bandwidth 

in improving LDO regulator’s PSR performance across wide frequency range. 

Please note, however, that the above model assumes there is no ripple conduction 

through the transconductor of the pass transistor. Meaning that for an NPN device, there 

should be no ripple at the base of the power device, thereby resulting in no output ripple 

through the transconductor of the NPN transistor. On the other hand, for a PNP device, it 
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assumes there will be an equal amount of ripple present at the base of the PNP as it is at 

its emitter (regulator’s input), and thus resulting in no output ripple through the 

transconductor of the PNP transistor [2], [17], [19].  

2.2 Supply Ripple vs. Spikes 

 Before moving forward in to addressing the different techniques used to improve 

LDO regulator’s PSR response, it is beneficial to understand the difference between 

supply ripple and spikes. As had been mentioned earlier, LDO regulators are commonly 

used as post-regulators, for noise suppression, after high efficiency switched-mode power 

supplies (SMPS). The LDO regulator’s input ripple occurs at the switching frequency of 

the switching regulator, which can typically lie between 100kHz and 10MHz. However, 

as shown in the figure below, the input spikes caused by the pulsed energy delivery 

approach (fast turn-on and turn-off of the power switches) used in SMPS occur at much 

higher frequencies (around 100MHz) than the ripple frequency [25]. 

Ripple: Typically from 

100kHz to 10MHz

Spikes: Harmonic content 
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Figure 2.3: Comparison between power-supply ripple and spikes. 

The rejection of ripple at the input of an LDO regulator can be improved by 

utilizing high speed process technologies and fancy control techniques, although it is by 

no means a simple problem. However, because spikes occur at much higher frequencies, 

well beyond the bandwidth of the regulator, it can only be improved by relying on 
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passive components. Capacitors generally tend to have limited benefit of attenuating 

spikes because they are constrained by parasitic ESR and ESL, which is present even in 

low ESR ceramic capacitors [25].  

 For better spike rejection, ferrite beads are used between the output of the LDO 

regulator and the load. Ferrite beads offer high impedance at higher frequencies, and 

thereby improving the high frequency PSR performance of LDO regulators. Moreover, 

because its impedance response is inductive, its low frequency impedance is low, thus it 

does not provide any PSR improvement at low frequencies where the PSR is already high 

due to the regulator’s loop gain. It is important to note, however, that ferrite beads do 

exhibit small but non-zero impedance at DC; and therefore, they slightly deteriorate the 

regulator’s overall efficiency. Furthermore, depending on how the regulator is 

compensated, they can also potentially impact the frequency response (stability) of the 

regulator [25]. 

2.3 State of the Art 

Having looked at the fundamentals of PSR analysis in LDO regulators, we are 

now in a position to look at the state-of-the-art techniques used at improving PSR 

performance in LDO regulators. As shown in the figure below, a handful of different 

techniques can be applied to improve the PSR performance of LDO regulators. The 

simplest approach, as shown in Figure 2.4 (a) (i), is to employ a low-pass filter (e.g. an 

RC filter) in line with the power supply input to filter out the input supply ripple.  
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Figure 2.4: (a) State-of-the-art techniques and (b) Their corresponding PSR response. 

As shown through curve (2) in the Figure 2.4 (b), depending on the corner 

frequency (PRC in) location of the input filter, it can potentially filter out moderate to high 

frequency ripple at the input supply. However, this approach will significantly deteriorate 

the regulator’s voltage headroom, as well as its efficiency, due to the presence of a 

relatively large series resistor between the input supply and the LDO regulator’s input 

terminal [17], [20], [21]. 

Another approach, as shown in Figure 2.4 (a) (ii), is to connect two LDO 

regulators back-to-back. As shown through curve (3) in the Figure 2.4 (b), this will 

substantially attenuate the low frequency ripple at the output. However, at moderate 

frequencies, around the bandwidth of the regulators used, it is still difficult to achieve 

good PSR performance given that both regulators have similar limitations. Moreover, this 

approach has a number of other drawbacks: (a) it will dissipate substantially more power 
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as now the dropout voltage is twice that of a single regulator, (b) it will consume twice as 

much PCB real estate, and (c) it will considerably cost more [17], [20], [21]. 

The third approach, as shown in Figure 2.4 (a) (iii), is to connect an NMOS 

cascode transistor between the input supply and the input of the LDO regulator. The 

essential idea is to improve PSR by increasing the impedance between the input power 

supply and the LDO regulator’s output. As shown through curve (4) in Figure 2.4 (b), the 

PSR response with the gate of the cascode device sitting at ac ground provides adequate 

PSR improvement at low frequencies as well as at higher frequencies. On the other hand, 

curve (5), with a more realistic ripple at the gate of the cascode device, shows very little 

PSR improvement at low frequencies. In fact, if the charge pump ripple is not properly 

filtered, the PSR of the regulator can potentially degrade. However, it does show 

moderate PSR improvement at higher frequencies [15], [17], [18], [20], [23], [24]. 

Nevertheless, as one can imagine, there are a number of drawbacks with this 

approach. Firstly, the regulator’s dropout voltage essentially doubles, there by 

substantially deteriorating the regulator’s efficiency. Secondly, the silicon real estate 

(consequently the cost) drastically increases with this approach. The RC filter connected 

at the gate of Mcas needs to be carefully designed so that very little noise injection from 

the charge pumps heads to the gate of Mcas, otherwise the PSR performance could even 

degrade.  This typically means large resistors and capacitors for filtering the gate signal 

of Mcas, thereby potentially increasing the overall solution size. Furthermore, given the 

fact that Mcas will be large in size (as it’s a power transistor), the overall silicon real estate 

can become substantially larger, thereby increasing the die cost. Fourthly, the added 

cascode device markedly deteriorates the transient performance of the LDO regulator. 
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Finally, with the additional circuitries such as a clock and flying capacitors for the charge 

pump and the necessary filtering to attenuate the associated ripple due to the switching 

action, this strategy notably increases the circuit complexity of the regulator [17], [18], 

[20], [22]-[24]. 

Lastly, the high frequency PSR performance of LDO regulators can also be 

improved if the high frequency ripple at the source and gate of the power PMOS (for 

PMOS based regulators) is made common mode. This is essentially what the feedback 

loop accomplishes at lower frequencies (where it has adequate loop gain); however, 

because of limited bandwidth, it cannot achieve this at higher frequencies. The approach 

illustrated in the figure below claims to achieve this using a feedforward ripple-

cancellation path which is higher bandwidth than the voltage regulation loop [22], [26]. 
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Figure 2.5: Feedforward ripple-cancellation technique. 

The primary drawback with this approach, nevertheless, is that a substantially 

large output capacitor (4μF) is needed for stabilizing a 25mA regulator. As had been 

illustrated earlier, large output capacitors contribute significantly to the high frequency 

PSR performance of LDO regulators. Consequently, the benefits offered by the 

feedforward ripple-cancellation approach in [22] is not very clear. 
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Finally, at very high frequencies, each of the above mentioned approaches fails to 

provide good PSR performance as (at such high frequencies) it is primarily limited by the 

different parasitic components (ESR and ESL) of the output capacitor. This limitation is 

well illustrated in Figure 2.2 for further details. Moreover, at even higher frequencies, roP 

is no longer just resistive; its resistance actually starts rolling-off due to the equivalent 

emitter-collector capacitor (CCE), which is basically determined by the parasitic base-

collector capacitor (CCB). However, since this deterioration occurs at much higher 

frequencies than the bandwidth of the regulator or the parasitic effects of the output 

capacitor, it can be neglected for simplicity [2]. 

2.4 Proposed Current-Mode Architecture 

 Having seen some of the major drawbacks of the different state-of-the-art 

approaches used to improve LDO regulator’s PSR performance, it would be very useful 

to have an LDO regulator with improved high frequency PSR response without the afore 

mentioned drawbacks, namely poor efficiency, increased overall solution size, and 

increased cost. Particularly, if we step back and refer to the intuitive model for PSR 

analysis, we can readily see that PSR can be improved by either decreasing the equivalent 

impedance between the output and ground or by increasing the impedance between the 

input and output terminals of the regulator.  

Furthermore, as had been shown in the previous section, the cascoding technique 

improves the regulator’s PSR performance by essentially increasing the impedance 

between the input and output terminals of the regulator. It would be more useful, 

however, if the impedance between the input and output terminals of the regulator is 

increased without increasing its dropout voltage. In this literature, a current-mode LDO 
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regulator is proposed that increases the ac impedance between the input and output 

terminals of the regulator by utilizing a current-feedback loop. Because the proposed 

architecture does not increase the DC resistance between the input and output terminals 

of the LDO regulator, the regulator’s efficiency is not compromised. 

2.5 System-Level Current-Mode LDO Regulator 

In a current-mode LDO regulator (as shown in the figure below) a current-

feedback loop is implemented that allows for the power (PNP) transistor to be operated as 

a current-controlled current source; thereby, effectively increasing its input-output 

impedance by the loop gain of the current-feedback loop. 
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Figure 2.6: System-level current-mode LDO regulator. 

As can be observed from the figure above, the main (voltage) loop sets a dynamic current 

reference for the faster current loop. During a transient condition, a load-dump for 

example, this reference point changes, and the current loop quickly drives (as it is higher 

bandwidth) the power transistor to the new current level. 
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One key requirement for proper operation of current-mode LDO regulators is that 

the bandwidth of the current-feedback loop needs to be higher than that of the voltage-

feedback loop. This is not awfully difficult to achieve, however, since the dominant pole 

of the current loop occurs at that the base of the power transistor, which is at higher 

frequency than the dominant pole of the voltage loop that occurs at the output of the LDO 

due to the large output capacitor. Nevertheless, the current loop needs to be properly 

compensated to assure overall stability under different conditions of load, line, and output 

capacitors. For PNP power transistors, in particular, stability is somewhat more difficult 

to achieve since the pole located at the base of the power transistor moves as the load 

current changes. In addition, to make matters worse, the beta of the power transistor (βP) 

also varies with the load current. More on stability of the proposed architecture will be 

discussed in the following chapter. 

Another benefit of the proposed architecture is that the current-feedback loop 

being an internal sub-feedback loop (for the voltage loop), it effectively increases the 

bandwidth of the regulator’s voltage loop by pushing out the pole located at the base of 

the power transistor to higher frequencies. This not only improves the regulator’s 

transient response, but it further helps improve the PSR response, since with higher 

bandwidth, the voltage loop will maintain higher loop gain for wider range of 

frequencies, which in turn will keep the impedance between the regulator’s output and 

ground low for a wider frequency range. The third benefit of the proposed architecture is 

that it offers better line transient response because any changes at the input line will be 

corrected by the current-feedback loop before any changes occur at the output voltage.  
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2.6 Synopsis 

 An intuitive, yet comprehensive, approach to analyze the PSR of LDO regulators 

has been presented in this chapter. Moreover, different state-of-the-art techniques that are 

used to improve LDO regulator’s PSR response have also been presented, together with 

their respective drawbacks. Finally, we have glimpsed at the proposed current-mode 

architecture for improving the PSR performance of LDO regulators. More detailed 

analysis on the stability and PSR response of current-mode LDO regulators will be 

performed in the following chapter. 
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CHAPTER 3 

CURRENT-MODE LDO REGULATOR IC 

 

Before progressing further in to analyzing current-mode low-dropout (LDO) 

regulators, let us briefly recap some of the major benefits offered by current-mode LDO 

regulators over conventional regulators. Firstly, it offers better power-supply rejection 

(PSR) performance by increasing the impedance between the input and output terminals 

of the regulator by the loop gain of the current-feedback loop. Moreover, the bandwidth 

of the current-mode LDO is higher than that of conventional LDO regulators due to the 

feedback action of the internal current-feedback loop. 

3.1 Transistor-Level Implementation 

 The proposed current-mode LDO regulator is implemented using Linear 

Technology Corporation’s (LTC) 1.5μm Bipolar process technology utilizing vertical 

NPN and lateral PNP devices. As can be observed from the transistor level schematic of 

the proposed LDO regulator, shown in the figure below, two main transconductance 

amplifiers are used: one for the current loop (GI) and the other for the voltage loop (GV).  

Moreover, the circuit also contains a current mixer for combining the two loops. 

The output of the current mixing stage is used for compensating the two feedback loops – 

more on this in the next section. The current mixer’s output, having high equivalent 

resistance, also serves as the gain node for the two feedback loops. Finally, there’s the 

driver stage (consisting of QD) which can sink large amounts of current to be able to 

effectively drive the power PNP at heavy load levels. 
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Figure 3.1: Transistor-level schematic of the proposed current-mode architecture. 

The presence of multiple feedback loops make the design of the proposed architecture 

somewhat more complicated, and so it is imperative to analyze the stability of the 

regulator and understand how the two loops interact with each other. 

3.2 Stability Analysis 

 Referring back to Figure 3.1, and assuming RDEG is shorted for a moment, if there 

is a load change, for instance from no-load to heavy-load, then the voltage across the 

current sense resistor (∆VS), which is also the voltage difference between the two 

terminals of the current loop transconductor (GI), will change by: 

 SSS RIV  . (3.1) 

Since the transconductance of the current and voltage loop transconductors is roughly 

equal, this entire differential voltage (which can well be tens of millivolts) will manifest 
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at the feedback node (vFB), consequently degrading the load regulation of the regulator, 

and hence the purpose of using RDEG, as analyzed below. 

This deterioration in load regulation can be remedied if the DC gain of the current 

loop is minimized without compromising its high frequency gain – which is needed for 

good high frequency PSR performance. This behavior can be achieved by frequency 

shaping, through RDEG and CDEG, the transconductor GI. The large resistor, RDEG, heavily 

degenerates the transconductance of GI, and thus assures very low DC gain, and as the 

frequency increases, the capacitor (CDEG) shunts away RDEG, thereby increasing the 

transconductance of GI, consequently increasing the loop gain of the current-feedback 

loop. A more qualitative way of thinking about the problem is: because we are interested 

in regulating the DC output voltage, and not the DC output current, the loop gain of the 

current loop is frequency shaped to achieve very low DC gain and adequate gain at 

higher frequencies. 

The loop gain of the current-feedback loop (LGI), at different frequencies, can be 

mathematically determined as shown in Equation 3.2 below:  
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, (3.2) 

where REA and RB are the equivalent resistances at vEA and vB, respectively. Moreover, 

ZEA is the equivalent impedance at vEA, βI is the feedback factor of the current loop, and 

AOL-I is the open-loop gain (forward gain) of the current-feedback loop. All of the other 
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parameters have their normal meanings, as applied to analog circuits, with the subscript 

denoting the name of the device in Figure 3.1. 

Furthermore, a pole-zero pair, as shown below, is also generated as a result of 

frequency shaping the transconductor GI: 
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1
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  (3.3) 
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In addition to these, as shown in the equations below, there are two other poles in the 

current loop. One of them occurs at vEA since it is a high gain node and the other occurs 

at vB, the base of the large power transistor (QP): 
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B
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1
P


 . (3.6) 

As it can be inferred from this analysis, with three poles and one zero, the current 

loop is inherently unstable. An additional compensation zero is required to stabilize it, 

and it is achieved through the resistor (RZ) in series with CEA in the Figure 3.1: 

 
EAZ

Z
CR2

1
Z


 . (3.7) 

With the additional zero used for compensating the pole (PB) located the base of the 

power transistor, the overall frequency response can be approximated as having only two 

poles and one zero. Based on this analysis, curve (2) in the figure below shows the 

resulting frequency response of the current-feedback loop’s loop gain. 
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Figure 3.2: Frequency response of the two feedback loops. 

 The calculated loop gain of the current loop can then be used to determine the 

closed-loop gain of the current loop, which is essential for analyzing the voltage loop (as 

verified in Appendix A). The equation below mathematically shows the closed-loop gain 

of the current-feedback loop (ACL-I): 
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As illustrated through curve (3) in the Figure 3.2 above, the closed-loop response 

accurately reflects the above relationships. 

The loop gain of the current loop (through simulations) of the designed current-

mode regulator is verified as shown in the figure below. 
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Figure 3.3: Frequency response of the current loop (LGI) at 5mA load. 

As we can see from the figure above, the current loop has practically no gain at low 

frequencies and acceptable gain at higher frequencies; hence, it is properly frequency 

shaped. Moreover, the loop is stable with close to 90
o
 of phase margin – essentially the 

result of two poles and one zero. It can also be inferred from the figure above that the 

frequency response of the current loop is similar to what had been predicted based on the 

previous analysis and Figure 3.2. 

 Having determined the closed-loop gain of the current loop, we are now in a 

position to determine the loop gain of the voltage loop with and without the current-

feedback loop, LGV-wI and LGV-woI, respectively, which is illustrated as curves (4) and 
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(5), respectively, in Figure 3.2. Furthermore, LGV-wI and LGV-woI can be mathematically 

represented as follows: 

 VO

S

P
ICLVwIV Z

A

A
AGLG    (3.9), 

and VOmPBmDEAVwoIV ZgRgZGLG  , (3.10) 

where βV is the feedback factor of the voltage loop, AP is the emitter area of power PNP, 

and AS is the emitter area of the sense PNP. It is important to note that based on 

Equations 3.8 and 3.9, the loop gain of the voltage loop (LGV-wI) starts decreasing once 

the current loop’s gain increases beyond unity (f0I in Figure 3.2), and flattens out when 

the loop gain of the current loop flattens out (PD). 

 The simulation results for the frequency response of the voltage loop in the actual 

design is shown in the Figure 3.4 below. The loop gain of the voltage loop is shown with 

(LGV-wI) and without (LGV-woI) the current-feedback loop. As anticipated from the above 

analysis and Figure 3.2, the loop gain of the voltage loop with the current-feedback loop 

(LGV-wI) exhibits the output pole, another pole-zero pair as a result of frequency shaping 

the current loop, and slight effect from the -3dB bandwidth of ACL-I (f-3dB CL-I) as it is 

around the same frequency as the unity-gain bandwidth of the voltage loop (fV-wI); 

consequently, it is highly stable. On the other hand, due to the presence of three poles – 

the output pole, the pole located at the output of the error amplifier, and the pole at the 

base of the power PNP – and one zero at the output of the error amplifier, the loop gain of 

the voltage loop without the current-feedback loop (LGV-woI) exhibits almost no phase 

margin. 
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Figure 3.4: Frequency response of the voltage loop (LGV) at 5mA load and 15nF output 

capacitor. 

 Having performed the detailed stability analysis of the two feedback loops and 

how the two loops interact with each other, we can now progress further into rigorously 

analyzing the PSR response of the proposed current-mode LDO regulator. 

3.3 PSR Analysis 

 Attributed to the presence of dual feedback loops, the PSR analysis of current-

mode LDO regulators is somewhat different from the approach/model used to analyze 

conventional LDO regulators. The conventional model (which was presented in Chapter 
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2) can be modified, as shown in the Figure 3.5 (a), to account for the additional feedback 

loop. 
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Figure 3.5:  (a) Intuitive PSR model and (b) PSR analysis of current-mode LDO 

regulators. 

 The model shown in Figure 3.5 (a) incorporates an additional term (zreg-I) to 

model the increased impedance between the input and output terminals of the regulator 

due to the current feedback action.  The PSR can be mathematically shown as follows: 
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where zreg-I and zreg-V are defined as: 

 oPIIreg rLGz   (3.12) 

and 
)AA(AG

1

LG

)zr(||z
z

SPCLIVVV

IregoPO

Vreg











 . (3.13) 



 

 34 

Simplifying Equation 3.11 for low-to-moderate frequency range gives a more insightful 

perspective on PSR for this frequency band, as shown in the equation below: 
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For moderate-to-high frequency range, that is at frequencies beyond the 

bandwidth of the voltage loop but before the current loop’s bandwidth, the PSR can be 

simplified as follows: 
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This is the region, as shown in Figure 3.5 (b) through curves (5) and (6), where the 

proposed architecture provides better PSR response. Moreover, based on the analysis 

presented in the previous chapter, it really is in this region where the PSR of conventional 

regulators is worst; therefore, any improvement in this region will be incredible. Finally, 

the high frequency PSR response, i.e. at frequencies beyond the current loop’s 

bandwidth, the PSR can be simplified as shown below, which is same as in conventional 

LDO regulators: 

 
oP

o

.freqHigh r

z

PSR

1
 . (3.16) 

Based on the above analysis, the PSR of current-mode LDO regulators can be 

qualitatively illustrated as shown through curve (5) in Figure 3.5 (b). In addition, the PSR 

of conventional regulators (i.e. without current-feedback loop) is illustrated as curve (6) 

in the same figure. As can be inferred from Figure 3.5 (b), although LGV starts rolling-off 

when LGI increases beyond unity, the PSR response remains unaffected since the product 

of the two remains constant. However, the benefit of the current-mode LDO regulator 
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becomes apparent after the unity-gain frequency of the voltage loop (fV-wI) but before the 

unity-gain frequency of the current loop (fI), which occurs around moderate-to-high 

frequencies, and it is typically in this frequency range where conventional LDO 

regulator’s PSR deteriorates drastically. 

The PSR response (through simulations) of the proposed current-mode regulator 

design is shown in the figure below. It is important to note that although the proposed 

current-mode LDO regulator is stable with 15nF of output capacitance (CO), for 

comparison purposes, however, the PSR response shown below is with 68nF of output 

capacitance since the regulator with the current loop turned-off (essentially RS shorted) is 

unstable with 15nF of output capacitance. 

 
Figure 3.6: PSR response (IL=5mA and CO=68nF) comparing current-mode vs. 

conventional regulator. 

 As can be seen from the above simulation results, the proposed architecture does 

provide significant PSR improvement over conventional regulators around moderate-to-
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high frequencies. Although the PSR of the current-mode LDO regulator is slightly less 

than that of a conventional regulator at low-to-moderate frequencies (which is attributed 

to slightly lower LGV due to non-ideal frequency shaping, i.e. non-zero LGI at lower 

frequencies), it does provide significant PSR benefits at moderate-to-high frequencies. 

Moreover, since the PSR at lower frequencies is already high to begin with, slight 

deterioration in PSR will not be a major liability. On the other hand, since the lowest PSR 

occurs around moderate-to-high frequencies for conventional LDO regulators, any 

improvement in this region is really useful, and the fact that most switching regulators 

operate around moderate-to-high frequencies, this benefit is tremendous [3], [25]. 

3.4 Achieved Design Performance and Layout Challenges 

 The steady-state and transient performance (through simulations) achieved by the 

current-mode LDO regulator is summarized in the table shown below. 

Table 3.1: Current-mode LDO regulator’s specification matrix. 

Design Parameter Simulation Results 

Input Voltage Range 1.4V to 10V 

Min. Output Voltage 0.6V 

Stable Load Range 0 to 5mA 

Dropout Voltage 200mV 

Min. Output Capacitance 15nF 

Load Regulation (0 to 5mA) 3.15mV 

Line Regulation (2V to 6V) 0.6mV 

Quiescent Current (no load/full load) 50μA/120μA 

Bandwidth (at full load) 1.3MHz 

Min. PSR up to 10MHz (at 5mA 

Load and 15nF COUT) 
43dB (at 3.7MHz) 

Technology 1.5 μm Bipolar 

 Before moving further into the experimental results, let us glance through some of 

the precautionary measures taken when laying out the circuitry. One is that the sense PNP 

is located very close to the power PNP for better thermal matching, as the VBE of bipolar 
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transistors is sensitive to thermal gradients. It also helps against any mismatches 

attributed to process gradients. Furthermore, the power and sense PNPs share the same 

tub to minimize the tub-to-substrate capacitance at the common base terminal of the 

power and sense PNPs. Moreover, critically matched devices are placed far away from 

the power transistor so that there is little variation in temperature between the critically 

matched devices. Another precautionary measure taken was to separate common-tubed 

devices with deep P+ (plug) isolations to prevent latch-up issues in the event any device 

saturates and begins to inject minority-carriers into its neighboring devices [13]. The 

figure below shows the micrograph of the fabricated design. 

 

Figure 3.7: Micro photograph of the fabricated IC. 

3.5 Synopsis 

In the proposed regulator architecture, the high frequency impedance between the 

input and output terminals of the regulator is effectively increased by the loop gain of the 

current-feedback loop. Moreover, the outer loop is determined to be the voltage loop (and 
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not the current loop) since it is voltages (VREF and vFB) that are being mixed, and also 

because it is the output voltage (vOUT) that is being sampled by the outer loop. With this 

in mind, the output current of the voltage loop’s transconductor (GV) sets the current 

reference signal based on the regulator’s output voltage. The current loop will then try to 

drive the power PNP transistor such that the load current matches the current reference 

signal set by the outer voltage loop. In addition, the stability and PSR analysis of the 

proposed current-mode LDO regulator has been rigorously presented. The anticipated 

results from this analysis have been shown to agree with the simulation results.  
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CHAPTER 4 

EXPERIMENTAL RESULTS AND CONCLUSIONS 

 

 The fabricated current-mode low-dropout (LDO) regulator is tested in the 

laboratory for actual performance measurement of all the different parameters simulated 

in the previous chapter, such as the input voltage range, dropout voltage, minimum 

(required) output capacitance, load regulation, line regulation, load transient response, 

PSR response, in addition to a few other measurements. 

4.1 PCB Design and Testing Environment 

 Testing high frequency PSR performance requires some careful considerations 

when designing the PC board. Particularly, because of high ripple rejection exhibited by 

the regulator (around 75dB at lower frequencies), the output of the LDO will have very 

small amplitude; as a result, it can potentially be corrupted by external interference if care 

is not taken.  This can be addressed, however, by using co-axial to co-axial cables to 

connect the output of the regulator to the oscilloscope while taking measurements. 

Moreover, since high frequency PSR is very important for this research, special attention 

is paid to minimize the parasitic resistances and inductances associated with PCB traces, 

especially the traces connecting the output capacitor to the ground plane. 

 In addition to the above considerations, generating a desired ripple at the input of 

the LDO regulator can be a non-trivial problem, especially since there is DC current 

flowing through the regulator to the output load. A power buffer circuitry is designed and 

built that can supply DC current as well as generate the desired ac ripple at the input of 
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the regulator. Current mixing is used (in the power buffer) for superimposing an ac ripple 

on top the DC signal at the input of the LDO regulator. 

4.2 PSR Measurement Results 

 Two different LDO regulator designs were sent for fabrication: one with the 

current-feedback loop active and the other with the current-feedback loop de-activated 

(essentially by shorting the current sense resistor). The PSR results obtained by the 

proposed current-mode regulator was measured under a wide range of load currents, 

input voltages, and output capacitors. The figure below shows the PSR response of the 

current-mode LDO regulator at 5mA and using the minimum output capacitor of 15nF. 

 
Figure 4.1: Measured PSR response of the proposed current-mode regulator with 

CO=15nF. 

As can be seen from the figure above, the lowest PSR (of 33dB) occurs around 2.4MHz, 

and the figure below details the PSR at this frequency, whereby channel 1 is the (ac) 

input signal and channel 2 is the (ac) output signal. 
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Figure 4.2: Input ripple rejection at 2.4MHz using 15nF output capacitor. 

 The PSR improvement when utilizing the current-feedback loop versus not using 

it is shown in the figure below.  

 
Figure 4.3: PSR comparison with and without the current-feedback loop. 

Please note that 68nF of output capacitance (CO) is used for this measurement since the 

regulator without the current-feedback loop becomes unstable with 15nF of CO. Hence, 

both regulators (with and without the current-feedback loop) are tested at 5mA using 



 

 42 

68nF of CO. As we can observe from the figure above, the proposed current-mode 

regulator provides significant PSR improvement compared to when the current-feedback 

loop is de-activated, as had been predicted through simulations and mathematical 

analysis.  

Furthermore, the lowest PSR for the current-mode regulator is about 49dB and 

occurs around 850kHz, and when the current loop is disabled, the lowest PSR is about 

29dB, and it occurs around 900kHz. The PSR at this frequency is detailed in the figure 

below, whereby channel 1 is the (ac) input signal and channel 2 is the (ac) output signal. 

 

(a) 

 

(b) 

Figure 4.4: (a) PSR of current-mode LDO at 850kHz and (b) PSR of the regulator at 

900kHz with the current loop disabled. 

4.3 Transient Measurement Results 

 The load transient, no-load to full-load, response of the proposed current-mode 

regulator using a 15nF output capacitor is shown in the figure below, whereby channel 1 

shows the load current and channel 2 shows the ac component of the output voltage. 

Moreover, the nominal output voltage is programmed at 0.6V. 
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Figure 4.5: Positive and negative load transient response between full and no load. 

The bandwidth of the regulator can be estimated based on its load transient 

response, such as the one shown in the figure above. Furthermore, since the load step’s 

rise and fall time is about 50ns (although not clearly visible from the figure above), it can 

be assumed to be instantaneous (without significant error) to estimate the bandwidth of 

the regulator. Assuming very low ESR and ESL for the output capacitor, the response 

time (∆tBW) of the regulator using the data from negative load dump, as it is apparently 

the worst case from the figure above, is given as: 
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This implies the bandwidth (fBW) of the regulator to be about 1.85MHz, similar to what 

had been predicted through simulations. Although it is difficult to discern from the figure 

above, the steady state change in the output voltage as the load is stepped from no-load to 

5mA is about 4.6mV. 

Load 

5mA 
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 Another important transient test performed on the regulator is the line transient 

response of the current-mode LDO regulator with 15nF CO operating at 5mA load 

current, and the output voltage is programmed at 0.6V. This response is shown in the 

figure below, where by channel 1 shows the input voltage and channel 2 shows the ac 

component of the output voltage. 

 

Figure 4.6: Line transient response of the current-mode regulator. 

The input voltage is stepped between 2.7V and 3.2V. Moreover, the line regulation of the 

regulator was measured to be about 70dB. 

 The regulator has also been tested for a number of steady state parameters, in 

addition to line and load regulation. The dropout voltage of the regulator is measured to 

be about 205mV and the minimum input voltage of the regulator is found to be 1.4V. 

Moreover, the quiescent current (at no load) is measured to be 57μA, and at full load it is 

found to be 193μA. One explanation for the large discrepancy in quiescent current (at full 

load) between the measured results (193μA) and the simulation results (120μA) is that 

the leakage current to the substrate in the power PNP increases with load, and this was 
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not well accounted for in the simulations. As the schematic shown in the figure below 

illustrates, the parasitic PNP (QPE) is conducting whenever the power PNP is conducting.  

vB

vIN

vOUT

QP

QPE

QPC

 

Figure 4.7: Parasitic devices found in lateral PNP transistors. 

Although its current gain (βPE) is made much lower through layout techniques, it still 

conducts some current, and it can become significant at higher load levels. Moreover, the 

parasitic QPC starts conducting when the main transistor (QP) enters into saturation, which 

is why the effective current gain (β) of PNP transistor deteriorates when in saturation 

[10], [13], [27]. 

4.4 Evaluation of the Proposed Architecture 

 As it has been shown through the measured results, the proposed architecture does 

provide significant PSR improvement (about 20dB) over conventional regulators at 

higher frequencies. Considering the fact that the PSR of a conventional LDO regulator 

significantly deteriorates around its unity-gain frequency, this improvement is a 

significant leap forward. Furthermore, with the drive towards energy efficiency without 

compromising system performance, many high-end analog and RF applications use 

switched-mode power supplies (SMPS) with LDO post-regulators to achieve high 

efficiency and low-noise power supplies. Nevertheless, with the trend towards increasing 

switching frequency of SMPS, typically around the unity-gain bandwidth of LDO 

regulators, the power-supply ripple suppression achieved by conventional LDO 
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regulators at such frequencies is not that impressive. This is where the benefits and 

applications of the proposed architecture really shine up.  

Another benefit of the proposed architecture is that it can be stabilized with a 

smaller output capacitor than conventional LDO regulators. As had been mentioned 

earlier, in the regulator with the current loop disabled, a minimum of 68nF is needed to 

prevent oscillations at its output, where as only 15nF is needed to stabilize the proposed 

current-mode LDO regulator. Finally, the third benefit of the proposed architecture (as 

verified through the load transient response) is that it can achieve pretty high bandwidth 

(1.85MHz) while maintaining good phase margin. 

Having seen the advantages of the proposed architecture, as with anything in 

engineering, trade-offs are involved. One is the increased complexity as a result of using 

two feedback loops and understanding their interactions. Guaranteeing stability for the 

two loops under different line, load, and output capacitor conditions is a non-trivial task. 

Another disadvantage of the proposed architecture is: owing to the non-ideal frequency 

shaping (i.e. non-zero loop gain of the current loop at DC) circuitry, there is slight 

deterioration in DC voltage gain, and thus in line regulation, load regulation, as well as in 

low frequency PSR performance. 

There have been a few significant works in the area of high PSR LDO regulators, 

such as ([18], [22], [23], [24]). However, [18], [23], [24] rely on similar cascode strategy, 

and so the most recent and the most promising approach among the three, which is [18], 

is used for comparison against the proposed architecture. Table 4.1 compares the 

proposed approach against the state of the art. All the parameters shown are at full-load 

condition, as in this operating condition most regulators exhibit the worst performance. 
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Table 4.1: Comparison of the proposed topology against the state of the art. 

Performance Parameter [18] [22] 
Proposed 

Architecture 

Strategy Used Cascode 
Feedforward  

Ripple-Cancellation 
Current-Mode 

Min. Input Voltage 1.8V 1.15V 1.4V 

Max. Load Current 5mA 25mA 5mA 

Dropout Voltage 450mV 150mV 200mV 

Min. Output  

Capacitance 
Integrated 4μF 15nF 

Load Regulation 1.57mV/mA 0.048mV/mA 0.92mV/mA 

IQ 70μA 50μA 
57μA@no load 

193μA@full load
±
 

PSR at 100kHz  

(at full load) 
61dB 62dB 57dB

*
 

Lowest PSR up to 10MHz 

(at full load) 
27dB 56dB 49dB

*
 

Response Time 0.30μs 2.4μs 0.54μs 

Technology 0.6μm CMOS 0.13μm CMOS 1.5μm Bipolar 

    
*
With 68nF CO and 

±
Reference is external. 

Moreover, for the state-of-the-art techniques, the regulator’s response time is estimated 

by taking the inverse of the regulator’s bandwidth (if available) or by 

interpreting/computing from its load transient response.  

As shown in the table above, although the cascode strategy used in [18] achieves 

good PSR performance, it suffers from poor efficiency due to its higher dropout voltage. 

Similarly, the feedforward ripple-cancellation strategy used in [22], achieves good high 

frequency PSR performance by relying on accurately matching the ripple at the gate of 

the power PMOS with that at its input; however, it suffers from significantly higher 

output capacitance (as shown in the table above) compared to the proposed topology.  

4.5 Conclusions 

The proposed architecture achieves high PSR by utilizing a current-feedback loop 

to increase the high frequency impedance between the input and output terminals of the 
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regulator, and thereby achieving improved high frequency PSR performance. The 

current-feedback loop essentially operates the pass transistor as a current-controlled 

current source, and the reference for the relatively faster current loop is set by the (outer) 

voltage loop. One of the additional benefits of the proposed architecture is that the 

current loop being an internal feedback loop to the outer voltage loop, the parasitic pole 

located at the output of the error amplifier is effectively pushed out in frequency, thereby 

enabling higher bandwidth and good phase margin for improved stability. 

The proposed regulator was designed and fabricated using Linear Technology 

Corp.’s (LTC) 1.5μm Bipolar process technology. Experimental results demonstrating the 

benefits of the proposed architecture have shown a 20dB improvement (in the lowest 

PSR across wide frequency range up to 10MHz) over conventional LDO regulators. 

Moreover, the regulator has been able to achieve relatively high bandwidth of 1.85MHz 

using 15nF of output capacitor while maintaining good phase margin. In addition, the 

proposed regulator has also been shown to deliver 5mA of load current at input voltages 

as low at 1.4V. 

Ultimately, a novel approach to achieve good high frequency (up to 10MHz) PSR 

performance has been presented. The proposed current-mode LDO regulator achieves 

high PSR without increasing the dropout voltage of the regulator; hence, without 

compromising its efficiency. Moreover, unlike other state-of-the-art techniques, the 

number and size of passive components required to achieve good PSR performance is 

minimal; in fact, only a small 15nF off-chip capacitor is needed for stability and good 

PSR performance. Finally, the proposed architecture will find a variety of applications in 
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future portable electronic devices, especially for low-noise applications that need to be 

powered using switched-mode power supplies (SMPS) for high efficiency. 

4.6 Recommendation/Future Research 

The ever increasing drive towards smaller solution size for electronic devices will 

inevitably push for more integrated power management solutions. Without relying on 

bulky magnetic components, LDO regulators are particularly well suited for such 

applications. With this in mind, the proposed current-mode architecture can be made into 

a system-on-chip (SoC) type of solution by integrating the relatively small output 

capacitor on the same silicon as the regulator. A variety of capacitor multiplier techniques 

have been studied, such as in [28], that be leveraged into integrating the 15nF output 

capacitor. Moreover, as had been seen from the PSR results shown earlier, the frequency-

shaped transconductor used for the current loop does not have negligible gain at low 

frequencies, and this is another area that can be addressed in the future. Finally, a hybrid 

of the proposed topology and some of the state-of-the-art techniques, such as the active 

feedforward ripple-cancellation technique as used in [22], can be studied to find out if 

even better performance can be achieved. 
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APPENDIX A 

MATHEMATICAL ANALYSIS OF DUAL-LOOP FEEDBACK 

SYSTEMS 

 

Dual-loop control systems are widely used in power converters, and although 

intuitive models are widely available while designing these circuits, it undoubtedly helps 

to rigorously analyze the internals of multiple feedback loops when leveraging more 

functionality out of it. This is especially true with frequency shaping the current-feedback 

loop in the proposed current-mode architecture. The figure below shows a general block 

level description of dual-loop control systems. 

AV(s) +
-

+-
AI(s)

βI(s)

βV(s)

vIN

vOUT

 

Figure A.1:  A basic dual-loop feedback control system. 

The transfer function from vIN to vOUT can be calculated as follows: 

 OUTIOUTIVOUTVIN vA)vA)vv((  . (A.1) 

Re-arranging the terms in the above equation yields the following relationship between 

vIN and vOUT: 



 

 51 

 

VV

II

I

V

II

I

IN

OUT

VVIII

VI

IN

OUT

A
A1

A
1

A
A1

A

v

v

)AAA(1

AA

v

v












. (A.2) 

However, the above equation can be further simplified as follows: 
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Hence, 

 
VVCLI

VCLI

IN

OUT

AA1

AA

v

v






 . (A.4) 

Equation A.4 represents the overall transfer function of the main loop (that is the 

voltage loop). However, when the current loop is frequency-shaped, as equation A.3 

suggests, the overall transfer function from vIN to vOUT will subsequently change. 

Furthermore, based on the above equations, the loop gains LGI and LGV of the current 

and voltage loops, respectively, which is used to for stability analysis, is determined as 

follows: 

 III ALG   (A.5) 

and VVCLIV AALG   . (A.6) 
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